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This paper proposes a robust framework for quality restoration of remotely sensed aerial images. Proposed
framework works in three steps: (1) Efficient color balancing and saturation adjustment, (2) Efficient color
restoration, (3) Modified contrast enhancement using particle swarm optimization (PSO). In order to show the
robustness, step-wise results of proposed framework is illustrated. Several aerial images from two publically

available datasets are tested to support the robustness of the proposed framework over existing image quality
restoration methods. The experimental results of proposed framework and other existing quality restoration
methods are compared in terms of NIQMC, BIQME, MICHELSON, DE, EME and PIXDIST along with visual
experimental results. Based on experimental results conducted on several aerial images suggest that the proposed
framework is outperform over existing quality restoration methods.

1. Introduction

Satellite images are commonly have been used in the diverse fields
like space, geosciences and etc for various applications [1,2]. Other
than using satellite images for surveillance application, aerial remote
sensing images captured from aero-planes are also important source of
information for surveillance [3,4]. In addition to surveillance applica-
tion, aerial remote sensing images are also used extensively in many
trip and mapping software packages like Google Earth and Microsoft
Virtual Earth. These software packages provide geospatial information
of the earth surface [5]. Unfortunately, aerial remote sensing images
still suffer from the atmospheric degradation source as those satellite
counterparts [5]. The reason for selecting aerial remote sensing images
because satellite remote sensing images are more sensitive to atmo-
spheric effects as compared with aerial remote sensing images [6]. The
effects of atmosphere on aerial images are even negligible in the good
weather condition [6]. Another reason, aerial images have very high
spatial resolution and high geometric fidelity [6]. In the literature, the
histogram equalization method is used as basic approach for image
enhancement because of its simple implementation but this method
always gives over enhanced result [7-11]. The image enhancements by
the transform domain methods are mainly focused on enhancement of
high frequency sub-band coefficients [12-14]. But, these methods are
not suitable for aerial or satellite remote sensing images. The recent
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linking models based method often not suitable for aerial images be-
cause of over smoothing which provides the loss of information in the
images [15]. In [16], authors developed method based on Non-local
approach for enhancement of satellite images but fails for color images.

In the literature last one decade, In addition to the conventional
methods, authors also developed image enhancement methods based
several optimization algorithms. In this filed, Genetic algorithm (GA) is
the first and foremost method for image enhancement. In [17,18], au-
thors developed Genetic Optimization algorithm based method for of
satellite images but it is computational complex than conventional
methods. In [19], authors proposed automatic method using PSO al-
gorithm for enhancement of images. In this method, PSO algorithm is
used to enhance the image details by properly tuning parameters of
algorithm by maximizing their defined objective function. This method
was computationally less complex compared than GA based enhance-
ment method. In [20,21], authors also proposed automatic method
using PSO algorithm for enhancement of images. In this method, au-
thors claim that their methods outperform GA based enhancement
method.

In [22], authors proposed Multi objective PSO (MPSO) based
method for contrast enhancement of gray scale images. In this method,
authors have considered discrete entropy as first objective function
which main objective is to maximization it and gamma correction as a
second objective function for intensity preservation. Authors claim that
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their method provides better experimental results for gray scale images
but also demonstrated discrepancies in the output images. In [23],
authors proposed new enhancement method for contrast enhancement
for images. In this method, authors have used Otsu’s method for seg-
menting the histogram of original image into two sub-bands and
equalizing both of them independently through optimized weighing
constraints using PSO algorithm. This technique was less stable and
computationally complex than other existing methods. Later in the
literature, authors proposed methods based on hybridization of meta-
heuristics optimization algorithms for contrast enhancement of images
[24,25]. Experimental results of these methods are better but are
computationally complex. In [26], authors proposed hybrid method by
combining PSO with Negative Selection Algorithm (NSA) for en-
hancement of images [26]. In [27], authors proposed modified differ-
entia evolution (MDE) based algorithm for contrast enhancement of
satellite images. The simulation results were promising but it is com-
putationally complex method.

