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ABSTRACT 

Soil moisture is a basic component of meteorological cycle and in the determination of 

agricultural crop yield. Spatial information about soil moisture over agricultural crops 

is required for efficient irrigation, which in turn helps in saving water and increases the 

crop yield.  However, capturing spatiotemporal field measurement of soil moisture is 

time consuming and not a practical approach. Synthetic Aperture Radar (SAR) remote 

sensing is a valuable tool for retrieving surface soil moisture over agricultural fields 

owing to its great sensitivity to surface soil moisture. 

The objective of the research is retrieval surface soil moisture over typical 

heterogeneous agricultural plots of a semi-arid region of India using C and L band 

polarized SAR data. A methodology is developed to retrieve surface soil moisture over 

different agricultural fields at different crop stages. To implement the methodology, a 

typical agriculture-dominated landscape has been selected. For the study, different 

agricultural plots of Malavalli village in Karnataka, were selected. Agricultural crops 

include; crops like Paddy, Tomato, Maize, Sugarcane and a reference bare field. 

Agricultural plots of size 1 acre approximately, were selected and sampling grids were 

made according to SAR ground resolutions. Field measured data like surface soil 

moisture, surface roughness, soil texture, vegetation height and vegetation water 

content were collected from every grid of the agricultural plots in synchronization with 

satellite pass. Sentinel-1a, C-band data and ALOS PALSAR-2, L-band SAR data 

products are used to retrieve surface soil moisture. The developed models were 

compared with existing models and validated using field measure values. 

Surface soil moisture was retrieved using L-band SAR across agricultural plots at two 

distinct crop stages. Initially, processed SAR images are decomposed using Freeman 

Durden, Yamaguchi and Van-Zyl decomposition techniques to know the major 

scattering components (like surface, dihedral, and volume scattering). In vegetative 

crop stage, surface scattering (>34%) is dominating scattering component, which shows 

less interaction of vegetation with radar backscattering energy. 
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Surface scattering component of Yamaguchi decomposition has dependence on field 

measured surface soil moisture with R2> 0.5 good correlation. Multilinear regression 

(MLR) is carried out in which soil moisture (Mv) is a dependent variable and 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
 , 

𝑉𝐻−𝑉𝑉 
 and 𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙 

  are considered as independent variables and validated. To assess 

the resilience of the developed models, it is compared with existing models like Oh 

1992, Oh 2004, X-Bragg and WCM. RMSE of developed model varies from 0.82 to 

2.51 cm3/ cm3 for two distinct crop stages. Whereas, in case of sugarcane at grand 

growing stage none of models performed well (RMSE= 3.644.7 % gm/ cm3). X-Bragg 

model is underestimating surface soil moisture in two distinct crop stages of paddy, 

maize, tomato and sugarcane field plots (RMSE= 1.214.23 % gm/ cm3). 

In the same way, surface soil moisture is retrieved using C-band SAR across above 

mentioned agricultural plots for whole crop cycle of each crop at an interval of 12 days. 

Each crop cycle is divided into vegetative, maturity, yield formation stage and surface 

soil moisture of each crop stage is estimated. The relationship between backscattered 

energy and soil moisture, roughness and vegetation parameter (RVI) is analyzed and 

MLR analysis is carried out to develop semi empirical model (SEM) and validated 

against grid sampled field data (RMSE= 1.38.1 % gm/cm3). The developed model 

found to be better when compared with Oh model, 1994. In grand growing stage of 

sugarcane and yield formation stage of maize and sugarcane, the RMSE values were 

found to 4.18.1 % gm/cm3. Which shows the vegetation attenuation increased as the 

crop matures and affecting soil moisture retrieval beneath it.  

Performance of C-band dual polarized data with L-band quad polarized data at two 

different crop stages were compared for surface soil moisture retrieval.  Quad polarized 

data is found to performing better than dual polarized data. At various crop stages, the 

proposed semi-empirical model for retrieving surface soil moisture functions 

effectively. In future, the developed model can be simplified by introducing constant 

parameters based on crop stage and type of crop. This study helps to understand the 

spatial variation of soil moisture within the small plots thus helping marginal farmers 

and local irrigation departments for better allocation of water resources. 

Keywords: Soil moisture; SAR; backscattering model; PolSAR; Oh model; X-Bragg 
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND  

A thin layer of soil on the earth gives plants mechanical support and substance when 

combined with the right amounts of air and water. Despite its ephemeral nature and the 

extent to which it fills the pore space. Water is a crucial component of soil and often 

controls the dynamic qualities of soil (Petropoulos et al., 2015). Soil moisture is the 

quantity of water stored in pore space (Dobson et al., 1985). A large portion of the land 

surface hydrology is integrated by soil moisture, which is also crucial for the dynamics 

of ecosystems and biochemical cycles. A key element affecting runoff, infiltration, 

redistribution, groundwater movement, storage, and drainage is moisture close to the 

soil surface. (Kornelsen and Coulibaly 2013; Peng and Loew 2017). Soil moisture also 

plays a vital role in the functioning of ecosystems. Surface soil moisture is a basic 

component of the meteorological cycle and in determining agricultural crop yield 

(Walker and Houser, 2004). Soil moisture is a critical state of variation that determines 

the response of soil-plant system to water input and monitoring of soil moisture is of 

significance in irrigation management (Saux-Picart et al. 2009; El Hajj et al. 2016). 

Information about soil moisture can be obtained through point measurements or remote 

sensing techniques. Point-based measurements of soil moisture, which are categorized 

as ground-based measurements, produce accurate information but sampling such data 

is costly and time consuming. Point-based measurement methods can be further divided 

into direct and indirect methods. For direct measurements, a sample of soil is taken and 

the water is removed by either evaporation or a chemical process and measured. The 

thermogravimetric method, the standard direct method of measuring volumetric soil 

moisture content, removes water from the soil sample by evaporating the sample at 

105ºC using an oven. Direct point-based measurement is simple, inexpensive and the 

soil moisture can be easily calculated. However, this method is also destructive and it 

is not possible to repeatedly carry out the point-based measurement at the same 
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location. Indirect methods are non-destructive and monitor soil properties that are a 

function of water content. The use of Time Domain Reflectometry (TDR) probes is 

based on the measurement of the dielectric properties of soil. Indirect methods normally 

involve inserting instruments into the soil or placing them on the surface. This method 

promises in-situ measurements of soil moisture and can be repeated at the same location 

a number of times, although it requires one-time calibration for the same location to 

determine soil moisture (Garg et al. 2016).  

The disadvantage of using point-based measurement is this type of measurement is 

rarely representative of the spatial distribution of moisture required for mapping large 

areas. This is because accurate spatial estimates of soil moisture require samples that 

are closely spaced relative to the correlation length of the spatial soil moisture fields, 

meaning that this method is impractical for determining the large-scale areal estimation 

of soil moisture.  

Remote sensing, on the other hand, provides a means of measuring soil moisture in both 

higher spatial and temporal dimensions and can provide readings for the top few 

centimeters of soil for areas with moderate to low vegetation cover. Platforms 

supporting remote sensing instruments can be either ground-based, aircraft-based or 

space-based. The optimal solution in terms of mapping large areas and long-term 

repetition coverage involves space-borne satellite systems (Engman, 1992). Remote 

sensing methods offer rapid data collection over large areas on a repetitive basis within 

the top 7-8 cm of the soil. On the other side, remote sensing measurements do not 

provide as accurate or as deep a measurement of the soil moisture as can be obtained 

by conventional in-situ measurements at a point. Moreover, the remote sensing 

measurements are often restricted by the sensor configuration like the spatial resolution, 

incidence angle, frequency and land characteristics like surface roughness and 

vegetation cover. Therefore, an integrated system should be designed to capitalize on 

the advantages and minimize the disadvantages (Schmugge et al., 1980).  
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1.2.  SOIL MOISTURE (SM) MEASUREMENT BY REMOTE SENSING  

The measurement of soil moisture using the electromagnetic spectrum (frequency 

dependence) is classified as follows:  

Visible and Infrared: Electromagnetic Spectrum: Reflected radiation in the visible 

region of the electromagnetic spectrum has been demonstrated to have an excellent 

correlation with moisture content but limited to top few millimeters of soil surface. At 

these wavelengths, the penetration is small and because of cloud cover, the sensitivity 

rapidly decreases within the first few millimeters of the soil surface. In addition, the 

electromagnetic interaction with different dry and wet soil varies widely. Major sources 

causing uncertainty are surface roughness and surface cover. Therefore, establishing a 

relationship between these two demands a prior knowledge of soil characteristics 

(Carlson et al., 1995b; Venturini et al., 2004).  

Thermal Infrared Method: It has also been demonstrated that thermal radiation from 

surface measurements in the thermal infrared range (10–12 cm) correlates well with the 

amount of moisture present on the soil's surface. Although this method seems to be able 

to detect moisture at a deeper level than is possible with visible spectrum 

measurements, it is constrained by the slightest vegetation cover. In addition, both 

optical reflectance and thermal emission models for estimating soil moisture require 

knowledge of solar radiation (irradiance and insolation), which is not always available 

(Hassan et al., 2007).   

Microwaves: Microwaves refer to the electromagnetic radiations of frequencies ranging 

from approximately 300 MHz to 300 GHz. Applications of microwaves have been put 

to various uses depending on the frequencies range. They have certain distinct 

advantages over other frequencies, e.g. they propagate through ionosphere with a 

minimum loss, hence most suited for space-bound communications and satellite remote 

sensing. Atmosphere is entirely transparent to these radiations. They can also penetrate 

deep into the soils. Hence, multi-frequency and multi-polarization approaches are 

possible (Schmugge, 1984). The sensitivity of microwave response to soil moisture 

variation and their relative atmosphere transparency (>90%) makes microwave sensors 
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well suited for soil moisture remote sensing. Also, with proper choice of frequency, 

incidence angle and polarization, the effect of surface roughness can be minimized. 

Lower frequency end of microwave spectrum offers a significant advantage in 

measurement of soil moisture. At these frequencies, penetration of vegetative cover is 

significant and the sampling depth of the measurement may be several centimeters 

depending on soil moisture content. Sampling depth is the maximum depth at which 

the moisture can be measured.  

Measurement programs in the microwave region have followed two distinct 

approaches: (a) employing passive radiometric measurement and (b) using active radar 

backscattering measurement. Both approaches have demonstrated excellent correlation 

with soil moisture content. However, the resolution and penetration capability of active 

and passive is different and makes significant differences in retrieving surface soil 

moisture resolution, vegetation penetration capability and sampling depth. The 

volumetric soil moisture can be considered as a monotonically decreasing function of 

the emissivity of bare soil. It has been shown that both active and passive microwave 

remote sensors can be used to monitor soil moisture over land surfaces (Wang et al., 

1981) depending upon applicability. The details of soil moisture methods based on 

remote sensing technique is presented in Table 1.1. 

Table 1.1 Methods for estimating soil moisture by remote sensing 

Remote 

Sensing 

Characteristics Advantage Disadvantage 

Optical Soil reflection High spatial resolution; 

Wide coverage 

Limited surface 

penetration; 

Atmospheric effects; 

many other noises 

Thermal 

Infrared 

Soil surface 

temperature 

High spatial resolution; 

Wide coverage, 

Physically well 

understood 

Limited surface 

penetration; 

atmospheric effects; 

affected by 

meteorological events 
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Passive 

Microwave 

Brightness 

temperature, 

Dielectric 

properties and 

soil temperature 

Less atmospheric effect; 

moderate surface 

penetration; Coarse 

spatial resolution; 

physical well understood 

Low spatial resolution; 

effected by surface 

roughness &vegetation 

Active 

Microwave 

Backscatter 

coefficient, 

dielectric 

properties and 

Surface 

scattering 

components 

Less atmospheric effect; 

moderate surface 

penetration; Fine spatial 

resolution; physical well 

understood 

Limited swath width; 

effected by surface 

roughness &vegetation 

1.3. STATEMENT OF THE PROBLEM AND RESEARCH SCOPE   

Surface soil moisture differentiates between surface and sub-surface flow. However, 

percentage of water in soil moisture is less compared to other hydrological parameters 

of hydrological cycle. Still, it plays a vital role in many hydrological and agricultural 

studies. In the early days of research, surface soil moisture is measured over bare fields 

using scatterometer (passive microwave) or single channel SAR data. Later, these 

studies extended towards vegetated areas like grasslands and cropland using dual and 

quad polarimetric data. Three approaches are used to retrieve surface soil moisture 

namely, physical or theoretical approaches, empirical approaches and change detection 

or time series approaches. 

Physical approach rely on scattering models to forecast microwave backscatter based 

on sensor characters like frequency, incidence angle and field characters like surface 

roughness, and dielectric constant. This approach is most suitable for non-vegetated 

areas. With the addition of vegetation component, the approach becomes more 

complex. Integral Equation model (IEM) and Small Perturbation Model (SPM) are 

most commonly used physical models. The empirical approach is used to retrieve 

surface soil moisture directly from backscattered SAR energy. This method needs 

extensive field information, to evaluate the effect of soil moisture, roughness and 

vegetation on backscattered energy. Oh et al. (1992), Oh (2004), Dubois et al. (1995) 

and Baghdadi et al. (2004) are examples for empirical approach. Change detection or 
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time series approach is a different approach, which require multiple SAR imageries to 

calculate surface soil moisture. This approach focuses more on qualitative soil moisture 

in terms of indices rather than quantitative soil moisture. This approach does not give 

any discrete value of soil moisture, it only denotes low and high relative soil moisture 

index.  

All these approaches and models are tested on agricultural, bare, wetlands and 

grasslands all across the globe. Majority of these investigations carried out based on 

political or watershed boundary, which are in few square kilometers or hectares. Which 

are more suitable and effective to the countries with homogeneous cropping over larger 

agricultural fields. Nevertheless, in India, it is a different case, where agricultural field 

is much smaller and heterogeneous in cropping (different crops). For example, the 

average farmland size in the United States is approximately 450ha while that in India 

is 1.16ha (MacDonald et al. 2013; NABARD, India). So, there is need to explore utility 

of surface soil moisture models at field/plot/regional scale using microwave remote 

sensing. This will be helpful to marginal farmers to detect patches having crop water 

stress and to determine irrigating areas for stable crop production. 

The main scope of this work is to answer the following scientific questions. 

 Which surface parameters are most significant to retrieve soil moisture from 

plot scale bare and agricultural fields? 

 Is real space-borne data useful for soil moisture estimation in plot scale fields? 

If yes, what accuracy can we achieve for bare and agricultural fields?  

 Which model is good for soil moisture inversion for a given test site? 

 Which SAR frequency (C or L band) is good to retrieve soil moisture at various 

crop stages? 

 Is it possible retrieve surface soil moisture at agricultural field grid level? 

 Does different crop stages have impact on accuracy of surface soil moisture 

models? 
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1.4. RESEARCH OBJECTIVES  

The main objective of the study is to retrieve surface soil moisture over bare and 

agricultural plots at different crop stages using active microwave remote sensing. In 

mandate to achieve this, the following objectives are framed.  

1. To investigate the surface soil moisture variation across crop stages and crops 

in semi-arid tropical region. 

2. To develop surface soil moisture model and comparison of its performance with 

existing models.  

3. To study the potential of dual and quad-pol SAR data in surface soil moisture 

retrieval over heterogeneous agricultural plots. 

1.5. THESIS OUTLINE  

To achieve the proposed objectives and to answer scientific questions, this thesis is 

organized in to seven chapters as follows:  

Chapter 2 describes the basics of microwave remote sensing like different wavelength, 

and polarization along with the soil and vegetation parameters affecting backscattered 

energy is discussed. 

Chapter 3 reviews the literature based on various surface soil moisture approaches like 

physical or theoretical and empirical or semi-empirical approach using SAR. It also 

explains the identified literature gaps. 

Chapter 4 describes salient features of the study area, data products and framework of 

research methodology adopted to achieve the objectives. 

Chapter 5 presents the field data collection, experimental studies, analysis and remote 

sensing data processing.  

Chapter 6 discusses results obtained by evaluating surface soil moisture models. First 

section discuss about the spatio-temporal soil moisture variation during crop period. 

Second section discuses about the polarization decomposition and surface soil moisture 

retrieval using L band SAR during two different crop growth stage. Third section 
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discuss surface soil moisture retrieval using C band SAR at different crop stages using 

existing and developed model. Finally validating and comparing developed model with 

existing model. 

Chapter 7 summarizes the research work of the thesis section by section. The 

subsequent conclusions drawn from the results. Finally, the limitations and future scope 

of the research work are presented. 

The next chapter presents the brief overview of microwave remote sensing and its 

factors influencing surface soil moisture retrieval. 

 



9 

 

CHAPTER 2 

MICROWAVE REMOTE SENSING 

2.1 INTRODUCTION  

Microwave remote sensing uses electromagnetic radiation with a wavelength between 

1 cm and 1 m (commonly referred as microwaves) as a measurement tool. Due to the 

longer wavelength compared to visible and infrared radiation, microwaves exhibits the 

important property of penetrating clouds, fog, etc. This important property makes this 

technique virtually suitable to work in any weather condition or environment. In 

addition, microwave remote sensing provides unique information on soil moisture, 

biomass, oil spills, rainfall, wind direction, sea wind and wave direction, which are 

derived from frequency characteristics, Doppler effect, polarization, back scattering 

etc. that cannot be achieved from optical remote sensing. The advantages of microwave 

are, 

 All weather capability (penetration capability through clouds). 

 Day and night capability (independent of intensity and sun illumination angle). 

 Penetration through vegetation, soil sand and dry snow to a certain extent. 

 Sensitivity to surface roughness, dielectric properties and moisture (in liquid or 

vapor forms).  

 Sensitive to wave polarization and frequency. 

 Volumetric analysis. 

 Better analysis of inaccessible areas. 

2.2 DIFFERENT WAVELENGTHS AND POLARIZATION OF SAR   

SAR data is available in various bands, including the Ka, Ku, X, C, L, and P bands, and 

has a range of azimuth and range resolutions. These bands have their own advantages 

and disadvantages concerning to its applications. The various bands, wavelength and 

their applications are shown in the Table 2.1.  
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Table 2.1 Various bands and wavelengths of microwave remote sensing 

Band Wavelength (cm) Applications 

Ka 0.75-1.1 Communication and Military purposes 

Ku 1.67-2.4 Communication and Military purposes 

X 2.4-3.8 Military mapping, Surveillance and surface change 

studies.  

C 3.8-7.5 Penetration capability is limited though vegetation, 

soil moisture, glacier and cryosphere studies   

S 7.5-15 Used for medium-range Metrological applications. 

L 15-30 Penetrates through vegetation to some extent used in 

vegetation, soil moisture, glacier and cryosphere 

studies   

P 30-100 Used for research and experimental applications with 

significant penetration capability. 

Microwave polarization refers to the orientation of the electric field vector of the 

transmitted beam with respect to the horizontal direction. If the electric field vector 

oscillates along a direction parallel to the horizontal direction, the beam is said to be 

"H" polarized. On the other hand, if the electric field vector oscillates along a direction 

perpendicular to the horizontal direction, the beam is "V" polarized (Woodhouse, 

2009). The four combinations SAR data polarizations Electro-Magnetic Radiation 

(EMR) is: (1) HH: horizontal transmitted and horizontal received (2) HV: horizontal 

transmitted and vertically received. (3) VH: vertically transmitted and horizontally 

received. (4) VV: vertically transmitted and vertically received. 

 There are two types of microwave remote sensing namely, active and passive. 

The active type has its own source of energy, emits the EMR and receives the 

backscattering energy, which is incident on the ground surface. Passive systems collect 

the radiation that is naturally emitted by the earth surface. In fact, objects emit energy 
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at the microwave frequencies, although sometimes in an extremely small amount and 

generally characterized by relatively low spatial resolutions. 

