
An Improved Algorithm for Distributed Mutual Exclusion by Restricted
Message Exchange in Voting Districts

Bharath Kumar A.R. and Pradhan Bagur Umesh
National Institute of Technology Karnataka, Surathkal, Managalore, India

a.r.bharathkumar@gmail.com and pradhan@ieee.org

Abstract

This paper presents an improvement to the
Maekawa’s distributed mutual exclusion algorithm.
The number of messages required by the improvised
algorithm is in the range 3M to 5M per critical section
invocation where M is the number of Intersection
nodes in the system. This improvement does not
introduce any additional overheads over the existing
Maekawa’s algorithm which requires 3K to 5K number
of messages per critical section invocation, where K is
the number of nodes in the voting district (M ≤ K).
This reduction in number of messages is achieved by
restricting the communication of any node which wants
to execute Critical Section with the Intersection nodes
of the voting district, without causing any modification
of the basic structure of the algorithm. This
improvisation preserves all the advantages of the
original Maekawa’s algorithm.

1. Introduction

Distributed Mutual Exclusion (DME) problem
arises when concurrent access to protected resource
(termed as Critical Section (CS)) by several sites is
involved. In DME the requirement is to serialize the
access to CS in the absence of shared memory which
further complicates the problem.

DME algorithms can be classified as token based
and non-token based as suggested by Singhal [2], or as
token based and permission based as suggested by
Ranyal [3]. In this paper, we propose a permission
based DME algorithm which is an improvement of
Mamoru Maekawa’s algorithm [1].

Garcia-Molina and Barbara [4] first introduced the
concept of coterie which could be mainly used to
devise permission based DME algorithms. A coterie
consists of collection of sets of sites in the system and
these sets are called quorums. In general, when a node
wants to execute its CS it has to obtain permission
form nodes of any quorum in the coterie. Maekawa’s
algorithm [1] was the first coterie based algorithm

where the nodes of the system are logically arranged
into groups. Any node intending to execute its CS has
to obtain permission form all the nodes in its respective
group and these groups were created such that any two
groups had at least one node in common (referred to as
Intersection nodes) which act as arbitrators. In our
method, we further restrict the communication of the
nodes which wants to execute its CS to the Intersection
nodes and achieve DME in lesser number of messages.

Maekawa’s algorithm [1] uses cK messages to
create mutual exclusion in the distributed system,
whereas our algorithm takes cM (M < K) messages per
CS invocation where M, K and c are integers and c
ranges between 3 and 5. However, our algorithm
preserves all the advantages of Maekawa’s algorithm
[1] and similar to it our algorithm is not fair, the
synchronization delay is 2 and the algorithm is
starvation free.

The problem of resolving conflicting access to
resources also arises in replicated databases, where the
emphasis is on resolving read and writes conflicts
efficiently. Many methods [5], [6], [7], [8],[9] have
been used to address this issue.

The organization of remainder of paper is as
follows. In next section we review Maekawa’s
algorithm [1]. In section 3, we present the proposed
algorithm, including the proof for correctness and
deadlock prevention. We illustrate the algorithm using
an e.g. in section 4. Then, in section 5 we present the
analysis of the proposed algorithm. Finally, we
conclude in section 6.

2. Review of Maekawa’s algorithm

In this section, we present the system model for our
algorithm and review Maekawa’s algorithm.

2.1 System Model
We assume the following system model which is

common to Maekawa’s algorithm and the proposed
algorithm. The system has ‘N’ sites (1, 2, 3..i.., j..,
N).We use the terms sites, nodes and process
interchangeably. The underlying communication

International Conference on Information Technology

978-0-7695-3513-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICIT.2008.51

41

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:17:56 UTC from IEEE Xplore. Restrictions apply.

channel is assumed to be error free and reliable, and
message passing between nodes to be asynchronous.
The nodes communicate by exchanging messages and
shared memory does not exist. The propagation delay
of messages is unpredictable but finite.

The different types of messages used are
REQUEST, LOCKED, INQUIRY, FAILED,
RELINQUISH and RELEASE. Timestamp (TS) at any
site i (where 1≤ i ≤ N), TSi is an ordered pair (Li, i),
containing the Lamport’s logical clock [10] value Li
and the site id i.

