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Abstract

Over the past few decades, the enormous expansion of medical data has led to a

way for data analysis in the smart healthcare system. Data analytics in healthcare

typically involves the use of statistical and machine learning algorithms to process

and analyze clinical data in order to identify correlations and insights that can

help enhance health outcomes - in terms of automated disease prediction with

minimized human errors, a reduced readmission rate, improved clinical care at a

lower cost, and optimized hospital operations. In this direction, over the years,

there has been a significant study focusing on Health Information Systems (HIS),

particularly Clinical Recommendation Systems (CRS). A CRS offers computer-

generated suggestions and advice to healthcare professionals when making clinical

decisions. These systems evaluate patient information and propose suitable treat-

ment alternatives, considering clinical guidelines, evidence-based medicine, and

other pertinent factors. Lately, a tremendous amount of clinical data has been

acquired from various sources, including Electronic Health Records (EHRs), med-

ical imaging, laboratory tests, wearable devices, health apps, telemedicine, and

genomic data, which led to the concept of multimodality. Recent progress in deep

learning and machine learning algorithms has facilitated the use of artificial in-

telligence techniques on multimodal medical data, helping to improve diagnostic

predictions. Despite the considerable advantages offered by CRSs, their maximum

potential can only be realized by effectively tackling several existing challenges.

There is a considerable prospect of enhancing the predictive model’s ability, par-

ticularly with respect to multimodal medical data.

The primary objective of the research work presented in this thesis is to develop

an effective clinical recommendation system that can accurately predict abnormal-

ities from diverse types of clinical data for personalized, data-driven recommenda-

tions to healthcare providers. This study explores multiple approaches for disease

prediction using both unimodal and multimodal data sources, including diagnostic

clinical notes and radiology images. The research also presents the cross-modal

task of generating diagnostic reports from radiology images and analyzes the effec-
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tiveness of different imaging sequences in predicting diseases. Radiology reports

contain rich information about patients’ health conditions; however, their unstruc-

tured format makes it challenging to retrieve this valuable information. Towards

the unimodal task, we proposed an effective Unimodal Medical Text Embedding

Subnetwork (UM-TES) that incorporates a knowledge base trained on a large cor-

pus to extract the textual features and predict the pulmonary abnormalities from

the unstructured radiology free-text reports. The benchmarking analysis revealed

that UM-TES outperformed standard NLP and ML techniques in predicting pul-

monary diseases from unstructured diagnostic reports. Diagnostic imaging plays

a critical role in modern medicine, serving as an essential tool to aid in the prog-

nosis and therapy of various health ailments, supporting essential applications of

recommendation systems. The texture and shape of the tissues in the diagnostic

images are essential aspects of diagnosis. The pulmonary diseases have irregu-

lar and different sizes; hence, several studies sought to add new components to

existing deep learning techniques for acquiring multi-scale imaging features from

diagnostic chest X-rays. Towards this unimodal task of leveraging diagnostic im-

ages for disease prediction, the explainable and lightweight Unimodal Medical

Visual Encoding Subnetwork (UM-VES) is proposed to predict pulmonary abnor-

malities from the diagnostic chest X-ray images. The proposed model is tested

with a publicly available Open-I Dataset and data collected from a private hospi-

tal. After the comprehensive assessment, it was observed that the performance of

the designed approach showcased a 7% to 18% increase in accuracy compared to

the existing method.

Many contemporary DL strategies for radiology focus on a single modality of

data utilizing imaging features without considering the clinical context that pro-

vides more valuable complementary information for clinically consistent prognostic

decisions. Towards this objective, the two novel multimodal medical fusion tech-

niques: Compact Bilinear Pooling and Deep Hadamard Product is proposed to

integrate textual and visual medical features from clinical text reports and Chest

X-rays to predict abnormalities from multimodal data. A comprehensive analy-

sis was conducted and compared the performance of unimodal and multimodal

models. The proposed models were applied to standard augmented data and the

synthetic data generated to check the model’s ability to predict from the new and

unseen data. The proposed multimodal models have given superior results com-

pared to the unimodal models. There has been a significant contribution in the

area of cross-modal medical description generation. In order to create accurate

and reliable radiology reports, radiologists need to be experienced and dedicate
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sufficient time to reviewing medical images. However, many radiology reports end

with ambiguous conclusions, leading patients to undergo additional tests, such as

pathology or advanced imaging. To address this, we propose an encoder-decoder-

based deep learning framework to produce diagnostic radiology reports based on

chest X-ray images. Additionally, we have developed a dynamic web portal that

accepts chest X-rays as input and generates a radiology report as output. We

conducted a thorough analysis and compared the performance of our model with

other state-of-the-art deep learning approaches. Our results show that our pro-

posed model outperforms existing models in terms of BLEU score on the Indiana

University Dataset.

In the medical domain, the radiologist examines multiple imaging modalities

to determine the disease outcome. Acute infarct is one such illness where radi-

ologists utilize multiple MRI sequences like DWI, T2-Flair, ADC, and SWI to

examine the prognosis. Currently, expert clinicians rely on manual interpretation

of imaging methods for diagnosing diseases. However, with the rising number

of chronic cases, this approach has become a burden on healthcare profession-

als, increasing their cognitive and diagnostic workload. Towards this multi-image

fusion task, We introduce the DL framework, including contour-based brain seg-

mentation techniques and two stacked multi-channel convolution neural networks,

SMC-CNN-M and SMC-CNN-I, to predict the disease from both multiple and in-

dividual MRI sequences. We evaluate our proposed models on a medical dataset

collected from a private hospital and compare their classification performance to

that of state-of-the-art deep learning networks. Additionally, we conduct a quan-

titative, qualitative, and ablation study on different MRI sequences to assess their

effectiveness and generate synthetic data using DCGAN to compare model per-

formance.

KEYWORDS: Unstructured Data Analysis, Multimodal Representation, Cross-

modal Retrieval, Medical Image Fusion, Machine Learning, Deep Learning
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Introduction and Background





Chapter 1

Introduction

The primary objective of the healthcare system is to offer “healthcare services that

are available, affordable, and of superior quality to individuals and communities,

with a focus on promoting health, well-being, preventing and curing illnesses”.

High-quality healthcare is crucial as it significantly enables individuals to prevent,

diagnose, and treat illnesses effectively, resulting in better health outcomes and

improved quality of life with reduced hospital expenses. The World Health Orga-

nization (WHO) believes that a healthcare system that operates effectively should

be available and accessible to every individual, regardless of their socio-economic

background1. WHO advocates that the healthcare system should emphasise pre-

ventive measures, timely detection, and prompt treatment of illnesses to reduce the

disease burden and prevent avoidable deaths2. Many healthcare systems around

the world are currently facing multiple challenges that negatively affect the qual-

ity, accessibility, and affordability of healthcare services. Some of the major issues

are listed below:

• Limited Resources: Many healthcare systems struggle with inadequate fund-

ing, shortages of medical personnel, and insufficient medical supplies, which

may impact the quality of the healthcare provided. The impact of the

COVID-19 pandemic on healthcare delivery and health outcomes is explored

by Anesi and Kerlin (2021), with a particular focus on how the shortage of

medical personnel, supplies, and funding has led to significant challenges.

• Unequal Access: The availability of necessary healthcare services is not

evenly distributed, and regions that are far from urban areas and susceptible

1WHO the global health Observatory. Online: https://www.who.int/data/gho/data/

themes/topics/health-systems-strengthening
2WHO Strengthening health information systems. Online: https://apps.who.int/iris/

rest/bitstreams/1092654/retrieve

1

https://www.who.int/data/gho/data/themes/topics/health-systems-strengthening
https://www.who.int/data/gho/data/themes/topics/health-systems-strengthening
https://apps.who.int/iris/rest/bitstreams/1092654/retrieve
https://apps.who.int/iris/rest/bitstreams/1092654/retrieve
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groups often have restricted access to them. Access to healthcare in some re-

gions of the country is a privilege that only the wealthy can afford, while the

poor resort to visiting inadequately resourced private healthcare providers,

often paying beyond their means rather than utilizing the available public

healthcare facilities (Barik and Thorat, 2015).

• Increased Healthcare cost: Rising healthcare costs are creating challenges

for many individuals to afford essential medical treatment and procedures.

Although increasing healthcare costs are a significant issue in many high-

income countries, attempts by political measures to reduce costs have been

unsuccessful and have negatively impacted patients and citizens’ best inter-

ests (Sturmberg and Bircher, 2019).

• Aging Population and surge in chronic diseases: As the population ages, the

utilization of age-related procedures and treatments is increasing, leading to

higher healthcare costs. The healthcare systems of many nations are under

pressure to provide care for chronic and age-related illnesses due to the aging

population (Cristea et al., 2020).

A robust healthcare system can effectively address the aforementioned chal-

lenges by providing quality patient care and making a valuable contribution to the

development of healthcare in a country (Croon et al., 2021). A Clinical Recom-

mendation System is a critical component of modern healthcare delivery systems

that is necessary for providing high-quality healthcare. CRS is “a health informa-

tion system that assists clinicians in making well-informed decisions about patient

care by utilizing patient data, including medical history, current medications, and

symptoms, to provide enhanced evidence-based recommendations to clinicians in

real-time” (Berner, 2010). In the 1970s, Computerized CRS were prevalent but

had certain limitations, such as inadequate system integration, a time-consuming

process, and were mostly restricted to academic research (Shortliffe and Buchanan,

1975). The application of computer technology in the field of medicine has given

rise to both ethical and legal issues, particularly with regard to the extent of

physician autonomy and accountability for the imperfect nature of the system’s

recommendations (Sittig et al., 2016). In recent years, CRS has adopted web-

based applications integrated with electronic medical records (EMR) as a means

of streamlining the data collection process and improving patient care. The use

of a CRS allows medical professionals to enhance the precision of their diagnoses,

reduce mistakes, and optimize treatment strategies, resulting in improved patient
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outcomes (Sreejith et al., 2022). The five key usages of CRS are as follows (Sutton

et al., 2020):

1. Patient Safety: CRS is often utilized in approaches aimed at decreasing

medication errors. Mistakes related to drug-drug interactions (DDI) are

frequently reported and avoidable, with as many as 65% of hospitalized pa-

tients being subjected to one or more combinations that have the potential

to cause harm (Vonbach et al., 2008). CRS can provide guidance on medica-

tion prescriptions, specifically regarding DDI and potential overdosing errors.

(Zhou et al., 2021). The notifications or alerts produced by these systems

are among the most frequently employed categories of decision support tools

(Koutkias and and, 2018). The research has identified considerable incon-

sistencies in how notifications for DDIs are presented (such as passive or

active/disruptive), which interactions are given priority (Phansalkar et al.,

2012), and the methods employed to detect DDIs (McEvoy et al., 2016).

These systems frequently generate alerts that are not relevant, and there

is no established guideline for the most effective way to present alerts to

healthcare providers. Towards health information systems, the United States

government has created a catalog of high-priority DDIs for recommendation

systems, which are adopted by other countries like Belgium (Cornu et al.,

2018) and Korea (Cho et al., 2016). Several clinical recommendation systems

like Computerized Physician Order Entry (CPOE) (Helmons et al., 2015),

Remote Patient Monitoring Systems (RPMS) (Boikanyo et al., 2023), and

Telemedicine Systems (Mackintosh et al., 2016) can be connected to patient

monitoring devices such as blood glucose meters, blood pressure monitors,

pulse oximeters, and many more, allowing it to alert clinicians about any

emergencies or changes in a patient’s condition (Chien et al., 2022). There

are several cases where a CRS implemented in the ICU for measuring blood

glucose levels has resulted in a reduction in the frequency of hypoglycemic

events (Eslami et al., 2012). In general, CRS that aim to improve patient

safety by implementing CPOE and other related systems have been quite

effective in minimizing prescribing and dosage mistakes (Moghadam et al.,

2021).

2. Healthcare management: Research has indicated that the use of CRS can

lead to an improvement in adherence to medical procedures and guidelines

(Kwok et al., 2009). This holds importance because conventional clinical pro-

tocols and treatment approaches have demonstrated poor implementation in
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real-world scenarios due to limited compliance from healthcare profession-

als (Cabana et al., 1999). Nonetheless, the regulations that are implicitly

embedded in guidelines can be precisely encoded into recommendation sys-

tems. CRS can manifest in various ways, such as predefined order sets for a

specific medical scenario, notifications for a particular protocol relevant to

the patients, prompts for testing, and so on. In addition, CRS can aid in

the management of patients who are following therapeutic guidelines (Lip-

ton et al., 2011). It can also keep track of orders and referrals, follow up on

them, and ensure that preventative care measures are taken (Salem et al.,

2018). CRS can notify healthcare providers to contact patients who have

not adhered to their treatment plans or require further monitoring and facil-

itate the identification of patients who meet particular criteria for research

studies (Jimmy and Jose, 2011). The Cleveland clinic (USA) has developed

and applied CRS that generates notification to clinicians during patient care

if the medical history of any case meets the clinical trial standards (Embi

et al., 2005).

3. Expense Management: The use of CRS can result in cost savings for health-

care systems by enabling clinical interventions (Calloway et al., 2013) that

can decrease the length of hospital stays for patients (Pichardo-Lowden et al.,

2022), propose cheaper medication options via CPOE-integrated systems

(Schaut et al., 2022), and minimize unnecessary duplication of medical tests

(Hak et al., 2022). A regulation was implemented in an intensive care unit

(ICU) for treating pediatric cardiac conditions that restricted the schedul-

ing of the blood count and other tests to once every 24 hours using a CPOE

system (Algaze et al., 2016). Implementing this policy led to a decrease

in the use of laboratory resources, resulting in an estimated annual cost

reduction of $717,538, without any increase in length of stay or mortality

rates. The use of CRS can provide users with information regarding lower-

cost medication options and medical conditions that are eligible for coverage

by insurance providers. It is common in German hospitals for inpatients to

receive medications that are listed on the hospital’s approved list of prescrip-

tion drugs, known as the drug formulary. Nevertheless, a study discovered

that 20% of the medication substitutions made from the hospital’s drug

formulary were inaccurate. In response, Heidelberg Hospital developed a

drug-switch algorithm and incorporated it into their CPOE system to im-

prove the accuracy of medication management (Pruszydlo et al., 2012). The
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utilization of the CRS facilitated the automated switching of 91.6% of 202

medication prescriptions without encountering any errors, which resulted in

enhanced safety, diminished workload, and decreased expenses for healthcare

providers.

4. Organizational Management: In addition to their clinical applications, rec-

ommendation systems can also be utilized in various administrative func-

tions like supply chain management (Singh and Parida, 2022), staffing and

scheduling (Güler and Geçici, 2020), facility management (Abdellatif et al.,

2021), and financial management (Jia et al., 2022) within a hospital. CRS

assists in various clinical tasks such as coding prognosis, ordering tests and

procedures, and prioritizing patients. Physicians can be assisted in selecting

the most appropriate diagnostic codes by the customized computational pro-

cedure that suggests a more accurate and refined list of codes. The creation

of a CRS was intended to tackle the issue of inaccurate International Sta-

tistical Classification of Diseases (ICD) coding in emergency admissions of

patients patient (Higgins et al., 2020). The quality of clinical documentation

can be enhanced directly through the use of CRS. A CRS for obstetrics in-

cluded an improved system for prompting, which led to a notable increase in

the accuracy of documenting reasons for inducing labor and estimating the

weight of the fetus (Haberman et al., 2009). Having precise documentation is

crucial, as it can directly assist in the implementation of clinical procedures.

An instance of the implementation of a CRS was seen in the context of ensur-

ing proper vaccination of patients who have undergone splenectomy, which is

essential in mitigating the heightened risk of infections such as pneumococcal

and meningococcal associated with spleen removal. The authors discovered

that 71% of cases with “splenectomy” mentioned in their EHR did not have

it recorded in their problem list, which is the crucial criterion for activating

the CRS alert (McEvoy et al., 2018). To sum up, recommendation systems

and clinical decision support systems such as CRS can be utilized in a range

of clinical and administrative tasks within a hospital, resulting in improved

precision and effectiveness in tasks such as clinical documentation, coding,

and the implementation of clinical procedures.

5. Prognosis aid: CRS helps healthcare professionals make precise diagnoses

by offering tailored recommendations that rely on individual patient data.

The recommendation systems that utilize specialized knowledge can assist

healthcare professionals in diagnosing intricate cases. Clinicians can receive
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guidance and recommendations based on a wealth of expertise and knowl-

edge, allowing them to diagnose better and treat patients (Dramburg et al.,

2020). CRS can be beneficial in regions lacking experienced healthcare pro-

fessionals and improve the quality of care by optimizing the available health-

care resources. Various recommendation systems have demonstrated diag-

nostic capabilities that are comparable to those of human experts (Stivaros

et al., 2010). It can find and extract relevant and precise data that would

be used for the prognosis of specific diseases (Saxena et al., 2021). Primary

care requires specialized CRS and IT solutions due to the frequent occur-

rence of prognosis errors (Singh et al., 2016). Kunhimangalam et al. (2014)

developed an effective CRS for diagnosing peripheral neuropathy with fuzzy

logic and achieved a 93% accuracy rate using 24 input fields. Although this

system is valuable in areas with limited access to clinical experts, there is

still a need for diagnostic tools that can support specialist diagnostics.

These CRS systems can be broadly categorized into two types based on the

algorithms used to generate recommendations.

• Rule-based CRS: These systems rely on a set of established rules that are de-

rived from clinical guidelines or expert opinions. Clinical experts define and

develop the set of protocols, which are programmed into the system. The

system examines patient data and utilizes the applicable rules to produce

a diagnostic result. While rule-based CRS can offer precise and consistent

outcomes, the extent of their diagnostic abilities is restricted by the number

of rules incorporated into the system. Figure 1.1a illustrates that rule-based

systems consist of predetermined rules programmed as knowledge bases. An

interface engine applies these algorithms to patient data to generate a pre-

dictive output. Rule-based imaging CRS are commonly employed for image

ordering in radiology. Rule-based CRS can be utilized with imaging data

for prognostic aid, assisting radiologists in making diagnoses or providing

recommendations based on imaging data. These CRS can issue reminders

of the best practice guidelines or alerts to potential risks or limitations.

Research carried out at Virginia Mason Medical Center showed that imple-

menting a CRS for image ordering resulted in a substantial decrease in the

utilization rate of sinus Computed Tomography (CT) for sinusitis, lumbar

Magnetic Resonance Imaging (MRI) for lumbar discomfort, and head MRI

for headache (Blackmore et al., 2011). An example of a commercially avail-

able system is RadWise, which helps clinicians choose the most appropriate
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imaging test by examining clinical signs of the patient and comparing them

to a vast database of possible diagnoses3.

• Artificial Intelligence (AI)-based CRS: These systems employ advanced al-

gorithms and machine learning techniques to scrutinize patient data and

produce diagnostic results. AI-based CRS have the ability to examine enor-

mous amounts of data and detect patterns that may not be readily dis-

cernible to humans. In addition, they can learn from new data and enhance

their diagnostic accuracy as time progresses. Nonetheless, AI-based CRS

can be intricate and necessitate substantial computational power. AI-based

systems, depicted in Figure 1.1b, comprise statistical or machine learning al-

gorithms that are trained on a substantial amount of expert-annotated data.

An AI-powered interface engine utilizes these advanced algorithms to scruti-

nize patient data and produce a prognostic output. The field of radiology is

experiencing a surge of interest in AI-based CRS that aims to improve imag-

ing and precision radiology, commonly referred to as radiomics (McCague

et al., 2023). Manual interpretation can become burdensome as medical

images continue to represent a more significant portion of healthcare data.

Therefore, healthcare providers require technologies that can assist them

in processing, displaying, and analyzing these images (Kelly et al., 2022).

AI-based CRS have demonstrated their ability to provide insights into data

that surpass the capabilities of humans (Greenspan et al., 2016). These

technologies employ sophisticated Deep Learning (DL) algorithms to iden-

tify abnormalities in the images (Wang et al., 2023). Various companies like

IBM Watson Health, Microsoft, NVIDIA, and Google are leading the way

in developing innovative products for detecting tumours (Williams et al.,

2021), diagnosing diabetic retinopathy (Gulshan et al., 2016), Alzheimer’s

diagnosis (Suzuki and Chen, 2018) and many more.

During the training phase, an AI-based CRS makes use of sophisticated sta-

tistical methods, such as Machine Learning or Deep Learning, to identify pat-

terns within the clinical data housed in the Electronic Health Record (EHR). It

then utilizes this knowledge to generate diagnostic output through the interface in

the testing phase without depending on pre-established rules, as is the case with

rule-based CRS. Healthcare data is expanding at a fast pace, and this includes

information such as the clinical traits of patients, clinical notes that are associated

3DSS Inc. Radiology Decision Support (RadWise). Online: https://www.dssinc.com/

products/integrated-clinical-products/radwise-radiology-decision-support/.

https://www.dssinc.com/products/integrated-clinical-products/radwise-radiology-decision-support/.
https://www.dssinc.com/products/integrated-clinical-products/radwise-radiology-decision-support/.


8 Chapter 1. Introduction

(a) Rule-based CRS

(b) AI-based CRS

Figure 1.1: Categorization of Clinical Recommendation Systems

with diagnostic images, administrative and medical claim data, as well as various

regulatory requirements. The adoption of EHR systems in the United States was

encouraged by the enactment of the Health Information Technology for Economic

and Clinical Health (HITECH) Act in 2009. This legislation provided incentives

totaling $30 billion, as reported by (Rouse, 2018). According to the source (ONC,

2022), there has been a significant increase in the adoption of EHRs by office-based

clinicians. Specifically, the adoption rate has risen from 21% in 2004 to 87% in

2022. Furthermore, the proportion of clinicians who have adopted an essential

EHR has tripled from 11% in 2006 to 54% in 2022.

EHR comprises a plethora of structured data such as (1) numerical quantities:

patient demographics, clinical laboratory results such as height, weight, and blood
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type; 2) categorical values: current Procedural Terminology (CPT) procedures or

ICD codes; (3) date/time objects: temporal events of birth or admission; as well

as unstructured data such as (4) natural language free-text, e.g., medical reports

containing patient profiles, current health status, patient disease history, and dis-

charge summaries; (5) medical images such as X-ray, CT, MRI, etc. (Gehrmann

et al., 2018). Structured EHR data does not require complex processing prior to

performing statistical or machine learning tasks. However, it should be noted that

most of the data present in EHRs today is unstructured and may require more

complex processing before it can be used for these tasks (Joseph et al., 2021).

Researchers have endeavored to develop data-oriented models due to the vast

amount of valuable information contained in EHR (Alqahtani et al., 2022). The

extensive collection of clinical data in diverse formats presents multiple challenges,

including missing data and increased uncertainty. Utilizing EHRs containing un-

structured data creates an opportunity to develop advanced techniques, such as

predictive analysis frameworks or CRS, which can provide clinicians with valuable

and improved diagnostic information. Predictive analysis is “an advanced tech-

nique that uses powerful algorithms to identify patterns in historical data, which

are then analyzed to make accurate predictions about future events or outcomes”

(Sundararaman et al. (2018); Ramesh and Santhi (2020)). Predictive analysis has

played a crucial role in improving several healthcare trends by aiding clinicians

and patients to enhance their medical activities, such as diagnosis (Sinaga and

Putra, 2022). EHRs are utilized to extract disease diagnoses (Comito et al., 2022)

and medication information (Chen et al., 2020) with increased precision and re-

duced costs. This thesis extensively studies the design and development of an

effective AI-based clinical recommendation system that focuses on prognosis aid

tasks using multimodal unstructured medical data.

1.1 Unstructured Medical Text Analysis

Unstructured medical text analysis involves the examination of unstructured medi-

cal text data, which can include various types of free-text medical information such

as clinical notes, radiology reports, pathology reports, and discharge summaries

(Spasic and Nenadic, 2020). The sample unstructured medical text data is shown

in Figure 1.2. The figure shows that the unstructured clinical notes are unlike any

regular text. They contain extended sentences with medical terms, punctuation,

abbreviations, acronyms, misspellings, and incomplete sentences. Therefore, it is

crucial to preprocess the notes and use sophisticated word embedding techniques
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Figure 1.2: Sample radiology report (Demner-Fushman et al., 2016)

to represent medical vocabulary accurately before applying statistical methods.

Unstructured medical text analysis entails the extraction of significant informa-

tion from unstructured text data and transforming it into organized data that

can be utilized for decision-making and analysis. It commonly employs natural
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language processing (NLP) methods, which can include techniques like named en-

tity recognition, relationship extraction, and sentiment analysis (Kreimeyer et al.,

2017). Through repeated demonstrations, it has been shown that it is possible

to extract hidden evidence from clinical narratives, which can then be utilized

for extensive analysis at a later stage (Spasić et al., 2020). The objective is to

automatically recognize and extract crucial details such as patient demographics,

medical diagnoses, treatments, and results (Mahbub et al., 2022). This informa-

tion can then be utilized to enhance clinical decision-making, quality of care, and

research activities. The use cases of Unstructured text analysis consist of detecting

adverse events (Henriksson et al., 2015), pharmacovigilance (Lependu et al., 2013),

recruiting participants for clinical trials (Meystre et al., 2019), and monitoring the

occurrence and spread of diseases (Chen et al., 2018).

1.2 Unstructured Medical Image Analysis

The analysis of medical images is of great importance in the identification and

treatment of different medical ailments (Parmar et al., 2018). The analysis of

unstructured medical images entails the examination of images that lack a clearly

defined structure, such as those obtained through X-rays, MRIs, or CT scans

(Willemink et al., 2020). Usually, unstructured medical image analysis involves

utilizing a blend of techniques like image processing, computer vision, and ma-

chine learning to obtain relevant information from the images (Sarker, 2021). The

process may involve tasks such as detecting significant areas, separating the im-

age into distinct segments, and obtaining characteristics from the image that can

be employed for additional investigation. Unstructured medical image analysis

presents several significant obstacles, including managing image noise and artifacts

(Sagheer and George, 2020), addressing the diversity of image acquisition and pa-

tient positioning (Dean and Scoggins, 2012), and managing the vast amounts of

data generated by current medical imaging technology (Diaz et al., 2021). Despite

the difficulties, unstructured medical image analysis has the capacity to transform

medical diagnosis and treatment by presenting precise and individualized per-

spectives on the health of the patient. Unstructured medical image analysis is

an indispensable instrument for current medicine as it enables the identification

of tumors, pulmonary diseases, and other anomalies as well as the monitoring of

disease advancement over a period (Pandya et al. (2019); Bharati et al. (2020);

Saeedi et al. (2023)). At present, disease diagnosis involves the manual examina-

tion and analysis of imaging data by skilled physicians and licensed professionals.



12 Chapter 1. Introduction

The diagnostic outcome obtained from manual image analysis by radiologists may

not be consistent if the same images are re-examined after a certain period of

time. This is a significant limitation of manual image analysis. Several factors

could contribute to this inconsistency in the diagnostic outcome, including the

following:

• Inter-observer variability: Radiologists may have varying levels of experi-

ence, knowledge, and expertise, which can result in differences in their in-

terpretation of the same image (Obuchowicz et al., 2020).

• Intra-observer variability: Inconsistencies in diagnostic outcomes can arise

due to the fact that a radiologist may interpret an image differently at dif-

ferent points in time, even if it is the same radiologist analyzing the image

(Hopper et al., 1996).

• Subjectivity: The subjective nature of manual image analysis means that it

can be impacted by a radiologist’s personal biases, level of experience, and

expertise (Brady, 2016).

• Fatigue and workload: Radiologists may make errors or overlook important

details in their analysis due to fatigue or a heavy workload, which can result

in inconsistencies in the diagnostic outcomes (Hanna et al., 2018).

• Time elapsed: Differences in diagnostic outcomes may occur when the same

images are re-examined over time as the radiologist’s memory of the image

may fade, or other factors may influence their interpretation of the image

(Brady et al., 2012).

• Environmental factors: A radiologist’s interpretation of an image can be

influenced by external factors, such as lighting or distractions in the reading

room (Woolen et al., 2023).

• Imaging artifacts: Inconsistencies in diagnostic outcomes can occur due to

the impact of image quality or artifacts, which can hinder a radiologist’s

ability to accurately interpret the image (Bekiesińska-Figatowska, 2015).

Henceforth, the process of manual interpretation is often a difficult and time-

consuming task, as diagnostic images for different diseases contain various patterns

that can be challenging to identify. Fig. 1.3 displays some examples of X-ray

images used for predicting pulmonary diseases.
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Figure 1.3: Sample chest X-ray with pulmonary abnormality and no disease classes
(Demner-Fushman et al., 2016)

1.3 Multimodal Medical Data Analysis

Data related to the same topics or objects can be obtained through multiple meth-

ods, with varying conditions or experiments, across different fields of study. The

term “modality” pertains to these specific approaches of acquiring data (Lahat

et al. (2015); Acosta et al. (2022)). Analyzing multiple modes of data together

can lead to a more complete understanding of a specific task or topic and may

offer novel insights that cannot be obtained by analyzing just one mode of data.

While AI has demonstrated success in various areas such as speech recognition,

natural image detection, and language translation, its application in healthcare

has been limited by the intricate nature of the unique features or signals present

within multimodal medical data (Acosta et al., 2022). The use of wearable sen-

sors has become more prevalent, and advancements in technology have made it

easier to collect and combine data from different sources, resulting in an abun-

dance of multimodal data. These data can be valuable in identifying, predicting,

and preventing various diseases (Yang et al., 2021). The majority of current AI

research is centered on discovering, classifying, and predicting diseases based on

data obtained from a single modality. However, clinicians utilize a diverse range

of data from various sources to assess and plan treatment for patients (Nunes

et al., 2019). On the other hand, AI models that incorporate multimodal data

available to clinicians for prognostic evaluation have displayed favorable outcomes

in identifying and predicting diseases when compared to models that use only one

modality of data Soenksen et al. (2022). The term “Multimodal Medical Data
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Analysis” pertains to the analysis of medical data by utilizing different modes of

information like images, text, and signals. This method can offer a more com-

plete comprehension of a patient’s health status and enable precise diagnosis and

treatment.

The utilization of multimodal data in intelligent healthcare systems was ini-

tially explored in the 1990s, and only a handful of studies were acknowledged

during this early phase. Gradually, multimodal data became a crucial aspect of

research in the healthcare system. To provide a brief overview of the past, van der

Putten et al. (1995) created a transparent framework that enabled physicians to

access multimodal data from various sources, including echocardiography, Cathlab

databases, hospital information systems, and an Electrocardiogram (ECG) man-

agement system. The workstation was constructed using the C programming lan-

guage on a UNIX platform and utilized an Interbase database and a CD-ROM for

storage. During the initial phase, the idea of multimodal data analysis was a novel

concept, and numerous challenges were faced while integrating and enhancing the

use of multimodal data. The storage of multimodal data was cumbersome and

costly, leading to significant storage difficulties. In order to overcome this issue,

Wood et al. (1998) suggested a multimodal information system that could extract

and generate information from various repositories based on specific requirements.

Their objective was to simplify the coordination of data between different infor-

mation sources from a wide range of domains. For annotating selected data, an

object analyzer from Intext Inc. was employed, although the results of this anno-

tation were unsatisfactory. Over time, the utilization of multimodal data in the

healthcare system has steadily increased.

Subsequently, efforts were made to move beyond the mere storage of multi-

modal data and focus on its annotation. Medical experts typically rely on the

comparison and correlation of data to achieve more precise clinical diagnosis and

prediction. In their publication, An et al. (2008a) presented their research on visu-

alizing multimodal data in EHRs. This represented a further development in the

classification of electronic data into numeric texts and images. Additionally, the

classified data were annotated in the study. In 2010, the concept of data fusion for

retrieving multimodal data from electroencephalogram (EEG), MRI, and positron

emission tomography (PET) was introduced by Polikar et al. (2010). This study

introduced a new perspective on processing multimodal data in the healthcare

system by proposing a diverse ensemble classifier solution that achieved 10% to

20% higher accuracy than previous methods. In 2013, several researchers brought

a fresh perspective to the use of multimodal data in healthcare applications. For
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instance, Weibel et al. (2013) presented an application that was designed for the

analysis of multimodal EHR data. This work reduced the challenges of manual

coding, and additional features such as audio tracks and gaze were integrated for

various applications. By 2016, several researchers had started proposing their ideas

for open-source software for medical imaging to address the curse of dimensionality.

A shift towards the use of convolutional neural network (CNN) classifiers was also

observed in 2016 (Pinho and Costa, 2016). As storage and processing capacities

have developed and increased, healthcare data has also grown exponentially. From

2016 onwards, considerable research has been dedicated to analysing big data in

the healthcare field, including data obtained from various sources (Rehman et al.

(2021); Amal et al. (2022); Kline et al. (2022)). Over the past few decades, there

has been a significant transformation in the use and growth of multimodal data

in the healthcare industry. Initially, the focus was on storing such data, but with

advancements in technology and machine learning, there has been a shift towards

analysing this data.

Multimodal deep learning methods have revolutionized the way we utilize data

from various sources. By combining data from multiple sources, such as images,

videos, and LiDAR, these models can produce more accurate and valuable informa-

tion than traditional single-modality approaches. Multimodal deep learning tech-

niques have been successfully applied in various fields, including autonomous ve-

hicles (Person et al., 2019), social media video classification (Trzcinski, 2018), and

emotion classification (Pandeya and Lee, 2021). For example, a fusion-based mul-

timodal deep learning framework was proposed for safe navigation of autonomous

vehicles, achieving 3.7% better performance compared to a uni-modal CNN classi-

fication architecture (Person et al., 2019). Similarly, a multimodal model for social

media video classification outperformed Google’s InceptionV3 model by approxi-

mately 12% in accuracy. In healthcare, multimodal deep learning models are being

used to combine complementary contextual data to obtain more precise diagnos-

tic results, overcoming the limitations of unimodal image-only approaches. This

thesis showcases three different multimodal tasks that incorporate the analysis of

both images and text: multimodal image-text analysis, cross-modal image-text

analysis, and multimodal medical image analysis.

1.3.1 Multimodal Medical Image-text Data Analysis

Multimodal medical data analysis in radiology involves the use of both imaging

techniques such as X-rays, CT scans, MRI, and ultrasound, as well as the accom-
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panying textual information found in the report and patient history, to gain a

comprehensive understanding of the patient’s condition (Zhang et al., 2022). The

multimodal clinical data is represented in Fig. 1.4 through a sample chest X-ray

(CXR) along with its corresponding reports. Radiologists rely on various imaging

techniques such as X-rays, CT scans, MRIs, and ultrasound to create images of

internal organs and structures (Chanumolu et al., 2022). These images are fur-

ther analyzed and interpreted by the radiologists, and a report is generated that

summarizes the findings and recommendations. Text and report case studies are

a crucial aspect of multimodal medical data analysis in radiology. The report in-

cludes significant textual data like the patient’s medical history, clinical findings,

and the radiologist’s analysis of the images. Medical professionals can obtain a

more comprehensive understanding of the patient’s health and make well-informed

decisions about their treatment by examining both the images and the associated

text.

In summary, multimodal medical image-text analysis has the potential to revo-

lutionize healthcare by jointly analyzing both image and text data. This approach

can improve patient care by providing more precise and personalized treatments.

However, the challenge lies in effectively combining data from different sources to

maximize their unique features and generate more accurate diagnostic predictions.

Since visual and textual features are distinct, there is a need to fuse them into a

rich representation that can provide detailed information for better predictions.

Figure 1.4: Sample CXR with associated clinical note (Demner-Fushman et al.,
2016)
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1.3.2 Cross-Modal Medical Image-Text Analysis

The terms cross-modal and multimodal are often utilized interchangeably, but they

have slightly different meanings in the context of data analysis. The term “multi-

modal” pertains to the utilization of various modes or types of data for examining

a phenomenon, such as a disease prediction or classification (Nasir et al., 2023).

On the other hand, “cross-modal data analysis” involves mapping data from dif-

ferent modalities onto a shared representation space, where they can be integrated

and compared to gain a more comprehensive comprehension of the phenomenon.

Examples of cross-modal applications include medical image captioning Singh and

Parida (2022) and radiology report generation (Chen et al., 2021). Cross-modal

report generation from radiology images is the process of automatically generat-

ing a textual report from radiological images such as X-rays, CT scans, or MRIs

(Gundogdu et al., 2021). Usually, deep learning methods are employed to exam-

ine the images and produce a report that relies on the characteristics identified in

the images. The typical procedure comprises multiple stages, such as preparing

the image, extracting characteristics, and generating a report. Generating reports

across different modalities holds the potential to enhance the precision and efficacy

of radiology reporting by automating the task and easing the burden on radiolo-

gists (Alfarghaly et al., 2021a). Nevertheless, there are still obstacles to surmount,

such as the requirement for significant volumes of labelled data to train the deep

learning models and the necessity to guarantee the precision and dependability of

the produced reports (Ramirez-Alonso et al., 2022).

1.3.3 Multimodal Medical Image Analysis

The area of multimodal medical image analysis concentrates on creating ap-

proaches and methodologies for examining and understanding medical images that

are derived from diverse imaging modalities (Li et al., 2021). Various technolo-

gies for imaging, such as X-ray, CT scan, MRI, ultrasound, and other modalities,

can be used in medical settings (Huang et al., 2020). The primary objective of

multimodal medical image analysis is to integrate data from different imaging

modalities to enhance the dependability and precision of medical diagnoses (Tan

et al., 2020). Researchers have investigated numerous potential uses of multi-

modal images to forecast different illnesses. In their study, Kabir et al. (2007)

employed a Markov Random Field model to segment stroke lesions from a series

of MRI images and developed an atlas of blood supply territories to differentiate

between different stroke subtypes. Polikar et al. (2010) conducted a study com-
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bining different biomarkers such as EEG, structured MRI, and PET to investigate

how multiple modalities perform compared to using only one. They used ensemble

classifiers that combined the results using sum and simple majority voting (SMV)

fusion techniques. The results showed that the combined modalities increased

classification performance by 10-20% when using the combined modalities. Nie

et al. (2016) introduced a deep learning framework in 3D that extracts advanced

features of brain tumours from different types of MRI images. The fig. 1.5 shows

multiple images, including Diffusion Weighted Imaging (DWI), T2-weighted Fluid-

Attenuated Inversion Recovery (T2-Flair), Apparent Diffusion Coefficient (ADC),

and Susceptibility Weighted Imaging (SWI) MRI sequences of 10 patients data

collected from the private medical institute. Medical professionals who special-

ize in radiology review all of these images in order to make a prediction about

the presence of an acute infarct in a patient. Multimodal medical image analysis

involves several challenges due to the complex and heterogeneous nature of the

data. Some of the critical challenges include dealing with missing or inconsistent

data across modalities, addressing variability in imaging protocols and quality

across different datasets, managing a large amount of data, and devising efficient

techniques to combine and merge information from multiple imaging modalities

(Acosta et al., 2022).

Figure 1.5: Top to bottom: The first row denotes the DWI MRI sequences, Second
row indicates T2-Flair MRI Sequences, Third row represents ADC MRI Sequence
and fourth row depicts the SWI MRI sequence of 10 patients data collected from
private medical institute. Left to right: (a) to (h) represents the MRI sequences
with Acute Infarct and (i) to (j) indicates the MRI sequences with no acute infarct.

Figure 1.6 provides an overview of the different components and concepts re-
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Güler and Geçici (2020)
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Figure 1.6: Essentials of Clinical Recommendation Systems
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lated to clinical Recommendation Systems that are important for our research.

Our thesis aims to develop an AI-based CRS framework that will assist in the

prognosis of medical conditions. We will achieve this by analyzing unstructured

data, such as medical text, images, and multimodal data, to provide diagnostic

outcomes for patient-centered applications. Our research focuses on creating an

effective framework that utilizes state-of-the-art technologies to improve medical

decision-making and patient outcomes.

1.4 Prominent Obstacles and Concerns

The use of EHR-based CRS has the potential to revolutionize healthcare by im-

proving patient outcomes and optimizing the use of resources. However, incor-

porating multimodal healthcare data into CRS presents notable challenges. The

effectiveness of these systems hinges on how well they are able to synchronize with

the current practices of healthcare providers. Therefore, it is essential to meticu-

lously contemplate these difficulties during the development of CRSs, to guarantee

their efficient implementation in clinical environments and to ensure that they of-

fer maximum benefits to patients and healthcare professionals. The following are

several obstacles that must be overcome when building an effective AI-based CRS

that incorporates multimodal healthcare data.

1. Robust data integration: A significant obstacle is the amalgamation of in-

formation from different sources and formats, which may include electronic

medical records, clinical notes, and medical images. It is essential to devise

efficient strategies to combine this data into a consistent and interpretable

format for the CRS to be successful.

2. Data quality and standardization: Since healthcare data is generated from

various sources, it is prone to inconsistencies and errors. This may result in

complications while integrating the data and can create challenges for the AI

system to correctly understand the information. To tackle this obstacle, it is

essential to adopt data quality assurance measures, including data cleansing

and validation, to guarantee the precision and uniformity of the informa-

tion. Moreover, unifying the data formats, coding methods, and vocabulary

across various sources can simplify the process of integration and improve

the efficiency of the AI system.

3. Clinician acceptance and integration: A key factor in the successful imple-

mentation and utilization of an AI-powered CRS in clinical settings is the
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acceptance and integration of the system by clinicians. However, healthcare

providers may have concerns about the accuracy, reliability, and potential

impact of the system on their current workflows and decision-making pro-

cesses. Including the insights and evaluations of healthcare providers in the

development and testing stages can assist in resolving their apprehensions

and improving their willingness to adopt the system.

4. Dealing with unstructured medical data: Dealing with unstructured medical

data presents several challenges for healthcare organizations and AI systems.

Extracting important information from unstructured medical data is one of

the significant challenges faced in healthcare. This is mainly due to the fact

that the data is in the form of text and contains complex medical termi-

nologies that require advanced natural language processing techniques for

proper analysis and interpretation. Moreover, unstructured medical data

can be prone to errors, inconsistencies, and ambiguities that can negatively

affect the performance and accuracy of the AI system.

5. Dealing with diagnostic images: Dealing with diagnostic images can be chal-

lenging due to the large size of the data files, which can make storage and

processing of the images computationally intensive. An additional hurdle is

the potential for different medical professionals to interpret the same image

differently, which can result in inconsistencies and errors in the AI model’s

training and performance. The presence of inconsistencies in image quality

can present a significant challenge in identifying any abnormalities or lesions,

especially in early detection systems.

6. Generalizability: In the context of AI-based CRS, generalizability refers to

the ability of the system to provide accurate and effective recommendations

or decisions for patients with different medical conditions and in different

healthcare settings. To ensure that an AI-based CRS can be widely adopted

and used in clinical practice, it is essential to establish its generalizability.

However, there are a number of difficulties related to achieving generaliz-

ability, including the wide variety and intricacy of medical conditions, the

differences in treatment options and outcomes, and the variation in health-

care systems and policies across different regions and countries. To address

these challenges, it is important for AI-based CRS to be trained on extensive

and varied datasets that encompass a diverse set of medical conditions and

patient populations. Moreover, the system should be tested and validated
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in different clinical environments, and its effectiveness and safety should be

compared against established clinical practice guidelines.

7. Tolerance for predictive mistakes: Tolerance for predictive mistakes refers to

the acceptable margin of error in an AI-based CRS. While the ideal goal is to

achieve zero predictive mistakes, this may not always be feasible, particularly

in the early stages of implementation. In healthcare, where even a small

mistake could have serious consequences for patients, it is critical to minimize

the potential for predictive mistakes as much as possible. Therefore, the

tolerance for predictive mistakes in an AI-based system should be very low,

ideally approaching zero.

8. Class Imbalance: Class imbalance occurs when the distribution of classes

or categories in a dataset is unequal, which can have a negative impact

on the accuracy of the AI model’s predictions or recommendations. In the

field of healthcare, the occurrence of class imbalance is possible when there

are limited cases of certain medical conditions or diseases. For example, in

datasets of cancer patients, the count of patients with a less common type of

cancer may be significantly lower compared to those with a more prevalent

type of cancer. This can result in a situation of class imbalance, where the AI

model might exhibit a preference for the larger class and could have reduced

accuracy in predicting outcomes for the smaller class.

9. Lack of transparency : One challenge is the lack of transparency in the

decision-making process of AI models. A major challenge in the interpreta-

tion of CRS is the use of black-box algorithms, which lack transparency in

their decision-making process, making it challenging for healthcare providers

to comprehend and rely on the system’s recommendations. To overcome this

challenge, efforts must be made to develop transparent AI systems that pro-

vide clear and concise explanations for their decision-making processes. One

approach to addressing this issue is to utilize explainable AI techniques, such

as Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju

et al., 2016).

10. Scarce data situation: In the creation of AI-based CRS, a scarcity of data can

be a significant challenge. This scenario may occur for different reasons, such

as a scarcity of medical data that is exclusively available in private hospitals,

or data being constrained to a particular medical specialty or geographical

area. Consequently, it becomes challenging to obtain a comprehensive and
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varied dataset to train the AI model. The limited availability of data can

also have an impact on the precision and applicability of the AI model.

Insufficient data can restrict the AI model’s ability to learn and consequently

lead to inaccurate predictions and subpar performance.

1.5 Summary

This chapter highlights the challenges present in current healthcare settings and

the importance of implementing clinical recommendation systems to improve the

quality of patient care. The chapter provides an overview of the different appli-

cations and categories of CRS. Additionally, it addresses the key issues related to

medical data analysis, including analyzing unstructured text, images, and multi-

modal medical data. Finally, the chapter identifies the prominent obstacles and

concerns that must be considered when designing and developing an intelligent and

effective AI-based CRS system to overcome these challenges. To assist healthcare

providers in managing their workload and providing valuable information through-

out the clinical process, it is essential to utilize methods that can effectively capture

insights from various forms of medical data.

1.6 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, a comprehensive review of the CRS in the medical field is pro-

vided along with an overview of the existing research gaps in the literature.

• In Chapter 3, formalizes the research problem and outlines the research

objectives based on the literature presented in Chapter 2.

• Chapter 4 provides an in-depth analysis of proposed methods for analyzing

unstructured medical text data.

• In Chapter 5, presents a detailed overview of the proposed framework for

analyzing unstructured medical image data.

• Chapter 6 proposes various approaches for interpreting multimodal diagnos-

tic images and their associated reports.

• Chapter 7 presents a technique for cross-modal diagnostic report generation

through medical images.
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• In Chapter 8, a framework is presented for the analysis of medical images

that integrates multiple modalities.

• Chapter 9 offers a summary with conclusive remarks of the research work

conducted and suggests potential avenues for future research in the field.



Chapter 2

Literature Review

EHR refers to the digital storage and management of patients’ health information.

This involves the electronic storage of various clinical data that pertains to a pa-

tient’s medical history and treatment (Gold et al., 2021). With the widespread

adoption of EHRs in clinical settings, healthcare providers now have access to

a vast amount of clinical data on the patients they serve. This information

comprises medical records, prescribed drugs, laboratory test outcomes, medical

imaging scans, and other relevant clinical details (Evans, 2016). The existence

of a significant volume of clinical data has opened up opportunities for health-

care providers to develop CRSs that can assist them in making informed and

evidence-based decisions (Dash et al., 2019). Such systems can examine patient

data to recognize possible health hazards, propose diagnostic and treatment al-

ternatives, and keep track of patient progress (Tran et al., 2020). It is crucial

to introduce recommendation systems designed for medical purposes to address

the gaps and provide support to patients and healthcare professionals in making

more informed decisions concerning healthcare. To simplify the process of item

selection for users, recommendation systems have been integrated into other appli-

cations like E-commerce platforms, digital content providers, and social network

apps (Felfernig and Gula (2006); Tran et al. (2017)). In recent times, CRS has

been designed to enhance medical recommendations and is extensively employed

in the healthcare sector (Pincay et al. (2019); Sahoo et al. (2019)). The primary

objective of this thesis is to concentrate on developing and designing a CRS capa-

ble of predicting diseases based on unstructured medical text data, unstructured

medical image data, multimodal diagnostic image and text data, and multimodal

medical image data. Additionally, we aim to create a CRS that can perform the

cross-modal task of generating radiology reports from diagnostic images. Figure

2.1 showcases the classification of the CRS with respect to data utilization.

25
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Our thesis extensively examines the different modules presented in Figure 2.1

and identifies research areas that require further exploration for each of these

components.

2.1 CRSs for Unstructured Medical Text Data

Analysis

Analyzing unstructured medical text data in healthcare settings is more challeng-

ing than in other areas such as social media data or email classification (Mujtaba

et al., 2019). Unstructured medical texts can be difficult to understand because

they often contain intricate medical terminologies, medical acronyms, words with

spelling errors, and grammatical mistakes (Keselman and Smith, 2012). In order to

deal with the complex vocabulary and irrelevant data in the corpus, it is necessary

to perform a thorough pre-analysis of the corpus during the pre-processing stage

(Garćıa et al., 2016). This will help to address any lexical complications and noise

in the data. In addition to the NLP challenges that are commonly encountered,

mining radiology text reports presents a number of significant challenges. These

include the difficulty of detecting and identifying normal or abnormal findings,

as well as a lack of medical datasets that are available to the public (den Broeck

et al., 2005). Clinicians and researchers invest a significant amount of manual

effort in generating, annotating, and benchmarking data for a specific decision-

making task (Purushotham et al., 2018). After just two years of being established,

the Text REtrieval Conference (TREC) medical track was disbanded as a result

of insufficient publicly available medical data (Voorhees, 2013).

