Please use this identifier to cite or link to this item:
https://idr.l4.nitk.ac.in/jspui/handle/123456789/12559
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kishor, Kumar, M.J. | |
dc.contributor.author | Kalathi, J.T. | |
dc.date.accessioned | 2020-03-31T08:41:50Z | - |
dc.date.available | 2020-03-31T08:41:50Z | - |
dc.date.issued | 2019 | |
dc.identifier.citation | Journal of Electronic Materials, 2019, Vol.48, 12, pp.7654-7661 | en_US |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/12559 | - |
dc.description.abstract | Energy storage materials in modern electronic devices and renewable energy systems are inevitable. The incorporation of inorganic fillers into the polymer matrix is a promising option for the advancement of storage materials with high energy density. The agglomeration of inorganic fillers in the polymer matrix and phase separation remain the main obstacles to efficient applications of the composites for energy storage. Here, the primary attention was given to achieve a uniform distribution of high-k LZO (Lanthanum Zirconium Oxide) filler into a PMMA (Polymethylmethacrylate) matrix to enhance the dielectric constant and energy storage density of PMMA while keeping dielectric loss at minimum. We prepared PMMA-LZO composite films with variable LZO content by ultrasound-assisted mixing followed by spin coating the solution on ITO (Indium tin oxide) coated glass. The effect of LZO content on dielectric properties of the LZO-PMMA films was studied. Dielectric constant (k) of PMMA was found to be increased from 3.1 to 15.3 at 15 vol.% LZO loading with a dielectric loss of 0.0582. However, 10 vol.% LZO loaded PMMA showed an improved dielectric constant of 13.4 while the dielectric loss remained the same as that of the neat PMMA. The LZO-PMMA films with 10 vol.% and 15 vol.% of LZO loading exhibited maximum energy density of 5.94 J cm?3 and 6.53 J cm?3, respectively. Overall, the 10 vol.% LZO loading was found to be optimum to achieve a stable film with improved dielectric properties. This work provides a viable approach for the development of flexible, high-energy density materials with a minimum dielectric loss. 2019, The Minerals, Metals & Materials Society. | en_US |
dc.title | PMMA-LZO Composite Dielectric Film with an Improved Energy Storage Density | en_US |
dc.type | Article | en_US |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.