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ABSTRACT

The socio-economic stability of a country heavily dependent on its agricultural outputs.

Therefore, each country needs to monitor and maintain agricultural outcomes at an

adequate level. The early prediction of crop yield helps the farmers adopt necessary

changes in cultivation on a season and ensure food security. The crop yield depends on

several parameters, such as vegetation parameters, climatic parameters, soil condition,

etc. Spatial and temporal analysis of cropland is necessary for the accurate prediction of

yield. The data for such analysis were collected with the help of regular field surveys.

Such surveys required more human resources and lack accuracy due to the interpolation

method adopted to map the readings to a larger geographical area. The advancement in

satellite imaging techniques helps gather temporal data of broad geographical regions

with less workforce.

Usage of multispectral sensors in remote sensing helped in accurate discrimination

of land objects and vegetations. The higher number of contiguous bands in hyperspec-

tral images(HSI) improve the reconstruction of spectral signature and thereby increase

the discrimination power. However, the higher dimensionality nature of HSI increases

the computational complexity and leads to the Hughes phenomenon. The evolution of

deep learning techniques made a significant impact on HSI classification. Several HSI

processing applications rely on various Convolutional Neural Network (CNN) models.

Therefore most of the CNN models perform dimensionality reduction (DR) as a pre-

processing step. Another challenge in HSI classification is the consideration of both

spatial and spectral features for obtaining accurate results. A few 3-D-CNN models

are designed to overcome this challenge, but it takes more execution time than other

methods. This research work proposes a multiscale spatio-spectral feature-based hy-

brid CNN model for hyperspectral image classification. Hybrid DR used for optimal

band extraction, which performs linear Gaussian Random Projection (GRP) and non-

linear Kernel Principal Component Analysis (KPCA). A novel crop yield prediction

model for the Paddy from Moderate Resolution Imaging Spectroradiometer (MODIS)



data and climatic parameters is introduced in this research work. Various vegetation in-

dices (VI) are collected from MODIS data for the crop’s entire life cycle. The proposed

Temporal Convolutional network (TCN) with a specially designed dilated convolution

module predicts the rice crop yield from vegetation indices and climatic parameters.

The causal property of TCN and dilated convolution contribute to the multivariate time-

based analysis of the crop and results in better performance.

Keywords: Hyperspectral images, Dimensionality reduction, Convolutional neural

network, vegetation indices, yield prediction.
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CHAPTER 1

INTRODUCTION

Precision Agriculture (PA) was introduced to improve crops’ production and ensure

food security worldwide. According to the National research council (Council 1997),

PA is defined as a decision making and operational process that manages crop produc-

tion by processing and analyzing spatial and temporal multisource data of higher reso-

lution with the help of modern information technology. Accurate yield prediction is a

significant research field in precision agriculture. One of the challenges in crop yield

prediction is finding the relationship of crop yield with meteorological and vegetation

data. Climate, soil, fertilizer, crop quality, and the plant’s health are some of the factors

affecting the yield (Xu et al. 2019). Spatial and temporal data analysis is required

to monitor these parameters throughout the crop cycle. However, the usage of remote

sensing addressed the challenges of data collection and analysis in yield prediction.

When light hits on the earth’s surface, a part of the light may get scattered, reflected,

emitted, absorbed, or part of absorbed light emitted from the surface later. The reflec-

tion of energy from any material has a unique footprint. It is known as the material’s

spectral signature, which can identify different materials on the earth’s surface. This

spectral signature helps in yield prediction from remote sensing data (Fonseca et al.

2009). Spectral images having more bands can be effectively utilized for crop moni-

toring. Multispectral images are mostly captured in visible and infrared frequencies.

These frequency bands are used to calculate vegetation indices such as normalized dif-

ference vegetation index (NDVI), leaf area index (LAI), photosynthetically active ra-
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1. Introduction

diation (PAR), etc. The contiguous spectrum in hyperspectral images (HSI) provides

more discriminative power in crop classification. However, analysis of hyperspectral

images needs to overcome two significant challenges; computational complexity due to

its large volume and curse of dimensionality due to lack of input samples. Basic dimen-

sionality reduction (DR) techniques such as Principal Component Analysis (PCA) and

Linear Discriminant Analysis (LDA) are used for band extraction in HSI. Hyperspectral

images are nonlinear, and the application of these linear reduction techniques fails in

their processing(Huang et al. 2015). Consideration of both spectral and spatial features

in HSI classification also improves accuracy in crop discrimination. 3D-Convolutional

Neural Network(CNN) designs help retain both features, while the problem is its com-

putational complexity and proper window size selection. Continuous monitoring of

cropland and finding the correlation between each week’s vegetation and climatic data

is necessary for accurate crop prediction. Existing prediction models fail to carry out

this multivariate time-based data analysis.

