
Analyzing Design Patterns for Extensibility

Annappa B., Rabna Rajendran, Chandrasekaran K., and Shet K.C.

Department of Computer Science and Engineering,
National Institute of Technology Karnataka, Surathkal, India

annappa@ieee.org,rabna.rajendran@gmail.com

Abstract. A system is said to be extensible, if any changes can be
made to any of the existing system functionalities and/or addition of
new functionalities with minimum impact. To achieve extensibility, it has
to be planned properly starting from the initial stage of the application
development. Keeping in mind all the possible future changes to be made,
the designer should select the proper design patterns and finish the design
for the application. Once the application design is finished, it should be
analyzed to make sure that the application is extensible.

Keywords: Design Analysis, Design Patterns, Extensible Application,
Extensibility, Software Development.

1 Role of Design Patterns in Software Development

In software engineering, the functional and non functional requirements are taken
into consideration during the design phase. During designing of the application,
some unforeseen problems might arise. As the designer solves these problems, he
might come across more problems. When the solutions for these problems are
closely analyzed, lot of similarities can be found and these existing solutions can
be adopted to satisfy new requirements with or without minor changes to the
existing solutions. In such a situation, the designer can use a solution that is
already proved to be a good solution, which can foresee the possible problems
and take actions to avoid such a situation. That solution which is used again and
again forms a particular pattern and the solution for these recurring problems
are called as design pattern.

A design pattern can be described as a solution that is proved for a soft-
ware design problem. It is an object model that serves as an abstraction of the
implementation model and its source code. Patterns help designers in better
communication using the known and understood terms in software engineer-
ing. Knowingly or unknowingly programmers are following some patterns while
writing code for a similar problem. Patterns are reusable as it can be applied
for similar problems whenever necessary and it can avoid most of the issues that
can happen at the time of implementation [1].

A pattern is not a finished code which can be directly used in the implemen-
tation of similar problems, but it gives a hint to solve a problem effectively and
thereby speedup the development process. A Pattern is not a method or a frame-
work. In object oriented programming, they show the relations and interactions

K.R. Venugopal and L.M. Patnaik (Eds.): ICIP 2011, CCIS 157, pp. 269–278, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



270 B. Annappa et al.

between the classes and their objects. Using patterns makes it easy for the ar-
chitect or programmer to understand it later for extension or modification. All
the existing patterns can be mainly grouped under 3 categories based on how
they are used as: (i) Creational, (ii) Structural, (iii) Behavioral.

Creational patterns deals with mechanisms for instantiating objects. The
structural patterns deal with the composition of objects and their organiza-
tion to obtain new and varied functionality. Behavioral pattern explains the
interaction between different objects. In this paper, more importance is given
to patterns related to extensibility. There are mainly three patterns which come
under extension patterns. They are decorator, visitor and iterator [2].

2 Software Extensibility

With the emerging technologies, requirements are also changing and increasing
day-by-day. The innovations in the software field forces the language designers
and tool builders to enrich their products to be compatible with these innova-
tions. Making changes to an already deployed code might not be easy all the
time. It may be easy for a small application to be recompiled and redeployed.
But for large software with many users, recompilation and redeployment may
take a reasonable time and results in wastage of resources. Modern software need
to be expanded by other developers or users to fit in the customer requirements.
Software teams do not want to touch the code base for each and every change
because it is error prone.

It is at this situation that, the designers and developers start thinking about
extensibility and extensible architectures or designs come to the help of soft-
ware developers. The important feature of extensibility is to make any change
in existing system functions with minimum impact. By extensions, it means ei-
ther the addition of new functionality or modification of existing functionality.
In Software Engineering context it appears as a set of techniques in Software
Architecture and Software Design. In Programming Languages it appears as a
set of mechanisms and concepts that make it easy to extend the software. When
the software is extended there will be some added features along with the func-
tionalities that were available previously.

Most of the time, extensibility is misunderstood for reusability. Code reusabil-
ity is copy/paste of the code that already exists for a similar application and it
is just modifying that code to add more features or to correct some problems in
the existing version. So the resultant application will be a newer or more efficient
version of the existing version. But in case of extensibility, it is not reuse of the
available code. Extensible design supports the iterative development principles.
It allows functionality to be implemented in small steps as required.

To achieve extensibility, it has to be planned properly starting from the ini-
tial stage of the application development. The designer should have an idea of
possible future requirements and how the application will have to be modified
in future. For example, if it is an application for a restaurant, provision should
be there to add more variety items in the menu and calculate the bill according