2.3 ACTIVE MICROWAVE REMOTE SENSING  

Radar systems are basically categorized into three classes: imaging radar, 

scatterometer, and altimeter. Imaging radar is the most commonly used radar in remote 

sensing applications. Scatterometers and space-borne altimeters are used for specialized 

applications such as wind measurements at sea and ocean monitoring, respectively. 

Imaging radar is an active illumination system. An antenna transmits a radar signal in 

a side-looking direction towards the earth's surface. The reflected signal, known as the 

echo, is backscattered from the surface and received a fraction of a second later at the 

same antenna. Intensity, or amplitude, of this received echo is measured and recorded 

and the data are then used to construct an image. For coherent radar systems such as 

Synthetic Aperture Radar (SAR), the phase of the received echo is also measured and 

used to construct an image. Single frequency radar uses a single frequency for 

illumination, therefore there is no color associated with raw radar imagery. 

2.4 PASSIVE MICROWAVE REMOTE SENSING   

Passive microwave remote sensing is based on measuring thermal radiation in the 

centimeter wavelength of the electromagnetic spectrum, referred to as brightness 

temperature. This radiation is mainly determined by the radiating body's physical 

temperature and emissivity and can be approximated by using Eq. 2.1. 

𝑇𝑏(𝑃) ≈ 𝑒𝑠(𝑃) ∗ 𝑇                                                   (2.1) 

Where 

𝑇𝑏 = Observed brightness temperature 

 T = Physical temperature of the emitting layer  

 P = refers to vertical or horizontal polarization   

𝑒𝑠(𝑃)= Smooth-surface emissivity.  

This emissivity is further defined as 
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𝑒𝑠(𝑃)= (1- 𝑅𝑠(𝑃))                                                     (2.2)  

Where 𝑅𝑠 is the smooth-surface reflectivity for a homogeneous soil with a smooth 

surface, the reflectivities at vertical and horizontal polarizations, 𝑅𝑠(𝑉) and 𝑅𝑠(𝐻), are 

given by the Fresnel expressions as:  

𝑅𝑠𝑉 = |
𝑘 𝑐𝑜𝑠𝑢−√𝑘−𝑠𝑖𝑛2𝑢

𝑘 𝑐𝑜𝑠𝑢+√𝑘−𝑠𝑖𝑛2𝑢
 |                             (2.3) 

 𝑅𝑠𝐻 = |
 𝑐𝑜𝑠𝑢−√𝑘−𝑠𝑖𝑛2𝑢 

 𝑐𝑜𝑠𝑢+√𝑘−𝑠𝑖𝑛2𝑢
 |                              (2.4) 

where u is the incidence angle (relative to the surface normal) and k is the absolute 

value of the soil bulk dielectric constant (𝜀𝑏),  which is a measure of the response of the 

soil to an electromagnetic wave and is determined mainly by the volumetric soil water 

content. From the Fresnel equations, it can be seen that the absolute magnitude of the 

soil emissivity is somewhat lower at horizontal polarization, but the sensitivity to 

changes in surface moisture, and vegetation, is significantly greater than at vertical 

polarization. The reverse is true for temperature.  

For bare soil, the measured brightness temperature is almost directly related to soil 

water content and the physical temperature of the emitting layer. However, when 

vegetation is present, it profoundly influences the measured brightness temperature. 

Vegetation may attenuate or scatter the soil's radiation but will also emit its own 

radiation. Further influence on the brightness temperature is caused by surface 

roughness. 

2.5 FACTORS INFLUENCING SOIL MOISTURE RETRIEVAL USING  

 MICROWAVE REMOTE SENSING 

The major parameters which affect the backscattered energy and brightness temperature 

are, 

 Dielectric Constant 

 Thermal Sampling Depth 

 Surface roughness  
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 Vegetation effects 

2.5.1 Dielectric constant 

Dielectric constant can be stated as the ability of the material to get depolarized when 

electromagnetic field is applied (Hallikainen, 2014). The dielectric constant is a 

characteristic quantity of a given dielectric substance, sometimes called the relative 

permittivity. The dielectric constant (ε) is a measure of the response of soil to an 

electromagnetic wave. This response is composed of two parts (real and imaginary), 

which determine the wave velocity and energy losses respectively. In a non-

homogeneous medium such as soil, the soil bulk dielectric constant (𝜀𝑏) is a 

combination of individual dielectric constants of its components, (i.e. air, water, dry 

soil, etc.), but it is not a weighted average. The wide contrast between the dielectric 

constant of air (𝜀𝑎~1), dry soil (𝜀𝑠~4), and water ((𝜀𝑤~80) results in a range in εb from 

4 to 40. This wide range in 𝜀𝑏 can be directly related to volumetric soil water content, 

and is further influenced by soil texture, frequency, temperature and salinity. The direct 

relation between soil bulk dielectric constant and volumetric soil water content is not 

straight forward. Many empirical and theoretical dielectric models have been suggested 

to describe this relationship.  

The frequency dependence in the range up to 5 GHz is little because there is only little 

variability in the real part of the dielectric constant. The marked frequency dependence 

of the small imaginary part in this range influences only the penetration depth, with 

smaller penetration depths for higher frequencies (Njoku and Entekhabi, 1996). The 

temperature dependence of dielectric constant is weak, and it may be ignored for the 

range of temperatures encountered in nature (Topp et al., 1980; Njoku and Entekhabi, 

1996). 

2.5.2 Thermal sampling depth 

Microwave energy originates from entire soil depth, but much of this energy is absorbed 

in higher soil layers. As a consequence, the contribution of each soil layer to actually 

emitted microwave energy decreases rapidly with depth. The thickness of surface layer 

that provides most of the measurable energy contribution is defined as thermal sampling 
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depth (De Jeu, 2003). This layer is thought to be only several tenths of a wavelength 

thick. However, this thickness varies according to its moisture content, wavelength, 

polarization, and incidence angle. As the average moisture content of this layer 

decreases, its thickness increases. It is combined dielectric properties of this layer that 

determine observed emissivity or reflectivity, and it is the representative temperature 

of this layer that should be used to interpret measured brightness temperature or 

backscattered energy. 

2.5.3 Surface roughness  

Surface roughness increases the apparent emissivity or reflectivity due to increase in 

surface area of the emitting surface. In order to modify reflectivity or emissivity for 

rough surfaces, an empirical roughness model was developed by Choudhury et al. 1979 

and is described in Eq. 2.5 

   𝑒𝑟 = 1 − 𝑅 exp (−ℎ𝑐𝑜𝑠2𝑢)                                            (2.5) 

Where 𝑒𝑟 the rough surface emissivity, h is an empirical roughness parameter, related 

to the root mean square height variation of the surface and the correlation length, and u 

is the incidence angle of the observation. This model is a modification of Eq. 2.2. The 

effect of surface roughness is considered to be minimal at most locations at satellite 

scale, except in areas with extreme relief.   

A more elaborate formulation that includes a polarization mixing parameter (Q) has 

been proposed by Wang and Choudhury 1981. This model may be appropriate at 

smaller wavelengths than L-band but its implementation is still very difficult.  

2.5.4 Vegetation effects 

Like soil, vegetation emits its own microwave energy, and it may attenuate or scatter 

the radiation emitted by the soil. The brightness temperature (𝑇𝑏) or backscattered 

energy () measured above the canopy therefore contains not only information on soil 

moisture, but also on vegetation characteristics. In order to differentiate between 

different components of the measured brightness temperature or backscattered energy 

is necessary to simplify the vegetation to a canopy model. Numerous canopy models 

have been developed for this purpose. Mo. et al 1982 is a simple method but physically 
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based model that can effectively estimate the radiation by the soil surface even under 

vegetation (Owe et al., 2001). This is given in Eq. 2.6.  

𝑇𝑏(𝑃) =  𝑇𝑆𝑒𝑟(𝑃)Γ(𝑃) + (1 − 𝑤(𝑃))𝑇𝐶(1 −  Γ(𝑃)) + (1 − 𝑒𝑟(𝑃))(1 − 𝑤(𝑃))𝑇𝐶(1

− Γ(𝑃))Γ(𝑃) 

(2.6) 

Where  

𝑇𝑆 and 𝑇𝐶 physical temperatures of the soil and canopy respectively;  

ω = single scattering albedo;  

𝑒𝑟 = Rough surface emissivity;  

Γ = transmissivity;  

P = horizontal or vertical polarization.  

The first term in this equation defines the radiation from the soil that is weakened by 

the overlying vegetation. The second term accounts for the upward radiation directly 

from the vegetation, and the third term defines the downward radiation from the 

vegetation, reflected upward by the soil and again weakened by the canopy (Owe et al. 

2001). The single scattering albedo describes the scattering of the emitted radiation by 

the vegetation, and is a function of plant geometry. The transmissivity (Γ) is further 

defined in terms of the optical depth (τ) is described in equation 2.7.  

          Γ = exp (-τ / cos u).                                             (2.7) 

The optical depth is related to the vegetation density and frequency. With increasing 

optical depth, the sensitivity of the above-canopy brightness temperature to soil 

emissivity decreases. This is because the vegetation weakens soil emission and 

emission from vegetation forms a larger part of the signal with increasing optical depth. 

The threshold value of optical depth at which above-canopy signal becomes totally 

saturated varies with frequency and soil moisture content. In dry conditions, this 

threshold occurs sooner. 
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2.6 PAST AND CURRENT MICROWAVE SPACE BORNE-SENSORS   

The past, current and future space borne microwave remote sensing sensors are briefly 

summarized in the Table 2.2 

Table 2.2 Microwave remote sensing sensors 

Sensor Operation Frequency 

Band 

Polarization Institution, 

Country 

SeaSAT 1978 L HH NASA/JPL,USA 

ERS 1/2 1991-2000 

1995-2011 

C VV ESA, Europe 

JERS-1 1992-1992 L HH JAXA, Japan 

Radarsat-1 

Radarsat-2 

1995- 

2007-Today 

C 

C 

HH 

Quad 

CSA, Canada 

SRTM Feb-2000 C and 

X 

HH+VV 

VV 

NASA, USA 

DLR, Germany 

ASI, Italy 

CSA, Canada 

ALOS 

PALSAR 

2006-2011 L Quad JAXA, Japan 

TerraSAR-

X/Tandem-X 

2007-Today 

2010-Today 

X Quad DLR/Astrium, 

Germany 

Cosmo-

Skymed-1/4 

2007 and 

2010-Today 

X Dual ASI, Italy 
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Table 2.2 (Cont…) 

Sensor Operation Frequency 

Band 

Polarization Institution, 

Country 

RISAT-1 2012-2016 C Quad ISRO, India 

RISAT-2 2009-Today X Dual ISRO, India 

ISA, Israel 

HJ-1C 2012-Today S VV NRSCC, China 

Kompsat-5 2013-Today X Dual KARI, Korea 

ALOS 

PALSAR-2 

2013-Today L Quad JAXA, Japan 

Sentinel 1a/1b 2014-Today 

2016-today 

C 

C 

Dual 

Dual 

ESA, Europe 

SAOCOM-1a 2018 L Quad CONAE, 

Argentina 

Radarsat-3 2018 C Quad CSA, Canada 

SMOS 2009-2021 L HH ESA, Europe 

SMAP 2015-Today L VV, HH NASA, USA 

RISAT-1a 2022- Today C Quad and 

Circular 

ISRO, India 

NISAR 2023 L & S Quad NASA, USA 

With this knowledge as background, next chapter reviews the past studies on 

application of active microwave remote sensing in the field of surface soil moisture 

retrieval. 
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CHAPTER 3 

LITERATURE REVIEW 

3.1 INTRODUCTION  

An overview of the current state of investigations in the fields of soil moisture retrieval 

using microwave remote sensing are presented in this chapter. For detailed history and 

evolution of radar and SAR systems and its applications in earth remote sensing 

techniques may be referred to Ulaby et al., 1981, 1982, and 1986. SAR remote sensing 

is an important tool for geo-physical parameter extraction from natural and man-made 

features. To retrieve soil moisture from plot scale fields, literature reviews has been 

classified into 3 themes.  (i) Surface soil moisture retrieval using empirical and semi 

empirical models. (ii) Secondly literature regarding surface scattering and theoretical 

surface soil moisture models. Finally, comparative studies carried out on surface soil 

models are discussed. 

Research in soil moisture remote sensing began in the mid 1970's shortly after the surge 

in   satellite development. Quantitative soil moisture measurements in the surface layer 

of soil were carried out using microwave remote sensing. Soil moisture content is 

commonly expressed in gravimetric or volumetric units. Ulaby and Batlivala (1976) 

experimentally determined the radar response to soil moisture content at three bare soil 

fields, which is having different surface roughness by using eight different frequencies 

varying from 2-8 GHz for HH and VV polarizations using truck, mounted sensor. They 

found that incidence angle with 10 and frequency 4.7 GHz had very good correlation. 

Schmugge (1980) concluded the brightness temperature varies mainly due to its 

dielectric properties. There is large difference between dielectric constants of wet ( 

80) and dry (35) soils which shows strong correlation with soil moisture but this is 

effected by soil texture and surface roughness. Wang and Choudhury (1981) and 

Schmugge (1984) have proved significant dependence of dielectric constant on soil 

texture keeping the same volumetric soil moisture content. This is evident from the 

experiment conducted by Hallikainen et al., (1985) on the plot having sandy loam soil. 
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The larger variation in the regression curve was found for the plot having real dielectric 

constant (έ) with varying bulk density and suggested to express soil moisture in 

volumetric units.  

3.2 SURFACE SOIL MOISTURE RETRIEVAL USING EMPIRICAL AND 

SEMI EMPIRICAL MODELS   

Oh et al. (1992) have conducted field tests in bare soils using Scatterometer, Laser 

Profile Meter (LPM), Dielectric probe to develop empirical model at L, C and X band 

frequencies at various incidence angles with accurate measurements of rms surface 

height, correlation length, and dielectric constant. The model found very good 

agreement with backscattering measurements in bare soils and by inversing this model 

soil moisture and surface roughness can be retrieved from multi-polarized radar 

observations. 

Dubois et al. (1995) have developed an empirical model to estimate surface roughness 

and soil moisture from scatterometer data and cross-verified with AIRSAR and SIR C 

data. The model performs better in bare soil and vegetated lands, which is having NDVI 

less than 0.4 and surface roughness less than 2.5. This model's drawback is that it does 

not account for topography or surface correlation length.   

Engman and Chauhan (1995) and Wang (1997) discussed the requirement of model and 

software to retrieve soil moisture over discontinuous vegetation and investigate the 

potential of polarimetric SAR in soil moisture estimation. Ulaby et al, (1996) found that 

L-band is good at estimating soil moisture at top 5 cm and also suggested that it is 

possible to develop a model to estimate soil moisture under vegetation using vegetation 

parameters. Shi et al, (1997) developed an empirical model to estimate surface soil 

moisture and surface roughness using L band SAR data over well-maintained 

Oklahoma watershed and found an RMSE of 3.4%, which is acceptable.  Wang et al, 

(1997) compared two semi empirical models on bare fields of little Washita watershed 

and found Shi et al, 1997 model is performing better than Dubois et al, 1995 model. 

Neusch and Sties (1999) used Dubois model to estimate soil moisture and results are 

well within range they suggested incorporate incidence angle and vegetation coverage 

parameters to model.  

https://www.sciencedirect.com/science/article/pii/S0924271699000192#!
https://www.sciencedirect.com/science/article/pii/S0924271699000192#!
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De Roo et al. (2001) measured backscatter over fields of Soybean using C, L band 

AIRSAR and scatterometer data. They have used modified ‘oh’ model to study soil 

moisture and Michigan Microwave canopy scattering (MIMICS) model to study 

canopy structure to differentiate the backscatter values  from canopy volume scattering. 

Authors studied the backscattered values in four parameters two from the canopy, one 

from the rough ground and the other one surface roughness and found that L band VV 

polarization gives better results for canopy scatter modelling as well as soil moisture 

measurements. 

Wigneron et al. (2003) reviewed the soil moisture retrieval algorithms for AMSR-E and 

SMOS satellites working on passive microwave remote sensing. Vegetation effects on 

soil moisture are taken into account and classified them into statistical technique; 

forward model inversion and explicit inversion are explained. Srivastava et al (2003) 

explored the use of multi incidence angle in measuring surface roughness and soil 

moisture using C band Radarsat images. The author estimated the surface roughness 

without actual field data by taking ratio of high and low incidence angles, incorporating 

it with the soil moisture model, and got good results. The limitation is that soil moisture 

change must be negligible while taking two incidence images and should be examined 

over a large area. Zribi and  Dechambre (2003) introduced a new parameter called 

surface roughness parameter (z) which is function of surface height and correlation 

length to develop new empirical model to calculate the surface soil moisture using C 

band Radarsat and ERASME (airborne) data over three test fields of France and got 

better results compared to the RMSE height of the soil surface. Singh et al. (2005) 

attempted to estimate volumetric soil moisture for the whole Indian sub-continent using 

multi-frequency scanning microwave radiometer (MSMR) sensors onboard Indian 

remote sensing satellite (IRS) P4 Oceansat-1. They tried to study the variability of soil 

moisture throughout the Indian sub-continent and found that soil moisture is high 

during the period of June-July and low during April-May. They also found that coastal 

India has more soil moisture compared to other regions. This study was biased due to 

presence of low and high dense vegetation.  

Holah et al, (2005) and Baghdadi et al, (2008) analyzed the sensitivity of surface 

parameters to radar backscatter energy and found that surface roughness is more 



22 

 

sensitive to higher incidence angle (43) and lower the incidence angle minimizes effect 

on soil moisture. Zhan et al, (2006) and developed empirical surface soil moisture 

model over various land use like grassland, cereal, harvested crop and root crop fields. 

The developed model gave good results when compared with field values at better 

spatial resolution and temporal frequency.  Baup et al, (2007) and Koyama et al, (2010) 

used modified algorithm based on Dubois et al, (1995) and estimated surface soil 

moisture averaging by upscaling at different scales varying from catchment to field. 

They found modified algorithm results are acceptable when compared field values.   

Prakash et al. (2011) attempted fusion approach of SAR data and optical data for 

estimation of soil moisture in bare and vegetation cover fields. ALOS PALSAR L band 

data was used to estimate surface roughness and MODIS data was used to extract the 

NDVI values of the study area. Authors have developed semi empirical relationship 

between NDVI and backscattering coefficients such that the relation considers 

vegetated land as bare soil and soil moisture is retrieved using Dubois model. The 

author validated his semi empirical approach with other images and got good results. 

Barrett et al. (2013) checked the suitability of Envisat and ALOS PALSAR for 

Differential interferometric synthetic aperture radar soil moisture change detection over 

agricultural fields of study area. In this study, the author found that C band surface 

displacement in HV polarization correlates more with soil moisture changes over both 

barley and potato crop fields than L band surface displacement. Even though L band 

has better penetration power C band has given better results. The limitation of the study 

is that data used is of poor temporal resolution so daily and weekly soil moisture 

changes cannot be estimated. In contrast, future satellites with more repetivity can 

overcome this. 

Balenzano et al. (2013) showed the capability of multi temporal X and L band SAR 

data to map temporal changes of soil moisture content under agricultural crops with in 

a small revisit time. In this study, two crops were considered winter wheat and winter 

rape below which soil moisture is retrieved. They found that C band is influenced by 

canopy structure whereas L band HH polarization is sensitive to soil moisture combined 

use of these bands help in change detection of soil moisture. 
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Bertoldi et al. (2014) analyzed the surface soil moisture spatial patterns in pastures of 

Italian Alps. Soil moisture is estimated using fixed and ground sensors, GEOtop 

(hydrological model) and SAR images. Soil moisture under meadows and pasture can 

be successfully evaluated using the support vector regression technique with additional 

NDVI, DEM and land cover data. 