2.1.1 Disease Prediction from Unstructured Radiology Re-

ports

Radiology reports are a crucial component of the medical record that contain un-

structured medical text data (Pandey et al., 2020). They are typically generated

by radiologists, who are trained to interpret medical images, such as X-rays, CT

scans, and MRIs, and provide a written summary of their findings (Hartung et al.,

2020). Radiology reports are a rich source of information containing a patient’s

medical state, encompassing specifics regarding the location and intensity of any

anomalies, in addition to any other pertinent clinical details (Pool and Goergen,

2010). Nevertheless, the textual data present in radiology reports is frequently
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unorganized, implying that it lacks a uniform structure that can be conveniently

scrutinized by computer systems (Krupinski et al., 2011). In order to obtain valu-

able information from radiology reports, healthcare institutions and researchers

employ techniques such as NLP to analyze and organize the unstructured data.

There are two main categories of methods for classifying unstructured radiology

reports: rule-based methods (Dutta et al. (2013); Fiszman et al. (2000); Hassan-

pour et al. (2017); Sippo et al. (2013)) and conventional ML-based methods (Cas-

tro et al. (2017); Johnson et al. (2014); Trivedi et al. (2017)). Rule-based methods

for classifying data typically utilize traditional pattern matching techniques that

depend on pre-established medical terminologies determined by radiologists or

general medical terminologies derived from standard healthcare ontologies such

as the Systematized Nomenclature of Medicine Clinical Terms (SNOMED) CT1.

The principal drawback of rule-based methods is that the efficiency of the system

depends exclusively on the precision of the pre-established patterns or medical

keywords. On the other hand, ML-based techniques classify reports by utilizing

medical features acquired from labeled reports. In their work, Castro et al. (2017)

suggested a ML-based classifier for categorizing Breast Imaging reports. They em-

ployed Bag-of-Words (BoW) for extracting features and used Naive Bayes (NB)

and Support Vector Machine (SVM) classifiers for the classification task. Both

the term-document matrix technique (Trivedi et al., 2017) and n-gram approach

(Johnson et al., 2014) have been utilized for the similar purpose of classifying radi-

ology reports. DL techniques have demonstrated encouraging outcomes in general

text classification tasks, such as sentiment analysis (Nedjah et al., 2019) and ex-

tracting relationships from free-text (He et al., 2018). The favorable results of DL

techniques in numerous applications have motivated us to employ them in clinical

decision making by predicting diseases from radiology reports.

The pre-processed texts need to be represented in vector space or word embed-

dings to be processed by the ML or DL Techniques. Word Embeddings such as

Global Vector (GloVe) (Pennington et al. (2014)) and Word2Vec models (Mikolov

et al. (2013b)) are feature modelling strategies in NLP, where every word is mapped

to the dense and real-valued vector space that captures its meaning and syntactic

properties of the words in raw corpus. Shin et al. Shin et al. (2017) applied Term

Frequency-Inverse Document Frequency (tf-idf) for text encoding and CNN with

an attention mechanism to classify the CT radiology reports obtained from the pri-

vate medical institute. The proposed model was compared with logistic regression

(LR), Random forest (RF) and SVM applied to 1400 reports. The proposed atten-

1SNOMED International-leading healthcare terminology. Online: http://www.snomed.org/

http://www.snomed.org/
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tion model achieved better performance compared to the three statistical models.

Chen et al. Chen et al. (2018) proposed a deep learning framework to classify

radiology reports from CT imaging reports extracted from two private institu-

tions. The CNN model with the GloVe word embedding technique was utilized

for classifying the reports and showcased the superiority of the proposed model

compared to the traditional rule-based classifier PEfinder Chapman et al. (2011).

Dahl et al. Dahl et al. (2021) proposed a CNN, Bidirectional Long Short-Term

Memory (bi-LSTM), and SVM to classify and detect findings from the Norwegian

radiology CT reports. The BoW and tf-idf word embedding techniques are uti-

lized as an NLP strategy. The CNN and bi-LSTM models achieved slightly better

results compared with the traditional SVM model. Nakamura et al. Nakamura

et al. (2021) presented an automated detection and classification of actionable

reports obtained from a Japanese private institution. The binary classification

of CT reports is performed using four statistical methods: LR, gradient boosting

decision tree (GBDT), bi-LSTM, and the Bidirectional Encoder Representations

from Transformers (BERT) model. The BERT achieved a significantly higher

area under the precision-recall curve (AUPRC) than the other three statistical

models. Bayrak et al. Bayrak et al. (2022) proposed a MRI radiology report clas-

sification from the data acquired from a private medical institute in Turkey. The

index-based word encoding strategy for word embedding conversion of a free-text

and the long short-term memory (LSTM) network, bi-LSTM, and CNN for clas-

sifying the reports into epilepsy disease or not. The bi-LSTM showcased better

performance compared to the other two deep learning strategies.

The above literature showcases that the selection of the NLP task significantly

impacts the prediction or classification task on unstructured clinical notes. Most

existing research utilizes radiology reports extracted from private medical hos-

pitals. The radiology reports available today are scarce in number as they are

restricted to private hospitals or are specific to a particular domain. We have

found that the existing literature for disease prediction from unstructured free-

text radiology reports is inadequate to be compared with any other prediction

techniques (Castro et al. (2017), Dutta et al. (2013), Fiszman et al. (2000), Has-

sanpour et al. (2017), Sippo et al. (2013), Trivedi et al. (2017)). Due to insufficient

benchmark studies on publicly accessible datasets, there is a need to establish the

best prediction techniques for radiology reports.
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2.2 CRSs for Unstructured Medical Image Data

Analysis

Early diagnosis is essential for improving treatment results, decreasing the risks

linked to disease prognosis, expanding the range of available treatment options,

stopping the spread of contagious diseases, and reducing the overall impact of

illnesses (Diogo et al., 2022). Medical imaging modalities like X-rays, CT scans,

MRI scans, and ultrasound are crucial in detecting diseases at an early stage by

providing intricate images of the body’s internal structures. These images aid

physicians in identifying irregularities, such as tumors or other abnormal growths,

that might signify the occurrence of an illness (Hussain et al., 2022). The timely

detection of illnesses with medical imaging can substantially influence the out-

comes for patients. For example, spotting cancer at an early stage using medical

imaging can prompt timely intervention and treatment, potentially boosting the

chances of survival (Miles, 2011). Furthermore, medical imaging can be utilized to

track the advancement of diseases over time and assess the efficacy of treatments

(Lao et al., 2018). Medical imaging is employed in diagnosing various medical

conditions, such as heart disease (Sharma et al., 2021), lung disease (Kieu et al.,

2020), and neurological disorders (Zhang et al., 2020).

Medical imaging is frequently capable of providing insights that are not acces-

sible through alternative diagnostic methods, like blood tests or physical examina-

tions (Puttagunta and Ravi, 2021). Currently, most medical imaging techniques

require manual interpretation by trained clinicians and experts to make a med-

ical prognosis. This implies that a skilled expert is required to visually inspect

the images produced by the medical imaging technology in order to detect any

possible abnormalities or anomalies (Hosny et al., 2018). For example, medical

professionals specializing in radiology, who have expertise in interpreting med-

ical images, usually analyze X-rays, CT scans, MRI scans, and other imaging

techniques to arrive at diagnostic conclusions. They must scrutinize the images

meticulously and compare them with the typical anatomy and functioning of the

body to identify any anomalies or abnormalities (Krupinski, 2010). However, this

process of manual interpretation can be lengthy and susceptible to errors made

by humans. Furthermore, the interpretation may be influenced by individual per-

spectives, leading to varying interpretations by different experts even for the same

set of images (van Timmeren et al., 2020). The rapidly increasing number of

patients with chronic conditions is leading to a surge in demand for healthcare

services. This, in turn, is placing a significant cognitive and diagnostic burden on
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healthcare professionals who are tasked with manually inspecting and interpreting

medical images (McPhail, 2016).

To overcome these difficulties, researchers are investigating the utilization of

ML and DL algorithms to automate the interpretation of medical images (Yoon

et al., 2019). This has the potential to improve the speed and accuracy of diag-

noses, particularly for diseases that are difficult to detect or have inconspicuous

symptoms. In the fields of Radiology, Pathology, Cardiology, and Neurology, AI-

based methods have been successfully employed to interpret imaging data. Radi-

ology is a specialized field of medicine that employs diverse imaging techniques,

including X-rays, CT, MRI, and ultrasound, to diagnose and treat medical con-

ditions and injuries. The data obtained from imaging procedures during regular

medical checkups is essential in the diagnosis and treatment of illnesses. Moreover,

the process of collecting patient information utilized in radiology does not pose

substantial risks or adverse effects. Therefore, in this research, we have utilized

CXR imaging in the radiology field to predict pulmonary ailments.

2.2.1 Disease Prediction from Unstructured Chest X-ray

Images

Medical image processing involves a collection of methods aimed at extracting

significant clinical data from diverse imaging techniques, typically used for the

purposes of diagnosis or prognosis (Varoquaux and Cheplygina, 2022). Due to the

release of multiple, huge, publicly available diagnostic chest imaging datasets pre-

sented in Table 2.1, there has been a series of significant research explored in the

field of disease diagnosis using deep learning techniques. The existing research

focuses on various tasks involving detection or localization, classification, predic-

tion, segmentation, and visualization of multiple diseases from the CXRs. The

disease detection or localization task identifies the specific abnormalities within

the CXR.

2.2.1.1 Disease Detection and Localization Task

For a disease detection or localization task, Wang et al. (2019) presented the deep

CNN model for localizing chest diseases from the Chest X-ray14 (Wang et al.,

2017c) dataset and compared it with the traditional CNN: ResNet-50 (He et al.,

2015), AlexNet (Krizhevsky et al., 2012a), VGG16 (Simonyan and Zisserman,

2015a), and GoogleNet (Szegedy et al., 2014). Rajpurkar et al. (2017) proposed

a 121-layered Dense Convolutional Network named CheXNet to predict pneumo-
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Table 2.1: List of some currently available diagnostic X-ray datasets for chest
diseases.

Dataset Dataset Description Predictable Disease
NIH Chest

X-ray14 (Wang et al.,
2017c)

112,120 images of 14
diseases gathered from

30,805 patient

Atelectasis,
Cardiomegaly, Effusion,

Infiltration, Mass,
Pneumonia, Nodule,

Pneumothorax, Edema,
Emphysema, Fibrosis,

Pleural Thickening and
Hernia

Pediatric
CXR (Kermany et al.,

2018)

5856 CXR images in
which 3883 are

Pneumonia images

Pneumonia

CheXper (Irvin et al.,
2019)

224,316 CXR of 65,240
cases

14 Chest Diseases

MIMIC CXR (Johnson
et al., 2019b)

227,827 images with 14
chest disease images

14 Chest Diseases

Open-I (Demner-
Fushman et al., 2015)

7470 chest radiographs
with frontal and lateral

view

Pulmonary Edema,
Cardiac Hypertrophy,
Pleural effusion and

Opacity
MC dataset (Jaeger

et al., 2014)
138 Chest images, 58

from Tuberculosis
patient

Tuberculosis

Shenzhen (Jaeger et al.,
2014)

662 Chest images, 336
from Tuberculosis

patient

Tuberculosis

KIT dataset (Ryoo and
Kim, 2014)

10,848 chest images,
3828 from Tuberculosis

patient

Tuberculosis

nia pathology from the Chest X-ray14 dataset (Wang et al., 2017c). For the bi-

nary classification of pneumonia detection, the pretrained ImageNet weights (Deng

et al., 2009) were utilized. The authors demonstrated that CheXNet performs bet-

ter for pneumonia detection from CXRs. Candemir et al. (2018) presented Deep

CNN models such as AlexNet, VGG-16, VGG-19, and Inception V3 to detect

Cardiomegaly from the Open-I CXR dataset. Hwang et al. (2018) proposed the

ResNet-based model with 27 layers and 12 residual connections to detect active

pulmonary tuberculosis in the large private CXR cohort. Likewise, as a detec-

tion task, Zech et al. (2018) incorporated the DenseNet121 model pretrained with

ImageNet weights to detect pneumonia abnormality across NIH Chest X-ray14
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and Open-I CXR datasets. The authors have utilized pooled datasets from var-

ious cohorts and trained the model on these datasets. Different radiologists will

have different thresholds to detect diseases to report them. Hence, the pooling of

datasets has significantly degraded the model’s performance. Pasa et al. (2019)

utilized the Convolution Neural Network-based model for faster diagnosis of tu-

berculosis diseases from two CXR cohorts and used the Grad-CAM technique to

visualize the existence of tuberculosis in CXR. Zou et al. (2020) presented three

deep learning models: ResNet50, Xception, and InceptionV3, for detecting and

screening pulmonary hypertension from a private dataset collected from three in-

stitutes in China. Hashmi et al. (2020) used a weighted classifier that combines

the weighted predictions of the state-of-the-art deep learning model to detect

pneumonia in CXRs and also uses a heatmap to visualize the abnormalities. Lee

et al. (2021) presents the ResNet101 and U-Net models pretrained on ImageNet

to segment and detect the cardiomegaly diseases from the three medical cohorts.

2.2.1.2 Disease Classification and Prediction Task

Correspondingly, the image-level prediction task involves analyzing the CXR im-

age and predicting labels (classification) or continuous values (regression). We

have grouped classification and prediction tasks as they use a similar type of ar-

chitecture. Rajkomar et al. (2016) proposed the GoogleNet architecture to classify

the CXRs into frontal and lateral. Chaudhary et al. (2019) uses the CNN-based

deep learning model with three convolution layers, ReLU activation, pooling, and

fully connected layers to diagnose pulmonary diseases from the NIH Chest X-ray14

dataset. Tang et al. (2020) identified the pulmonary abnormality using Deep CNN

models and compared the performance with the radiologist’s labels. Cohen et al.

(2020), conducted an investigative study to find discrepancies while generalizing

the classification models with five different CXR datasets. The DenseNet model

has been used for this cross-domain study, and it has been found that the model

with good performance does not agree on predictions, and the model with poor per-

formance agrees on predictions. The authors have shown that the models trained

on multiple datasets do not achieve true generalization. Li et al. (2022) proposed

the U-Net and ResNet-based models to segment, classify, and predict pulmonary

fibrosis from CXRs. Aydin et al. (2019a) proposed a pretrained Densenet121

model to classify the CXRs into normal and abnormal classes from the Open-I

dataset and achieved 74% classification accuracy. Lopez et al. (2020) also applied

the DenseNet121 model to classify the pulmonary abnormalities in CXRs from
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the Open-I dataset. The authors achieved an AUROC of 0.61 and investigated

reducing annotation burden by using the clinical report with CXR. Wang et al.

(2018a) proposed a CNN-based network to extract the imaging features and clas-

sify the common thorax diseases from the three medical cohorts, including the

Open-I dataset. The authors achieved an average AUROC of 0.741 and studied

classifying the thorax diseases by jointly training the model with clinical reports.

Recent research on pulmonary diseases also focuses on detecting and classifying

COVID-19 from CXRs. COVID-19 is a life-threatening infectious pulmonary dis-

ease that has caused a pandemic situation. Griner et al. (2021) used an ensemble

of DenseNet-121 Networks to classify COVID-19 from the private CXR dataset.

Kusakunniran et al. (2021) utilized the ResNet101 model to detect COVID-19 and

produced a heatmap for segmenting lung areas from the private CXR dataset.

Helal Uddin et al. (2022) proposed the CNN-based deep learning model named

SymptomNet to detect COVID-19, and a heatmap was generated to visualize the

disease. Gie lczyk et al. (2022) presented the CNN-based deep learning method to

classify COVID-19 and pneumonia from 6939 CXRs pooled from different Kaggle

repositories. The authors also examined some preprocessing strategies such as

blurring, thresholding, and histogram equalization. Gouda et al. (2022) proposed

ResNet-50 based on two different deep learning models to detect COVID-19 from

the 2790 CXRs pooled from various open-source repositories. A detailed summary

of the literature review is shown in Table 2.2.

2.2.1.3 Data Augmentation vs. Synthetic Data Generation

Deep Learning is a variant of representation learning that uses a simple hierar-

chical structure obtained from a set of features extracted to define complex data

representation. Deep Learning has become the cutting-edge technology in com-

puter vision due to the development of GPU-based parallel computing hardware.

In healthcare settings, deep learning has shown significant potential for analyz-

ing structured (like clinical lab data) and unstructured data (like medical images,

signals, etc.). Deep learning models applied to different modalities and organs

have led to considerable advancements in medical image analysis. Radiology is a

medical domain that utilizes imaging data like MRI, X-ray, and CT to monitor

and diagnose illness. The medical imaging data are challenging to collect and

annotate as the dataset is limited to a private institution. The annotation process

requires an expert radiologist to manually label every image, which is a rigor-

ous and time-consuming task. Deep learning algorithms necessitate a substantial
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quantity of data to build a reliable model that can detect, segment, classify, and

predict diseases from an image. The unbalanced and small dataset may not lead

to an effective model and may cause overfitting of the majority class. The accu-

racy of the deep learning frameworks could be improved by utilizing the existing

cohort more effectively.

Data augmentation is one such strategy that enlarges the size of the cohort

through the random geometrical translation of the images. Conventional augmen-

tation techniques like randomly rotating, flipping, shearing, or adding extra bright-

ness or noise to the image are commonly used. The quantity of new data that may

be produced by conventional data augmentation strategies is constrained by the

limited number of simple-to-compute invariances like zooming, flipping, etc. Gen-

erative Adversarial Networks (GANs) (Goodfellow et al., 2014a) were utilized to

generate synthetic images to improve the training of deep learning models without

having to use any pre-determined augmentation. The cycleGAN was proposed to

produce synthetic non-contrast CT images to significantly improve the deep learn-

ing framework’s generalizability for segmenting CT images (Sandfort et al., 2019).

Frid-Adar et al. (2018) presented a GAN-based model to enhance the performance

of the convolutional neural network in classifying liver lesions from the CT images.

Mondal et al. (2018) proposed a GAN-based model for semi-supervised segmenta-

tion of 3D multimodal medical images and showcased the performance increment

compared to traditional segmentation tasks. The Conditional Generative Adver-

sarial Networks (cGANs) were utilized to synthesize the MR images pertaining to

Alzheimer’s disease (AD) (Jung et al., 2021). The Hierarchical Amortized GAN

was proposed to generate high-resolution synthetic images from the 3D thorax

CT and brain MR images (Sun et al., 2022). The GAN-based data augmentation

approaches have demonstrated remarkable outcomes in producing high quality

images and improving the classifier’s performance by enhancing its generalizing

ability. In this study, we utilize data augmentation and synthetic data genera-

tion techniques on radiology images to empirically evaluate their effectiveness in

improving radiology image classification.
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Table 2.2: Summary of Literature Survey - Disease Prediction from Unstructured Chest X-ray Images

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Rajkomar

et al. (2016)

The GoogleNet architec-

ture is used to classify the

CXRs into frontal and lat-

eral.

Classification Radiology Pulmonary

diseases

Chest

X-ray

Private Dataset (909 Pa-

tients)

Rajpurkar

et al. (2017)

The 121-layered Dense

Convolutional Network

named CheXNet was used

to predict Pneumonia

pathology from CXRs, and

for the binary classification

of Pneumonia detection,

pre-trained ImageNet

weights were utilized.

Detection Radiology Pnuemonia Chest

X-ray

NIH Chest X-Ray 14

(112,120 from 30,805

patients)

Candemir

et al. (2018)

Deep CNN models like

AlexNet, VGG-16, VGG-

19, and Inception V3 are

utilized to detect Car-

diomegaly from the CXRs.

Detection Radiology Cardiomegaly Chest

X-ray

Open-i (283 Cardiomegaly

cases from 3683 patients)

Continued on next page
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Table 2.2 – Continued from previous page

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Hwang et al.

(2018)

The ResNet-based model

with 27 layers and 12 resid-

ual connections is utilized

to detect active pulmonary

tuberculosis in the large

private CXR cohort.

Detection Radiology Pulmonary

Tuberculosis

Chest

X-ray

Private Dataset (54,221

Normal CXRs and 6768

tuberculosis CXRs)

Zech et al.

(2018)

The DenseNet121 model,

pre-trained with ImageNet

weights, is trained and

tested across different data

cohorts to detect the pneu-

monia abnormality.

Detection Radiology Pnuemonia Chest

X-ray

NIH Chest X-Ray 14

(112,120 from 30,805 pa-

tients), MSH (42,396 from

12,904 patients), Open-I

(3,807 from 3,683 patients)

Pasa et al.

(2019)

A CNN-based model is pro-

posed for faster diagnosis of

tuberculosis diseases, and

the Grad-CAM technique is

incorporated for disease vi-

sualization.

Detection and

Visualization

Radiology Tuberculosis Chest

X-ray

NIH Tuberculosis CXR (138

and 662 patients), Belarus

Tuberculosis Portal dataset

(304 patients)

Continued on next page
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Table 2.2 – Continued from previous page

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Chaudhary

et al. (2019)

The CNN-based deep

learning model with three

convolutions, ReLU, pool-

ing, and fully connected

layers was proposed to

diagnose chest diseases

from CXRs.

Classification Radiology Pulmonary

diseases

Chest

X-ray

NIH Chest X-ray14

(1,12,120 CXRs)

Tang et al.

(2020)

Identifying abnormalities

using Deep CNN models

and comparison with the

radiologist’s labels.

Classification Radiology Pulmonary

diseases

Chest

X-ray

NIH ChestX-Ray14

(112,120 from 30,805

patients), Open-I (3,807

CXRs from 3683 patients),

RSNA Dataset (21,152

patients)

Continued on next page
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Table 2.2 – Continued from previous page

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Cohen et al.

(2020)

Investigative study to find

discrepancies while general-

izing the models with mul-

tiple CXR datasets.

Classification Radiology Pulmonary

diseases

Chest

X-ray

NIH Chest X-ray14

(112,120 from 30,805 pa-

tients), PadChest (1,60,000

from 67,000 patients),

MIMIC-CXR (227827

CXRs), Open-I (3,807

CXRs from 3683 patients),

RSNA Dataset (21,152

patients)

Zou et al.

(2020)

Detection and screening of

Pulmonary Hypertension

using three deep learn-

ing models (Resnet50,

Xception, and Inception

V3)

Detection and

Visualization

Radiology Pulmonary

hypertension

Chest

X-ray

Private dataset (762 pa-

tients from three institute in

China)

Continued on next page
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Table 2.2 – Continued from previous page

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Hashmi

et al. (2020)

A weighted classifier com-

bining the weighted predic-

tions of the state-of-the-art

deep learning model is in-

troduced to detect pneumo-

nia in CXRs.

Detection and

Visualization

Radiology Pnuemonia Chest

X-ray

Private dataset (7022

CXRs)

Griner et al.

(2021)

The classification of

COVID-19 abnormalities

is performed using an

ensemble of DenseNet-121

Networks.

Classification Radiology COVID-19 Chest

X-ray

Private dataset (12000 pa-

tients)

Lee et al.

(2021)

ResNet 101 and U-Net, pre-

trained on ImageNet, are

used to segment and de-

tect the cardiomegaly dis-

eases from the CXRs.

Segmentation

and Detection

Radiology Cardiomegaly Chest

X-ray

JSRT dataset (247 pa-

tients), Montgomery

dataset (138 patients), Pri-

vate dataset (408 patients).

Continued on next page
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Table 2.2 – Continued from previous page

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Kusakunniran

et al. (2021)

The ResNet101 model is

utilized to detect COVID-

19, and a heatmap is pro-

duced for the segmented

lung area.

Detection and

Visualization

Radiology COVID-19 Chest

X-ray

Private dataset (5743

CXRs)

Helal Uddin

et al. (2022)

The CNN-based deep

learning model named

SymptomNet is proposed

to detect COVID-19, and

a heatmap is generated to

visualize the disease.

Detection and

Visualization

Radiology COVID-19 Chest

X-ray

Private dataset (500 CXRs

from Bangladesh)

Gie lczyk

et al. (2022)

The CNN-based deep

learning method is used

to classify COVID-19

and Pneumonia. We

also examined some pre-

processing strategies like

blurring, thresholding, and

histogram equalization.

Classification Radiology Pneumonia

and COVID-

19

Chest

X-ray

Pooled data from various

cohorts (6939 CXRs)

Continued on next page
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Table 2.2 – Continued from previous page

Author &

year

Methodology Task Medical

Domain

Abnormality Imaging

Data

Dataset

Gouda et al.

(2022)

The ResNet50-based two

different Deep Learning ap-

proaches have been pro-

posed to detect COVID-19.

Detection Radiology COVID-19 Chest

X-ray

Pooled data from various

cohorts (2790 CXRs)

Li et al.

(2022)

The U-Net and ResNet

based models were pro-

posed to segment, classify,

and predict pulmonary fi-

brosis from CXRs.

Segmentation,

Classification

and Predic-

tion

Radiology Pulmonary

Fibrosis

Chest

X-ray

NIH Chest X-ray14 (Pul-

monary fibrosis CXRs from

1,12,120 images)
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2.3 CRSs for Multimodal Medical Data Analysis

EHRs are digital repositories that hold extensive patient medical information.

These records are composed of multimodal data, meaning that they comprise di-

verse categories of information, such as textual and imaging data. EHR consists of

a substantial volume of valuable information and, hence, provides researchers with

the opportunity to establish data-driven models (Devarakonda and Tsou (2015);

Jindal and Taneja (2015)). There has been a significant amount of research work

carried out for predicting diseases from the Unimodal imaging data by utilizing

only pixel-value information without leveraging the valuable clinical context from

the structured or unstructured EHR (Gulshan et al. (2016);Hinton (2018); Dunn-

mon et al. (2018); Johnson et al. (2019a)). There has been a scarcity of research

that leverages multimodal data containing both unstructured textual information

and images. Multimodal medical image fusion can enhance the accuracy of diag-

nosis in radiology by combining different types of medical images (Hermessi et al.,

2021). Integrating different features from diverse modalities can furnish healthcare

providers with a comprehensive understanding of a patient’s medical condition,

aiding them in making informed decisions about the most suitable treatment op-

tions.

Data analysis involves a structured approach that employs various methods

such as data examination, refinement, conversion, and modelling. Figure 2.2 rep-

resents the general structure of multimodal medical data analysis. The various

steps involved in multimodal medical data processing are as follows:

• Feature Extraction: The healthcare industry is experiencing a rise in high-

precision, multimodal medical data due to the growing use of technology

and mobility. The efficient utilization of this type of data can contribute

significantly to the analysis and resolution of various healthcare challenges.

Nevertheless, the diversified nature of multimodal data, such as text, im-

ages, and signals, poses a challenge in developing efficient data extraction

algorithms. Feature extraction is the initial step in collecting raw data from

various sources for further processing and storage (Chaudhury et al. (2016)).

To extract features from medical data, various approaches have been pro-

posed in the literature. For instance, Iakovidis and Smailis (2012) employed

an unsupervised data mining approach to extract low-level data and their

multiple features from a consolidated multimodal repository. In another

work, Wang et al. (2018b) proposed a novel approach to represent complex

medical data in a knowledge-based graph model. The graph similarity search



44 Chapter 2. Literature Review

Figure 2.2: General Architecture of Multimodal Medical Data Analysis

was then applied to the knowledge graph, and lazy learning algorithms, such

as dynamic time warping, were employed to find the similarity between the

created graphs. The proposed method exhibited superior accuracy in com-

parison to the baseline models. In the healthcare industry, data is available

in various formats and from diverse sources (Bleyer (1997)). To extract and

process physiological data, such as galvanic skin response, heart rate, facial

expression, text, and speech, a range of techniques are employed, including

pattern matching, similarity search, feature extraction, automated annota-

tion, classification, and clustering. In one study, Kurniawan and Pechenizkiy

(2014) proposed a framework for stress analysis from multimodal affective

data, such as physiological signals and external user data, including facial

expression, speech, and text. Pattern mining techniques were utilized to

extract features from various data models. In the cardiology domain, it

is possible to extract data using various algorithms, and feature extraction

can be accomplished by assigning the same label to similar data solutions

(Syeda-Mahmood et al., 2007). In sub-cancer pixel analysis of MRI and

mammography images, decision tree models, chi-square, and automatic in-

teraction detection methods are frequently utilized for feature extraction in
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ML (Wu et al., 2019).

Conventional ML techniques relied on human intervention to identify and ex-

tract particular features before forwarding them to the fusion or classification

phase. With the emergence of deep learning, it has become possible to au-

tomatically extract features from medical data that contain multiple modes

of information. Purwar et al. (2019) employed an AlexNet convolutional

neural network model to extract features from both red blood cell imaging

and organized blood reports, enabling the detection of microcytic hypochro-

mia. Faris et al. (2021) presented a multimodal framework that utilizes both

structured symptom data and unstructured medical questions, comprising a

total of 263,867 instances, to support medical diagnosis via telemedicine. To

extract features from the data, the authors employed tf-idf, hashing vector-

izers, and doc2vec models. After the process of data extraction, the authors

performed fusion and classification techniques to accurately predict disease

diagnosis in telemedicine. It is noteworthy that CNN-based models are the

preferred choice for deep learning feature extraction in numerous studies

that extract features from diverse data modalities (Hilmizen et al. (2020b);

Carvalho et al. (2021); Hamidinekoo et al. (2021)).

• Data Fusion: With the increasing availability of data from various sources,

multimodality has become common in all fields, including the medical do-

main. Integration of multimodal data in medical decision support systems

can significantly enhance their performance (Lahat et al., 2015). Data fu-

sion involves combining datasets from diverse sources and modalities, which

poses significant challenges due to differences in frequencies and noise. Data

fusion has been widely adopted by researchers as a technique for multimodal

data analysis in various applications. Several data fusion approaches, such

as data fusion for hybrid Brain-Computer Interface (BCI), rhythm-based

BCI, and fusion of multiple heartbeat physiological signals, have been stud-

ied using comparative analysis by researchers (Chandra et al. (2019); Fazli

et al. (2015)). Multimodal data typically contains multiple perspectives, and

utilizing a multi-view approach to classify different subsets of the data has

been found to be beneficial. In their study, Shachor et al. (2020) developed

a new fusion framework that utilized a neural network and a mixture of

views to process multimodal data, leading to a significant improvement in

performance. Furthermore, in the field of multimodal medical data analy-

sis, techniques such as anatomical structure identification, feature analysis,



46 Chapter 2. Literature Review

and labeling approaches have been utilized to support 3D neuroanatomical

database analysis, as demonstrated by Barillot et al. (1993). Reliable fusion

techniques in the field of neuroimaging include the Markov-Penrose diagram

of tensor network notation, Bayesian DAG, and coupled matrix tensor fac-

torization, as suggested in the literature. A recent study has shown that a

deep-gate convolutional neural network can be used to fuse multi-band im-

ages, with outstanding results obtained when fusing low and high-frequency

components compared to existing systems (Lin et al. (2020)). According

to recent research by Lin et al. (2020), combining low and high-frequency

components through fusion yields remarkable results in comparison to cur-

rent systems. A study by Adali et al. (2015) suggests that joint independent

component analysis and transposed independent vector analysis models can

effectively fuse MRI, EEG, and Structural MRI data. Furthermore, multi-

band image fusion has a wide range of applications for enhancing image

quality. Gaussian filters (Mohd et al. (2017)) and singular value decomposi-

tion (Nischitha and Padmavathi (2017)) are examples of filters that perform

well and yield satisfactory results.

• Classification: The multimodal data fusion is followed by the classification

and visualization tasks. In healthcare, the classification of diseases based

on different medical data is crucial. This task can be achieved using ma-

chine learning (ML) and deep learning algorithms. For instance, breast

cancer classification has been done using Ranklet transforms, LSP Ranklet

transforms, and support vector machines (SVMs) Xi et al. (2017), while an

encoder-decoder layer followed by a least-square algorithm has been used

for ECG, MRI, and EEG signal compression classification (Zhang and Shen,

2011). Deep learning-based binary classification of chest diseases from CXR

and associated radiology reports collected from the Indiana University (IU)

dataset was performed by (Aydin et al., 2019a) using a multimodal approach.

The imaging features were obtained using a pre-trained CNN model, and the

textual features were retrieved using a GloVe embedding model. The con-

catenated features were then passed through a fully connected network for

classification. In another study, Lopez et al. (2020) compared the perfor-

mance of a multimodal model and a unimodal model for CXR and asso-

ciated radiology reports collected from the IU dataset. The fused features

were passed through a fully connected deep neural network for classifica-

tion, and the results showed a reduction of annotation burden through mul-
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timodal learning. Data classification has diverse applications beyond visual

and textual data, and it has been widely adopted in many fields. One such

application is the design of support systems for Parkinson’s patients based

on their handwriting. In Heidarivincheh et al. (2021), a multimodal classifi-

cation of Parkinson’s disease (PD) in a home environment was proposed by

extracting features from raw data obtained through a wrist-worn accelerom-

eter and RGB-D camera. The silhouette images and accelerometer signals

were preprocessed and classified as PD or healthy using an encoder-decoder

CNN model. In Ribeiro et al. (2013), an approach was developed to classify

chronic liver disease stages using clinical laboratory and ultrasound data,

utilizing techniques such as SVM, Bayes, and K-means clustering. In Yi

et al. (2022), a multimodal classification framework was proposed to cate-

gorize the severity of glaucoma from fundus and grayscale images collected

from the Kunming Medical University. CNN-based classifiers were utilized

for the classification task. Additionally, Hilmizen et al. (2020b) used a CNN-

based classifier for classifying COVID-19 disease from multimodal CXR and

CT features extracted using pre-trained VGG16 and ResNet models.

Multimodal classification has numerous applications in various medical do-

mains, and ML and DL classifiers are used to categorize data for prognosis

outcomes. Supervised learning is required for ML classifiers, which means

that human intervention is necessary to manually pick features before pass-

ing them through the classifiers. However, deep learning classifiers do not

require handcrafted features before feeding them into the fully connected

layers for classification. Additionally, ML models do not learn incremen-

tally, whereas DL classifiers can overcome this shortcoming by incrementally

learning features.

• Visualization: Data visualization refers to the process of representing data

and information in a visual and graphical format, such as charts, graphs, and

maps, to make it easier to understand and analyze. The use of data visual-

ization is crucial in the medical field to interpret and convey complex medical

information, including medical images, clinical data, EHRs, and patient out-

comes. By utilizing medical data visualization techniques, healthcare prac-

titioners can identify patterns and trends in the data, make better-informed

decisions, and ultimately improve patient outcomes. This section delves

into data visualization techniques for multimodal medical data, which can

be achieved through various algorithms, software, or hardware components.
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For instance, Levin et al. (2005) designed hardware that used motion-based

segmentation to visualize 4D cardiac data, which yielded significant perfor-

mance improvements. Software-based data visualization methods, such as

EHR data multimodal analysis using chromatogram plots, have also been

explored. OpenCL, C++, and GUI toolkits are commonly used to visualize

essential data features, and iterative visualization and MVC pattern algo-

rithms have been widely adopted (Manssour et al., 2000). When it comes to

MRI, single-photon emission computerized tomography (SPECT), CT, and

PET data visualization, 2D or 3D image visualization techniques are rec-

ommended, with inertial moment 3D visualization providing a better view.

In addition, radar plots have been used to enhance saturation and trans-

fer function to visualize multimodal data from image-guided neurosurgery

(Joshi et al., 2010). Trend charts, timelines, and data tables can also be

utilized to visualize EHR and clinical data (An et al., 2008b). Furthermore,

Song et al. (2021) performed a quantitative analysis by integrating the Grad-

CAM visualization technique into a multimodal fusion framework applied to

MRI and PET images for diagnosing Alzheimer’s disease. Overall, data vi-

sualization is an essential tool for effectively representing complex data sets

and aiding in the interpretation of multimodal medical data.

Multimodal information extracted from EHRs has been utilized in several

tasks, including multimodal medical disease classification and prediction, generat-

ing diagnostic notes, and multimodal medical image fusion. This thesis explores

several innovative approaches to multimodal analysis, including predicting pul-

monary disease by fusing medical images and text, generating diagnostic reports

from CXR, and detecting acute infarct by fusing MRI sequences.

2.3.1 Multimodal Diagnostic Image and Text Analysis

Data fusion specifies the integration of information from multiple modalities to

retrieve complementary and more significant information for designing and devel-

oping effective, better-performing ML models than a model leveraging unimodal

data. Our research has considered CXRs and associated radiology reports as mul-

timodal data due to their existence in imaging and textual form. We can categorize

medical data fusion techniques into early fusion, late fusion, and joint fusion meth-

ods (Ramachandram and Taylor, 2017). In early fusion techniques, also known as

feature-level fusion, the features from heterogeneous sources or learned features

retrieved from the neural networks, or manually extracted features are combined
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and fed to a single ML or DL model to produce the final predictive decisions

(Kharazmi et al. (2017);Li and Fan (2019);Purwar et al. (2020)). In late fusion

techniques, also called a decision-level fusion, we fuse the predictions obtained

from more than one ML or DL model to produce final predictive decisions (Qiu

et al. (2018);Reda et al. (2018)). Whereas in Joint fusion techniques, also known

as intermediate-level fusion, where the features from heterogeneous modalities are

learned through the intermediate layers of neural networks, these learned features

from multiple modalities are fused before being ingested into the final model to

obtain predictive decisions (Yoo et al. (2017); Spasov et al. (2018); Yala et al.

(2019); Aydin et al. (2019a)). The main distinction between the joint fusion ap-

proach and the early fusion strategy is that, with each training iteration, a better

representation of learned features is obtained by back-propagating the loss to the

feature-extracted neural network. As a result, joint fusion strategies are exclu-

sively applied to neural networks due to their ability to back-propagate their loss

to the feature retrieval network.

In the following literature review, we examine research that encompasses the

fusion of medical image features with structured clinical measurements to predict

various diseases. Kharazmi et al. (2017) in their research work, detected basal cell

cancer from the multimodal dermoscopic images with structured clinical data like

age, sex, size, and location of the lesion. They applied an early fusion strategy by

concatenating the features extracted from both modalities using the CNN model.

Li and Fan (2019) presented a multimodal framework for predicting Alzheimer’s

disease from the MRI and structured clinical information like assessments, ques-

tionnaire’s and patient demographics. Here, the authors used concatenation for

an early fusion of the imaging and clinical features obtained from CNN. Purwar

et al. (2020) in their research work, detected microscopic hypochromia from the

Red Blood Cell (RBC) images and structured clinical test reports, including blood

count and other blood test parameters. The early fusion strategy was leveraged by

concatenating CNN features obtained from imaging and clinical blood test reports.

Qiu et al. (2018) implemented three CNN models to retrieve imaging features from

three MRI images, and the late fusion strategy like mean, max, and majority vot-

ing is applied for fusing three images. Furthermore, in this study, two Multilayer

Perceptron (MLP) models are employed to input non-imaging clinical assessment

data, such as Mini-Mental State Examination (MMSE) and logical memory (LM)

test results. The resulting features from these two MLP models are then combined

with the imaging features through a majority voting strategy. Reda et al. (2018)

proposed a meta-classifier based late fusion strategy, Stacked Nonnegativity Con-
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straint Sparse Autoencoders (SNCSAE), for integrating features from MRI and

structured PSA blood tests to predict the prostate cancer diagnosis. Spasov et al.

(2018) applied CNNs to extract imaging features from the MRI and jointly fused

them with structured clinical data, including demographics, genetic data, clinical

assessments, and verbal learnings, before injecting it into a feed-forward Neural

Network for predicting Alzheimer’s disease. Yoo et al. (2017) proposed joint and

late fusion strategies using concatenating (joint) and Averaging (late) the imaging

features extracted from MRI and clinical measurements using the CNN model to

predict Multiple sclerosis. Yala et al. (2019) presented a joint fusion strategy by

concatenating the CNN based pixel features and clinical features extracted from

the mammograms and the clinical measurements, respectively. These features are

further fed to the feed-forward neural network to predict breast cancer. Carvalho

et al. (2021) proposed a multimodal framework to classify skin cancer from normal

dermatoscopic images. The efficientNet-B3 model was utilized to extract features

from the images, and a concatenation (joint fusion) strategy was applied to fuse

ABCD features with the imaging features. So far, we’ve seen that structured

clinical data combined with imaging features have considerably impacted disease

prediction outcomes.

Likewise, we can leverage unstructured clinical reports with radiology imaging

features to provide clinical context and improve the performance of disease pre-

dictions compared to unimodal text or image models (Aydin et al. (2019a); Lopez

et al. (2020)). Aydin et al. (2019a) proposed a multimodal classifier with trans-

fer learning to jointly fuse the medical report with the CXR images to classify

patients into normal and abnormal classes. The authors considered a pre-trained

DenseNet121 model to retrieve imaging features and a Glove embedding layer to

produce textual features. Further, both features were concatenated before passing

it to the dense feed-forward network. Lopez et al. (2020) presented the multi-

modal fusion strategy by applying DenseNet121 for image feature extraction from

CXR and the word2vec model for text feature extraction from radiology reports.

The authors have experimented with early, late, and joint fusion strategies by

concatenating (early & joint) and averaging (late) imaging and textual modality

features. Nunes (2019) proposed a multimodal framework for the classification of

pulmonary diseases from the Indiana University dataset. To extract features from

the radiology report, the LSTM based BioWordVec is applied, and EfficientNet-

B5 is used to retrieve imaging features. The multimodal features obtained from

single modal models are concatenated (joint fusion) and passed through a fully

connected neural network to classify the diseases. Huang et al. (2020) presented
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neural network-based text and image retrieval model to detect Pulmonary Em-

bolism from CT images. The multimodal features obtained are fused (early &

joint) using concatenation operations and late fused using averaging. Hilmizen

et al. (2020a) and Ouahab (2021) proposed CNN-based feature extraction tech-

nique to detect COVID-19 from the two different modality images (CT + X-ray).

The authors have applied joint fusion concatenation to integrate both imaging

features. Hamidinekoo et al. (2021) applied Densely Connected Network (DCN)

extract imaging features from the MRI and Whole Slide Imaging (WSI) images

to detect Glioma disease. The major voting (late fusion) strategy was employed

to ensemble the features obtained from two separate DCN models. All the above

strategies for fusion use a straightforward concatenation strategy, ignoring inter-

modal interactions between the two features.

The above literature shows that fusion approaches significantly improve per-

formance compared with unimodal models when applied to medical cohorts. In-

corporating clinical context by including structured or unstructured clinical data

with medical images has provided better prognosis decisions. In most of the early

fusion strategies (Kharazmi et al. (2017); Li and Fan (2019); Purwar et al. (2020)),

the imaging features and clinical features retrieved from the neural networks are

integrated or fused using concatenation approaches, forming a single plain vector,

which does not always guarantee good results. In the late fusion techniques, the

fusion strategies are basically focused on aggregating the results from the various

unimodal models by using meta-classifiers, majority voting, mean, or max (Reda

et al. (2018); Qiu et al. (2018)). The major limitation with the late fusion strategy

is inter-modality dynamics; the interaction between the multimodal data is com-

pletely ignored. Most of the existing works (Kharazmi et al. (2017); Li and Fan

(2019); Purwar et al. (2020); Reda et al. (2018); Qiu et al. (2018); Spasov et al.

(2018); Yoo et al. (2017); Yala et al. (2019)), leverage the structured clinical data

with the imaging features to predict the diseases from the multimodal medical

cohort. After a thorough literature survey, it is observed that there has been a

limited study carried out fusing unstructured radiology clinical free-text reports

with the pixel features extracted from the radiology images to obtain valuable,

meaningful prognosis information for the clinicians. DL and image captioning

techniques have advanced significantly in recent years, allowing researchers to ap-

ply them to the cross-modal retrieval of generating radiology reports from the

CXRs (Wang et al. (2018a); Liu et al. (2019b); Gajbhiye et al. (2020); Alfarghaly

et al. (2021b); Yuan et al. (2019)). The overall summary of the literature review

is presented in Table 2.3.
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Table 2.3: Summary of Literature Survey - Multimodal Diagnostic Image and Text Analysis

Author &

year

Methodology Fusion Strat-

egy

Multimodal

Task

Disease Imaging

Data

Input

non-

imaging

data

Dataset # of

Cases

Remarks

Wang et al.

(2018a)

CNN (im-

age) +

RNN (Text)

Joint Fusion -

Concatenation

Classification

& Cross-

modal re-

trieval

Thorax

Disease

CXR Radiology

Reports

IU

dataset

3955 Intermodal

Interaction

Missing

Aydin et al.

(2019a)

Custom

Glove

(Text) +

Pretrained

Densenet121

(Image)

Joint Fusion

- Concatena-

tion

Classification Pulmonary

Diseases

CXR Radiology

Reports

IU

dataset

3955 Intermodal

Interaction

Missing

Nunes

(2019)

LSTM

based

BioWord-

Vec +

EfficientNet-

B5 (image)

Joint Fusion

- Concatena-

tion

Classification Pulmonary

Diseases

CXR Radiology

Reports

IU

dataset

3955 Intermodal

Interaction

Missing

Continued on next page
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Table 2.3 – Continued from previous page

Author &

year

Methodology Fusion Strat-

egy

Multimodal

Task

Disease Imaging

Data

Input

non-

imaging

data

Dataset # of

Cases

Remarks

Yuan et al.

(2019)

Encoder

(Images +

text)

Joint Fusion

- Concatena-

tion, Early &

Late Fusion

Attention

Cross-modal

retrieval

Pulmonary

Diseases

CXR Radiology

Reports

IU

dataset

3955 Intermodal

Interaction

Missing

Lopez et al.

(2020)

Word2Vec

(Text) +

DenseNet121

(Image)

Joint & early

Fusion- Con-

catenation,

Late Fusion-

Averaging

Classification Pulmonary

Diseases

CXR Radiology

Reports

IU

dataset

3955 Intermodal

Interaction

Missing

Huang et al.

(2020)

Neural Net-

work (text

+ image)

Early & Joint

Fusion - Con-

catenation,

Late Fusion -

Averaging

Detection Pulmonary

Embolism

(PE)

Chest CT EHR Stanford

Univer-

sity

Medical

Center

2500 Intermodal

Interaction

Missing

Continued on next page
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Table 2.3 – Continued from previous page

Author &

year

Methodology Fusion Strat-

egy

Multimodal

Task

Disease Imaging

Data

Input

non-

imaging

data

Dataset # of

Cases

Remarks

Hilmizen

et al.

(2020a)

VGG16 and

ResNet50

(for both

images)

Joint Fusion

- Concatena-

tion

Classification Covid-19 CXR and

CT

- Mixed

dataset

from

kaggle

Reposi-

tory

1257 Intermodal

interaction

Missing

and non-

imaging

data is not

utilized.

Ouahab

(2021)

CNN (for

both im-

ages)

Joint Fusion

- Concatena-

tion

Detection Covid-19 CXR and

CT

- Mixed

dataset

from

Kaggle

Reposi-

tory

1045 Intermodal

interaction

Missing

and non-

usage

of non-

imaging

data.

Continued on next page
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Table 2.3 – Continued from previous page

Author &

year

Methodology Fusion Strat-

egy

Multimodal

Task

Disease Imaging

Data

Input

non-

imaging

data

Dataset # of

Cases

Remarks

Hamidinekoo

et al. (2021)

DCN (for

both im-

ages)

Late Fusion -

Major Voting

Classification Glioma

(Brain

Tumor)

MRI and

WSI

- CPM-

RadPath

2020

chal-

lenge

dataset

329 Intermodal

interaction

Missing

and non-

usage

of non-

imaging

data.

Carvalho

et al. (2021)

EfficientNet-

B3 (images)

Joint Fusion

- Concatena-

tion

Classification Skin Can-

cer

Dermoscopic

images

ABCD

Psuedo

features

ISIC

2017

chal-

lenge

dataset

2750 Intermodal

Interaction

Missing

Alfarghaly

et al.

(2021a)

ChexNet

(images) +

Word2Vec

(text)

Late Fusion-

Attention

Cross-modal

retrieval

Pulmonary

Diseases

CXR Radiology

Reports

IU

dataset

3955 Intermodal

Interaction

Missing
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Our research work primarily focuses on predicting abnormalities from the mul-

timodal CXR and its associated clinical reports by jointly fusing the pixel infor-

mation with the radiology text feature using DL-based multimodal tensor fusion

networks, considering inter-modality dynamics.

2.3.2 Cross-modal Medical Report Generation

Hospitals around the world heavily rely on medical imaging, which provides valu-

able insights for disease diagnosis and treatment planning. However, it is crucial

for the radiologist to thoroughly examine the medical images in order to pro-

vide comprehensive findings and interpretations. In order to produce precise and

reliable radiology reports, it is necessary for the radiologist to possess ample expe-

rience and devote a significant amount of time to scrutinizing the medical images

(Jing et al., 2018). A large number of radiology reports may end with inconclu-

sive comments, resulting in patients undergoing additional tests, such as advanced

imaging or pathology exams. The issue of the time required for a radiologist to

create a detailed report is a significant concern, as on average, an experienced

radiologist will need approximately 10–20 minutes to produce a thorough report.

In situations such as overcrowded hospitals or during a pandemic, writing radi-

ology reports can become challenging due to the ever-increasing number of cases

(Yang et al., 2022). These circumstances inspired our research into developing

an automated radiology reporting system using a deep learning framework. Con-

siderable progress has been made in the field of generating medical descriptions.