Most of the above mentioned image restoration methods results in
redundant artifacts on various remote sensing image datasets. In order
to solve problems of above described image restoration methods, a
robust framework is proposed for quality restoration of remotely sensed
aerial images. Proposed framework works in three steps: (1) Efficient
color balancing and saturation adjustment, (2) Efficient color restora-
tion, (3) Modified contrast enhancement using PSO algorithm. The PSO
algorithm was proposed by Kennedy and Eberhart in 1995 [28]. It was
based on the swarming behavior such as fish and bird schooling in
nature [29]. PSO algorithm mainly consists of mutation and selection
phases. In PSO algorithm, there is no crossover phase, which means it
provides a high mobility in particles with a high degree of exploration
[29]. The main advantage of PSO algorithm is that it helps to speed up
the convergence rate by drawing towards the current best, but at the
same time PSO algorithm may lead to premature convergence [29]. The
other quality restoration methods developed by various researchers for
remote sensing image processing applications [30-39]. The main re-
search contributions of this paper are given as follows:

e Modified Contrast Enhancement method using PSO algorithm is
proposed for remotely sensed aerial images.

® A robust framework is proposed for quality enhancement of re-
motely sensed aerial images.

e Contribution to state-of-the-art contrast enhancement method for
remotely sensed aerial images.

The structure of the manuscript is organized as follows. Section 2
gives detailed analysis of the proposed framework. Section 3 gives ex-
perimental results of proposed framework. Section 4 gives conclusion
and future scopes of the manuscript.

2. Proposed framework

Design, implementation and analysis of the proposed framework are
presented in this section. The proposed framework is delineated into
three steps: (1) Efficient color balancing and saturation adjustment, (2)
Efficient color restoration, (3) Modified contrast enhancement using
PSO algorithm.

2.1. Efficient color balancing and saturation adjustment

A RGB aerial remote sensing image I is given as input with red (R),
green (G), and blue (B) as it’s channels and then It is normalized be-
tween 0 and 1 which is depicted below

8@, ) ={RGj), GG, BG, )} € [0, 1] @

where (i, j) denotes the pixel indices and [0, 1] is the range of nor-
malized magnitudes. The indices may be removed henceforth as it is
understood from the context.
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Fig. 1. Schematic representation of proposed framework.

According to grey-world assumption, the averaged image color is
grey thereby eliminating color cast. For this assumption to hold there
should be exponential alignment of the mean color values of the
channels [3]. Moreover the use of exponent assures that all pixel values
are within the prescribed range [0, 1]. First we calculated the minimum
value of mean brightness for each input color channel [3] and is given
by

1
Sm = min{ — S¢
¢ {N wz;z } @

Where S¢ denotes the pixel color magnitude for C € {R, G, B} and N
depicts the total number of pixels which is actually the product of width
(W) by height (H) of the input image, that is N = W x H. The sum-
mation is performed for all three color components for all pixels.

The average values belonging to each channel are defined as

1
Si=— >, 8¢
N3 3

Then, there is further alignment of each color channel to the mean
image brightness and this is done by each pixel raised to an exponent
[3]. It is given by

o log(sw)
log(Sy)

where xCdenotes the exponent for each individual color.

Removal of color cast is followed by saturation adjustment of image
[3]. This is impelled by scrutinizing the definition of color saturation
(CS) in both hue saturation intensity (HSI) and hue saturation value
(HSV) color spaces and is given by

4

CSsy = 1_3 X min{R, G, B}

R+G+B (5)

min{R, G, B}

CS, =]1-——
sV max{R, G, B} (6)

From here it can be easily deduced that saturation can be enhanced
by compressing min{R, G, B} or amplifying -. So our saturation adjust-
ment comprises of two stages, which are described below.

