Please use this identifier to cite or link to this item: https://idr.l4.nitk.ac.in/jspui/handle/123456789/12383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajani, B.N.-
dc.contributor.authorKandasamy, A.-
dc.contributor.authorMajumdar, S.-
dc.date.accessioned2020-03-31T08:39:07Z-
dc.date.available2020-03-31T08:39:07Z-
dc.date.issued2012-
dc.identifier.citationJournal of Applied Fluid Mechanics, 2012, Vol.5, 1, pp.67-79en_US
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/12383-
dc.description.abstractTurbulent flow past circular cylinder at moderate to high Reynolds number has been analysed employing an secondorder time accurate pressure-based finite volume method solving two-dimensional Unsteady Reynolds Averaged Navier Stokes (URANS) equations for incompressible flow, coupled to eddy-viscosity based turbulence models. The major focus of the paper is to test the capabilities and limitations of the present turbulence model-based 2D URANS procedure to predict the phenomenon of Drag Crisis, usually manifested in reliable measurement data, as a sharp drop in the mean drag coefficient around a critical Reynolds number. The computation results are compared to corresponding measurement data for instantaneous aerodynamic coefficients and mean surface pressure and skin friction coefficients. Turbulence model-based URANS computations are in general found to be inadequate for correct prediction of the mean drag coefficients, the Strouhal number and also the coefficients of maximum fluctuating lift over the range of flow Reynolds number varying from 10 4 to 10 7.en_US
dc.titleOn the reliability of eddy viscosity based turbulence models in predicting turbulent flow past a circular cylinder using URANS approachen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
File Description SizeFormat 
12383.pdf1.57 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.