Yuan et al. (2019) introduced an automatic report generation model that utilizes

a multiview CNN encoder and a concept-enriched hierarchical LSTM. The model

leverages multi-view information in radiology by employing visual attention in

a late fusion manner and enriching the semantics in the hierarchical LSTM de-

coder with medical concepts. The authors Nguyen et al. (2021), presented a set of

three modules consisting of classification, generation, and interpretation. For the

classification module, a multi-view encoder is employed to extract visual features

from chest X-rays, while a text encoder converts reports into embeddings. The

generation module utilizes both visual and textual features to create text on a

word-by-word basis. Finally, the interpretation module fine-tunes the text gen-

erated. Sai et al. (2021) showcased an automatic report generation model with

the following stages: NLP Pipeline (Tokenization, Embedding, Removing Special

Characters, etc.); CNN acts as an encoder in our model. A transfer Learning

model, ChexNet is used to extract the features of the image. Hierarchical LSTMs
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and Co-Attention Mechanism: Hierarchical LSTMs are designed to enrich the

representation ability of the LSTM, and the co-attention mechanism provides the

context. The sentence and word LSTMs then generate the final reports required.

Zhou et al. (2021) presented a visual-textual attentive semantic model that uses

DenseNet201 as a visual encoder model and BioSentVec as a text encoder. The

LSTM model is utilized to generate the report. Liu et al. (2021) proposed an

unsupervised Knowledge Graph Auto-Encoder (KGAE) model that utilizes inde-

pendent sets of Chest X-ray images and their associated reports during the training

phase. KGAE consists of a pre-constructed knowledge graph, a knowledge-driven

encoder, and a knowledge-driven decoder. They have used the Knowledge-driven

encoder to project medical images and reports to the corresponding coordinates

in latent space and the Knowledge-driven decoder to generate a medical report on

a given coordinate in that space. Sirshar et al. (2022) propose an encoder-decoder

model with CNN used as a visual encoder and an RNN decoder with attention

used to produce the radiology reports. Nicolson et al. (2022) presented the report

generation framework, where the DenseNet pretrained on imageNet is used as an

encoder for imaging feature extraction, and the BERT NLP encoder is utilized for

textual feature extraction. The decoder model with attention is incorporated for

report generation. The various general domain and domain-specific pre-trained

checkpoints are evaluated, and the best checkpoints are chosen for warm starting

the encoder-decoder of a CXR report generator. These warm starts help generate

a diagnostically accurate report that can be used in a clinical setting. From the

literature, it is observed that there is a significant need for improving performance

and the quality of the reports generated. The summary of the literature is shown

in Table 2.4.



58
C

h
ap

ter
2.

L
iteratu

re
R

ev
iew

Table 2.4: Summary of Literature Survey.

Author &

year

Methodology Future Remarks BLEU1 BLEU2 BLEU3 BLEU4 Dataset # of im-

ages

#of re-

ports

Yuan et al.

(2019)

Multiview CNN encoder

and concept enriched

hierarchical LSTM is used.

Low BLEU4

score

0.529 0.372 0.315 0.255 CheXpert 2,24,316 65,240

Sai et al.

(2021)

CNN: Encoder with transfer

Learning Model (ChexNet)

for image feature extrac-

tion; Hierarchical LSTMs

and Co-Attention mecha-

nism for report generation.

The BLEU1

and BLEU2

score is very

low indicating

the mismatch

in the predicted

report.

0.213 0.258 0.325 0.381 Open-I 7470 3955

Nguyen

et al.

(2021)

Multiview image encoder

and text encoder is used for

visual and textual feature

extraction; transfer encoder

module for report genera-

tion

Some false

positives are

observed in gen-

erated reports.

0.515 0.378 0.293 0.235 Open-I 7470 3955

Continued on next page
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Table 2.4 – Continued from previous page

Author &

year

Methodology Future Remarks BLEU1 BLEU2 BLEU3 BLEU4 Dataset # of im-

ages

#of re-

ports

Liu et al.

(2021)

Knowledge Graph Auto-

Encoder (KGAE) model

is proposed consisting a

pre-constructed knowledge

graph, a knowledge-driven

encoder and a knowledge-

driven decoder.

Produces the

superior perfor-

mance compared

to supervised

model. BLEU

score can be fur-

ther improved.

0.417 0.263 0.181 0.126 Open-I 7470 3955

Zhou et al.

(2021)

The DenseNet201 and

BioSentVec models with

semantic attention for

image and text feature

extraction. The LSTM

model is incorporated for

report generation.

The final model

achieves consis-

tent improve-

ments over all

the evaluation

metrices. The

Bleu scores can

be improved.

0.536 0.392 0.314 0.339 Open-I 7470 3955

Continued on next page
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Table 2.4 – Continued from previous page

Author &

year

Methodology Future Remarks BLEU1 BLEU2 BLEU3 BLEU4 Dataset # of im-

ages

#of re-

ports

Sirshar

et al.

(2022)

The CNN-based feature ex-

traction technique is used

as an encoder, followed by

an RNN decoder that gen-

erates reports.

Low BLEU4

score

0.58 0.342 0.263 0.155 Open-I 7470 3955

Nicolson

et al.

(2022)

The DenseNet pretrained

on imageNet weights and

the BERT NLP is leveraged

as encoder for visual and

textual feature extraction.

The decoder model with at-

tention is incorporated for

report generation.

Low BLEU4

score

0.4777 0.308 0.2274 0.1773 Open-I 7470 3955
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2.3.3 Multimodal Medical Image Analysis

Medical image fusion is the process of combining information from multiple medi-

cal images into a single composite image, which can provide a more complete and

accurate understanding of a patient’s condition. In the case of acute infarct pre-

diction from MRI sequences, multimodal medical image fusion can be used to inte-

grate information from multiple MRI modalities (e.g., T1-weighted, T2-weighted,

diffusion-weighted, and perfusion-weighted) to improve the accuracy of infarct pre-

diction. Acute brain infarct is a prevalent cause of fatality and ailment globally,

resulting in over 5.5 million deaths annually Ovbiagele and Nguyen-Huynh (2011).

It is indicated by the abrupt appearance of clinical signs caused by focal or global

brain dysfunction. These symptoms may persist for more than 24 hours or result

in death, and there are no other identifiable factors other than the issues related

to vascular origin. The stroke can be categorized as either an ischemic infarct or

a hemorrhagic infarct. The occurrence of acute ischemic stroke is closely linked to

the time elapsed since the stroke, which must not exceed 4.5 hours. Thrombolytic

therapy is a diagnostic procedure to break up or dissolve the blood clots that

should be initiated within 4.5 hours after the stroke (Zhang et al., 2021).

Lee et al. (2020) proposed a ML technique to detect acute ischemic stroke

within 4.5 hours from the DWI and T2-Flair MRI sequences of 355 patients col-

lected from the South Korean medical centre. The image processing techniques

were applied to infarct segmentation and image registration. For stroke onset

time classification, three ML techniques, including SVM, RF, and LR, were uti-

lized. The authors concluded that ML algorithms utilizing MRI scans were viable,

and they exhibited even greater sensitivity than human interpretations in detect-

ing cases within the time frame for acute thrombolysis. It was seen that the

specificity achieved by the proposed framework is comparatively low, indicating

increased false-positive cases, which may lead to haemorrhage upon thrombolysis,

making it impractical for clinical practice. Zhu et al. (2021) proposed an automatic

approach using a deep learning strategy to classify and identify the time of stroke

onset from the DWI and T2-Flair MRI sequences gathered from the two differ-

ent stroke centres in China. The sample of 268 de-identified patients is collected

and classified into negative (≤ 4.5 hours) and positive (>4.5 hours). The MRI

sequences were passed through atrous convolution in parallel to obtain the fine

features. The segmentation of stroke ROI was performed using the efficientNet-

B0-based U-Net model. Finally, the stroke onset time is classified through voting

using five ML techniques. It was observed that the model presented by the au-
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thors showcased significantly lower classification performance, indicating a higher

misclassification rate of the onset time since stroke.

Vesdapunt and Covavisaruch (2018) presented semi-automated segmentation

techniques using the Otsu method, Hill Climbing, Growent, and Fuzzy C-Means

for stroke lesion segmentation from the 13 DWI sequences of six patients collected

from a private hospital. The segmented lesions are compared with Flair MRI

for testing as a gold standard. Zhang et al. (2018a) proposed a fully automatic

and computationally efficient approach for the segmentation of brain stroke from

DWI employing a 3D fully convolutional DenseNet. The proposed method in-

cludes data preprocessing, feature extraction, and segmentation steps from DWI

MRI sequences collected from private and public dataset. Zhao et al. (2021) pro-

posed a CNN-based method, the multi-feature map fusion network, for segmenting

lesions resulting from acute ischemic stroke. This technique seeks to enhance seg-

mentation precision by integrating various feature maps using CNNs. The DWI

and ADC MRI sequences of 582 subjects were collected from Tianjin Huanhu Hos-

pital, China. The proposed CNN-based multi-feature map fusion network offers

a more accurate segmentation of acute brain infarct lesions than other standard

techniques. Further investigation of the presented technique on more extensive

and diverse datasets is needed to assess its generalizability and effectiveness in

real-world clinical applications. In their study, Yu et al. (2021) introduced an

attention-based CNN for predicting the affected tissue in cases of acute brain in-

farct. They discovered that DL techniques with fine-tuning were more effective

than traditional thresholding approaches in predicting acute infarct tissue. How-

ever, the deep learning models may only generalize well to patients within the

dataset used for training.

Fang et al. (2022) analyzed various ML techniques like deep forest (DF), SVM,

RF and DL techniques like a Residual Neural Network (ResNet), CNN, and Long

Short-Term Memory Network (LSTM) for predicting Ischemic stroke from the

16,403 structured medical data collected from the International Stroke Trial (IST)

database. The authors concluded that DL techniques did not outperform ML

models during the prediction task. The experiment was conducted on structured

medical data, making it challenging to infer the lesion’s exact location. Bridge

et al. (2022) proposed an ML algorithm that evaluates the likelihood of infarct

in each voxel present in 6,657 DWI and ADC MRI sequences collected from the

Massachusetts General Hospital, USA. The probability above a given threshold

point classifies the MRI sequence as positive. The authors concluded that the

DWI and ADC images jointly enhance the ML models’ performance compared to
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a single MRI sequence as it provide complementary features. The MRI sequences

were manually annotated before being input into the ML model, making it a

labour-intensive task. The major limitation of the presented ML model is its

capacity to apply to new data samples with different demographics, geography,

and technical parameters, including scanner model and manufacturer.

A 3D-CNN was presented by Zeng et al. (2022) for assessing the extent of

neurological damage caused by Ischemic stroke. To extract the feature map by

utilizing spatial features from the 851 DWI images collected from Xiangtan Cen-

tral Hospital (China), a CNN model with 17 layers, including convolution, max

pooling, and fully connected layers, was suggested. The model achieved an AUC

of 0.846 for DWI images with the size 256 X 256 X 64 volumetric pixels and ob-

tained an AUC of 0.895 for DWI images with the size 128 X 128 X 32 volumetric

pixels. The major limitation is the model’s generalization ability, as the image

parameters applied were not uniform. Nazari-Farsani et al. (2023) utilized a deep

CNN with an attention-gated (AG) technique to predict the location and size of

final infarct in patients suffering from an acute stroke from DWI and ADC MRI

sequences. The model showcased the potential to make diagnostic decisions using

MRI sequences with brain stroke. However, the threshold for infarct probability

used to generate the probability map may not be optimal for all patients. Further

studies are needed to validate the model’s performance across different patient

populations and imaging protocols and to investigate the impact of the model on

clinical decision-making.

The above-reviewed literature focuses on the use of ML and DL algorithms

to improve the accuracy of stroke diagnosis, lesion segmentation, classification

and prediction from magnetic resonance imaging (MRI) sequences. Several stud-

ies have shown promising results in identifying the onset time of acute ischemic

stroke within the 4.5-hour time window using ML techniques. The segmentation

of stroke lesions from MRI sequences was also improved through semi-automated

and fully automated approaches using various ML and DL models. However, the

significant limitations of these models include low classification accuracy, increased

false positive cases, labour-intensive annotation tasks, and limited generalizability

to new data samples with different demographics, geography, and technical pa-

rameters. Overall, the literature suggests that ML and DL techniques have great

potential to improve stroke diagnosis, lesion segmentation, acute infarct classi-

fication and prediction from MRI sequences. However, further investigation and

improvement are needed to ensure their practicality and effectiveness in real-world

clinical settings. The literature discussed above is summarized in Table 2.5.
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Table 2.5: Summary of Findings from Literature Review

Author

& year
Method Task

MRI Imaging Sequences Text

data

DWI T2-Flair ADC SWI Dataset Remarks

Vesdapunt

and Cov-

avisaruch

(2018)

Otsu method, Hill

Climbing, Growent

and Fuzzy C-Means

strategy is applied

Segmentation ✓ ✓ Private Dataset

(6 Patients)

Semi-automated

process used

making it dif-

ficult to apply

to real-time

applications.

Zhang

et al.

(2018a)

3D fully convolutional

DenseNet

Segmentation ✓ Private Dataset

(242 Patients)

Public Dataset-

ISLES2015 (28

Cases)

It can be en-

hanced by

integrating ad-

ditional imaging

modalities or

clinical informa-

tion.

Continued on next page
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Table 2.5 – Continued from previous page

Author

& year
Method Task

MRI Imaging Sequences Text

data

DWI T2-Flair ADC SWI Dataset Remarks

Lee et al.

(2020)

Image processing

techniques followed

by three ML tech-

niques: LR, SVM,

and RF were utilized

for classification.

Classification ✓ ✓ Private Dataset

(355 Patients)

Extracting a set

of handcrafted

features is a

time-intensive

process. The

specificity

achieved is

comparatively

low.

Zhu et al.

(2021)

Atrous convolution,

efficientNetB0-based

U-Net model and max

voting from five ML

techniques.

Classification

and Segmen-

tation

✓ ✓ Private Dataset

(268 Patients)

Low classifi-

cation perfor-

mance

Zhao

et al.

(2021)

CNN-based method,

the multi-feature map

fusion network, was

introduced.

Segmentation ✓ ✓ Private Dataset

(582 Patients)

Generalizability

of the model is

restricted.

Continued on next page
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Table 2.5 – Continued from previous page

Author

& year
Method Task

MRI Imaging Sequences Text

data

DWI T2-Flair ADC SWI Dataset Remarks

Yu et al.

(2021)

An attention-gated

CNN was presented.

Prediction ✓ ✓ Private Dataset

(237 Patients)

The DL models

may not gener-

alize well to pa-

tients outside of

the cohort used

for training.

Fang

et al.

(2022)

ML techniques (SVM,

RF and DF) and DL

Techniques (CNN,

LSTM and ResNet).

Prediction ✓ IST Dataset

(16,403 pa-

tients)

The structured

medical dataset

used didn’t show

the lesion’s posi-

tion.

Bridge

et al.

(2022)

An ML algorithm was

proposed.

Classification

and Segmen-

tation

✓ ✓ Private Dataset

(6,657 Pa-

tients)

Generalizability

of the model is

limited.

Continued on next page
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Table 2.5 – Continued from previous page

Author

& year
Method Task

MRI Imaging Sequences Text

data

DWI T2-Flair ADC SWI Dataset Remarks

Zeng

et al.

(2022)

A CNN model with 17

layers was presented.

Prediction ✓ Private Dataset

(851 Patients)

The model

achieved an

AUC of 0.846

and 0.895 for

varied sized

voxels. Gener-

alisation ability

was limited.

Nazari-

Farsani

et al.

(2023)

DCNN with an AG

mechanism was uti-

lized.

Prediction ✓ ✓ Private Dataset

(445 Patients)

The threshold

for infarction

probability used

to generate the

probability map

may not be

optimal for all

patients.
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2.4 Outcome of Literature Review

The comprehensive survey presented in the above section uncovered various short-

comings in the field of CRSs utilizing unstructured text, images, and multimodal

data. Many developing countries lack a standard method for recording patient

information, resulting in unstructured and unprocessed data. This creates difficul-

ties in implementing text-based CRS, which depends on organized and processed

data to provide healthcare providers with valuable insights and recommendations.

The challenge of implementing text-based CRS in developing countries due to un-

structured patient data has been highlighted in several studies (Polnaszek et al.,

2016). A study by Khan and Banerji (2014) notes that most hospitals in develop-

ing countries still use paper-based records or electronic systems with unstructured

or semi-structured data. This makes it difficult to extract useful information from

patient data and develop recommendation systems that can effectively support

healthcare providers. Designing effective techniques to process unstructured clin-

ical data and integrate it into CRS workflows can make a significant contribution

to improving healthcare outcomes in developing countries with similar healthcare

ecosystems, benefiting doctors and hospital personnel by providing valuable in-

sights and recommendations.

Structured clinical data are widely used in decision support and recommen-

dation systems due to their standardized format and ease of use. The structured

data is typically organized into tables, fields, and codes that can be easily accessed

and queried by computer programs, enabling efficient data processing and analysis

(Tayefi et al., 2021). Using structured clinical data has the benefit of offering a

thorough perspective on a patient’s medical background, encompassing aspects

such as diagnosis, treatment, medications, and laboratory findings. This data is

valuable to healthcare providers as they can use it to make well-informed decisions

about patient care, such as determining the appropriate medication, ordering rel-

evant tests, and formulating treatment strategies. Most of the existing works rely

on only structured clinical data to provide prognostic outcomes. Nonetheless,

solely depending on structured clinical data has its drawbacks. Structured data

merely captures a fraction of the complete clinical information that is accessible,

and a significant amount of critical clinical data is present in unstructured clinical

notes. Such notes are written in natural language and could contain crucial clini-

cal details, including patient history, symptoms, and treatment plans. Advanced

NLP techniques are necessary to extract beneficial information from unstructured

clinical notes by analyzing the text and retrieving pertinent information.



Chapter 2. Literature Review 69

While there have been significant improvements in NLP over recent years, it

remains a challenging task due to the intricate and variable nature of clinical notes.

On the other hand, NLP and DL models have become more popular because of

their ability to achieve high performance when trained with large amounts of data.

However, medical datasets are currently limited to healthcare institutions, are

domain-specific, and are small, making it difficult to train DL Models. Therefore,

there is a requirement to develop NLP techniques and DL models capable of

handling low data conditions for classifying and predicting diseases in radiology

reports. In the last few years, several investigations (Trivedi et al. (2017); Shin

et al. (2017); Dahl et al. (2021); Nakamura et al. (2021); Bayrak et al. (2022))

have suggested DL techniques to offer CRS for the prediction of diseases and

vulnerabilities. Although some of these methods (Nakamura et al. (2021); Bayrak

et al. (2022)) exhibited encouraging outcomes, there is undoubtedly potential for

enhancement in the areas of data representations of the patient, neural network

architectures, and explainability. Therefore, this thesis thoroughly investigates

the avenue of developing more effective systems that provide precise predictive

analytics tailored to individual patients, utilizing unstructured healthcare data in

textual format.

The study conducted on CRS for pulmonary chest X-ray images indicated a

significant requirement for improving the DL techniques employed. The existing

deep learning strategies lack the ability to capture the more discriminative fea-

tures of the receptive field. Medical CXRs come with varied-sized abnormalities;

thus, most of the current techniques do not focus on multi-scale features (Ra-

jpurkar et al. (2017);Rajkomar et al. (2016);Candemir et al. (2018); Zech et al.

(2018); Lee et al. (2021); Li et al. (2022)). Most existing models utilize increased

network parameters to detect pulmonary abnormalities, making them computa-

tionally expensive and challenging to use in mobile-vision applications. Moreover,

the absence of transparency in current models poses a challenge for radiologists

to comprehend the reasoning behind the model’s diagnosis, thereby restricting its

applicability in clinical settings. In this context, our primary goal is to build a

better and more effective DL technique that is both lightweight and explainable

for extracting multi-scale discriminative features by capturing a larger receptive

field for predicting pulmonary abnormalities from chest X-rays. By developing

an explainable and lightweight DL technique, we aim to mitigate the challenges

posed by existing models and facilitate its adoption in clinical settings.

In medical imaging, unstructured medical images often contain intricate and

irregular RoIs, making it difficult to isolate and extract meaningful information.
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However, DL models, especially deep CNNs, have proven to be highly successful in

automatically learning hierarchical and discriminative features directly from raw

pixel data, eliminating the need for explicit feature engineering. This has led to

remarkable achievements in medical image analysis. DL models offer numerous

significant advantages over traditional machine learning models in this domain:

• Automated Feature Learning: DL models excel at automatically learning

relevant features directly from raw medical images. This is particularly ad-

vantageous when dealing with complex and irregular RoIs in medical images.

In contrast, traditional ML models often require manual, hand-crafted fea-

ture engineering, which can be time-consuming and may not fully capture

the intricacies of the RoIs. DL models provide an end-to-end system that

streamlines the feature extraction process (Iqbal et al., 2023).

• Hierarchical Representations: With their deep architectures, DL models can

learn hierarchical representations of the data, capturing both low-level and

high-level features. This ability to learn multiple levels of abstraction is

crucial when analyzing intricate RoIs and complex patterns within medical

images. Traditional ML models may struggle to capture such hierarchies

effectively (Torres-Velázquez et al., 2021).

• Scalability: DL models are highly scalable and can handle large medical

datasets effectively. Training DL models on powerful GPUs or TPUs allows

for more extensive exploration of medical data, leading to potentially better

predictive performance. Traditional ML models may face limitations when

dealing with large-scale datasets (Vinod et al., 2020).

• State-of-the-art Performance: In recent years, DL models, especially CNNs,

have achieved state-of-the-art results in various medical imaging tasks. These

tasks include disease prediction, lesion detection, and image segmentation.

DL’s ability to learn intricate patterns from vast amounts of data contributes

to its superior performance compared to many traditional ML approaches

(Rana and Bhushan, 2022).

In summary, DL models provide feature learning automation, hierarchical rep-

resentation learning, scalability for large datasets, and top-notch performance,

making them highly effective for medical image analysis tasks.

A thorough review of different prior studies is carried out with respect to med-

ical data that involves multiple modes of imaging and non-imaging information.
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The study shows that when used in conjunction, the clinical text and medical

images improve the accuracy of classification due to their complementary features

(Aydin et al. (2019a); Lopez et al. (2020); Huang et al. (2020); Alfarghaly et al.

(2021b)). Many frameworks for predicting diseases from different sources of medi-

cal data use either early, late, or joint fusion techniques to handle the multimodal

information. Early and joint fusion methods typically rely on simple concatena-

tion to merge imaging and non-imaging features or two distinct imaging modalities.

In contrast, late fusion approaches employ various meta-classifiers, majority vot-

ing, or averaging to combine the output from individual models focused on single

modalities. However, neither concatenation nor late fusion methods account for

the inter-modal dynamics between the heterogeneous features. Upon conducting

a comprehensive review of the literature, it was discovered that only a few studies

had explored the fusion of unstructured radiology clinical free-text reports with

pixel features extracted from radiology images to provide clinicians with valuable

and meaningful prognosis information. Our literature review indicates that the

availability and accessibility of multimodal medical datasets are limited. Con-

sequently, most existing models have only been tested on these small datasets,

making it challenging to assess their generalizability to larger and more diverse

datasets. To address these limitations, developing a deep learning framework that

leverages an efficient multimodal feature fusion technique capable of combining

low-level imaging and high-level textual features is necessary to generate accurate

prognostic outcomes.

The accurate interpretation and summary of medical images, particularly those

generated by radiology tests such as X-rays, CT scans, and MRIs, are crucial com-

ponents of clinical diagnosis. Generating a diagnosis report from radiology images

is an essential step in clinical diagnosis, and highly skilled radiologists are required

for this task. However, the process can be time-consuming and mentally taxing

for radiologists, especially in busy and overcrowded situations. To alleviate this

burden and speed up the diagnosis process, there is a growing need for automated

and reliable diagnostic report generation frameworks. Existing deep learning tech-

niques for report generation have shown promise, but there is still room for im-

provement, particularly in terms of the BLEU score ((Jing et al., 2018); (Yang

et al., 2022); Yuan et al. (2019); Nguyen et al. (2021); Sai et al. (2021); Nicolson

et al. (2022)). One promising approach is to develop a cross-modal framework

that combines textual and imaging features to assist radiologists in automatically

generating accurate reports from medical images. By using such frameworks,

healthcare providers can reduce the workload on radiologists, speed up the diag-
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nosis process, and provide better patient care. Additionally, these frameworks can

ensure consistency and accuracy in diagnosis reports, minimizing the risk of errors

and improving the overall quality of patient care.

CRS for Multimodal image interpretation plays a crucial role in enhancing

the accuracy of diagnostic outcomes by capturing complementary features from

different diagnostic image modes or sequences. Radiologists rely on various MRI

sequences, such as DWI, T2-flair, SWI, and ADC, to predict the presence of an

Acute Infarct. In this medical condition, an accurate and timely diagnosis is cru-

cial. Previous studies have employed ML models that extract handcrafted features

from MRI data and feed them into the models for classification. However, this

method is time-consuming and may not capture all the relevant information from

the data. Therefore, it’s crucial to develop improved approaches that incorporate

all available MRI sequences to accurately predict Acute Infarct. Furthermore,

we observed that radiologists use all four MRI sequences to identify acute infarct.

However, to the best of our knowledge, no existing work has leveraged all the MRI

sequences in predicting the disease (Vesdapunt and Covavisaruch (2018); Zhang

et al. (2018b); Lee et al. (2020); Zhu et al. (2021); Fang et al. (2022)). This

presents an opportunity to develop a more comprehensive and accurate approach

that incorporates all four MRI sequences. Finally, we noted that the performance

of most existing approaches is low, indicating the need for improved prediction

accuracy. To achieve this objective, it is essential to design and develop a multi-

modal DL framework capable of extracting and fusing imaging features from all

four MRI sequences. By doing so, we can improve prediction accuracy and surpass

existing methods.

2.5 Summary

This chapter provides an extensive literature review of AI-based CRS, covering a

range of techniques and frameworks. Our exploration of AI-based CRS focuses

on three distinct categories of medical data: unstructured text data, unstructured

image data, and multimodal data. Within each category, we investigate various

approaches for constructing an effective AI-based CRS. Moreover, we examine

three specific tasks associated with analyzing multimodal medical data, namely

multimodal analysis using both images and text, cross-modal diagnostic text gen-

eration from images, and multimodal image analysis. After conducting an in-depth

examination of the available literature, it became apparent that there is a clear

requirement for diverse CRS implementations that can extract hidden knowledge
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from a wide range of medical data, particularly for tasks like disease prediction.

The literature review indicates that the current state-of-the-art CRS implementa-

tions primarily focus on a specific type of data or a specific disease, limiting their

ability to handle diverse medical data and tasks. This finding underscores the

need for more varied and adaptable CRS solutions that can extract insights from

different healthcare data types, such as unstructured text, images, and multimodal

data, to support diverse clinical applications. Through a comprehensive review of

the literature, we have identified key areas for advancing the development of NLP

and DL frameworks in clinical decision support systems. These areas include the

extraction of textual features from unstructured diagnostic reports to aid in dis-

ease prediction, as well as the extraction of discriminative features from diagnostic

chest X-ray images using DL techniques. Another critical area for development is

the integration of image and text features for disease prediction, which requires

the development of novel fusion strategies. Additionally, we have identified the

need for automated report-generation methods for diagnostic images and the de-

velopment of multimodal image analysis frameworks for disease prediction.

After considering these observations, the problem scope and statement ad-

dressed in this thesis were precisely defined and discussed in Chapter 3. In order

to overcome the identified limitations and the research gaps, several methodologies

have been proposed, which are briefly outlined in Chapter 3 and comprehensively

discussed in subsequent chapters of this thesis.





Chapter 3

Problem Description

3.1 Background

The previous chapter provided an in-depth review of different approaches aimed

at developing a viable AI-driven CRS framework capable of analyzing medical

data across multiple modes. It also consolidated significant challenges and con-

siderations that need to be addressed for constructing an improved and effective

CRS. This chapter elucidates the specific research gaps that were identified and

presents them as a problem statement. Additionally, it delineates the scope of the

proposed research work featured in this thesis and provides a concise overview of

the methodologies developed to address the formally defined issues.

3.2 Research Gaps

Chapter 2 of this thesis presents a detailed literature review of the current research

on AI-based CRS that incorporates multiple types of medical data. It provides a

thorough review of existing literature and highlights the outcomes and findings of

the review. The following section briefly outlines the research gaps and limitations

that have been identified:

• Clinical decision support or recommendation systems primarily rely on nu-

merical or structured data, which is readily available in standard formats.

However, there has been limited exploration of the potential of unstructured

free-text data, such as radiology reports, which are a good source of valuable

information for disease prediction.

• The performance of CRS that use unstructured medical data in text format

for predicting diseases has demonstrated inadequate performance. Moreover,

75
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the medical cohorts available in current practice are small, domain-specific,

and limited to medical institutes. Henceforth, handling the unstructured

radiology report in a low-data situation and predicting the disease outcome

pose a challenge. This problem can be solved by developing advanced NLP

techniques and DL models that can handle low data conditions for disease

classification and prediction in radiology reports. Furthermore, improving

the design and functionality of the existing CRS framework for unstructured

medical text has the potential to significantly enhance their predictability.

• In medical image analysis, a significant obstacle lies in predicting diseases

from unstructured medical images. The main difficulty is extracting the cru-

cial and distinguishing features from the irregular RoI within the receptive

field, which are essential for accurate diagnostic outcomes. These RoIs are

often intricate and hard to isolate, making it challenging to gather the neces-

sary information for precise disease prediction. Thus, the quest for effective,

lightweight, and interpretable DL methods to accurately capture these dis-

criminative RoI features remains an ongoing challenge. While traditional

ML models have advantages in terms of being lightweight, the exceptional

representation power of DL models, especially deep CNNs, makes them the

preferred choice for medical image analysis.

• To enhance the accuracy of disease prediction from multimodal diagnostic

data, such as chest x-rays and radiology reports, it is imperative to develop

an effective multimodal fusion model that can seamlessly combine multiple

radiology images and reports. However, there is a semantic gap between the

low-level visual data and the high-level textual information, which poses a

challenge. Thus, it is essential to create an effective multimodal system that

can bridge this gap and enable an accurate disease prediction framework.

• Upon thorough review, it has been observed that cross-modal retrieval in re-

port generation faces a significant challenge in terms of generating an overall

description with low BLEU scores. The unstructured nature of radiology re-

ports presents a severe obstacle to the performance of cross-modal retrieval

in report generation. Addressing this challenge requires the development

of more sophisticated techniques that can effectively process and extract

relevant information from unstructured medical reports.

• Multimodal image fusion is a challenging task that requires capturing com-

plementary features from multiple image sequences and representing them
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in a common space for disease prediction. However, current techniques face

considerable difficulties in accomplishing this effectively. To address this is-

sue, an advanced method for fusing multiple imaging features is required to

provide better diagnostic decisions.

• The current state of the art in CRS models for multimodal medical data

exhibits poor generalizability, and their effectiveness on a broader range of

datasets is uncertain. To address this issue, it is crucial to investigate the

ability of these models to perform on augmented or synthetic data.

3.3 Scope of the Work

Upon reviewing the existing approaches for constructing CRSs, it becomes clear

that the most effective ones utilize AI techniques such as ML or DL. The success of

these recommendation systems is highly dependent on the accurate modeling and

representation of multimodal medical data, as this is the foundation for prognostic

models. To bridge the gaps and achieve the objective, the research presented in

this thesis contributes significantly in five key areas, which are outlined below:

1. Designing and building an effective AI-based CRS for predicting diseases

from the unstructured diagnostic text data.

2. To design and develop a lightweight and explainable AI-based CRS for pre-

dicting diseases from unstructured diagnostic images.

3. Design and development of an improved data fusion technique for combin-

ing complementary imaging and textual features for disease prediction from

multimodal diagnostic data.

4. Designing a cross-modal framework for automatically generating the medical

reports for a given diagnostic image.

5. To design and develop an enhanced multimodal image fusion network to

integrate multiple diagnostic images for disease prediction.

3.3.1 Problem Statement

Drawing from the limitations highlighted in the current literature regarding AI-

based CRS that incorporate multiple types of medical data, the problem statement

addressed by this thesis is formulated as follows:
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“Design and develop a framework for an effective Clinical Recommen-

dation System on unstructured and multimodal data for the health sec-

tor through Machine Learning and Deep Learning Techniques”

3.3.2 Research Objectives

After identifying gaps in previous research and formulating a problem statement,

this thesis has established three main research objectives and four corresponding

sub-objectives. The research work presented in the thesis is focused on addressing

these objectives and sub-objectives:

1. To design and develop a technique for extracting medical concepts and pre-

dicting clinical outcomes from unstructured medical text data.

2. To design and build an effective mechanism for predicting clinical outcomes

from unstructured medical images.

3. To design and develop a framework to integrate the complementary features

from the Clinical multimodal data and predict disease outcomes.

• To design and develop an improved data fusion technique to combine

different features retrieved from Multimodal medical images and text

for Predicting Diseases.

• To design and develop an effective clinical recommendation system to

perform cross-modal retrieval of diagnostic reports from medical images

• To design and develop an effective multimodal image fusion network

for integrating heterogeneous images for diagnostic disease prediction.

• To assess and analyze the performance of the multimodal prediction

compared to the single-modal prediction.
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3.4 Brief Overview of Proposed CRS Framework

We have presented a brief overview of our study that focuses on an AI-based CRS

framework using multimodal medical data in Figure 3.1. The thesis presents a

thorough examination of the contributions made in each chapter towards accom-

plishing our research objectives. This chapter gives a concise summary of the

research work presented throughout the thesis, highlighting the key points and

the overall scope of the study.

To build the necessary medical cohort, we obtained multimodal diagnostic

data, such as CXRs with their reports and MRI sequences, from a private medical

hospital. The collected data was subjected to de-identification/delinking proce-

dures to maintain patient privacy and was then annotated by professional ra-

diologists. Section 3.4.1 provides an explanation of the proposed methodology

for extracting disease outcomes from unimodal, unstructured free-text reports us-

ing NLP pre-processing modules, text modelling, and classification stages. As

discussed in Section 3.4.2, the methodology includes pre-processing unimodal di-

agnostic CXR images by resizing and removing noise before passing them through

a visual feature modelling and disease classification/prediction module. Section

3.4.3 elaborates on the approach of predicting diagnostic abnormalities by creat-

ing a multimodal representation that fuses textual and imaging features obtained

from reports and CXRs. In Section 3.4.4, we introduce an encoder-decoder-based

deep learning module that enables cross-modal report generation from the input

CXR. In Section 3.4.5, we demonstrate the prediction of prognostic outcomes

through multimodal image fusion of four different MRI sequences. To increase

the cohort size and generate high-resolution diagnostic images, we employ several

data augmentation and synthesis techniques. The diagnostic outcomes of all the

subnetworks mentioned above will aid high-level medical applications that are a

primary requirement in the workflow of clinical recommendation systems.

3.4.1 Unimodal Medical Text Embedding Subnetwork for

Disease Prediction from Unstructured Free-text Re-

ports

Although healthcare providers often record clinical notes in an unstructured for-

mat, this type of documentation can provide a wealth of information about a

patient’s medical condition, including their symptoms, disease progression, and

treatment plans. However, despite its value, this information is frequently under-
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utilized when predicting disease-specific conditions. Towards this end, there is a

need to design and develop AI-based CRS that can directly analyze unstructured

free-text data for disease prediction. Figure 3.2 presents the top-level process flow

of the AI-based CRS with unstructured Free-text Reports for disease prediction.

In Chapter 4, a practical text modelling approach is proposed that combines a

Knowledge Base (KB) with deep learning to accurately mine text and predict

pulmonary abnormalities from unstructured radiology free-text reports, even in

a low-data condition. This method can potentially enhance the accuracy and

efficiency of disease prediction, leading to better-informed patient decisions.

Figure 3.2: CRS with Unstructured Free-text Reports for Disease Prediction

As shown in Figure 3.2, the NLP preprocessing is applied to the unstructured

radiology free-text reports to clean the data and make it ready to ingest into

the NLP and DL models. We adopt Glove word embeddings with the Knowledge

Base trained on a large corpus for effective text modelling. Further, we incorporate

Convolutional Neural Network-based Discriminative Dimensionality Reduction to

obtain the most discriminative feature vector. Finally, a fully connected Deep

Neural Network is leveraged as the prediction model to detect the diseases.

3.4.2 Unimodal Medical Visual Encoding Subnetwork for

Disease Prediction from Medical Images

As previously mentioned, this thesis focuses on using Chest X-ray medical images

as a tool for predicting pulmonary disease. The texture and shape of the tissues

in the diagnostic images are essential aspects of prognosis. Therefore, in the latest

studies, the vast set of images with a larger resolution is paired with deep learning

techniques to enhance the performance of the disease diagnosis in chest radio-

graphs. Most of the attempts do not consider the computation overhead and lose

the spatial details in an effort to capture the larger receptive field for obtaining

the discriminative features from high-resolution chest X-rays. To address this, we

propose a lightweight and explainable Unimodal Medical Visual Encoding Sub-

network (UM-VES) for predicting diseases from medical images. The architecture
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diagram presented in Figure 3.3 illustrates the high-level design of an AI-powered

CRS that utilizes unstructured diagnostic images for disease prediction. Specifi-

cally, the system pre-processes chest X-ray images by resizing them and removing

noise before feeding them into the visual feature modelling and disease predic-

tion module. Chapter 5 presents a detailed overview of the UM-VES framework.

The UM-VES consists of the following four main subnetworks: (1) Multi-Scale

Dilation Layer (MSDL), which includes multiple and stacked dilation convolution

channels that consider the larger receptive field and capture the variable sizes of

pulmonary diseases by obtaining more discriminative spatial features from the in-

put chest X-rays; (2) Depthwise Separable Convolution Neural Network (DS-CNN)

is used to learn imaging features by adjusting lesser parameters compared to the

conventional CNN, making the overall network lightweight and computationally

inexpensive, making it suitable for mobile vision tasks; (3) a fully connected Deep

Neural Network module is used for predicting abnormalities from the chest X-rays;

and (4) Gradient-weighted Class Activation Mapping (Grad-CAM) technique is

employed to check the decision models’ transparency and understand their ability

to arrive at a decision.

Figure 3.3: CRS with Unstructured Diagnostic Images for Disease Prediction

3.4.3 Deep Medical Multimodal Fusion Networks for Dis-

ease Prediction from Medical Text and Image Data

An AI-powered CRS that analyzes radiology images has the potential to assist

medical practitioners in the diagnosis and prediction of pulmonary diseases. In

order to improve our comprehension of pulmonary abnormalities, it is crucial to

create a model that can efficiently make use of both radiology images and diag-

nostic reports. This will allow us to obtain a more comprehensive understanding

of these conditions. While expert reports provide valuable information, they are

often limited by the subjective interpretation of the individual writing them. Di-

agnostic scan data, on the other hand, offers a more objective view of the patient’s

condition. The merging of these two information sources will result in a more com-

plete and precise depiction of pulmonary diseases, potentially resulting in improved
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diagnosis, treatment, and, ultimately, better patient outcomes. In this direction,

we proposed two Multimodal Medical Tensor Fusion Networks (i.e., the Compact

Bilinear Pooling-based Medical Multimodal Fusion Network (CBP-MMFN) and

the Deep Hadamard Product-based Medical Multimodal Fusion Network (DHP-

MMFN) for predicting abnormalities from a radiology CXR and its associated

reports. Chapter 6 provides a detailed overview of the multimodal fusion net-

work, which is the foundation of an AI-powered CRS for disease prediction from

multimodal clinical data. The process flow of this system is illustrated at a high

level in Figure 3.4, showing how it leverages unstructured clinical data, including

both text and images, to generate disease outcome predictions. To achieve this,

the system uses a multimodal image-text fusion network to combine the extracted

textual and imaging features, resulting in more accurate and comprehensive dis-

ease predictions.

Figure 3.4: CRS with Multimodal Unstructured Clinical Data for Disease Predic-
tion

3.4.4 Cross-modal Deep Learning Framework for Diagnos-

tic Report Generation from Medical Images

Generating diagnostic reports for various medical conditions displayed in different

types of medical scans, like X-rays, CT scans, and MRIs, is frequently required in

the field of medical imaging. Typically, human experts examine the images and

create detailed reports as part of this task. Nonetheless, this process can be prone

to errors and is often a time-consuming endeavour. To address this challenge,

we propose a deep encoder-decoder model to generate the reports from the CXR

automatically. The high-level process flow of the AI-powered CRS for generating

reports from CXR is shown in Figure 3.5. The proposed cross-modal framework
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for automatic report generation takes CXRs, including frontal and lateral images,

as input and produces the radiology report as an output. The detailed overview

of the cross-modal framework is explained in Chapter 7.

Figure 3.5: CRS with Multimodal Unstructured Clinical Data for Diagnostic Re-
port Generation

3.4.5 Multimodal Image Fusion Network for Disease Pre-

diction from Medical Images

As previously mentioned, we have chosen to utilize a multimodal fusion approach

for predicting Acute Infarct, which involves combining data from multiple MRI

sequences. Specifically, the selected sequences for fusion are DWI, T2-flair, SWI,

and ADC. By merging information from these different sequences, we aim to

enhance the accuracy and completeness of our prediction. This approach allows us

to leverage the unique strengths of each sequence to gain a more comprehensive

understanding of the patient’s condition, which can assist in effective diagnosis

and treatment planning. The diagram depicted in Figure 3.6 illustrates the high-

level process flow of an AI-based CRS that predicts diseases from multimodal

medical images. The system employs a multimodal feature modelling and fusion

strategy to extract distinct visual features and merge them into a unified space.

These fused features are then inputted into the disease prediction module, which

generates a prognostic outcome. Towards this end, we propose two stacked multi-

channel convolutional neural networks for predicting disease from multiple and

individual MRI sequences. A detailed explanation of the various DL approaches

undertaken to predict multimodal imaging features is presented in Chapter 8.
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Figure 3.6: CRS with Multimodal Diagnostic Images for Disease Prediction

3.5 Research Contributions

This thesis aims to introduce a robust framework that can be employed to create

a Computerized CRS that utilizes AI to predict diseases from various types of

unstructured diagnostic data. This framework incorporates techniques from mul-

tiple modalities, such as diagnostic imaging and radiology reports, and leverages

AI algorithms to analyze and extract meaningful information from this data. By

utilizing this framework, healthcare providers can make well-informed decisions

regarding the care and treatment of their patients, ultimately improving overall

health outcomes of the individuals. Outlined below are the major contributions

of this research work:

• Design of a practical text modelling approach that combines knowledge base

and deep learning techniques, this study aims to extract latent features from

radiology free-text reports, resulting in improved accuracy and efficiency of

disease prediction.

• Development of an effective Multi-scale Deep Learning Network that can

accurately detect abnormal chest conditions from radiographic images while

providing clear and interpretable results.

• Designing of two effective Medical Multimodal Tensor Fusion Networks us-

ing Compact Bilinear Pooling and Deep Hadamard Product for predicting

pulmonary abnormalities from the radiology CXR and text reports.

• Developing an advanced deep learning framework that combines textual and

imaging features to create accurate and dependable radiology reports from

CXR data, using encoder-decoder strategies.

• Development of an effective multimodal image fusion network that can ex-

tract multi-scale features from different MRI sequences to accurately predict

the presence of Acute Infarct.
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3.6 Summary

In this chapter, we highlight the research scope, followed by the identified short-

comings, which serve as the basis for defining the research problem. Three main

research objectives and four corresponding sub-objectives are derived. The strate-

gies for achieving these objectives are briefly introduced and will be elaborated on

in the further chapters of this thesis.
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AI-based CRS for Unimodal

Unstructured Medical Data

Analysis





Chapter 4

Unimodal Medical Text Embedding

Subnetwork (UM-TES) for Disease

Prediction from Unstructured Free-Text

Reports

4.1 Introduction

Pulmonary diseases are the major cause of death worldwide due to tobacco smok-

ing, air pollution, inhaling unwanted particles, radon gas, chemicals, etc. Pul-

monary diseases involve various respiratory and lung disorders like pneumonia,

chronic bronchitis, pleural effusion, and pulmonary fibrosis. The chances of risk

involved in pulmonary diseases are high, and there is a need for timely treatment.

The radiologist interprets the radiology imaging examination like a chest X-ray

to diagnose the conditions affecting the lungs. The radiologists analyze the Chest

X-ray and record their observations in the descriptive reports to validate the prog-

nosis (Yasaka and Abe, 2018). These radiology reports contain rich information

pertaining to patient demographics, disease findings, and conclusive remarks on

the abnormalities. This essential information retrieved from the clinical narra-

tives can be leveraged to improve the efficacy of clinical assessment, treatment,

and research.

Usually, the radiologists manually categorize the clinical notes into normal (i.e.,

no diseases) and abnormal (i.e., pulmonary diseases). Manual classification of the

radiology reports is labour intensive, time-consuming and prone to human error.

Rapid and accurate identification of information contained in radiology narratives

will minimize workloads, assist radiologists in decision-making, and prioritize pa-

tients with emergency care. Automating the task will benefit the radiologists with

89
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less experience in predicting the abnormality when there is an increased number

of patients at higher risk (Nakamura et al., 2021). There has been significant

growth in the usage of ML and DL strategies for automating disease prediction

tasks from EHRs (Yasaka and Abe, 2018). The unstructured nature of the ra-

diology free-text reports with complex vocabularies makes it difficult for the ML

and DL models to extract features from the raw text. NLP plays a major role in

extracting structured information from clinical text (Pons et al., 2016).

The automated prediction of pulmonary abnormalities from the unstructured

diagnostic notes can be further integrated into the existing medical diagnostic

workflow to improve the health information system in the following ways:

• One potential approach would be to integrate the model as a decision sup-

port tool for radiologists. In this scenario, the model could be used to

automatically flag radiology reports that are likely to contain pulmonary

abnormalities, which could then be prioritized for review by the radiologist.

The model could also be used to suggest possible diagnoses based on the

irregularities detected in the report, which could help the radiologist arrive

quickly at a more accurate diagnosis.

• Another approach would be to integrate the model into the EHR system

used by the hospital or clinic. In this scenario, the model could be used to

automatically populate the patient’s EHR with relevant diagnostic informa-

tion based on the findings in the diagnostic notes. This could improve the

accuracy and completeness of the patient’s medical record, improving the

quality of care delivered to the patient.

• Finally, the model could also be used as a screening tool for large-scale pop-

ulation health studies. By analyzing radiology reports from a large cohort of

patients, the model could identify patients at high risk of developing the pul-

monary disease, which could inform targeted interventions and preventative

care strategies.

The unstructured text in clinical practice is scarce in number, as most of the

radiology reports are restricted to private institutions or domain-specific. The

deep learning models produce better results when the cohort size is large. There

is a need for a deep learning framework that accurately classifies the abnormali-

ties from the radiology reports when the cohort size is small. In this research, we

address the challenge of low data situation in the medical radiology report dataset

by adapting the medical knowledge base at the text feature extraction stage. So,
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we propose an NLP-based DL model that incorporates a knowledge base to con-

vert the unstructured text into meaningful word embeddings. The framework

proposed in this study employs the GloVe embedding technique in combination

with a knowledge base to represent the features of the words. This approach is

followed by the use of a deep neural network to predict the presence of pulmonary

abnormalities. The proposed framework improves the accuracy and efficiency of

NLP techniques by utilizing GloVe embeddings, which capture the semantic con-

nections between words. Incorporating a knowledge base further enhances the

model’s predictive power by providing additional contextual information. The

deep neural network component of the framework utilizes the feature representa-

tions generated by the GloVe embeddings and knowledge base to learn patterns

and relationships between words, thereby enhancing the accuracy of the predic-

tions.

4.1.1 Problem Statement

Pulmonary diseases are a primary global health concern, causing significant mor-

bidity and mortality. Timely detection and diagnosis of these diseases can enhance

patient outcomes and increase their chances of survival. However, diagnosing pul-

monary diseases using radiology imaging, such as chest X-rays, is often challenging

due to the unstructured nature of radiology reports, which contain a large amount

of text. Radiologists analyze the imaging results and prepare reports with find-

ings and conclusive remarks, which can be difficult for healthcare providers to

extract relevant information from, causing delays in treatment. Additionally, man-

ually classifying radiology reports as normal or abnormal is a time-consuming and

error-prone process. Also, the unstructured text in clinical practice is scarce in

number, as most of the radiology reports are restricted to private institutions or

are domain-specific.

The problem statement is defined as follows:

Considering the challenges posed by lengthy diagnostic reports, clinical

terminology, and a low data condition, devise and implement strategies

for effective automated pulmonary disease prediction using unstruc-

tured free-text reports.

In this chapter, we address this problem by developing the Unimodal Medical

Text Embedding Subnetwork (UM-TES), which incorporates a knowledge base

to learn the semantic pattern from the unstructured clinical notes. The main

contribution of this research work is as follows:
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• We propose an effective Unimodal Medical Text Embedding Subnetwork

(UM-TES) to predict diseases from radiology reports. We point out the

significance of incorporating Knowledge-based Medical Text modelling with

Discriminative Dimensionality Reduction using CNN (DDR-CNN) and Deep

Neural Networks for classifying and predicting diseases in Radiology Reports

in a low-data environment.

• We carry out comprehensive analysis on two medical datasets (i.e., the pub-

licly available Indiana University dataset (Demner-Fushman et al., 2016) and

a real-time corpus collected from a private medical institute) to illustrate the

competency and rationality of the proposed DL Framework. A thorough in-

vestigation is conducted, and we benchmark the evaluation results of the

Knowledge-based DL framework against the standard ML Techniques. To

the best of our knowledge, this is the first work leveraging radiology data

collected from an Indian Private Hospital.

• We examine the effect of dimensionality reduction using the DDR-CNN and

the effectiveness of incorporating knowledge bases in enhancing the perfor-

mance of the overall framework.

• We have conducted a systematic and comprehensive performance evaluation

to check the efficacy of our proposed model with standard NLP techniques.

