
Optimal Scheduling of Computational Task in
Cloud using Virtual Machine Tree

Raghavendra Achar∗, P. Santhi Thilagam†, Shwetha D∗, Pooja H∗, Roshni∗ and Andrea∗
∗Department of Computer Science and Engineering

St. Joseph Engineering College, Mangalore 575028, INDIA
Email:{raghunitk, shwetha131990, kamath.pooja, roshni296, andreafeliciar}@gmail.com

†Department of Computer Science and Engineering
National Institute of Technology Karnataka, Surathkal 575025, INDIA

Email: santhisocrates@gmail.com

Abstract—The increasing demand in computing resources and
widespread adaptation of Service Oriented Architecture (SOA)
has made cloud as a new IT delivery mechanism. In cloud,
computing resources are provided to the requester as a service,
which include Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS). Cloud
Computing is still in developing stage and faces many challenges.
Out of the various issues, scheduling plays a very important
role in determining the efficient execution of tasks in cloud
environment. In this paper we present a scheduling algorithm
which uses tree based data structure called Virtual Machine Tree
(VMT) for efficient execution of tasks. The proposed algorithm
is tested using CloudSim simulator and the results shows that
algorithm gives better performance compared to other traditional
scheduling algorithms.

Index Terms—Virtual Machine, Scheduling, Cloud Computing.

I. INTRODUCTION

Cloud computing is an internet based computing, which
provides dynamically scalable and virtualized resources as a
service to the requester using pay per use model. In cloud,
resources are provided to the requester as a service, which
include Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). In SaaS, soft-
ware application is made available by the cloud provider. In
PaaS, an application development platform is provided as a
service to the developer to create a web based application.
In IaaS, computing infrastructure is provided as a service
to the requester in the form of Virtual Machine (VM). VM
is a software implemented machine which runs on physical
machine. Each Virtual Machine created behaves like a physical
machine, running different operating systems and applications.
Cloud Computing is still in developing stage and faces many
challenges. Out of the various issues regarding a cloud,
scheduling plays a very important role in determining the
efficient execution of tasks in cloud environment. Scheduling
refers to the appropriate assignment of tasks to the resources
available like CPU, memory and storage, such that there
is a maximum utilization of resources. Efficient scheduling
is a necessary for both cloud service requesters as well as
providers.

The rest of the paper is organized as follows. Section 2 reviews
the related work on task scheduling in cloud environment. In
section 3 we define our problem statement. Section 4 gives
the solution methodology. In section 5 we describe imple-
mentation and experiment details. Finally section 6 presents
conclusion.

II. RELATED WORK

In this section, we describe the related work of task
scheduling in cloud environment. The authors of paper [1]
presented an optimized algorithm for task scheduling based
on genetic simulated annealing algorithm. This considers
the QoS requirements like completion time, bandwidth, cost,
distance, reliability of different type tasks. Here annealing
is implemented after the selection, crossover and mutation,
to improve local searchability of genetic algorithm. In paper
[3] authors introduce an utility accrual scheduling algorithm
for real-time cloud computing services. This approach uses
two time utility function (TUF) namely profit TUF and a
penalty TUF. In paper [4] authors present an optimized al-
gorithm for task scheduling based on Activity Based Costing
(ABC). This algorithm assigns priority level for each task
and uses cost drivers. ABC measures both cost of the object
and performance of the activities. An improved cost based
scheduling algorithm is presented in paper [5] for making
efficient mapping of tasks to available resources in cloud. The
algorithm measures both resource cost and computation per-
formance. Algorithm improves computation/communication
ratio by grouping the user tasks according to particular cloud
resources processing capability. In paper [2] authors introduce
a Multiple QoS Constrained Scheduling Strategy to schedule
multiple workflows. The proposed system consists of three
core components: Preprocessor, Scheduler and Executor. The
paper [6] presents transaction intensive cost constraint cloud
workflow scheduling algorithm. Algorithm consider execution
cost and execution time as the two key considerations. The
algorithm minimize the cost under certain user designated
deadlines. Our proposed methodology is mainly based on
computational capability of Virtual Machines.

2012 Third International Conference on Emerging Applications of Information Technology (EAIT)

978-1-4673-1827-3/12/$31.00 ©2012 IEEE 143

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 06:00:37 UTC from IEEE Xplore. Restrictions apply.

III. PROBLEM STATEMENT

In the world of Cloud Computing, scheduling of the re-
questers task is an interesting issue which is open for research.
The success of this rising model is dependent on the effective-
ness of techniques used to execute the requesters task in the
most optimal way. Thus to achieve this, the following scenario
has been taken up as the problem statement.