First, there is global alignment of all the pixel magnitudes to cover
[0, 1] and is given by

SC _ Sc—minC,WH{S}

" maxc,wu {S}-minc wi {S}

)

where minc yy {S} represents the minimum values calculated over all
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Table 1

Step-wise enhancement results of proposed framework fort test Image 1.
Each stage METRICES

NIQMC BIQME MICHELSON DE EME PIXDIST

Input Image 3.8518 0.4056 0.0008 6.9188 7.4905 20.4753
Efficient color balancing and saturation adjustment (Step-1) 4.7004 0.5073 0.0219 7.2976 15.4438 21.9989
Efficient Color Restoration (Step-2) 5.2305 0.6105 0.1513 7.6709 25.2839 29.5533
Modified Contrast Enhancement using PSO (Step-3) 5.4136 0.6456 0.3817 7.8024 55.0252 33.2337

Fig. 2. Test image 1: (a) input (b) output of efficient color balancing and saturation adjustment (step-1), (c) Efficient Color Restoration (step-2), (d) Modified Contrast

Enhancement using PSO(step-3).

Table 2
Parameters used in PSO algorithm.
Parameter name Meaning Default
value
Population size (P) Total number of candidate 30

solution vectors initialized
No. of particles in the swarm Dimension of the problem / No. 2
@ of parameters to be optimized
Total no. of generations (G) No. of iterations 30

Inertia constant (n), Velocity update parameters 0.8,1.7,1.7
acceleration constants (c,,
M)

Initial velocity value (Vmin) Lower boundary limit of 0

particle velocity

color channels and pixels, maxc wy{S} represents the maximum calcu-
lated over all color channels and pixels. After this process, at least one
pixel with minimum color would be at zero and at least one pixel with
maximum color would be at unity. Hence, as per the definition, there
would be partial saturation enhancement of pixels.

Second, colors of each pixel would be sorted into three elements
defined as minimum (), middle () and maximum (&) which are color
independent and satisfies the condition § < y < §. Further, for post-
normalization we have defined a magnitude variable (u) and is given by

This is the ratio of middle element to the min-max range. This is
succeeded by a shift-and-scale process or in simpler term, compression
and expansion of the minimum and maximum elements respectively
depending on the parameter A, (0 <A < 1) as depicted below,

B=01-1B )]

§=2+@1-1)8 (10

This operation is indeed needed for keeping the resultant elements
within the range [0, 1].

The change in magnitudes of minimum and maximum element leads
to color shift which is reduced by restoring original ratio of the middle
element between the minimum and maximum elements and it is de-
scribed below

x=ux(©6-p)+B aan

After this stage, the elements owing to their respective sorting index
are remapped to their respective color channels and an image posses-
sing improved saturation is obtained.

2.2. Efficient color restoration
The RGB saturated image from the prior step is processed further to

overwhelm any sort of color violation. Here, a color restoration tech-
nique is employed which is basically an optimized search procedure

_ X8 based on an efficient search technique for computing and evaluating
#= 58 (8) optimal parameters of the image, thereby enhancing the non-uniform
illuminated regions [30]. This processed image is passed for a modified
Table 3
Average performance comparison of different techniques on aerial datasetl.
Algorithms Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
UMFKG 4.5450 0.5307 0.0588 7.5166 16.9545 28.2191
RHE-DCT 4.9611 0.5835 0.0642 7.4685 18.3882 25.3302
IFAIR 4.8026 0.5208 0.1237 7.2823 20.583 22.2855
LSCN 4.9651 0.6072 0.0964 7.4228 24.1191 24.2948
JEI 3.9011 0.4492 0.0013 7.0743 7.9222 20.2816
MDE 3.9587 0.4209 0.0009 6.9014 5.9131 22.4380
PROPOSED FRAMEWORK 5.3429 0.6139 0.2537 7.7080 41.1225 30.4094
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Table 4

Average performance comparison of different techniques on aerial dataset2.
Algorithms Metrices