4.2 Methodology

The proposed UM-TES framework for Disease prediction from the unstructured

radiology reports is shown in Figure 4.1. As an overview, the radiology find-

ings are pre-processed to obtain the essential latent medical concepts. The word

embeddings are learnt from the medical words by applying customized Clini-

cal Knowledge-based Text modelling. The dense word embeddings obtained are

mapped to the medical words from the findings in the Embedding Layer. Most

Discriminative features are extracted by reducing the dimension using the Convo-

lutional Neural Network. Finally, the flattened discriminative features are fed to

the Deep Neural Network for prediction of the disease outcome.

4.2.1 Basic Pre-processing

To clean the data and make it ready to be ingested into the models, we pass

the radiology report findings from both cohorts through the sequence of text pre-



Chapter 4. Unimodal Medical Text Embedding Subnetwork (UM-TES) 93

F
ig

u
re

4.
1:

P
ro

p
os

ed
U

n
im

o
d

al
M

ed
ic

al
T

ex
t

E
m

b
ed

d
in

g
S

u
b

n
et

w
or

k
(U

M
-T

E
S

)
fo

r
T

ex
t

F
ea

tu
re

E
x
tr

ac
ti

on



94 Chapter 4. Unimodal Medical Text Embedding Subnetwork (UM-TES)

processing stages.

• Punctuation Removal: The presence of punctuation marks, such as periods,

commas, colons, and semicolons, does not add any meaningful information

to the text and can actually hinder the processing of textual data. To en-

sure that diagnostic conclusions are accurately processed when analyzing

radiology reports, it is important to remove punctuation. For instance, the

existence of unnecessary punctuation within the report may perplex the

model in identifying the accurate disease condition.

For example, consider the following sentence from a pulmonary disease re-

port: “Patient presented with shortness of breath, cough, and wheezing”.

After the removal of punctuation, the sentence becomes: “Patient presented

with shortness of breath, cough and wheezing”. Notice how the commas

have been removed from the sentence, making it easier to process for ma-

chine learning models. Punctuation removal also helps to reduce the dimen-

sionality of the text data, making it more manageable for downstream tasks

like feature extraction and classification.

• Stop word Removal: Stopwords are commonly used words that do not pro-

vide much context to the text data and can be safely removed from the

dataset without losing important information. In clinical notes like pul-

monary disease reports, stop word removal can be an essential step to remove

unnecessary words that do not contribute to the diagnosis or prediction of

the disease. As an illustration, when analyzing a pulmonary disease report,

certain common stop words like “a”, “an”, “the”, “and”, “in”, “on” and

“of” may frequently occur. These words do not provide any specific infor-

mation regarding the illness and may even introduce noise into the data. By

eliminating these words, the data can become more concise and meaningful.

Consider the following sentence from a pulmonary disease report: “The pa-

tient has a history of smoking, which may have contributed to the develop-

ment of chronic obstructive pulmonary disease (COPD)”. In this sentence,

the stop words are “the”, “has”, “a”, “of”, “which”, “may”, “have”, “to”,

“the”, “and”, “of”. Removing these words would result in the sentence:

“patient history smoking contributed development chronic obstructive pul-

monary disease (COPD)”. The remaining words convey the same meaning as

the original sentence and can be more efficiently processed by NLP models.
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• Stemming: The stemming process aids in the removal of suffixes to preserve

only the base words. This method aids in normalizing the textual data by

consolidating various forms of words, like plurals and verb tenses, into a

solitary representation. In the context of radiology reports, stemming can

help identify related words and reduce the feature space of the data, which

in turn can enhance the proposed DL model’s performance.

To illustrate, in a diagnostic note on predicting pulmonary diseases, the term

“effusions” could be simplified to “effusion”, making it possible to detect all

occurrences of effusion in the text, regardless of whether the word is in its

singular or plural form. Likewise, the term “fibrotic” could be reduced to

“fibros”, making it possible to detect all instances of fibrosis in the text,

whether the word is used as an adjective or a noun.

• Tokenization: The act of dividing a document or sentence into smaller units

called tokens is known as tokenization. When dealing with radiology reports,

tokens could signify either single words or phrases, and they can be beneficial

in detecting patterns and connections within the textual information.

Let’s take an instance of a sentence from a radiology report: “A nodule in

the right lung was detected on the chest X-ray”. After tokenization, the

sentence may be broken down into the following tokens: [“A”, “nodule”,

“in”, “right”, “lung”, “was”, “detected”, “on”, “the”, “chest”, “X-ray”]. In

this sentence, each token corresponds to an individual word. Tokenization

plays a crucial role in recognizing significant patterns and connections within

the textual information, as well as extracting useful information that can be

utilized in tasks like disease prognosis or image retrieval.

This research follows a series of steps to preprocess the text. The initial step

involves removing punctuation, followed by the removal of frequently used words,

known as stopwords, from the corpus. Next, a standardization process called

stemming is applied to transform the words into their root or base form. Finally,

the raw text is broken down into smaller units known as tokens.

4.2.2 Clinical Knowledge-based Text Modelling

We have proposed a Clinical knowledge-based Text modelling strategy for gen-

erating the discriminative word embeddings by jointly learning from the clinical

reports and the clinical knowledge base. The main aim of incorporating the clin-

ical knowledge base is to understand the infrequent clinical words, which pose a
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significant challenge in capturing the semantics of the word. We have used an im-

proved GloVe Model with the knowledge base to generate the most discriminative

word embeddings.

• Global Vectors (GloVe) for Clinical Word Representations: To de-

rive the word vectors from the clinical radiology reports, the GloVe (Pen-

nington et al., 2014) model is based on the matrix factorization technique,

leveraging statistical information obtained from the global word-word co-

occurrence matrix. In particular, when provided with clinical radiology re-

ports CR, the GloVe initializes by constructing the Word-word co-occurrence

matrix M c. In the co-occurence matrix, the target clinical word is rep-

resented by the row, and the context clinical word is represented by the

column. The word co-occurrence matrix obtained for a given clinical radiol-

ogy reports with m words is m × m. The M c
ij indicates the tabular entries

representing the total number of occurrences of the context clinical word

c̃wj occurring in the target clinical word cwi in the radiology report cohort

CR. Given the dimensionality d (i.e., a hyper-parameter set by the user),

the GloVe embedding technique initializes by learning word vectors or em-

beddings cvi, c̃vi ∈ Rd by conceding a given clinical context word cwi as a

target clinical word cwi or the context clinical word c̃wi, respectively.

The Co-occurrence probability of generating context clinical word c̃wj pro-

vided the target clinical word cwi is given by P (j | i) =M c
ij/M

c
i . Here, M c

i

is the total occurrence of target clinical word cwi in the radiology report

corpus. This probability provides how frequently the target clinical word

is seen in the context clinical word in a large radiology report corpus. For

example, cvTi · c̃vi provides the similarity between two clinical words cwi and

c̃wj. The clinical word vectors for the radiology report cohort can be learnt

from the global word-word co-occurrence matrix given by,

cvTi · ˜cvj = logP (j | i) = log(M c
ij)− log(M c

i ) (4.1)

Likewise, M c
ij = M c

ji,

cvTj · c̃vi = logP (i | j) = log(M c
ij)− log(M c

j ) (4.2)

Since, cvTi · ˜cvj = cvTj · c̃vi, we can add the Eq. (4.1) and Eq. (4.2) to get,
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2cvTi · ˜cvj = 2log(M c
ij)− log(M c

i )− log(M c
j ) (4.3)

cvTi · ˜cvj = log(M c
ij)−

1

2
log(M c

i )− 1

2
log(M c

j ) (4.4)

The right hand side of the Eq. (4.4) is the counts learnt from the radiology

report cohort and the left hand side represents the learnable parameters.

We contemplate log(M c
i ) and log(M c

j ) has the biases specific to the clinical

words cwi and c̃wj to be learnt. To restore symmetry in Eq. (4.4), we add

the scalar biased real-valued terms bi and bj, affiliated with clinical words

cwi and c̃wj respectively.

cvTi · ˜cvj = log(M c
ij)− bi − bj (4.5)

cvTi · ˜cvj + bi + bj = log(M c
ij) (4.6)

The following Eq. (4.7) represents formulation of the optimization problem,

min
cvi, ˜cvj ,bi,bj

V∑
i,j=1

(cvTi · ˜cvj + bi + b̃j − log(M c
ij))

2 (4.7)

The weighting function f(M c
ij) is introduced to the eq. (4.7) to allocate lower

weights for the frequently occurring words to avoid the objective function

from skewing because of over-emphasizing the most commonly occurring

word pairs in the medical cohort and is given by Eq. (4.9). Hence, the

weighted least square errors are minimized to obtain the objective function

of the GloVe Embedding model:

JCR =
V∑

i,j=1

f(M c
ij)(R

CR + bi + b̃j − log(M c
ij))

2 (4.8)

Where, RCR = cvTi · ˜cvj is the scalar value produced by the inner dot product

between the transpose of target word vector cvi and the context word vector

˜cvj.

f(m) =

( m
mmax

)α if m <mmax

1 otherwise
(4.9)

The value of α is set to 3/4 and mmax to 100 as the efficiency of the model
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depends on the cutoff (Pennington et al., 2014). As shown in the Eq. (4.8)

obtained, the objective function defined from the clinical radiology reports

aims to learn the co-occurence between the two clinical words cwi and ˜cwj

by reducing the squared difference between the inner dot product and the

logarithm of the co-occurences between the context and target clinical words

in the matrix M c.

• Incorporating Clinical Knowledge Base to GloVe Model:

The GloVe is an unsupervised learning algorithm to obtain word embed-

dings or vector representation of words learnt from the given corpus and

does not utilize any existing Knowledge Bases. As a result, GloVe cannot

acquire reliable embeddings from infrequent words, posing a severe challenge

in capturing semantics, which is essential in clinical text mining. Similarly,

the clinical datasets available today are small, domain-specific and limited

to private medical organizations, facing a significant challenge to learn word

embeddings from the limited vocabulary. We utilize learned word embed-

dings as a knowledge base to address this problem while text modelling from

the clinical radiology report corpus. Given a Clinical Knowledge Base CKB,

we generate the objective function JCKB to derive the semantic connection

R(cwi, ˜cwj) seen between the respective target clinical words cwi and the

context clinical words ˜cwj. The word embeddings trained on 4.5 million

Stanford reports (Zhang et al. (2018b)) is considered in this experiment as a

concrete case for a Clinical knowledge base. There are no specific guidelines

to use any particular knowledge base; nevertheless, any knowledge base that

creates a semantic relationship between the clinical words can be utilized as

a Clinical Knowledge Base.

RCKB = kvTi · ˜kvj (4.10)

Here, RCKB represents the scalar value derived from the inner dot product

between the knowledge vectors of target word kvi and context word ˜kvj

from Clinical Knowledge Base CKB, which corresponds to the clinical words

cwi and ˜cwj in the Clinical Radiology Reports CR. The objective function

obtained after incorporating clinical knowledge base is as follows:

JCKB =
V∑

i,j=1

f(M c
ij)(R

CKB + bi + b̃j − log(M c
ij))

2 (4.11)
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Here, bi and bj represents the scalar biased real-valued terms associated

with the clinical words cwi and c̃wi respectively. As shown in Eq. (4.11),

the objective function obtained from the clinical knowledge base learns the

co-occurrence between the two clinical words cwi and ˜cwj by reducing the

squared difference between the inner dot product of the knowledge vec-

tors obtained from the clinical knowledge base and the logarithm of the

co-occurrences between the clinical words cwi and ˜cwj in the co-occurrence

matrix M c. Eq. (4.11) represents the weighted least squares loss, which

measures the disparities between predicted word embeddings and the actual

embeddings from the medical cohort. By minimizing this loss, we aim to

make precise predictions that closely align with word co-occurrence proba-

bilities in a large text corpus. It is essential to highlight that GloVe word

embeddings are acquired through unsupervised learning, capturing statis-

tical word relationships in the corpus. Consequently, our prediction task

involves a regression-type problem, seeking to predict continuous values rep-

resenting the word embeddings. In this context, the weighted least squares

loss is a suitable choice for optimizing the model and refining the embeddings

for our specific medical dataset.

The optimization algorithm employed for generating word embeddings was

Stochastic Gradient Descent (SGD) (Ruder, 2016). We opted for SGD over

other popular optimizers like Adam (Kingma and Ba, 2014) due to spe-

cific reasons that cater to our unique dataset and computational limitations.

Firstly, our word embedding generation process is centered around a rela-

tively small dataset, and our computational resources are limited. In con-

sideration of these constraints, we found that SGD’s simplicity and lower

memory requirements make it a more practical and feasible choice. While

Adam might demonstrate faster convergence on larger datasets, its advan-

tages might not be as prominent when dealing with our specific dataset

size. Secondly, we noticed that our word embedding generation process is

relatively tolerant of noise. As a result, we found SGD’s inherent noisi-

ness to be advantageous in effectively navigating away from local minima.

Since the word embedding optimization problem can involve non-convex loss

surfaces, SGD’s stochastic updates enable exploration of diverse regions in

the loss landscape, holding the potential to produce improved word repre-

sentations. Moreover, to ensure a comprehensive evaluation, we conducted

multiple empirical comparisons between SGD and Adam on our specific task.

Intriguingly, despite Adam’s reputation for being less sensitive to hyperpa-
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rameters, we noticed that SGD with a carefully tuned learning rate schedule

outperformed Adam in terms of word embedding quality and downstream

task performance. Notably, we employed a Greedy Search approach to select

the hyperparameters, thereby ensuring a robust evaluation process.

4.2.3 Embedding Layer

The pre-trained word embeddings acquired from the 4.5 million Stanford Radiol-

ogy reports are loaded into the embedding layer as a knowledge base, and word

vectors for each clinical word from the clinical radiology reports are learnt. The

radiology report findings are available in varied sizes; hence, they are padded to

have the same length. Firstly, the unique words from the clinical corpus are ex-

tracted by tokenizing the report findings. Next, the hash of each word is generated

by integer encoding for every clinical word. In other words, a lookup table or em-

bedding matrix is created for each clinical word with the unique integer number

as an index. Finally, the embedding layer emulates as a hidden layer by convert-

ing every integer input into one-hot vectors and performing matrix multiplication

with an embedding weight matrix. The corresponding embedding matrix of the

clinical words for a given radiology report corpus is produced as an output of the

embedding layer. In our experiment, the pre-trained clinical knowledge base is

ingested as a dictionary of 260 padded clinical words to generate the embedding

weight matrix of word vectors with the output dimension of 100. The Algorithm

1 presents clinical knowledge-based Text modelling.

4.2.4 Discriminative Dimentionality Reduction using Con-

volution Neural Network (DDR-CNN)

Dimensionality Reduction is a crucial component of any Machine learning or

Deep Learning task. The main objective of any Discriminative Dimensionality

Reduction technique is to convert the embeddings from high-dimensional to low-

dimensional space such that the essential discriminative information is preserved

(Roweis and Saul, 2000). We employ Convolution Neural Network (CNN) to pre-

serve the most discriminative features by learning the high-dimensional embed-

dings in lower-dimensional space and reducing storage and computing costs. The

architecture proposed for DDR-CNN is a refined version of CNN’s architecture

(Collobert et al., 2011). CNN was selected over other popular deep learning mod-

els, such as deep autoencoders (Siddique et al., 2019), for dimensionality reduction
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due to the following reasons:

• Local Pattern Recognition: CNNs are specifically designed to capture local

patterns and spatial dependencies in data. In the context of word embed-

dings, CNNs can effectively identify and preserve important local contextual

information, which is crucial for maintaining the semantic relationships be-

tween words.

• Efficient Computation: CNNs are computationally efficient compared to

deep autoencoders, especially when dealing with high-dimensional data such

as word embeddings. CNNs utilize shared weights and local receptive fields,

making them more scalable for processing large datasets.

• Translation Invariance: CNNs possess a degree of translation invariance,

meaning they can recognize patterns regardless of their location in the in-

put. This property is beneficial for word embeddings, as it allows the model

to capture similarities between words irrespective of their positions within

sentences or documents.

• Interpretability: CNNs hierarchical structure makes it easier to interpret

the learned features at different layers. This interpretability is valuable in

understanding which linguistic features or attributes the model is focusing

on during dimensionality reduction.

• Non-linear Transformations: CNNs inherently perform non-linear transfor-

mations, enabling them to capture complex relationships within the word

embeddings. This flexibility is essential for accurately representing the nu-

ances and complexities of natural language.

• Domain Adaptation: CNNs have shown good generalization abilities across

domains, which can be advantageous when dealing with word embeddings

obtained from different sources or datasets.

While (deep) autoencoders are indeed a popular choice for dimensionality re-

duction tasks, CNNs specific architectural characteristics and their ability to cap-

ture local patterns and semantic relationships in word embeddings make them a

favorable choice in our study.

Let cxi ∈ Rd represent i -th clinical word in the sentence (i.e., findings from the

radiology report) of d -dimensional word embedding. In our experiment, we have
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considered 100 dimension word vectors for every clinical word (i.e, d=100 ). The

clinical sentence of length k (i.e., k=260 ) with required padding is represented as:

cx1:k = cx1 ⊕ cx2 ⊕ ...⊕ cxk (4.12)

The ⊕ in the above equation denotes the concatenation operator. The cxi:i+j

represents the concatenation of the clinical words cxi, cxi+1, ..., cxi+j. We generate

the discriminative features by applying the convolution operation with the filter

W ∈ Rmd to the window of m clinical words. In this experiment, we have utililized

32 filters with a window size of 5 (i.e., m=5 ). The new discriminative features

cci = f(W ·cxi:i+m−1+b) are obtained from the window of clinical words cxi:i+m−1.

Here, b ∈ R represents the bias term and f indicates the Rectified Linear Unit

(ReLU) (Agarap, 2018) activation function with kernel W applied on every avail-

able window of clinical words {cx1:m, cx2:m+1, ..., cxk−m+1:k} to produce the feature

map, cc = [cc1, cc2, ..., cck−m+1], where cc ∈ Rk−m+1.

Further, the dropout mechanism (Hinton et al., 2012) is applied to regular-

ize the network and address the overfitting problem. The dropout technique is

used during the training process to prevent co-adaptation at the hidden layer by

dropping out some number of layer outputs. Let z = [ ˜cc1, ˜cc2, ...., ˜ccn] denote the

penultimate layer and n indicates the total number of kernels. The output of

the forward propagation in the CNN is depicted by y = W · z + b. The dropout

mechanism is employed on the penultimate layer to obtain the following:

y = W · (z ⊗ δi) + b, (4.13)

Here, ⊗ is the element-wise multiplication operation between the Bernoulli random

variable or dropout rate represented by δi ∈ Rn with the feature maps in the

penultimate layer. The δi drops out the ith neuron with the probability (pi) of

becoming 1. In other words, using the dropout mechanism, we are dropping

neurons and their connections with probability (1 − p). Applying the dropout

mechanism has regularized our convolution layer by providing maximum resilience

against the overfitting problem. According to the outcome from the grid search

approach (Bergstra and Bengio, 2012), the dropout probability of 0.4 is applied

after the first hidden layer in our experiment. The feature map produced after

passing through dropout layer is ỹ = [ỹ1, ỹ2, ...., ỹM ], where M = k −m + 1.

The feature map obtained is down-sampled (pooled) using the Max-pooling

(Collobert et al., 2011) strategy to decrease the dimensionality. The main objective

is to learn the most discriminative features by computing the maximum or largest
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value for every patch of the feature map. The max-pooling layer creates a lower

resolution version of an input image and contains the essential structural elements.

The pooled feature map containing summarized version of features y
′

is produced

by applying strides s and pooling window size pw. Max-pooling layer operates on

each available windows on the feature map ỹ to obtain,

y
′

= ∥L−pw+1

i=1,i=i+smax{ỹi:i+pw−1}, (4.14)

where y
′ ∈ Rn and ∥ represents the customized concatenation operation. In

our experiment, we have considered the stridess=2 and pool window size, pw=2

on the feature map of length, L=256. To begin with, i is initialized to 1 and

incremented with the number of strides until it reaches L-pw+1 to generate the

discriminative feature map, y
′
1:128 = max{ỹ1:2} ⊕max{ỹ3:4} ⊕ ...⊕max{ỹ255:256}.

The feature map obtained from the max-pooling layer is flattened and ingested

into a dense layer to produce the features adjusting to the channel dimension.

4.2.5 Network Structure of UM-TES:

In network architecture of UM-TES, the findings retrieved from the clinical radi-

ology reports are preprocessed and are padded to make the input size 260. The

proposed clinical knowledge-based text modelling is employed to generate the word

embeddings of size 260x100. We use kernel size of 5, filter size of 32, strides of 1,

pool size of 2, dropout of 0.4 and learning rate of 0.001 as hyperparameters for

DDR-CNN. The discriminative clinical features of size 1024 are extracted by ap-

plying DDR-CNN on the word embeddings. We represent the final textual features

obtained as Mt = {t1, t2, t3, ..., t1024}.
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Algorithm 1: Clinical Knowledge-based Text Modelling

Input: Medical-Knowledge-Base: Pre-Trained Word embeddings on 4.5

million Stanford Radiology Report, Medical-Corpus:

Unstructured Radiology Reports

Output: A Text Model trained on Unstructured Radiology Report

Corpus with Word Embedding Representation

1 initialization;

2 Function Clean(S):

3 Remove the Punctuation from S.

4 Remove Stopwords from S.

5 Stemming operation is applied on S to remove suffix.

6 return S;

7 End Function

8 Function Tokenize(Medical-Corpus):

9 for each findings fi ϵ Medical-Corpus do

10 Cleaned-Findings←− Clean(fi);

11 tokens←− Cleaned-Findings are split into tokens;

12 end

13 return tokens;

14 End Function

15 Function Convert-Word-to-Embeddings(Medical-Corpus):
• Tokenized-Docs ←− Tokenize(Medical-Corpus)

• Let v1, v2, ... , vn be the Unique medical words (i.e., Vocabulary) obtained

from the Tokenized−Docs.

• Generate one hot vector hvi:n for each word in a Vocabulary vi:n.

• Let k be the input length of each Tokenized−Docs (Pad the documents if

necessary.

• Generate the knowledge-based word embeddings.

– The co-occurrence between the two medical words are learnt by the

objective function defined in the Eq. (4.11) using Stochastic Gradient

Descent by minimizing the kvi, ˜kvj, bi and b̃j from the large medical

corpus (refer Eq. (4.11) for term details).

– Load the Medical-Knowledge-Base as the Embedding Weight Matrix

with d-dimension word knowledge vectors kv1i:d, kv
2
i:d, ... , kvki:d =

kvj:ki:d ,(where, i = 1, 2, ..., d) for all the medical words k.

• The corresponding matrix is obtained by matrix multiplication

between one hot vector of each word in a vocabulary and Embedding

Weight Matrix through Embedding Layer with input size k and the

output dimension d is, k̃v
j:k

i:d ←− hv˙i:n× kv˙i:dˆj:k

return Word Vectors k̃v
j:k

i:d of size k×d

16 End Function
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4.2.6 Fully connected Deep Neural Network (DNN) for

Disease Prediction

Deep Neural Network (DNN) (Bengio (2009); Schmidhuber (2014)) is applied

in the proposed framework for predicting whether the disease exists or not in

the Radiology report. DNN is typically a multi-layer neural network, influenced

by a biological neural network consisting of a collection of connected modules

named neurons. DNNs comprise multiple such connected units between the input

and output layers. The flattened discriminative features y
′ ∈ Rn obtained from

the CNN-DDR module are given as the input to a fully connected, four-layered

Deep Neural Network for predicting whether disease exists or not in the radiology

reports. The basic operation performed by DNN on the flattened discriminative

features is forward propagation or inference, represented as,

y
′

i+1 = h(Wi · y′i + bi), (4.15)

Where Wi=0,1,2 are the weight arrays and bi=0,1,2 are the bias of the DNN

Layers. Here, h() is the non-linear function applied to every element of the feature

vector. The non-linear function ReLU is applied at the penultimate layers, and

the Sigmoid operation for the binary classification is applied at the output layers.

For our experiment, based on a grid search approach Bergstra and Bengio (2012),

dropout probability of 0.2 is applied after the first hidden layer to restrain the

model from overfitting.

4.3 Comparison with State-of-the-art Text Mod-

elling Strategies

We compare the proposed UM-TES model with the State-of-the-art text modelling

strategies for predicting pulmonary diseases from radiology free-text reports, as

shown in Figure 4.2. The findings section from the reports is extracted from

the corpus and passed through the basic pre-processing stage to clean the data.

The refined text is ingested into various NLP techniques, including the proposed

framework to convert the text into meaningful word embeddings. The textual fea-

tures retrieved are then given as input to a Fully connected Deep Neural Network

(DNN) for pulmonary disease prediction. With the GloVe model, the following

are the other state-of-the-art text modelling strategies considered for comparison:

1. Bag of Words (BoW): BoW (Sivic and Zisserman, 2009) is the primary
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word embedding technique in which the sequence of words is converted into a

bag of words. In the BoW strategy, the word occurrence count is calculated,

disregarding the grammar. The vocabulary of unique words is generated

from the radiology cohort, and the number of occurrences of each word is

counted. The major drawback with the above technique is that the word

count will provide information about the occurrences of the word in a cohort

ignoring the context of the word.

2. Term Frequency— Inverse Document Frequency (tf-idf) tf-idf (Sam-

mut and Webb, 2010) provides a statistical evaluation of how relevant a ra-

diology word is to a cohort. The tf-idf comprises two steps: firstly, term

frequency is calculated by counting the word occurrences in a radiology co-

hort. The inverse document frequency will diminish the weights provided

on common words. tf-idf is based on BoW; subsequently, it doesn’t capture

the semantics of the medical word in a cohort.

3. FastText: FastText (Bojanowski et al., 2016) is a type of word2vec model,

where the n-gram (i.e., sequences of adjacent characters) of characters repre-

sents each radiology word. This will allow the model to learn the semantics

of the shorter words and allows the model to understand the suffixes and pre-

fixes of the radiology words. After the n-gram representation of the words,

the skip-gram strategy is applied to learn the word embeddings. The major

drawback of this method is the higher memory requirement as the model

deals with the character of words.

4. Continuous bag of words (CBOW): CBOW (Wang et al., 2017b) The

CBOW is an unsupervised word2vec-based model which takes radiology con-

text words as input and predicts the radiology target word. The lambda and

softmax layers are utilised to learn the word embeddings by backpropagation

strategy. We update weights in the embedding layer with each epoch using

the gradient descent technique.

5. Skip-gram: Skip-gram (Mikolov et al., 2013a) model predicts the radiology

context word given the target word. The positive and negative input sample

is created and fed as input to the model. These samples allow the model to

learn the context and generate the semantic embeddings for each radiology

word. The radiology target and context word pair given as input is merged

to compute the dot product of the word embeddings. These embeddings

are then passed through the sigmoid layer that provides either 0 or 1 as an
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output. The obtained output is compared with the original label, and the

loss is calculated by backpropagating for every epoch.
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4.4 Experimental Results and Discussion

This section explains the experimental evaluation of the proposed UM-TES Frame-

work. First, the dataset and cohort selection are presented, followed by the eval-

uation metrics and benchmarking results.

4.4.1 Datasets and Cohort Selection

A limited dataset becomes a severe issue in the health domain when it happens

to be multimodal data. In the case of images, there are some quality open source

cohorts. Hence, there is a necessity to validate the effectiveness of the multimodal

fusion models on the publicly available medical cohort and real-time data obtained

from the private hospital. A comprehensive study was carried out on two clini-

cal cohorts: the Indiana University chest X-ray dataset (Demner-Fushman et al.,

2016) and the real-time multimodal data acquired from a private medical hospital

[KMC Hospital (Mangalore, India)]. For our investigation, the de-identified data

is leveraged. The Institutional Ethics Committee (IEC) approval was granted by

the Kasturba Medical College (KMC), Mangalore, for further research purposes.

The two multimodal medical cohorts acquired consist of chest X-rays and associ-

ated radiology free-text reports. The two clinical cohorts are classified as normal

(i.e., cases with no abnormal findings or any active diseases) and abnormal (i.e.,

cases with acute pulmonary and cardiopulmonary abnormalities like Pulmonary

edema, Pleural effusion, Calcified granuloma, Pneumothorax, Cardiomegaly, Pul-

monary atelectasis, Pneumonia, Opacity/lung base, etc.). Table 4.1 represents

the summary of cases (chest X-ray with associated radiology reports) from the

Indiana University and KMC Hospital dataset. A detailed benchmarking exer-

cise is carried out on both clinical datasets to evaluate the proposed multimodal

network.

• IU Dataset: The Indiana University dataset (Demner-Fushman et al. (2016))

is a publicly available multimodal dataset containing de-identified clinical ra-

diology chest X-ray images and associated diagnostic reports. The majority

of the existing work on the Indiana University dataset focuses on cross-modal

retrieval of radiology reports given chest X-ray as input (Jing et al. (2017);

Liu et al. (2019a); Xue et al. (2018)). To the best of our knowledge, limited

research work has been carried out on this dataset in terms of multimodal

disease prediction. The radiology reports associated with chest X-rays con-

tain findings, impression, indication, and Medical Subject Heading (MeSH)
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Table 4.1: Cohort Statistics: Chest X-Ray with associated Radiology reports from
two Institutions

Characteristics IU
Dataset

KMC
Dataset

Total No. of cases (Chest X-Ray with Radiology re-
ports)

3996 502

Total No. of cases after removing missing cases 3638 502
Total No. of cases after data augmentation 6229 1498
Total No. of Sentences 17990 14537
Total No. of Words 143177 90221
Total No. of Vocabulary 1731 400
Percentage of Normal cases 38% 52%
Percentage of Abnormal Cases 62% 48%

indexing comprising encoded diseases and findings. We chose 3638 frontal

chest X-rays with their respective radiology notes. The chest X-ray with

missing reports is removed since we are conducting disease prediction from

multimodal clinical data in our experiment. To obtain the ground truth

annotation, we have used MeSH indexing to classify the multimodal clinical

cohort into normal and abnormal classes. Finally, an experienced radiolo-

gist has carefully validated the annotated data to ensure the annotation is

accurate. As discussed in Section 4.4.2, the selected cases are augmented to

obtain 6229 chest X-rays with radiology reports for effective deep learning

prediction.

• KMC Hospital Dataset: The 502 chest X-rays with associated radiology

reports were collected from the KMC Hospital (Mangalore, India). Both

the Images and reports are de-identified to prevent any patients’ personal

information from being revealed. Each X-ray image and radiology report

are manually reviewed by an experienced radiologist and are categorized

into normal and abnormal classes. Equal data distribution is considered to

avoid biasing the model into one category. The abnormal classes contain

lung diseases such as pleural effusion, Tuberculosis, Pneumonia, Pneumoth-

orax, Cardiomegaly, Consolidation, Edema, bronchiolitis, and Fibrosis. As

the dataset collected was small in size, we applied various augmentation

techniques as described in Section 4.4.2 to increase the cohort size to 1498

for effective multimodal disease prediction.
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4.4.2 Data Preparation and Augmentation Stage

A large amount of high-quality data is required to develop a robust deep learning

model with good performance (Chen and Lin (2014)). However, obtaining such

data is challenging. One approach to addressing this issue is to enable practitioners

to artificially expand the diversity of data available in the training set by augment-

ing the original dataset. Data augmentation also prevents overfitting problems and

increases the model’s ability to adapt to the new, unseen data derived from the

same distribution as the one used to build the model (Dvornik et al. (2019)). As

the size of the collected radiology medical cohort was too small for effective disease

prediction, we applied data augmentation to produce a well-balanced and good-

quality dataset. Data Augmentation must be carefully adapted, as the medical

images are relatively sensitive to the various operations that can alter the original

training set’s actual distribution by introducing additional outliers.

As a part of data augmentation, we have used a series of geometric transforma-

tions on the training set. Following are the various data augmentation techniques

applied to two medical cohorts: To begin with, we have applied rotation aug-

mentation that randomly rotates the image by -5 to +5 degrees. Next, we have

performed random zooming inside the X-ray image with a probability of 0.95 and

a randomly chosen value between 1.1 and 1.5. Further, we have randomly changed

the brightness of the image between 0.5 and 1.5. The value 0.0 produces the black

image, the value 1.0 gives the original image, and a value greater than 1.0 gener-

ates a brighter image. Finally, a shear transformation is applied to tilt the image

randomly between the range -5 and +5. The various data augmentation tech-

niques applied to the medical cohort and the ranges of each method are shown in

Table 4.2. For our experiment, we have used Augmentor (Bloice et al. (2017a)),

a python-based image augmentation library, to perform the data augmentation of

our medical cohort. Chapter 5 offers an extensive overview of the diverse data aug-

mentation techniques applied to both the Indiana University and KMC hospital

datasets.

4.4.3 Evaluation Metrics

The following six evaluation metrics were used to assess the effectiveness of the

UM-TES framework: F1 score, precision, recall, accuracy, Matthews correlation

coefficient (MCC) and Area Under the Receiver Operating Characteristics (AU-

ROC). The number of abnormal cases in the medical corpus that are correctly

predicted as abnormal cases by the prediction model is called as True Positive
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Table 4.2: The various data augmentation techniques applied on the medical
cohort with the ranges of each techniques

Augmentation Techniques Range
Rotation [-5, +5]
Zooming 0.95
Brightness [0.5, 1.5]
Shear Transformation [-5,+5]

(TP). The number of normal cases in the medical corpus that are correctly pre-

dicted as normal cases by the prediction model is called True Negative (TN). The

number of abnormal cases that are predicted as the normal case is called False

Negative (FN). The number of normal cases predicted as the abnormal case is

called as False Positive (FP). The accuracy is referred to as the number of exact

predictions (i.e., TP+TN) from the given training set divided by the total number

of predictions made, as shown in Eq. (4.16). Precision, as defined in Eq. (4.17)

is the ratio of cases that are tested abnormal and are abnormal (i.e., TP) by the

total number of correct predictions (i.e., TP+FP). Precision indicates the fraction

of cases that actually have the diseases from the cases that are predicted to be

diseased or abnormal. The recall, as defined in Eq. (4.18) is the ratio of cases that

are tested abnormal and are abnormal (i.e., TP) by the cases that are actually

abnormal ( i.e., TP+FN). Recall shows the fraction of correctly predicted diseases

from all the cases in the set that actually have the diseases. The higher the recall,

the fewer actual instances of diseases go unpredicted.

We consider the F1-score to investigate the symmetry between precision and

recall and also due to the uneven data distribution in the IU dataset. The F1-

score, as depicted in Eq. (4.19) is the harmonic mean between precision and

recall. We also consider MCC, which considers all four values of confusion metrics

to check the balance between the two classes of different sizes. MCC, as defined in

Eq. (4.20) is the correlation coefficient between the true and the predicted binary

classification. MCC returns the value between +1 and -1, where +1 indicates an

accurate prediction, 0 shows a random prediction, and -1 indicates a completely

wrong prediction. The higher the correlation between the observed and predicted

classes, the better the prediction. AUROC shows the performance measure of

binary classification at different threshold settings. The AUROC curve is plotted

between the True Positive Rate and the False Positive Rate. AUROC near 1

indicates good separability between the two classes (i.e., normal and abnormal

cases), and near 0 indicates bad separation between the classes.
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Accuracy =
TP + TN

TP + TN + FP + FN
(4.16)

Precision(P ) =
TP

TP + FP
(4.17)

Recall(R) =
TP

TP + FN
(4.18)

F1− Score = 2 · P ·R
P + R

(4.19)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.20)

When dealing with almost balanced classes in the KMC dataset, it is essential

to use a variety of evaluation metrics to gain a comprehensive understanding of

the model’s performance. While accuracy is commonly used, it may not be the

most informative metric, as it can be sensitive to minor changes in predictions

and doesn’t account for varying levels of impact from misclassifications. Instead,

we should consider using multiple evaluation metrics such as precision, recall,

F1-score, MCC, and the AUROC curve. Each of these metrics provides unique

insights into different aspects of the model’s behavior and performance. Preci-

sion and recall are particularly important when misclassifying certain instances,

which can have different consequences. For instance, in medical diagnoses, false

negatives can lead to severe health issues, while false positives may cause unneces-

sary stress for patients. By focusing on precision and recall, we can better assess

the model’s ability to correctly identify positive instances among the predicted

positive instances and all actual positive instances, respectively. In real-world

scenarios, the ground truth labels may have inaccuracies themselves. By using

multiple evaluation metrics, we can understand how the model performs under

different evaluation assumptions and gain insights into the quality of the ground

truth data. Considering a range of evaluation metrics allows us to have a more

nuanced view of the model’s performance, considering different aspects and con-

sequences of misclassifications. This information becomes especially valuable in

cases where the classes are nearly balanced and misclassifications may have a sig-

nificant impact. In summary, utilizing a variety of evaluation metrics provides

a more stable and insightful assessment of the model’s performance, taking into

account various real-world considerations and data characteristics. This approach

helps in model selection, performance monitoring, and interpretation for practical

applications.
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4.4.4 Results and Discussions

In order to comprehensively validate the proposed Medical knowledge-based Deep

Learning framework, we leverage various traditional ML techniques such as SVM

(Hearst (1998)), K-Nearest Neighbour (KNN) (Mucherino et al. (2009)), RF (Breiman

(2001)), LR (Hosmer and Lemeshow (2000)) and AdaBoost classifier (AB) (Fre-

und and Schapire (1996)). In order to comprehensively evaluate the proposed word

embedding model, we have compared its performance with BoW, tf-idf, FastText,

CBOW, Skip-gram, and GloVe embedding models. The extensive benchmarking

investigations were conducted to verify the efficacy of the proposed model with

respect to the state-of-the-art NLP and ML models. For our experiment, we have

used the NVIDIA Tesla M40 server with a 24GB GPU, a 3TB Hard disk, 128 GB

of RAM, and the Ubuntu server Operating System. The radiology corpora are

divided into training and test sets (i.e., IU dataset: no. of training set =5606,

test set = 623, and KMC Hospital dataset: no. of training set = 1348, test set =

150). The UM-TES framework was trained for 100 epochs, and 10-fold stratified

cross-validation was applied to examine the proposed model.

The findings extracted from the report are preprocessed and padded with an in-

put size of 260. The proposed Knowledge-based Medical Text modelling is applied

to the free-text to obtain word vectors of size 260x100 =26000. The DDR-CNN is

utilized to produce the most discriminative medical features of size 4096. Further,

the DNN-based prediction model is employed on the low-dimensional features ex-

tracted from DDR-CNN to detect the pathology present in the reports. The grid

search technique (Bergstra and Bengio, 2012) is used to choose the optimal hy-

perparameters for fine-tuning the model parameter setting. We implemented the

proposed model using a well-known deep learning framework, Tensorflow (Abadi

and et. al., 2015). The following are the hyperparameters set for DDR-CNN and

the DNN model: Kernel size: 5, filter size: 32, strides: 1, dropout probability: 0.4,

pool size: 2, and learning rate: 0.001. We have also utilised the Adam optimizer

and binary cross entropy as the loss function.

4.4.4.1 Performance Analysis with the State-of-the-art NLP Techniques

The qualitative benchmarked results on the Indiana University and the KMC co-

horts are shown in Table 4.3 and Table 4.4. The results show that the proposed

deep learning framework with UM-TES outperforms state-of-the-art deep learn-

ing strategies. The proposed UM-TES has a staggering improvement in accuracy

of 90.40% and 94.13% on the IU and KMC datasets, respectively, showcasing
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the model’s prediction performance compared to the other state-of-the-art mod-

els. Our proposed UM-TES has achieved the 3% improved precision compared

to CBOW and Skip-gram models, proving its ability to predict abnormal classes

correctly. The increase in recall denotes the lesser chances of abnormal classes be-

ing unpredicted. The superior F1-Score and MCC of UM-TES indicate that the

proposed model can accurately predict pulmonary disease despite a class imbal-

ance problem. The proposed model has obtained an AUROC of 0.9555 and 0.9651

for the IU and KMC radiology cohorts, indicating that the model can accurately

predict the normal and abnormal classes. The graphical visualization depicting

the performance evaluation of the proposed UM-TES with state-of-the-art NLP

techniques on the IU and KMC radiology cohorts is shown in Figure 4.4 and

Figure 4.5. The analysis shows that the knowledge base incorporated for the pro-

posed medical text modelling technique has significantly impacted performance by

learning unseen or rare medical words. Henceforth, the proposed UM-TES can be

incorporated when there is a low data condition while training the deep learning

frameworks.

Table 4.3: Benchmarked performance analysis results of the proposed deep
learning-based NLP technique with the state-of-the-art text modelling techniques
on the diagnostic clinical free-text cohort collected from the publicly available In-
diana University dataset

Models Accuracy Precision Recall F1-Score MCC AUROC
BoW 87.32% 0.8553 0.8150 0.8690 0.7253 0.8899
tf-idf 87.32% 0.8776 0.8026 0.8714 0.7336 0.8899
FastText 89.30% 0.8791 0.8608 0.8916 0.7931 0.9152
CBOW 89.37% 0.8956 0.8535 0.8916 0.7924 0.9221
Skip-gram 89.95% 0.8982 0.8601 0.8978 0.7924 0.9260
GloVe 87.27% 0.8741 0.8727 0.8729 0.7232 0.9333
Proposed
UM-TES

90.40% 0.9080 0.9040 0.9059 0.7939 0.9555

4.4.4.2 Performance Analysis with the State-of-the-Art ML techniques

The benchmark results are presented in Table 4.5 for the IU and KMC Hospital

datasets. The proposed model with KB outperforms compared to the traditional

ML models and DNN without KB on the publicly available dataset as well as

on the real-time collected dataset. The proposed model with KB achieves high

precision signifies that most cases belonging to the “abnormal” class are detected,

which is the main objective of our disease prediction model. We have measured
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Table 4.4: Benchmarked performance analysis results of the proposed deep
learning-based NLP technique with the state-of-the-art text modelling techniques
on the diagnostic clinical free-text cohort collected from KMC hospital

Models Accuracy Precision Recall F1-Score MCC AUROC
BoW 86.05% 0.9027 0.8358 0.8526 0.7418 0.8610
tf-idf 87.05% 0.9340 0.8396 0.8689 0.7768 0.8795
FastText 92.84% 0.9271 0.8974 0.9192 0.8701 0.9295
CBOW 92.72% 0.8764 0.8888 0.8822 0.8608 0.9294
Skip-gram 92.72% 0.9236 0.9214 0.9343 0.8608 0.9208
GloVe 92.53% 0.9270 0.9250 0.9290 0.8500 0.9630
Proposed
UM-TES

94.13% 0.9475 0.9413 0.9443 0.8827 0.9651

Figure 4.4: Performance analysis of UM-TES with state-of-the art NLP models
on IU cohort

the F1-Score and MCC, which are also essential evaluation metrics in our exper-

iment, as our data exhibit a class imbalance problem (i.e., in the IU dataset, the

pathology or abnormal class is in a higher number compared to the normal class;

refer Table 4.1). The proposed model with KB has a staggering improvement of

11-31% in F1-Score and 9-40% in MCC for the IU dataset. The higher value of

F1-Score and MCC of the proposed Knowledge-based Deep Learning model on

both IU and KMC hospital data signifies that even if there was a class imbalance,

the model was able to accurately classify according to the label “normal” and “ab-

normal”. The AUROC is plotted for the proposed model and the conventional ML
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Figure 4.5: Performance analysis of UM-TES with state-of-the art NLP models
on KMC cohort

models for the IU and KMC hospital datasets, as shown in Figure 4.6a and Figure

4.6b respectively. It is apparent that the proposed model shows a considerable im-

provement of 4-15% and 0.29-8% for the IU dataset and the KMC hospital dataset

in comparison with the standard ML techniques. The increased value of AUROC

signifies that the model is accurate in distinguishing between reports with disease

and those without disease. It is also shown that Random Forest has produced

promising results with the proposed model, which can be attributed to its ensem-

ble learning property. By leveraging ensemble learning, Random Forest combines

multiple decision trees to make predictions, leading to improved performance in

medical radiology report text classification. The effectiveness of Knowledge-based

Medical Text modelling is explained in the following section.

4.4.4.3 Effect of Clinical Knowledge-based Text Modelling

We have also examined the effect of customized Clinical Knowledge-based text

modelling compared with the Glove word embedding, as shown in Figure 4.7a and

Figure 4.7b respectively. There is a significant increase of 3% in terms of accuracy,

precision, recall, F1 score and around 7% improvement in MCC for the IU dataset.

There is a considerable gain of 2% in terms of accuracy, precision, recall, F1 score

and around 3% improvement in MCC for the KMC dataset. The results depict

that incorporating knowledge-base with the word-embedding models significantly
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(a) Indiana university dataset (b) KMC Hospital dataset

Figure 4.6: Comparing AUROC performance of proposed Deep learning model
w.r.t. State-of-art Machine Learning techniques.

Table 4.5: Benchmarking the proposed DNN model with and without Knowledge
Base (KB) against the State-of-the-Art Machine Learning Model w.r.t. Indiana
University and KMC Hospital Dataset

Models
Indiana University Dataset

Acc. Pre. Recall F-Sc. MCC AUROC
SVM 73.75% 0.7319 0.7374 0.5969 0.4149 0.7997
KNN 77.16% 0.7799 0.7716 0.7054 0.5214 0.8501
RF 86.36% 0.8729 0.8637 0.7866 0.7076 0.9175
LR 79.74% 0.7951 0.7974 0.7037 0.5550 0.8686
AB 76.55% 0.7787 0.7655 0.5913 0.4823 0.8499

DNN-KB
(Proposed)

87.27% 0.8741 0.8727 0.8129 0.7232 0.9333

DNN+KB
(Proposed)

90.40% 0.9080 0.9040 0.8579 0.7939 0.9555

Models
KMC Hospital Dataset

Acc. Pre. Recall F-Sc. MCC AUROC
SVM 76.16% 0.7855 0.7619 0.7972 0.5286 0.8827
KNN 88.88% 0.8915 0.8888 0.8952 0.7769 0.9147
RF 93.53% 0.9417 0.9353 0.9370 0.8731 0.9622
LR 88.88% 0.8924 0.8890 0.8960 0.7767 0.9336
AB 88.28% 0.8886 0.8829 0.8909 0.7646 0.9482

DNN-KB
(Proposed)

92.53% 0.9271 0.9251 0.9289 0.8502 0.9630

DNN+KB
(Proposed)

94.13% 0.9475 0.9413 0.9443 0.8827 0.9651

Note: Acc.= Accuracy, Pre.=Precision, F-Sc.=F1-Score, DNN-KB=DNN without KB, DNN+KB=DNN with KB

increases the performance of the disease prediction due to the knowledge gained

from the word embeddings trained on the large corpora.
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(a) Indiana university dataset (b) KMC Hospital dataset

Figure 4.7: Effectiveness of Customized Clinical Knowledge-based Text Modelling
compared to the GloVe Embeddings

4.4.4.4 Effect of CNN-based Discriminate Dimensionality Reduction

We assessed the efficacy of our proposed model with and without DDR-CNN

on the IU and KMC medical cohorts, as shown in Figure 4.8a and Figure 4.8b

respectively. There is a substantial improvement of 2% in terms of accuracy,

precision, recall, and F1 score when the DDR-CNN model is applied for the IU

and KMC hospital datasets. There is an increase of 4% and 3% in terms of

MCC metrics for the IU and KMC Hospital datasets, respectively. The results

indicate that the DDR-CNN model obtains the most discriminative features that

can predict the abnormality from the reports. The DDR-CNN module reduces

storage and computational costs by transforming high-dimensional features into

low-dimensional features while retaining the most discriminative features.
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(a) Indiana University dataset (b) KMC Hospital dataset

Figure 4.8: Comparison of performance metrics with and without DDR-CNN

4.5 Summary

In this chapter, we have proposed a UM-TES framework comprising clinical knowledge-

based text modelling techniques with a deep learning framework to predict pul-

monary diseases in radiology free-text reports. To model the text in the diagnostic

reports, the GloVe Embedding model was used in conjunction with a knowledge

base. The textual features were then processed using the DDR-CNN model to

reduce their dimensionality. The final step was to apply a DNN to predict any

abnormalities in the reports. Through our experimentation, we observed that the

proposed UM-TES word embedding technique yielded superior performance when

compared to state-of-the-art NLP models. Additionally, we evaluated the perfor-

mance of the DNN classifier against that of a standard machine learning-based

classifier and determined that the former achieved better results. Our observation

revealed that the improved performance of UM-TES is attributed to the inte-

gration of a radiology knowledge base, which enhances prediction accuracy even

when the training cohort is small in size. Consequently, the proposed model can

be implemented in scenarios where data are scarce, which is often the case in the

medical domain, where cohorts are institution-specific or restricted to specific do-

mains. While deep learning models have the capability to learn representations

directly from raw data, our UM-TES model employs a two-step approach that

presents several noteworthy benefits. Firstly, it excels in producing semantically

meaningful representations of medical words, leading to enhanced representation

quality. Secondly, the model’s modularity, achieved by separating feature extrac-

tion (word embeddings) and classification (DNN), introduces a clear distinction of
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responsibilities, making it more manageable and maintainable. Lastly, this design

enhances the adaptability of the UM-TES model for NLP-based text classification

tasks.
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Chapter 5

Unimodal Medical Visual Encoding

Subnetwork (UM-VES) for Disease

Prediction from Radiology Chest X-ray

Image

5.1 Introduction

For decades, chest diseases have been one of the most prominent causes of anguish,

fatality and use of health services worldwide. According to the World Health Or-

ganization, nearly 235 million people suffer from chronic respiratory disease every

year. Yearly, there are two million rises in the number of chronic respiratory dis-

ease cases1. The impact of these diseases varies and rapidly spreads depending on

geographic features, lifestyle, etc. Modern medical science relies on various radio-

logical imaging data like CT, X-ray, MRI for disease diagnosis. X-ray is a technique

used for decades by experts to visualize abnormalities in the acute and internal or-

gans. CXR is considered the primary tool for diagnosing chest diseases, which may

be due to factors such as accessibility, minimal radiation exposure, and reasonable

commercial pricing, along with the diagnostic capability to identify a wide variety

of pathologies. Annually, it was estimated that around 238 erect view CXR for

every 1000 population was reported in developed countries2. Chest disease is ana-

lyzed from the CXR image in the form of blunted costophrenic angles, cavitations,

infiltrates, consolidation, and broadly distributed nodules (Abiyev and Ma’aitah,

2018). By inspecting the CXR images, the radiologist can analyze the diseases and

1WHO Chronic respiratory diseases. Online: https://www.who.int/health-topics/

chronic-respiratory-diseases
2United nations scientific committee on the effects of atomic radiation (UNSCEAR). Online:

http://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-A-CORR.pdf
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note the valuable findings in the reports. With the tremendous growth in diagnos-

tic images, screening diseases with CXR becomes a tedious and time-consuming

task for a radiologist. The computer-assisted clinical recommendation system

can aid radiologists by minimizing their workload by providing primary screening

(Zhang et al., 2021). The advancement of CNN (Krizhevsky et al., 2012a) has

provided remarkable progress in various computer vision applications, including

computer-assisted clinical recommendation systems. The possible benefits of au-

tomated clinical systems will be high sensitivity to minute findings, automating

the tedious daily process, and providing analysis during the unavailability of the

experts.