Let C = {d1, d2, ..., dn}, where C is a cloud and
d1, d2, .., dn are the datacenters. Let di = {s1, s2, ..., sm}
where each datacenter di comprises of servers s1, s2, ..., sm.
Let sj = {vj1, vj2,, vjl} where vj1, vj2, ..., vjl are the
Virtual Machines in the server sj . Let vji = {vid, vmips}
where vid is the Virtual Machine Id and vmips is the MIPS
of the Virtual Machine. Let W = {j1, j2, j3, ..., jp} where
j1, j2, j3, ..., jp are set of task to be executed in the cloud.
Let ji = {jid, jsize} where jid is the Id of the task and jsize

is the size of the task. The problem is to optimally schedule
the set of task ’W’ in the cloud ’C’ such that each resources
in C is optimally utilized and the overall execution time of the
workload ’W’ is minimal.

IV. METHODOLOGY

Cloud consists of numerous Virtual Machines with varying
degree of computational capabilities. The submission order
of the tasks and the Virtual Machines in which these tasks
are executed greatly influences the execution time of the
entire workload. For an optimal scheduling strategy, the tasks
and Virtual Machines binding must be wisely chosen. In the
proposed novel scheduling mechanism, first we prioritise the
tasks and Virtual Machines. We create a tree based data
structure called Virtual Machine Tree (VMT) in which each
nodes of a tree represents a Virtual Machine. Then grouping
of task is done based on number of leaves in the VMT.
The modified DFS algorithm will identify the suitable Virtual
Machines, for which the submitted tasks will be executed.
The details about the prioritizing, grouping and construction
of VMT is given below.

A. Prioritizing

In the proposed strategy, the tasks are initially prioritized
according to their size such that one having highest size has
highest rank. The Virtual Machines are also ranked (priori-
tized) according to their MIPS value such that the one having
highest MIPS has the highest rank. Thus, the key factor for
prioritizing tasks is their size and for VM is their MIPS.

B. Virtual Machine Tree (VMT)

A Virtual Machine Tree (VMT) is a binary tree with N
nodes. Each node represents a Virtual Machine containing
Virtual Machine Id and MIPS. N represents total number
of computational specific Virtual Machines in a cloud. The
special property of VMT is that node value (MIPS) at level L is
greater than or equal to node value at level L+1 where L ≥ 0.
Each node contains zero, one or two child nodes. A node with
no child node is called as a leaf node and the node with child
nodes is referred as internal nodes. Consider a 5 computational

specific Virtual Machines represented by their Id and MIPS
as V = {{0, 250}, {1, 1000}, {2, 250}, {3, 500}, {4, 250}}.
Figure below shows the VMT. The VMT is constructed based
on the prioritized order of Virtual Machines from left to right,
such that Virtual Machine with highest MIPS becomes the
root.

Id=1

MIPS=1000 0

1 2

3 4

Id=0

MIPS=250

Id=4

MIPS=250

Id=3

MIPS=500

Id=2

MIPS=250

Fig. 1. Virtual Machines as a nodes of a VMT

Here VMT with the root node representing the Virtual
Machine with Id 1 and MIPS 1000. The root node has two
children. The left child node represents the Virtual Machine
with Id 3 and MIPS 500. The right child node represents
the Virtual Machine with Id 0 and MIPS 250. Similarly node
which represents the Virtual Machine with Id 3 and MIPS 500
has 2 children. The left child of this node represents the Virtual
Machines with Id 2 and MIPS 250, right child represents the
Virtual Machine with Id 4 and MIPS 250 respectively.

C. Grouping

Here we present a grouping mechanism for the set of task
submitted to the cloud. Let T COUNT be the total number
of tasks submitted and L COUNT be the total number of
leaf nodes in VMT. The total number of groups G COUNT
for the submitted tasks are computed as follows.

G COUNT = L COUNT

If VMT constructed with 5 Virtual Machines, then total
number of groups G COUNT is equal to 3. The number of
tasks in each group G is computed as follows.

G = T COUNT
G COUNT

The first group G1 contains G COUNT number
of tasks from the prioritized tasks set. The second
group G2 contains next G COUNT number of tasks
from the prioritized tasks set and so on. Consider
12 tasks represented by their Id and size as G =
{{0, 20000}, {1, 10000}, {2, 20000}, {3, 10000}, {4, 10000},
{5, 20000}, {6, 10000}, {7, 20000}, {8, 10000}, {9, 10000},
{10, 20000}, {11, 10000}}

After prioritizing and grouping, each group contains follow-
ing tasks.

G1={{0, 20000}, {2, 20000}, {5, 20000}, {7, 20000}}
G2={{10, 20000}, {1, 10000}, {3, 10000}, {4, 10000}}
G3={{6, 10000}, {8, 10000}, {9, 10000}, {11, 10000}}

144

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 06:00:37 UTC from IEEE Xplore. Restrictions apply.

