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Abstract 
 

This paper presents an improvement to the 
Maekawa’s distributed mutual exclusion algorithm. 
The number of messages required by the improvised 
algorithm is in the range 3M to 5M per critical section 
invocation where M is the number of Intersection 
nodes in the system. This improvement does not 
introduce any additional overheads over the existing 
Maekawa’s algorithm which requires 3K to 5K number 
of messages per critical section invocation, where K is 
the number of nodes in the voting district (M ≤ K). 
This reduction in number of messages is achieved by 
restricting the communication of any node which wants 
to execute Critical Section with the Intersection nodes 
of the voting district, without causing any modification 
of the basic structure of the algorithm. This 
improvisation preserves all the advantages of the 
original Maekawa’s algorithm.  
 
1. Introduction 
 

Distributed Mutual Exclusion (DME) problem 
arises when concurrent access to protected resource 
(termed as Critical Section (CS)) by several sites is 
involved. In DME the requirement is to serialize the 
access to CS in the absence of shared memory which 
further complicates the problem. 

DME algorithms can be classified as token based 
and non-token based as suggested by Singhal [2], or as 
token based and permission based as suggested by 
Ranyal [3]. In this paper, we propose a permission 
based DME algorithm which is an improvement of 
Mamoru Maekawa’s algorithm [1].  

Garcia-Molina and Barbara [4] first introduced the 
concept of coterie which could be mainly used to 
devise permission based DME algorithms. A coterie 
consists of collection of sets of sites in the system and 
these sets are called quorums. In general, when a node 
wants to execute its CS it has to obtain permission 
form nodes of any quorum in the coterie. Maekawa’s 
algorithm [1] was the first coterie based algorithm 

where the nodes of the system are logically arranged 
into groups. Any node intending to execute its CS has 
to obtain permission form all the nodes in its respective 
group and these groups were created such that any two 
groups had at least one node in common (referred to as 
Intersection nodes) which act as arbitrators. In our 
method, we further restrict the communication of the 
nodes which wants to execute its CS to the Intersection 
nodes and achieve DME in lesser number of messages. 

Maekawa’s algorithm [1] uses cK messages to 
create mutual exclusion in the distributed system, 
whereas our algorithm takes cM (M < K) messages per 
CS invocation where M, K and c are integers and c 
ranges between 3 and 5. However, our algorithm 
preserves all the advantages of Maekawa’s algorithm 
[1] and similar to it our algorithm is not fair, the 
synchronization delay is 2 and the algorithm is 
starvation free. 

The problem of resolving conflicting access to 
resources also arises in replicated databases, where the 
emphasis is on resolving read and writes conflicts 
efficiently. Many methods [5], [6], [7], [8],[9] have 
been used to address this issue.  

The organization of remainder of paper is as 
follows. In next section we review Maekawa’s 
algorithm [1]. In section 3, we present the proposed 
algorithm, including the proof for correctness and 
deadlock prevention. We illustrate the algorithm using 
an e.g. in section 4. Then, in section 5 we present the 
analysis of the proposed algorithm. Finally, we 
conclude in section 6. 

 
2. Review of Maekawa’s algorithm 
 
In this section, we present the system model for our 
algorithm and review Maekawa’s algorithm. 

2.1 System Model 
We assume the following system model which is 

common to Maekawa’s algorithm and the proposed 
algorithm. The system has ‘N’ sites (1, 2, 3..i.., j.., 
N).We use the terms sites, nodes and process 
interchangeably. The underlying communication 
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channel is assumed to be error free and reliable, and 
message passing between nodes to be asynchronous. 
The nodes communicate by exchanging messages and 
shared memory does not exist. The propagation delay 
of messages is unpredictable but finite.  

The different types of messages used are 
REQUEST, LOCKED, INQUIRY, FAILED, 
RELINQUISH and RELEASE. Timestamp (TS) at any 
site i (where 1≤ i ≤ N), TSi is an ordered pair (Li, i), 
containing the Lamport’s logical clock [10] value Li 
and the site id i. 

We compare the timestamp as follows: TSi < TSj iff 
(Li < Lj) or (Li=Lj and i< j). 
 

2.2 The  Algorithm. 
In Maekawa’s algorithm, a site does not request 

permission from all the sites, but only from a subset of 
sites. The sites of the system is divided into groups 
called as voting districts (Si, 1 ≤ i ≤ N). The voting 
districts are constructed such as to satisfy the following 
conditions: 
1. ∀ i ∀ j,  Si ∩ Sj ≠ Φ; i ≠ j, 1 ≤ i, j ≤ N 

2. ∀ i, Node i ∈  Si; 1 ≤ i ≤ N  
3. ∀ i, | Si | = K; 1 ≤ i ≤ N 
4. ∀ j, node j is with in K Si’s, 1 ≤ i, j ≤ N 

Maekawa established the following relationship 
between N and K: N = K(K-1) + 1. Hence K can be 
approximated to √N. 