NIQMC BIQME MICHELSON DE EME PIXDIST

UMFKG 5.1461 0.5847 0.2617 7.4714 35.6825 25.2336
RHE-DCT 5.1419 0.5977 0.1169 7.458 22.1714 25.4332
IFAIR 4.8884 0.5676 0.1518 7.2917 22.7625 22.4501
LSCN 4.7361 0.5045 0.0759 7.2692 17.1117 21.8005
JEI 5.2434 0.5898 0.0659 7.6116 17.0655 28.5676
MDE 4.1863 0.4270 0.0158 7.0601 9.2292 20.6029
PROPOSED FRAMEWORK 5.4479 0.6256 0.2756 7.7492 35.888 30.889

contrast enhancement process.
2.3. Modified contrast enhancement using PSO algorithm

Following the enrichment of non-uniform illuminated regions, here
a contrast enhancement process riveting on the image brightness is
worked out. This process is a modified unsharp masking filter (UMF)
[31]. The enhancement operation is carried out on the brightness space.
For this the processed RGB image is converted to hue-saturation-value
(HSV) space [32], where color is denoted by hue (H), the richness of the
color is represented by saturation (S) and brightness is denoted by value
(V). Here, the unsharp masking enhancement is performed on V-
channel.

The operation of UMF is given as [33],

Z=V+sX 12)

where Z is the filtered V-channel pixel, V is the given input V-channel
pixel, sis the control factor deciding the strength of enhancement and
Xis the edge signal from the kernel. This is done using two steps.

2.3.1. Kernel design

The performance of UMF is largely dependent on the filter kernel
used and the proper setting of gain factors. The improper setting of gain
factor would make the output either under-enhanced or over-enhanced
[33]. So, here a kernel ¢ of 3 x 3 size is taken. The chosen kernel is used
to extract local edge thereby giving thinner edges and improved
sharpness in the enhanced image. The kernel given by

—-a —2 —a
-2 12 =2
—-a —2 —a

and the constraint of kernel element is given by a > 0. The edge

signal output from kernel is depicted by,

X=¢® A

1
(==X
16 13)

(14)

where A, is the 3 X 3 neighborhood pixels positioned around pixel V.

The convolved output is scaled with control parameter s and is
added to original image in order to obtain enhanced sharpness. Hence,
to achieve desirable enhancement results, parameters a and s are re-
quired to be optimized. This is done using PSO algorithm.

2.3.2. Particle swarm optimization (PSO) algorithm

The PSO algorithm belongs to the class of meta-heuristic algorithm.
It is inspired from the swarm behavior of living species in nature, such
as fish and bird schooling, while searching for food [34,40-43]. The
reason for choosing PSO algorithm for optimizing kernel parameters is
that because it mainly consists of mutation and selection parameters. In
PSO algorithm, there is no crossover phase, which means it provides
high mobility in particles with a high degree of exploration [44].
Hence, it is suitable for finding optimal solutions to arduous optimi-
zation problems. The PSO algorithm has many advantages [45], which
are: (1) Implementation of PSO algorithm is simple because it requires
to set only few parameters (2) PSO algorithm is an effective in global

search (3) PSO algorithm is insensitive to scaling of design variables,
and (4) PSO algorithm is easily parallelized for simultaneous proces-
sing, it has propensity to result in a fast and early convergence in mid
optimum points [45].

Here, in this optimization problem, the parameters are going to be
optimized are kernel parameter element a, and parameter s. For this, a
particle in PSO algorithm is encoded with these parameters and is given
by

T=[4t] = [as] (15)

The swarm in PSO algorithm, consists of g particles, i.e., T; where
j=1,..,q (g set as 2 in our designed problem). In the beginning, the
particles are assigned its initial positions in a random manner, in the
potential solution space. The population size (P) of the solution space is
initialized as 30 and the maximum number of generations (G) is fixed as
30 [34]. Then, the particles are updated according to their defined
objective function and during a number of time stepsi = 1,..............G,
they are guided to optimal solutions. The particles wander in the so-
lution space and are attracted to global best solution T¢ ascertained so
far. The motion of the particle is controlled by its current best solution
T{ . The new position of the particle is governed by its original position
and velocity of motion [34]. The new velocity vector [34] is given in
the Eq. (16).