This thesis introduced and developed novel techniques to overcome the challenges

in HSI processing and yield prediction. The work proposes a nonlinear DR technique

for optimal band extraction, a multiscale hybrid CNN for crop classification, and a

temporal convolutional network (TCN) with a modified dilated convolution module for

accurate yield prediction.

1.1 HYPERSPECTRAL IMAGE BAND EXTRACTION

Multispectral images are having around 3-10 spectral components captured beyond the

visible spectrum. As the number of bands in multispectral images increases, the band-

width decreases, and reconstruction of the complete spectral signature becomes easy.

Thus researchers started the use of hyperspectral images for crop monitoring(Thenkabail

P.S., Smith R.B. 2000), change detection(Liu et al. 2017)(Bruzzone et al. 2016),

weather prediction, etc. due to its spectral-spatial features and a large number of

bands. The visual representation of HSI and Multispectral Images are given in fig-

ure 1.1. Hyperspectral images are contiguous band images that look like a 3D image

cube. Two dimensions in this cube are spatial coordinates, and the third dimension is

2



1.1. Hyperspectral Image Band Extraction

spectral bandwidth. Thus a single hyperspectral image is the collection of hundreds

of images captured in different spectral bandwidth. The contiguous spectral property

of these images helps to construct the spectral signature and discriminate objects effi-

ciently. Even though many bands improve the material discrimination, it leads to the

curse of dimensionality due to the less number of labeled samples and redundancy in

bands(Theodoridis and Koutroumbas 2006). Therefore dimensionality reduction in

hyperspectral images is essential to improve the classification accuracy and reduce the

computational complexity. There are two DR methods for hyperspectral images named

band selection and band extraction, similar to feature selection and feature extraction.

Figure 1.1: Visualization of Multispectral and Hyperspectral Images

The spectral difference between nearby bands in hyperspectral images is signifi-

cantly less. Therefore some bands are precisely similar to their neighboring bands.

Band selection techniques find redundancy in bands and select unique bands from the

input image (Datta et al. 2014). These bands have the same input image property,

whereas band extraction converts the input image into a lower-dimensional space to

avoid higher dimensionality issues. Band extraction methods are more renowned than

band selection techniques. Band extraction methods are of two types, namely linear and

nonlinear DR (manifold learning) techniques(Datta et al. 2014). Linear dimensionality

reduction techniques produce a linear low dimensional mapping of high dimensional

input data. Commonly used linear band extraction methods are principal component

3



1. Introduction

analysis (PCA)(Prasad and Bruce 2008)(Martı́nez and Kak 2001), linear discriminant

analysis (LDA)(Martı́nez and Kak 2001), minimum noise fraction (MNF)(Luo et al.

2016), etc. Most of the linear DR techniques preserve up to second-order statistics of

input data without considering the higher-order statistics. Natural images are nonlin-

ear, and linear reduction techniques fail in their processing. Later, researchers started

using nonlinear band extraction techniques such as KPCA(Datta et al. 2017)(Bach-

mann et al. 2005), nonlinear independent component analysis (ICA)(Wang and Chang

2006), LLE(Roweis and Saul 2000)(Bachmann et al. 2005), Isomap(Bachmann et al.

2005), etc. in hyperspectral images. These methods serve the nonlinearity of natural

images and preserve the higher-order statistics. However, the major problems of these

nonlinear techniques are their computational complexity.

It is essential to model a computationally feasible band extraction technique for

HSI. Extracted bands are fed into a classifier to evaluate performance: the classification

accuracy, the area under curve (AUC), and time complexity were compared.

1.2 HYPERSPECTRAL IMAGE CLASSIFICATION

The feature extraction in HSI classification was performed either with the help of self-

learning classifiers or manually. The classification accuracy of traditional classifiers

such as SVM(Melgani and Bruzzone 2004), Random Forest(Ham et al. 2005) is

significantly less because it considers only spectral features for classification. Consid-

ering both spatial and spectral features in the modified version of SVM named SVM-

CK(Camps-Valls et al. 2006)(Fauvel et al. 2012), Markov random field (Tarabalka

et al. 2010), etc. improves the classification accuracy. However, most of the meth-

ods mentioned above extracted features manually, and it needs an expert’s help. The

progress in deep learning techniques moves the hyperspectral image classification into

a new phase. The training phase of the deep learning method extract features automati-

cally and uses them in the classification step.