Furthermore, the abnormalities in CXR images come in various shapes and

sizes. Also, every single abnormality in pulmonary diseases occurs in variable

sizes. For example, different cases of a single pathology like pulmonary infiltrate

exist in various forms and sizes. In CXR, there is a possibility of overlapping with

the anatomical part and abnormalities, making it challenging to interpret from

the CXR. In the case of frontal CXR, there are chances that the nodule posterior

is likely to overlap with the heart. Henceforth, there is a need to learn multi-scale

features from the CXR to accurately predict the varied sizes of disorders. Deep

Learning has been a preferred approach for medical image processing tasks due to

its significant impact in this field (Litjens et al., 2017). Deep learning approaches

usually require a massive amount of training data as there is a need to fine-tune a

large number of parameters during the learning process. This has encouraged the

research community to publish many diagnostic CXR cohorts with expert anno-

tations for research purposes (refer Table. 2.1). As the size of the input images

increases, there is a requirement to use a deeper network to assure that the re-

ceptive field of the network is wide enough. Several existing studies have used

ResNet-50 (He et al., 2015) and DenseNet-121 (Huang et al., 2016) for capturing

imaging features. Even though there is an improvement in performance, the com-

putation cost and network parameters significantly increase due to the enlarged

inputs integrated with the deep networks, further increasing the time taken to

train and optimize the model. Consequently, this makes further deployment on

mobile and embedded devices challenging.

5.1.1 Problem Statement

To enhance the accuracy of identifying abnormalities in diagnostic images such as

X-rays, CT, and MRI scans, it is essential to create automated techniques capable
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of dealing with the variety of internal organs illustrated in these images. The

multidimensional nature and abundance of information present in medical images

necessitate the development of efficient techniques for extracting optimal features

from diagnostic cohorts. For CXR images, detecting abnormalities in various

shapes and sizes necessitates learning multi-scale features. As the complexity

and size of the image data increase, the deep learning models required to extract

optimal features become more intricate, with higher computational demands and

network parameters. This leads to longer training and optimization time, making

the process time-consuming and resource-intensive. Additionally, these challenges

become more pronounced when deploying these models on mobile and embedded

devices, where processing power and memory are often limited. Consequently,

developing techniques to mitigate these challenges is an important consideration

when designing automated methods for medical image analysis. The problem

statement is defined as follows:

“Considering an unstructured diagnostic imaging cohort with a varied-

sized pulmonary abnormality, design and build a lightweight and ex-

plainable multi-scale deep learning framework for predicting chest dis-

eases to facilitate an intelligent clinical recommendation system.”

In this chapter, we aim to expand the networks receptive field and learn multi-

scale discriminative features by maintaining the model parameters effectively. The

major contribution of this study is summarized as follows:

• With the focus of designing an effective deep learning network suitable to

employ in cloud computing, mobile vision, and embedding system appli-

cations, we present an explainable and lightweight UM-VES framework to

predict abnormal diseases from chest radiographs.

• To enlarge the receptive field and capture the discriminative multi-scale

feature without increasing convolution parameters, we propose an effective

Multi-Scale Dilation Layer (MSDL), which is conducive to learning varied

sized pulmonary abnormalities and boosts the prediction performance.

• We adopt a lightweight Depthwise Separable Convolution Neural Network

(DS-CNN) to learn the dense imaging features by adjusting lesser network

parameters than the conventional CNN. We employed a fully connected Deep

Neural Network to predict the abnormalities from the Chest Radiographs.
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• We incorporated the gradient-weighted Class Activation Mapping (Grad-

CAM) technique to visualize and localize the abnormalities in the chest

region. This makes our network explainable by checking the decision model’s

transparency and understanding their ability to arrive at a decision.

• We compared the proposed UM-VES with the existing state-of-the-art Deep

Learning strategies. We assessed our model’s competence by applying it

on two datasets: the publicly available Open-I dataset (IU) and Real-time

diagnostic data collected from a private hospital.

• We propose Radiology Deep Convolutional GAN (RAD-DCGAN) inspired

by DCGAN (Radford et al., 2015) for performing data augmentation tasks

that mainly enhance the performance of deep CNN classifiers. Following are

the main contributions of this study:

• We conducted a thorough quantitative analysis of the proposed RAD-DCGAN

method and compared its performance with basic augmentation techniques,

including rotation, zooming, brightness, and shearing. We also evaluated

the combined images obtained from all the basic augmentation strategies to

determine their impact on the model’s performance.

• We utilize state-of-the-art deep learning models such as MobileNet, VGG16,

EfficientNetB1, VGG19, ResNet50, Xception, InceptionV3, and DenseNet

to classify diseases from X-ray and MR images generated by RAD-DCGAN

and traditional augmentation techniques.

5.2 Methodology

We aim to design an effective deep learning network that is lightweight and ex-

plainable to predict abnormalities from the Chest X-ray. The general architecture

of the proposed UM-VES is presented in Figure 5.1. The overall architecture of

the proposed UM-VES with filter shape, stride, input size, and output size is

shown in Table 5.1. We propose an MSDL subnetwork that incorporates three

dilation convolution layers with varied dilation rates on the input CXR to obtain

multi-scale features. The discriminative features obtained are passed through a

series of DS-CNN to learn dense imaging features with lesser network parameters

than conventional convolution networks. Finally, a fully connected DNN is applied

to the extracted features for predicting the abnormalities from the CXR, and the



Chapter 5. Unimodal Medical Visual Encoding Subnetwork (UM-VES) 127

Grad-CAM strategy is employed to visualize the abnormalities by superimposing

a heatmap on the CXR.

Table 5.1: Overall architecture of the proposed UM-VES: Multi-Scale Dilated
Network with depthwise Separable convolution

Type Filter Shape Stride Input Size Output Size
Dilated Convolution (dr=1) 3 x 3 x 1 1 150 x 150 x 3 150 x 150 x 1
Dilated Convolution (dr=2) 3 x 3 x 1 1 150 x 150 x 3 150 x 150 x 1
Dilated Convolution (dr=3) 3 x 3 x 1 1 150 x 150 x 3 150 x 150 x 1

Concatenation
(Merge Layer)

- -
150 x 150 x 1 (dr=1)
150 x 150 x 1 (dr=2)
150 x 150 x 1 (dr=3)

150 x 150 x 3

Convolution 3 x 3 x 32 2 150 x 150 x 3 75 x 75 x 32
Depthwise Convolution 3 x 3 x 32 1 75 x 75 x 32 75 x 75 x 32
Seperable Convolution 1 x 1 x 64 1 75 x 75 x 32 75 x 75 x 64

Zero Padding - - 75 x 75 x 64 76 x 76 x 64
Depthwise Convolution 3 x 3 x 64 2 76 x 76 x 64 37 x 37 x 64
Seperable Convolution 1 x 1 x 128 1 37 x 37 x 64 37 x 37 x 128
Depthwise Convolution 3 x 3 x 128 1 37 x 37 x 128 37 x 37 x 128
Seperable Convolution 1 x 1 x 128 1 37 x 37 x 128 37 x 37 x 128

Zero Padding - - 37 x 37 x 128 38 x 38 x 128
Depthwise Convolution 3 x 3 x 128 2 38 x 38 x 128 18 x 18 x 128
Seperable Convolution 1 x 1 x 256 1 18 x 18 x 128 18 x 18 x 256
Depthwise Convolution 3 x 3 x 256 1 18 x 18 x 256 18 x 18 x 256
Seperable Convolution 1 x 1 x 256 1 18 x 18 x 256 18 x 18 x 256

Zero Padding - - 18 x 18 x 256 19 x 19 x 256
Depthwise Convolution 3 x 3 x 256 2 19 x 19 x 256 9 x 9 x 256
Seperable Convolution 1 x 1 x 512 1 9 x 9 x 256 9 x 9 s 512

5 x
Depthwise Convolution

Seperable Convolution

3 x 3 x 512

1 x 1 x 512

1

1

9 x 9 x 512

9 x 9 x 512

9 x 9 x 512

9 x 9 x 512
Zero Padding - - 9 x 9 x 512 10 x 10 x 512

Depthwise Convolution 3 x 3 x 512 2 10 x 10 x 512 4 x 4 x 512
Seperable Convolution 1 x 1 x 1024 1 4 x 4 x 512 4 x 4 x 1024
Depthwise Convolution 3 x 3 x 1024 2 4 x 4 x 1024 4 x 4 x 1024
Seperable Convolution 1 x 1 x 1024 1 4 x 4 x 1024 4 x 4 x 1024
Global Average Pooling Pool 4 x 4 1 4 x 4 x 1024 1 x 1 x1024

5.2.1 Multi-Scale Dilation Layer

We propose a Multi-Scale Dilation Layer to obtain a broad receptive field using

three-channel dilation convolution layers with varied dilation rates to capture the

multi-scale discriminative features from the CXR images, as shown in Figure 5.2.

The MSDL enlarges the receptive field using varied convolution kernels and cap-

tures the wider context from the input CXR with less cost. The complete region

that an eye can see in the human visual system is called the field of view. The

human visual system consists of millions of neurons that collect various pieces of
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information. The receptive field can be defined as a small part of the total field

of view in a biological neuron. In short, it’s a portion of the information that is

available to a single neuron. Correspondingly, the receptive field in deep learning

is the part of the input region that produces the output feature (Araujo et al.,

2019).

Dilated or Atrous convolution was initially developed as an algorithm for the

wavelet transformation (Holschneider et al., 1989). The primary goal of dilation

convolution is to enhance the image resolution by inserting “holes” (zeroes) in

between every pixel in convolution filters, allowing the deep learning model to

capture the dense features. Here, the zeros are viewed as the “gaps” between the

pixels, and these gaps can be varied into different widths referred to as dilation

rates (Wang et al., 2017a). CNN is the widely applied deep learning model that

includes various layers like input and output, convolution, pooling, and fully con-

nected layers. The image features are captured by passing them through multiple

layers at different levels. Out of all the layers, convolution and pooling are con-

sidered the crucial layers for learning features from the images. The convolution

layer detects multiple spatial features from the input image through the receptive

field, and the pooling layer progressively down-samples the size of these spatial

patterns to decrease the computation cost and the number of parameters utilized

(Yamashita et al., 2018). The pooling layer in CNN provides a wider receptive

field; however, the increased usage of the pooling layer results in the loss of in-

formation (Yu and Koltun, 2016). Hence, we have leveraged dilation convolution

to capture the widened features without increasing the number of parameters to

extract the discriminative features from the CXR. The standard 3D-convolution

procedure can be mathematically shown as follows:

Z(th, tw, tc) =

TH−1∑
l=1

TW−1∑
m=1

TC−1∑
n=1

Y (th + l, tw + m,n) · F (l,m, n) (5.1)

In the above Eq. 5.1, the standard convolution operation is applied on the

image Y (th, tw, tc) with the convolution filter F (l,m, n) to generate the output

feature map Z(th, tw, tc), where TH , TW and TC indicates the height, width and

channel of the input chest X-ray image. The dilated convolution operation is the

variant of the convolution operation, where filter parameters are varied differently.

The same filter in the dilation convolution is applied at different ranges using varied

dilation rates. This allows dilation convolution to have a broader receptive field

than the traditional convolution operation. For example, in a standard convolution

filter 4 × 4, the receptive field of 4 × 4 is created with 16 parameters. In contrast,
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the dilation convolution filter with 4 × 4 and the dilation factor of 4 will create a

receptive field of 13 × 13 with 16 parameters. Henceforth, the broader coverage of

the CXR image is obtained with the wider receptive field by linearly incrementing

the parameter. Mathematically, the dilation convolution with the dilation rate dr

is represented as follows:

Z(th, tw, tc) =

TH−1∑
l=1

TW−1∑
m=1

TC−1∑
n=1

Y (th + dr × l, tw + dr ×m,n) · F (l,m, n) (5.2)

As shown in the Eq. 5.2, when the dr = 1, the dilation convolution operation

acts similar to a normal convolution operation. Using the Atrous convolution

operation, we propose a MSDL with a three-channel dilation operation. MSDL

is obtained by stacking three atrous convolution operation with three different

dilation factors to effectively capture the wider receptive field (refer Figure 5.2).

The features obtained from three parallel dilation convolutions are concatenated

to obtain the feature maps that are further forwarded to DS-CNN. As shown in

Figure 5.2, all three atrous convolution operations maintain the same number of

parameters: 3× 3 ( dr = 1), 3× 3 ( dr = 2) and 3× 3 ( dr = 3). However, there is

a broader coverage of the receptive field, capturing multi-scale features from CXR

by varying the dilation rates. Let Ih× Iw×R be the dimension of the input CXR

image ingested into three-channel atrous convolution in parallel and concatenated

to obtain the activation map of dimension Ih × Iw × R. Here, Ih represents the

height and Iw indicates the height and width of the input CXR, and R denotes

the number of channels. To preserve the output size of MSDL to Ih × Iw × R,

we have used three dilation convolutions (i.e., R/3). The MSDL adopts three

dilation convolutions to broaden the receptive field without increasing the number

of parameters and captures multi-scale features from the input diagnostic CXR

image. The concatenated features from MSDL are further given input to DS-CNN

to learn the dense imaging features.

5.2.2 Depthwise Separable Convolution Neural Network

(DS-CNN)

We have used DS-CNN to learn in-depth imaging features from the multi-scale

features extracted from the MSDL. The DS-CNN is a class of CNN that is generally

used for two critical reasons: 1) It leverages a lesser number of parameters than

the conventional CNN, 2) It is computationally inexpensive and can be utilized
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Figure 5.2: The Proposed Multi-Scale Dilation Layer. The three-channel Atrous
convolution layer with dilation factors dr= 1, 2, 3 are stacked together to capture
the wider receptive field. The resulting outcome from the three layers are con-
catenated to obtain the Multi-scale feature.
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in mobile-based applications. DS-CNN has been utilized in some of the deep

learning models like Xception (Chollet, 2016), and MobileNets (Howard et al.,

2017a). The DS-CNN can be further divided into Depthwise convolutions and

pointwise convolutions. Figure 5.3 shows the difference between the traditional

convolution filters and the Depthwise Separable filters. During the Depthwise

convolution operation, the convolution is applied on one channel at a time using

the S depthwise convolution filters (i.e., Cj × Cj × 1). Whereas in traditional

convolution operation, the convolution is applied to all the R channels using the S

filters (i.e., Cj×Cj×R). After the depthwise convolution operation, the pointwise

convolution is applied on all the R channels with the S pointwise convolution filters

(i.e., 1× 1×R).

Figure 5.3: Conventional convolution filters and Depthwise Separable filters
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The overall operation of the DS-CNN with depthwise and pointwise convo-

lution operations is shown in Figure 5.4. Let us assume that the input feature

map obtained from the MSDL layer applied on input CXR is Y with dimension

Ih × Iw × R. If a multi-scale feature map obtained from the MSDL is ingested

into the traditional convolution layer with kernels of size Cj × Cj × R then this

convolution operation can be mathematically represented as follows:

Zi =
R∑

k=1

Yk · Cj
i + bk, i = 1, 2, ..., S (5.3)

In the Eq. 5.3, the R and S indicate the input and output channels of the

feature maps, respectively. Here, · indicates the traditional convolution operator

and the bk represents the bias value. The output feature map generated from the

standard convolution operation is represented by Z with size Cp × Cp × S. In

the conventional convolution operation, the total number of multiplications in one

convolution (TCNN) is equal to the size of the kernel and is denoted as follows:

TCNN = Cj × Cj ×R (5.4)

As there are S kernels, the convolution operation is performed by striding every

kernel vertically and horizontally Cp times. Hence, in the standard convolution

operation, the total number of multiplications (TotCNN) can be represented as

follows:

TotCNN = S × Cp × Cp × Tsc (5.5)

Substituting the Eq. 5.4 in Eq. 5.5, we get Eq. 5.6,

TotCNN = S × Cp × Cp × Cj × Cj ×R (5.6)

Unlike traditional convolution, in depthwise convolution, every kernel of size

Cj×Cj×1 is applied on the single channel of the input activation map represented

by,

Zi = Yk · Cj + bi, k, i = 1, 2, ..., R. (5.7)

In the Eq. 5.7, the Cj represents the jth depthwise filter, and the bi indicates

the bias value. The output feature map produced from the depthwise convolution

operation is denoted by Z with size Cp×Cp×R. So, the number of multiplications
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for a single depthwise convolution operation (Tdc) can be depicted as follows:

Tdc = Cj × Cj (5.8)

The depthwise convolution operation is performed by sliding the kernel by

Cp × Cp times over R channels. So, the total number of multiplications by the

depthwise convolution can be represented as follows:

Totdc = R× Cp × Cp × Tdc (5.9)

Substituting the Eq. 5.8 in Eq. 5.9, we get Eq. 5.10,

Totdc = R× Cp × Cp × Cj × Cj (5.10)

The feature maps obtained from the depthwise convolution are passed through

the pointwise convolution operation, where the 1× 1×R kernel is applied on the

input feature map to generate the final map of size Ih × Iw × S. Here, a single

pointwise convolution operation needs 1×R multiplications. The pointwise kernel

is slided by Cp × Cp times and hence, the total number of multiplications (Totpc)

can be formally represented as follows:

Totpc = R× Cp × Cp × S (5.11)

Therefore, the overall multiplication required for depthwise separable convolu-

tion operations is equal to the total number of multiplications needed in depthwise

convolution (Totdc) and pointwise convolution (Totdc). The total multiplication

of depthwise separable convolution operations (TotDS−CNN) is given as follows:

TotDS−CNN = R× Cp × Cp × Cj × Cj + R× Cp × Cp × S (5.12)

So, to compare the complexity of DS-CNN with standard CNN, the ratio of

Eq. 5.12 to Eq. 5.6 is computed as follows,

TotDS−CNN

TotCNN

=
R× Cp × Cp × Cj × Cj + R× Cp × Cp × S

S × Cp × Cp × Cj × Cj ×R
(5.13)

Solve the Eq. 5.13 to obtain the Eq. 5.14,

TotDS−CNN

TotCNN

=
1

S
+

1

C2
j

(5.14)

Here, Eq. 5.14 shows that the DS-CNN performs 1
S

+ 1
C2

j
times faster than the
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standard CNN. Hence, dividing DS-CNN into two separate tasks (i.e., depthwise

and pointwise operations) has significantly improved the computation speed and

is lightweight compared to traditional CNN.

Figure 5.5 shows the general process flow of DS-CNN, followed by Batch Nor-

malization and ReLU. To establish a larger gradient, we have utilized Batch Nor-

malization and ReLU after every depthwise and pointwise convolution operation

(Ioffe and Szegedy, 2015). Gradient represents the measure of the steepness of the

slope. The higher the gradient, the steeper the slope, and the lower the gradi-

ent, the shallower the slope. Also, there is a need to learn in-depth features from

the diagnostic CXR, and, hence, the use of the general process flow of DS-CNN

(Figure 5.5) will make the deep learning network shallow. Therefore, in our pro-

posed UM-VES, we have utilized 27 Batch Normalization and ReLU operations,

13 Depthwise and pointwise convolution operations, and a global average pooling

layer to learn the discriminative features from the input CXR. Table 5.1 depicts

the overall architecture with the network parameter details of the proposed UM-

VES. The extracted features are further passed through the fully connected Deep

Neural Network for abnormality prediction from the input CXR.

5.2.3 Network Structure and Training of UM-VES

In our network architecture of UM-VES, the input chest X-Ray is ingested into

the UM-VES subnetwork we use Batch Normalization (BN) layers and ReLu lay-

ers after each depthwise convolution and pointwise convolution layer to make the

gradient larger (Ioffe and Szegedy, 2015). The basic structure of depthwise sep-

arable convolution followed by batch normalization and ReLu is shown in Figure

5.5. We cannot obtain the deep imaging information from the medical chest X-ray

images if the network is shallow; therefore, the use of one basic structure is insuffi-

cient to create an effective neural network. So, we have constructed a lightweight

neural network using the basic structure as shown in Figure 5.5. Many such basic

structures are joined together with global average pooling to form the UM-VES

network structure. Overall in total, the UM-VES network structure includes a

multichannel dilation layer, a concatenation layer, a convolution layer, 13 depth-

wise separable convolution layers, 27 BN and ReLu layers, and a global average

pooling layer.

The multichannel dilation layer, including three dilated convolution layers

with varied dilation rates (i.e., r=1, 2 and 3), captures a larger receptive field

with valuable imaging features. The concatenated features from the three dilated
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Figure 5.4: Overall operation of Depthwise Separable Convolution Neural Network
(DS-CNN)
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Figure 5.5: General process flow of the DS-CNN followed by Batch Normalization
and ReLU

layers are further passed through the first full convolution layer to produce a new

feature representation. The obtained feature is then passed to a series of depth-

wise separable convolution where 3 × 3 depthwise convolution kernel is applied

o to each channel of the feature map, and further 1 × 1 is used to combine the

features obtained from the previous depthwise convolution operation. Usually,

the standard convolution layer filters and combines the input into a new feature

map in one step. In contrast, the depthwise separable convolution splits it into

two stages of filtering and integrating the input into feature maps. This factor-

ization process has the effect of substantially reducing the computation and the

model size. After every 1 × 1 pointwise convolution layer, we have added BN

and ReLu layers to speed up training and enhance the network’s generalization

capability (Gu et al., 2018). Finally, we apply global average pooling to obtain

the feature map of size 1024. We represent the final imaging feature obtained as

Mx = {x1, x2, x3, ..., x1024}.

5.2.4 Fully Connected Deep Neural Network for Abnor-

mality Prediction

The Multi-scale in-depth features obtained from DS-CNN are flattened into a

single dimension and ingested into fully connected DNN or dense layers to predict

abnormalities from the Input CXR. In a fully connected DNN, every node or

neuron in one layer is connected to every other neuron in the previous layer. The
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main functionality of a fully connected DNN is to take flattened features obtained

from the MSDL and DS-CNN as input and predict whether pulmonary disease

exists or not in a diagnostic CXR. Every value from the flattened set of features

obtained from MSDL and DS-CNN indicates the probability of that feature fitting

into a particular category (i.e., disease or no disease). Hence, the fully connected

DNN predicts and decides whether the diseases exist or not wholly based on the

probabilities in the feature set. In our experiment, we used a three-layered DNN

with two hidden layers of 256 and 128 units of neurons, followed by the output

layer for binary predictions. Pictorially, the fully connected DNN for abnormality

prediction is presented in Figure 5.6.

Let Mx = x1, x2, x3, · · · , xn ∈ Rn be the flattened medical features obtained

from the DS-CNN and input to the fully connected DNN. Let Zj be the jth output

obtained from each layer and hence, Zj can be calculated as follows:

Zj = ϕ(W1 · x1 + W2 · x2 + · · ·+ Wn · xn) (5.15)

In the Eq. 5.15, the ϕ represents the non-linear activation function, and

W1,W2, ·,Wn indicates the weight parameters. We have used the ReLU (Agarap,

2018) activation function for the first two hidden layers and the Sigmoid (Narayan,

1997) activation function for the final binary output layer. We have applied

dropout = 0.2 to eliminate any overfitting problems during the network train-

ing.

5.2.5 Disease Visualization using Grad-CAM Technique

The MDSL and DS-CNN layers combined extract the multi-scale features from

the input CXR. The features retrieved are given as an input to the fully connected

DNN to convert these discriminative features into the probability score pertaining

to both classes at the Softmax Layer. The class with the highest probability score

will lead to the final prediction outcome (i.e., pulmonary disease present or not).

Gradient Class Activation Map (Grad-CAM) is a mechanism used to generate

the heatmap related to a particular class (Selvaraju et al., 2016). The Grad-CAM

provides a mechanism to check the decision model’s transparency by localizing the

abnormal image regions and makes our proposed model explainable by allowing

us to understand the model’s ability to arrive at a particular decision. Grad-

CAM takes the gradients (or weights) from the final layers of DS-CNN and uses

a heatmap to highlight the critical regions in the CXR for prediction. The areas

with the highest gradient weights significantly impact the prediction result. Back
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Figure 5.6: Fully Connected Deep Neural Network for abnormality prediction

propagating is computed with pulmonary disease = 1 and no pulmonary disease

= 0, and the Global Average Pooling (GAP) (Lin et al., 2014) of the gradient for

every possible channel is calculated as follows:

Yd =
1

fH × fW

fH∑
l=1

fW∑
m=1

wi(l,m) (5.16)

In Eq. 5.16, Yd represents the dth one-dimensional feature after performing the

GAP operation, fH and fW denotes the height and width of the two-dimensional

activation map, respectively, and wi is the ith feature map at position (l,m) ob-

tained from the DS-CNN. The updated weights are multiplied and added to the

activation map. The output scores of both classes (i.e., disease and no disease)

are computed as follows:

ScoreC =
1

fH × fW

∑
j

WC
j Fj (5.17)

Where, ScoreC denotes the score of the proposed network in class C; fH and

fW denotes the height and width of the two-dimension activation map, respec-

tively; WC
j is the weight of the jth activation map in class C, and Fj is the jth

activation map. The class discrimination positioning map is produced by comput-
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ing the gradient between the score of the proposed network in class ScoreC and

the activation map Fj as follows:

∇C
j =

∂ScoreC
∂Fj

(5.18)

Here, ∇C
j represents the gradient of the jth activation map. The final sum

produced is passed to ReLU to generate the Grad-CAM image.

HMC = ReLU(
∑
j

∇C
j Fj) (5.19)

Where, HMC denotes the normalized heat map of class C. The detailed visual

explanation of the proposed UM-VES for abnormality prediction in diagnostic

CXR images using Grad-CAM is depicted in Figure 5.7.



Chapter 5. Unimodal Medical Visual Encoding Subnetwork (UM-VES) 141

Figure 5.7: A visual explanation of the proposed UM-VES for abnormality predic-
tion in diagnostic CXR images using Gradient-weighted Class Activation Mapping
(Grad-CAM). (1) The CXR image is given as input to the network, and then pre-
diction output is obtained by passing through the proposed deep learning network.
(2) Back propagation is computed with Pulmonary Disease = 1 and No Pulmonary
Disease = 0. (3) Calculating the GAP of the gradient for every possible channel
and the gradient weights are updated for the proposed network. (4) The Grad-
CAM is generated by multiplication and addition of weights to the activation map
and ingesting the sum to the ReLU.
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Figure 5.8: Schematic representation of the architecture used in this study for
disease classification of radiology images using RAD-DCGAN and traditional data
augmentation techniques.

5.3 Data Augmentation vs. Synthetic Data Gen-

eration: An Empirical Evaluation for En-

hancing Radiology Image Classification

In this section, we propose Radiology Deep Convolutional GAN (RAD-DCGAN)

inspired by DCGAN (Radford et al., 2015) for performing data augmentation tasks

that mainly enhance the performance of deep CNN classifiers. The schematic rep-

resentation of the architecture used in this study for disease classification of radiol-

ogy images using RAD-DCGAN and traditional data augmentation techniques is

presented in Figure 5.8. We comprehensively analyze the proposed RAD-DCGAN

with the basic data augmentation strategies for radiology X-ray and MR images.

To begin with, the X-Ray or MR images are given as a separate input to the

system, where they go through a series of data augmentation and synthesis pro-

cesses. In addition, we aim to examine the effectiveness of the RAD-DCGAN

method in contrast to traditional data augmentation methods by implementing

different conventional deep learning approaches. Subsequently, we utilize a fully

connected deep neural network to classify the diagnostic images into two categories

(i.e., disease and no disease).
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5.3.1 Basic Data Augmentation

We perform random (yet realistic) geometrical translations to the original image

to enhance the diversity of the training samples. This process of transformation,

called data augmentation, is employed to enhance the effectiveness of machine

learning or deep learning models and prevent any overfitting problems. In the

medical domain, gathering huge samples of medical data is not viable as manual

data annotation needs an expert clinician’s opinion and is time-consuming. Data

augmentation comes to the rescue in a data-scarce situation by enhancing the

cohort size through random transformation and introducing variability in the co-

hort. We have employed basic data augmentation techniques, including zooming,

brightness, rotation, and shearing, for the spatial transformation of the X-rays and

MRIs. The various data augmentation techniques applied are depicted in Figure

5.9.

Figure 5.9: Basic data augmentation techniques applied on X-ray and MR images:
(a) original X-ray and MR images, (b) rotated images, (c) zoomed images, (d) after
increase in brightness and (e) sheared images

1. Rotation: The rotation technique allows us to rotate the MR and X-ray im-

ages by a certain degree. The degree of rotation should be carefully applied;

otherwise, there is a possibility of obtaining upside-down images, which is

unlikely to be seen in healthcare settings. In this study, We have used rota-

tion degrees between -5 and +5.
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2. Zooming: The zooming technique is utilized to produce images with vary-

ing zoom levels. It either allows to zoom in on the image or it will enable

adding extra pixels around the image to enlarge it. We have used the zoom

range of 0.95, meaning the zoom-in of 5% is used.

3. Brightness: The brightness technique allows us to either increase the pixel

value to result in a brighter image or reduce the pixel value to obtain darker

images. For our experiment, we utilized the brightness range between 0.5

and 1.5.

4. Shearing: The primary purpose of the shearing is to give the model the

ability to learn images from all angles and to give it the human perspective

of viewing images from various angles. In this research, we have utilized the

shear range between -5 and +5.

5. Combined Augmentation: We have incorporated a combination of data

augmentation techniques, including rotation, brightness, zooming, and shear-

ing. To assess their effectiveness, we trained a standard deep learning model

on the data generated through the individual augmentation techniques and

the combined augmentation strategy.

5.3.2 RAD-DCGAN for Synthetic Data Generation

Synthetic data can be defined as artificially generated data that mimics the origi-

nal data. In the medical domain, synthetic data is very beneficial in solving data

scarcity and would fast-track the time and energy required to collect/annotate

the large cohort of medical data. Goodfellow et al. (2014a) presented GANs com-

prising two neural networks: generator and discriminator. The generator network

creates a synthetic image mimicking the actual image by inputting random noise

into the generator module. Whereas the discriminator network categorizes images

into real images (i.e., the original image) and fake images (i.e., a synthetic image

produced by a generator module). The GAN model generates realistic images by

capturing the distribution of real images from the training set. It is hard to differ-

entiate the synthetic image produced from the actual image. The RAD-DCGAN

is a variation of the GAN model that can generate synthetic images from the ra-

diology cohort. The proposed RAD-DCGAN for synthetic image generation from

radiology images is shown in Figure 5.10. The RAD-DCGAN contains two main

components: the generator module and the discriminator module.
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(a) for radiological X-Rays

(b) for radiological MRIs

Figure 5.10: The proposed RAD-DCGAN for synthetic image generation from
radiology images.

1. Generator Network To begin with, 100×1 random noise vector is ingested

into a generator network and is reshaped into 8× 8× 128 by feeding it to a

dense layer. Additionally, the outcome from the dense layer is sent through a

sequence of four de-convolution layers (also known as convolution-transpose

layers) to create the upsampled feature maps, which results in the synthetic

image of size 128×128×3. We apply the Leaky ReLU activation function to

all four de-convolution layers, and the hyperbolic tangent (tanh) is employed

for the final convolutional layer. It is seen that using bounded activation
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functions like leaky ReLU and tanh allows the RAD-DCGAN to saturate

swiftly while learning features and allowing it to cover the color space of

the training distribution. To stabilize the training process, we have applied

batch normalization to all four de-convolution layers. Finally, a synthetic

image with size 128 × 128 × 3 is obtained as an output from the generator

module. Figure 5.11a displays the comprehensive framework of the generator

module.

2. Discriminator Network The detailed framework of the discriminator net-

work is depicted in Figure 5.11b. The primary motto of the discriminator is

to categorize the generated MR or X-ray image as real or fake. The original

MR or X-ray image with a size of 128× 128× 3 is ingested into the discrim-

inator module along with the synthetic image produced from the generator

network. In the discriminator network, the four convolution operations are

performed, and finally, the sigmoid activation function is employed to cat-

egorize the radiology image as real or fake. The leaky ReLU activation

function, followed by batch normalization, is utilized with four convolution

operations of the discriminator network.

(a) Generator Module

(b) Discriminator Module

Figure 5.11: General architecture of generator and discriminator module of RAD-
DCGAN



Chapter 5. Unimodal Medical Visual Encoding Subnetwork (UM-VES) 147

5.3.3 Objective Function of RAD-DCGAN

The objective function of RAD-DCGAN is to narrow the gap between the proba-

bility distribution of original and synthetic radiology images. In this research, we

have utilized minimax loss (Goodfellow et al., 2014a) as depicted in Eq. 5.20. The

minimax loss allows the loss function to be reduced for the generator module in

the proposed RAD-DCGAN, whereas the same loss is maximized in the discrimi-

nator module. In the RAD-DCGAN, the generator and discriminator modules are

trained simultaneously, similar to an analogy of a min-max game, where the two

players play opposing roles (i.e., the generator and discriminator module) with the

value function VR(Df,Gf).

min
Gf

max
Df

VR(Df,Gf) = Ey∼prad(y)[log(Df(y))]+

Ez∼pz(Z)[log(1− (Df(Gf(z))]
(5.20)

Here, y represents the original radiology image and Df(y) denotes the prob-

ability that the y originated from the initial data distribution and not from the

generated data distribution. Ey∼prad(y) is the expected value over the actual sam-

ples of radiology images y and Ez∼pz(Z) represents the expected value over all the

generated synthetic samples. The pz(z) denotes the random noise variable that is

given as the input to the generator module and Gf(z) is a differentiable generator

function used to map to the data space.

The generators distribution Pg is learnt over the actual radiology data y by

establishing an input noise variable Pz(z) and mapping it to to data space Gf(z).

The discriminator function Df(y) denotes the likelihood of y coming from actual

data rather than Pg. The discriminator is trained so that the correct labels are

allocated to training cases and the synthetic cases produced by G. The generator

is simultaneously trained so that the log(1− (Df(Gf(z)) is minimized.

5.3.4 Loss Function of RAD-DCGAN

The main function of the discriminator network is to differentiate between the

artificial radiology images (i.e., the synthetic image produced by the generator

network) and the real radiology images (i.e., actual images from the training sam-

ple). The basic job of the discriminator is binary classification, so as a loss func-

tion, we have incorporated binary cross-entropy. Eq. 5.21 represents the binary

cross-entropy:
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JBCE(w) =
1

R

R∑
r=1

[lr × log(hw(yr))+

(1− lr)× log(1− hw(yr))]

(5.21)

Where R is the total count of radiology image samples (i.e., X-ray or MR im-

ages) for training in mini-batch (i.e., splitting the training set into small batches),

lr represents the target label for the training sample r. The target label for the

actual sample is 1, and for the synthetic sample is 0. The yr denotes the input

training sample r, and hw represents the neural network model with the weights

w. In the Eq. 5.21, the summation indicates the average cost of overall samples

in an entire batch R in the radiology cohort. The lr × log(hw(yr)) represents the

multiplication of the actual label lr and the logarithm of the prediction obtained.

The predicted features obtained by the RAD-DCGAN are denoted by hw(yr), and

for instance, the loss is 0 (i.e., -log(1)), when the training model produces output

1, which is the ideal case for predicting the radiology image sample to be real

by penalizing false negatives. Whereas, (1 − lr) × log(1 − hw(yr)) penalizes false

positive cases in the model output.

5.4 Experimental setup

This section offers a comprehensive overview of various aspects of our study, in-

cluding parameter configurations, the selection of the radiology cohort, techniques

used for data augmentation, and the evaluation metrics employed.

5.4.1 Parameter Configurations of Proposed UM-VES and

State-of-the-Art Deep Learning Models

For our experimental analysis, we have utilized the NVIDIA Tesla M40 server with

the following hardware specifications: 128GB RAM, 24GB GPU, 3TB HD, and

Linux server OS. We have used Python 3.6 with open-source software Keras and

the Tensorflow library (Abadi and et. al., 2015). The open-I and data collected

from KMC private hospitals are divided into training/validation, and test sets as

given in the Table. 5.3. The proposed UM-VES is trained for 20 epochs for 10-

cross fold validations. The overall layer-wise hyperparameter information of the

UM-VES is presented in Table 5.1. The UM-VES consists of MSDL with three-

channel parallel dilation convolution layers with a dilation factor, dr = 1, 2, 3. We

have employed the grid search approach (Bergstra and Bengio, 2012) to select the
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optimum hyperparameters for our proposed model and the state-of-the-art deep

learning models.

Table 5.2: Parameter details of all the state-of-the-art Deep Learning Models and
the proposed UM-VES

Models Total Parameters (in Millions)
MobileNet 3.2289
VGG16 14.7147
EfficientNetB1 6.5752
VGG19 20.0244
ResNet50 23.5877
Xception 20.8615
InceptionV3 21.8028
DenseNet121 25.1283
Proposed UM-VES 4.8105

After fine-tuning the hyperparameters, the learning rate of 0.001 has been

used, and the stochastic gradient descent-based Adam optimizer is leveraged. In

the proposed UM-VES, the CXR image of size 150× 150 is passed as an input to

the network, and the multi-scale feature of size 1024 is produced through the global

average pooling layer. Further, the output clinical features are ingested into a fully

connected DNN, where two hidden layers of 256 and 128 units are used with the

ReLU activation function. Finally, the softmax activation function is applied in

the third dense layer with two units for binary abnormality prediction from CXR.

The dropout probability (Srivastava et al., 2014) of 0.2 and the early-stopping

strategy (Yao et al., 2007) are employed to avoid the overfitting of the proposed

UM-VES. The proposed UM-VES and the state-of-the-art deep learning models

are initialized with the ImageNet pre-trained weights (Deng et al., 2009) and later

retrained on the Open-I and KMC cohorts. Usage of ImageNet pre-trained weights

addresses the problem of the enormous dataset needed for deep learning training.

The parameter details of all the state-of-the-art Deep Learning Models and the

proposed UM-VES are shown in Table 5.2. The proposed model is lightweight,

like MobileNet and EfficientNetB1, which have mobile-centric applications.

5.4.2 Radiology Cohort Selection

For our experiment, we have utilized two radiology cohorts: 1) Publicly avail-

able Open-I or IU dataset (Demner-Fushman et al., 2015), 2) Data collected
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Table 5.3: Dataset Statistics: Detailed description of the CXR diagnostic images
from two medical repositories

Dataset Description Open-I Cohort KMC Cohort
Tot. # of CXR images 3996 502
Tot. # of CXR images after removal of
missing reports

3638 502

Tot. # of CXR after standard data aug-
mentation

6229 1498

Tot. # of Training/Validation Set 5606 1348
Tot. # of Test Set 623 150
Tot. % of Normal cases (i.e., No Pul-
monary diseases)

38% 52%

Tot. % of Abnormal cases (i.e., Pul-
monary diseases)

62% 48%

from the KMC private hospital (Mangalore, India). The data collected from the

KMC private hospital was de-identified, and approval from the Institutional Ethics

Committee (IEC) was granted to use the dataset for research purposes. The de-

tailed statistics and descriptions of the two medical repositories are presented in

the Table. 5.3. Both the radiology cohorts are categorized into “normal” (i.e.,

CXR images with no pulmonary or chest diseases) and “abnormal” (i.e., CXR

images with pulmonary diseases like Pulmonary Atelectasis, pulmonary fibrosis,

pulmonary edema, etc.). Most of the existing research on the Open-i dataset

deals with cross-modal retrieval tasks to generate a radiology report from CXR

images (Jing et al. (2017); Liu et al. (2019a); Xue et al. (2018)). After a thor-

ough survey, it is observed that limited study is carried out on classification and

prediction tasks. In this regard, we have refined the dataset according to the clas-

sification and prediction tasks. The CXR images in the Open-I cohort consist of

associated radiology reports with findings, impressions, indications, and Medical

Subject Heading (MeSH). MeSH comprises the specific details pertaining to the

diseases, and we have extracted the ground-truth annotations from the MeSH. The

annotations are validated to check their correctness by experienced radiologists.

Also, to evaluate the performance of the proposed UM-VES model, comprehen-

sive benchmarking is performed and compared with various state-of-the-art deep

learning models. The experienced radiologists manually annotated the dataset

collected from KMC Hospital as per the gold standards (Wissler et al., 2014).
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5.4.3 Data Augmentation Settings

For our experiment, we have utilized two radiology cohorts: 1) Publicly available

Open-i (IU) dataset (Demner-Fushman et al., 2015), 2) Data collected from the

KMC private hospital (Mangalore, India). The detailed statistics of the dataset

are presented in the Table. 5.3. Considering the limited dataset, which may lead

to an overfitting problem when passed through the proposed deep learning frame-

work with multiple iterative layers. Data augmentation strategies are applied to

resolve these shortcomings. The data augmentation process is applied to the CXRs

just before the training process to improve the performance of the proposed model

by preventing overfitting. Chest X-rays are relatively sensitive to the different ge-

ometric transformation operations as they might introduce new outliers; hence,

careful adoption of data augmentation techniques is needed. We have applied

a series of data augmentation techniques like rotation, zooming, brightness, and

shearing for image augmentation. The process flow of the various data augmenta-

tion pipeline is shown in Figure 5.12. The detailed image augmentation settings

of various augmentation strategies applied to diagnostic CXRs are presented in

Figure 5.4. In this study, we have incorporated augmentor (Bloice et al., 2017a), a

python toolkit for image augmentation to increase the size of the medical cohort.

Table 5.4: Image augmentation settings

Augmentation Strategies Value
Rotation range [-5, +5]
Zoom range 0.95
Shear range [-5,+5]
Brightness range [0.5, 1.5]

5.4.4 Evaluation Criteria

We have used six standard evaluation criteria: Accuracy (Acc.), Precision (Pre),

Recall (Rec.), F1-Score(F1), MCC and AUROC to examine the performance of

the proposed UM-VES on the two medical CXR cohorts. Section 4.4.3 provides a

comprehensive explanation of the evaluation metrics chosen along with the ratio-

nale behind their selection.
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Figure 5.12: Systematic data augmentation process flow of diagnostic CXRs

5.5 Results and Discussions

This section highlights the experimental analysis of the proposed UM-VES. We

have compared the proposed model with state-of-the-art Deep Learning models.

Also, we have compared the result of the proposed model with the existing work

on the Open-I dataset. We have also showcased the qualitative analysis of the

proposed UM-VES model by visualizing and localizing the abnormalities in the

chest regions.
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5.5.1 Quantitative Analysis of Proposed UM-VES with

the Fine-tuned Pre-trained Deep Learning Models

The detailed quantitative analysis of the proposed UM-VES model is performed,

and the results are compared with the State-of-the-art Deep Learning frameworks

for the publicly available Open-I Dataset and the real-time diagnostic data col-

lected from KMC Hospital (refer Table 5.5 and Table 5.6). The graphical repre-

sentation depicting the performance analysis of the proposed UM-VES with the

different baseline deep learning models for Open-I and KMC CXR datasets is

shown in Figure 5.15 and Figure 5.16. The proposed model has achieved con-

sistent performance for accuracy, precision, recall, F1-score, MCC, and AUROC.

For both Open-I and KMC hospital cohorts, the model performs better than the

existing pre-trained state-of-the-art deep learning models like MobileNet, VGG16,

EfficientNetB1, VGG19, ResNet50, Xception, InceptionV3, and DenseNet121. It

is evident from Table 5.5 and Table 5.6 that the MSDL layer considerably impacts

performance by obtaining a broad receptive field and capturing multi-scale fea-

tures. The proposed UM-VES model achieves significantly higher precision and

recall compared to the other baseline models. This shows that our proposed model

is able to decrease false positive and false negative predictions. The F1-score and

MCC of the proposed model are high compared to other State-of-the-art models,

indicating that our proposed model can effectively classify even though there is

a class imbalance. The proposed UM-VES model has achieved a higher AUROC

of 0.8572 and 0.8793 for Open-I and KMC datasets compared to existing state-

of-the-art deep learning models, indicating that the model can better distinguish

between pulmonary disease and no disease from the CXRs. Other lightweight deep

learning networks like MobileNet and EficientNetB1 have also achieved promising

results for both Open-I and KMC hospital datasets.

It is also seen in Table 5.2 that the proposed UM-VES requires only 4.8105 mil-

lion training parameters. The UM-VES is lightweight and five times smaller com-

pared to the extensively utilized DenseNet121 model (25.1283 million parameters)

on the Open-I dataset for pulmonary disease classification (Zech et al. (2018); Ay-

din et al. (2019b); Wang et al. (2018a)). As a result, the training of the UM-VES

is faster than most of the existing deep learning strategies like VGG16, VGG19,

EfficientNetB1, ResNet50, Xception, InceptionV3, and DenseNet121. The pro-

posed UM-VES model utilizes comparatively shallow architecture, consisting of

fewer layers than other baseline deep learning models. However, the proposed

model outperforms the existing state-of-the-art models, which have deeper archi-
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Table 5.5: Benchmarked Experimental results of proposed UM-VES Model with
the state-of-the-art Deep Learning Model on Open-I Dataset.

Models Acc. Pre. Rec. F1 MCC AUROC
MobileNet 0.7675 0.7670 0.767 0.7668 0.5339 0.8108
VGG16 0.6357 0.6361 0.64 0.64 0.5605 0.8418
EfficientNetB1 0.7805 0.7803 0.7801 0.7802 0.5605 0.8418
VGG19 0.6357 0.6361 0.64 0.647 0.2722 0.6357
ResNet50 0.7465 0.7436 0.745 0.746 0.492 0.7901
Xception 0.77 0.776 0.77 0.76 0.573 0.8109
InceptionV3 0.7473 0.7471 0.748 0.746 0.4993 0.8004
DenseNet121 07336 0.74 0.7354 0.7346 0.4688 0.8003
Proposed
UM-VES

0.7922 0.7926 0.7928 0.7927 0.5855 0.8572

Table 5.6: Benchmarked Experimental results of proposed UM-VES Model with
the state-of-the-art Deep Learning Model on KMC hospital Dataset.

Models Acc. Pre. Rec. F1 MCC AUROC
MobileNet 0.7804 0.7801 0.7801 0.7803 0.5604 0.8228
VGG16 0.6623 0.6621 0.6623 0.6622 0.5731 0.8314
EfficientNet 0.7945 0.7943 0.7942 0.7941 0.5858 0.8330
VGG19 0.6642 0.6641 0.6641 0.6653 0.3822 0.6642
ResNet50 0.7657 0.7656 0.7656 0.7654 0.5102 0.8012
Xception 0.7821 0.7823 0.7822 0.7821 0.5168 0.8351
InceptionV3 0.7741 0.7743 0.7743 0.7741 0.4963 0.8103
DenseNet121 0.7511 0.7513 0.7513 0.7511 0.4826 0.8099
Proposed
UM-VES

0.8225 0.8201 0.8200 0.8200 0.6401 0.8793

tectures, making our model less computationally expensive with reduced training

time. Figure 5.13 and Figure 5.14 represents the experimental observation of the

loss and accuracy vs. the total number of epochs w.r.t 10-fold cross-validation for

the open-I and KMC hospital datasets. It is observed that the loss gradually drops

after every epoch for all the folds, and the accuracy remains stable after a few ini-

tial variations. We have saved the model weights with the highest performance

for every fold.
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(a) Loss vs Total no. of epochs (b) Accuracy vs Total no. of epochs

Figure 5.13: Experimental observation of the loss and accuracy vs total number
of epochs w.r.t 10-fold cross-validation for Open-I X-ray dataset

(a) Loss vs Total no. of epochs (b) Accuracy vs Total no. of epochs

Figure 5.14: Experimental observation of the loss and accuracy vs total number
of epochs w.r.t 10-fold cross-validation for KMC Chest X-ray dataset

5.5.2 Performance Analysis of Proposed UM-VES with

the Existing State-of-the-art Deep Learning Strate-

gies on Open-I Dataset

We have also compared the performance of the proposed UM-VES model with the

existing benchmarked deep learning models on the Open-I dataset. After a com-

prehensive survey, we found four research papers using the Open-I dataset for the

classification task. Table 5.7 presents the details of the evaluation metrics obtained

from the existing research articles on the Open-I dataset compared with the pro-

posed UM-VES. Zech et al. (2018), Aydin et al. (2019b), and Lopez et al. (2020)
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Figure 5.15: Performance analysis of proposed UM-VES with the different baseline
deep learning model for Open-I CXR dataset

Figure 5.16: Performance analysis of proposed UM-VES with the different baseline
deep learning model for KMC Hospital CXR dataset

presented a variation of the denseNet121 model, and it is observed that our pro-

posed UM-VES model has achieved better performance with respect to accuracy,

precision, recall, F1-Score, and AUROC. It is also observed that the existing works
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have not considered all the standard evaluation metrics, which are essential while

performing the prediction task on the Open-I dataset. Wang et al. (2018a) pro-

posed a CNN-based model to predict pulmonary disease from the Open-I dataset

and attained an AUROC of 0.741. It is found that the proposed UM-VES model

has produced a higher AUROC of 0.8572, showcasing the impact of the MSDL

layer on the performance of the model by obtaining a broader receptive field and

capturing the multi-scale features for efficient prediction of pulmonary diseases.