We compare the timestamp as follows: TSi < TSj iff
(Li < Lj) or (Li=Lj and i< j).

2.2 The Algorithm.
In Maekawa’s algorithm, a site does not request

permission from all the sites, but only from a subset of
sites. The sites of the system is divided into groups
called as voting districts (Si, 1 ≤ i ≤ N). The voting
districts are constructed such as to satisfy the following
conditions:
1. ∀ i ∀ j, Si ∩ Sj ≠ Φ; i ≠ j, 1 ≤ i, j ≤ N

2. ∀ i, Node i ∈ Si; 1 ≤ i ≤ N
3. ∀ i, | Si | = K; 1 ≤ i ≤ N
4. ∀ j, node j is with in K Si’s, 1 ≤ i, j ≤ N

Maekawa established the following relationship
between N and K: N = K(K-1) + 1. Hence K can be
approximated to √N.

For any node i which intends to execute its CS, the
algorithm works as follows:

Entry Section: Site i multicasts the REQUEST
message to all the nodes in its Si including itself. The
intersection nodes can send the REQUEST messages to
any one of the districts to which it belongs. When a site
j receives the REQUEST message, it sends LOCKED
message to site j if it has not yet sent it to any other site
from the time it received RELEASE message. Or else it
queues the REQUEST.

CS Execution: Site i executes its CS after receiving
LOCKED message from all the nodes of its Si.

Exit Section: After executing its CS, site i sends
RELEASE message to all the nodes of its Si which
restores the right to nodes to send LOCKED message
to any other pending requests in the queue.

This basic algorithm is prone to deadlock which is
handled as follows: Assume that a site j has LOCKED
message to some site k and it later receives a
REQUEST message form any other site i (i ≠ k). Then,
site j sends FAILED to site i if TSk < TSi, otherwise it
sends INQUIRY message to site k. When such a site k
receives INQUIRY message, it sends RELINQUISH
message to site j if site k has received FAILED

message from at least one site in Sk and has not
received new LOCKED message from it (after receipt
of FAILED message).

3. Proposed Algorithm

3.1 Improvement
From Maekawa’s algorithm [1] it is clear that the

role of the arbitrator is to resolve the conflicting
requests to enter CS. Every node has the responsibility
to become an arbitrator to handle the conflicting
requests coming from the voting district to which it
belongs. Nodes that belong to more than one voting
district (referred to as Intersection nodes), act as inter-
voting district arbitrators, resolving conflicting
requests arising from nodes of different voting
districts. Because of the role played by these intra and
inter voting district arbitrators, the mutual exclusion
condition is maintained throughout the entire system.

Intersection nodes can also act as Intra-voting
district arbitrators since they are also the members of
the voting district. Here we see that, since the
intersection nodes can act as both inter-voting district
and intra-voting district arbitrators, and since every
voting district should have at least one intersection
node, all conflicting requests can be resolved by
communicating with intersection nodes of the system.
This way we can achieve significant reduction number
of messages required per CS invocation w.r.t
Maekawa’s algorithm [1], as all the messages required
to communicate with non-intersection nodes can be
eliminated.

Hence we propose that: Maekawa’s distributed
mutual exclusion algorithm can perform better (in
terms of number of messages required) by restricting
the entire algorithm related communication to be
carried out with only the Intersection nodes in the
voting district.

In Maekawa’s algorithm [1], all nodes in the voting
district are intersection nodes (from the 4th rule for
construction of voting districts which is outlined in
section 2) and hence all nodes work as inter-voting
district arbitrators. To ensure that number of
intersection nodes in the system is lesser than number
of nodes in the voting districts (in other words, to
ensure that all the nodes are not arbitrators), we
liberalize the conditions for construction of voting
districts in Maekawa’s algorithm [1]. The voting
districts in our algorithm are constructed using the
following conditions:
1. ∀ i ∀ j, Si ∩ Sj ≠ Φ; i ≠ j, 1 ≤ i, j ≤ x where x is

the number of voting districts, x ≤ N.
2. Node i belongs to at least one of the voting

districts.