Kousik Das and Prabir kumar paul (2015) demonstrated that RISAT 1 data products 

are highly sensible for the variations in the soil roughness, dielectric constant and soil 

moisture. It showed that  has relationship with right circular horizontal and vertical 

polarizations and a semi-empirical model was built for Bankura district region with the 

help of 23 plots, which is used for ground truth measurements. Narvekar et al. (2015) 

developed an algorithm for surface soil moisture mapping using L-band radar 

observations. This was designed to be free from any ancillary information on surface 

roughness and vegetation. In this study author as considered smooth bare soil, rough 

bare soil and vegetation cover and as part of ancillary data radar vegetation index (RVI) 

and radar roughness index (RRI) are taken into account. RVI and RRI mainly depends 

on the radar back scattering observations. Kim et al (2015) tried to check feasibility of 

using airborne Synthetic aperture radar (SAR) to validate space borne SAR along with 

ground PALS scatterometer. This was used to provide more confidence in calibration 

of SMAP (Soil moisture Active and Passive) sensor and this work is called as SMAP 

validation experiment 2012 (SMAPVEX 12). In this study, they collected the data on 

wetland, grassland, pasture, fallow, oats, corn and forest using all 3 means of SAR. 

They compared between the UAV and PALS data and concluded that the effect of 

incidence angle  will be minimal if the land cover within the PALS footprint is 

homogeneous.  

Upender (2015) have compared two approaches namely 1) Modified water cloud model 

(WCM) 2) Microwave/optical synergy method. Author has noticed that by 

incorporating the vegetation effects into the model, the RMSE has decreased 

considerably in soil moisture estimation using PALSAR L band data. Soil moisture 

shown better correlation with the modified water cloud model around Roorkee region. 

Bai et al (2016) have attempted to enhance the Dubois model to retrieve soil moisture 

over prairie regions of 2 study areas with different climatic conditions in china using 
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synergy of optical and Synthetic aperture radar (SAR) data.  Four different vegetation 

parameters are considered namely Leaf area index (LAI), Vegetation Water Content 

(VWC), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation 

Index (EVI) are parameterized with Dubois model to check their efficiency. Finally, 

the author found that EVI and LAI performs better compared to other two methods. The 

limitation of this study is that it mainly depends upon the type of vegetation, slope and 

wavelength of SAR data. It requires large field tests around the globe to improvise it. 

Fieuzal and Baup (2016) tried to improvise the performance of semi empirical Oh and 

Dubois model using multi frequency SAR data. Author had used X band Terra SAR, C 

band Radarsat and L band ALOS PALSAR data to reduce the errors in the existing 

models. Authors attempted correct the residues in the models and found that modified 

Dubois models fits better to X and C band whereas modified Oh 2004 model fits to L 

band. They noticed in modified models RMSE was reduced below 2dB for X and C 

bands for L band it reduced below 1 dB. Kerr et al. (2016) have widely discussed the 

techniques and limitations of measuring soil moisture from space. They have given the 

information regarding the L band satellites, which are meant mainly for soil moisture 

estimation and their limitations. They found that L band synthetic aperture radiometer 

is promising by providing better results over low vegetation as well as forest regions. 

The only issue encountered was Radio frequency interference and spatial resolution. 

Han et al. (2017) analyzed the relationship between back scattered coefficients of SAR 

with soil physical properties. Field soil test were conducted for the physical properties 

like texture, penetration resistance, saturated hydraulic conductivity, field capacity, 

permanent wilting point, and porosity. Cross-polarized back scattered coefficient found 

correlated with most of the soil physical properties except texture i.e. clay fraction. 

Ouellette et al. (2017) have extended alpha method to estimate soil moisture from time 

series L band SMAP data under vegetation canopy. It was difficult to retrieve soil 

moisture over canopy because of its complexity but this model gave some promising 

results. This model is based on the SMAPVEX 12 field campaign studies. This model 

did not require any priori information of vegetation because of its change detection 

approach. The limitation of this model is that it does not perform well if vegetation 

water content (VWC) is more than 3.69kg/sq. m. Hosseini and McNairn (2017) used C 
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and L band data of SAR to estimate biomass and retrieve soil moisture from wheat 

fields of Canada. They used fully polarized data as input to coupled water cloud model 

(WCM) and Ulaby soil moisture model. Whereas water cloud model estimates the total 

back scattering coefficients knowing the effect of vegetation and soil on backscatter. 

Very good results are obtained for both biomass and soil moisture even though L band 

accuracy is less due to comparable temporal coverage changes. El Hajj et al, (2017) 

aimed to map high resolution surface soil moisture at plot scale using Sentinel 1 & 2. 

They combined the water cloud model with the integral equation model to generate 

synthetic backscattering coefficient and used it to train neural networks and calculate 

soil moisture.  

Rawat et al, (2018) retrieved surface soil moisture by developing semi empirical model 

over bare fields by carrying out sensitivity analysis between field soil moisture and 

backscattering coefficients of RISAT and found that difference in hybrid polarization 

improves model accuracy. Bousbih et al (2018) aimed to retrieve surface soil moisture 

at regional scale of bare and cereal fields. Firstly, they correlated between backscattered 

energy with soil and vegetation parameters. They found VV polarization has good 

correlation with soil moisture rather than VH polarization and mapped soil moisture at 

high resolution using inversion approach. Li and Wang (2018) used Radar Vegetation 

Index (RVI) has vegetation descriptors in WCM instead of Normalized Difference 

vegetation Index (NDVI) and Leaf Area Index (LAI) and found that RVI improved the 

results making model more feasible in different conditions. Pulvirenti et al (2018) 

developed an automated surface soil moisture mapping plugin and implemented in 

MULESME (Multi-temporal Least Square Moisture Estimator) software for whole 

Italy using sentinel-1 SAR data and estimates are accurate in bare field and decreases 

with increase vegetation density. 

Yang et al, (2019) has used single, dual and polarimetric parameters to retrieve soil 

moisture by linear and non-linear regression methods and found with increase in 

polarimetric parameters soil moisture estimates are better. Xing et al, (2019) modified 

the water cloud model and retrieved the surface soil moisture over agricultural field of 

soyabean and wheat, which are in growing conditions. They found modified model with 

addition of vegetation fraction has improved the soil moisture estimates.   
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El Hajj et al, (2019) and Sekertekin  et al (2020) compared the accuracy of soil moisture 

estimates of C and L band SAR and stated with increase in NDVI (NDVI>0.7) C- band 

gets attenuated whereas L-band performs well. Dave et al, (2019) modified the Dubois 

model to for estimating surface soil moisture using single channel (HH) SAR data and 

gave good results at initial stage of crop cycle but poor outcomes are observed as crops 

reach maturity stage.  

Tripathi and Tiwari (2020) used synergy of SAR and optical data developed cost 

effective surface soil moisture model using regression equations and indices and results 

are appreciable. Zhang et al, (2021) analyzed the relation between SAR polarimetric 

channels with field values (soil and vegetation) and used them as constants of WCM to 

retrieve soil moisture at different growing stages of wheat and it gave better results with 

accuracy. Fan et al, (2021) developed a dual-temporal dual-channel (DTDC) algorithm 

to estimate soil moisture over croplands. They utilized the ancillary field information 

and assumed there will be no change in surface roughness during crop period. The 

proposed model performed well with temporal soil moisture change with RMSE 0.06%. 

Bhogapurapu et al, (2022) introduced new dual-pol radar vegetation index based on 

GRD SAR data to retrieve surface soil moisture over wheat and canola crop lands at 

different phenological stages. Found that developed DpRVIc is better vegetation 

descriptor than RVI and NDVI. Summary of surface soil moisture retrieval using 

empirical and semi empirical models is presented in Table 3.1. 
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Table 3.1 Summary of surface soil moisture retrieval using empirical and semi 

empirical models 

Sl. 

No. 

Author Study area Model Inference 

1 Oh et al 

(1992) 

In-situ 

experiment 

Experimental 

using 

Scatterometer 

Developed a model to calculate 

Dielectric constant on bare fields. 

2 Dubois 

et al 

(1995) 

Michigan Dubois model Developed an empirical model to 

estimate SM and verified with 

SIR-C data 

The model performed better in 

bare soils and vegetation with 

NDVI less than 0.4 

3 De Roo 

et al 

(2001) 

Hickory 

Corners, 

Michigan 

Oh model 
Modified Oh model and 

incorporated canopy scattering 

model to retrieve the soil moisture 

over vegetation. Found that L 

band VV polarization gives better 

results for canopy scatter 

modelling as well as soil moisture 

measurements. 

4 Zribi 

and  

Decha

mbre 

(2003) 

Orgeval, 

Pays de 

Caux and 

Alpilles of 

France 

Empirical 

model 

Introduced a new parameter called 

surface roughness parameter (z) 

which is function of surface height 

and correlation length to develop 

new empirical model using C 

band. 
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Table 3.1 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

5 Holah et al 

(2005) 

Touch 

catchment, 

Toulouse 

Semi 

empirical 

model 

Analyzed the sensitivity of surface 

parameters to radar backscatter 

energy and found that surface 

roughness is more sensitive to 

higher incidence angle (43) and 

lower the incidence angle 

minimizes effect on soil moisture. 

6 Bourgeau‐

Chavez  et 

al (2007) 

Delta 

junction 

and 

Anderson 

of Alaska 

Semi 

empirical 

model 

 Developed empirical surface soil 

moisture model over various land 

use like grassland, cereal, 

harvested crop and root crop 

fields. The developed model gave 

good results when compared with 

field values at better spatial 

resolution and temporal 

frequency. 

7 Koyama et 

al, (2010) 

River Rur, 

Germany 

Dubois 

model 

Modified algorithm based on 

Dubois et al, (1995) and estimated 

surface soil moisture averaging by 

upscaling at different scales 

varying from catchment to field. 

They found modified algorithm 

results are acceptable when 

compared field values.   

. 
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Table 3.1 (Cont...) 

Sl. 

No. 

Author Study 

area 

Model Inference 

8 Prakash et al 

(2011) 

Roorkee, 

(Uttarakha

nd, India) 

Dubois 

model 

Attempted synergetic approach to 

estimate SM over bare and 

vegetation lands using Modis 

NDVI data and got good results. 

9 Bertoldi et 

al. (2014) 

Italian 

Alps 

Support 

vector 

regression 

Soil moisture is estimated using 

fixed and ground sensors, GEOtop 

(hydrological model) and SAR 

images. Soil moisture under 

meadows and pasture can be 

successfully estimated using 

support vector regression technique 

with additional NDVI, DEM and 

land cover data. 

10 Das and 

Paul (2015) 

Bankura 

district, 

west 

Bengal 

Topp 

model, 

Semi 

empirical 

model 

Developed the semi empirical 

model and compared results with 

top model. 

11 El Hajj et al, 

(2017) 

Agricultur

al plot one 

in France 

and 

Tunisia 

Water 

cloud 

model 

Mapped surface soil moisture at 

plot scale using Sentinel 1 & 2. 

They combined WCM with IEM to 

generate synthetic backscattering 

and used it train neural networks 

and calculated soil moisture.  
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Table 3.1 (Cont...) 

Sl. 

No. 

Author Study 

area 

Model Inference 

12 Hosseini 

and 

McNairn 

(2017) 

Canada Semi 

empirical 

model, and 

WCM 

Explored the use of C and L band SAR 

for soil moisture over wheat fields and 

found C band is good at temporal 

moisture changes.  

13 Rawat et 

al, 

(2018) 

Rewari 

district, 

Haryana, 

India 

Semi 

empirical 

model 

Developed semi empirical model over 

bare fields by carrying out sensitivity 

analysis between field soil moisture 

and backscattering energy of RISAT 

and found that difference in Hybrid 

polarization improves model accuracy. 

14 Dave et 

al, 

(2019) 

Khambhat 

region, 

Gujarat, 

India 

Dubois 

model 

Modified the Dubois model for 

estimating surface soil moisture using 

single channel SAR data and gave 

good results at initial stage of crop 

cycle but poor results are observed as 

crops reach maturity stage. 

15 Zhang et 

al, 

(2021) 

Hebei 

Province, 

China 

Water 

cloud 

model 

Analyzed the relation between SAR 

polarimetric channels with field values 

(soil and vegetation) and used them as 

constants of WCM to retrieve soil 

moisture at different growing stages of 

wheat and it gave better results with 

accuracy.  
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Table 3.1 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

16 Fan et al, 

(2021) 

North 

eastern 

Thailand 

Dual-

Temporal 

Dual-

Channel 

(DTDC) 

algorithm 

Developed an algorithm to estimate 

soil moisture over croplands. They 

utilized the ancillary field 

information and assumed there will 

be no change in surface roughness 

during crop period. The proposed 

model performed well with temporal 

soil moisture change with RMSE 

0.06%. 

17 Bhogapur

apu et al, 

(2022) 

Carman test 

site, Canada 

and 

Demmin 

test site, 

Germany  

Water 

cloud 

model 

Introduced new dual-pol radar 

vegetation index based on GRD 

SAR data to retrieve surface soil 

moisture over wheat and canola crop 

lands at different phenological 

stages. Found that developed 

DpRVIc is better vegetation 

descriptor than RVI and NDVI. 

 

3.3 SURFACE SOIL MOISTURE RETRIEVAL USING THEORETICAL 

MODELS 

There is no general model that can account for backscattered energy throughout the full 

frequency range as well as naturally occurring surface conditions. Therefore, it is 

difficult to have common model performing on all terrain conditions. The theoretical 

models are developed based on electromagnetic wave scattering from different earth 

surface (vegetation and soil).  Theoretical models basically work on certain 
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assumptions made on target properties for simplification. The basic theoretic modes are 

Kirchhoff Approximation (KA) and the Small Perturbation Model (SPM). SPM is also 

called as Bragg surface scattering model to apply this surface should satisfy Bragg 

resonance condition. The applicability range of SPM is evaluated by Engman and 

Wang. (1987) and Borgeaud and Noll, (1994).  

The Integral Equation Model (IEM) was presented by Fung et al, (1992) as a 

backscattering model based on pair of integral equations for tangential surface fields. 

However, this model requires more number of input parameters along with assumption 

according to field surface. Altese et al, (1996) developed inversion approach based on 

IEM to retrieve surface soil moisture over 2 different bare fields. It was seen that 

sensitivity of SAR backscatter energy is much more to surface roughness rather than 

soil dielectric constant. So, small error in measuring roughness can induce error in soil 

moisture estimates.  Shi et al. (1997) conducted field tests based on single scattering 

integral equation method to estimate soil moisture and surface roughness over bare field 

and short vegetated fields using L band SIR C and AIRSAR data. They applied this 

new algorithm on time series data sets and found the good agreement between estimated 

and measured soil moisture. Bindlish and Barros (2000) investigated IEM applicability 

in sparse vegetated land using multi frequency and multi polarization SAR data. They 

found even though IEM was developed for bare fields it performed well in vegetated 

areas at low incidence angles.  

IEM is improved and modified over a period by introducing various vegetation 

scattering parameters like vegetation water content, leaf area index, NDVI etc., and 

roughness scattering parameters like roughness correlation length and roughness 

emissivity model (Bindlish and Barros, 2001; Shi et al, 2002). Baghdadi et al, (2002) 

introduced semi empirical calibration of surface roughness to IEM in case of bare fields. 

Since, measurement of correlation length in field is very difficult. The calibrated 

version of IEM gave good agreement between backscatter energy and soil moisture. In 

continuation Baghdadi et al, (2004) extended his semi empirical calibrated IEM to 

agricultural fields. They tested the calibration parameters with various radar 

configuration like polarization, incidence angle and frequency using experimental data 

and validated on independent field data. Notarnicola et al, (2006) introduced probability 
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distribution function (pdf) and Bayesian theorem in parametrization of vegetation and 

surface roughness respectively and later used in inversed IEM algorithm found good 

agreement between calibrated version and backscattering coefficient of different radar 

system and got improved results in both C and L-band. Dash and Prusty (2007) aimed 

to stimulate the backscattering coefficients at various SAR incidence angle like steep 

and shallow into IEM algorithm over 2 different Indian bare fields. It is noted model 

results gave good agreement measured backscattered data. Song et al, (2009) proposed 

change in IEM and called as Empirically Adopted IEM (EA-IEM) which considered 

soil dielectric constant as function of backscattered energy. Tested EA-IEM over bare 

fields and found analysis improved model results. In the same way, they also suggested 

another modification and called as Multilayer Soil IEM (MS-IEM) which considered 

surface and volume scattering of soil as effective parameter (Song et al, 2010).  

Joseph et al. (2010) conducted field tests to retrieve soil moisture using L band Radar 

data with different incidence angle over corn fields. The author measured soil moisture 

over few plots and derived surface roughness by inversing the integral equation model 

(IEM). By simulating these surface roughness retrieved soil moisture over the entire 

study area. The retrieval method correlates well with soil moisture depending on the 

incidence angle, polarization and vegetation water content. Baghdadi et al, (2011) in 

continuation to Baghdadi et al, (2004) replaced the correlation length by fitting or 

calibration parameter and found IEM is better than previous one. Lievens et al, (2011) 

tested the IEM model over large agricultural fields which differ in incidence angle and 

soil roughness are parametrized and found fairly accurate soil moisture for both C and 

L band. Guo et al. (2013) developed a new soil moisture retrieval algorithm for bare 

surface using the L-band radiometer dual-polarization measurements. The newly 

developed algorithm was a simple semi-empirical model by analyzing Advanced 

Integral Equation Model (AIEM) under SMAP sensors and validated with SMOS data. 

They also found that the surface roughness parameters at different polarizations can be 

directly eliminated from the microwave observations. This leads to a new bare surface 

soil moisture algorithm using dual measurements without surface roughness 

information. Ponnurangam et al, (2015) proposed new model based on compact 

decomposition technique. After removal of vegetation scattering component, surface 
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scattering component is used to retrieve soil moisture and compared it with existing 

theoretical models like X-Bragg and IEM. The developed model is tested in both bare 

agricultural fields including all crop phenological stages and found acceptable results. 

Bai et al, (2015) described bare surface soil moisture using forward advanced IEM. 

Author used 4 different indices to reduce effect vegetation on model by empirical ratio 

method and recommended LAI as best vegetation descriptor. 

Gupta et al. (2016) conducted field test to calculate soil moisture using scatterometer 

(dual polarized) on bare soils. Author noticed 25 is suitable incidence angle to estimate 

soil moisture using Radial basis function artificial neural network (RBFANN) model. 

RBFANN model showed better correlation with VV polarization than HH polarization 

to soil moisture. Tao et al. (2016) used the Integral equation model to estimate soil 

moisture using both L band ALOS and C band Radarsat data over four Beijing, China 

test fields. They estimated soil moisture over bare soils and low vegetation and found 

that VV polarization is more sensitive to soil moisture than HH polarization. They have 

introduced combined roughness parameter which is function of RMS surface heights 

and correlation length to estimate soil moisture. 

Ghafouri et al, (2017) found difficulty in retrieving surface roughness RMS height 

which does not include surface height dispersion in IEM model inversion. So, author 

introduced random fractal geometry using the power law roughness spectrum which 

enhanced surface roughness calculation by 10% thus, improving the IEM soil moisture. 