D. Virtual Machine Selection

Once the grouping of the tasks are done, suitable Virtual
Machines are selected for execution from VMT. The tasks
in each group is selected sequentially and submitted to the
Virtual Machine. The order is as follows. The first task in the
group G1 is executed by the Virtual Machine represented by
the root node of the VMT. The second task will be executed by
its child, third task will be executed by grand child and so on.
Once it reaches the Virtual Machine represented by the leaf
node, the next task will be submitted once again to root node
and so on. Same procedure is repeated for all the tasks in each
group. Figure below shows the VMT for 5 Virtual Machines
and total number of groups formed for the 12 submitted tasks.

Task id (G3)

6

8

9

11

Task id (G1)

0

2

5

7

Task id (G2)

10

1

3

4

1 2

0

3 4

G1 0, 7

G2 10, 4

6, 9

8, 11

G3

G3

G1

G1

G2

G2 1

2

5

3

Task Id

Task Id

Task Id

Task Id

Task Id

Group

Group

Group

Group

Group

Fig. 2. Grouping and Submission of Tasks

Here total number of tasks submitted will be in 3 groups
namely G1, G2 and G3 respectively. Tasks with Id 0, 2, 5,
7 will be in group G1, tasks with Id 10, 1, 3, 4 will be in
group G2 and tasks with Id 6, 8, 9, 11 will be in group G3
respectively. The first task with Id 0 in group G1 will be
executed by the Virtual Machine represented by root node
of the VMT, the second task with Id 2 in group G1 will
be executed by the Virtual Machine represented by node 1
which is the first child of the root node. The 3rd task with
Id 5 in group G1 will be executed by the Virtual Machine
represented by the node 3. Since node 3 is the leaf node,
the fourth task with Id 7 in group G1 will be executed once
again by the root node and process will be repeated for all
tasks in group G1. Similarly first task with id 10 in group
G2 will be executed by root node, the second task with Id 1
in G2 will be executed by the Virtual Machine represented
by node 1 which is the child of the root node. The path is
selected for Virtual Machine in such a way that it reaches
the second leaf node. When second leaf node is reached,
next task will be executed once again by root node and so

on. The process will be repeated for all tasks in group 3 in
such way that it takes the path from root node to the 3rd
leaf node. We have modified DFS algorithm which is used to
select the suitable Virtual Machines for executing the tasks
as described previously. The algorithm is given below. This
algorithm stores all suitable Virtual Machines in a VMList.

————————————————————————
Algorithm 1 Modified DFS
————————————————————————
prev ← −99
push first vertex
while Stack 6= Empty do

get unvisited vertex adjacent to stack top
if no adjacent vertex then

if prev 6= StackTop then
copy all stack contents to VMList

end if
pop
if Stack 6= Empty then

prev = StackTop
end if

else
mark the node as visited
push adjacent vertex

end if
end while
————————————————————————
Once the Virtual Machines details are stored in VMList, the

tasks are submitted to the Virtual Machines in specified order.
When the task is submitted to the leaf node Virtual Machine,
it must be checked that finish time of the task on the leaf
Virtual Machine is not more than the finish time of the same
task on the Virtual Machine which is represented as the root
or its child. If it is more, instead of submitting the task to
the leaf node Virtual Machine, task is submitted to the root
node Virtual Machine, thus ensuring that load on each Virtual
Machine is balanced.

V. EXPERIMENTS AND EVALUATION

In order to verify our algorithm, we conducted experiment
on Pentium Dual Core Processor 2.6 GHz, Windows XP
platform and using CloudSim 3 [7] simulator. The CloudSim
toolkit supports modeling of cloud system components such as
data centers, host, virtual machines, scheduling and resource
provisioning policies. We have created 5 Virtual Machines
using Vm component and set the property of RAM as 512
MB for all Virtual Machines, and the MIPS as 250, 1000,
250, 500 and 250 respectively. We have created 12 tasks using
Cloudlet component and set the property of Cloudlet length
as 20000, 10000, 20000, 10000, 10000, 20000, 10000, 20000,
10000, 0000, 20000 and 10000 respectively. The VMT along
with execution time for this configuration is shown below.

In order to test our algorithm with huge number of tasks, we
have taken the workload traces from Grid Workloads Archive
[8]. Grid Workloads Archive provides workload traces from

145

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 06:00:37 UTC from IEEE Xplore. Restrictions apply.