Table 5.7: Performance analysis of the proposed UM-VES with the existing state-
of-the-art deep learning strategies on Open-I Dataset

Reference Acc. Prec. Rec. F1 MCC AUROC

Zech et al.

(2018)

- - - - - 0.725

Aydin et al.

(2019b)

0.74 - - - - -

Wang et al.

(2018a)

- - - - - 0.741

Lopez et al.

(2020)

- 0.52 0.42 0.46 - 0.61

Proposed

UM-VES

0.7922 0.7926 0.7928 0.7927 0.5855 0.8572

5.5.3 Qualitative Analysis of Proposed UM-VES

Figure 5.17 depicts some sample qualitative results of disease visualization from

CXR with the grad-CAM technique with its ground-truth label, and the radiologist

highlighted CXR. The visualization techniques allow our proposed model to be

explainable by iterating back and understanding the model’s ability to arrive at

a decision. The Grad-CAM method (Selvaraju et al., 2017) uses the gradient of

the interesting concept in a given convolution layer. The main goal is to highlight

the significant regions and generate a coarse localization map. The area with a

red colour indicates the part of the model where attention is strong, and blue

represents the part where attention is weak. The first four rows indicate the

CXR with pulmonary abnormalities, and the last row shows the CXR with no

abnormalities. For comparison purposes, we received localized and labelled CXRs

from expert radiologists and compared them with the predicted CXRs from the

proposed UM-VES Model. It is observed from the findings that the proposed UM-
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VES model can reach a performance level similar to that of expert radiologists. We

can suggest that the lightweight and explainable UM-VES model has the potential

for preliminary examination of CXRs in radiology workflows to assist radiologists

when resources are scarce and improve the overall prediction accuracy.
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Figure 5.17: Disease Visualization with Grad-CAM Technique with its ground-
truth label and the radiologist’s highlighted radiographs. From left to right: x)
are the original Chest radiographs; y) are the heatmap overlaid on the radiographs,
where the areas marked with a peak (red) in the heatmap indicate abnormalities
with high probabilities; z) are the same chest X-rays with abnormalities high-
lighted (blue) by the experienced radiologist, From top to bottom: a) to d) are
the chest radiographs with pulmonary abnormalities, and e) are the chest radio-
graphs with no abnormalities.
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5.6 Data Augmentation vs. Synthetic Data Gen-

eration

In this section, we utilize data augmentation and synthetic data generation tech-

niques on radiology images to empirically evaluate their effectiveness in improving

radiology image classification.

5.6.1 An Empirical Evaluation for Enhancing Radiology

Image Classification

In this section, we discuss the experimental setup of the overall study, followed

by the cohort selection and detailed results. The hardware and software required

for the comprehensive experiment are as follows: The NVIDIA Tesla M40 server

with 128 gigabytes of RAM, 3 terabytes of HD, 24 gigabytes of CPU, and Python

3.6 with Keras, TensorFlow library was utilized. For X-ray images, we trained

RAD-DCGAN for 200 epochs, and we could observe that it could generate X-ray

images that resembled the original image in around 100 epochs. Likewise, for

MR images, we trained RD-DCGAN for 500 epochs, and after 400 epochs, MR

images similar to the original image were obtained. The generation of synthetic

images after every 20 and 50 epochs in X-ray and MR images is presented with

the accuracy of real and fake classification in Figure 5.18. For the chest X-ray

dataset collected from KMC hospital, the training time was approximately 59.91

minutes, and this was conducted over 200 epochs. Additionally, on the MRI se-

quence dataset from the same hospital, the training time for the GAN model was

approximately 111.33 minutes, spanning 500 epochs. We have used the Python

toolkit augmentor (Bloice et al., 2017b), which provides a library for performing

various augmentation operations to enlarge the radiology cohort obtained. To

check the efficacy of the proposed RAD-DCGAN compared to basic augmenta-

tion strategies, we have obtained the classification accuracy by applying various

state-of-the-art convolution neural network models like MobileNet (Howard et al.,

2017a), VGG16 (Liu and Deng, 2015), EfficientNetB1 (Tan and Le, 2019), VGG19

(Liu and Deng, 2015), ResNet50 (He et al., 2016a), Xception (Chollet, 2017a), In-

ceptionV3 (Szegedy et al., 2016a) and DenseNet (Huang et al., 2017a). We have

fine-tuned the hyperparameters of the pre-trained models by tweaking them so

that they can adapt to the disease classification task. The pre-trained deep learn-

ing frameworks were initiated with the imageNet weights and later retrained on

the radiology images obtained from the KMC hospital.
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(a) X-ray images - 200 Epochs

(b) MR Images - 500 Epochs

Figure 5.18: The generation of synthetic data after every 20 and 50 epochs in
X-ray and MR images, respectively

5.6.2 Cohort Selection

We have acquired 502 X-ray Images (Normal Case =240, Abnormal Case=262)

and 991 MR Images (Normal Cases=497, Abnormal cases=494) from Kasturba

Medical College (KMC), Mangalore (India). The Institutional Ethics Committee

(IEC) approval was taken to utilize the de-identified data for research purposes.
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We applied basic augmentation techniques to increase the cohort size to 1498 X-

ray images (trainset =1198, testset=150 and validationset= 150) and 3962 MR

Images (trainset=3169, testset=397 and validationset=396), and we have used the

proposed RAD-DCGAN for synthetic image generation to enlarge the size of the

cohort to 1498 X-ray Images (trainset=1198, testset=150 and validationset= 150)

and 2154 MR Images (trainset=1723, testset=216 and validationset=215). While

splitting the dataset into train, test, and validation, we ensured that no samples

from the test or validation set were present in the training set to avoid the data

leakage problem.

5.6.3 Results and Discussions

The proposed RAD-DCGAN comprises of two main stages: 1) Discriminator mod-

ule training; and 2) Generator module training. While training the generator

network, the fake or synthetic radiology images are generated, and they are cat-

egorized with the real radiology images while training the discriminator network.

Firstly, we train the discriminator network with the batch of actual radiology

image samples to calculate log(D(y)). Later, we train the discriminator network

with the batch of synthetic samples produced by the generator network to calculate

log(1 − (D(G(z)). For the proposed RAD-DCGAN, the generator and discrim-

inator modules are trained simultaneously to calculate the loss and accuracy as

presented in Figure 5.19 and Figure 5.20 for X-ray and MR images, respectively.

The discriminator network loss is stabilized when it reaches 0.5, which is when the

discriminator is made to categorize the images into real and fake. Parallelly, the

training accuracy of the discriminator network must be greater than 50% while

training on real and fake images. The loss of the proposed RAD-DCGAN’s dis-

criminator and generator modules for both actual and synthetic radiology samples

is around 0.5, and the discriminator module’s accuracy is around 80-90%, show-

casing that the proposed model achieves stable equilibrium.

Further, we perform an empirical evaluation of the proposed RAD-DCGAN

compared with basic augmentation strategies by training eight separate stan-

dard convolutional neural network models and the proposed UM-VES model. We

trained the models on the data generated from the various data augmentation tech-

niques shown in Figure 5.8. The detailed classification performance of the various

augmentation methods on the radiology X-ray and MR images is presented in

Table 5.8 and Table 5.9. We have resized the radiology images to 150 × 150 × 3

and passed them as input to the various state-of-the-art deep learning networks.
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(a) Accuracy (b) Loss

Figure 5.19: Accuracy and loss during the training of discriminator and generator
component in RAD-DCGAN on X-ray images

(a) Accuracy (b) Loss

Figure 5.20: Accuracy and loss during the training of discriminator and generator
component in RAD-DCGAN on MR images

Table 5.8: Classification performance metrics for Chest X-Ray Images

Methods/
Models

Accuracy (%)
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Rotation 77.83 66.10 79.24 66.11 76.37 77.97 77.16 74.80 82.28
Zooming 77.7 66.06 79.12 65.91 76.02 77.66 76.87 74.59 84.32
Brightness 76.91 64.11 76.35 64.31 74.71 75.63 75.58 73.78 78.41
Shearing 77.62 65.83 79.16 65.65 76.01 77.55 76.82 74.37 83.12
Combined
Augmenta-
tion

78.04 66.23 79.45 66.42 76.57 78.21 77.41 75.11 82.25

RAD-
DCGAN

82.15 70.53 82.94 70.88 79.42 82.62 81.62 79.88 85.16

Note: a) MobileNet, b) VGG16, c) EfficientNetB1, d) VGG19, e) ResNet50, f) Xception, g) InceptionV3 (h)DenseNet (i)UM-VES

The accuracy for each model is calculated while training and testing the models

on the data generated using the proposed RAD-DCGAN and various basic aug-

mentation techniques like rotation, zooming, brightness, shearing, and combined

augmentation. It is observed that the models trained on the traditional augmen-

tation data produced accuracy of about 76.91% to 78.04% for MobileNet, 64.11%
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Table 5.9: Classification performance metrics for MRI T2-Flair sequences

Methods/
Models

Accuracy (%)
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Rotation 92.21 87.57 45.43 91.69 66.58 92.34 90.16 88.87 94.41
Zooming 91.58 86.42 44.25 90.47 65.14 91.09 89.24 87.12 93.10
Brightness 91.14 85.77 43.01 89.92 64.61 90.05 88.47 86.13 92.87
Shearing 92.10 87.11 44.29 91.38 66.14 91.77 89.54 87.89 93.24
Combined
Augmenta-
tion

93.44 88.88 47.97 92.42 67.67 93.43 91.41 90.00 95.72

RAD-
DCGAN

97.20 97.67 54.88 96.27 91.62 95.81 97.20 95.81 98.24

Note: a) MobileNet, b) VGG16, c) EfficientNetB1, d) VGG19, e) ResNet50, f) Xception, g) InceptionV3 (h)DenseNet (i)UM-VES

to 66.23% for VGG16, 76.35% to 79.45% for efficientNetB1, 64.31% to 66.42% for

VGG19, 74.71% to 76.57% for ResNet50, 75.63% to 78.21% for Xception, 75.58%

to 77.41% for InceptionV3 and 73.78% to 75.11% on DenseNet for X-ray images

(refer to Table. 5.8). For MR images, it is seen that the accuracy obtained is

about 91.14% to 93.44% for MobileNet, 85.77% to 88.88% for VGG16, 43.01% to

47.91% for efficientNetB1, 89.92% to 92.42% for ResNet50, 64.61% to 67.67% for

Xception, 90.05% to 93.43% for InceptionV3 and 86.13% to 90.00% for DenseNet

model trained on various basic augmentation techniques (refer to Table. 5.9).

The effectiveness of the UM-VES model in accurately classifying images has been

demonstrated through its superior performance when compared to state-of-the-art

CNN models using augmented or synthetic images.

When trained on radiology images generated using rotation augmentation, the

deep learning models achieved superior performance compared to other traditional

augmentation strategies. The models trained on radiology images produced from

brightness augmentation comparatively gave lesser accuracy than other basic aug-

mentation techniques for both the X-ray and MRI cohorts. Empirically, it is also

observed that the images generated from the combined augmentation achieved a

better performance than the individual augmentation techniques. With respect

to, the deep learning classifiers trained on the proposed RAD-DCGAN model

have achieved significantly higher accuracy of atleast 3-4% more than the mod-

els trained on the images generated using traditional augmentation strategies for

both the radiology images. The superior performance achieved by the proposed

RAD-DCGAN compared to conventional augmentation strategies indicates that

the synthetic image generated has some additional information required for deep

learning classifiers, which also prevents the models from overfitting.
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5.7 Summary

In this chapter, we propose a lightweight and explainable deep learning network

named UMVES, a Multi-Scale Chest X-ray Network that consists of MSDL and

DS-CNN layers, to predict pulmonary diseases from the CXR obtained from the

publicly available Open-I dataset and the CXR data collected from the private

medical hospital. The MSDL layer captures the multi-scale features with the help

of a broader receptive field, and the DS-CNN layer learns the imaging features by

adjusting lesser parameters. The quantitative and qualitative analyses of the pro-

posed UM-VES model are performed on both CXR datasets. The experimental

validation was observed through evaluation metrics like accuracy, precision, recall,

F1-score, MCC, and AUROC. The experimental results show that the proposed

model outperformed baseline deep learning techniques and existing state-of-the-

art approaches. The MSDL layer in the proposed model has significantly impacted

the prediction outcome by capturing the Multi-scale features from the CXR. The

grad-CAM method is employed to visualize the pulmonary abnormalities from the

CXR and to check the model’s ability to arrive at a decision. The obtained grad-

CAM CXR samples are compared with the CXRs labelled by expert radiologists.

It is observed that the UM-VES can reach a performance level similar to that of

the radiologists. This study also presents RAD-DCGAN for generating synthetic

images from the radiology X-ray and MRI cohorts collected from a private medical

hospital (KMC Hospital, India). We have conducted a comprehensive qualitative

analysis of the proposed RAD-DCGAN compared with conventional data aug-

mentation techniques like rotation, zooming, brightness, and shearing. The eight

state-of-the-art deep learning classifiers and the proposed UM-VES are used to

check the efficacy of the data generated from the proposed RAD-DCGAN and the

traditional data augmentation techniques. The detailed investigation shows that

the synthetic data generated through the proposed RAD-DCGAN has achieved a

significantly higher classification accuracy of 3-4% compared to the data gener-

ated through basic data augmentation strategies. This superior performance is due

to the higher resolution synthetic images generated with additional information,

which aids the classifier’s performance.
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Chapter 6

Deep Medical Multimodal Fusion

Networks (DMMFN) for Disease

Prediction from Radiology Chest X-ray

Images and its Associated Reports

6.1 Introduction

Pulmonary diseases are the most commonly found infections caused due to air

pollution, tobacco smoking, breathing radioactive chemical elements, asbestos, or

any other unwanted particles. The various Pulmonary diseases are Tuberculo-

sis, Pneumothorax, Cardiomegaly, Pulmonary atelectasis, Pneumonia, etc. Some

symptoms of pulmonary diseases include wheezing, shortness of breath, chronic

cough, weight loss, etc. The risk factor involved in pulmonary diseases is high,

and hence, timely prediction of the abnormality is vital. Modern medicine is sig-

nificantly reliant on synthesizing data and information from various modalities,

including diagnostic imaging data (i.e., CT, X-Ray, MRI, etc.), structured labora-

tory data, unstructured narrative text data (i.e., medical reports), and, in certain

situations, audio, video, signals (i.e., ECG signals), or any other observational

data. Radiology is one such critical medical discipline involving medical imaging

like X-Ray, CT, MRI, etc. to investigate the internal structure of the body and

detect any abnormality. One of the most frequently available diagnostic proce-

dures for detecting and assessing abnormalities in the chest and lung area is a

CXR. The grid of normal (No diseases) and abnormal (pulmonary diseases) CXR

from the Indiana University dataset is presented in Figure 6.1. Radiologists will

analyze these CXRs and prepare clinical notes detailing the conditions visualized

from the medical image.

169
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Figure 6.1: The grid of normal (No diseases) and abnormal (pulmonary diseases)
CXR from Indiana University dataset.

It is especially true in the area of diagnostic image analytics, where a thorough

understanding of clinical context is necessary to make accurate therapeutic recom-

mendations. For example, on numerous occasions, the absence of laboratory test

information while investigating medical images resulted in poor correlation and

reduced clinical utility for the radiologists (Leslie et al. (2000); Cohen (2007)). A

large percentage of radiologists (i.e., 87%) said clinical information substantially

impacted image analysis during the survey of radiologists (Boonn and Langlotz,

2009). Radiology is not the only medical field where the significance of using med-

ical context for precise interpretation of imaging data is recognised. But several

other image-based medical areas like dermatology, ophthalmology and pathology

also rely upon clinical information to assist visual analysis (Wong et al. (2015);

Comfere et al. (2013); Jonas et al. (2017)).

Physicians can evaluate the imaging findings in the proper clinical context

if related and accurate details pertaining to the current medical conditions and

previous clinical history are available during the analysis. This information also

leads to a more pertinent differential diagnostic process that provides useful re-

ports for clinicians, which will help improve patients’ prognoses. The number of

radiological imaging tests is increasing in this digital era. Hence, to fulfil this high

workload requirement, a physician, on average, needs to evaluate diagnostic imag-

ing every 10 minutes over eight hours of a day, contributing to weariness, stress,

and higher inaccuracies (McDonald et al., 2015). The DL approach has recently

exhibited promising outcomes in various research domains. Also, in the medical

field, it is rapidly growing because of its ability to provide an automated system

by complementing or augmenting the cognitive tasks of overburdened clinicians
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(Dean et al. (2015); Banerjee et al. (2019); Kumar and Jayadev (2020)). CNN, one

of the DL models, has provided significant performance in applications involving

the analysis and categorization of images and is usually adapted to radiological

imaging. Initially, the CNNs were widely applicable in medical image analysis,

including CXRs, diabetic retinopathy, and skin cancer (Hinton (2018); Dunnmon

et al. (2018); Johnson et al. (2019a); Gulshan et al. (2016)). However, these pro-

posed models considered only pixel data from the single input modality and could

not derive a context from the other medical information as it is done in common

medical practice, hampering clinical translations.

We can illustrate with an elementary exemplar like the detection of pneumo-

nia from a chest radiograph, where researchers have previously worked on building

DL models to automate the process of identifying and classifying pathologies from

chest radiographs (Rajpurkar et al. (2018); Majkowska et al. (2020)). But, im-

plementing these models has minimal impact on clinical procedures due to the

non-usage of clinical context and diagnostic values. Despite having the visual

features from the chest radiographs of patients with pneumonia, in general, they

cannot possibly identify any other differential diagnoses, meaning they could be

non-specific and ambiguous. An accurate diagnosis requires laboratory data, clin-

ical reports, and values. To rephrase it, the chest radiograph results suggest

pneumonia in a patient with fever, shortness of breath, and chest pain; however,

in another case, it might represent other causes of chest conditions such as pleural

effusion, cardiomegaly, pulmonary edema, or even cancer of the lungs. There are

many such indefinite instances over multiple dimensions of the healthcare domain

where the data fed with the clinical context, including structured or unstructured

data, have significantly impacted the medical imaging interpretations. EHRs that

may be structured clinical data or unstructured clinical reports are of paramount

importance for the precise and clinically apt understanding of medical imaging.

Henceforth, the automated analysis of visual features from medical imaging along-

side the data extracted from the EHR, like patient demographics, history of illness,

and laboratory values after testing, will definitely give more clinically consistent

and high-efficacy models.

Multimodal DL approaches take input from different data modalities and fuse

them to produce more consistent and valuable information obtained from various

single data sources. These fusion-based DL models have been giving promising

results and are also successfully applied outside the field of healthcare, like object

detections for autonomous vehicles (Person et al., 2019), classifying social media

videos Trzcinski (2018) and emotion classifications (Pandeya and Lee, 2021). As an
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exemplar, for safe navigation of autonomous vehicles, a fusion-based multimodal

DL framework was proposed by the authors that takes the input from the images

and LiDAR data points to detect the objects on the road effectively. The mul-

timodal DL model achieved 3.7% more performance compared to the uni-modal

CNN classification architecture (Person et al., 2019). Likewise, while performing

social media video classification from text and video sources, the proposed multi-

modal model gave approximately 12% higher accuracy compared to the uni-modal

Google’s InceptionV3 model. The increase in performance or accuracy is not the

only criteria being considered for justifying the use of deep multimodal learning

in clinical imaging. But the main motto is to combine the complementary con-

textual data to obtain more precise diagnostic results by limiting the challenges

of unimodal image-only approaches.

The core research challenges in multimodal learning are the fusion of multi-

modal data to utilize the benefits of the complementary features from the various

heterogeneous sources and cater to more effective diagnostic predictions. Since the

visual and textual features are mutually exclusive, there is a need for rich fusion

representation to provide fine-grained knowledge for further prediction.

6.1.1 Problem Statement

Currently, relying solely on image-only approaches presents multiple challenges,

and to overcome these challenges, it is necessary to merge visual features from

medical imaging with data extracted from Electronic Health Records (EHR). This

EHR data includes patient demographics, medical history, and laboratory test re-

sults, which provide relevant and precise information about the patient’s current

medical condition and past medical history during the analysis. However, the key

research challenge in multimodal learning is creating a comprehensive fused rep-

resentation that offers detailed knowledge for further prediction. The main issue

is that visual and textual features are mutually exclusive, making it difficult to

blend the data from different sources and make more precise diagnostic predictions.

Thus, the challenge is to develop a methodology that effectively merges these two

types of data to create a more comprehensive representation that can be used to

provide accurate therapeutic recommendations in diagnostic image analytics. The

problem statement is defined as follows:

“Considering the set of multimodal unstructured medical images and

its associated clinical text data, design and develop an effective deep

learning model for fusing complementary visual and textual features to
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create a unified representation in a shared space for disease prediction

to support an intelligent clinical recommendation system.”

The primary objective of this chapter is to provide a comprehensive overview

of the research study that was conducted to address this significant problem. We

propose an effective fusion strategy using the DL framework to fuse the features

extracted from diagnostic images and text to predict pulmonary abnormalities.

The following are the critical contributions of our proposed research work:

• We propose two effective Medical Multimodal Tensor Fusion Networks: Com-

pact Bilinear Pooling (CBP) and Deep Hadamard Product (DHP), for pre-

dicting abnormalities from the radiology CXR and text reports.

• We conducted a thorough investigation and compared the unimodal vs mul-

timodal models for disease abnormality predictions from the multimodal

radiology cohorts.

• We have analyzed the performance of the proposed models by applying them

to standard augmented data and the synthetic data generated to understand

their ability to predict from the new and unseen data.

• The Proposed unimodal and multimodal models are assessed and analyzed in

two heterogeneous diagnostic cohorts: Publicly available multimodal medical

cohort containing CXRs with diagnostic reports from Indiana University and

data acquired from the private medical hospital.

• We benchmarked the performance of the proposed multimodal prediction

model with respect to state-of-the-art medical fusion techniques.

6.2 Methodology

Our research proposes a new deep learning framework for predicting abnormalities

in medical images using a heterogeneous radiology cohort. Figure 6.2 illustrates

the architecture of our proposed Multimodal Medical Tensor Fusion Network.

To obtain the disease outcome, our system takes chest X-rays along with their

corresponding radiology reports as input. We propose two types of Unimodal

models: UM-TES (discussed in Chapter 4) and UM-VES (discussed in Chapter

5), which process the radiology report text and the CXR image separately. We also

propose two Multimodal models: CBP-MMFN and DHP-MMFN, which combine



174 Chapter 6. Deep Medical Multimodal Fusion Networks (DMMFN)

the features extracted by the Unimodal models. Finally, the combined features

are passed to a fully connected Deep Neural Network (DNN) to predict the disease

outcome.

This section describes the proposed Deep Medical Multimodal Fusion Networks

(DMFN), where we explain two proposed strategies: Compact Bilinear and Deep

Hadamard Product. The main aim of any fusion strategy is to integrate multiple

unimodal representations into a multimodal representation. Most of the previous

multimodal research focused on concatenating visual and textual features with-

out considering inter-modal interaction. Both of our proposed multimodal fusion

strategies effectively explore inter-modal interactions by explicitly aggregating vi-

sual CXR features and textual clinical report features. Let M t = {t1, t2, t3, ..., tp}
be the medical textual features in the form of tensors that are obtained from the

UM-TES as discussed in Chapter 4 and Mx = {x1, x2, x3, ..., xq} be the medical

imaging features in the form of tensors that are generated from the UM-VES as

explained in Chapter 5. Following are the two multimodal strategies applied to

these tensors obtained from the two unimodal models:

6.2.1 Compact Bilinear Pooling-based Medical Multimodal

Fusion Network (CBP-MMFN)

Bilinear pooling provides local pairwise interaction between every tensor of both

the visual features extracted from the CXR and the textual features generated

from the associated radiology reports in a multiplicative fashion. However, bilinear

pooling results in a high dimensional representation, resulting in an infeasible set

of parameters to be learnt. We propose a novel Compact Bilinear pooling to

aggregate the heterogeneous visual and textual features by projecting a higher

dimensional outer product representation in a low-dimensional space, effectively

capturing the high-order correlation between the imaging and textual tensors. In

our proposed CBP-MMFN network, we use the two-fold Cartesian product to

combine two unimodal tensors M t and Mx on the following vector field:

{
(M t,Mx) | M t ∈

[
M t

1

]
, Mx ∈

[
Mx

1

]}
(6.1)

Every neural coordinate (M t, Mx) can be visualized as a 2-D point in the

two-fold cartesian space characterized by the textual and imaging embedding di-

mensions. Mathematically, it is equivalent to the Kronecker product or outer

product between the medical textual feature M t and the imaging feature Mx and
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the multimodal bilinear pooling obtained is defined as follows:

MCBP =

[
M t

1

]
⊗

[
Mx

1

]
=

p∑
i=1

q∑
j=1

M t
i (M

x
j )T ∈ RNH×NW (6.2)

Here, ⊗ represents the Kronekar product or the outer product between the two

vectors, and MCBP ∈ RNH×NW (i.e., 1024 × 1024) is the bilinear interaction map

consisting of all possible combinations of the multimodal representation capturing

inter-modal interactions between textual and imaging features as shown in Figure

6.3. For instance, if M t and Mx are defined as,

M t =


t1

t2
...

tp

 ,Mx =


x1

x2

...

xq,

 (6.3)

then the kronekar product or the outer product between the two vectors can be

obtained as follows:

M t ⊗Mx =


t1

t2
...

tp

⊗


x1

x2

...

xq,

 =


t1x1 t1x1 · · · t1xq

t2x1 t2x1 · · · t2xq

...
...

. . .
...

tpx1 t2x1 · · · tpxq

 (6.4)

The ijth component of the features obtained can be depicted as:

(M t ⊗Mx)ij = tixj, for all 1 ≤ i ≤ p and 1 ≤ j ≤ q (6.5)

Mathematically, the bilinear pooling is generated by the outer product of the

unimodal feature, and hence, this is the core design component of our fusion

model. We argue that employing outer products is beneficial in three-folds: 1) It

encodes more tensor correlation between the two different modalities, capturing

inter-modal interactions. 2) It has more significance than the straightforward

concatenation operation, which keeps the basic information obtained from different

modalities without modelling any correlation. 3) Finally, the promising benefit

lies in the bilinear interaction map obtained from the outer product, lies in a

2D format similar to that of an image. In this view, the inter-modal correlation

encoded in the bilinear interaction map can be viewed as the local feature of an

image. DL models have demonstrated remarkable success in computer vision.
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Consequently, constructing bilinear 2D maps allows us to leverage sophisticated

DL techniques for learning bilinear interaction functions in multimodal disease

prediction tasks. In applications such as visual question answering (Fukui et al.,

2016), the concept of integrating visual and textual features in the outer product

has produced competent outcomes.

Empirically, we noticed that the multimodal representation obtained after the

fusion is of high dimension, but the possibilities of overfitting are negligible. We

believe this is mainly because the output neurons obtained from the CBP-MMFN

are easy to understand and semantically significant (i.e., the manifold of the multi-

modal representation is not complex but has a relatively high dimension). Hence-

forth, the following layers in the network find it easy to interpret the meaningful

information. However, the bilinear interaction maps obtained are usually of high

dimension, which increases the computation cost and storage space. Hence, We

propose compact bilinear pooling employing CNN over the bilinear interaction

map to learn the high order correlation between the multimodal pairwise embed-

dings and reduce the high dimensional representation to the lower-dimensional

space.

z = conv(MCBP ,W ) = f(

NH∑
i=1

NW∑
j=1

MCBP
p+i−1,q+j−1 ·Wi,j + b) (6.6)

Here, MCBP represents the bilinear interaction map with the size (NH , NW ),

which is fed to the convolution module. The ReLU activation function with W

convolution filters is leveraged on every accessible window of the interaction map

to generate a discriminative activation map z of size, dim(conv(MCBP ,W )) =

(NH , NW , NC). Here, NC represents the number of channels generated from the

convolution filter W . The pooled feature obtained from the convolution layer is

downsampled using the Max pooling method. This mechanism will reduce the

high-dimensional feature map to low dimensional space while retaining valuable

information. The down-sampled feature map obtained by applying max pooling

is asserted as follows:

z
′

= pool(z)p,q,r = max(zp+i−1,q+j−1,r)(i,j)∈[1,2,···,P ]2 (6.7)

Where, Z
′ ∈ RNH×NW represents the activation map obtained by performing

the max pooling operation with the pooling size P × P . We adopt the dropout

mechanism on the feature map Z
′

to prevent overfitting. The discriminative com-

pact features are flattened and ingested into a fully connected prediction module
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to predict the diseases.

The bilinear pooling adopted for fusing multimodal clinical reports and the

CXR results in a richer representation of pairwise interaction between the visual

and textual features. However, the quadratic expansion obtained from the outer

product operation yields a high-dimensional interaction map with expressive mul-

timodal features. This significantly increases the computation cost and adversely

affects practical applications. Henceforth, we propose a compact bilinear pool-

ing to boost the training process, where we adopt CNN to attain second-order

interaction between multimodal features and reduce the bilinear interaction map

from high dimension to lower dimension space. Algorithm 2 presents the pro-

posed Compact Bilinear Pooling-based Medical Multimodal Fusion Network for

predicting pulmonary abnormalities from multimodal clinical data.

Algorithm 2: Proposed Compact Bilinear Pooling-based Medical Mul-

timodal Fusion Network (CBP-MMFN)

Input: Textual feature extracted from the clinical report using UM-TES,

M t ∈ Rp and Visual feature extracted from the CXR using

UM-VES, Mx ∈ Rq

Output: Compact multimodal representation, Φ(M t,Mx) ∈ Rd

1 for i← 1, 2, · · · , p do

2 for j ← 1, 2, · · · , q do

/* Outer product between the textual features and the visual

features to obtain the bilinear interaction map */

3 MCBP ←

[
M t

1

]
⊗

[
Mx

1

]
←M t

i (M
x
j )T , MCBP ∈ RNH×NW

/* Applying Convolution and Pooling operation to reduce the high

dimensional interaction map into lower dimensional space */

4 z ← conv(MCBP ,W )← ReLU(
∑NH

i=1

∑NW

j=1 M
CBP
p+i−1,q+j−1 ·Wi,j + b)

5 z
′ ← pool(z)p,q,r ← max(zp+i−1,q+j−1,r)(i,j)∈[1,2,···,P ]2

6 ϕ← z∗ ← Dropout(z
′
, 0.2)

/* The compact multimodal features is then flattened and passed through

fully connected network for disease prediction */

6.2.2 Deep Hadamard Product-based Medical Multimodal

Fusion Network (DHP-MMFN)

We also propose another tensor fusion strategy, the Deep Hadamard Product-

based Medical Multimodal Fusion Network (DHP-MMFN), which provides local



180 Chapter 6. Deep Medical Multimodal Fusion Networks (DMMFN)

element-wise interaction between every tensor of imaging features extracted from

CXR and the textual features obtained from the radiology reports. This allows

tensor elements in the same position as both imaging and visual features to interact

multiplicatively and results in an interactive map of the same dimension as input

vectors. In our proposed DHP-MMFN network, we use the two-fold element-wise

product (or Hadamard product) to combine the two unimodal tensors M t ∈ Rd

and Mx ∈ Rd of same size d. The multimodal element-wise representation is

defined as follows:

MDHP =

[
M t

1

]
⊙

[
Mx

1

]
=

d∑
i=1

M t
i ⊙Mx

i ∈ Rd (6.8)

Here, ⊙ indicates the hadamard product or the element-wise multiplication

between the two vectors, and MDHP ∈ Rd (i.e., 1024) is the pairwise interac-

tion map with the same dimension d as that of two input vectors, consisting of

multimodal representation capturing inter-modal interactions between textual and

imaging features as shown in Figure 6.4. For instance, if M t and Mx are defined

as,

M t =


t1

t2
...

td

 ,Mx =


x1

x2

...

xd,

 (6.9)

then the hadamard product or the element-wise multiplication between the two

vectors can be obtained as follows:

M t ⊙Mx =


t1

t2
...

td

⊙


x1

x2

...

xd,

 =


t1x1

t2x2

...

tdxd

 (6.10)

The iith component of the features obtained can be denoted as:

(M t ⊙Mx)ii = tixi, for all 1 ≤ i ≤ d (6.11)

The features obtained from DHP-MMFN are flattened and fed to the fully con-

nected module for disease prediction. A deep Hadamard product-based fusion

strategy allows intermodal information flow between medical imaging and tex-

tual features by robustly capturing the high-level interaction between the multi-
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modal features. The Deep Hadamard product provides bilinear interaction with

a rich representation of imaging and textual features combined. DHP-MMFN in-

tegrates data from two different data distributions into a global space in which

intermodality dynamics are obtained. Hence, the expressive features generated by

DHP-MMFN significantly improve the overall DL framework’s performance and

provide supreme results compared to standard concatenation techniques. This is

due to the fact that the DHP-MMFN generates a better correlation between the

visual and textual features. Algorithm 3 presents the proposed Deep Hadamard

Product-based Medical Multimodal Fusion Network for predicting pulmonary ab-

normalities from multimodal clinical data.

Algorithm 3: Proposed Deep Hadamard Product-based Medical Multi-

modal Fusion Network (DHP-MMFN)

Input: Textual feature extracted from the clinical report using UM-TES,

M t ∈ Rp and Visual feature extracted from the CXR using

UM-VES, Mx ∈ Rq

Output: Pairwise Interaction map, Φ(M t,Mx) ∈ Rd

1 for i← 1, 2, · · · , d do

/* Hadamard product or the element-wise multiplication between the

two vectors to obtain the pairwise interaction map */

2 MDHP ←

[
M t

1

]
⊙

[
Mx

1

]
←M t

i ⊙Mx
i ∈ Rd

/* The multimodal pairwise interaction features is then flattened and

passed through fully connected network for disease prediction */
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Figure 6.4: Proposed Deep Hadamard Product-based Medical Multimodal Fusion
Network (DHP-MMFN)

6.3 Experimental Setup and Evaluation

In this section, we will provide an overview of the materials used in our research,

followed by an explanation of the data augmentation techniques that were applied

to improve the medical cohort size. Finally, we will present a detailed analysis of

the experimental results obtained from our study.

6.3.1 Datasets and Cohort Selection

A limited dataset becomes a severe issue in the health domain when it happens to

be multimodal data. In the case of images, there exists some quality open source

cohorts. Hence, there is a necessity to validate the effectiveness of the multimodal

fusion models on the publicly available medical cohort and real-time data obtained

from the private hospital. A comprehensive study was carried out on two clini-

cal cohorts: the Indiana University CXR dataset (Demner-Fushman et al., 2016)

and the real-time multimodal data acquired from a private medical hospital [KMC

Hospital (Mangalore, India)]. For our investigation, the de-identified data is lever-

aged. The IEC approval was granted by the Kasturba Medical College (KMC),

Mangalore, for further research purposes. The two multimodal medical cohorts

acquired consist of chest X-rays and associated radiology free-text reports. The
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two clinical cohorts are classified as “normal” (i.e., cases with no abnormal find-

ings or any active diseases) and “abnormal” (i.e., cases with acute pulmonary and

cardiopulmonary diseases like Tuberculosis, Pneumothorax, Cardiomegaly, Pul-

monary atelectasis, Pneumonia, Opacity/lung base, etc.). Table 6.1 represents

the summary of cases (CXR with associated radiology reports) from the Indiana

University and KMC Hospital datasets. A detailed benchmarking exercise is car-

ried out on both clinical datasets to evaluate the proposed multimodal network.

Table 6.1: Cohort Statistics: CXR with associated clinical diagnostic notes from
two clinical cohorts

Characteristics IU Dataset KMC Dataset
Total No. of cases (CXR with Radiology reports) 3996 502
Total No. of cases after removing missing cases 3638 502
Total No. of cases after standard data augmen-
tation

6229 1498

Total No. of cases after synthetic data generation 6229 1498
Total No. of Sentences 17990 14537
Total No. of Words 143177 90221
Total No. of Vocabulary 1731 400
Total No. of Training/Validation Set 5606 1348
Total No. of Test Set 623 150
Percentage of Normal cases 38% 52%
Percentage of Abnormal Cases 62% 48%

6.3.2 Evaluation Criteria

We have used six standard evaluation criteria: Accuracy, Precision, Recall, F1-

Score, MCC, and AUROC to examine the performance of the proposed multimodal

fusion models on the two medical CXR cohorts. Section 4.4.3 provides a com-

prehensive explanation of the evaluation metrics chosen along with the rationale

behind their selection.

6.3.3 Data Preparation and Augmentation Stage

6.3.3.1 Standard Data Augmentation

A huge amount of high-quality data is required to develop a robust DL model

with good performance Chen and Lin (2014). However, obtaining such data is

challenging. One solution is to enable practitioners to artificially expand the
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diversity of data available in training set by augmenting the original dataset.

Data augmentation also prevents overfitting problems and increases the capacity

of the model to adjust to the new, unseen data, which is derived from a similar

distribution as that of the one used to build the model Dvornik et al. (2019). As

the size of the collected radiology medical cohort was small for effective disease

prediction, we applied data augmentation to produce a good amount of class

balanced dataset. Data Augmentation must be carefully adapted as the medical

images are relatively sensitive to the various operations that can alter the original

training set’s actual distribution by introducing additional outliers. Chapter 5

offers an extensive overview of the diverse data augmentation techniques applied

to both the Indiana University and KMC hospital datasets.

6.3.3.2 Generation of Synthetic CXRs using DCGAN

Generative Adversarial Network (GAN) (Goodfellow et al., 2014b) is a DL model

used to generate a new set of data from the training set with a similar data

distribution. The GAN model comprises two main modules: The generator module

generates synthetic or fake images that resemble images in a training set. The

discriminator module focuses on the classification or identification of generated

images as real or fake. In this experiment, we have utilized a variant of the

GAN model named Deep Convolution Generative Adversarial Network (DCGAN)

(Radford et al., 2016) to generate synthetic CXRs from the original set of images.

DCGAN uses deep convolutional networks instead of fully connected networks as

in GAN. In general, the convolution networks can capture better regions of spatial

correlations in the images, and hence, the DCGAN is a better fit for image or video

data. The architectural diagram of DCGAN is shown in Figure 6.5.

The 100× 1 latent vector (i.e., random noise) is given as an input to the dense

layer of a generator module. The random noise vector is reshaped and trans-

formed into 8×8×128. The output from the dense layer is upsampled by passing

it through a series of four transposed convolution (or deconvolution) layers to pro-

duce the fake image of size 128 × 128 × 3. Leaky Rectified Linear Unit (Leaky

ReLU) (Xu et al., 2015) is employed as an activation function for all the transposed

convolution layers, and the tanh activation (Xu et al., 2016) function is applied

on the final output layer within the generator module. To stabilize the learning

process and normalize the input, we have utilized Batch normalization after ev-

ery transposed convolution layer. Each layer has the deconvolution (deconv2D)

layer followed by Leaky ReLu and Batch Normalization. A detailed overview of
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generator architecture is depicted in Figure 6.6.

The main aim of the discriminator module is to categorize the generated image

as real or fake. The 128 × 128 × 3 CXR image generated from the generator is

passed as an input to the discriminator module. The discriminator module consists

of a set of convolution layers through which the CXR image is downsampled.

Finally, the image is classified as real or fake when passed through the output

layer. The Leaky ReLU activation function is utilized in the convolution layer,

and the sigmoid activation function is used in the output layer. The detailed

architecture of the discriminator architecture is presented in Figure 6.7. The task

of the discriminator is considered a binary classification problem since the images

are classified as real or fake.

There are two main steps for training DCGAN. First, the generator module is

trained to produce the fake image, and later, the discriminator module is trained

to accurately classify the image as real or fake. We have utilized binary cross-

entropy as the loss function, and the Adam optimizer is used with the beta1

hyperparameter of 0.5. The DCGAN is trained for 200 epochs with a learning

rate of 0.0002. The dropout probability of 0.4 is applied before the sigmoid output

classification. The stride of (4,4) and (5,5) are used for the generator deconvolution

layers and the discriminator convolution layers, respectively. After 200 epochs, the

DCGAN could generate synthetic CXR images resembling the original images.

6.3.4 Network Configurations and Parameter Settings

The NVIDIA Tesla M40 server with 128 GB of RAM, a 24GB GPU, a 3TB Hard

drive, and a Linux server operating system is used for our investigation. The

multimodal clinical cohort is split into training/validation and testing sets (refer

to Table 6.1). Both unimodal and multimodal networks were trained for 100

epochs and 10-cross fold validation to evaluate the performance of the proposed

models. The Python 3.6 with Keras library and Tensorflow (Abadi and et. al.,

2015), a popular DL platform, were utilized to implement the proposed multimodal

medical tensor fusion network. The optimum hyperparameters are determined by

exploiting the grid search strategy (Bergstra and Bengio, 2012) to fine-tune the

model’s parameter setting. We have utilized Adam (Kingma and Ba, 2015) as an

optimizer, and the binary cross-entropy is leveraged as a loss function.

For the text encoding model UM-TES, we use the GloVe model with CKB,

which takes findings from the radiology report with dimension 260 as an input and

gives the word embeddings of size 260×100 as an output. The output dimension of
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Figure 6.6: Generator Module architecture of DCGAN

Figure 6.7: Discriminator Module architecture of DCGAN

the GloVe model is set to 100. The DDR-CNN is applied to the word embeddings

of size 260×100 to generate discriminative clinical features of size 1024. Based on

the grid search strategy (Bergstra and Bengio, 2012), we use a kernel size of 5,

a filter size of 32, strides of 1, a pool size of 2, a dropout of 0.4, and a learning

rate of 0.001 as hyperparameters for DDR-CNN. For the image encoding model

UM-VES, we utilize a multichannel dilation layer followed by concatenation, 13

depthwise separable convolution layers, 27 BN and ReLU layers, and a final global

average pooling layer. We have used the optimal learning rate of 0.001 for UM-

VES. The CXRs with an input dimension 150 × 150 × 3 is passed as an input

to the UM-VES to obtain the imaging features of size 1024 from the final global

average pooling layer.

The textual features with size 1024 obtained from UM-TES and the imaging

features with size 1024 generated from UM-VES are passed through two Multi-

modal models, CBP-MMFN and DHP, separately to produce effective multimodal

representations. In CBP-MMFN, a bilinear pooling map with a size of 1024 ×
1024 is produced by the outer product between the textual and imaging features.

These features are further ingested into the CNN layer with kernel size: (3,3),

Filters: 2, strides: (1,1), pool size: (8,8) and dropout: 0.2 to obtain the com-

pact multimodal features of size 1024. In DHP-MMFN, the Hadamard product
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between the imaging and textual features is generated to produce the multimodal

features of size 1024. The multimodal feature of size 1024 is passed through a

fully connected DNN with three hidden layers (i.e., 256, 128, and 2) for disease

prediction. The ReLU non-Linear activation function (Krizhevsky et al., 2012b)

is applied at the initial two layers, and the Sigmoid logistic function is utilized

at the final layers for binary classifications. The model regularization dropouts

(Hinton et al., 2012) with probability of 0.2 are used after the first layer to prevent

the model from overfitting. The early stopping mechanism (Yao et al., 2007) is

incorporated to stop the training process when the performance of the validation

set degrades during the training epochs. The early stopping avoids overtraining

and regularizes the model by reducing the overfitting problem during training and

enhancing the model’s generalization ability.

6.3.5 Ablation Study

In this section, we conduct an ablation study of the proposed Multimodal Medical

Tensor Fusion Network to ablate from its complete form and check each module’s

contribution in predicting diseases from heterogeneous clinical data. The ablation

study is conducted on two multimodal clinical datasets (i.e., Indiana University

and KMC hospital datasets), as outlined in Table 6.2. The multimodal network

is divided into two unimodal subnetworks (i.e., UM-TES and UM-VES) and two

multimodal subnetworks (i.e., CBP-MMFN and DHP-MMFN). In our ablation

study, we have analyzed the performance of unimodal subnetworks by removing

the multimodal subnetworks. The imaging and textual features obtained from

UM-VES and UM-TES are separately passed to the fully connected prediction

model. We have also investigated the performance of the two multimodal subnet-

works by combining the visual and textual features obtained from the two uni-

modals. The result shows that including multimodal models to combine imaging

and textual features has significantly increased the overall network’s performance.

The CBP-MMFN is seen as the dominant multimodal tensor fusion scheme in our

experiment. The reason is that the CBP-MMFN achieves intermodal interaction

and captures more correlation between the textual and imaging features obtained

from the unimodal models.
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6.3.6 Performance Analysis of Unimodal and Multimodal

Models

In order to validate the impact of the two proposed heterogeneous medical fu-

sion networks, we conducted a comparative study with the two unimodal models.

The benchmarked results of the proposed unimodal and multimodal models for

predicting disease abnormalities from the Indiana University and KMC hospital

datasets are presented in Table 6.2. Figure 6.8 and Figure 6.9 shows the graphical

summary showcasing performance metrics of proposed unimodal vs multimodal

models for the Indiana University and KMC Hospital datasets, respectively.

The proposed heterogeneous models DHP-MMFN and CBP-MMFN are proven

as the supreme models with approximately 6-7% and 16-17% increase in the per-

formance (Accuracy, Precision, recall, F1-score, and MCC) compared to the Uni-

modal strategies UM-TES and UM-VES, respectively, for the Indiana University

corpus. The multimodal models have also shown a significantly higher AUROC

curve when compared to unimodal models, proving that the multimodal models

(DHP-MMFN and CBP-MMFN) have better capability in distinguishing between

positive (i.e., normal) and negative (i.e., abnormal) classes. Also, the text-only

(UM-TES) model has outperformed the image-only (UM-VES) model with an over

10-11% increase in the evaluation metrics score. For the KMC Hospital dataset,

the multimodal models DHP-MMFN and CBP-MMFN have yielded a better per-

formance of 13-16% than the unimodal image-only model (UM-VES). The text-

only (UM-TES) model is the highest performing unimodal, with significantly good

results. The multimodal models DHP-MMFN and CBP-MMFN have better com-

petence in characterizing the dataset into positive and negative classes than the

unimodal models, as reflected in the AUROC of multimodal models compared to

the AUROC of unimodal models. The multimodal models have a higher F1-score

and MCC than unimodal models, signifying that even if there is a class imbalance

in the Indiana University dataset, the multimodal models are competent enough

to classify the radiology exams into normal and abnormal accurately.

From the comprehensive analysis of two medical cohorts, it is seen that both

multimodal models have given significantly superior results compared to the uni-

modal models. This is because, in multimodal strategies, there is an intermodal

interaction that is missing in unimodal models. It is observed that for the Indiana

University and the KMC hospital cohorts, the text modality has a considerable

impact on the performance of the multimodal models than the imaging modality,

as reflected by an AUROC of 0.9555 and 0.9651 for text-only models compared to
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an AUROC of 0.8572 and 0.8793 for image-only models. We believe this is because

of the annotation process of the Indiana University and KMC hospital datasets.

The annotators have focused on text being assigned to the labels of the radiology

reports, and the results reflect that the most discriminative features are found in

the text modality. Also, it is seen that the knowledge base incorporated in the

UM-TES has significantly impacted the performance of the text-only model. The

extensive vocabulary of clinical words was obtained from the knowledge base that

helps the model learn unseen and infrequent words. The CBP-MMFN has given

the highest performance in two multimodal clinical cohorts out of two multimodal

models. The intermodal correlation encoded in the bilinear interaction map of

CBP-MMFN has more discriminative features than the DHP-MMFN interaction

map.
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Figure 6.8: Comparison of performance metrics of proposed unimodal vs multi-
modal models for Indiana dataset

6.3.7 Performance Analysis on Synthetic Data Generated

Table 6.3 showcases the performance of the proposed unimodal and multimodal

models for pulmonary abnormality prediction from the synthetic data generated

using DCGAN. As described in Section 6.3.3.2, we have used DCGAN for gener-

ating synthetic CXRs. The discriminator network is made to guess between the
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Figure 6.9: Comparison of performance metrics of proposed unimodal vs multi-
modal models for KMC dataset

fake and real CXR images. The discriminator accuracy in determining real and

fake samples during training (200 epochs) of DCGAN for the Indiana University

and KMC hospital datasets is shown in Figure 6.10. The generator and discrimi-

nator losses during the training (Batch size= 128 and 200 epochs) of DCGAN are

depicted in Figure 6.11, where discriminator and generator losses are around 0.5

for both the datasets. The process of synthetic data generation from the latent

noise after every 20 epochs for the KMC hospital dataset is presented in Figure

6.12. The total number of cases after synthetic data generation for the Indiana

University and KMC hospital datasets is shown in the Table. 6.1.