42

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:17:56 UTC from IEEE Xplore. Restrictions apply.

3. The number of nodes in the voting districts need
not be equal.

Here, we have presented the conditions in the same
way as done for Maekawa’s algorithm in the previous
section so that the reader may note the difference.
Conditions 1 and 2 are required to ensure correctness
of the algorithm. In Maekawa’s algorithm [1], it was
required to have K number of nodes in all the voting
districts to ensure that all nodes perform equal amount
of work for each CS invocation which is a desirable
feature of a truly distributed system. The system using
our algorithm would be a pseudo-distributed system as
the non-Intersection nodes do not participate in CS
invocation of other nodes and hence condition 3
follows.

The basic working of the algorithm and messages
required need not be modified. This improvisation
would shift the responsibility to maintain the mutual
exclusion condition to the Intersection nodes.

3.2 Proof of correctness
By contradiction, let us assume that, any two nodes

i and j are executing the CS simultaneously. Let Si and
Sj be the voting districts of i and j respectively. Let Si’
and Sj’ be set of intersection nodes of Si and Sj
respectively. Let k be a node that belongs to the
intersection of Si and Sj.

Consider the case when Si = Sj (i.e. i and j belong to
same voting district), then choose k from Si’ (say)
.Since Si = Sj, we have Si’ = Sj’. Thus k belongs to Sj’,
hence k belongs to both Si’ and Sj’. If Si ≠ Sj, since k
belongs to both Si and Sj, k is an intersection node, k
belongs to both Si’ and Sj’.

Since i is executing the CS, i has captured the
LOCKED messages from all the nodes belonging to Si’
including k. Since j is also executing the CS, j also
should have captured the LOCKED messages from all
the nodes belonging to Sj’ including k. Thus k has been
locked by 2 requests simultaneously. However,
according to the algorithm only one request can lock a
node at a time. Thus maximum of only one node can
execute the CS at any time.

This proof holds good when i and j belong to same
voting district as well as different voting districts. Thus
we see that the proposed improvement does not affect
the correctness of the algorithm.

3.3 Deadlock Prevention and Starvation
Since no two requests carry same timestamp, total

ordering is achieved among requests. If the total
ordering condition is followed strictly “Circular wait”
condition is not satisfied, and hence deadlock cannot
occur [11].

If an arbitrator (here an Intersection node) finds out
that it has actually violated the total ordering condition

by sending LOCKED message to a request with higher
timestamp when there is a request with lower
timestamp waiting in the request queue, it sends an
INQUIRY message to the recipient of the LOCKED
message. Then if the recipient node has already started
executing the CS, it will not reply, thus violating the
“Hold and Wait” condition. If the recipient node has
not yet entered the CS and if it receives a FAILED
message from at least one of the Intersection nodes,
then it would send the RELINQUISH message to the
arbitrator and loses the lock on that node. Then the
arbitrator can get locked to the request with lesser
timestamp. Here the “No preemption” condition is not
satisfied. Thus in any case, a deadlock situation cannot
occur in the system.

Since no modification has been done to the way the
timestamp (priority) of nodes is used or updated, even
the improvised algorithm is starvation free, similar to
the original Maekawa’s algorithm [1].

4. Illustration of the Proposed Algorithm

Fig 1. Mapping the arrows to corresponding
messages.

Fig 2. Nodes 1 and 5 want to execute CS.

Fig 3. Node 1 enters CS.

43

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:17:56 UTC from IEEE Xplore. Restrictions apply.

Fig 4. Node 1 exits CS and node 4 enters CS.

Consider a system with five sites and two voting

districts S1= {1, 2, 3, 4} and S2 = {3, 4, 5}. Assume
that nodes 1 and 5 want to execute their respective CS
and TS5 > TS1. Note that node 3 and 4 are intersection
nodes. The figures are self explanatory.