The preprocessing technique and classification model has a significant role in classi-

fication accuracy and computational complexity. Most of the HSI classification models

use PCA as a preprocessing technique, hence nonlinear features of the image are lost.
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Another major problem in HSI classification is considering both spectral and spatial

features. The window size selection for 3D-CNN is challenging. If the window size is

large, it considers more local similarity, but the presence of noise may lead to misclas-

sification, and small window size-based feature extraction lacks correlated features.

A nonlinear dimensionality reduction is a mandatory preprocessing for HSI classi-

fication(as explained in 1.1) to reduce the computational complexity in classification.

Introduction of Multiscale spatial and spectral feature extraction with different window

sizes can reduce the misclassification and retain correlated features. The performance of

HSI classification models is compared using the evaluation parameters such as Overall

Accuracy(OA), Average Accuracy(AA), and Kappa Statistic(K).

1.3 CROP YIELD PREDICTION

Machine learning (ML) algorithms have gained much attention in recent years and are

used for crop yield prediction. ML techniques analyze climatic and vegetative data to

decide the type of crop to cultivate, time of cultivation, and management of the crop.

Machine learning-based prediction models trained using prior data aid the prediction of

yield for current conditions. Although there are many machine learning-based predic-

tion models, the most commonly used techniques in yield predictions are decision trees

(Shekoofa et al. 2014), random forest (Jeong et al. 2016), regression models (Johnson

et al. 2016) and neural networks (Bose et al. 2016).

Manual collection of data through field surveys is tedious and often leads to in-

accurate prediction of yield. However, remote sensing data usage helps to extract the

features for a wide area with less overhead. Vegetation indices and climatic data have an

equal and vital role in yield prediction. The use of remote sensing data in most research

works helped to identify the vegetation parameters accurately. Still, proper vegetation

index selection and identification of their dependency in yield remain tricky. Recent

researches in yield prediction focused mainly on deep learning techniques, especially

CNN and Long-Short Term Memory (LSTM) based prediction models, due to their less

prediction error. However, current CNN-based prediction designs lack accurate multi-

variate time-based analysis. The LSTM models overcome these limitations and work
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for time-based analysis. However, to analyze the data for a considerable period, the

LSTM model has to increase its receptive field; this leads to higher time complexity.

The Development of a multivariate time-based prediction model that accounts for

climatic and vegetation parameters is mandatory for accurate crop yield forecasting.

The prediction results can be compared using the coefficient of determination(R2),

mean absolute error (MAE), and root mean square error (RMSE). A better prediction

model must exhibit higher R2 and lesser MAE and RMSE.

1.4 MOTIVATION

Precession farming analyses the environmental and climatic parameters to apply agri-

cultural inputs to improve crop productivity and ensure food security. The early pre-

diction of crop yield plays a crucial role in improving productivity in a season. Such

prediction techniques can guide farmers to apply appropriate fertilizers, pesticides, and

required irrigation to overcome crop damage and yield drop. The advancement made

in remote sensing has its impact in aiding precision agriculture. Although such devel-

opments are made in science, precision agriculture is still in its infant stage and needs

studies and research to improve the techniques further. This is one of the motivations to

carry out an extensive study on precision agriculture with remote sensing data.

The deep study on literature survey enlightens that the impact of hyperspectral re-

mote sensing for vegetation analysis is tremendous. The presence of multiple spectral

bands in HSI correctly identifies the crop area, which is vital for accurate vegetation

classification and yield prediction. However, the curse of dimensionality in HSI is a

backdrop in processing them, and this motivates to introduce a feature preserving high

efficient dimensionality reduction technique for HSI.

Accurate HSI classification requires the consideration of both spatial and spectral

features. The introduction of deep learning models eases such complex feature ex-

traction. However, the existing deep learning classification models fail in multi-scale

spatio-spectral feature extraction and result in high computational complexity. These

shortcomings motivate the design of a novel multi-scale hybrid CNN that works even

for lesser training samples with minimal run time.
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In 2018 Indian Space Research Organization (ISRO) launched a new satellite named

HysIS equipped with high-resolution hyperspectral sensors aimed for earth surface

study. Although the availability of data from HysIS is strictly for internal research

and defense purposes, once the data is in the public research domain, the above DR and

classification techniques make a huge impact.