In the same way Yang et al, (2017) and Tao et al, (2017) introduced Gaussian function 

and Fresnel reflection to develop combined surface roughness parameter. Which, 

improved the agreement between IEM simulations and SAR observations. Zhang et al, 

(2018) developed a methodology to retrieve soil moisture from multi source SAR 

images. They also developed a Look Up Table (LUT) which does not need any prior 

information about surface roughness and retrieved soil moisture using IEM over 

various bare fields. Meyer et al, (2018) and Huang et al, (2019) used AIEM based on 

numerical simulation analysis to retrieve surface soil moisture over bare and sparsely 

vegetated areas. They found correlation between simulated and calculated soil moisture 

from AIEM are better in vegetative conditions. Zhang et al, (2020) utilized the surface 

roughness rms and empirical correlation length to reduce error in surface roughness 
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parameter to retrieve bare field moisture using AIEM and found this empirical model 

is feasible when incidence angle is 33.5° to 26.3° at C-band. Zhang et al, (2021) 

changed roughness parameter by using effective and combined roughness form in 

AIEM to improve accuracy of soil moisture retrieved by AIEM and to reduce 

uncertainty in roughness measurement. Summary of surface soil moisture retrieval 

using theoretical models is presented in Table 3.2. 

Table 3.2 Summary of surface soil moisture retrieval using theoretical models 

Sl. 

No. 

Author Study area Model Inference 

1 Fung et al, 

(1992) 

Experimental 

setup at 

University of 

Texas at 

Arlington. 

Integral 

Equation 

Model (IEM) 

Developed backscattering 

model based on pair of 

integral equations for 

tangential surface fields. 

However, this model requires 

more number input 

parameters along with 

assumption according to field 

surface. 

2 Shi et al, 

(1997) 

Oklahoma Integral 

Equation 

Model (IEM) 

Developed an empirical 

model to estimate surface soil 

moisture and surface 

roughness using L band SAR 

data over well maintained 

Oklahoma watershed and 

found an RMSE of 3.4% 

which is acceptable. 
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Table 3.2 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

3 Njoku et 

al. (2000) 

Oklahoma, 

Georgia, 

Arizona, and 

Idaho 

Iterative 

forward 

model 

Demonstrated AMSR-E has 

better capability in soil 

moisture retrieving over 

MSMR and SSM/I 

4 Baghdadi 

et al, 

(2002) 

Pays de Caux 

region and 

Rhone valley, 

France 

IEM Introduced semi empirical 

calibration of surface 

roughness to IEM in case of 

bare fields. Since, 

measurement of correlation 

length in field is very 

difficult. The calibrated 

version of IEM gave good 

agreement between 

backscatter energy and soil 

moisture. 

5 Vecchia et 

al. (2007) 

Les Landes 

forest, 

Radiative 

transfer 

model 

Developed a model which is 

incorporated with litter 

effects to estimate brightness 

temperature. 

6 Joseph et 

al (2010) 

Beltsville, U.S IEM Conducted field tests to 

retrieve soil moisture over 

corn fields. 
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Table 3.2 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

7 Wang et al 

(2011) 

Heihe River 

Basin 

IEM Followed two step retrieval 

method first calculated surface 

roughness by using this 

inversing soil moisture is 

estimated  

8 Balenzano 

et al 

(2013) 

Demmin site, 

Germany 

Radiative 

transfer 

model 

Checked the capability of X and 

L band SAR data to map SM 

over agricultural land and found 

that L band HH polarization is 

performing well. 

9 Tao et al. 

(2017) 

Beijing, China IEM Found that VV polarization 

gives better results than HH 

polarization over low vegetated 

fields.  

10 Ghafouri 

et al, 

(2017) 

Ilam and 

Dehloran, Iran 

IEM Found difficulty in retrieving 

surface roughness RMS height 

which does not include surface 

height dispersion in IEM model 

inversion. So, author introduced 

random fractal geometry using 

power law roughness spectrum 

which enhanced surface 

roughness calculation by 10% 
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Table 3.2 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

11 Zhang et 

al, (2018) 

Hebei, 

China 

IEM They developed a Look Up 

Table (LUT) which does not 

need any prior information 

about surface roughness and 

retrieved soil moisture using 

IEM over various bare fields. 

12 Huang et 

al, (2019) 

Ugan-Kuqa 

River Delta 

Oasis, China 

AIEM AIEM based on numerical 

simulation analysis to retrieve 

surface soil moisture over bare 

and sparsely vegetated areas. 

They found that the correlation 

between simulated and 

calculated soil moisture from 

AIEM is better in vegetative 

conditions. 

13 Zhang et 

al, (2021) 

Linze 

County, 

China 

AIEM Roughness parameter is 

replaced by using effective and 

combined roughness form in 

AIEM to improve accuracy of 

soil moisture retrieved by AIEM 

and to reduce uncertainty in 

roughness measurement. 
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3.4 SURFACE SOIL MOISTURE MODELS COMPARATIVE STUDIES   

In the early 1990’s researchers concentrated on developing algorithms to retrieve 

surface soil moisture using SAR. So, there is no much studies based on comparing the 

models. In fact researchers compared results of SAR retrieved soil moisture with land 

processed models (Hallikainen et al, 1985; McLaughlin, 1995; Houser et al,1998; Bach 

and Mauser et al, 2003).    

It was seen that IEM is performing better but this model requires more data and the 

analogy is quite complex. Boisvert et al., (1997) conducted field test to know the impact 

of gradients on soil moisture estimation using SAR. They noticed that the integral 

equation model (IEM) performs better than the ‘oh’ model. Author had coupled the 

scattering models with penetration depth models to check the impact of gradient. A 

fixed mean depth gave good correlation when there was no moisture gradient but even 

IEM over estimated backscattered energy during the gradients. So, the authors noticed 

that moisture gradients have impact over backscatter models. Oevelen and Hoekman 

(1999) compared semi empirical Oh model with numerical inversion IEM over two test 

sites of the study and found that IEM has better agreement with field measured soil 

moisture values. Narayanan and Hegde (2000) compared two inversion models based 

on regression and neural network for three bands of SAR energy. They found that neural 

network has better results than regression analysis but both model show comparable 

errors. So, both models have unique advantageous over other. 

Narayanan and Hirsave (2001) compared the three semi empirical soil moisture 

modelling approaches namely, linear regression, linear statistical inversion and neural 

network models using SIR-C images of X, C and L bands. Linear statistical inversion 

technique performs well but underestimates higher soil moisture. Neural network 

technique works well but overestimates lower soil moisture. Romshoo et al, (2002) time 

series SAR data is used to retrieve surface soil moisture (Dubois model) over 

agricultural fields. Compared the SAR extracted soil moisture values with three 

hydrological models at filed scale and found that the estimates are matching reasonably 

well. Sahebi et al, (2003) compared two empirical models developed by Ji et al, (1995) 

and Champion (1996) and found that there is a need for recalculation of constants. So, 
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another model proposed based new constants which gave better results than previous 

models. Thoma et al, (2004) compared the IEM theoretical model with a newly 

developed delta index to estimate soil moisture. IEM performed very poorly because of 

rocky terrain surface. The index was also simple to use and implicitly took into 

consideration both rock pieces and surface roughness. Thoma et al, (2006) compared 

IEM, semi empirical model with newly developed delta to estimate soil moisture at 

watershed scale. IEM performed poorly, semi empirical used field data and gave good 

results whereas delta index performed well at this scale too. Baghdadi and Zribi (2006) 

tested Oh, Dubois and IEM over bare fields using different experimental observations. 

Oh model performed well but underestimated the values HV polarization. In the same 

way IEM model also overestimated at HH polarization and major errors are seen in VV 

polarization. Dubois gave good results only if soil moisture is more than 30% if not it 

over estimated it.  

Baghdadi et al, (2011) compared Oh, Dubois and IEM using TerraSAR-X over bare 

fields and found that IEM is giving best results if it is calibrated with exponential 

correlation function instead of Gaussian function. Oh model correctly stimulated 

backscattered values when compared to Dubois model in VV and HH polarizations. 

Wang et al. (2011) attempted to estimate surface roughness and soil moisture by 

satellite products without using any ancillary products. Authors followed two step 

retrieval method in the first step he used multi incidence angle to estimate surface 

roughness and correlation length by integral equation method. In the second step 

advanced integral equation method was used to estimate surface soil moisture with help 

surface roughness derived from first step. One of the major problem is vegetation cover 

but it was overcome by using water cloud model. Khabazan et al. (2013) compared the 

semi empirical Oh, Dubois and theoretical Integral equation method to estimate soil 

moisture using L and C band AIRSAR data. They found that Dubois model is over 

estimating soil moisture in both bands whereas Oh and IEM models over estimated in 

L band and under estimated in C band. They found the best correlation when soil depth 

is between 3 cm with NDVI less than 0.2. Panciera et al, (2013) compared the Oh, 

Dubois and IEM soil moisture models using L-band SAR and found that Oh model is 

performing well compared to other two models. Also, calibrated the surface roughness 
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correlation of IEM and improved the miss match between observed and estimated 

values. Palosica et al, (2013) compared the two layer artificial neural network and IEM 

over agricultural fields of experimental study. Found that ANN produced slightly better 

soil moisture estimates than IEM. Al-Bakri et al, (2014) investigates the performance 

of Oh model and Semi empirical model to predict soil moisture and found that semi 

empirical model suits any field by using field data but empirical model needs to be 

corrected during scaling up the moisture values. Zhang et al, (2015) compared empirical 

and semi empirical models over bare field and found modified Dubois model gave 

comparable results to empirical model independent of surface roughness. MirMazloumi 

and Sahebi (2016) compared Oh, Dubois and IEM for C, L and P bands over 

agricultural fields. Oh model has best results in C-band however Dubois and IEM look 

accurate in L band. They also found that Oh model is good in estimating soil moisture 

whereas IEM is good in surface roughness.  

Choker et al, (2017) compared the Oh, Dubois, IEM, AIEM and IEM modified by 

Baghdadi model (Baghdadi et al, 2002) using large set of experimental filed data along 

various SAR observations in X, C and L band. In comparison between empirical models 

Oh model works to better model in HH and VV polarization. Dubois model gave poor 

agreement with field moisture values in HH polarization but quite better for VV 

polarization. In comparison with theoretical models IEM and AIEM simulated 

backscattered energy found better performing when Gaussian correlation function was 

replaced by exponential function. Overall, IEM by Baghdadi was the most adequate 

model to estimate soil moisture and roughness. Wang et al, (2017) compared three 

polarimetric decomposition techniques to get surface scattering parameters and 

estimated surface soil moisture over various agricultural fields. Results showed soil 

moisture based on each decomposition has its own advantage depending upon its crop 

type and crop phenological stage. Freeman-Durden decomposition worked well in 

wheat and corn fields whereas, Van-Zyl decomposition worked in canola fields. Overall 

comparison at phenological stage is done, found that enhanced surface scattering gave 

good surface parameter to retrieve surface soil moisture.  

Zribi et al, (2019) analyzed five different backscattering SAR models to estimate 

surface soil moisture over bare and vegetated fields. Compared AIEM, IEM-Baghdadi, 
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Oh’92, Dubois, and Baghdadi models over turmeric, marigold, and sorghum fields. 

Results showed Baghdadi models are performing well on prior information of field. 

The soil moisture estimation errors observed in the HV polarization are higher than in 

the HH polarization, for all three crops. Kumar et al, (2019) compared various semi-

empirical approaches like random forest regression (RFR), support vector regression 

(SVR) and artificial neural network regression (ANNR) to estimate soil moisture over 

crop covered area. ANNR gave poor estimates compared SVR and RFR. Results also 

showed VV polarization works better than VH polarization. Ezzahar et al, (2019) 

evaluated Support vector regression, Oh and IEM soil moisture models and found that 

Oh model performs better than IEM in agriculture fields. SVM results are close to 

estimates of IEM. So, SVM can be relied when there is difficulty measuring surface 

roughness.  Zhang et al, (2020) analyzed two semi empirical models (modified water 

cloud model (MWCM) and ANN) to retrieve soil moisture during corn growing stage. 

Results showed ANN has potential in mapping soil moisture over corn fields at early 

growing stage. Whereas MWCM gave better results in overall corn growing stage. 

Chen et al, 2022 studied the different scattering models combining with Calibrated IEM 

(CIEM) and Dubois model and found this approach gave good results with CIEM. 

Summary of comparative evaluation of surface soil moisture retrieval is given in Table 

3.3. The comparison of various models along with their advantages are given in Table 

3.4. 
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Table 3.3 Summary of comparative evaluation of surface soil moisture retrievals 

Sl. 

No. 

Author Study area Model Inference 

1 Boisvert et al 

(1997) 

Along 

Lethbridge,  

Canada 

Semi 

empirical and 

IEM model 

Conducted Field test to know 

the impact of gradients on 

SM and found IEM 

performed well. Noticed 

gradients have impact over 

backscatter models   

2 Oevelen and 

Hoekman 

(1999) 

EFEDA-

Spain’91  

and HAPEX-

Sahel’92 

experiment 

area 

Oh and IEM Compared semi empirical 

model with numerical 

inversion model over two 

test sites of the study and 

found that IEM has better 

agreement with field 

measured soil moisture 

values. 

3 Narayanan 

and Hirsave 

(2001) 

New 

Hampshire, 

USA 

Linear 

regression, 

Linear 

statistical 

inversion and 

Neural 

network 

Compared the three semi 

empirical soil moisture 

modelling approaches using 

SIR-C images of X, C and L 

bands. Linear statistical 

inversion technique 

performs well but 

underestimates higher soil 

moisture. Neural network 

technique works well but 

overestimates lower soil 

moisture. 
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Table 3.3 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

4 Thoma et al, 

(2004) 

Walnut Gulch 

Experimental 

Watershed, 

Arizona 

IEM and 

Delta index 

Compared theoretical 

model with newly 

developed index to estimate 

soil moisture. IEM 

performed very poorly 

because of rocky terrain 

surface. The index was also 

simple to use and implicitly 

took into consideration both 

rock pieces and surface 

roughness. 

5 Baghdadi 

and Zribi 

(2006) 

Pays de Caux,  

Rhone valley, 

Orgeval site, 

Villamblain 

and Toulouse 

of France 

 Chateauguay 

River basin, 

and Brochets 

River basin of 

Canada 

Oh, Dubois 

and IEM 

Tested three models over 

bare fields using different 

experimental observations. 

Oh model performed well 

but underestimated the 

values HV polarization. In 

same way IEM model also 

overestimated at HH 

polarization and major 

errors are seen in VV 

polarization. Dubois gave 

good results only if soil 

moisture is more than 30% 

if not it over estimated it. 
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Table 3.3 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

6 Baghdadi et 

al, (2011) 

Orgeval, 

Villamblain, 

Mauzac, 

Garons, 

Versailles, 

Thau and 

Seysses of 

France and 

Kairouam of 

Tunisia 

Oh, 

Dubois 

and IEM 

Compared three soil moisture 

models using TerraSAR-X 

over bare fields and found that 

IEM is giving best results if it 

is calibrated with exponential 

correlation function instead of 

Gaussian function. Oh model 

correctly stimulated 

backscattered values when 

compared to Dubois model in 

VV and HH polarizations. 

7 Khabazan et 

al (2013) 

Oklahoma Oh, 

Dubois 

and IEM 

model 

Found that Oh and IEM 

models are performed well 

whereas Dubois 

overestimated SM.  

8 MirMazloumi 

and Sahebi 

(2016) 

Little 

Washita 

Experimental 

Watershed, 

Oklahoma 

Oh, 

Dubois 

and IEM 

Compared three models for C, 

L and P bands over 

agricultural fields. Oh model 

has best results in C-band 

however Dubois and IEM 

look accurate in L band. They 

also found that Oh model is 

good in estimating soil 

moisture whereas IEM is 

good in surface roughness. 
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Table 3.3 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

9 Choker 

et al, 

(2017) 

Agricultural sites 

in France, Italy, 

Germany, 

Belgium, 

Luxembourg, 

Canada and 

Tunisia 

Oh, 

Dubois, 

IEM, 

AIEM 

and IEM 

by 

Baghdadi 

model 

Compared five soil moisture 

models using large set of 

experimental filed data using 

various SAR observations in X, C 

and L band. In comparison 

between empirical models, Oh 

model works to better model in 

HH and VV polarization. In 

comparison with theoretical 

models IEM and AIEM simulated 

backscattered energy found better 

performing In overall, IEM by 

Baghdadi found to be most 

adequate model to estimate soil 

moisture and roughness. 

10 Zribi et 

al, 

(2019) 

Berambadi 

watershed, 

Karnataka, India 

AIEM, 

IEM-

Baghdadi

, Oh’92, 

Dubois, 

and 

Baghdadi 

models 

Compared five different 

backscattering SAR models to 

estimate surface soil moisture 

over turmeric, marigold, and 

sorghum fields. Results showed 

Baghdadi models are performing 

well on prior information of field. 

The soil moisture estimation 

errors observed in the HV 

polarization are higher than in the 

HH polarization, for all three 

crops. 



47 

 

Table 3.3 (Cont...) 

Sl. 

No. 

Author Study area Model Inference 

11 Zhang 

et al, 

(2020) 

Heihe watershed, 

China 

MWCM 

and ANN 

 MWCM and ANN to retrieve 

soil moisture during corn growing 

stage. Results showed ANN has 

potential in mapping soil 

moisture over corn fields at early 

growing stage. Whereas MWCM 

gave better results in overall corn 

growing stage. 

12 Gharec

helou et 

al, 

(2021) 

Northern Iran Oh, 

Dubois 

and Delta 

index 

model 

Compared the Oh and Dubois 

model in bare and sparsely 

vegetated areas of arid region and 

found Oh model to be better than 

Dubois. Also, author claimed the 

model performance varies with 

land characteristics and effects 

the model accuracy. 

Table 3.4 Comparison of various SAR based surface soil moisture models 

Sl. No. Models Validity range Advantage Disadvantage 

1 Oh, 1992 0.1 ks  6.0; 

2.6  kl 19.7 and 

20 <  < 50 

Wide range of 

incident angle 

Valid only for 

bare to sparsely 

vegetated area. 

2 Kirchhoff’s 

approximation 

kl > 6 ; l2 > 

2.76ks 

Easy inversion 

model 

Valid for rough 

surface 
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Table 3.4 (Cont...) 

Sl. No. Models Validity range Advantage Disadvantage 

3 Small 

perturbation 

model (Bragg 

model) 

ks  0.3 and kl < 

3 

Forward 

inversion 

Applicable for 

slight rough 

surface 

4 Fung, 1992 

(Integral 

Equation 

Model (IEM)) 

ks < 3 Valid for 

extensive range 

of roughness 

Too many data is 

required and 

complex. 

5 Dubois, 1995 Ks  2.5; 

2.5  kl  20 and 

20   < 65 

Easy inversion 

model 

Valid only for 

bare fields 

6 Shi, 1997 0.2 < s < 3.6; 

2.5 < l < 35 

Surface 

roughness 

spectrum 

considered 

Valid for sparsely 

vegetated area 

7 Hajnsek, 2003 

(X-Bragg 

model) 

ks  1 and kl < 6 Forward 

inversion 

Valid for sparsely 

vegetated area 

8 Oh, 2004 ks < 3.5 ; 

20< < 50 

Volumetric soil 

moisture 

inversion 

Valid for bare 

fields to light 

vegetated field 

*s-vertical surface roughness, l-horizontal surface roughness, k-wave number, - 

Incidence angle 
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3.5 SUMMARY OF LITERATURE REVIEW AND RESEARCH GAPS 

The extensive literature review shows that active microwave remote sensing is suitable 

for retrieving surface soil moisture. Research studies also explained the various bands 

of SAR remote sensing and its advantages in estimating surface soil moisture over bare 

and vegetated fields. Shorter wavelengths (X-band, 3 cm) are sensitive to the upper 

surface such as vegetation canopy. Intermediate wavelengths (C-band, 10 cm) sensible 

to soil moisture studies in sparsely vegetated areas whereas, longer wavelengths (L-

band, 24 cm) retrieves soil moisture in moderately vegetated areas such as agricultural 

fields (Baghdadi et al., 2008; Kim et al., 2017). Polarizations and decomposition 

techniques also plays a vital role in retrieving surface soil moisture. The literature 

review also showed the various empirical, semi-empirical and theoretical models’ 

advantages and disadvantages depending on the surface and vegetation conditions.  