Vii+1 = NjVj; + Cg (Tig—Tj,i) + Cq(Tjg,i—E,i) (16)

where velocity vector is denoted byv and inertia constant is denoted as
n which lies in the range -. The acceleration constants are denoted as cg
and cg, which are random numbers in [0, cpax] and cpax is the max-
imum value taken between 1.7 and 2.0.

According to new velocity, the new position of the particle can be
updated as given in the Eq. (17)

Tjiv1=Tji + Vs 17)

In this problem, a > 0 and s > 0, are the required constraints.
Hence, both the constraints are satisfied by employing the given step

Tji < 1Tl (18)

The information content is determined by maximizing the objective
function which is defined in the Eq. (19)

)

where ¢ denotes the entropy, o denotes the number of over-ranged
pixels. After maximizing this, output edge signal X is updated and after
scaling with parameter s, it is superimposed onto the given V-channel
image V and a higher contrast enhanced output v-channel image Z is
obtained and it is again converted back to RGB channel to give the final
output image. This framework is tested on a collection of different
aerial remote sensing images.

g
c=eX|1-
Joy =€ ( W x H (19)

2.4. Implementation of proposed framework

The schematic representation of proposed framework for quality
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Fig. 4. Visual results of different quality restoration methods for aerial image 1. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR. (e) LSCN, (f) JEL (g) MDE,

(h) PROPOSED FRAMEWORK.

Fig. 5. Visual results of different quality restoration methods for aerial image 2. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAI (e) LSCN, (f) JEL (g) MDE, (h)

PROPOSED FRAMEWORK.

restoration for aerial remote sensing images is shown in Fig. 1 and its
implementation procedures are as follows:

Step 1: Efficient color balancing and saturation adjustment: In
this step, a RGB aerial image is given as input and is normalized as
given in Eq. (1). Then minimum value of mean brightness for each input
color channel and the average values belonging to each channel are
calculated as given in Egs. (2) and (3). The gray-world color balance is
given in Eq. (4) which is the exponent for alignment of each color
channel. Then the image is stretched to align the color correction ex-
ponent. After this there will be saturation adjustment. First there will be
partial saturation enhancement of the pixels as given in Eq. (7). Then
colors of each pixel would be sorted into three elements defined as
minimum, middle and maximum. These values are extracted as given in
Egs. (9), (10) and (11) respectively. Then the elements belonging to
their respective sorting index are remapped to their respective color
channels. An improved saturation adjusted image is obtained.

368

Step 2: Efficient Color Restoration: This step makes sure to get rid
of any small color violation in the processed image before it is passed
for contrast enhancement. This step maintains a fair degree of color
constancy which described in the Section 2.

Step 3: Modified Contrast Enhancement using PSO: This is the
last step which performs the contrast enhancement of the above pro-
cessed image. First the processed RGB channel image is converted to
HSV channel and the modified unsharp masking filter (UMF) is applied
to this as given Eq. (12). To apply this, the filter kernel is given by Eq.
(13) and the edge signal output obtained by the convolution of filter
kernel and neighboring pixels matrix which is given in Eq. (14). The
optimum value of the parameters in the kernel and the UMF are found
out using PSO algorithm. Then encoding of the parameters is done and
is given by Eq. (15). The new velocity vector and the position of the
particle in the PSO are given in Egs. (16) and (17). The objective
function for maximizing the parameters is given in equation (19). The
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Fig. 6. Visual results of different quality restoration methods for aerial image 3. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEL (g) MDE,

(h) PROPOSED FRAMEWORK.

(b

Fig. 7. Visual results of different quality restoration methods for aerial image 4. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEL (g) MDE,

(h) PROPOSED FRAMEWORK.

updated values of the parameters are remapped to the V-channel of the
image and the updated image is converted back to the RGB channel and
it is the final output.