Crop yield is heavily dependent on both climatic and vegetation parameters. Contin-

uous monitoring of such parameters from the sowing to the harvesting stage is manda-

tory for accurate yield forecast. The existing prediction models fail in such multi-variate

time-based analysis, and this motivates to find an efficient prediction model that per-

forms a multi-variate time-based analysis.

1.5 APPLICATIONS

The applications of spectral remote sensing are vast and applicable to multiple areas

of science. Spectral images are widely used in atmospheric studies to understand the

presence of water vapor and aerosols and analyze the properties of the cloud. The

vegetation parameters such as chlorophyll content, leaf water index, leaf area index,

cellulose, and pigment content can be estimated with spectral images, and it helps in

ecological studies.

Another vital contribution of spectral imaging is in geology; identifying various

minerals and soil types can be carried out with the aid of hyperspectral images mainly

(Wan et al. 2021). Coastal water areas can be studied with hyperspectral data to

find the presence of chlorophyll, phytoplankton, dissolved organic materials, suspended

sediments(Abou El-Magd and El-Zeiny 2014). The contribution of spectral remote

sensing is not only limited to the above scientific areas but also in the artic, sea-ice

fraction identification, glacier analysis, and melting predictions, forest fire, and biomass

burning, etc.

The commercial applications of spectral imaging include mineral exploration, forest

cover analysis, and agriculture. The techniques put forward by this study helps to tackle

the DR and classification challenges in hyperspectral image analysis and contribute to

all application areas discussed above.
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Precision agriculture (PA) helps design a decision support system for the farmers

to schedule agricultural inputs based on climatic and vegetation factors. Precision agri-

culture helps in attaining higher crop productivity and thus by achieving food security

worldwide. PA helps in sustainable agricultural development, reduced chemical usage

in the field, production of quality crops, reduced environmental pollution, requirement-

based plotwise farming, and efficient resource usage. Early crop yield prediction is one

of the paths to achieve precision farming. The proposed prediction model relates vege-

tation and climatic parameters to perform a multi-variate time-based analysis to forecast

early yield.

1.6 CHALLENGES

Remote sensing-based crop yield prediction techniques are relatively new. Many re-

search works are going on in this domain to overcome remote sensing-based crop yield

prediction challenges. This section briefs some of the challenges in the domain.

1.6.1 Availability of spectral images

Hyperspectral images’ availability is significantly less compared to other remote sens-

ing images. Most of the hyperspectral missions are launched for a short period, and it

covers a particular area of the earth for a specific application. A complete hyperspectral

mission that covers the entire earth is still not existing. Therefore, the usage of large

training samples for deep learning-based classification is a challenge in hyperspectral

image processing.

1.6.2 Lack of spectral library

Every object on the earth’s surface has a unique footprint for its spectral reflectance,

called a spectral signature. Early classification techniques used this spectral signature

profile to discriminate the objects in a spectral image. However, the spectral library con-

tains only a limited spectral signature, and thus it is a challenge for correct classification

of objects using the spectral signature. The spectral signature of different objects may

look similar due to atmospheric noise in image capture, leading to misclassification.
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1.6.3 Curse of dimensionality

Hyperspectral images having more than a hundred contiguous spectral bands. Some

of these spectral bands are redundant, and some may not contain relevant information.

This redundancy and sparsity in data lead to overfitting the classification model. Even

though the multi-band information is present in hyperspectral images, labeled samples’

availability is significantly less. This becomes a challenge in hyperspectral image pro-

cessing.

1.6.4 Lack of high-resolution images

In current scenarios, hyperspectral image sensors can provide only low-resolution sam-

ples. Therefore, a single pixel in a low-resolution hyperspectral image may cover a

large area (approximately up to 250m) in the field. Thus, classifying this single pixel

to a particular class can be error-prone because that area may cover multiple objects of

interest (mixed pixel).

1.6.5 Proper selection and identification of vegetation parameters

The crop yield is heavily dependent on the vegetation parameters of the land area; thus,

accurate identification of these parameters is critical. The vegetation parameters that

influence crop yield vary for each variety of crops and its cultivation method. Hence an

expert identification is a must for deciding such vegetation parameters for yield predic-

tion.

1.6.6 Accurate collection of climatic data

Climatic data are usually measured for a large area such as a district or block. The

accurate estimation of these parameters on the study area requires placement of sensors

and field survey that contributes to accurate yield prediction.