It is observed that training our proposed unimodal and multimodal models with

the actual CXR images and synthetic CXR images yields better performance than

training the models with the actual CXR images with the standard augmented

images (refer to Table Table. 6.2). There is a significant increase in accuracy of

1-2% in image only, text only, and image+text models for both medical cohorts.

This suggests that the generated synthetic CXRs comprise more meaningful fea-

tures that help enhance the model’s performance. Also, there is an increase in

precision and recall recorded for pulmonary abnormality prediction from both

datasets. This shows that the features obtained are more discriminative to cat-

egorize between the disease and no disease. The higher MCC and F1-Score are
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obtained for both unimodal and multimodal models, showcasing accurate disease

prediction despite an uneven class distribution in the Indiana University dataset.

The synthetic CXR data generated provides more variability to the two medical

cohorts by increasing their size. The synthetic CXR generated comprises varied

features compared to the original set of images. The proposed models provide

good results on this synthetic data, proving that the proposed unimodal and mul-

timodal models can predict and adapt to new and unseen data. The comparison of

proposed unimodal vs. multimodal performance metrics on actual and synthetic

multimodal data for Indiana University and KMC hospital datasets is shown in

Figure 6.13 and Figure 6.14, respectively.

(a) Indiana University dataset (b) KMC hospital dataset

Figure 6.10: Discriminator Accuracy on real and fake samples during training of
DCGAN

(a) Indiana University dataset (b) KMC hospital dataset

Figure 6.11: Generator and Discriminator loss during the training of DCGAN

6.3.8 Performance Comparison with the State-of-the-art

Models

The experimental outcomes of the existing State-of-the-Art multimodal fusion

strategies on Indiana University CXR and their associated clinical reports are

outlined in Table 6.4. Our two multimodal fusion strategies, DHP-MMFN and
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Figure 6.13: Comparison of performance metrics of proposed unimodal vs multi-
modal models on Actual data with synthetic data generated from Indiana Univer-
sity dataset

Figure 6.14: Comparison of performance metrics of proposed unimodal vs multi-
modal models on Actual data with synthetic data generated from KMC Hospital
dataset
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CBP-MMFN, remarkably surpass the six existing state-of-the-art multimodal fu-

sion strategies. Both the proposed multimodal models have shown 14-15% more

accuracy compared to the existing model fusion technique (Aydin et al., 2019a),

where they have used concatenation for fusing the tensors. The proposed mul-

timodal models have achieved superiority over another multimodal model fusion

strategy, MFT (Lopez et al., 2020), where standard concatenation is applied to

combine the visual and textual features. Our multimodal models yield better re-

sults due to the intermodal interaction between the text and imaging features,

which is missing in standard concatenation, where features from two modalities

are joined before passing through the prediction model. It is found that the state-

of-the-art MFT, EFT, and LFT models, including the proposed DHP-MMFN and

CBP-MMFN models, have competent recall rates, which proves that all the mod-

els effectively predict the true positives (i.e., disease abnormalities). That is, recall

indicates how many were correctly identified as disease abnormality out of all the

cases having disease abnormalities. As observed from Table 6.4, our proposed

model yields 5-10% more precision compared to existing models. This proves

that our proposed model correctly predicts the abnormalities from all the cases.

The proposed models, CBP-MMFN and DHP-MMFN, have superior F1 scores

compared to state-of-the-art models. The higher model F1-score signifies that

the proposed model has accurately categorized the cohort as normal and abnor-

mal, even though there exists a class imbalance in the Indiana University dataset.

There is a significant improvement of 5-7% in the AUROC of the proposed fusion

model compared to state-of-the-art models, indicating that there is excellent sepa-

rability between two classes (i.e., normal and abnormal). From the experiment, it

was found that the proposed multimodal models have significantly outperformed

the state-of-the-art models. In the existing state-of-the-art approaches, either

concatenation or late fusion techniques like averaging are used to combine the fea-

tures, where the inter-modal interactions are completely ignored. In our proposed

model, the inter-modal dynamics between the visual and textual modalities are

considered, which is the major reason for performance gains.

After performing a comprehensive investigation on two multimodal clinical

datasets, it is found that multimodal learning provides a benefit over unimodal

learning when predicting diseases from the radiology CXR and associated clinical

free-text notes. With regards to the two proposed multimodal fusion strategies,

CBP-MMFN performs better than the DHP-MMFN model across publicly avail-

able Indiana University cohorts and data collected from the KMC hospital. The

superior results in CBP-MMFN are obtained because of the intermodal dynamics
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between the textual and imaging modalities. The Bilinear interaction map gener-

ated from the outer product of visual and textual features in CBP-MMFN gener-

ates a far more expressive multimodal feature representation, encoding more ten-

sor correlation than the simple concatenation operation and element-wise product.

Hence, the discriminative features extracted from the CBP-MMFN model provide

a significant performance gain over the uni-modal models and the DHP-MMFN

model. The unimodal text-only model (UM-TES) has given more promising re-

sults than the proposed unimodal image-only (UM-VES) model. The two major

reasons for it are as follows:

• Incorporating a CKB helps to jointly learn word vectors from the cohort and

knowledge base, which increases the vocabulary size and allows the learning

of infrequent clinical words.

• It has been found that radiology reports have more discriminative features

than CXRs. This is because the annotators have focused on the text being

assigned to the labels of the radiology reports.

The proposed models also recorded good performance on synthetic data gen-

erated using DCGAN, proving their ability to predict from new and unseen data.

We also observed that the existing state-of-the-art multimodal fusion techniques

applied to radiology images and their associated reports are either straightforward

concatenation or late fusion techniques like averaging, which ignore inter-modal

interaction among the two modalities. The proposed multimodal medical tensor

fusion techniques have given supreme results compared to the existing state-of-the-

art methods. The proposed models focus on inter-modal dynamics, which find the

tensor correlation between the textual and imaging modalities. The experimen-

tal results prove that the multimodal representation obtained from the proposed

model has more expressive features than the traditional concatenation strategy.

6.4 Summary

The chapter introduces two Multimodal Medical Tensor Fusion Networks, CBP-

MMFN and DHP-MMFN, which are designed to predict abnormalities in radiology

CXR scans and their associated reports. The proposed models are evaluated on

two multimodal radiology datasets: a publicly available Indiana University dataset

and real-time data collected from KMC Private Hospital. We found that the mul-

timodal models perform better than unimodal models and show superior perfor-

mance compared to state-of-the-art heterogeneous fusion techniques for predicting
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abnormalities in the radiology cohort. Additionally, we evaluate the models on

synthetic data generated using DCGAN and observe that both the unimodal and

multimodal models perform better on the synthetic data generated, showcasing

their ability to predict from new and unseen data distributions. Overall, the chap-

ter highlights the potential of multimodal learning for predicting abnormalities in

radiology CXR with associated reports. The proposed models show competitive

performance and have the potential for applications in real-world healthcare set-

tings.
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Chapter 7

Cross-Modal Deep Learning Framework

for Diagnostic Report Generation from

Chest X-ray Images

7.1 Introduction

Medical imaging is an essential aspect of modern healthcare that offers doctors

valuable insights into a patient’s internal structures. Imaging techniques like X-

rays, CT scans, MRIs, and ultrasounds allow doctors to diagnose illnesses and plan

treatments with accuracy. Radiologists are healthcare specialists who specialize in

analyzing medical images to create comprehensive radiology reports that contain

detailed findings and impressions (Jing et al., 2018). Examining medical images

and creating diagnostic notes is a time-consuming process that demands a high

degree of proficiency. Radiologists must thoroughly scrutinize the medical images,

cross-reference them with the patient’s medical history, and deliver precise and

thorough interpretations. Despite their experience and proficiency, radiologists

may come across indeterminate results that necessitate additional investigation.

Consequently, patients may need to undergo further testing, such as advanced

imaging or pathology, to determine the root cause of the issue. Furthermore,

when hospitals become crowded, or there is a surge in patient numbers during

pandemics, radiologists may find it challenging to meet the demand for detailed

reports (Yang et al., 2022). The increased workload may cause burnout, errors, or

delays in providing care to patients. To overcome these difficulties, experts have

turned to AI and DL technologies to automate the generation of radiology reports.

Using this approach can lessen the burden on radiologists, enhance the speed and

precision of diagnoses, and ultimately improve patient care.

201
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7.1.1 Problem Statement

The increasing demand for accurate and timely radiology reports, coupled with

the challenges radiologists face in examining medical images and creating diagnos-

tic notes, has led to burnout, errors, and delays in providing care. While experts

have turned to AI and DL technologies to automate the generation of radiology

reports, implementing and adopting these technologies face several challenges.

These include the need to address concerns regarding the accuracy and reliability

of automated notes, integrate these technologies into existing clinical workflows,

and ensure that they are accessible and affordable to all healthcare facilities. Ad-

dressing these challenges will be crucial in realizing the potential of AI and DL

technologies to improve the speed, accuracy, and efficiency of radiology diagnoses,

ultimately enhancing patient care outcomes. The problem statement is defined as

follows:

“Considering the multimodal medical cohort containing radiology im-

ages with associated diagnostic notes, design and develop an automatic

diagnostic report generation by analyzing the visual features from the

Chest X-ray scans.”

We propose a solution to the challenge by developing a deep encoder-decoder

model that can automatically generate reports from chest X-rays. To achieve

this, we have utilized a Multi-channel dilation layer with Depthwise Separable

Convolution Neural Network to extract imaging features and knowledge-based

text modelling for textual feature extraction. Finally, the LSTM model is used to

fine-tune the generated report. We summarize the contributions of this study as

follows:

• We propose an encoder-decoder-based deep learning framework to generate

diagnostic radiology reports for given chest x-ray images.

• We have developed a dynamic web portal that can efficiently take in chest

X-ray images as input and generate radiology reports as output, thereby

providing an accessible and user-friendly solution.

• We conduct a comprehensive analysis and compare the performance of the

proposed model with state-of-the-art deep learning approaches.
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7.2 Methodology

The proposed encoder-decoder framework aims to generate radiology reports from

chest X-rays, which include both frontal and lateral images. During the training

process, both the chest X-rays and the corresponding reports are provided as

input to the encoder. The encoder consists of two components: the UM-VES

(refer Chapter 5) for extracting visual features and the UM-TES (refer Chapter 4)

for extracting textual features. These features are then used by the LSTM-based

decoder to generate the reports. The encoder operates by processing each item

in the input sequence and aggregating the captured information into a context

vector. Once the entire input sequence has been processed, the encoder transfers

the context vector to the decoder, which generates the output sequence item by

item. This process allows the model to effectively combine the visual and textual

information and generate contextually relevant reports. The detailed architecture

of the proposed cross-modal retrieval is shown in Figure 7.1. During the training

phase, the model aims to establish connections between the textual information

in the reports and the visual features extracted from the chest X-ray images.

The UM-TES approach is employed to encode the textual information, while the

UM-VES technique is used to extract visual features. These modalities are then

integrated into a joint representation, enabling the model to learn the correlations

between the input chest X-ray images and the associated textual information in the

reports. By iteratively optimizing the model’s parameters, it gradually acquires

the capability to generate coherent and contextually relevant reports. During the

testing phase, only the chest X-ray images are provided as input to the trained

model. Drawing upon the learned associations between the image and the textual

information from the training phase, the model generates a report based solely on

the input image. This process is achieved by utilizing the decoding mechanism of

the trained model, such as a Long Short-Term Memory (LSTM), to generate the

text-based output.

7.2.1 Unimodal Medical Visual Encoding Subnetwork (UM-

VES)

The proposed UM-VES utilizes a multichannel dilation layer with a depthwise

separable convolution neural network to extract the imaging features. Compared

with the conventional convolution layer, the proposed multichannel dilation con-

volution layer yields complete imaging information by producing a larger receptive
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Figure 7.1: Overall architecture of the proposed cross-modal deep learning-based
model for automatic report generation

field without increasing the network parameters. Further, the Depthwise Separa-

ble convolution network is applied instead of the traditional convolution network

to minimize computation burden at each layer evenly. The UM-VES for extracting

the textual features from the chest X-ray is presented in Chapter 5. The UM-VES

framework is used to extract visual features from both the frontal and lateral CXR

images independently, and the resulting features are combined by concatenation.

7.2.2 Unimodal Medical Text Embedding Subnetwork (UM-

TES)

As an overview, the radiology findings are pre-processed to obtain the essential

latent medical concepts. The word embeddings are learnt from the medical words

by applying customized Clinical Knowledge-based Text Modelling. Dense word
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embeddings obtained are mapped to the medical words from the findings in the

Embedding Layer. The detailed explanation of UM-TES for extracting textual

features is explained in Chapter 4.

7.2.3 Long Short-term Memory-based Report Generation

The fundamental concept of utilizing LSTM for report generation centers around

the memory cell, denoted as c, which primarily stores the information on the input

received at any given moment. The function of these cells is controlled by layers or

gates that are inserted in a multiplicative manner and can maintain values of either

0 or 1, which are determined by the gates. Specifically, three gates are employed

to monitor whether the present value of the cell should be disregarded, if the new

cell value should be generated (output gate 0), or if it should be interpreted as

input, as illustrated in Figure 7.2. The Equation 7.1, 7.2 and 7.3 depict the input,

forget, and output layers, respectively.

Figure 7.2: Long Short-term Memory Architecture

inputt = σ(Wiyyt + Wimmt−1) (7.1)

forgett = σ(Wfyyt + Wfmmt−1) (7.2)
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outputt = σ(Woyyt + Wommt−1) (7.3)

The equation 7.4, 7.5 and 7.6 represent the other operation of the LSTM model.

cellt = forgett ⊙ cellt−1 + inputt ⊙ h(Wcyyt + Wcmmt−1) (7.4)

cellt = outputt ⊙ cellt (7.5)

Pt+1 = Softmax(mt) (7.6)

Where, inputt, forgett and outputt denotes the output of the input, forget

and output gates, respectively at time t; yt represents the input vector at time t;

mt − 1 is the hidden state of the LSTM at time t− 1; Wiy, Wfy, Woy, Wcy, Wim,

Wfm, Wom and Wcm indicates the weight matrices that manage that manage the

input and hidden connections between the input, forget and output gates and cells;

cellt represents the state of the cell at time t and Pt+1 represents a probability

distribution over a set of possible outcomes at time t + 1.

7.3 Web-based Framework for Report Genera-

tion

We utilized the Flask web framework to create a user-friendly web interface for

our model. By uploading both frontal and lateral X-ray images through this

interface, users can obtain reports with ease. To streamline the user experience,

we implemented Ajax, a technique that enables data to be sent and retrieved

asynchronously in the background of the application without requiring the entire

page to be reloaded. This approach is particularly useful when we want to update

specific portions of an existing page without redirecting or reloading the page for

the user. As depicted in Figure 7.3, in order to obtain a report, users are required

to upload both frontal and lateral X-ray images. After clicking on the ’Generate

Report’ button, an Ajax request is sent to the Flask App hosted on the server.

The Flask application utilizes the uploaded images to generate predictions for the

report, which are then transmitted back to the client side. Upon receipt, the

predicted report is displayed to the users.
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Figure 7.3: Client-Server interaction used for predicting reports

7.4 Experimental Setup and Evaluation

For model training, we utilized the IU Chest X-Ray Collection, which includes

a comprehensive set of chest x-ray images accompanied by their corresponding

diagnostic reports. Please see Section 4.4.1 for a detailed description of the data

cohort employed in this study, which comprised 7,470 pairs of images and reports

(Number of cases=3996). The reports contained two main sections, impressions

and findings. In our investigation, we selected frontal and lateral images and

the content of the findings section as the target captions to be generated. To

conduct our experiment, we removed cases without reports and frontal/lateral

images, ultimately working with 3,638 cases. Two methods were used to generate

text reports: greedy search and beam search. Greedy search is an algorithmic

approach that incrementally constructs a solution by selecting the next piece that

seems to provide the most immediate benefit. In contrast, beam search expands

on the greedy search technique by generating a list of the most likely output

sequences, each with its own score. The sequence with the highest score is then

chosen as the final result.

To evaluate the performance of the generated reports, we incorporated the

BLEU score. The BLEU (Bilingual Evaluation Understudy) Score is a method

used to evaluate the similarity between a generated sentence and a reference sen-

tence. The score ranges from 0.0, indicating a total mismatch, to 1.0, indicating a

perfect match. This approach involves tallying the number of matching n-grams

in the candidate text with those in the reference text. For instance, a uni-gram

or 1-gram would correspond to each token, whereas a bi-gram comparison would
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correspond to each pair of words. Achieving a perfect score is not practical, as

it necessitates an exact match with the reference, which even human translators

cannot achieve. Furthermore, comparing scores across datasets can be difficult

due to the number and quality of the references used to determine the BLEU

score.

We compute the BLEU score for an automatic report generated using beam

and greedy search. It is observed that beam search produces a superior BLEU

score compared to the greedy search algorithm. The qualitative analysis of the

proposed deep learning-based model using a beam and greedy search algorithm is

shown in the Table. 7.1. The BLEU score of 0.5459, 0.4131, 0.386 and 0.3552 are

obtained for different n-grams in the greedy search approach. The beam search

approach produces a BLEU score of 0.5881, 0.4325, 0.4017 and 0.3860. We have

also compared the results with the existing automatic diagnostic report generation

work. Most of the existing work has shown lesser BLEU4 as it compares the four

words together with the ground truth. Our proposed model outperforms the

existing models while generating robust diagnostic reports. This may be due to

the multi-channel visual features and knowledge-based discriminate text features

extracted in the encoder of the proposed network. The detailed analysis of the

various existing models is shown in Table. 7.2.

Table 7.1: Performance analysis of the proposed model

Method Bleu1 Bleu2 Bleu3 Bleu4
Greedy Search 0.5459 0.4131 0.3864 0.3552
Beam Search 0.5881 0.4325 0.4017 0.3860

Table 7.2: Performance analysis compared with existing work of report generation

Method Bleu1 Bleu2 Bleu3 Bleu4
Sai et al. (2021) 0.213 0.258 0.325 0.381
Nguyen et al. (2021) 0.515 0.378 0.293 0.235
Liu et al. (2021) 0.417 0.263 0.181 0.126
Zhou et al. (2021) 0.536 0.392 0.314 0.339
Sirshar et al. (2022) 0.58 0.342 0.263 0.155
Nicolson et al. (2022) 0.4777 0.308 0.2274 0.1773
Proposed Model 0.5881 0.4325 0.4017 0.3860

We designed and developed a flask web application interface for quantitative

analysis of the model. Figure 7.4 shows the web interface to upload the chest

x-ray images and produce the diagnostic report. The user has to input frontal
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and lateral chest X-ray images into the web interface. When the user clicks the

“generate report”, an Ajax request will be sent to the Flask App on the server,

where the Flask application uses the uploaded images to predict reports. The

predicted reports will be sent back to the client, where they are displayed to the

users with the BLEU score.

Figure 7.4: The dynamic web portal for automatic diagnostic report generation.
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7.5 Summary

This chapter describes an automated framework that employs a deep learning-

based encoder-decoder approach to generate reports from chest X-ray scans. The

modules used in the framework, such as UM-VES, UM-TES, and LSTM, are

discussed in detail. In addition, a dynamic web framework was developed and

implemented that accepts chest X-ray images as input and generates diagnostic

reports as output. To evaluate the proposed framework, a comprehensive set of

experiments was conducted, and the results were compared with those of state-

of-the-art report generation frameworks. The proposed framework yielded better

performance, as evidenced by an improved BLEU score compared to existing mod-

els.
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Chapter 8

Multimodal Image Fusion Network for

Acute Infarct Prediction from MRI

Image Sequences

8.1 Introduction

Acute brain infarct is a prevalent cause of fatality and ailment globally, resulting

in over 5.5 million deaths annually (Ovbiagele and Nguyen-Huynh, 2011). It is

indicated by the abrupt appearance of clinical signs led by focal or global brain

dysfunction. These symptoms may persist for more than 24 hours or result in

death, and there are no other identifiable factors other than the issues related to

vascular origin. The stroke can be categorized as either an ischemic infarct or a

hemorrhagic infarct. According to the regulations for early thrombolytic treatment

of patients with Acute ischemic infarct, immediate medical diagnosis is the primary

therapy for minimizing the brain tissue damage to the maximum extent (Powers

et al. (2018); Jiang et al. (2021)). An acute ischemic infarct is caused due to the

instant obstruction of blood flow to a specific area of the brain, leading to the death

of brain tissue (French et al., 2016). The leading cause of this occlusion is typically

a blood clot that obstructs the arteries that supply blood to the brain. Usually,

this kind of infarct is associated with an acute ischemic stroke, characterized by

neurological symptoms resulting from a disruption in blood flow to a particular

region of the brain. When the supply of blood to the brain is obstructed, the brain

cells die within a matter of minutes due to insufficient oxygen and nutrients. This

blockage may lead to rapid loss of brain function and result in life-threatening

symptoms and complications. The specific symptoms experienced by the patients

depend on which part of the brain is affected by the infarct. Such symptoms may

include one-sided body weakness or paralysis, problems with speech or language

211
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comprehension, vision loss, and issues with balance and coordination (Shi et al.

(2022); Winder et al. (2022)).

Among the various imaging modalities available, MRI is the most accurate

imaging modality for diagnosing acute brain infarct. MRI is a non-invasive imag-

ing method that provides high-resolution images comprising the anatomy of the

human body, including organs and tissues. MRI is regularly used to identify and

diagnose different cardiovascular and cerebral disorders in the initial stages (Madai

et al. (2014); Liang et al. (2021)). The most reliable MRI sequence for early acute

infarct detection is DWI (Arenillas et al., 2002). It can detect a brain infarct

within 3 to 6 hours of the onset of the disease process, making it an essential tool

for diagnosing and treating ischemic stroke. DWI works by gauging the random

Brownian movement of water particles inside a particular tissue region. The ADC

provides a quantitative estimate of the extent of limited diffusion within that area.

In the DWI sequence, hyperintensity is observed for the ischemic infarct area, and

hypointensity is seen in the ADC sequence (Ogbole et al., 2015). In addition to

DWI, T2 FLAIR MR imaging is also used to detect acute ischemic infarcts. This

sequence involves nulling the signal of cerebrospinal fluid (CSF) using an inver-

sion time ranging from 1500 to 2500 ms. The resulting image will show an area

of hyperintensity on an acute ischemic infarct (Brant-Zawadzki et al., 1996). An-

other MRI technique, SWI, is sensitive to compounds that distort local magnetic

fields, such as deoxyhemoglobin, intracellular methemoglobin, and hemosiderin.

This fully velocity-corrected, 3D gradient-echo high spatial resolution technique

can detect hemorrhagic infarcts as the area of blooming on MRI (Hermier and

Nighoghossian, 2004). Figure 1.5 showcases the DWI, T2-Flair, ADC, and SWI

MRI sequences of 10 patients data collected from a private medical institute.

MRI captures blood flow dynamics that aid physicians in assessing the risks

and benefits of reperfusion therapy (Kang et al. (2012); Kim et al. (2023)). How-

ever, determining the appropriate course of action is challenging due to the varying

size, shape, and location of lesions, as well as the intricate cerebral hemodynamic

process (Goyal et al., 2021). Hence, there is a requirement for an automated

approach utilizing Artificial Intelligence techniques to predict Acute Infarct from

MRI images (Qiu et al. (2021); Ozkara et al. (2023)). Such a system can aid Radi-

ologists in providing accurate and swift diagnoses, guiding treatment approaches,

and ultimately leading to reduced mortality and morbidity rates (Werdiger et al.

(2022); Shetty et al. (2022)). CNNs are a specific kind of neural network that

have been devised to process data that is presented in grid-like structures, such

as images (Albawi et al., 2017). CNNs have exhibited superior performance com-
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pared to traditional methods that rely on manually crafted features (Yamashita

et al., 2018). These networks have demonstrated remarkable effectiveness in var-

ious computer vision applications, that includes image recognition (Tajbakhsh

et al., 2016), identifying and recognizing objects (Ren et al. (2017); Hassanzadeh

et al. (2020)).

To accurately analyze a single case, it’s crucial to consider the valuable infor-

mation contained in various MRI sequences such as DWI, ADC, T2-Flair, and

SWI. However, the complex relationships between these sequences and the subtle

changes they indicate may not be easily detectable when viewed as a single se-

quence. To overcome this challenge, we have used multiple channels to combine

the information from these sequences and capture the complex interplay between

them, improving the model’s ability to detect and interpret fine changes. In this

investigation, the stacked multi-channel CNN framework is proposed for acute in-

farct prediction, leading to more accurate and reliable detection of ischemic brain

lesions from MRI sequences like DWI, ADC, T2-flair, and SWI.from 1500 to 2500

ms. The resulting image will show an area of hyperintensity on acute ischemic in-

farct (Brant-Zawadzki et al., 1996). Another MRI technique, SWI, is sensitive to

compounds that distort local magnetic fields such as deoxyhemoglobin, intracel-

lular methemoglobin, and hemosiderin. This fully velocity-corrected 3D gradient

echo high spatial resolution technique can detect hemorrhagic infarcts as the area

of blooming on MRI (Hermier and Nighoghossian, 2004). Figure 1.5 showcases

the DWI, T2-Flair, ADC and SWI MRI sequences of 10 patients data collected

from private medical institute.

MRI captures blood flow dynamics that aid physicians assess the risks and

benefits of reperfusion therapy (Kang et al. (2012); Kim et al. (2023)). However,

determining the appropriate course of action is challenging due to the varying

size, shape, and location of lesions, as well as the intricate cerebral hemodynamic

process (Goyal et al., 2021). Hence, there is a requirement for an automated

approach utilizing Artificial Intelligence techniques to predict Acute Infarct from

MRI images (Qiu et al. (2021); Ozkara et al. (2023)). Such a system can aid Radi-

ologists in providing accurate and swift diagnoses, guiding treatment approaches,

and ultimately leading to reduced mortality and morbidity rates (Werdiger et al.

(2022); Shetty et al. (2022)). CNNs are a specific kind of neural network that

have been devised to process data that is presented in grid-like structures, such

as images (Albawi et al., 2017). CNNs have exhibited superior performance com-

pared to traditional methods that rely on manually crafted features (Yamashita

et al., 2018). These networks have demonstrated remarkable effectiveness in var-
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ious computer vision applications, that includes image recognition (Tajbakhsh

et al., 2016), identifying and recognizing objects (Ren et al. (2017); Hassanzadeh

et al. (2020)).

To accurately analyze a single case, it’s crucial to consider the valuable infor-

mation contained in various MRI sequences such as DWI, ADC, T2-Flair, and

SWI. However, the complex relationships between these sequences and the subtle

changes they indicate may not be easily detectable when viewed in single sequence.

To overcome this challenge, we have used multiple channels to combine the infor-

mation from these sequences and capture the complex interplay between them,

improving the models ability to detect and interpret fine changes. In this inves-

tigation, the stacked multi-channel CNN framework is proposed for acute infarct

prediction leading to more accurate and reliable detection of ischemic brain lesions

from MRI sequences like DWI, ADC, T2-flair and SWI.

8.1.1 Problem Statement

Acute brain infarct is a severe global health issue that can cause significant harm,

so diagnosing it quickly and accurately is crucial to prevent further damage to

brain tissue. MRI is a highly accurate non-invasive method for detecting acute

brain infarcts, and specific MRI sequences, such as DWI, T2-Flair, ADC and

SWI, can help identify both ischemic and hemorrhagic infarcts. However, man-

ually interpreting these MRI sequences can be time-consuming and error-prone.

Therefore, using AI techniques, particularly CNNs, can provide an automated and

more reliable approach to predicting acute infarcts from MRI images. Using AI-

based strategies, radiologists can provide swift and precise diagnoses, improving

treatment decisions and reducing morbidity and mortality rates. This study aims

to develop an automated CNN-based approach to predict acute infarcts from MRI

images, thus improving patient outcomes.

“Considering the multimodal medical Image cohort with multiple MRI

sequences including DWI, T2-Flair, ADC and SWI, design and develop

an effective deep learning strategy to predict acute infarct accurately to

facilitate an intelligent clinical recommendation system”

The following are the key contributions of the proposed research addressing

the above challenges:

• We present a novel framework for acute infarct prediction from MRI se-

quences using deep learning techniques. Our framework consists of a contour-
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based brain segmentation technique to isolate the brain contours from the

MRI data. We then propose stacked multi-channel convolutional neural net-

works (SMC-CNN-M and SMC-CNN-I) to predict the disease from multiple

MRI sequences and individual MRI sequences. To visualize the disease in

the MRI data and assess the model’s potential to predict acute infarct, we

incorporate Gradient-weighted Class Activation Mapping (Grad-CAM).

• The proposed framework was evaluated on a medical cohort collected from

a private medical hospital, and we benchmarked their classification perfor-

mance against the baseline deep learning network. We performed an abla-

tion study on different MRI sequences to assess the efficacy of each sequence.

Furthermore, we generated synthetic data using DCGAN and compared the

performance of our proposed models on the synthetic data.

8.2 Materials

In this section, we will delve into the intricacies of our data collection and cohort

selection processes and then elaborate on the methods used for data augmentation

and synthesis. To begin with, we will explain how we carefully chose the cohort

for our study and the steps taken to collect the necessary data. Our focus was

on ensuring that our data was representative of the population being studied, and

that it was collected in a consistent and systematic manner. We will provide a

detailed account of our cohort selection criteria and the measures we implemented

to ensure data quality. After describing the data collection process, we will move

on to the topic of data augmentation and synthesis. Here, we will explain how we

used various techniques to enhance the amount and diversity of our data. We will

discuss the various methods used to create synthetic data, and how these were

combined with the real data to create a more comprehensive dataset.

8.2.1 Data Collection

In our experiment, we gathered MRI sequences (DWI, T2-flair, ADC, and SWI)

from KMC Hospital (Mangalore, India), which were then de-identified or de-linked

to protect patient privacy. We received approval from the IEC to use this cohort for

research in the area of health informatics. The detailed cohort statistics providing

information about the MRI sequences gathered from KMC Hospital are presented

in Table 8.1. The MRI sequences were captured using several machines, including

1.5T Siemens Magnetom Avanto, 1.5T Signa Exite, and 1.5T Siemens Symphony,
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Table 8.1: Cohort Statistics: Detailed description of the MRI sequences collected
from KMC private hospital.

Dataset Description KMC Hospital Co-
hort

Total # of cases included with four MRI sequences 1267
Total # of cases after pre-processing 991
Total # of cases with Acute Infarct 494
Total # of cases with no disease 497
Total # of training set 793
Total # of validation set 99
Total # of test set 99
Total # of training set (after standard augmentation) 3169
Total # of validation set (after standard augmentation) 397
Total # of test set (after standard augmentation) 396
Total # of training set (after synthetic data generation) 1532
Total # of validation set (after synthetic data genera-
tion)

192

Total # of test set (after synthetic data generation) 192

and a total of 1267 cases with all four MRI sequences were collected. These MRI

sequences were passed through the basic preprocessing stage to exclude irrelevant

cases. The following cases are excluded: (a) cases with Hemorrhagic stroke (i.e.,

68 cases), (b) cases with metallic implants, pacemakers and Motion artefacts (i.e.,

208 cases). The cohort was then categorized into two groups: “abnormal”, which

consisted of cases with acute infarct, and “normal”, which consisted of cases with

no diseases. The cohort of acute brain infarcts was divided into three parts, which

were a train set, a validation set, and a test set, with proportions of 80%, 10%, and

10%, correspondingly. As the medical dataset collected is limited in number and

considering the overfitting issue when ingested into the proposed SMC-CNN, we

have applied a data augmentation and synthesis strategy to overcome the problem

of inaccurate model prediction. Henceforth, we have increased the cohort size by

using geometrical translation and artificial image generation from the selected

MRI sequences.

8.2.2 Standard Augmentation Techniques

To expand the size of the medical cohort obtained, the MRI sequences are passed

through a series of geometric translations (refer Figure 5.9 in Chapter 5). This

transformation will aid ML and DL models to enhance performance by minimizing

overfitting problems. The DL algorithms need to be trained with a massive sample
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of data to provide a reliable diagnostic outcome. In the medical domain, obtaining

a vast amount of clinician-annotated data is tedious and time-intensive. The

medical datasets are usually small in size or restricted to private medical institutes.

Henceforth, we apply data augmentation strategies to randomly transform the

original MRI sequences to increase the data cohort size. Section 5.6 in Chapter 5,

provides a comprehensive explanation of the process for creating augmented MRI

scans using standard augmentation techniques.

8.2.3 Synthetic Data Generated using DCGAN

Synthetic data is artificially annotated information that is simulated by the al-

gorithms to obtain the alternate mimicked data from the original data cohort.

Synthetic data in health informatics assists in the data scarcity problem and al-

lows us to expand the cohort size with less time than the manual collection of

expert-annotated data. For our study, we have incorporated the Deep Convolu-

tional Generative Adversarial Network (DCGAN) to produce synthetic data from

the MRI cohort collected from KMC Hospital. The DCGAN module comprises

two major modules, namely the Generator and the Discriminator modules. The

generator module creates the synthetic image by ingesting additional noise from

the original image, and the discriminator module then classifies it as an actual

or artificial image. Section 5.6 in Chapter 5, offers a thorough explanation of the

procedure for generating synthetic MRI scans using DCGAN.

8.3 Methodology

In this section, we give an in-depth overview of the proposed methodology for pre-

dicting acute brain infarct from MRI sequences, including DWI, T2-Flair, ADC,

and SWI. To begin with, we present a contour-based brain segmentation technique

to segment the brain contours from the MRI sequences. Further, we propose two

stacked multi-channel convolutional neural networks (i.e., SMC-CNN-M and SMC-

CNN-I) for predicting disease from multiple MRI sequences and individual MRI

sequences. Lastly, we integrate Grad-CAM to facilitate the visualization of dis-

eases in the MRI sequences and to evaluate the model’s potential to predict acute

infarct.
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8.3.1 Contour-based Brain Segmentation for MRI Sequences

The high-resolution MRI sequences like DWI, T2-flair, ADC, and SWI comprise

non-brain tissue, which needs to be discarded before ingesting the MRI sequence

into the SMC-CNN as the principal region of interest is the brain. So, we pro-

pose contour-based brain segmentation to extract the brain contours from the

MRI sequences. The Algorithm 4 provides the step-by-step procedure followed for

contour-based brain segmentation from MRI sequences.

Figure 8.1: Contour-based brain segmentation of MRI sequence. From left to
right: Step 1 indicates the original MRI Image, step 2 represents the biggest
contour obtained, step 3 indicates the extreme points on the left, right, top and
bottom of the contour and step 4 represents the cropped image.

To begin with, we convert the RGB MR Image sequences into grayscale and

apply Gaussian blur (Young and van Vliet, 1995) to mute any noise in the image

by blurring it slightly. Further, we use the same threshold value for every pixel

in the grayscale image to obtain a clear partition between the foreground and

background in an image. The pixel value is set to zero if it is less than the given

threshold; otherwise, it will be assigned the maximum value (i.e., Max-value =

255). Morphological erosion and dilation are applied to remove the insignificant

pixels on the contour boundaries and enhance the white pixels in the contour

area. We capture the most prominent contour out of all the contours obtained

in the MRI sequence. To segment and crop the region of interest from the MRI

sequences, we locate the extreme points of the largest contour: the left, right, top,

and bottom. These points serve as a reference for the segmentation and cropping

processes. Figure 8.1 shows the contour-based brain segmentation of the MRI

sequences.
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Algorithm 4: Contour-based brain segmentation for MRI Sequences

Input: MRI Imaging Sequences like DWI, T2-Flair, ADC and SWI

Output: Segmented brain contour from the MRI

1 initialization

2 Function Crop-Brain-Contour(I):

/* Convert the image I to grayscale and blur it slightly using

Gaussian blur to mute any noise. */

3 Convert RGB → Grayscale

4 G ← GaussianBlur (Grayscale)

/* For every pixel in grayscale image, same threshold value is applied.

The pixel value is set to zero if it is less than the given threshold;

otherwise, it will be assigned with the maximum value. */

5 T ← Threshold (G, Min-value=45,

6 Max-value=255)

/* Remove the pixels on the contour boundaries using morphological

erosion and increase the size of the white pixel to enhance the

contour area by dilation technique. */

7 T ← Erode (T, kernel, iteration=2)

8 T ← Dilate (T, kernel, iteration=2)

/* Find the contours in the MRI sequences and capture the largest

one. */

9 C ← Find-Contours (T)

10 C ← Grab-Contours (C)

11 C ← Max (C)

12 Find the extreme point (Left, right, top and bottom) of the largest

contour C.

13 Draw Contours on the MRI Image.

14 Crop the brain contour from the MRI Image.

15 return Cropped Image;

16 End Function

8.3.2 Stacked Multi-Channel Convolution Neural Network

(SMC-CNN)

We propose two stacked multi-channel convolutional Neural Networks (i.e., SMC-

CNN-M and SMC-CNN-I) to predict the acute infarct from multiple and indi-

vidual MRI sequences. The segmented MRI sequences, including DWI, T2-Flair,
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ADC, and SWI, are passed through the four identical convolutional Neural Net-

work channels to extract features from each MRI sequence. The multi-channel

imaging features are fused using the concatenation layer. The combined features

are subsequently fed into a DNN that is fully connected to facilitate the pre-

diction of acute infarct. The overall architecture of the SMC-CNN-M: Stacked

Multi-Channel Convolution Neural Network for Predicting Acute Infarct from

Multiple MRI Sequences is shown in Figure 8.2. The SMC-CNN-M contains four

parallel channels for DWI, T2-flair, ADC, and SWI MRI sequences to retrieve

multi-channel features. The individual MRI sequences with a size of 240×240×3

are passed through each of the four channels to obtain the imaging features of

four different MRI sequences. We use five layers of convolution and five layers of

pooling in every channel to extract imaging features from the MRI sequences. The

feature size of 12800 is obtained from each channel and is concatenated to form

a feature size of 51200. The fully connected DNN receives these multi-channel

visual features as input and produces predicted diagnostic outcomes.

We also propose the SMC-CNN-I: Stacked Multi-Channel Convolution Neural

Network for predicting acute infarct from individual MRI sequences. The individ-

ual segmented MRI sequence is ingested through four parallel multi-channel and

multi-scale CNNs to extract multi-level features with varied receptive fields. The

features retrieved from the four levels are fused using the concatenation technique,

and the resulting feature set is then fed into a fully connected DNN for prediction

of infarcts in the brain MRI. The overall architecture of SMC-CNN-I is presented

in Figure 8.3. The SMC-CNN-I contains four parallel layers with varied filter sizes

(i.e., 32, 64, 32, and 64) to retrieve multi-scale features from the MRI sequences.

The individual MRI sequences with a size of 240×240×3 are passed through each

of the four layers to obtain the imaging features. Every channel contains five con-

volution layers and five pooling layers with alternate filters of 32 and 64. Likewise,

we have employed four convolution neural networks in parallel to extract features

from the MRI sequences. The four stacked CNNs produce the output imaging

features of sizes 800, 1600, 800, and 1600.We concatenate the flattened features

from all four stacked CNNs to obtain fused multi-level features of size 4800. The

fused feature is then fed into a DNN that consists of two hidden layers and one

final layer, which predicts acute infarct from the MRI sequences.

The convolution and pooling layers are the main modules used in our proposed

models. The MRI image sequence can be represented as a high-dimensional matrix

comprising feature vectors. The imaging input undergoes a linear operation known

as “convolution”, whereby the input MRI imaging data is multiplied with an array
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of weights called a filter or kernel. The element-wise multiplication is employed to

the kernel and MR image to obtain the activation map. During the convolution

operation, the filter is moved across the input MRI sequence from left to right and

top to bottom. This movement is referred to as strides, and in our study, we have

used the strides of 1. The convolution operation is defined as follows:

Zi
l,m,n = (W i

n)T · Y i
l,m + bin (8.1)

Where Zi
l,m,n represents the ith layer feature value at the location (l,m) of the

nth feature map. Here, W i
n indicates the kernel weights of the ith layer, bin depicts

the bias terms of the ith layer and Y i
l,m is the imaging input at the position (l,m) of

the ith layer. In the SMC-CNN-M model, we have used a filter size of 32 in every

channel. In SMC-CNN-I, we have varied the filter size between 32 and 64 between

the channels to extract the multi-scale features from the individual MRI sequences.

We have selected the ReLU activation function in the convolution layer operation

to prevent model overfitting (Hara et al., 2015). The ReLU function improves the

sparsity of the network by setting some of the neuron output to zero. Additionally,

it decreases the correlation between parameters and reduces overfitting. In the

proposed frameworks, ReLU allows each neuron to have a stronger filtering effect,

resulting in more efficient computation. The ReLU operation can be defined as

follows:

f(y) =

y if y > 0

0 if y < 0
(8.2)

Here, f(y) is the output of the ReLU activation function, and y is the input to

the activation function. The maximum pooling method is utilized to extract the

highest value from the feature tiles generated by the convolutional layer and use it

as the output in the pooling layer. This approach helps reduce the feature map’s

spatial dimensions and retain the essential information by eliminating redundant

features. In this study, a pool size of 2 × 2 and stride of 1 are used for the

downsampling operation. The mapping from input Y k
i in the kth layer to output

Zk
i is performed through a neuron, defined as:

Zk
i = max{Y k

i } (8.3)

The final features from each of the parallel convolution and pooling layers are

combined through a concatenation operation, which combines the feature weights.
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The concatenation operation combines the output of multiple pooling layers into

a single tensor, where each pooling layer’s output is represented as a slice along

a new axis. This allows the network to preserve the spatial information from

different pooling layers and combine it for use in the next layer in the network.

The features obtained from the concatenation operation are then processed by a

DNN for acute infarct prediction. The flattened clinical features represented by

C = c1, c2, c3, · · · , cn are fed into DNN, and Yi indicates ith output produced from

every layer, defined as,

Yi = ϕ(W1 · c1 + W2 · c2 + · · ·+ Wn · cn) (8.4)

Here, the weight parameters are denoted by W1,W2,· · ·, Wn and they are used

along with the non-linear activation function ϕ. The Rectified Linear Unit (ReLU)

activation function is applied on two hidden layers (i.e., 256 and 128), and the

sigmoid activation function is utilized for acute infarct prediction.

The following is the rationale behind selecting different layers, channels, and

hyperparameters: The SMC-CNN-M and SMC-CNN-I architectures utilize five

layers of convolution and pooling in each of the four parallel channels to extract

features from the input MRI sequences. This design choice was made to enable

multi-level feature extraction with increasing receptive field sizes. By employ-

ing multiple levels of convolution and pooling layers with varying filter sizes and

strides, the models are able to capture both low-level and high-level features from

the input MRI sequences, leading to improved accuracy in predicting acute in-

farct. To determine the optimal number of layers and parameters, we employed

grid search approaches (Bergstra and Bengio, 2012). Through empirical evalu-

ation, we found that the current proposed model outperformed other configura-

tions. Overall, the use of multi-level convolution and pooling layers with varying

filter sizes and strides enables our SMC-CNN-M and SMC-CNN-I architectures

to effectively capture features from multiple MRI sequences and achieve improved

predictive performance for acute infarct.

8.3.3 Acute Brain Infarct Visualization using Grad-CAM

The SMC-CNN will extract multi-channel features from the MRI sequences. The

features that were obtained are fed into a DNN-based fully connected network for

obtaining probability scores for two classes (i.e., no disease and acute infarct) at

the softmax layer. The class that has the maximum probability score is utilized to

determine the final outcome of the disease. We incorporate Grad-CAM (Selvaraju
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et al., 2016) for visualizing the acute infarct from the MRI sequences (i.e., DWI,

ADC, T2-flair and ADC). The grad-CAM generates a heatmap and localizes the

disease region in particular MRI sequences, and allows us to achieve an explainable

model by providing information about the model’s capability to achieve the desired

diagnostic outcome. The gradients from the final convolution layer of the SMC-

CNN (i.e., either SMC-CNN-M or SMC-CNN-I) are extracted and used to create

heatmaps at the regions in an MR image with acute infarcts. The regions with

maximum weights (or gradients) significantly impact the prediction outcome. The

backpropagation operation is performed with acute infarct =1 and no disease

=0. The gradient weights are updated by measuring the Global Average Pooling

(GAP) of the gradient across all the features in each channel, as shown below:

Zk =
1

fHeight × fWidth

fHeight∑
m=1

fWidth∑
n=1

wj(m,n) (8.5)

In this context, Zk stands for the one-dimensional feature corresponding to the

kth dimension extracted from the GAP method. Additionally, fHeight and fWidth

represent the height and width of the two-dimensional activation map, while wj

denotes the jth activation map produced by the SMC-CNN at a specific location

(m,n). These updated gradient weights are then added to the feature map through

multiplication. Finally, the output score is calculated for both the acute infarct

and healthy control variables, as depicted below:

ST =
1

fHeight × fWeight

∑
k

W T
k Fk (8.6)

In equation 8.6, the ST represent the score of the proposed SMC-CNN network

in target variable T ; W T
k indicates the gradient weight kth feature map in target

variable T and Fk is the kth feature map. To create the class discrimination

positioning map, we calculate the partial derivative of the target class score ST

with respect to the feature map of a specific layer in the network Fk using the

following formula:

∇T
k =

∂ST

∂Fk

(8.7)

The map produced emphasizes the areas of the MR image input that hold greater

significance for the network’s classification prediction. In equation 8.7, ∇T
k depicts

the gradient of the kth feature map. Further, the total sum obtained is further

ingested into the ReLU activation function to produce the MR image with a
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heatmap showcasing the disease outcome.

LT = ReLU(
∑
j

∇T
kFk) (8.8)

Here, LT indicates the heatmap for the target class T . The visual depiction of

the disease visualization from the MRI sequence is shown in the Figure. 8.4.

Figure 8.4: Disease Visualization using Gradient-weighted Class Activation Map-
ping (Grad-CAM): (1) MRI Sequences (like DWI, T2-Flair, ADC and SWI) are
given as input to the proposed SMC-CNN (i.e., either SMC-CNN-M or SMC-
CNN-I) framework to obtain the acute infarct prediction, (2) The backpropagation
operation is performed with acute infarct = 1, and no disease = 0, (3) The global
Average Pooling (GAP) of the gradient is calculated for each channel, and the
weights of the SMC-CNN are updated, (4) The gradient weights and the feature
maps are added and multiplied and given as input to the rectified linear activation
function.
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8.4 Experimental Setup

This section offers an overview of the parameter configuration for the various

models used and outlines the assessment measures used to evaluate the proposed

model. Radiologists typically rely on all four MRI sequences (DWI, SWI, ADC,

and T2-flair) to determine the presence of acute infarcts in an image. However, we

have found no previous research that has utilized all four sequences for predicting

acute infarcts. Therefore, our study is the first of its kind, and we have conducted

a benchmark comparison of our proposed model with state-of-the-art deep learning

models.

8.4.1 Parameter Configuration of Proposed SMC-CNN and

State-of-the-art Deep Learning Models

The experimental analysis for the research study was conducted using a server

with the technical configuration of an NVIDIA Tesla M40 accelerator, 128GB

RAM, a 24GB graphics processing unit (GPU), a 3TB hard drive, and a Linux

operating system. We employed Python 3.6 programming language and leveraged

the open-source Keras software package, and the Tensorflow library (Abadi and

et. al., 2015). In the field of medical image analysis, there are many ML and DL

models available that have been widely used for various medical imaging tasks.

However, we did not find any specific specialized algorithm or model that has been

exclusively developed for acute brain infarct prediction. Most of the reviewed

methods implemented existing ML and DL techniques on acute Infarct or stroke

on a private dataset. Therefore, to assess the effectiveness of the SMC-CNN

models in predicting acute Infarct from MRI sequences, we have employed eight

pre-trained deep learning models like VGG19 (Simonyan and Zisserman, 2015b),

VGG16 (Simonyan and Zisserman, 2015b), ResNet50 (He et al., 2016b), MobileNet

(Howard et al., 2017b), InceptionV3 (Szegedy et al., 2016b), EfficientNetB2 (Tan

and Le, 2021), DenseNet121 (Huang et al., 2017b), and Xception (Chollet, 2017b)

as a reference point for comparison. We have modified the hyperparameters of

the pre-trained models to make them suitable for predicting acute Infarct from

MRI sequences. These pre-trained models are considered state-of-the-art in the

domain of DL and were initialized with weights that were previously trained on

the ImageNet dataset (Deng et al., 2009).

The use of ImageNet pre-trained weights helps to address the issue of the

large cohort required for training in deep learning. To fine-tune the models for
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the acute infarct prediction task, we froze the later (or top) layers and retrained

the earlier (or bottom) layers, including the input layer, using MRI sequences

collected from KMC hospital. Fine-tuning a pre-trained model for a specific task

involves modifying the weights of the model’s later layers. This is done while keep-

ing the initial layers fixed, containing general features useful for a wide range of

tasks. By using this process, the amount of training data necessary to attain high

performance on a particular task is minimized, as the initial layers have already

acquired significant features from the ImageNet dataset. We have optimized the

hyperparameters of all eight standard DL algorithms to obtain the optimal diag-

nostic outcome for predicting acute brain infarct. By comparing the performance

of our proposed SMC-CNN model with these baseline models, we can evaluate

the effectiveness of our approach for acute infarct prediction from MRI sequences.

