Please use this identifier to cite or link to this item:
https://idr.l4.nitk.ac.in/jspui/handle/123456789/16910
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Dodamani, B M. | - |
dc.contributor.author | Pathak, Abhishek A. | - |
dc.date.accessioned | 2021-08-26T06:31:45Z | - |
dc.date.available | 2021-08-26T06:31:45Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/16910 | - |
dc.description.abstract | Drought is acknowledged as a significant natural disaster which leads to food, fodder, and water shortages along with destruction of vital ecological system. Drought is a transient recurring sinister disaster, which originates from the lack of precipitation and further creeps into different subdivisions of hydrological cycle causing adverse effects on agricultural and its allied sector. Combination of these leads to economic losses and several damage to living organisms. Identifying and quantifying drought characteristics of a region is must to understand the behavior of drought and its profound impacts on society, economy, and environment. Along with the historical knowledge, comprehensive overview of future drought projections is a vital step in ensuring future water and food security. The present study focuses on characterizing different hydrometeorological droughts in the historical and future climate of an agrarian Indian river basin. The specific objectives of the study are 1) To investigate annual and seasonal trends of hydro meteorological variables, over the study area. 2) Assessment and comparison of Meteorological, Hydrological and Agricultural drought characteristics with multiple indices 3) To explore the applicability of copulas theory for joint modeling of drought characteristics 4) Characterization of future hydro-climatic droughts. The study was implemented in the Ghataprabha river basin, being one among the potential lands for agriculture in the basin of river Krishna. Firstly, the basin has been categorized in to humid, sub humid and semiarid region based on Aridity Index. Similarly, groundwater well of the study area are grouped in to different clusters using hierarchical and non-hierarchical clustering methods The annual and seasonal trend analysis of different hydrometeorological variables are carried out using Mann-Kendall trend test and the magnitude of the trend was estimated using the Sen’s Slope Estimator. A non-significant decreasing trends in both rainfall and rainy days was observed in semiarid region during monsoon period. Significant increasing trend in mean temperature was observed for all the stations and for all the seasons with the average magnitude of 0.2⁰ C per decade. Along with the mean temperature, annual andseasonal PET trends were also increasing for all the stations but are significant only in semiarid region with the average increase of 3.5mm per decade. The trends in annual streamflow of the basin are decreasing with magnitude of 574.25 cumecs/year, whereas, no significant trends were observed in the reservoir levels. The trend analysis of the groundwater levels of different clusters, revealed that annual water level in the 81% of the wells of cluster 2 and 47% of the total wells of the study area are significantly declining. The hydrometeorological droughts assessment with different indices portrayed significant number of droughts in the past. The RDI and SPI are behaving similarly in all the stations whereas, significant discrepancies was observed between SPI/RDI and SPEI. The hydrological drought assessed with SDI followed similar pattern with SRSI whereas it showed significant divergence with meteorological droughts. Similarly, Agricultural drought derived through VCI followed similar pattern of SPI-6 in comparison with SPI-3. A teleconnection between meteorological drought and groundwater drought was observed along with the crucial role of underlying hydrogeological characteristics. Joint modelling of hydrometeorological drought characteristics and regional bivariate frequency analysis was carried out by employing Archimedean copula. An attempt has also been made to characterize drought in multivariate perspective by developing Standardized Hydro Meteorological drought Index. From the results of bivariate frequency analysis of meteorological drought, it was observed that, droughts of high severity with prolonged duration are frequent in semiarid region compared to humid and sub-humid regions. The joint probability of hydrological drought conveyed drought of smaller duration or severity are more prominent in the basin whereas joint return periods of groundwater drought is high in the well of cluster 2. The developed SHMI considers combined effects of precipitation and streamflow to picturize a near realistic drought scenario of the basin. The future hydrometeorological drought characteristics were assessed by different RCMs. The different bias correction methods were applied to rainfall and temperature to raw RCMs and observed that CNRM-CM5 with LS bias correction method performed better for correcting the rainfall and VS is proved to be superior for correcting the temperature projections. The trend analysis carried out for the future hydrometeorological variable showed significant decreasing trends in annual and post monsoon season whereas temperature trend is increasing significantly with the rise of 0.150 C per decade. The future hydro-meteorological drought characteristics revealed that the basin will experience more number of droughts compared to the past and it can be attributed to decreasing rainfall trend and significant rise in temperature of the basin. In this study, an attempt has been made to characterize future and historical hydrometeorological droughts comprehensively. The outcome of the study will be helpful to design proactive drought mitigation and preparedness strategies for upcoming drought and it also provides a framework to evaluate the drought risks at other parts of the world. | en_US |
dc.language.iso | en | en_US |
dc.publisher | National Institute of Technology Karnataka, Surathkal | en_US |
dc.subject | Department of Water Resources and Ocean Engineering | en_US |
dc.subject | Mann–Kendall | en_US |
dc.subject | Sen’s slope | en_US |
dc.subject | Copula | en_US |
dc.subject | Regional Climate Model (RCM) | en_US |
dc.subject | Drought propagation | en_US |
dc.subject | Joint return periods | en_US |
dc.subject | Bias correction | en_US |
dc.subject | Drought Severity | en_US |
dc.subject | Drought Duration | en_US |
dc.subject | Trend analysis | en_US |
dc.title | Characterization Of Historical and Future Hydrometeorological Droughts in an Indian Tropical River Basin | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | 1. Ph.D Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
155115AM15F01.pdf | 7.38 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.