2.5. Illustration of proposed quality restoration framework

The proposed framework is divided into three major stages as dis-
cussed earlier. Quantitative results of each stage have been evaluated
using the different image quality metrics (IQM) such as No-Reference
Image Quality Metric for Contrast distortion (NIQMC) [46], Blind
Image Quality Measure of Enhanced images (BIQME) [47], Michelson
Contrast (MICHELSON) [48], Discrete Entropy (DE) [49,50], measure
of enhancement (EME) [51] and Pixel distance (PIXDIST) [52] which
are given in Table 1 for Image 1. Higher its value better is the quality
restoration method. Visual enhancement results of each stage have been
evaluated and are presented in Fig. 2.

369

3. Experimental results and discussion

Our proposed framework is tested and validated against a number of
existing image quality restoration mehods on remotely sensed aerial
image datasets. The image quality restoration methods included for
simulation and experimental results comparison are UMFKG [31], RHE-
DCT [16], IFAIR [3], LSCN [15], a method of JEI [30] and MDE algo-
rithm [27].

3.1. Parameter setting

The values of the different parameters used in benchmarks image
quality restoration methods are selected from their respective research
papers. The different simulation parameters used in the proposed fra-
mework are derived by its working form and it is given in Table 2.
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Fig. 8. Visual results of different quality restoration methods for aerial image 5. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEI, (g) MDE,

(h) PROPOSED FRAMEWORK.

Fig. 9. Visual results of different quality restoration methods for aerial image 6. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEL (g) MDE,

(h) PROPOSED FRAMEWORK.

3.2. Aerial remote sensing image datasets

In the simulation, the different test aerial remote sensing images
were used from datasetl and dataset2. These aerial datasets were
procured from USC-SIPI Image database (source of dataset1: http://sipi.
usc.edu/database/database.php?volume = aerials) and SZTAKI air
change benchmark set (source of dataset2: http://web.eee.sztaki.hu/
remotesensing/airchange_benchmark.html) [38,53]. First dataset con-
tains total 37 aerial remote sensing images which were originally stored
in the TIFF color format. In this dataset, twelve aerial images were
512x512 and twenty-five aerial images were 1024x1024. Second da-
taset contain total 12 aerial change detection remote sensing image
which were originally stored in the BMP color format and each aerial
image were size of 952 X 640.

3.3. Result analysis

In order to the simulation and experimental results assessment,
performance evaluation and visual results comparison of proposed
framework with other image quality restoration methods on different
aerial image datasets is presented. The proposed framework and other
existing image quality restoration methods are tested on 49 aerial re-
mote sensing images from the above mentioned databases, but visual
results of only 10 aerial images are presented in this manuscript. The
numerical performance comparison of different image quality restora-
tion methods is presented in terms of image quality metrics such as
NIQMC [46], BIQME [47], MICHELSON [48], DE [49,50], EME [51]
and PIXDIST [52]. Higher its numerical value better is the quality re-
storation method. Table 3 and Table 4 depict the average value of
evaluated quality metric values for all the image quality restoration
methods compared on aerial image datasetl and dataset2. From the
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Fig. 10. Visual results of different quality restoration methods for image 7. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEI, (g) MDE, (h)

PROPOSED FRAMEWORK.

Fig. 11. Visual results of different quality restoration methods for aerial image 8. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEI, (g) MDE,

(h) PROPOSED FRAMEWORK.

Table 3 and Table 4, it can be seen that performance metrics of pro-
posed framework on aerial image dataset]l and dataset2 are better as
compared to other existing image quality restoration methods Perfor-
mance comparison of difference image quality restoration methods on
aerial image dataset]l and dataset2 is also illustrated through bar graph
which is shown in Fig. 3.

Further, simulation and experimental quantitative results of the
proposed framework is analyzed against other existing image quality
restoration methods like UMFKG, RHE-DCT, IFAIR, LSCN, JEI, and MDE
on ten aerial images from two aerial image datasets. The visual re-
storation results of proposed framework and other existing image
quality restoration methods are given in Figs. 4-13. From the
Figs. 4-13, it can be seen that visual restoration result of UMFKG
method does not provide good result. Whereas visual quality restora-
tion results of RHE-DCT method provides better result as compared to
UMFKG method but still other details of the image are not very lucid.