To find the best possible combination of hyperparameters for our proposed model

as well as for the standard DL algorithms, we have used a technique called grid

search (Bergstra and Bengio, 2012). This technique involves systematically testing

different values of each hyperparameter within a defined range and evaluating the

model’s performance for each variety of hyperparameters. The goal is to identify

the optimal combination of hyperparameters that leads to the best performance

for a given disease prediction task. The fine-tuned hyperparameter configuration

of the proposed SMC-CNN and state-of-the-art Deep learning models is presented

in the Table 8.2. In both our proposed models and the baseline DL techniques,

we utilized early stopping (Bai et al., 2021), and trained them for 50 epochs. To

predict the binary outcome (i.e., Acute Infarct and no disease), we utilized the

binary cross-entropy loss function for all the DL algorithms.

8.4.2 Evaluation Metrics

We have employed six performance metrics to measure its effectiveness in our in-

vestigation of how well the SMC-CNN performs on MRI sequences obtained from

a private hospital. These assessment measures include Accuracy (Acc), Precision

(Pre), Recall (Rec), F1-Score (F1), Cohen’s kappa (κ), and AUROC. We will es-

tablish these metrics by utilizing fundamental terminologies such as True Positive,

True Negative, False Positive, and False Negative. Our research is specifically fo-

cused on binary classification, which involves categorizing MRI sequences into two

classes: “No disease” or “healthy” and “Acute Infarct”. We have provided clear

definitions for the terms mentioned above to understand them better.

• True Positive (True+ve) refers to an MRI sample that is accurately clas-



Chapter 8. Multimodal Image Fusion Network from MRI Images 229

T
ab

le
8.

2:
T

h
e

d
et

ai
le

d
p

ar
am

et
er

co
n

fi
gu

ra
ti

on
of

p
ro

p
os

ed
S

M
C

-C
N

N
an

d
st

at
e-

of
-t

h
e-

ar
t

D
ee

p
le

ar
n

in
g

m
o
d

el
s

M
o
d

el
s

In
p

u
t

S
iz

e

N
u

m
b

er
of L

ay
er

s

A
ct

iv
at

io
n

F
u

n
ct

io
n

S
tr

id
e

D
ro

p
ou

t
ra

te
O

p
ti

m
iz

er
L

ea
rn

in
g

ra
te

B
at

ch
S

iz
e

E
p

o
ch

s

V
G

G
19

24
0
×

24
0
×

3
19

R
eL

U
1

0.
5

R
M

S
P

ro
p

0.
00

01
32

50
V

G
G

16
24

0
×

24
0
×

3
16

R
eL

U
1

0.
5

R
M

S
P

ro
p

0.
00

01
32

50
R

es
N

et
50

24
0
×

24
0
×

3
50

R
eL

U
2

0.
5

A
d

am
0.

00
01

32
50

M
ob

il
eN

et
24

0
×

24
0
×

3
28

R
eL

U
6

1
0.

5
A

d
am

0.
00

01
32

50
In

ce
p

ti
on

V
3

24
0
×

24
0
×

3
15

9
R

eL
U

2
0.

5
A

d
am

0.
00

01
32

50
E

ffi
ci

en
tN

et
B

2
24

0
×

24
0
×

3
23

S
w

is
h

1
0.

5
R

M
S

P
ro

p
0.

00
01

32
50

D
en

se
N

et
12

1
24

0
×

24
0
×

3
12

1
R

eL
U

1
0.

5
R

M
S

p
ro

p
0.

00
01

32
50

X
ce

p
ti

on
24

0
×

24
0
×

3
12

6
R

eL
U

1
0.

5
R

M
S

P
ro

p
0.

00
01

32
50

S
M

C
-C

N
N

-I
24

0
×

24
0
×

3
10

R
eL

U
1

0.
5

A
d

am
0.

00
1

32
50

S
M

C
-C

N
N

-M
24

0
×

24
0
×

3
10

R
eL

U
1

0.
5

A
d

am
0.

00
1

32
50



230 Chapter 8. Multimodal Image Fusion Network from MRI Images

sified as “Acute Infarct”, indicating that it belongs to the correct category.

• True Negative (True−ve), on the other hand, pertains to an MRI sample

that is accurately classified as “Normal” or “Healthy”, indicating that it also

belongs to the correct category.

• False Positive (False+ve) denotes an MRI sample belonging to the “Nor-

mal” or “Healthy” class but is wrongly categorized as “Acute Infarct”.

• False Negative (False−ve), meanwhile, depicts an MRI case that is incor-

rectly classified as “Acute Infarct” when it actually belongs to the “Normal”

or “Healthy” class.

To summarize, True Positive and True Negative refer to accurate classifications,

whereas False Positive and False Negative indicate inaccurate categorizations.

True Positive and True Negative are crucial in assessing the classification model’s

accuracy, while False Positive and False Negative play a significant role in revealing

the model’s shortcomings.

Acc =
True+ve + True−ve

True+ve + True−ve + False+ve + False−ve

(8.9)

Pre =
True+ve

True+ve + False+ve

(8.10)

Rec =
True+ve

True+ve + False−ve

(8.11)

F1 = 2× Pre×Rec

Pre + Rec
(8.12)

X = (True+ve × True−ve − False−ve × False+ve) (8.13)

Y = (True+ve + False+ve)× (False+ve + True−ve) (8.14)

Z = (True+ve + False−ve)× (False−ve + True−ve) (8.15)

κ =
2×X

Y + Z
(8.16)

. Eq. 8.9 pertains to the model’s accuracy, which quantifies the overall number

of accurate forecasts produced by the proposed SMC-CNN model. It is worth

emphasizing that a model’s high accuracy rate does not always ensure that it can

accurately classify labels in cases where there is an uneven distribution or class
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imbalance among the cohort. Therefore, when evaluating the performance of a

model, it is essential to consider other metrics that take into account class imbal-

ance. These metrics can provide a more comprehensive evaluation of a model’s

ability to classify instances accurately, particularly in datasets with class imbal-

ance. The assessment of a model’s performance heavily relies on precision and

recall, which provide crucial information. Precision evaluates the model’s ability

to predict the abnormal class accurately, and can be represented by equation 8.10.

This equation shows that precision is determined by the proportion of accurate

predictions for acute infarct samples, relative to the total number of predictions

generated by the proposed model. On the other hand, as demonstrated in equa-

tion 8.11, recall represents the ratio of correctly predicted acute infarct cases to

the total number of acute infarct cases. Both precision and recall evaluate the per-

formance of the proposed SMC-CNN models in reducing False+ve and False−ve

predictions. To assess a model’s performance in scenarios with class imbalance,

the F1-score considers False+ve and False−ve, and achieves a balance between

precision and recall by using equation 8.12 to calculate the harmonic mean. This

metric is valuable in evaluating the model’s effectiveness. Cohen’s kappa is a com-

monly used metric for measuring agreement between two raters, and it can also be

employed to assess the effectiveness of a classification model.The kappa coefficient

can be calculated using the confusion matrix, which includes data on the num-

ber of True+ve, False+ve, True−ve, and False−ve, as demonstrated in equation

8.16. Cohen’s kappa then measures the effectiveness of a model by comparing

the level of agreement between its predictions and the true values to what would

be expected by chance. A higher kappa coefficient signifies a more substantial

agreement between the model’s predictions and the actual values, while a lower

coefficient indicates weaker agreement. The AUROC metric evaluates the abil-

ity of binary classification to distinguish between Acute brain infarct sample and

healthy sample by plotting True Positive Rate (TPR) against False Positive Rate

(FPR) across multiple thresholds. A higher AUROC value, nearing 1, indicates

precise classification of MRI sequences as either healthy or having an acute brain

infarct, while a lower value, nearing 0, suggests inadequate distinction between

the two classes.

8.5 Results and Discussion

This part presents the findings of our experimental analysis of the proposed SMC-

CNN models (i.e., SMC-CNN-I and SMC-CNN-M) on both standard augmented
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and synthetic MRI sequences. We conducted an ablation study to assess the

efficacy of the SMC-CNN-M model by varying the input MRI sequences. Our

study also includes a qualitative analysis of the SMC-CNN, whereby we visualize

and localize acute infarcts in the brain regions. This helps us gain a comprehensive

perception of the model’s strengths and weaknesses and its potential for future

developments in the medical field.

8.5.1 Quantitative Analysis

The proposed model was subjected to a detailed benchmarking experiment by

applying it to the collected MRI sequences. The evaluation of the SMC-CNN-I

model’s effectiveness with the standard deep learning model for DWI, T2-Flair,

ADC and SWI MRI sequences is shown in Table. 8.3, Table. 8.4, Table. 8.5

and Table. 8.6, respectively. The results of our proposed SMC-CNN-I model for

acute infarct prediction from MRI sequences show promising outcomes. Based on

the empirical analysis, it can be seen that the SMC-CNN-I model that was pro-

posed performs better than the current leading baseline models such as VGG-16,

VGG-19, ResNet-50, MobileNet, Inception V3, EfficientNetB2, DenseNet121, and

Xception. This result signifies the potential of our proposed model in accurately

predicting acute infarcts from various MRI sequences, including DWI, T2-Flair,

ADC, and SWI. The accuracy scores achieved for DWI, T2-Flair, ADC, and SWI

were 0.9824, 0.9427, 0.9583, and 0.94229, respectively. These scores serve as ev-

idence that the proposed model is effective when used with standard augmented

data. The accuracy score depicts the proportion of cases predicted correctly in

relation to the overall cases evaluated. Hence, a higher accuracy score suggests

that our proposed model can accurately identify acute infarcts and distinguish

them from no disease cases when MRI sequences are given as input. We obtained

an accuracy of 0.9830, 0.9834, 0.9883, 0.9710 for DWI, T2-Flair, ADC, and SWI,

respectively, showcasing that the proposed SMC-CNN-I model can generalize on a

broader range of inputs. It also suggests that the proposed SMC-CNN-I model has

learned to identify important patterns or relationships from the MRI sequences

that are significant to acute infarct disease prediction. Improved synthetic data

accuracy proves that the model can be applied to real-world data.

The precision values for DWI, T2-Flair, ADC and SWI are reported as 0.9826,

0.9452, 0.9604, and 0.94312, respectively. The precision metric measures the pro-

portion of accurately categorized acute infarcts samples to the overall instances

categorized as acute infarct. Precision with higher values indicate that the pre-
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sented model accurately identifies acute infarct cases without generating many

false positives. It is also observed that the precision of 0.9831, 0.9835, 0.9883

and 0.9714 for DWI, T2-Flair, ADC, and SWI sequences, respectively, on syn-

thetic data, indicating the model’s superiority in identifying the critical features

that distinguish acute infarct lesions from normal tissue with a minimal number

of false positives. This can potentially reduce the likelihood of false-positive di-

agnoses that could lead to unnecessary interventions and procedures. The recall

values for DWI, T2-Flair, ADC and SWI are reported as 0.9824, 0.9427, 0.9583,

and 0.9429, respectively. The recall metric measures the proportion of actual acute

brain infarct instances that are correctly identified by a SMC-CNN-I model out of

all the acute brain infarct instances present in the dataset. High recall values in-

dicate that the model correctly identifies most acute infarct cases without missing

too many positive cases. This is a critical factor in medical imaging applications

where missing a positive case could severely affect patient outcomes. The higher

recall of 0.983, 0.9834, 0.9883 and 0.9710 for DWI, T2-Flair, ADC, and SWI, re-

spectively, is produced for synthetic data. This demonstrates its generalizability,

allowing it to be applied to real-world MRI data with acute infarct. The F1-score

values for DWI, T2-Flair, ADC and SWI are reported as 0.9824, 0.9426, 0.958,

and 0.9428, respectively. The F1-score is a metric that balances precision and

recall by calculating their harmonic mean. F1-score with higher values indicate

that the SMC-CNN-I model is delivering superior outcome in both precision and

recall without overemphasizing one metric at the expense of the other. It is also

seen that increased F1-score of 0.983, 0.9834, 0.988 and 0.9710 is obtained for

DWI, T2-Flair, ADC, and SWI, respectively on synthetic data. The F1-score is

a metric that balances precision and recall by taking their harmonic mean. This

allows the proposed model to better identify patterns and features in the data that

are indicative of acute infarcts, resulting in improved F1-score. Additionally, the

synthetic data can be produced with known ground truth, allowing for more ac-

curate evaluation of the model’s performance compared to real-world data where

ground truth may be more difficult to determine.

The Cohen’s Kappa values for DWI, T2-Flair, ADC, and SWI are reported as

0.9642, 0.8855, 0.875, and 0.8841, respectively. Cohen’s Kappa metric quantifies

the agreement between the model’s predictions and the actual values while taking

into account the agreement that would be expected by chance. High Cohen’s

kappa values indicate that the proposed classifier is performing significantly better

than random guessing. The AUROC values for DWI, T2-Flair, ADC, and SWI

are reported as 0.9996, 0.9810, 0.9833, and 0.9833, respectively. The AUROC
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metric gauges the ability of the SMC-CNN-I model to distinguish between acute

infarct and healthy samples across a range of thresholds. High AUROC values

showcase that the proposed classifier can accurately categorize acute infarct and

no disease instances across a range of possible threshold values. We have also

achieved higher cohens kappa value and AUROC on synthetic data indicating the

SMC-CNN-I model’s ability to learn the underlying patterns and features of acute

infarcts from the synthetic data and can generalize well to real-world data. This

demonstrates the effectiveness and robustness of the proposed deep learning model

for acute infarct prediction from MRI sequences.

Based on these quantitative results, it is determined that the SMC-CNN-I

model performs better for DWI MRI sequences when compared to T2-Flair, ADC,

and SWI images. This means that the model is more accurate, has higher precision

and recall, better F1-score, higher Cohen’s kappa, and better AUROC for DWI

MRI sequences than for the other types of MR sequences. One possible reasoning

could be that DWI images provide higher contrast between the infarcted and

healthy tissues, making it easier for the model to distinguish between the two.

Another reason could be that the proposed SMC-CNN-I model is optimized for

extracting features from DWI sequences, making it more effective for predicting

acute infarcts in these types of MR images. Figure 8.5 depicts the learning curve of

the SMC-CNN-I model. The increase in accuracy and decrease in loss suggests that

the proposed model successfully learns and identifies critical features to distinguish

acute infarct lesions from normal tissue in MRI sequences.

(a) Training and validation accuracy (b) Training and validation Loss

Figure 8.5: The learning curve of proposed SMC-CNN-I model
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8.5.2 Ablation Study

To assess the impact of varying input MRI sequences on the efficacy of the SMC-

CNN-M model, we performed an ablation study. The outcomes of the abla-

tion study are presented in Table 8.7, which indicates that fusing the DWI+T2-

flair+ADC+SWI imaging feature provides better performance compared to other

combinations of MRI sequence fusion for both standard augmentation and syn-

thetic data. The empirical evaluation further revealed that multi-image fusion

with DWI+t2-flair+ADC+SWI gives better performance than individual MRI

sequence analysis. However, it is worth noting that individual DWI analysis per-

forms competitively compared to multi-image fusion, indicating that significant

features are available in the DWI sequence for acute infarct prediction.

Our experiment suggests that multi-fusion of MRI sequences can yield better

diagnostic performance compared to individual MRI analysis. By combining var-

ious features, the model can accurately predict acute infarcts from other types

of brain strokes. This approach increases the model’s accuracy and can reduce

the likelihood of misdiagnosis. Therefore, our research highlights the importance

of considering multiple MRI sequences in medical image analysis. Our findings

suggest that combining various MRI sequences can lead to better diagnostic perfor-

mance and further highlight the significance of the DWI sequence in acute infarct

prediction. This knowledge can help improve medical diagnosis and patient out-

comes, particularly in cases of acute stroke, where timely diagnosis is crucial. The

confusion matrix in Figure 8.6 illustrates the True+ve, False+ve, True−ve, and

False−ve values of the SMC-CNN-M model when utilized on both the standard

and synthetic datasets of MRI sequences, encompassing DWI, ADC, T2-flair, and

SWI.

Our study evaluated the performance of the SMC-CNN-M and SMC-CNN-I

models in predicting acute infarct from multiple and individual MRI sequences,

respectively. Both models were trained and tested on the same dataset, but with

different input MRI sequences. The SMC-CNN-M model used DWI, T2-Flair,

ADC, and SWI sequences, while the SMC-CNN-I model used individual segmented

MRI sequences. After evaluating the models using qualitative metrics, we found

that the SMC-CNN-M model produced higher accuracy than the SMC-CNN-I

model. One possible explanation for this result is that the SMC-CNN-M model

was able to capture and leverage the complementary information from multiple

MRI sequences, leading to more accurate predictions. On the other hand, the

SMC-CNN-I model may have struggled to capture the same level of information
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from individual MRI sequences alone.

(a) Standard Augmented dataset (b) Synthetic Dataset

Figure 8.6: Confusion Matrix of proposed SMC-CNN-M model on DWI, T2-flair,
ADC and SWI MRI sequences

8.5.3 Qualitative Analysis

To assess the efficacy of our presented SMC-CNN (i.e., SMC-CNN-I & SMC-CNN-

M) models in predicting acute infarcts, we conducted disease visualization from

DWI, T2-Flair, ADC, and SWI MRI images, enabling us to explain the model’s

predictions. We integrated a Grad-CAM-based deep-learning model, where the

output from the final convolution layers of our SMC-CNN models was fed as

input to Grad-CAM. The Grad-CAM generated heatmaps, which were superim-

posed onto the original images based on the gradients generated. The disease

visualization results from DWI, T2-Flair, ADC, and SWI MRI sequences are il-

lustrated in Figure 8.7. In the case of DWI and T2-Flair images, the colour red

indicates higher disease localization, while blue indicates negative disease localiza-

tion, and vice versa for ADC and SWI images. The Grad-CAM images generated

from DWI and T2-Flair sequences offer superior qualitative results due to their

hyper-intensity nature, making them ideal for accurately representing the exact

location of acute infarct lesions.

This approach gave us a comprehensive understanding of our model’s ability

to predict acute infarcts, making it more explainable and easier to interpret. The

outcomes of our investigation showcase that the SMC-CNN model we developed
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can achieve performance levels comparable to those of expert radiologists. Our

findings demonstrate that the SMC-CNN models are a promising tool for medical

professionals, mainly when there is a resource shortage, and the model can help

increase efficiency in radiology workflows. By being explainable, it can provide

insights into how it arrived at its predictions, making it easier for radiologists to

understand and interpret the results. This can lead to more accurate diagnoses

and better patient outcomes. Overall, our research highlights the potential of the

SMC-CNN models to serve as an essential tool in medical imaging and radiology.
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Figure 8.7: The disease visualization of acute infarct in (i) DWI, (ii) ADC (iii)
T2-Flair (iv) SWI MRI sequences using Grad-CAM technique. Every First Image
in the sequences indicates the original image; second image indicates the heatmap
generated Grad-CAM Image. For DWI and T2-Flair MRI sequences the red in-
dicates the higher disease localization, and the blue indicates the negative disease
localization and vice versa in ADC and SWI MRI sequences. (a)-(j) represents
the 10 different cases with acute infarct.
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8.6 Discussion

The study conducted has yielded several significant findings that shed light on the

subject under investigation:

• The proposed SMC-CNN (i.e., SMC-CNN-I and SMC-CNN-M) models out-

performed the current baseline deep learning techniques, such as VGG-16,

VGG-19, ResNet-50, MobileNet, Inception V3, EfficientNetB2, DenseNet121,

and Xception, in accurately predicting acute infarcts from various MRI se-

quences, including DWI, T2-Flair, ADC, and SWI. Therefore, the suggested

model has the capability to enhance the diagnosis of acute infarcts in medical

imaging.

• The SMC-CNN-I model was found to be more effective in identifying acute

infarcts in DWI MRI sequences when compared to T2-Flair, ADC, and SWI

images. This could be because DWI images provide higher contrast between

infarcted and healthy tissues, making it easier for the model to distinguish

between the two. Additionally, the proposed SMC-CNN-I model may be op-

timized for extracting features from DWI sequences, making it more effective

for predicting acute infarcts in these types of MR images.

• The outcomes of the empirical analysis showcase that the DWI MRI se-

quence is a superior imaging technique compared to other MRI sequences

for identifying early acute brain infarcts. The study results present that

DWI is more sensitive in identifying initial alterations in brain tissue caused

by stroke. This implies that DWI can provide earlier and more accurate

stroke diagnoses, leading to prompt and effective treatment and ultimately

improving patient outcomes.

• The quantitative analysis of the proposed SMC-CNN model demonstrated

high accuracy scores, precision values, recall values, F1-score values, Cohen’s

Kappa values, and AUROC values. These results show that the model can

accurately identify acute infarcts and distinguish them from no-disease cases

when MRI sequences are given as input.

• The ablation study conducted on the SMC-CNN-M model revealed that

fusing the DWI+T2-flair+ADC+SWI imaging feature provides better per-

formance compared to other combinations of MRI sequences. This finding

indicates that a combination of different MRI sequences can enhance the

precision of the model in identifying acute infarcts.
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• The qualitative analysis of the SMC-CNN models provides a comprehensive

perception of the model’s strengths and weaknesses and its potential for

future developments in the medical field. By visualizing and localizing acute

infarcts in the brain regions, the model can assist medical practitioners in

better understanding the location and extent of infarcts in the brain, thus

facilitating better treatment decisions.

• The performance of the proposed SMC-CNN-I and SMC-CNN-M models

was evaluated on synthetic MRI data created using DCGAN. The results

demonstrated a considerable improvement in the ability of the model to

learn and identify important patterns, leading to an accurate prediction of

infarcts. Furthermore, the successful application of the model to synthetic

data suggests its potential for use in real-world data, highlighting its gener-

alizability.

8.7 Summary

In this chapter, two novel deep learning techniques were proposed: stacked multi-

channel CNNs to predict acute infarct from individual and multiple MRI se-

quences, including DWI, ADC, T2-flair, and SWI. The proposed SMC-CNN-I

and SMC-CNN-M model have been evaluated through a benchmarking exper-

iment by comparing them with the baseline DL models. The MRI sequences

were collected from KMC Hospital (India) and annotated by expert radiologists.

Both the proposed models have outperformed the state-of-the-art baseline models

such as VGG-16, VGG-19, ResNet-50, MobileNet, Inception V3, EfficientNetB2,

DenseNet121, and Xception for DWI, T2-Flair, ADC, and SWI MRI sequences,

demonstrating the potential of the model to predict acute infarcts from various

MRI sequences accurately. The obtained accuracy, precision, recall, F1-score, and

Cohen’s kappa values demonstrate the effectiveness and reliability of the proposed

model in identifying critical features that distinguish acute infarct lesions from

normal tissue, reducing the likelihood of false-positive diagnoses. The improved

performance of the proposed models on synthetic data shows that the model can

be applied to real-world data, allowing for a more accurate evaluation of the

model’s performance compared to real-world data, where ground truth may be

more difficult to determine. We conducted an ablation study on the SMC-CNN-

M model, varying the input MRI sequences. Our findings show that combining

DWI, T2-flair, ADC, and SWI imaging features resulted in better performance



246 Chapter 8. Multimodal Image Fusion Network from MRI Images

compared to other combinations of MRI sequence fusion for both standard aug-

mentation and synthetic data. Through empirical evaluation, we observed that

multi-image fusion with DWI, T2-flair, ADC, and SWI outperformed individual

MRI sequence analysis. However, individual DWI analysis still showed competi-

tive performance, indicating that significant features are present in the DWI se-

quence for acute infarct prediction. Our experiment supports the idea that fusing

multiple MRI sequences will lead to better diagnostic performance compared to

analyzing individual MRI sequences. We also performed qualitative analysis by

applying grad-CAM for disease visualization showcasing the models ability to pre-

dict the location of the infarct lesion. The multi-fusion deep learning framework

we proposed has demonstrated superior performance in predicting acute infarct

from MRI sequences.
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Chapter 9

Conclusion & Future Work

9.1 Conclusion

The use of medical data is crucial in developing CRS, which can potentially trans-

form the delivery and management of personalized medicine. Computer-assisted

CRS is pivotal in helping clinicians with the prognosis and treatment process and

delivers essential benefits that are fundamental to the healthcare industry. When

it comes to clinical decision-making, a CRS can act as a consultant for less expe-

rienced healthcare providers or as an additional viewpoint for seasoned clinicians,

providing specialist insights that can be valuable to both. CRSs offer accurate

prognostic recommendations and suggest economical and efficient treatments that

can be advantageous to the intended patient group. However, building a CRS

with a critical emphasis on the system’s performance has posed considerable ob-

stacles during the design and development phases. After a comprehensive analysis

of the literature, it has been discovered that there is considerable potential for

creating an AI-powered clinical recommendation system that employs a variety of

healthcare data sources. Various research gaps have been recognized, particularly

in areas such as predicting diseases from unstructured radiology text, interpreting

unstructured radiology images, and integrating multimodal radiology data.

An in-depth examination of the literature has revealed a significant opportu-

nity to enhance the performance of disease prediction systems, particularly with

regards to addressing the challenges associated with unstructured radiology free-

text reports, which are addressed in our first research objective. Towards this,

in Chapter 4, we have proposed a UM-TES framework comprising clinical Clini-

cal Knowledge-based Text modelling techniques with a deep learning framework

to predict pulmonary diseases in radiology free-text reports. To model the text

in the diagnostic reports, the GloVe Embedding model was used in conjunction

247
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with a knowledge base. The textual features were then processed using the DDR-

CNN model to reduce their dimensionality. The final step was to apply a DNN

to predict any abnormalities in the reports. Through our experimentation, we

observed that the proposed UM-TES word embedding technique yielded supe-

rior performance when compared to state-of-the-art NLP models. Additionally,

we evaluated the performance of the DNN classifier against that of a standard

machine learning-based classifier and determined that the former achieved better

results. Our observation revealed that the improved performance of UM-TES is

attributed to the integration of a radiology knowledge base, which enhances pre-

diction accuracy even when the training cohort is small in size. Consequently, the

proposed model can be implemented in scenarios where data are scarce, which

is often the case in the medical domain, where cohorts are institution-specific or

restricted to specific domains. The framework consists of several key factors that

contribute to its superior performance compared to state-of-the-art NLP models:

• Integration of Knowledge Base: One of the main factors contributing to the

improved performance of UM-TES is the incorporation of a radiology knowl-

edge base. This integration enhances the prediction accuracy, particularly

when dealing with small training cohorts.

• Semantic Embeddings from GloVe: To represent the diagnostic reports ef-

fectively, we employed the GloVe word embedding model. GloVe captures

semantic relationships between words in a corpus and encodes their meanings

and contexts in continuous vector spaces. Applying this technique to radiol-

ogy reports enables the model to understand intricate connections between

medical terms and phrases associated with pulmonary diseases, thereby im-

proving its comprehension of the data.

• Better Word Representations: UM-TES benefits from using dense and mean-

ingful word embeddings provided by GloVe. Unlike traditional sparse repre-

sentations like bag-of-words, these embeddings offer more informative input

to the deep neural network. As a result, the model can learn more relevant

patterns and dependencies present in the radiology reports.

• Capturing Contextual Information: DNNs excel at capturing complex pat-

terns and contextual information within data. In the context of radiology

reports, DNNs can recognize language patterns indicative of various pul-

monary diseases. By learning from the semantic embeddings and hierarchi-

cal structures within the text data, DNNs become adept at understanding
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the subtleties in medical language.

Intending to design and develop AI-powered CRS for disease prediction from an

unstructured medical image, in Chapter 5 as a second research objective, we have

proposed a lightweight and explainable deep learning network named UMVES, a

Multi-Scale Chest X-ray Network that consists of MSDL and DS-CNN layers to

predict the pulmonary diseases from the CXR obtained from the publicly available

Open-I dataset and the CXR data collected from the private medical hospital. The

MSDL layer captures the multi-scale features with the help of a broader recep-

tive field, and the DS-CNN layer learns the imaging features by adjusting lesser

parameters. The quantitative and qualitative analyses of the proposed UM-VES

model are performed on both CXR datasets. The experimental validation was ob-

served through evaluation metrics like accuracy, precision, recall, F1-score, MCC,

and AUROC. The experimental results show that the proposed model outper-

formed baseline deep learning techniques and existing state-of-the-art approaches.

The MSDL layer in the proposed model has significantly impacted the prediction

outcome by capturing the Multi-scale features from the CXR. The grad-CAM

method is employed to visualize the pulmonary abnormalities from the CXR and

to check the model’s ability to arrive at a decision. The obtained grad-CAM

CXR samples are compared with the CXRs labelled by expert radiologists. It

is observed that the UM-VES can reach a performance level similar to that of

the radiologists. This study also presents RAD-DCGAN for generating synthetic

images from radiology X-ray and MRI cohorts collected from a private medical

hospital. We have conducted a comprehensive qualitative analysis of the pro-

posed RAD-DCGAN compared with conventional data augmentation techniques

like rotation, zooming, brightness, and shearing. The eight state-of-the-art deep

learning classifiers are used to check the efficacy of the data generated from the

proposed RAD-DCGAN and the traditional data augmentation techniques. The

detailed investigation shows that the synthetic data generated through the pro-

posed RAD-DCGAN has achieved a significantly higher classification accuracy of

3-4% compared to the data generated through basic data augmentation strate-

gies. This superior performance is due to the higher-resolution synthetic images

generated with additional information, which aids the classifier’s performance.

The framework consists of several other key factors that contribute to its superior

performance:

• Capturing Multi-Scale Information: The MSDL layer is designed to capture

multi-scale features from the input data effectively. It does this by applying
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dilated convolutions with different dilation rates in parallel. Dilated convolu-

tions increase the receptive field without introducing additional parameters,

allowing the model to capture context over larger spatial scales. By using

multiple dilated convolutions in parallel, the MSDL layer can gather informa-

tion at various scales, which is particularly advantageous in medical imaging

tasks where diseases may present at different scales within the images.

• Enhanced Feature Representation: The MSDL layer allows the UMVES

model to encode rich and diverse information from the input data. This

helps in representing complex patterns and structures in medical images ac-

curately. The capability of capturing multi-scale information enables the

model to detect subtle pulmonary abnormalities, leading to improved diag-

nostic performance.

• Flexibility in Receptive Field Size: By adjusting the dilation rates, the MSDL

layer can control the size of the receptive field for each parallel convolution.

This adaptability enables the UMVES model to focus on relevant features

and adapt to different CXR image characteristics, making it more versatile

and robust in handling diverse datasets.

• Efficient Hierarchical Processing: The parallel structure of the MSDL layer

facilitates hierarchical feature extraction. It allows the model to learn fea-

tures at multiple levels of abstraction, starting from fine details to broader

context. This hierarchical processing helps the UMVES model comprehend

the complex anatomical and pathological structures present in CXR images.

• Reduced Parameters with features retained: The DS-CNN layer used in

UMVES is a lightweight and efficient variant of the traditional convolu-

tional neural network. It reduces the number of parameters while still learn-

ing important imaging features effectively. This makes the UMVES model

computationally efficient and allows it to process CXR images more quickly.

Additionally, the DS-CNN’s ability to learn meaningful representations from

medical images contributes to the model’s superior performance.

Upon conducting an extensive review, it has been discovered that the analysis

of multimodal medical data can significantly improve the performance of disease

prediction systems. To address the challenges related to integrating this data into

a single space, our third objective in Chapter 6 was focused on finding solutions to

these shortcomings. After performing a comprehensive investigation on two mul-

timodal clinical datasets, it was found that multimodal learning provides a benefit
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over unimodal learning when performing the classification of radiology chest X-

rays with associated clinical free-text notes. With regards to the two proposed

multimodal fusion strategies, CBP-MMFN performs better than the DHP-MMFN

model across publicly available Indiana University cohorts and data collected from

the KMC hospital. The superior results in CBP-MMFN are obtained because of

the intermodal dynamics between the textual and imaging modalities. The Bi-

linear interaction map generated from the outer product of visual and textual

features in CBP-MMFN generates a far more expressive multimodal feature rep-

resentation, encoding more tensor correlation than the simple concatenation oper-

ation and element-wise product. Hence, the discriminative features extracted from

the CBP-MMFN model provide a significant performance gain over the uni-modal

models and the DHP-MMFN model. The unimodal text-only model (UM-TES)

has given more promising results than the proposed unimodal image-only (UM-

VES) model. The two major reasons for it are as follows:

• Incorporating a clinical knowledge base helps to jointly learn word vectors

from the cohort and knowledge base, which increases the vocabulary size

and allows learning infrequent clinical words.

• It has been found that radiology reports have more discriminative features

than chest X-rays. This is because the annotators have focused on the text

being assigned to the labels of the radiology reports.

We also observed that the existing state-of-the-art multimodal fusion tech-

niques applied to radiology images and their associated reports are either straight-

forward concatenation or late fusion techniques like averaging, which ignore inter-

modal interaction among the two modalities. The proposed multimodal medical

tensor fusion techniques outperform the existing state-of-the-art techniques. The

proposed models focus on inter-modal dynamics, which find the tensor correla-

tion between the textual and imaging modalities. The experimental results prove

that the multimodal representation obtained from the proposed model has more

expressive features than the traditional concatenation strategy. In conclusion, we

presented the unimodal text-only model (i.e., UM-TES) and the unimodal image-

only model (UM-VES) to predict abnormalities from radiology reports and Chest

X-rays. We proposed two Multimodal Medical Tensor Fusion Networks (i.e., CBP-

MMFN and DHP-MMFN) for predicting abnormalities from a radiology chest

X-ray and its associated reports. We evaluated both proposed multimodal and

unimodal models on two multimodal radiology cohorts: a) publicly available Indi-

ana University dataset, b) Real-time data collected from KMC private hospitals.
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After a thorough investigation, we found that multimodal models have better per-

formance than models using a single modality. We also compared the proposed

multimodal fusion models with the state-of-the-art fusion models for predicting

abnormalities in the radiology cohort. Our proposed model has achieved superior

performance. We conclude that multimodal learning leads to competitive per-

formance in predicting abnormalities from radiology chest x-rays with associated

reports. The superior performance of the overall proposed fusion models can be

attributed to the following key factors:

• Intermodal Interaction: In traditional concatenation-based multimodal fu-

sion, the features from different modalities are simply combined in a linear

manner, which might not effectively leverage the intermodal dependencies

present in the data. On the other hand, the DHP-MMFN and CBP-MMFN

are advanced techniques that provide intermodal interaction by capturing

non-linear dependencies between the multimodal text and visual features.

• Bilinear interaction map: The Bilinear interaction map generated from the

outer product of visual and textual features in CBP-MMFN generates a far

more expressive multimodal feature representation, encoding more tensor

correlation than the simple concatenation operation and element-wise prod-

uct. Hence, the discriminative features extracted from the CBP-MMFN

model provide a significant performance gain over the uni-modal models

and the DHP-MMFN model.

• Use of Specialized Modules: The framework gains a significant edge by uti-

lizing specialized modules, namely UM-VES and UM-TES, to extract dis-

criminative visual and textual features from CXR and Radiology reports.

In Chapter 7, as part of our third research objective, we aimed to develop a deep

learning-based model that can accurately and automatically generate diagnostic

reports from CXR images. To achieve this, we employed a cross-modal retrieval

technique that retrieves radiology reports from the image. Our approach, which

utilized the beam search method, outperformed existing models in generating

robust diagnostic reports. This can be attributed to the encoder of our proposed

network, which extracted multi-channel visual features and discriminative text

features based on knowledge. Compared to existing models, our approach showed

superior results in terms of BLEU4 scores, which is a standard metric used to

compare the accuracy of generated text to the ground truth. In addition, we

created a dynamic web portal that allows for the easy uploading of frontal and
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lateral CXR images and provides the corresponding diagnostic reports as output.

This feature greatly simplifies the report writing process for radiologists, as it

automates the process and saves time. The key factors that influence superior

performance are as follows:

• Sequence-to-Sequence Mapping: The encoder-decoder architecture is specif-

ically designed for sequence-to-sequence mapping, which is a natural fit for

report generation tasks. The encoder processes the input (e.g., chest X-ray

scans) and encodes the information into a fixed-length vector or context rep-

resentation. The decoder then uses this context representation to generate

a variable-length sequence (e.g., diagnostic reports) based on the encoded

information.

• Handling Variable-Length Outputs: In report generation, the length of the

output text (reports) can vary significantly based on the complexity of the

input. The encoder-decoder architecture can handle this variability, as the

decoder is capable of generating sequences of different lengths, making it

well-suited for tasks where the length of the output is not predetermined.

• Semantic Understanding: The encoder module learns to extract meaningful

representations from the input data. In the case of chest X-ray scans, the

encoder can understand the relevant features and patterns in the images,

capturing important diagnostic information that is useful for generating ac-

curate and contextually relevant reports.

• End-to-End Learning: The entire encoder-decoder module can be trained

end-to-end using backpropagation. This means that the model learns to

optimize both the encoding and decoding processes simultaneously, leading

to more effective representations and better report generation.

• Handling Rare or Unseen Cases: The encoder-decoder architecture can han-

dle cases that were not explicitly seen during training, as the model learns to

generalize from the patterns and structures in the data. This adaptability is

crucial in medical report generation, where rare conditions or unique cases

may arise.

• Use of Specialized Modules: The framework employs specialized modules like

UM-VES, UM-TES, and LSTM. Each module likely plays a crucial role in

the overall performance.
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In Chapter 8, we address the challenge of fusing imaging features from mul-

timodal medical images and representing them in a common space for disease

prediction. To tackle this problem, we propose two novel deep learning techniques

that utilize SMC-CNNs. These techniques are designed to predict acute infarct

from individual and multiple MRI sequences, such as DWI, ADC, T2-flair, and

SWI. The proposed SMC-CNN-I and SMC-CNN-M models have been evaluated

through a benchmarking experiment by comparing them with the baseline DL

models. The MRI sequences were collected from KMC Hospital (India) and an-

notated by expert radiologists. Both the proposed models have outperformed

the state-of-the-art baseline models such as VGG-16, VGG-19, ResNet-50, Mo-

bileNet, Inception V3, EfficientNetB2, DenseNet121, and Xception for DWI, T2-

Flair, ADC, and SWI MRI sequences, demonstrating the potential of the model

to predict acute infarcts from various MRI sequences accurately. The obtained

accuracy, precision, recall, F1-score, and Cohen’s kappa values demonstrate the

effectiveness and reliability of the proposed model in identifying critical features

that distinguish acute infarct lesions from normal tissue, reducing the likelihood

of false-positive diagnoses. The improved performance of the proposed models on

synthetic data shows that the model can be applied to real-world data, allowing

for a more accurate evaluation of the model’s performance compared to real-world

data, where ground truth may be more difficult to determine. We conducted an

ablation study on the SMC-CNN-M model, varying the input MRI sequences. Our

findings show that combining DWI, T2-flair, ADC, and SWI imaging features re-

sulted in better performance compared to other combinations of MRI sequence

fusion for both standard augmentation and synthetic data. Through empirical

evaluation, we observed that multi-image fusion with DWI, T2-flair, ADC, and

SWI outperformed individual MRI sequence analysis. However, individual DWI

analyses still showed competitive performance, indicating that significant features

are present in the DWI sequence for acute infarct prediction. Our experiment sup-

ports the idea that fusing multiple MRI sequences will lead to better diagnostic

performance compared to analyzing individual MRI sequences. We also performed

qualitative analysis by applying grad-CAM for disease visualization showcasing the

model’s ability to predict the location of the infarct lesion. The multi-fusion deep

learning framework we proposed has demonstrated superior performance in pre-

dicting acute infarct from MRI sequences. The key factors that influence superior

performance are as follows:

• Multi-Channel Fusion: The SMC-CNN models are designed to fuse infor-
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mation from multiple MRI sequences, including DWI, T2-Flair, ADC, and

SWI. The fusion of information from these different sequences might enhance

the model’s ability to capture complementary features and patterns, leading

to better predictions.

• Deep Convolutional Neural Networks (CNNs): The core building blocks of

the SMC-CNN models are deep CNNs. These networks are well-known for

their ability to automatically learn hierarchical features from data, which is

crucial for medical image analysis tasks like infarct detection. The effective

use of CNNs might be a significant factor in achieving superior performance.

9.2 Future Work

The thesis proposes an intelligent framework for predicting diseases using mul-

timodal medical data, which includes radiology text and images. The proposed

framework utilizes advanced ML and DL techniques to extract meaningful seman-

tic features from the medical data, which are then used for disease prediction.

However, there is still scope for improvement and future research in this area.

Other medical modalities, such as structured clinical data or genomic data, can

be incorporated into the framework to obtain even better semantic features. A

potential opportunity to enhance prognostic decision-making exists by leveraging

additional sources of unstructured radiology text, such as medical prescriptions

and discharge summaries. In addition to leveraging unstructured text, our aim

is to enhance the performance of the image-only model. By doing so, we can

potentially improve the accuracy and reliability of radiology image analysis. Fur-

thermore, we plan to expand the scope of our model by applying it to other types

of diagnostic images such as MRI, ultrasound, and CT scans. This will allow us

to further evaluate the effectiveness and robustness of our proposed model across

different modalities and ultimately improve its overall utility in clinical settings.

We have leveraged the Grad-CAM technique to enhance the interpretability of

our proposed models, allowing doctors to visualize the areas of the input image

that were most significant in making a given prediction, including true and false

positives. By providing these interpretable results, doctors can better compre-

hend the decision-making process of our models and identify potential areas for

improvement or biases. This, in turn, fosters greater trust and acceptance of

automated systems in clinical settings. Moving forward, we plan to explore addi-

tional visualization techniques to further understand the ability of our models to
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make decisions. Our extensive literature review has revealed a significant shortage

of high-quality, diverse multimodal medical data available for AI research. This

scarcity emphasizes the urgent need for concerted efforts to collect, curate, and

expertly annotate such data, in order to conduct comprehensive studies that can

yield actionable insights and improved health outcomes. The potential use of mod-

els inspired by social networks, text, and linkage exploitation, along with attention

mechanisms, holds promise for enhancing multimodal clinical data fusion in the

context of pulmonary disease prediction from CXR and radiology text reports. As

we move forward with our research, we are keen to explore and incorporate these

innovative approaches into our future work.
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(2022). Development and clinical application of a deep learning model to identify

acute infarct on magnetic resonance imaging. Scientific Reports , 12(1). URL

https://doi.org/10.1038/s41598-022-06021-0.

Cabana, M. D., C. S. Rand, N. R. Powe, A. W. Wu, M. H. Wilson, P.-A. C.

Abboud, and H. R. Rubin (1999). Why don't physicians follow clinical practice

guidelines? JAMA, 282(15), 1458. URL https://doi.org/10.1001/jama.

282.15.1458.

Calloway, S., H. A. Akilo, and K. Bierman (2013). Impact of a clinical decision

support system on pharmacy clinical interventions, documentation efforts, and

costs. Hospital Pharmacy , 48(9), 744–752. URL https://doi.org/10.1310/

hpj4809-744.

Candemir, S., S. Rajaraman, G. Thoma, and S. Antani, Deep learning for grading

cardiomegaly severity in chest x-rays: An investigation. In 2018 IEEE Life

Sciences Conference (LSC). IEEE, 2018. URL https://doi.org/10.1109/

lsc.2018.8572113.

Carvalho, R., J. Pedrosa, and T. Nedelcu, Multimodal multi-tasking for skin lesion

classification using deep neural networks. In G. Bebis, V. Athitsos, T. Yan,

M. Lau, F. Li, C. Shi, X. Yuan, C. Mousas, and G. Bruder (eds.), Advances

in Visual Computing . Springer International Publishing, Cham, 2021. ISBN

978-3-030-90439-5.

https://doi.org/10.1007/s13244-016-0534-1
https://doi.org/10.1007/s13244-016-0534-1
https://doi.org/10.1161/01.str.27.7.1187
https://doi.org/10.1161/01.str.27.7.1187
https://doi.org/10.1038/s41598-022-06021-0
https://doi.org/10.1001/jama.282.15.1458
https://doi.org/10.1001/jama.282.15.1458
https://doi.org/10.1310/hpj4809-744
https://doi.org/10.1310/hpj4809-744
https://doi.org/10.1109/lsc.2018.8572113
https://doi.org/10.1109/lsc.2018.8572113


264 References

Castro, S., E. Tseytlin, O. Medvedeva, K. Mitchell, S. Visweswaran, T. Bekhuis,

and R. Jacobson (2017). Automated annotation and classification of bi-rads

assessment from radiology reports. Journal of Biomedical Informatics , 69.

Chandra, B. S., C. S. Sastry, and S. Jana (2019). Robust heartbeat detection

from multimodal data via CNN-based generalizable information fusion. IEEE

Transactions on Biomedical Engineering , 66(3), 710–717. URL https://doi.

org/10.1109/tbme.2018.2854899.

Chanumolu, R., L. Alla, P. Chirala, N. C. Chennampalli, and B. P. Kolla, Multi-

modal medical imaging using modern deep learning approaches. In 2022 IEEE

VLSI Device Circuit and System (VLSI DCS). 2022.

Chapman, B., S. Lee, H. Kang, and W. Chapman (2011). Document-level clas-

sification of ct pulmonary angiography reports based on an extension of the

context algorithm. Journal of biomedical informatics , 44, 728–37.

Chaudhary, A., A. Hazra, and P. Chaudhary, Diagnosis of chest diseases in x-ray

images using deep convolutional neural network. In 2019 10th International

Conference on Computing, Communication and Networking Technologies (IC-

CCNT). 2019.

Chaudhury, S., L. Dey, I. Verma, and E. Hassan, Mining multimodal data. In

Pattern Recognition and Big Data. WORLD SCIENTIFIC, 2016, 581–604. URL

https://doi.org/10.1142/9789813144552_0017.

Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille (2018).

Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 40(4), 834–848.

Chen, R., J. C. Ho, and J.-M. S. Lin (2020). Extracting medication informa-

tion from unstructured public health data: a demonstration on data from

population-based and tertiary-based samples. BMC Medical Research Method-

ology , 20(1). URL https://doi.org/10.1186/s12874-020-01131-7.

Chen, X. and X. Lin (2014). Big data deep learning: Challenges and perspectives.

IEEE Access , 2, 514–525.

Chen, Z., Y. Shen, Y. Song, and X. Wan, Cross-modal memory networks for radi-

ology report generation. In Proceedings of the 59th Annual Meeting of the Asso-

https://doi.org/10.1109/tbme.2018.2854899
https://doi.org/10.1109/tbme.2018.2854899
https://doi.org/10.1142/9789813144552_0017
https://doi.org/10.1186/s12874-020-01131-7


References 265

ciation for Computational Linguistics and the 11th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Papers). Association for

Computational Linguistics, Online, 2021. URL https://aclanthology.org/

2021.acl-long.459.

Chien, S.-C., Y.-L. Chen, C.-H. Chien, Y.-P. Chin, C. H. Yoon, C.-Y. Chen, H.-

C. Yang, and Y.-C. J. Li (2022). Alerts in clinical decision support systems

(CDSS): A bibliometric review and content analysis. Healthcare, 10(4), 601.

URL https://doi.org/10.3390/healthcare10040601.

Cho, I., J.-H. Lee, J. Choi, H. Hwang, and D. W. Bates (2016). National rules for

drug–drug interactions: Are they appropriate for tertiary hospitals? Journal of

Korean Medical Science, 31(12), 1887. URL https://doi.org/10.3346/jkms.

2016.31.12.1887.

Chollet, F. (2016). Xception: Deep learning with depthwise separable convolu-

tions. CoRR, abs/1610.02357. URL http://arxiv.org/abs/1610.02357.

Chollet, F., Xception: Deep learning with depthwise separable convolutions. In

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2017a.

Chollet, F., Xception: Deep learning with depthwise separable convolutions. In

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

IEEE Computer Society, Los Alamitos, CA, USA, 2017b. ISSN 1063-6919. URL

https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.195.

Cohen, J. P., M. Hashir, R. Brooks, and H. Bertrand (2020). On the limits

of cross-domain generalization in automated x-ray prediction. URL https:

//arxiv.org/abs/2002.02497.

Cohen, M. (2007). Accuracy of information on imaging requisitions: Does it

matter? Journal of the American College of Radiology : JACR, 4, 617–21.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P.

Kuksa (2011). Natural language processing (almost) from scratch. CoRR,

abs/1103.0398. URL http://arxiv.org/abs/1103.0398.

Comfere, N., O. Sokumbi, V. Montori, A. LeBlanc, L. Prokop, M. Murad, and

J. Tilburt (2013). Provider-to-provider communication in dermatology and im-

plications of missing clinical information in skin biopsy requisition forms: A

systematic review. International journal of dermatology , 53.

https://aclanthology.org/2021.acl-long.459
https://aclanthology.org/2021.acl-long.459
https://doi.org/10.3390/healthcare10040601
https://doi.org/10.3346/jkms.2016.31.12.1887
https://doi.org/10.3346/jkms.2016.31.12.1887
http://arxiv.org/abs/1610.02357
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.195
https://arxiv.org/abs/2002.02497
https://arxiv.org/abs/2002.02497
http://arxiv.org/abs/1103.0398


266 References

Comito, C., D. Falcone, and A. Forestiero (2022). Ai-driven clinical decision sup-

port: Enhancing disease diagnosis exploiting patients similarity. IEEE Access ,

10, 6878–6888.

Cornu, P., S. Phansalkar, D. L. Seger, I. Cho, S. Pontefract, A. Robertson, D. W.

Bates, and S. P. Slight (2018). High-priority and low-priority drug–drug inter-

actions in different international electronic health record systems: A compara-

tive study. International Journal of Medical Informatics , 111, 165–171. URL

https://doi.org/10.1016/j.ijmedinf.2017.12.027.

Cristea, M., G. G. Noja, P. Stefea, and A. L. Sala (2020). The impact of population

aging and public health support on EU labor markets. International Journal of

Environmental Research and Public Health, 17(4), 1439. URL https://doi.

org/10.3390/ijerph17041439.

Croon, R. D., L. V. Houdt, N. N. Htun, G. Štiglic, V. V. Abeele, and K. Verbert
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