For any node i which intends to execute its CS, the 
algorithm works as follows: 

Entry Section: Site i multicasts the REQUEST 
message to all the nodes in its Si including itself. The 
intersection nodes can send the REQUEST messages to 
any one of the districts to which it belongs. When a site 
j receives the REQUEST message, it sends LOCKED 
message to site j if it has not yet sent it to any other site 
from the time it received RELEASE message. Or else it 
queues the REQUEST. 

CS Execution: Site i executes its CS after receiving 
LOCKED message from all the nodes of its Si. 

Exit Section: After executing its CS, site i sends 
RELEASE message to all the nodes of its Si which 
restores the right to nodes to send LOCKED message 
to any other pending requests in the queue. 

This basic algorithm is prone to deadlock which is 
handled as follows: Assume that a site j has LOCKED 
message to some site k and it later receives a 
REQUEST message form any other site i (i ≠ k). Then, 
site j sends FAILED to site i if TSk < TSi, otherwise it 
sends INQUIRY message to site k. When such a site k 
receives INQUIRY message, it sends RELINQUISH 
message to site j if site k has received FAILED 

message from at least one site in Sk and has not 
received new LOCKED message from it (after receipt 
of FAILED message). 

 
3. Proposed Algorithm 
 

3.1 Improvement 
From Maekawa’s algorithm [1] it is clear that the 

role of the arbitrator is to resolve the conflicting 
requests to enter CS. Every node has the responsibility 
to become an arbitrator to handle the conflicting 
requests coming from the voting district to which it 
belongs. Nodes that belong to more than one voting 
district (referred to as Intersection nodes), act as inter-
voting district arbitrators, resolving conflicting 
requests arising from  nodes of different voting 
districts. Because of the role played by these intra and 
inter voting district arbitrators, the mutual exclusion 
condition is maintained throughout the entire system.  

Intersection nodes can also act as Intra-voting 
district arbitrators since they are also the members of 
the voting district. Here we see that, since the 
intersection nodes can act as both inter-voting district 
and intra-voting district arbitrators, and since every 
voting district should have at least one intersection 
node, all conflicting requests can be resolved by 
communicating with intersection nodes of the system. 
This way we can achieve significant reduction number 
of messages required per CS invocation w.r.t 
Maekawa’s algorithm [1], as all the messages required 
to communicate with non-intersection nodes can be 
eliminated. 

Hence we propose that: Maekawa’s distributed 
mutual exclusion algorithm can perform better (in 
terms of number of messages required) by restricting 
the entire algorithm related communication to be 
carried out with only the Intersection nodes in the 
voting district. 

In Maekawa’s algorithm [1], all nodes in the voting 
district are intersection nodes (from the 4th rule for 
construction of voting districts which is outlined in 
section 2) and hence all nodes work as inter-voting 
district arbitrators.  To ensure that number of 
intersection nodes in the system is lesser than number 
of nodes in the voting districts (in other words, to 
ensure that all the nodes are not arbitrators), we 
liberalize the conditions for construction of voting 
districts in Maekawa’s algorithm [1]. The voting 
districts in our algorithm are constructed using the 
following conditions: 
1. ∀ i ∀ j, Si ∩  Sj ≠ Φ; i ≠ j, 1 ≤ i, j ≤ x where x is 

the number of voting districts, x ≤ N. 
2. Node i belongs to at least one of the voting 

districts. 
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3. The number of nodes in the voting districts need 
not be equal. 

Here, we have presented the conditions in the same 
way as done for Maekawa’s algorithm in the previous 
section so that the reader may note the difference. 
Conditions 1 and 2 are required to ensure correctness 
of the algorithm. In Maekawa’s algorithm [1], it was 
required to have K number of nodes in all the voting 
districts to ensure that all nodes perform equal amount 
of work for each CS invocation which is a desirable 
feature of a truly distributed system. The system using 
our algorithm would be a pseudo-distributed system as 
the non-Intersection nodes do not participate in CS 
invocation of other nodes and hence condition 3 
follows.  

The basic working of the algorithm and messages 
required need not be modified. This improvisation 
would shift the responsibility to maintain the mutual 
exclusion condition to the Intersection nodes. 

3.2 Proof of correctness 
By contradiction, let us assume that, any two nodes 

i and j are executing the CS simultaneously. Let Si and 
Sj be the voting districts of i and j respectively. Let Si’ 
and Sj’ be set of intersection nodes of Si and Sj 
respectively. Let k be a node that belongs to the 
intersection of Si and Sj.  