1.7 HIGHLIGHTS OF THE PRESENT RESEARCH WORK

• An in-depth literature survey on challenges in hyperspectral image analysis (di-

mensionality reduction, classification) and various crop yield prediction models

using remote sensing data.
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• Introducing a nonlinear dimensionality reduction technique for HSI having a

lesser computational overhead.

• Proposing a multiscale hybrid CNN model with minimal learnable parameters for

HSI classification.

• Presenting a modified TCN based prediction model for crop yield using vegeta-

tion and climatic parameters.

1.8 BRIEF OVERVIEW OF THESIS CONTRIBUTIONS

The significant contributions of this thesis include the challenges in crop yield predic-

tion from remote sensing data. This work introduces novel techniques that address

the dimensionality reduction and classification challenges in HSI. A multivariate time-

based crop yield prediction model for the paddy field is also presented. The brief details

of the work are given below.

1.8.1 Nonlinear dimensionality reduction

Dimensionality reduction is a crucial stage in HSI processing, and linear techniques

fail in preserving higher-order statistics of data. The available nonlinear techniques are

time-consuming for large datasets. The hybrid dimensionality reduction technique us-

ing random projection (RP) and kernel PCA retains the data’s higher-order statistics.

Experiments were done on three hyperspectral datasets using Gaussian Random Pro-

jection (GRP) and Sparse Random projection (SRP) based hybrid models. The results

demonstrate that the hybrid method reduces nonlinear DR techniques’ computational

complexity with better classification accuracy.

1.8.2 Spatio-spectral feature-based HSI classification

The integrated usage of spatial and spectral features increases the classification perfor-

mance of HSI. The novel hybrid CNN model in the research work considers both spatial

and spectral features for HSI classification. The dependency on spatial features is found

out using multi-scale receptive fields. The hybridization of 3D-CNN and 2D-CNN re-

duces the number of learning parameters. Multi-scale Hybrid CNN is compared against
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the various state-of-the-art techniques on three widely used datasets. It is found that the

proposed technique is computationally less complicated and produces a better result for

classification.

1.8.3 Multivariate time-based yield prediction

A multi-temporal data analysis is critical for accurate yield forecasting. Existing ma-

chine learning and deep learning prediction models lack such multi-temporal analysis.

The proposed radical TCN based yield prediction model for Paddy gave a promising

yield prediction result with limited running time. The dilated convolution in TCNN

helped to find the long-term historic dependencies of various indices in yield. The

model compared against other machine learning and deep learning techniques and out-

performed all of them.

1.9 ORGANIZATION OF THE THESIS

The thesis advances in 6 chapters. An outline of each chapter is given below.

• Chapter 1 : The Introduction section covers the need for precision agriculture

from remote sensing data. The difficulties in processing remote sensing images

such as multispectral and hyperspectral are discussed. Motivation, applications,

and challenges in remote sensing data-based yield prediction are also addressed.

The chapter ends with a brief overview of research contributions and a thesis

outline.

• Chapter 2 : Literature Review section mainly consists of a detailed review

of the dimensionality reduction in HSI, HSI classification techniques, and crop

yield prediction models. The section discusses the identified research gaps and

the scope of the research work. The datasets used in the proposed research work

are familiarized in this section.

• Chapter 3 : Band Extraction for Hyperspectral Images includes the proposed

hyperspectral band extraction algorithm and their design details. The section

contains the details of the experiments and comparisons carried out to evaluate

the model. The analysis of the result is discussed in this section with appropriate
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conclusions.

• Chapter 4 : Hybrid CNN Based HSI Classification covers novel multi-scale

spatio-spectral deep learning model for HSI classification. The presented model’s

performance is compared against the available state-of-the-art techniques and an-

alyzed the results to reach conclusions.

• Chapter 5 : TCN Based Crop Yield Prediction discuss the model and design of

a multivariate time-based prediction model for rice yield prediction. This chapter

also provides the need for dilated convolution in yield prediction. The perfor-

mance of the model is presented with appropriate analysis and discussions.

• Chapter 6 : Conclusions and Future Scope chapter summarize the contribu-

tions and findings of this research work. This chapter also provides insights into

the future scope and directions for crop yield prediction from remote sensing data.
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CHAPTER 2

LITERATURE REVIEW

Chapter 1 introduced the need for precision agriculture and presented a brief overview

of hyperspectral band extraction, classification, and crop yield prediction. Motivation

for the research work, along with significant applications and challenges of machine

learning-based crop yield prediction, are listed in chapter 1. This chapter aims to give

a deep perception of recent methodologies proposed and developed in the literature

of hyperspectral dimensionality reduction, hyperspectral image classification, and ma-

chine learning-based crop yield prediction. The most commonly used hyperspectral

image datasets are familiarizing in this chapter. A set of research gaps evolved from

a thorough literature review is listed at the end of the chapter, along with the problem

definition and objectives.