5. Analysis

Let ‘M’ be the number of Intersection nodes in the
voting district. In the best case where there is no
Relinquishment happening, we have M REQUEST
messages being sent by the requesting node for every
CS invocation. The node receives M LOCKED
messages. After executing its CS, node sends M
RELEASE messages. Thus 3M number of messages is
required.In the worst case, where every LOCKED
message is relinquished, we have additional K number
of INQUIRY and RELINQUISH messages each. Thus
5M (3M +2M) number of messages is required. Hence
the number of messages required for every CS
execution after modification in cM, where c varies
between 3 and 5.

Value of M depends on the way the nodes have
been distributed into various voting districts. When M
= 1, then the system is similar to a centralized system.
When M =N to all the nodes, then the algorithms
performs similar to that of Ricart-Agarwala’s
Algorithm [12]. When M = √N the algorithms
performs similar to original Maekawa’s algorithm.
Also, it can be noted that in any case, the number of
Intersection nodes in a voting district is lesser than or
equal to number of nodes in a voting district. Thus, the
improvised algorithm always requires lesser than or
equal to the number of messages required by the
original algorithm. The system can be designed in such
a way that M < √N for all the voting districts of the
system, in which case the improvised algorithm would
require lesser number of messages than the original
Maekawa’s algorithm.

6. Conclusion

A modification to the famous Maekawa’s
distributed mutual exclusion algorithm has been

proposed. Without any modification to the core of the
algorithm, significant reduction in the number of
messages is being achieved by restricting the all the
algorithm related communication to a fewer nodes. the
designer of the distributed system now has the freedom
to arrange the nodes suitably into voting districts and
decide the value of M.

7. References

[1] M. Maekawa, “A √N algorithm for mutual exclusion in

decentralized systems”, ACM Transactions on Computer
Systems Vol. 3, No.2, May 1985, pp.145–159.

[2] M. Singhal, “A taxonomy of distributed mutual exclusion”,
Journal of Parallel and Distributed Computing, Vol. 18, Yr.
1993, pp. 94–101.

[3] M. Raynal, “A simple taxonomy for distributed mutual
exclusion algorithms”, ACM Operating Systems Review,
Vol.23, No. 2, Yr. 1991, pp. 47–51.

[4] H. Garcia-Molina, D. Barbara, “How to assign votes in a
distributed system”, Journal for the Association for Computing
Machinery, Vol. 32, No. 4, Yr. 1985, pp. 841–860.

[5] Wiesmann, M.; Pedone, F.; Schiper, A.; Kemme, B.; Alonso,
G., “Understanding replication in databases and distributed
systems”,
 ICDCS 2000. Proceedings. pp. 464 – 474.

[6] Ananthanarayana V.S, K. Vidyasankar, “Dynamic Primary
Copy with Piggy-Backing Mechanism for Replicated UDDI
Registry”, ICDIT 2006, Lecture Notes in Computer Science,
Vol. 4317, Yr. 2006, Springer, pp. 389–402.

[7] Bharath Kumar A.R., Pradhan B. U., Ananthanarayana V.S,
“An Efficient Lazy Dynamic Primary Copy Algorithm for
Replicated UDD Registry”, ICIP 2008, ICIP-2008, pp 564-571.

[8] Pradhan B. U, Bharath Kumar A.R., Ananthanarayana V.S,
“An Efficient eager Dynamic Primary Copy Algorithm for
Replicated UDD Registry”, Proceedings of ICCNS-2008, pp
161-166.

[9] Pradhan B. U., Bharath Kumar A.R., Ananthanarayana V.S, “A
Tree-based Dynamic Primary Copy Algorithm for Distributed
Databases”, ICDCN 2009, Lecture Notes in Computer Science,
in press.

[10] L.Lamport, “Time, Clocks and the ordering of Events in a
Distributed System”, Communications of the ACM, Yr. 1978,
pp. 558-565

[11] Cuffman, E. G., M. J. Elphick, and A. Shoshani, “System
Deadlocks”, ACM Computing Surveys, June 1971, pp. 66–78.

[12] Ricart, G., Agrawala, A. K., “An optimal algorithm for
mutual exclusion in computer networks” Communications of
the ACM, Vol. 24, No. 1, Jan. 1981, pp. 9-17.

44

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:17:56 UTC from IEEE Xplore. Restrictions apply.