Consider the case when Si = Sj (i.e. i and j belong to 
same voting district), then choose k from Si’ (say) 
.Since Si = Sj, we have Si’ = Sj’. Thus k belongs to Sj’, 
hence k belongs to both Si’ and Sj’. If Si ≠ Sj, since k 
belongs to both Si and Sj, k is an intersection node, k 
belongs to both Si’ and Sj’. 

Since i is executing the CS, i has captured the 
LOCKED messages from all the nodes belonging to Si’ 
including k. Since j is also executing the CS, j also 
should have captured the LOCKED messages from all 
the nodes belonging to Sj’ including k. Thus k has been 
locked by 2 requests simultaneously. However, 
according to the algorithm only one request can lock a 
node at a time. Thus maximum of only one node can 
execute the CS at any time. 

This proof holds good when i and j belong to same 
voting district as well as different voting districts. Thus 
we see that the proposed improvement does not affect 
the correctness of the algorithm. 

3.3 Deadlock Prevention and Starvation 
Since no two requests carry same timestamp, total 

ordering is achieved among requests. If the total 
ordering condition is followed strictly “Circular wait” 
condition is not satisfied, and hence deadlock cannot 
occur [11].  

If an arbitrator (here an Intersection node) finds out 
that it has actually violated the total ordering condition 

by sending LOCKED message to a request with higher 
timestamp  when there is a request with lower 
timestamp waiting in the request queue, it sends an 
INQUIRY message to the recipient of the LOCKED 
message. Then if the recipient node has already started 
executing the CS, it will not reply, thus violating the 
“Hold and Wait” condition. If the recipient node has 
not yet entered the CS and if it receives a FAILED 
message from at least one of the Intersection nodes, 
then it would send the RELINQUISH message to the 
arbitrator and loses the lock on that node. Then the 
arbitrator can get locked to the request with lesser 
timestamp. Here the “No preemption” condition is not 
satisfied. Thus in any case, a deadlock situation cannot 
occur in the system. 

Since no modification has been done to the way the 
timestamp (priority) of nodes is used or updated, even 
the improvised algorithm is starvation free, similar to 
the original Maekawa’s algorithm [1]. 
 
4. Illustration of the Proposed Algorithm 
 

 
Fig 1. Mapping the arrows to corresponding 
messages. 

 
Fig 2. Nodes 1 and 5 want to execute CS.   

 

 
Fig 3. Node 1 enters CS. 
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Fig 4. Node 1 exits CS and node 4 enters CS. 

 
Consider a system with five sites and two voting 

districts S1= {1, 2, 3, 4} and S2 = {3, 4, 5}. Assume 
that nodes 1 and 5 want to execute their respective CS 
and TS5 > TS1. Note that node 3 and 4 are intersection 
nodes. The figures are self explanatory.  
 
5. Analysis 
 

Let ‘M’ be the number of Intersection nodes in the 
voting district. In the best case where there is no 
Relinquishment happening, we have M REQUEST 
messages being sent by the requesting node for every 
CS invocation. The node receives M LOCKED 
messages. After executing its CS, node sends M 
RELEASE messages. Thus 3M number of messages is 
required.In the worst case, where every LOCKED 
message is relinquished, we have additional K number 
of INQUIRY and RELINQUISH messages each. Thus 
5M (3M +2M) number of messages is required. Hence 
the number of messages required for every CS 
execution after modification in cM, where c varies 
between 3 and 5.  

Value of M depends on the way the nodes have 
been distributed into various voting districts. When M 
= 1, then the system is similar to a centralized system. 
When M =N to all the nodes, then the algorithms 
performs similar to that of Ricart-Agarwala’s 
Algorithm [12]. When M = √N the algorithms 
performs similar to original Maekawa’s algorithm. 
Also, it can be noted that in any case, the number of 
Intersection nodes in a voting district is lesser than or 
equal to number of nodes in a voting district. Thus, the 
improvised algorithm always requires lesser than or 
equal to the number of messages required by the 
original algorithm. The system can be designed in such 
a way that M < √N for all the voting districts of the 
system, in which case the improvised algorithm would 
require lesser number of messages than the original 
Maekawa’s algorithm. 
 
6. Conclusion 
 

A modification to the famous Maekawa’s 
distributed mutual exclusion algorithm has been 

proposed. Without any modification to the core of the 
algorithm, significant reduction in the number of 
messages is being achieved by restricting the all the 
algorithm related communication to a fewer nodes. the 
designer of the distributed system now has the freedom 
to arrange the nodes suitably into voting districts and 
decide the value of M.  
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