From the literature review, it is evident that Oh model is more utilized and applied in 

various land surface and vegetation conditions. On the other hand, IEM performed well 

in most of the comparative studies but requires a lot of information about the field and 

is complex. In case of vegetated fields, Water Cloud Model (WCM), a semi empirical 

radiative transfer model has performed well in both bare and vegetated land by using 

model and vegetation derived parameters. Literature review also show cased that 

majority of the studies are carried out at large scale areas and in case agricultural fields 

most of the studies are carried out on homogeneous cropping pattern. In case of 

agricultural field surface soil moisture retrieval most of the studies concentrated for 

well-defined single day not on whole crop cycle. Limited studies are seen in evaluating 

surface soil moisture models and bands for phenological stages of crop (crop cycle).   

The primary issue in the Indian sub-continent agricultural fields is that they are smaller 

in size than other western countries. For example, the average farmland size in the 

United States is approximately 450ha while that in India is 1.16ha (MacDonald et al 

2013; NABARD, India). Very limited number of studies are found targeting surface 

soil moisture retrieval at plot/regional scale. Previous surface soil moisture studies are 

backed by random sampling field information.  Few studies are supported by gridded 

field sampled soil moisture information and based on it mapped. This thesis intends to 

address the above mentioned research gaps. 
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The upcoming chapter discusses about the characteristics of study area, data products 

and formulated methodology to achieve defined objects. 
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CHAPTER 4 

MATERIALS AND RESEARCH METHODOLOGY 

4.1 INTRODUCTION  

This chapter explains the characteristics of study area, data products and methodology 

followed to achieve the pre-defined objectives and it is organised under the following 

sections, 

i. Study area and its salient features 

ii. Data products and tools 

iii. Research methodology 

4.2 STUDY SITE AND ITS SALIENT FEATURES 

The study area has primarily heterogeneous cropping pattern typically seen in the 

Indian context. The study plots/sites considered for this study falls in Malavalli, which 

is in Mandya district of Karnataka, India. Which extends between 12.22°N to 12.50°N 

and 77.00°E to 77.20°E which falls in 57D Survey of India (SOI) toposheet. The study 

area is classified as tropical semi-arid region according to Koppen and Geiger 

classification and the study area is agricultural based town thus study regrading surface 

soil moisture is significant and comes under Cauvery basin. The field selected to study 

surface soil moisture retrieval using SAR without vegetation effects is bare land and 

for with vegetation effects are crops like Paddy, Sugarcane, Maize, and Tomato. The 

location of agricultural plots in the study area is presented in Figure 4.1. Figure 4.2 

shows the google earth view of the agricultural plots selected, and the salient features 

of the study area and characteristics of each study plot are presented in Table 4.1 and 

Table 4.2 respectively. 

Table 4.1 Salient features of study area 

Sl. No. Title Description 

1 Location 12.22°N to 12.50°N and 77.00°E to 77.20°E 

2 Geology 80% covered by Gneiss and by Granite rocks 
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3 Soil Sandy Loam to Sandy Clayey Loam. 

4 Rainfall Average annual rainfall is 700-900 mm. 

5 Temperature Varies from 16 C to 32 C. 

6 Altitude 600 m 

7  Irrigation Source Canal from Shimsha river and Groundwater 

Table 4.2 Characteristics of each test plots 

Sl. 

No. 

Crop Area 

(acres) 

Crop 

Breed 

Crop period 

(months) 

Crop 

month  

Soil type 

1 Paddy 0.51 Omkar 6  July-Dec Clayey loam 

0.48 

2 Tomato 1 Arka 

Saurabh 

4 July-Oct Sandy loam 

3 Sugarcane 1 Nayana 11 April-Feb Sandy loam 

4 Maize 1 Ganga-11 3 Jun-Aug Sandy loam 

5 Bare land 1.3 ----- ----- ----- Sandy loam 

 

 

Figure 4.1 Location of the study area 
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Figure 4.2 Google Earth View of Study Area 

4.2.1  Topography 

The study area falls into deccan plataue region of India. So the terrain is almost flat 

with altitude variation of 600-700m above mean sea level. Study area falls under 

cauvery basin. The major portion agricultural land is irrigated by canal water from an 

anicut (or dam) built across shimsha river, a tributary of river Cauvery. Nearly 44% of 

study area is under cultuvation using tanks, canal and wells. Paddy and Sugarcane are 

the two major crops grown in this region. 

4.2.2 Climate   

Study area experinces tropical semi-arid type of climate. The average annual rainfall is 

740mm of which more than 50% of rainfall occurs during southwest monsoon with 

average number of rainy days are 73. The temperature varies from 18 C to 32 C with 

higher rate of evapo-transpiration during summer compared winter and rainy days.  
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4.2.3 Geology and soil   

The peninsular Gneisses covers almost 80% of the study area, including few patches of 

porphyritic granite. The soil ranges from red sandy loams to clay loam very thin at 

ridges og higher elevation and comparatively thick at valley regions. 

4.3 DATA PRODUCTS AND TOOLS   

Remote sensing data and In-situ/ field data are the two different types of data used in 

this study. Remote sensing data involves Sentinel-1a, ALOS PALSAR-2, SRTM DEM 

and Google earth data. In-situ data involves soil, vegetation and rainfall data. 

The details of the Remote sensing data products used are described below.  

4.3.1  Sentinel-1a  

Sentinel-1a is a Synthetic Aperture Radar (SAR) in C band (center frequency: 5.405 

GHz), that provides continuous imagery (day, night and all weather). It provides dual 

polarization capability, very short revisit times and rapid product delivery. For each 

observation, precise measurements of spacecraft position and attitude are available. The 

data characteristics of Sentinel-1a is explained in Table 4.3. The data acquisition period 

is shown in Table 4.4.Various data acquisitions modes of Sentinel-1a are as follows 

 Strip Map (SM): 80 km swath, 5 x 5 m spatial resolution  

 Interferometric Wide Swath (IW): 250 km swath, 15 x 20 m spatial resolution  

 Extra-Wide Swath (EW): 400 km swath, 20 x 40 m spatial resolution  

 Wave (WV): 20 x 20 km, 5 x 5 m spatial resolution 

Table 4.3 Data characteristics of Sentinel-1a 

Satellite/Sensor Sentinel-1a 

Frequency (GHz) 5.405 

Frequency Band C Band 

Polarization VV and VH (Dual-pol) 

Orbit direction Ascending 

Incidence angle  (°) 23 

https://en.wikipedia.org/wiki/Synthetic_Aperture_Radar
https://en.wikipedia.org/wiki/C_band_%28IEEE%29
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Resolution (m) 15*20 

Resampled Resolution  10*10 

Swath (km) 250 

Period 2014- Present 

Repetivity 12 days 

Table 4.4 Sentinel-1a data acquisitions over the study area during the study period 

 Sentinel-1a 

Data 

acquisition 

Dates 

05/05/2018, 17/05/2018, 29/05/2018, 10/06/2018, 22/06/2018, 

04/07/2018, 16/07/2018, 28/07/2018, 09/08/2018, 21/08/2018, 

02/09/2018, 14/09/2018, 26/09/2018*, 08/10/2018, 20/10/2018, 

01/11/2018*, 07/12/2018, 31/12/2018, 12/01/2019*,  24/01/2019, 

05/02/2019 

*Field samples are not collected due to rain in study area. 

4.3.2 ALOS PALSAR-2 

Advanced Land Orbiting Satellite (ALOS) Phased Array L- Band Synthetic Aperture 

Radar (PALSAR)-2 is a Japanese L band, quad Polarized data which means the data 

consists of all possible polarization combinations ((VV, VH, HH & HV). ALOS 

PALSAR-2 has five different acquisition modes with four different levels of data 

products. In the present study, Single Look Complex (SLC) products are used which 

are acquired in high sensitive strip mode. Two quad polarimetric images of ALOS 

PALSAR-2 are acquired over the study area with beam no FP6-3 and 2. The detailed 

image information of the satellite data is presented in Table 4.5. 

Table 4.5 ALOS PALSAR-2 data information 

Sensor PALSAR-2 

Date of acquisition 23/07/2018 & 01/10/2018 

Band  L 

Beam mode  FP6-2 & FP6-3 

Mode of acquisition High sensitive quad polarized data 
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Polarization VV, VH, HH and HV 

ENL 2 

Incidence angle 27.79 

Ground resolution 6 m 

Swath 30*70 km 

4.3.3 SRTM (Shuttle Radar Topography Mission) 

SRTM data (30 m resolution) is downloaded from earth explorer for the study area to 

check the SAR limitations like Foreshortening, shadow and layover. Since the study 

area did not have much variation in altitude. So, it overwhelmed the limitations of SAR. 

4.3.4 Google earth data 

Google Earth is a computer program that renders a 3D representation of Earth based on 

primary satellite imagery. The program maps the Earth by superimposing satellite 

images, aerial photography, and GIS data onto a 3D globe. In the present study, Google 

earth is used to conduct an initial field survey and check the accessibility of fields for 

sample collection. 

The details of the In-situ/field data products used are described below 

4.3.5 Soil and Vegetation data 

The two types of soil samples were collected from the each field. One set of surface 

soil from each grid to calculate surface soil moisture and another set was collected using 

core cutter to analyze the bulk density (According to IS 2720-4, 1965). The surface soil 

samples (of weight 40-60gm) for surface soil moisture estimation from agricultural 

plots were collected in the plastic bags and sealed it with labelling. Initial weight of the 

samples was measured in the field itself and for soil moisture, bulk density and texture 

analysis collected samples were transferred to laboratory. Roller chain method was used 

to measure soil surface roughness and it is measured in both directions of the field 

(along and across ridge).  
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 Vegetation Water Content (VWC) data is collected using destructive sampling 

method i.e., from each crop field 0.5*0.5m of vegetation was cut and collected in the 

sealed plastic bag with initial weight measurement. Later on these samples also 

transferred to laboratory. Crop height of field was measured using metallic scale and 

staff during all field visits. 

4.3.6 Rainfall data  

Rainfall data is collected from the Karnataka State Natural Disaster Monitoring Centre 

(KSNDMC). The daily data for this station is available through an online portal 

(https://www.ksndmc.org/Weather_info.aspx). Rainfall collected data were used to 

check whether the study area has been affected by rainfall or not prior to the days of 

sampling. It is found that rainfall has occurred during 26/09/2018, 01/11/2018 and 

12/01/2019, and samples are not collected on those days. 

4.4 TOOLS  

Sentinel Application Platform 7.0 (SNAP), PolSARPro 5.1.3, Arc GIS 10.1 and R 

studio 1.1.423 are the tools or software used in this study to achieve desired objectives. 

The following technical advancements make the SNAP architecture appropriate for 

Earth Observation (EO) processing and analysis. Extensibility, portability, modular rich 

client platform, generic EO data abstraction, tiled memory management, and graph 

processing framework. It is most appropriate in processing and analysing sentinel 1a 

data. PolSARpro is a tool for high-level radar polarimetry teaching as well as 

supporting scientific use of polarimetric SAR data. The programme includes a set of 

well-known algorithms and tools, lays the groundwork for the use of polarimetric 

methods in scientific study, and encourages research and application creation utilising 

Pol-SAR, Pol-InSAR, Pol-TomoSAR, and Pol-TimeSAR data. Arc GIS is a geographic 

information system used to analyse the remote sensing data and to develop interactive 

maps. R studio, a programming language for statistical calculation and graphical 

visuals. It is used to extract backscattered energy corresponding to field sampled points 

from SAR data. 

https://www.ksndmc.org/Weather_info.aspx
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4.5 RESEARCH METHODOLOGY   

A systematic research methodology has been made to achieve the objectives of this 

study. Which includes field/in-situ data collection, lab experiments, data analysis, SAR 

image processing and retrieval of surface soil moisture using various models over 

small/plot scale agricultural plots at different crop stages. Figure 4.3 provides the 

research methodology followed to achieve the pre-defined objectives of the study 

Next chapter gives details about the field data collection, lab experiments, and 

systematic explanation of SAR image processing and data analysis. 

 

Figure 4.3 Research methodological framework of the study 
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4.6 SURFACE SOIL MOISTURE MODELS  

Oh model 

Oh model is an empirical method of retrieving surface soil moisture using multi-

polarized data like VV, VH, HH and HV (Oh et al., 1992). Using the multi-polarized 

radar signal and considering the co-polarized and cross-polarized ratio, this model 

could predict the r.m.s height (cm) of the surface and soil moisture. The initial Oh 

model, 1992 is presented in equation (4.1) to (4.3). 

                    𝑝 =
𝜎𝐻𝐻

°

𝜎𝑉𝑉
° = [1 − (

𝜃

90°
)

1

3 𝑒−𝑘.𝑟.𝑚.𝑠]
2

                                     (4.1) 

                                  𝑞 =
𝜎𝐻𝑉

°

𝜎𝑉𝑉
° = 0.23√(1 − 𝑒−𝑘.𝑟.𝑚.𝑠)                                        (4.2) 

                                       = |
1−√𝑟

1+√𝑟
|
2

                (4.3) 

Where, (θ) is incident angle, (k) wave number, (r.m.s) soil surface roughness and 

Fresnel reflectivity of the surface at nadir (Г0). The parameters p and q are derived by 

empirical fitting to the ground-based measurements of 𝜎𝐻𝐻
° , 𝜎𝑉𝑉

°  and 𝜎𝐻𝑉
° . Then Oh 

model is modified to cross-polarization and further updated to retrieve soil moisture 

and surface roughness. The modified Oh model, 2004 is given in equation (4.4).       

           𝑘. 𝑟.𝑚. 𝑠 (, 𝑀𝑣, 𝜎𝑉𝐻𝑀
° ) = [−3.125𝑙𝑛 {1 −

𝜎𝑉𝐻𝑀
°

0.11𝑀𝑉
° (𝑐𝑜𝑠)2.2}]

0.556

                   (4.4) 

X-Bragg model 

Extended Bragg scattering model is the modified version of the Bragg scattering model. 

The Bragg model is suitable only to smooth surface and longwave bands that cannot 

explain cross-polarization power. Hajnsek et al., 2000 developed X-Bragg model to 

overcome depolarization and to remove non-zero cross-polarization power. It is also 

reported that surface scattering power is maximum when =/6 and most stable with 

real field conditions (Hajnsek et al., 2009).  
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[𝑇] = 𝑃𝑆
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+ 

                             𝑃𝐷 [
|𝛼|2 𝛼∗ 0
𝛼 1 0
0 0 0

]   + 𝑃𝑉 [
2 0 0
0 1 0
0 0 1

]                                     (4.5) 

Where, T is the total coherence matrix; PS, PD, and PV are surface, dihedral and volume 

components scattering power;  is depolarization;  and  are dihedral and surface 

scattering parameters. 

Water cloud model (WCM) 

Attema and Ulaby (1978) developed Water Cloud Model by considering the vegetation 

canopy as clouds, in which water droplets are distributed randomly within the canopy. 

Effect of vegetation, soil, vegetation water content, and two-way attenuation between 

soil and vegetation on radar backscatter is accounted for estimation of co-polarization, 

using the incident angle and interaction between soil and vegetation (Baghdadi et al., 

2017).  

                 𝜎𝑃𝑃
 = 𝜎𝑣𝑒𝑔

  +  𝜎𝑣𝑒𝑔+𝑠𝑜𝑖𝑙
 + (𝜏2)𝜎𝑠𝑜𝑖𝑙

     (4.6) 

In co-polarization radiation, the interaction between vegetation and soil is not a 

dominating factor, and hence the term 𝜎𝑣𝑒𝑔+𝑠𝑜𝑖𝑙
  is neglected. The modified equation of 

water cloud model is 

                                          𝜎𝑃𝑃
 = 𝜎𝑣𝑒𝑔

 + (𝜏2)𝜎𝑠𝑜𝑖𝑙
                   (4.7) 

Where τ2 is the two-way attenuation (transmissivity) of the vegetation, 𝜎𝑃𝑃
  is the total 

backscatter coefficient of the co-polarized signal, σ°veg and σ°soil is the backscatter 

contribution of the vegetation cover and soil surface, respectively. 

 

             𝜎𝑣𝑒𝑔
 =  AV₁ cosθ (1 − τ²)           (4.8) 

               τ² = exp(−2BV₂ Secθ)                                        (4.9) 

                     𝜎𝑠𝑜𝑖𝑙
 = C + D 𝑀𝑣                      (4.10) 
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Where A and B are WCM model parameters, C and D are soil parameters, θ is the 

incident angle, and V1, V2 are vegetation descriptors, and Mv is the field soil moisture. 

𝜎𝑠𝑜𝑖𝑙
  is computed by the function of surface roughness (Srivastava et al. 2008) and soil 

moisture. 
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CHAPTER 5 

DATA COLLECTION, PROCESSING AND ANALYSIS 

5.1 RECONNAISSANCE SURVEY  

Initially Google earth image data is used to identify the city, water bodies and 

agricultural fields. Once the agriculture area location is known, a reconnaissance field 

survey is carried out to select various croplands. Reconnaissance survey also includes 

interacting with local farmers to know the type of crop they are planning to grow. Based 

on the interaction and survey few crop fields of Paddy, Sugarcane, Maize and Tomato 

are selected for the study. The selected crop fields GPS locations are taken during the 

visit, which was transferred to Google earth later to know the distance between each 

fields and to check feasibility of data collection between fields within defined time 

period during satellite pass.  

5.2 SAMPLING LOCATIONS IDENTIFICATION  

Utilizing the information of the Reconnaissance survey and field accessibility to bare 

field and agricultural fields like Paddy, Sugarcane, Maize and Tomato crops are 

selected for the study. Several ground parameters are measured in synchronization with 

all the above-mentioned satellite overpasses (Table 2.3). To facilitate the periodical 

data collection during the crop growth period few Bench Mark (BM) objects namely, 

pump set, big tress and shed corners were used to mark sampling grids. Enough care 

was taken regarding size and pixel matching of sampling locations. Two different grid 

sampling is made in each study plot based on sentinel-1a and ALOS PALSAR-2 ground 

pixel size and field of interest coverage. Extensive ground measurements of soil and 

vegetation parameters such as soil moisture, soil roughness, soil texture, vegetation 

height and vegetation water content for four different agriculture crop types (Paddy, 

Sugarcane, Maize and Tomato) planted on four different fields along with bare field 

were collected. 
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5.2.1 Sampling locations for Sentinel-1a data  

C-band observations each sample plot is divided into 10*10m plots. The reason behind 

the plot size of 10*10m was by resolution of resampled sentinel-1a data. The total 

number of grids in bare, paddy, sugarcane, maize and tomato are 43, 34, 34, 30 and 34 

respectively, shown in Figures 5.1A to 5.1E. Field photographs of each field during 

data acquisition is given in Figure 5.2A to 5.2D. The crop stage classification is done 

according to FAO guidelines (https://www.fao.org/land-water/databases-and-

software/crop-information). 