However, visual quality restoration of IFAIR method provided little
improved visual results as compared to UMFKG and RHE-DCT methods
but still naturalness is missing in the output image. Further, visual
quality restoration of LSCN method provided little improved visual
results with cost of information loss at the edges and it also provided
faded colors in the output image. The LSCN method also amplifying
noisy pixels which introducing small ringing effect because of the use of
high pass filter. The visual quality restoration of JEI method has pro-
vided better output results but still naturalness is missing in the output
image. Whereas, the visual quality restoration of MDE method provided
an unnatural output image. Therefore, based on the simulation and
experimental results comparison with the other existing image quality
restoration methods, the proposed framework has provided better vi-
sual and quantitative results.
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Fig. 12. Visual results of different quality restoration methods for image 9. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEI, (g) MDE, (h)
PROPOSED FRAMEWORK.

Fig. 13. Visual results of different quality restoration methods for aerial image 10. (a) Original image, (b) UMFKG, (c) RHE-DCT, (d) IFAIR, (e) LSCN, (f) JEI, (g)
MDE, (h) PROPOSED FRAMEWORK.

Table 5
CPU processing time of different restoration methods (in second).
Images Algorithms
UMFKG RHE-DCT IFAIR LSCN JEIL MDE PROPOSED FRAMEWORK
dataset 1 Imagel 18.972 2.806 2.301 9.37 3.306 2816.054 8.071
Image2 17.997 2.227 2.727 9.333 3.179 2811.022 7.917
Image3 19.474 1.184 2.128 1.781 0.795 725.160 7.759
Image4 18.864 2.017 2.262 7.065 2.977 2613.658 7.802
Image5 19.172 2.208 3.020 14.008 2971 2447.213 7.788
Image6 18.729 2.748 2.024 11.762 4.044 945.344 7.342
dataset 2 Image7 17.526 2.077 2.001 14.359 2.698 2425.798 7.042
Image8 17.548 2.037 1.768 11.254 2.140 2818.628 7.391
Image9 17.566 1.997 1.972 14.432 2.238 1994.598 7.039
Imagel0 17.495 2.023 2.050 14.501 2.088 716.699 7.507
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4. Comparison of computational complexity

The CPU processing time for existing image quality restoration
methods is presented in Table 5. From the Table 5, it is clear that
proposed framework requires slightly higher processing time as com-
pared to RHE-DCT, IFAIR and JEI and lower processing time as com-
pared to UMFKG and MDE. From the Table 5, it is clear that RHE-DCT
method takes less processing time as compared to other quality re-
storation methods because it is based on histogram. From the Table 5, it
is also clear that meta-heuristic optimization based MDE algorithm
takes highest processing time as compared to other existing image
quality restoration methods. All the quality restoration methods are
implemented in MATLAB R2015a running on an Intel Core i5 - 4210U
Laptop with 1.7-GHz CPU, 8-GB RAM, and 64-bit operating system.

5. Conclusion

This paper highlighted proposed framework for contrast enhance-
ment of aerial images. To demonstrate the effectiveness of the proposed
framework, the different performance quality parameters were eval-
uated on different aerial image datasets. The simulation and experi-
mental results were also evaluated and compared with other existing
image quality restoration methods. Based on experimental resulted
conducted on various aerial images datasets suggested that proposed
restoration framework provided better numerical value of NIQMC,
BIQME, MICHELSON, DE, EME and PIXDIST as compared to other
state-of-the-art quality restoration methods. Visual enhancement results
comparison proved that the proposed framework provided better
quality restoration results as compared to other state-of-the-art en-
hancement methods. Comparison of CPU processing time also revealed
that the proposed restoration framework was computationally efficient
as compared evolutionary based enhancement algorithms such as
UMFKG and MDE algorithms. Hence, proposed restoration framework
can be used in the pre-processing stage of various applications of image
processing. In future work, more efficient nature inspired optimization
algorithm could be employed for optimizing parameters.
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