2.1 DIMENSIONALITY REDUCTION IN HYPERSPECTRAL IMAGES: A RE-
VIEW

Measuring crops’ biophysical and biochemical attributes for productivity calculation,

stress monitoring, etc., through the land survey is a tedious task. However, remote

sensing-based measurement is less time-consuming and more accurate. Burgan and

Hartford (1993) presented a report to monitor vegetation greenness using Advanced

Very High-Resolution Radiometer (AVHRR) five-band satellite data. They used NDVI

and Relative Greenness (RG) to analyze the greenness of the crop. In 1994, Thenkabail

et al. used Landsat-5 Thematic Mapper(TM) data for corn and soybean yield measure,

LAI, wet mass, and dry mass. TM data produce about 35% of the variability in yield
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(THENKABAIL et al. 1994). Corn and soybean yield in the south of Iowa City is mea-

sured using NDVI by Zhang et al. (1999). They captured the image using ADAR 5500

4-band digital camera and concluded that as the spatial resolution of images reaches 9

meters, it gives a more accurate prediction. Thenkabail et al. (2000) found a relationship

between crop characteristics and vegetation indices using a 512 band spectroradiome-

ter. These narrowband spectrum-based models overshot the accuracy of all previous

wideband image-based analyses. Later, researchers started using hyperspectral images

for various agricultural applications such as crop condition monitoring, weed discrim-

ination, disease detection, yield estimation, etc. The higher number of bands of HSI

helps in discriminating crops using clearly defined spectral signature. However, as the

number of bands increases, the number of training data required to maintain minimum

functionality and statistical confidence for classification purposes must be high. Since

hyperspectral images’ availability is significantly less, the only solution for the classifi-

cation problem is dimensionality reduction.

A considerable amount of researches were carried out to extract optimal bands from

hyperspectral images. Dimensionality reduction (DR) is mainly classified into two cat-

egories, namely linear and nonlinear dimensionality reduction. In linear reduction, the

higher dimensional data is converted to a lower dimension using some linear transfor-

mations. Principal Component Analysis (PCA) is the most common linear dimension-

ality reduction method (Khodr and Younes 2011). PCA considers only up to second-

order statistics of data i.e,mean and variance. Hyperspectral images are nonlinear, and

it follows higher-order statistics, and thus PCA fails for HSI. Maximum noise frac-

tion(MNF) (Green et al. 1988) is another DR technique used for HSI follows only

second order statistics. Overcome the drawbacks of PCA and MNF, Wang and Chang

(2006) introduces independent component analysis (ICA) based dimensionality reduc-

tion technique for hyperspectral images. They introduced three algorithms called ICA-

DR1, ICA-DR2, and ICA-DR3 using random initial projection vectors. In ICA-DR1,

the number of retained independent components (ICs) are estimated using the virtual

dimensionality (VD) concept(Chein-I Chang and Qian Du 2004). They found that an

excellent upper approximation of the number of ICs for better classification is twice
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the number of VD. The ICA-DR2 method iteratively runs the FastICA technique on the

image to find the most common ICs until ICs remain unchanged. The generation of ran-

dom order ICs in DR1 and DR2 overcome by using a specific manner initial projection

vector selection. These techniques resolve the challenges in ICA-based dimensionality

reduction but reduce the classification accuracy.

Based on the knowledge of nonlinearity in hyperspectral images, many nonlinear

techniques such as Laplacian Eigenmap (Belkin and Niyogi 2003), Locally Linear

Embedding (LLE) (Roweis and Saul 2000), ISOMAP (Bachmann et al. 2005) became

popular. Mohan et al. (2007) introduced a modified nonlinear dimensionality reduction

technique named spatially coherent locally linear embedding. Each band image in HSI

are looks similar to a 2D image, and hence the probability of a pixel and its neighbor

belongs to the same class is high. Instead of Euclidean distance in classical LLE, Mohan

et al. (2007) used spatially coherence distance to find the relationship between a pixel

and its immediate neighbors. This method effectively reduces the size of data up to

75% and improves the classification accuracy by 15%. Here the selection of immediate

neighbor depends on the size of the image patch (n = 3 in this work), and the value of

n depends on classification accuracy.