 

Figure 5.1A Sampling locations of bare field for Sentinel-1a acquisitions 

https://www.fao.org/land-water/databases-and-software/crop-information
https://www.fao.org/land-water/databases-and-software/crop-information
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Figure 5.1B Sampling locations of maize field for Sentinel-1a acquisitions 

 

Figure 5.1C Sampling locations of paddy field for Sentinel-1a acquisitions 
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Figure 5.1D Sampling locations of sugarcane field for Sentinel-1a acquisitions 

 

Figure 5.1E Sampling locations of tomato field for Sentinel-1a acquisitions 
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Seedling stage 

     

10/06/2018   22/06/2018 

Vegetative stage 

       

04/07/2018       16/07/2018   28/07/2018 

Yield stage 

       

09/08/2018      21/08/2018     30/08/2018 

Figure 5.2A Field photographs of Maize crop during field data acquisition 

Vegetative stage 

        

16/07/2018    28/07/2018    09/08/2018 
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          21/08/2018   02/09/2018  

Maturity Stage  

        

14/09/2018    26/09/2018     08/10/2018 

Yield stage 

      

20/10/2018   01/11/2018   07/12/2018 

Figure 5.2B Field photographs of Paddy crop during field data acquisition 

Early growth stage 

          

05/05/2018   17/05/2018   29/05/2018 
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Yield stage 

          

31/12/2018   12/01/2018   24/01/2018 

        

05/02/2018   17/02/2018 

Figure 5.2C Field photographs of Sugarcane crop during field data acquisition 

Vegetative stage 

            

04/07/2018   16/07/2018  28/07/2018  09/08/2018 

Maturity stage 

          

21/08/2018  02/09/2018     14/09/2018 
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Yield stage 

       

26/09/2018     08/10/2018          20/10/2018 

Figure 5.2D Field photographs of Tomato crop during field data acquisition 

5.2.2 Sampling locations for ALOS PALSAR-2 data  

Once the fields are finalized, each field is divided into grids based on satellite ground 

pixel size. In the case of ALOS PALSAR-2 each agricultural plot is divided into 6*6m 

grids using its previous grey scale image. The total number grids in bare, paddy, 

sugarcane, maize and tomato are 150, 103, 116, 100 and 113 respectively. The grid 

sampled plots are presented from Figure 5.3A to 5.3C. 

 

Figure 5.3A Sampling locations of bare field and sugarcane field for ALOS 

PALSAR-2 acquisitions 
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Figure 5.3B Sampling locations of paddy and tomato field for ALOS PALSAR-2 

acquisitions 

 

Figure 5.3C Sampling locations of maize field for ALOS PALSAR-2 acquisitions 

5.3 SAMPLING COLLECTION AND TRANSPORT  

Sentinel-1a pass over the study area is determined using the European Space Agency 

(ESA) acquisition calendar, which is in the form of Google Earth .kmz files. For ALOS 
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PALSAR-2 two different dates are selected and data is ordered at JAXA (Japanese 

Aerospace eXploration Agency). From this it was known that satellite passing time for 

sentinel-1a and PALSAR-2 is 6:20 IST AM and 12:40 IST AM over the study area 

respectively. In the present study soil and vegetation samples were collected from each 

field grids. Ground data collections are performed on the same day in synchronization 

with satellite pass (1 hours) during the study period mentioned in Table 2.3.  

Soil sampling data are collected over all the fields in the time period of 6:30 1 hour 

and 12:30 1 hour. Top Soil (5-8 cm) of about 100-150 gm are collected in air tight 

container and initial weight is taken into in the field itself using Portable weighing 

instrument. About 500-600 gm of soil using core cutter is collected to measure bulk 

density in Lab.  

The surface roughness (rms) of soil in the study area was measured using a roller chain 

method (Saleh 1993). This simplest and most convenient way to estimate surface 

roughness. It is based on the fact that horizontal length decreases as SSR increases when 

a chain of a given length 𝐿1 is laid on the surface. Therefore, SSR can be calculated 

using eq. 5.1 

𝑆𝑆𝑅 = (1 −
𝐿1

𝐿2
) ∗ 100                                                    (5.1) 

Roughness caused by aggregates (random roughness) was obtained by measuring the 

SSR in a perpendicular direction to ridges. 𝐿1 is the length of the roller chain and 𝐿2 is 

the linear distance of chain due to roughness. The statistical parameter explained SSR 

as root mean square (RMS) height (vertical variation) of soil and calculated using the 

Eq. 5.2, 

𝑅𝑀𝑆 = √
1

𝑛−1
[∑(𝑧𝑖 − 𝑧)2]            (5.2) 

A representative sample of half m2 of vegetation within the plot of each crop field is 

collected using destructive sampling technique required to measure Vegetation Water 

Content (VWC) and its initial weight is measured at the field itself. The collected 

samples are transferred into polythene bags. The samples of VWC are collected only 

during early stages of crop. After flowering stage of crops farmers did not agree to go 
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through destructive sampling method. So, no data has been collected after maturity 

stage of each crops except from paddy. 

The height of the crops are measured in the field using measuring staff of height 4 meter 

and metallic scale. The two types of collected soil and vegetation samples were 

transferred to Water Resources and Ocean Engineering (WROE) department, NITK 

Surathkal for further lab experiments. 

5.4 EXPERIMENTAL MEASUREMENTS  

5.4.1 Gravimetric soil moisture 

The experiments were carried out from the laboratory to estimate soil moisture. They 

are collected in airtight containers. The soil samples are weighed and dried in an oven 

for a period of 24 hrs. under 105C until all the moisture was driven off. After removing 

from oven, they are cooled slowly to room temperature and weighed again. The 

difference in weight is amount of moisture in the soil. The ratio weight of soil moisture 

and the dry weight of the soil gives gravimetric soil moisture. 

Gravimetric soil moisture = 
Wet weight−Dry weight  

Dry weight 
*100   (5.3) 

5.4.2 Volumetric soil moisture 

Soil sample is taken with a core sampler or with a tube auger whose volume is known. 

The amount of water present in soil sample is estimated by drying it in the oven and the 

bulk density of the soil is calculated by eq. 5.4 and the volumetric moisture content is 

calculated by multiplying the gravimetric moisture content with the bulk density of soil. 

The unit of volumetric soil moisture content is % gm/cm3. 

Bulk density of the soil =
Weight of the Wet Soil 

Volume of the wet soil
   (5.4) 

Moisture content = Gravimetric soil moisture * Bulk density  (5.5) 
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5.4.3 Vegetation water content (VWC) 

VWC is collected using destructive sampling method. The sample is transferred to oven 

and kept at 108C until all the water content is driven off. After removing from oven, 

they are cooled slowly to room temperature and weighed again. The difference in 

weight is the VWC which should be upscaled to 1m. The ratio weight of vegetation and 

the dry weight of the vegetation gives VWC. 

  VWC = 
Wet weight−Dry weight  

Dry weight 
 *100               (5.6) 

5.5 IMAGE PROCESSING 

Radar signals need pre-processing to account for geometric distortions (e.g., layover 

and foreshortening), and for differences in illumination conditions due to topography 

and the surface being illuminated to one side of the satellite or aircraft. An additional 

step is needed to remove noise caused by reflections from undesirable features, e.g. 

minor irregularities. This is called speckle noise and is removed by a process called 

speckle filtering. A typical processing sequence applied to SAR data entails radiometric 

calibration, multi-looking, speckle filtering, terrain illumination correction, etc. The 

pre-processing steps for Sentinel-1a and ALOS PALSAR-2 are shown in Figures 5.4 

and 5.5 respectively. 

5.5.1 Sentinel-1a image 

Radiometric Calibration: SAR image pixel is associated with a small area of the earth’s 

surface called a resolution cell. Each pixel gives a complex number that carries 

amplitude and phase information about the microwave field backscattered by all the 

scatters (rocks, vegetation, buildings, etc.) within the corresponding resolution cell 

projected on the ground. Thus, Synthetic Aperture Radar data are complex-valued 

usually. The amount of radar echo from a target is characterized by its Radar Cross 

Section (RCS) typically in units of square-meters or dBsm. For distributed targets (e.g., 

grass, dirt, etc.) this value is usually normalized per unit area, that is, square-meters per 

square-meters, or dBs/sm. RCS per unit area is often called clutter reflectivity. Relating 

pixel values to either RCS or clutter reflectivity is called radiometric calibration. The 
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objective of SAR calibration is to provide imagery in which the pixel values can be 

directly related to the radar backscatter of the scene. 

 

Figure 5.4 Pre-processing steps of Sentinel-1a 

Subsetting: Subsetting refers to breaking out a portion of a large file into one or more 

smaller files. Often, image files contain areas much larger than a particular study area. 

In these cases, it is helpful to reduce the size of the image file to include only the area 

of interest (AOI). This eliminates the extraneous data in the file and speeds up 

processing due to the smaller amount of data to process. 

Multi-looking: Multi-look processing refers to the division of the radar beam into 

several narrower sub-beams. Each sub-beam provides an independent ”look” at the 

illuminated scene, each of these ”looks” will also be subject to speckle, but by summing 

and averaging them together to form the final output image, the amount of speckle will 

be reduced. 

Speckle Filtering: Speckle reduction by spatial filtering is performed on the output 

image in a digital (i.e., Computer) image analysis environment. Speckle reduction 

filtering consists of moving a small window of a few pixels in dimension (e.g., 3x3 or 
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5x5) over each pixel in the image, applying a mathematical calculation using the pixel 

values under that window (e.g. Calculating the average), and replacing the central pixel 

with the new value The window is moved along in both the row and column dimensions 

one pixel at a time, until the entire image has been covered. By calculating the average 

of a small window around each pixel, a smoothing effect is achieved and the visual 

appearance of the speckle is reduced. 

Terrain Correction: A characteristic of side-looking SAR image is the so-called 

foreshortening and layover, a reflected signal from a mountaintop reaches the sensor 

earlier or at the same time as the signal at the foot of the mountain. This results in the 

typical look of mountains that seem to have “fallen over” towards the sensor: The freely 

available SNAP SAR Toolbox terrain-correct SAR images in a fully automatic process. 

The algorithm takes the DEM and using orbit parameters of the satellite creates a 

simulated SAR image from this DEM. The simulated and the real SAR image, which 

will look very similar, are co-registered. Through this simulation, the displacement for 

each location in the original landscape, the DEM, is known, so if the simulated SAR 

image is transformed back into the original DEM and the co-registered SAR image 

along with the pixels of the SAR image will receive their real, geographical location. 

5.5.2 ALOS PALSAR-2 image 

ALOS PALSAR-2 data was pre-processed using PolSARPro, an open source software 

including multi-looking, filtering, decomposition and geocoding are performed. 

Initially the environment is set by providing destination of image file. Data is imported 

to software based on type of sensor, polarization, processing level and file format. The 

ALOS PALSAR-2 SLC data was multi-looked twice (multilook is calculated using 

incidence angle, pixel and line spacing) and Pauli RGB image is created. Refined lee 

filter with window size 7*7 was used to reduce speckle (noise) in the data. The output 

.hdr files are transferred ENVI and georeferenced using and ArcGIS. 
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Figure 5.5 Pre-processing steps of ALOS PALSAR-2 

5.6 SENTINEL-1A DATA ANALYSIS 

5.6.1 Bare field 

Bare field is considered to study the effect of soil moisture on backscattered energy 

without vegetation effects. Forty-three Sampling collection are made within the bare 

field, which was shown in Fig 5.1A. The data was collected for a period of 05/05/2018 

to 04/07/2018 at 12 days interval in synchronization with sentinel-1a pass over study 

area. The Spatio-Temporal variation (~8 to 22gm/cm3) of backscattered energy and soil 

moisture within the plot is shown in the Figure 5.6 and 5.7. From the box plot, soil 

moisture on 04/07/2018 has increased because of the rainfall on 30/06/2018. Since there 

was no effect of vegetation, it was observed that backscattered energy variation and soil 

moisture variation within the field followed a same pattern. It showed the direct 

relationship between soil moisture and backscattered energy in bare fields.  
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. Figure 5.6 Spatio-temporal variation of VV and VH backscattered energy within the 

bare field during Sentinel-1a pass 

 

Figure 5.7 Spatio-temporal variation of soil moisture within the bare field during 

Sentinel-1a pass 

5.6.2 Maize field 

To study the effect of vegetation in surface soil moisture retrieval Maize crop is selected 

which is Broadleaf structured. The area considered for the study is of 0.8 acres in 30 

sampling locations (Figure 5.1B), which are made of 10*10m. The data is acquired for 

the period of 10/06/2018 to 21/08/2018 in synchronization with sentinel-1a pass over 

study area. The cropping period of Maize is 3 months. The Spatio-Temporal Variation 

of VV, VH backscattered energy and soil moisture are shown in Figure 5.8 and 5.9 

respectively. The soil moisture over the field is wet in initial condition whereas in later 
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stages it went quite low (~15gm/cm3) because the crop was infected. To avoid the 

spread of infection irrigation was controlled by farmers. Also, we can observe that as 

the crop grows the effect of vegetation is sensed by VH backscattered energy is also 

increasing.  

 

Figure 5.8 Spatio-temporal variation of VV and VH backscattered energy within 

Maize field during Sentinel-1a pass 

 

Figure 5.9 Spatio-temporal variation of soil moisture within Maize field during 

Sentinel-1a pass 

5.6.3 Paddy field 

Paddy is another crop which is a narrow leaf structured to study the effect of vegetation 

in surface soil moisture retrieval of area 1 acre land. Since the same breed paddy is not 

available in the field two paddy plots are selected, which has already shown in Figure 

5.1C. Total 30 sampling fields of which 18 from plot-1 and 16 from plot-2 were 
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collected. The sampling data is acquired for the period of 16/07/2018 to 07/12/2018 in 

synchronization with sentinel-1a pass over the study area. The spatiotemporal variation 

soil moisture of too varying within the Field (Figure 5.10 & 5.11).We can observe that 

as the crop grows the effect of vegetation is sensed by VH backscattered energy  

whereas VV backscattered energy doesn’t show much variation and it’s a kind of same 

(Figure 5.11 & 5.12).  

 

(a) 

 

(b) 

Figure 5.10 Spatio-temporal variation of VV (a) and VH (b) backscattered energy 

within Paddy field during Sentinel-1a pass 
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Figure 5.11 Spatio-temporal variation of soil moisture within Paddy field during 

Sentinel-1a pass 

5.6.4 Tomato field 

Tomato is one more broadleaf structured crop selected to study surface soil moisture 

retrieval over agricultural fields of 1 acre land. 34 sampling locations are selected from 

tomato field which is divided into 10*10m grid, which should match pixels of sentinel-

1a. The data is acquired for the period of 16/07/2018 to 07/12/2018 in synchronization 

with sentinel-1a pass over the Tomato fields. The crop period of Tomato is 4 months. 

The soil moisture over the field is dry in the initial condition, whereas in later stages, it 

was almost uniform (Figure 5.13). Also, we can observe that as the crop grows the 

effect of vegetation is sensed by VH backscattered energy (Figure 5.12).  

 

(a) 
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(b) 

Figure 5.12 Spatio-temporal variation of VV (a) and VH (b) backscattered energy 

within Tomato Field during Sentinel-1a pass 

 

Figure 5.13 Spatio-temporal variation of soil moisture within tomato field during 

Sentinel-1a pass 

5.6.5 Sugarcane field 

Sugarcane is one of the main commercial crop which is narrow leaf structured crop 

selected to study effects of it on soil moisture retrieval. The crop period of sugarcane 

varies from 10 to 12 months in the present study it has been harvested in the 11th month. 

Data is collected over 36 sampling locations for the period of 05/05/2018 to 24/01/2019 

in synchronization with sentinel-1a pass over the sugarcane field. The spatio-temporal 

variation of VV and VH backscattered energy is presented in Figure 5.14 & 5.15 
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respectively. The Spatio-temporal variation of soil (Figure 5.16) in the field remains 

almost uniform because of the controlled irrigation practices towards sugarcane. 

 

Figure 5.14 Spatio-temporal variation of VV backscattered energy within sugarcane 

field during Sentinel-1a pass 

 

Figure 5.15 Spatio-temporal variation of VH backscattered energy within sugarcane 

field during Sentinel-1a pass 

 

Figure 5.16 Spatio-temporal variation of soil moisture within sugarcane field 
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5.7 ALOS PALSAR-2 DATA ANALYSIS  

The backscattered energy of quad polarized (VV, VH, HV & HH) ALOS PALSAR-2 

images was extracted using R studio software for the given dates, 23/07/2018 and 

01/10/2018. The spatio-temporal variation of polarized backscattered energy of barren 

fields and soil moisture is given in Figure 5.17 and Figure 5.18 respectively. From the 

Figure 5.17 and 5.18, it is noted there is not much variation with respect backscattered 

energy, soil moisture is observed, and both dates follow similar co polarization patterns. 

 

Figure 5.17 Spatio-temporal variation of backscattered energy within barren field 

during ALOS PALSAR-2 pass 

 

Figure 5.18 Spatio-temporal variation of soil moisture within barren field during 

ALOS PALSAR-2 pass 

Paddy, sugarcane and tomato are in vegetative stage during first observation 

(23/07/2018) of ALOS PALSAR-2. Paddy, tomato, sugarcane and maize are in early 
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flowering, first harvesting and grand growing stage respectively during second 

observation (01/10/2018). The maize is a short term crop (90 days). So, during first 

observation it was in growing stage whereas during second observation it was harvested 

and not available. The spatio-temporal variation of backscattered energy and soil 

moisture of each field is given from Figure 5.19 to 5.26.  

 

Figure 5.19 Spatio-temporal variation of backscattered energy within paddy field 

during ALOS PALSAR-2 pass 

 

Figure 5.20 Spatio-temporal variation of soil moisture within paddy field during 

ALOS PALSAR-2 pass 
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Figure 5.21 Spatio-temporal variation of backscattered energy within tomato field 

during ALOS PALSAR-2 pass 

 

Figure 5.22 Spatio-temporal variation of soil moisture within tomato field during 

ALOS PALSAR-2 pass 

 

Figure 5.23 Spatio-temporal variation of backscattered energy within sugarcane field 

during ALOS PALSAR-2 pass 
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Figure 5.24 Spatio-temporal variation of soil moisture within sugarcane field during 

ALOS PALSAR-2 pass 

 

Figure 5.25 Spatio-temporal variation of backscattered energy within maize field 

during ALOS PALSAR-2 pass 

 

Figure 5.26 Spatio-temporal variation of soil moisture within maize field during 

ALOS PALSAR-2 pass 
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From the Figure 5.19 to 5.20, It is observed there is an increase in field soil moisture of 

01/10/2018 compared with 23/07/2018 and corresponding to its backscatter energy. 

Soil moisture in sugarcane fields is almost same in both the observations. Also, 

observed a change in HV and VH backscattered energy according to vegetation growth 

in agricultural fields. 

5.8 CROP HEIGHT  

The crop height was measured using metal scale and a staff of 4m long. The ALOS 

PALSAR-2 observation crop height is given in Table 5.1. The variation of crop height 

during Sentinel-1a observation is shown in Figure 5.27. It observed from the figure 5.27 

the height of paddy and tomato is more 1.2 and 1.3m but afterwards it reduced to 1 and 

0.8 because of the fruit weight. 

Table 5.1 Crop height during ALOS PALSAR-2 pass 

Sl. No. Crop Height (m) 

23/07/2018 01/10/2018 

1 Paddy 0.2 0.8 

2 Tomato 0.3 1.1 

3 Sugarcane 1.2 2.6 

4 Maize 0.9 ---- 

 

Figure 5.27 Crop height variation of paddy, sugarcane, tomato and maize crops during 

Sentinel-1a pass 
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5.9 VEGETATION WATER CONTENT (VWC) 

VWC is measured to all crops till its flowering stage. Since it is destructive sampling 

method farmers does not allow to carry out after maturity of crops. From the collected 

data, the model will be developed to relate between vegetation indices and VWC and 

that will be further utilized. The observed values during PALSAR-2 pass are given in 

Table 5.2 and Sentinel-1a pass are given in Figure 5.28.  