Id=1

Mips = 1000

Id=3

Mips = 500

Id=0

Mips = 250

Id=2

Mips = 250

Id=4

Mips = 250

Cloudlet id

0

7

10

4

6

9

Finish time

0-20

20-40

40-60

60-70

70-80

80-90

Cloudlet id

2

1

Cloudlet id

8

11

Cloudlet id

5

Cloudlet id

3

Finish time

0-40

Finish time

0-80

Finish time

0-40

40-60

Finish time

0-40

40-80

Fig. 3. Task Scheduling in Cloud using VMT

grid environments for the researchers to carry out experiments
in simulated environment. Here we have used workload traces
Grid5000 and AuverGrid. The number of experiments con-
ducted by varying the number of Virtual Machines and for
different workload traces. First we have verified our algorithm
on workload traces Grid5000. For this we considered 5 Virtual
Machines with MIPS 1000, 500, 250, 250, 250 and RAM size
of all Virtual Machine as 512 MB. Experiment is conducted
for varying number of tasks like 100, 200, 300, 400 and 500
respectively. For comparison and analysis, we implemented
the FCFS, priority based algorithm. The execution time for
the proposed algorithm is shown below.

0

200

400

600

800

1000

1200

1400

1600

100 200 300 400 500

FCFS

Priority

VMT based

Number of tasks Execution

Time

Fig. 4. Grid5000 workload for 5 Virtual Machines

Another set of experiment is conducted for workload traces
from AuverGrid. Here instead of 5 Virtual Machines, we
have created 10 Virtual Machines with MIPS 5000, 2000,
2000, 700, 250, 500, 1000, 1024, 250 and 250 respectively.
RAM size of each Virtual Machine is 512 MB. Experiment
is conducted for varying number of tasks like 100, 200, 300,
400 and 500 respectively. The execution time is shown below.

The results shows that the proposed algorithm is more
efficient than FCFS and priority based algorithms. In this ex-
periment, we consider execution time and resource utilization
as the main metric. The execution time for each workload is
lesser as compared to other algorithms. This is because the
selection of Virtual Machine order in the proposed algorithms

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

100 200 300 400 500

FCFS

Priority

VMT based

Execution

Time
Number of tasks

Fig. 5. AuverGrid workload for 10 Virtual Machines

leads to higher resource utilization. The usage of idle machines
is carried out efficiently in the proposed method.

VI. CONCLUSION

In this paper we present a novel scheduling algorithm, which
efficiently schedules the computational tasks in cloud environ-
ment. We have created tree based data structure called Virtual
Machine Tree. We modified DFS which select the suitable
Virtual Machines for execution. The experiment is conducted
for varying number of Virtual Machines and workload traces.
The experiment conducted is compared with FCFS and priority
based algorithm. The results shows that the proposed algorithm
is more efficient than FCFS and priority based algorithms.

ACKNOWLEDGMENT

We sincerely acknowledge Grid5000 and AuverGrid team
for providing workload traces to conduct experiment on
scheduling.

REFERENCES

[1] G. Guo-Ning and H. Ting-Lei, “Genetic Simulated Annealing Algo-
rithm for Task Scheduling based on Cloud Computing Environment,”
In Proceedings of International Conference on Intelligent Computing and
Integrated Systems, 2010, pp. 60-63

[2] M. Xu, L. Cui and H. Wang, “Multiple QoS Constrained Scheduling
Strategy of Multiple Workflows for Cloud Computing,” In Proceedings
of IEEE International Symposium on Parallel and Distributed Processing
with Applications, 2009, pp. 629-634

[3] S. Liu, G. Quan and S. Ren, “On-line Scheduling of Real-time Services
for Cloud Computing,” In Proceedings of 6th World Congress on Services
(SERVICES-1), 2010, pp. 459-464

[4] Q. Cao, W. Gong and Z. Wei, “An Optimized Algorithm for Task
Scheduling Based On Activity Based Costing in Cloud Computing,” In
Proceedings of Third International Conference on Bioinformatics and
Biomedical Engineering, 2009, pp. 1-3

[5] S. Selvarani and G. S. Sadhasivam, “Improved Cost-Based Algorithm
for Task Scheduling in Cloud Computing,” In Proceedings of IEEE
International Conference on Computational Intelligence and Computing
Research, 2010, pp. 1-5

[6] Y. Yang, Kelvin, J. chen, X. Lin, D.Yuan and H. Jin, “An Algorithm
in SwinDeW-C for Scheduling Transaction Intensive Cost Constrained
Cloud Workflow,” In Proceedings of Fourth IEEE International Confer-
ence on eScience, 2008, pp. 374-375

[7] N. Rodrigo, R. Rajiv, B. Anton, A. Csar. and R. Buyya ,“CloudSim: A
Toolkit for Modeling and Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning Algorithms,”Journal of Soft-
ware: Practice and Experience Volume 41, Issue 1, pages 2350, January
2011

[8] The Grid Workloads Archieve, [online] Available:http:
//gwa.ewi.tudelft.nl/ pmwiki, [visit:June 2012]

146

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 06:00:37 UTC from IEEE Xplore. Restrictions apply.