Fractal dimension-based dimensionality reduction of hyperspectral images put for-

warded by Ghosh and Somvanshi (2008). They developed a single fractal dimension

image from multiple bands of the hyperspectral image. The entropy of the fractal di-

mension image is higher than any other existing methods, and it improves classification

accuracy. However, the fractal dimension depends on the noise factor, and it may lead to

misclassification. Junying and Ning (2008) applied the wavelet transform-based noise

removal method in the input image before calculating the fractal dimension. The proper

choice of noise removal filter became a problem for them. Phillips et al. (2008) used

MNF with adaptive filters to maximize the SNR value and applied discriminant analysis

to find the optimal bands. This filtered data improved the classification accuracy from

88% to 99%. However, classification accuracy depends on the proper selection of the

number of bins and filter size.

Considering the merits of various DR techniques, researchers introduced some hy-
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brid dimensionality reduction methods. Koonsanit et al. (2012) used the integration of

Information Gain (IG) bands and PCA bands for dimensionality reduction. PCA maxi-

mizes the covariance between bands to find optimal bands whereas IG based method as-

sume that bands with a high value of information gain are the optimal bands. However,

the redundancy in IG bands is notorious. Hence authors find optimal bands from input

data separately and the intersection of two sets of results considered as final optimal

bands. This method gave better results for small multimission satellite images.Fuzzy

rough set model is another nonlinear dimensionality reduction method. It preserves the

meaning of data, and processing needs no additional information. Lodha and Kamlapur

(2014) used fuzzy rough set method for hyperspectral dimensionality reduction and its

computation time was high compared to other techniques.

Ly et al. (2014) employed a supervised Sparse Graph-based Discriminant Analysis

(SGDA) for dimensionality reduction in hyperspectral images. A modified version of

SGDA named as block SGDA (BSGDA), which improved the classification accuracy

through constrained sparse representation within samples in a cluster. The construc-

tion of `1-graph for SGDA and BSGA is a significant computational burden. Huang

et al. (2015) inherited the merits of sparsity in natural images and introduced a nonlin-

ear Sparse Discriminant Embedding (SDE) technique for hyperspectral dimensionality

reduction. SDE preserves the sparse reconstructive relation through `1-graph and en-

hances the intermanifold separability of data. SDE is a supervised technique, and this

method is useful only if prior knowledge about the classes are available. Based on

homogeneity and mutual information, Nhaila et al. (2015) found the optimal bands in

hyperspectral images. Dimensionality Reduction via Regression(DRR), a new tech-

nique that preserves the volume of useful information proposed by Laparra et al. (2015)

for HSI band extraction. The classfication accuracy of HSI using DRR varies based on

selection of regression function.

Bourennane and Fossati (2015) proposed a multilinear method to perform both de-

noising and dimensionality reduction on hyperspectral images with the help of wavelet

transforms and Wiener filter. There is no guaranty that hyperspectral images are al-

ways distorted by white noise only. The multidimensional wavelet transform is not
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efficient for non-white noises. Hence researchers proposed a new method, which ini-

tially whitened the noise in the image and then applies wavelet and Wiener filter on

this whitened image. The proposed method takes more computational time due to the

use of brute force method for optimal parameter selection. Wang and Wang (2015)

proposed Global Mixture Coordination Factor Analysis(GMCFA) to retain maximum

spectral information in HSI. This method passes through three steps; first, converting

the high dimensional data to low dimensional manifold using mixture factor analysis.

In the second phase, the optimal parameters in low dimensional manifold calculated

using Expectation- Maximization (EM) method. The manifold is aligned in global

parametrization field by global coordinate factor analysis in the third phase and hence

achieve dimensionality reduction. Estimation of Expectation- maximization parameter

is the main bottleneck of this technique.

Graph-based discriminant analysis became very popular recently(Chen et al. 2016;

Feng et al. 2017; Ly et al. 2014). Affinity matrix calculation using Euclidean distance

is not a good measure to project high dimensional data to low dimensional data. Feng

et al. (2017) proposed a spectral similarity based measurement for high dimensional to

low dimensional projection. The spectral similarity between two pixels calculated from

chosen bands leads to better discrimination. Classification accuracy of this method de-

pends on the sparseness controlling parameters η and γ. Semi-supervised double sparse

graph based dimensionality reduction technique consider both positive and negative

structure relationship of data. The k-nearest neighbor method is used to map unlabeled

data to pseudo labeled maps. Sparsity reduces the error in between pseudo label and

real label up to an extend (Chen et al. 2016).