Table 5.2 VWC during ALOS PALSAR-2 pass 

Sl. No. Crop VWC (kg/m2) 

23/07/2018 01/10/2018 

1 Paddy 0.2 2.1 

2 Tomato 0.8 2.9 

3 Sugarcane 0.7 ---- 

4 Maize 3.12 ---- 

 

 

Figure 5.28 VWC variation of paddy, sugarcane, tomato and maize crop during 

Sentinel-1a pass 

The upcoming chapter discuses about the surface soil moisture results obtained by C 

and L band SAR and discussion regarding it. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 INTRODUCTION  

This chapter discuss about the surface soil moisture retrieved from various soil moisture 

models like Oh, WCM, and X-Bragg model. Later on, discusses about surface soil 

moisture model development using polarization decomposition technique and 

backscattered energy. Further, validation of existing and developed models using field 

collected data and accuracy assessment of these models was discussed. At the end, 

comparison between C and L-band soil moisture estimates is analysed. The results of 

this study is divided into three parts namely, 

i. Spatio-temporal variation of surface soil moisture. 

ii. Surface soil moisture retrieval using L and C-band SAR.  

iii. Comparison of quad and dual-pol surface soil moisture retrievals. 

6.2 SPATIO-TEMPORAL VARIATION OF SURFACE SOIL MOISTURE  

 

Figure 6.1 Mean surface soil moisture collected from time series in situ data for each 

agricultural plots. 
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Spatio-temporal variation of surface soil moisture of 5 different agricultural plots are 

studied using field/in-situ observations. We observed the surface soil moisture of 

sugarcane is almost uniform all over its crop cycle, no much change is observed (varied 

between 5%). In case of tomato plot, the soil moisture is considerably high during the 

planting and flowering stages. In rest of the crop cycle surface soil moisture is almost 

uniform (Figure 6.1). In case of paddy fields surface soil moisture varies in the range 

of 10% but higher soil moisture is observed during planting stage and decreased during 

harvesting stage. In case bare fields, no irrigation activity was seen though there was 

change in soil moisture at periphery of the field, this is due infiltration of water from 

neighbouring fields. In overall surface soil moisture of each field is less during the 

harvesting and more during planting/vegetative stage. 

6.3 SURFACE SOIL MOISTURE RETRIEVAL USING SAR  

The surface soil moisture retrieval over agriculture fields is discussed in 2 sections 

namely,   

 Surface soil moisture retrieval using quad-pol, L-band SAR 

 Surface soil moisture retrieval using dual-pol, C-band SAR 

6.3.1 Surface soil moisture retrieval using quad-pol, L-band SAR  

Processed ALOS-2 SAR data (dated 23/0/2018 & 01/10/2018) was used to estimate 

surface soil moisture. Evaluation of soil moisture models like Oh 1992, Oh 2004 and 

X-Bragg were carried out using PolSAR Pro 5.1.3 software. To run these models, 

incidence angle map was developed using a polynomial equation and metadata 

information provided along with the ALOS PALSAR-2 data (Ponnurangam and Rao, 

2011). Soil moisture values of each sampled grid in the study site are extracted using R 

studio software version 1.1.423. These extracted soil moisture values of each model are 

assessed with field data for validation. The surface soil moisture maps of 23/07/2018 

and 01/10/2018 derived using Oh 1992, Oh 2004 and X-Bragg models are shown in the 

Figure 6.2 and 6.3 respectively. 
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(a) 
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(b) 
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(c) 

Figure 6.2 Surface soil moisture maps of 23/07/2018 derived using Oh 1992 (a), 

Oh 2004 (b) and X-Bragg (c) models 
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(a) 
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(b) 
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(c) 

Figure 6.3 Surface soil moisture maps of 01/10/2018 derived using Oh 1992 (a), 

Oh 2004 (b) and X-Bragg (c) models 

In case of WCM, 70% of soil moisture field grid sample data of each study site was 

used to derive model parameters and 30% were used for validation. RVI is used as 

vegetation descriptors and is calculated using Eq. 6.11. The model parameters were 

computed by using the genetic algorithm. This parameterization is performed using the 

Levenberg Marquardt Algorithm (LMA), which is a genetic algorithm and model 

parameters are formed by optimization of least squares with nonlinear regression 

technique and by minimizing the deviation between predicted data and SAR data 
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(Kumar et al, 2015). The model parameters are uniquely identifiable and computed non-

linear regression model parameters are presented in Table 6.1.  

    𝑅𝑉𝐼 =
8𝐻𝑉

𝐻𝐻+𝑉𝑉+2𝐻𝑉
                   (6.11) 

Table 6.1 WCM model parameter 

Date 23/07/2018 01/10/2018 

Crop\par

ameters 

A B C D A B C D 

Maize 0.092 1.088 0.024 0.00032 -- -- -- -- 

Paddy 0.288 1.131 0.017 0.00035 0.057 1.061 0.015 0.0004 

Tomato 0.149 1.078 0.033 0.00061 0.063 0.956 0.047 0.00053 

Sugarcane 0.354 3.11 0.06 0.00058 0.22 -1.215 0.052 0.00071 

Bare field 0.066 1.556 0.018 0.0011 0.048 0.981 0.021 0.00092 

A & B= model parameters; C & D= vegetation parameters  

6.3.1.1 Model development 

PolSARPro v5.1.3 an open-source software was used to decompose the quad polarized 

ALOS-2 data using 3 typical polarization decomposition techniques. The 

proportionality analysis (Fig. 6.4) found a difference in the decomposition of different 

scattering mechanisms. Surface scattering was the dominant scattering in Yamaguchi 

and Van Zyl techniques whereas in Freeman-Durden decomposition volume scattering 

was dominant. The proportion of dihedral scattering was least when compared to the 

proportion of surface and volume scattering. Dihedral scattering of Yamaguchi 

decomposition gave the lowest proportion of all. It is also observed that the proportion 

of volume scattering is near to the proportion of surface scattering this is because of the 

growing stage of maize which has more vegetation water content. This shows 

significant impact of vegetation on soil moisture. Therefore, to obtain actual soil 

moisture information about any field it is required to remove vegetation information. 

Van Zyl decomposition gave the highest surface scattering (43%) followed by 

Yamaguchi (41%). Van Zyl gave a lower proportion of volume scattering followed by 

Yamaguchi and Freeman-Durden decompositions. Finally, it was found that the surface 
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scattering component is increased and the volume scattering component is reduced in 

the Van Zyl method followed by Yamaguchi and Freeman-Durden decompositions.  

 

Figure 6.4 Proportion analysis of three polarization decomposition techniques of Maize 

It was observed, surface scattering (<34%) is a significant component in all the three 

polarization decomposition techniques during the vegetative stage (23/07/2018) of 

paddy, tomato and sugarcane (Wang et al., 2017). In the case of a bare field, surface 

scattering is more prominent (<55%), showing less vegetation interaction with radar 

backscattering energy. As the crop grew (01/10/2018), an increase in the dihedral and 

volumetric scattering component of paddy and tomato was noticed. In case of 

sugarcane, dihedral scattering has reduced because of the spreading of leaves that act 

susceptible to waves. In case of bare field, not much change is observed since 

vegetation level remained more or less same. The proportionality of three scattering 

components of 23/07/2018 and 01/10/2018 are given in Figure 6.5 and Figure 6.6.  
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Figure 6.5 Proportionality of three scattering components on 23/07/2018 of paddy, 

Tomato, sugarcane and bare field 

 

 
Figure 6.6 Proportionality of three scattering components on 01/10/2018 of paddy, 

Tomato, sugarcane and bare field 

6.3.1.2 Regression analysis 

Proportional analysis showed Freeman-Durden decomposition is over estimating the 

volume component, and Van Zyl decomposition over-estimating surface scattering 

component. From the analysis, surface scattering found to be dominant scattering 

component and can be used to retrieve surface soil moisture out of three scattering 

components. Regression analysis was carried out between soil moisture and surface, 

dihedral scattering components to analyse their dependence in the growing stage of 
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each crop. Linear regression models are used to examine the relationship between 

scattering components and soil moisture values whichever gave the best relationship 

that has been selected for modelling. ALOS PALSAR-2 quad polarized intensity data 

(HH, HV, VV and VH) and scattering components were examined individually to check 

the relationship with field measured surface soil moisture. 

Maize field 

The correlation between field measured soil moisture to backscattered energy of maize 

field is given in Figure 6.7.  
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Figure 6.7 Relationship between polarization (HH, HV, VV & VH), surface scattering 

component, dihedral component and field-measured soil moisture at growing stage of 

maize (23/07/2018) (FD3- Freeman Durden; Y4- Yamaguchi and VZ4-Van Zyl 

polarimetric decomposition technique) 
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It was found that the decomposed surface scattering component shows good relation 

with surface soil moisture when compared with polarization data and dihedral scattering 

component. In case of polarization data VV (R2=0.55) is having a good correlation with 

soil moisture. Dihedral scattering component of all three decomposition techniques has 

less than 0.5 correlation coefficient. From the study, Yamaguchi (R2 =0.75) and Van 

Zyl (R2 =0.74) surface scattering component is better than Freeman Durden (R2 =0.63). 

From this, the Yamaguchi surface scattering component is considered the best 

decomposition technique to retrieve surface soil moisture from maize fields. 

 

Paddy field 

The relationship between field measured soil moisture to backscattered energy of paddy 

field at vegetative and flowering stage is given in Figure 6.8 and Figure 6.9 respectively. 

In the flowering stage of paddy field, along with surface scattering component, dihedral 

component showed good correlation with surface soil moisture. As the crop grows, 

vegetation's effect on backscattered energy increases and surface roughness is reduced. 
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Figure 6.8 Relationship between polarization (HH, HV, VV & VH), surface scattering 

component, dihedral component and field-measured soil moisture at vegetative stage 

of paddy (23/07/2018) (FD3- Freeman Durden; Y4- Yamaguchi and VZ4-Van Zyl 

polarimetric decomposition) 
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Figure 6.9 Relationship between polarization (HH, HV, VV & VH), surface scattering 

component, dihedral component and field-measured soil moisture at vegetative stage 

of paddy (01/10/2018) (FD3- Freeman Durden; Y4-Yamaguchi and VZ4-Van Zyl 

polarimetric decomposition) 

Tomato field 

The relationship between field measured soil moisture to backscattered energy of 

tomato field at vegetative and first harvesting stage is given in Figure 6.10 and 6.11 

respectively. 
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Figure 6.10 Relationship between polarization (HH, HV, VV & VH), surface 

scattering component, dihedral component and field-measured soil moisture at 

vegetative stage of Tomato field (23/07/2018) (FD3- Freeman Durden; Y4- 

Yamaguchi and VZ4-Van Zyl polarimetric decomposition) 
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Figure 6.11 Relationship between polarization (HH, HV, VV & VH), surface 

scattering component, dihedral component and field-measured soil moisture at first 

harvest stage of Tomato field (01/10/2018) (FD3- Freeman Durden; Y4- Yamaguchi 

and VZ4-Van Zyl polarimetric decomposition) 

From Figure 6.10 and 6.11 it is observed, that surface scattering component is having 

good relationship with surface soil moisture at vegetative stage. Whereas in first harvest 

stage dihedral scattering did not show any prominent relationship with surface soil 

moisture. 

Sugarcane field 

The relationship between field measured soil moisture to backscattered energy of 

sugarcane field at growing and grand growing stage is given in Figure 6.12 and 6.13 

respectively. 
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Figure 6.12 Relationship between polarization (HH, HV, VV & VH), surface 

scattering component, dihedral component and field-measured soil moisture at 
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vegetative stage of Sugarcane field (23/07/2018) (FD3- Freeman Durden; Y4- 

Yamaguchi and VZ4-Van Zyl polarimetric decomposition) 
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Figure 6.13 Relationship between polarization (HH, HV, VV & VH), surface 

scattering component, dihedral component and field-measured soil moisture at grand 

growing stage of Suagarcane field (01/10/2018) (FD3- Freeman Durden; Y4- 

Yamaguchi and VZ4-Van Zyl polarimetric decomposition) 

Figure 6.12 and 6.13 show that surface soil moisture has a good relationship with 

surface and dihedral scattering. As vegetation biomass increased in grand growing stage 

of sugarcane we did not find much relation with surface or dihedral scattering 

component of sugarcane field with soil moisture.  

Bare field  

The relationship between field measured soil moisture to backscattered energy of bare 

field at two different scene is given in Figure 6.14 and 6.15 respectively. 
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Figure 6.14 Relationship between polarization (HH, HV, VV & VH), surface 

scattering component, dihedral component and field-measured soil moisture of bare 
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field (23/07/2018) (FD3- Freeman Durden; Y4- Yamaguchi and VZ4-Van Zyl 

polarimetric decomposition) 
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Figure 6.15 Relationship between polarization (HH, HV, VV & VH), surface 

scattering component, dihedral component and field-measured soil moisture of bare 

field (01/10/2018) (FD3- Freeman Durden; Y4- Yamaguchi and VZ4-Van Zyl 

polarimetric decomposition) 

6.3.1.3 Semi empirical modelling 

From the regression analysis, we came to know that Yamaguchi surface scattering 

component has a good relationship with surface soil moisture. The effect of surface 

roughness is not examined in the decomposed surface scattering component (Barrett et 

al., 2009; Ponnurangam and Rao, 2017). So, the depolarization ratio between VH and 

VV polarization is initially validated using field surface roughness samples (Srivastava 

et al. 2008). The correlation between field surface roughness and depolarization ratio 

of agricultural plot was found well from Figure 6.16 and 6.17 respectively. Hence effect 

of surface roughness is taken care by depolarization ratio and there was no tillage during 

the cycle. In case of sugarcane, depolarization ration did not give any relation so 

neglected for 23/07/2018. In case of 01/10/2018 acquisition only tomato and bare field 

gave relation between depolarization ratio and surface roughness. Which shows other 

surface roughness other crop are not affecting much due to vegetation cover. 

Yamaguchi polarization surface scattering component, depolarization ratio and 

dihedral scattering component were considered as effective parameters to develop the 

surface soil moisture model based on single L- band SAR imagery.  
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    (a)     (b) 

 

    (c)     (d)  

Figure 6.16 Relationship between depolarization ratio and surface roughness height of 

Maize (a), Paddy (b), Tomato (c) and bare field (d) of 23/07/2018 

 

    (a)     (b) 

Figure 6.17 Relationship between depolarization ratio and surface roughness height of 

Tomato (a) and bare field (b) of 01/10/2018 
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affecting parameters a Multi Linear Regression (MLR) analysis is carried out and a 

Semi-Empirical Model (SEM) is developed at a confidence interval 95% for each crops 

at two different crop stages is given in the Table 6.2 and 6.3 respectively. 

Table 6.2 Details of developed Semi-Empirical Model (SEM) of 23/07/2018 for 

various crops 

Sl.

no. 

Crops Crop stage SEM Adj. R2 

1 Maize Vegetative  𝑀𝑣 = 38.04 + 1.52𝑠𝑢𝑟
 + 0.15𝑣ℎ−𝑣𝑣

  0.75 

2 Paddy Vegetative 𝑀𝑣 = 42.6 + 1.32𝑠𝑢𝑟
 + 0.06𝑣ℎ−𝑣𝑣

  0.74 

3 Tomato Vegetative 𝑀𝑣 = 28.86 + 0.81𝑠𝑢𝑟
 + 0.63𝑣ℎ−𝑣𝑣

  0.79 

4 Sugarcane Vegetative 𝑀𝑣 = 40.84 + 1.1𝑠𝑢𝑟
 + 0.15𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

  0.59 

5 Bare field ---- 𝑀𝑣 = 19.34 + 0.68𝑠𝑢𝑟
 + 0.14𝑣ℎ−𝑣𝑣

  0.84 

Table 6.3 Details of developed Semi-Empirical Model (SEM) of 01/10/2018 for 

various crops 

Sl. 

no. 

Crops Crop stage SEM Adj. 

R2 

1 Paddy Flowering  𝑀𝑣 = 61.8 + 1.5𝑠𝑢𝑟
 + 0.2𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

  0.61 

2 Tomato First harvest 𝑀𝑣 = 25.6 + 0.88𝑠𝑢𝑟
 + 0.12𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

  0.7 

3 Sugarcane Grand growing 𝑀𝑣 = 39.7 + 0.74𝑠𝑢𝑟
 + 0.38𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

  0.29 

4 Bare field ---- 𝑀𝑣 = 15.27 + 0.39𝑠𝑢𝑟
 + 0.12𝑣ℎ−𝑣𝑣

  0.79 

6.3.1.4  Validation 

The Oh 1992, Oh 2004 and X-Bragg model estimated soil moisture is validated using 

grid sampled field soil moisture for both the acquisition (23/07/2018 &01/10/2018). In 

the case of WCM and SEM, 70% of field data is already used in model 

parameterization, so 30% of data has been used to validate it.  Root Mean Square Error 

(RMSE) and Absolute Error (AE) are used to check the accuracy of models. The results 

of the accuracy assessment of surface soil moisture models are shown in Table 6.4. In 

paddy plots’ it can be noticed that, Oh model, 2004 is giving good results in both 

vegetative (RMSE=1.88; NSE=0.73) and flowering stage (RMSE=2.47; NSE=0.72) 

compared to X-Bragg and Oh 1992 models. The maximum absolute error is seen in the 

estimates of X-Bragg model (AEmax=3.82 & 3.22) which shows more deviation of 
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surface soil moisture estimates from observed one. In tomato plot also Oh 2004 model 

(RMSE=1.49 & RMSE=2.81) is performing marginally better than Oh 1992 model 

(RMSE=1.72 & RMSE=3.28) in both vegetative and first harvest stage. X-Bragg model 

shows more deviations from the observed ones in all agricultural crops. In case of 

sugarcane, during vegetative stage all three models performed more or less same. SEM 

(RMSE=2.48) and WCM (RMSE=2.43) model are performing marginally better than 

Oh 1992 (RMSE=2.52) and Oh 2004 models (RMSE=2.84) in sugarcane vegetative 

stage.  In grand growing stage all models gave abrupt results with models AEmax ranging 

between 4.62-7.96. In fallow fields, all models are performing well with marginal error 

for both dates.   

All in all, comparing existing soil moisture models, Oh 2004 model is performing better 

than Oh 1992 and X-Bragg model in paddy, tomato and bare filed plots. In case of 

sugarcane soil moisture estimates are good only in vegetative stage but in grand 

growing stage estimates are deviated much from the observed ones because of the high 

vegetation biomass. Developed SEM and WCM is performing better than Oh 2004 

model because its model parameters were calibrated using actual field data and it is 

validated. The results of the accuracy assessment of surface soil moisture models are 

shown in Table 6.4. 

Table 6.4 Accuracy assessment of surface soil moisture models of L-band SAR 

Date  23/07/2018  01/10/2018 

Crop Model\statistics RMSE AEmax RMSE AEmax 

 

 

Maize 

Oh model 1992 2.84 3.8  

 

NA 

Oh model 2004 2.23 3.17 

X Bragg 2.78 4.21 

WCM 1.98 3.1 

SEM 1.81 2.88 

 

Paddy 

Oh model 1992 2.1 2.49 2.88 3.1 

Oh model 2004 1.88 2.15 2.47 2.54 

X Bragg 2.26 3.82 2.80 3.22 

WCM 1.80 2.4 2.36 2.69 
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SEM 1.68 2.1 2.45 2.7 

 

Tomato 

Oh model 1992 1.72 2.33 3.28 3.08 

Oh model 2004 1.49 2.11 2.81 2.77 

X Bragg 2.1 2.57 3.42 3.45 

WCM 1.53 1.92 3.12 2.93 

SEM 1.32 1.8 2.51 2.6 

 

Sugarcane 

Oh model 1992 2.84 3.37 4.7 6.84 

Oh model 2004 2.52 3.1 4.45 6.88 

X Bragg 2.63 4.21 4.23 7.96 

WCM 2.43 3.05 3.64 4.62 

SEM 2.48 3.08 4.1 5.22 

 

Bare field 

Oh model 1992 1.24 2.14 1.25 2.27 

Oh model 2004 0.85 1.76 0.84 1.9 

X Bragg 1.21 3.18 1.19 2.81 

WCM 0.8 2.03 0.83 1.88 

SEM 0.82 1.7 0.88 1.49 

*RMSE=Root Mean Square error (% g/cm3/g/cm3); AEmax= Maximum Absolute Error (% g/cm3) 

6.3.2 Surface soil moisture retrieval using dual-pol, C-band SAR   

Processed Sentinel-1a data was used to estimate surface soil moisture for whole crop 

cycle of Paddy, Sugarcane, Tomato and Maize. Crop cycle of each crop is divided into 

stages namely, vegetative, maturity and yield stage according to FAO crop information 

(https://www.fao.org/land-water/databases-and-software/cropinformation). For each 

crop stage surface soil moisture is evaluated using soil moisture models like Oh 2004 

and WCM (discussed in section 6.3.1.1) to understand the capability of a model to 

retrieve surface soil moisture at various vegetation spread levels. In case of Oh model 

2004 the surface roughness parameter is replaced using depolarization ratio. In case of 

WCM, RVI is calculated using modified dual polarized RVI (Haldar et al., 2018; Liao 

et al., 2018) given in Eq. 6.12. The soil moisture estimates are validated using field 

data.  

    𝑅𝑉𝐼 =
4𝑉𝐻

𝑉𝑉+𝑉𝐻
                  (6.12) 

https://www.fao.org/land-water/databases-and-software/cropinformation
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6.3.2.1 Model development 

To develop the model, the effect soil moisture, roughness and vegetation on radar 

backscattered energy was analysed and affective parameters are selected to develop the 

surface soil moisture models at three different crop stages of selected agricultural test 

plots. 

Maize field 

 

(a)    (b)           (c) 

Figure 6.18 Relationship between soil moisture and radar signal VV and VH 

polarization at seedling (a), vegetative (b) and yield stage (c) of Maize field 

The Maize crop cycle is divided into three crop stages namely, seedling, vegetative and 

yield stage. The relationship between field measured surface soil moisture and 

backscattered energy (VV & VH) at each crop stage of maize is analysed and presented 

in Figure 6.18. It can be seen that the backscattered radar signals have a clear 
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dependence on soil moisture with VV polarization than VH polarization. This is 

because cross polarization has a poorer penetrability than co-polarization and is more 

susceptible to vegetation blocking.  

RVI is considered a vegetation parameter, to analyse the vegetation intervention on 

SAR backscattered energy. RVI values of each sampling grid were calculated using 

amplitude data (power units) of Sentinel-1a data. Figure 6.19 shows that RVI has a 

positive relationship with σ° (VH) of vegetative and yield stage of maize crop with R2= 

0.33 and R2 = 0.42 respectively. The RVI values finds good relationship with VH 

backscattered energy then VV. The values of RVI are within the range at seedling stage 

in which a radar signal is not much affected (Sikdar and Cumming 2004), implying that 

there is no need to minimize the effect of vegetation at seedling stage. 

 

 

   (a)     (b) 

Figure 6.19 Relationship between radar signal (VV and VH polarization) and RVI at 

vegetative (a) and yield (b) stage of Maize field 
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Paddy field 

The paddy crop cycle is divided into three crop stages namely, vegetative, maturity and 

yield stage. The relationship between field measured surface soil moisture and 

backscattered energy (VV) and (VH) at each crop stage of paddy is analysed and 

presented in Figure 6.20. From Fig. 6.21, it is observed that backscattered radar signals 

have a clear dependence on soil moisture with VV polarization than VH polarization. 

But has the crop grows the dependence of backscattered energy on soil moisture is 

reduced. The effect of crop growth on backscattered energy is analysed using RVI. The 

relationship between RVI and backscattered energy is presented in Figure 6.21. 

 

(a)     (b)           (c) 

Figure 6.20 Relationship between soil moisture and radar signal VV and VH 

polarization at vegetative (a), maturity (b) and yield stage (c) of paddy field 
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(a)     (b) 

Figure 6.21 Relationship between radar signal (VV and VH polarization) and RVI at 

maturity (a) and yield (b) stage of paddy field 

Tomato field 

The Tomato crop cycle is divided into three crop stages namely, vegetative, maturity 

and yield stage. The relationship between field measured surface soil moisture and 

backscattered energy (VV) and (VH) at each crop stage of paddy is analysed and 

presented in Figure 6.22. The effect of vegetation (RVI) is shown in Figure 6.23. 

Tomato crop showed VV backscattered energy having almost same dependence on 

surface soil moisture at different tomato crop stages. The effect vegetation on 

backscattered energy (VH) at two different stages of crop gives almost same 

relationship (R2=0.35) 
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  (a)     (b)           (c) 

Figure 6.22 Relationship between soil moisture and radar signal VV and VH 

polarization at vegetative (a), maturity (b) and yield stage (c) of Tomato field 
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(a)     (b) 

Figure 6.23 Relationship between radar signal (VV and VH polarization) and RVI at 

maturity (a) and yield (b) stage of tomato field 

Sugarcane field 

Sugarcane crop cycle is divided into four crop stages namely, vegetative, growing, 

grand growing and yield stage. The relationship between field measured surface soil 

moisture and backscattered energy (VV) and (VH) at each crop stage of paddy is 

analysed and presented in Figure 6.24 and Figure 6.25. Sugarcane fields showed 

backscattered energy dependence on surface soil moisture dependence is reduced as the 

crop passes to growing stages. 
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(c)     (d) 

Figure 6.24 Relationship between soil moisture and radar signal VV polarization at 

early growth (a) vegetative (b) grand growing (c) and yield stage (d) of sugarcane 

field 

  

(a)     (b) 

  

(c)     (d) 

Figure 6.25 Relationship between soil moisture and radar signal VH polarization at 

early growth (a) vegetative (b) grand growing (c) and yield stage (d) of sugarcane 

field 
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The relationship between surface soil moisture and backscattered energy is found only 

in early growth stage of sugarcane. In case of vegetative, grand growing and maturity 

stage, it found to be no relationship between C-band SAR backscattered energy and soil 

moisture. It is because of the C-band SAR has lesser penetration power compared at 

biomass level or vegetation spread of sugarcane. Figure 6.26 illustrates the relationship 

between RVI and backscattered energy of VV and VH polarization at early growth 

stage. Which shows no much dependence between RVI and backscattered energy. Since 

no relationship found between backscattered energy and soil moisture at vegetative, 

grand growing and yield stage. The effect of RVI on VV and VH polarization at 

vegetative, grand growing and yield stage was not considered. 

 

Figure 6.26 Relationship between radar signal (VV and VH polarization) and RVI at 

Early growth stage of sugarcane. 

Bare field 

Figure 6.27 illustrates the relationship between surface soil moisture and backscattered 

energy VV and VH polarization backscattered energy for data acquired from 

05/05/2018 to 04/07/2018 at 12-day intervals. It can be seen that the backscattered 

energy has a clear dependence on soil moisture. The results show that VV polarization 

soil backscattering coefficient has the highest correlation with the field measured soil 

moisture. The effect of vegetation on VV and VH polarization is shown in Figure 6.28. 

Vegetation in bare field corresponds to weeds, and the effect of this vegetation is 

negligible on polarization channels (Ulaby et al. 1982; Sikdar and Cumming 2004).  
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Figure 6.27 Relationship between soil moisture and radar signal VV and VH 

polarizations of bare field 

  

Figure 6.28 Relationship between RVI and radar signal VV and VH polarizations of 

bare field 

6.3.2.2 Semi-empirical modelling 

From the regression analysis, we came to know that VV backscattered energy has a 

good relationship with surface soil moisture. VH backscattered energy showing the 

effect of vegetation cover on surface soil moisture. The effect of surface roughness is 

not examined, in the case depolarization ratio is used surface roughness parameter and 

relation between surface roughness and depolarization ratio is presented in Figure 

6.29A to 6.29C. Figure 6.29 shows that only during initial crop stages of Maize and 

Sugarcane surface roughness affects backscattered energy. Once the crop is grown, the 

effect of surface roughness is gradually decreased. Major parameters affecting the 
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sensitivity of backscattered energy are considered to model the surface soil moisture. 

To model surface soil moisture, multilinear regression analysis is carried out in which 

soil moisture (Mv) is a dependent variable and 
VV, 

VH - 
VV and RVI are considered 

independent variables. Where 
VV  is function of soil moisture, 

VH - 
VV is function 

of surface roughness and RVI is the function of vegetation water content. The 

developed semi-empirical model of each crop at different crop stages is given in Table 

6.5 with adjusted R2 and confidence interval of 95%.  

 

 (a)     (b)    (C) 

Figure 6.29A Relationship between depolarization ratio and surface roughness height 

of bare (a), Maize (b) and Sugarcane (c) at vegetative stage. 

 

    (a)     (b) 

Figure 6.29B Relationship between depolarization ratio and surface roughness height 

of Tomato at vegetative (a) and maturity stage (b) 
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    (a)     (b) 

Figure 6.29C Relationship between depolarization ratio and surface roughness height 

of Paddy at vegetative (a) and maturity stage (b) 

Table 6.5 Details of developed Semi-Empirical Model (SEM) at crop stages 

Sl. 

No. 

Crop Crop 

stage 

SEM Adj. 

R2 

1  

Maize 

Seedling 𝑀𝑣 = 37.06 + 2.04𝑉𝑉
 + 0.15𝑉𝐻−𝑉𝑉

  0.66 

Vegetative 𝑀𝑣 = 27.74 + 1.71𝑉𝑉
 − 0.46𝑉𝐻−𝑉𝑉



+ 5.7𝑅𝑉𝐼 

0.5 

Yield 𝑀𝑣 = 63.2 + 3.72𝑉𝑉
 − 28.24𝑅𝑉𝐼 0.35 

2  

Paddy 

Vegetative 𝑀𝑣 = 59.7 + 3.54𝑉𝑉
 − 0.13𝑉𝐻−𝑉𝑉

  0.57 

Maturity 𝑀𝑣 = 51.1 + 4.48𝑉𝑉
 − 0.83𝑉𝐻−𝑉𝑉



+ 24.3𝑅𝑉𝐼 

0.62 

Yield 𝑀𝑣 = 49.43 + 3.12𝑉𝑉
 + 12.83𝑅𝑉𝐼 0.4 

3 Tomato Vegetative 𝑀𝑣 = 44.66 + 2.04𝑉𝑉
 + 0.15𝑉𝐻−𝑉𝑉

  0.63 

Maturity 𝑀𝑣 = 39.02 + 3.1𝑉𝑉
 − 0.12𝑉𝐻−𝑉𝑉



+ 25.38𝑅𝑉𝐼 

0.62 

Yield 𝑀𝑣 = 71.1 + 5.7𝑉𝑉
 − 11.07𝑅𝑉𝐼 0.54 

4 Sugarcane Early 

growth 

𝑀𝑣 = 61.63 + 3.6𝑉𝑉
 − 0.33𝑉𝐻−𝑉𝑉

  0.45 

5 Bare field ---- 𝑀𝑣 = 39.8 + 1.8𝑉𝑉
 − 0.17𝑉𝐻−𝑉𝑉

  0.8 
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The relationship between surface soil moisture and backscattered energy is very poor 

for sugarcane at growing, grand growing and yield formation stage. So, semi-empirical 

model is not developed. This is because vegetation density affects the penetration 

capability of dual-polarized C-band SAR data. 

6.3.2.3 Validation 

The developed model is validated and compared with existing model soil moisture 

estimates. From the study, SEM is observed performing well compared to the other two 

models in vegetative and maturity crop stages. In case yield formation stage WCM is 

performing well. None of the models performing well in yield stage of sugarcane. The 

validation results of surface soil models is given in Table 6.6. 

Table 6.6 Validation results of surface soil moisture models of C-band SAR 

 Crop stage Vegetative  Maturity  Yield 

Crop Model\statistics RMSE AEmax RMSE AEmax RMSE AEmax 

Maize Oh model 2004 2.6 2.71 3.42 5.91 4.6 7.17 

WCM 2.37 2.68 3.35 5.7 4.11 6.6 

SEM 2.24 2.63 3.06 5.18 4.24 6.84 

Paddy Oh model 2004 2.6 3.31 4.7 6.04 4.2 5.1 

WCM 2.23 3.02 4.37 5.56 3.92 4.15 

SEM 2.1 2.71 4.25 5.4 3.66 4.44 

Tomato Oh model 2004 2.24 2.96 3.2 4.31 3.39 4.96 

WCM 2.07 2.57 2.92 4.18 3.34 4.8 

SEM 1.8 2.42 2.89 4.12 3.12 4.73 

Sugarcane Oh model 2004 3.65 5.81  

NA WCM 3.22 5.31 

SEM 3.17 5.4 

Bare field Oh model 2004 2.14 3.42  

NA WCM 2.1 3.18 

SEM 1.93 3.2 

*RMSE=Root Mean Square error (% g/cm3/g/cm3); AEmax= Maximum Absolute Error (% g/cm3) 
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6.4 COMPARISON OF QUAD AND DUAL-POL SURFACE SOIL 

MOISTURE 

The soil moisture estimates of C-band dual-pol SAR are compared with L-band quad-

pol SAR at two crop stages. It is observed that soil moisture errors are similar for both 

C-band dual pol and L- band quad-pol SAR at the vegetative stage of paddy, tomato 

and maize crop. Hence, dual-pol SAR can be used to retrieve soil moisture in vegetative 

stage of these crops. Whereas in case of maturity and yield stage, L-band quad-pol SAR 

soil moisture estimates are better than C-band dual-pol SAR moisture estimates. Both 

C and L-band showed poor efficiency in retrieving surface soil moisture at vegetative, 

grand growth and yield stage of Sugarcane. 

The upcoming chapter presents the summary, major conclusions, limitations and future 

scope of the work. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 SUMMARY  

The primary objective of the study is to retrieve surface soil moisture over agricultural 

plots at different crop stages using active microwave remote sensing. To accomplish 

this, an extensive literature review was conducted, focusing on popular soil moisture 

retrieval models for both bare and vegetated fields. The work is demonstrated utilizing 

quad-pol ALOS PALSAR-2 and dual-pol Sentinel-1a to retrieve surface soil moisture 

from various agricultural plots at different crop stages. The research work was carried 

out in Malavalli, Mandya region of Karnataka, India. Firstly four different crops 

(Paddy, Sugarcane, Maize and Tomato) which are pre-dominantly grown in this region 

were selected along with a bare field. Systematic gridded soil sampling was carried out 

for entire crop cycle in synchronized with satellite pass over study area. These samples 

were transported into labs and conducted experiment (according IS 1605) to calculate 

soil moisture, bulk density and vegetation water content. The crop cycle of each crop 

was divided into seedling/vegetative, maturity and harvesting stage to retrieve surface 

soil moisture using L and C band SAR data at different crop stages. ALOS PALSAR-

2 and Sentinel-1a SAR data was pre-processed, speckles were removed using suitable 

filter and geocoded. 

SAR based surface soil moisture models like Oh-1992, Oh-2004, X-Bragg and Water 

Cloud Model (WCM) were used to retrieve surface soil moisture of each crop at 

different crop stages. A Semi Empirical Model (SEM) was also developed based on 

parameters affecting backscattered energy using Multi Linear Regression (MLR) 

analysis for each crop stage. Comparison between existing and developed SEM is 

carried using field data. In the meantime, study also concentrated on the C and L-band 

SAR capability in retrieving surface soil moisture beneath different crop cover and crop 

stage. 
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Various factors, including small agricultural land (less than two acres), inability to 

manage advanced technological equipment due to financial constraints, and a lack of 

technical knowledge among farmers, are driving a decline in awareness of sustainable 

utilization of irrigation water and precision agriculture in many underdeveloped and 

developing countries, including India. Under such a condition, this study is helpful in 

understanding the spatio-temporal soil moisture variation within the field derived from 

space-borne sensors to marginal farmers and policy makers for better supply of 

irrigation water. 

7.2 CONCLUSIONS  

Objective 1: To investigate the surface soil moisture variation across crop stages and 

crops in semi-arid tropical region. 

 Temporal surface soil moisture of sugarcane is almost uniform all over its crop 

cycle, no much change is observed (5%). Overall, temporal variation of 

surface soil moisture in each field is high during the initial cropping stage and 

comparatively less during the yield/harvesting stage.  

 It is observed higher surface soil moisture content in side walls of agricultural 

plots compared with central part of agricultural land spatially. Whereas in case 

of paddy fields soil moisture is almost uniform spatially apart from few random 

dry patches and water stagnation near field inlet and outlets  

Objective 2: To develop surface soil moisture model and comparison of its performance 

with existing models. 

 It is found that the correlation between the surface scattering component of the 

Yamaguchi technique (R2=0.820.5) is more than other surface scattering 

component (Freeman-Durden and Van Zyl) and individual polarized data of 

Maize, Paddy, Sugarcane, Tomato and Bare fields. 

 Developed semi empirical model based on polarization decomposition and 

backscattered energy is performing better than all other models. Quad-pol, X-

Bragg model is underestimating surface soil moisture of paddy, maize, tomato 

and sugarcane field plots.  
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 Dual-pol surface soil moisture models are performing well in initial crop stages 

like vegetative and maturity stage. Whereas, in yield formation stage of maize 

and paddy error is comparatively high. 

Objective 3: To study the potential of dual and quad-pol SAR data in surface soil 

moisture retrieval over heterogeneous agricultural plots. 

 In comparison between C-band dual-pol data and L-band quad-pol data, dual-

pol data can be used to estimate moisture at initial crop stages but as vegetation 

density increases quad-pol L band SAR is more suitable. 

 None of the soil moisture models, SAR band and polarizations (dual and quad) 

performed well in case of sugarcane field in the grand growing and yield stage 

(R2=0.1). Since vegetation attenuation is more and SAR penetration is limited. 

In case of bare fields, soil moisture estimates are within acceptable limits 

irrespective of polarization and SAR band. 

7.3 LIMITATIONS OF THE WORK  

The surface soil moisture range obtained is adequate information for future soil 

moisture estimates. However, the study has been limited by small sample size. For 

adequate information on the spatial variability in the small-size farm, a design to 

increase the number of the sample grids and crops must be carried out. The developed 

regression models are limited well within the range of field values collected, this can 

be further explained by optimization techniques as well as more field values. 

7.4 SCOPE FOR THE FUTURE WORK  

 In future, this developed models can be refined into single model 

irrespective of crop type and its stages by developing look up tables for 

each crop. Hence this model can be scalable to wide region. 

 Future research may also concentrate on effect of SAR incidence angle 

on developed surface soil moisture models.  
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 This study is narrowed down to one agricultural site of each crop this 

can be verified with some other test sites where surface soil moisture 

variation is different. 

 In this research, RMSE and AEmax are used for the evaluation of model 

performance; other statistical parameters can be considered. The 

uncertainty analysis involved due to the choice of calibration set, geo-

referencing errors, and laboratory reference values could also be studied 
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