Murinto and PA (2017) introduced another hybrid model using SVM and discrimi-

nant ICA. Discriminant ICA uses the Fisher criterion and sum of marginal negative en-

tropy independent components for reduction. Hybridization with SVM achieves struc-

tural risk minimization and independence maximization, however, this method is slow

in multi-class classification. Kernel PCA is another nonlinear dimensionality reduction

technique, depend on the number of patterns selected for kernel matrix calculation. The

proper selection of initial patterns using density-based spatial clustering reduces the
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computational cost of DR and improves the classification accuracy. Therefore, Datta

et al. (2017) introduced a new hybrid model using kernel PCA and DBSCAN. Finding

more suitable kernel is still existing as a problem in this research work. Supervised di-

mensionality reduction techniques lead to overfitting when the number of labeled data is

less. Wu and Prasad (2018) proposed Semi-Supervised Local Fisher Discriminant Anal-

ysis (SSLFDA) to discriminate both labeled and unlabeled data using pseudo labeling

concept. They used the Dirichlet Process Mixture Model (DPMM) based clustering for

false labeling instead of k-nn in Chen et al. (2016). It preserves more discriminative

information for pseudo labels than soft labels but fails in active learning.

A survey on various discriminant analysis-based dimensionality reduction on HSI

is carried out by Li et al. (2018). Fast and robust principal component analysis on

Laplacian graph (FRPCALG) is a band selection technique proposed by Sun and Du

(2018). The small projected dimension using sparse random projection in FRPCALG

reduces the method’s computational complexity without compromising the classifica-

tion accuracy. Li et al. (2019) introduced another graph-based dimensionality reduction

for hyperspectral images by considering both spatial and spectral features. Table 2.1

summarizes various research works done for dimensionality reduction in hyperspectral

images in recent decades.

2.2 HYPERSPECTRAL IMAGE CLASSIFICATION: A REVIEW

Dimensionality reduction is the preprocessing step for hyperspectral image analysis.

DR technique in HSI reduces the computational complexity of further processing. Each

hyperspectral image covers a wide geographical area. Crop area is an essential measure

in crop yield calculation. Therefore a major step in crop yield prediction is the segmen-

tation of different crop areas in HSI using classification techniques. Classification of

hyperspectral images can be accomplished using supervised, semi-supervised or unsu-

pervised learning techniques. The availability of hyperspectral images and its ground

truth is comparatively less, hence supervised classification technique are tidious. This

section discuss about various hyperspectral image classification techniques proposed in

this decades.

18



2.2. Hyperspectral Image Classification: A Review

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
R

es
ea

rc
h

W
or

ks
D

on
e

in
D

im
en

si
on

al
ity

R
ed

uc
tio

n
of

H
yp

er
sp

ec
tr

al
Im

ag
es

R
es

ea
rc

h
w

or
k

A
pp

ro
ac

h
us

ed
B

an
d

Se
le

ct
io

n
B

an
d

E
xt

ra
ct

io
n

W
an

g
an

d
C

ha
ng

(2
00

6)
In

de
pe

nd
en

tC
om

po
ne

nt
A

na
ly

si
s

X
M

oh
an

et
al

.(
20

07
)

Sp
at

ia
lly

C
oh

er
en

tL
oc

al
ly

L
in

ea
rE

m
be

dd
in

g
X

G
ho

sh
an

d
So

m
va

ns
hi

(2
00

8)
Fr

ac
ta

lb
as

ed
D

im
en

si
on

al
ity

R
ed

uc
tio

n
X

Ju
ny

in
g

an
d

N
in

g
(2

00
8)

W
av

el
et

ba
se

d
no

is
e

re
m

ov
al

+F
ra

ct
al

di
m

en
si

on
X

Ph
ill

ip
s

et
al

.(
20

08
)

M
N

F
w

ith
ad

ap
tiv

e
fil

te
r+

di
sc

ri
m

in
an

ta
na

ly
si

s
X

K
oo

ns
an

it
et

al
.(

20
12

)
In

fo
rm

at
io

n
ga

in
ba

nd
+P

C
A

X
L

od
ha

an
d

K
am

la
pu

r(
20

14
)

Fu
zz

y
ro

ug
hs

et
m

od
el

X
Ly

et
al

.(
20

14
)

Sp
ar

se
G

ra
ph

ba
se

d
D

is
cr

im
in

an
tA

na
ly

si
s

X
H

ua
ng

et
al

.(
20

15
)

Sp
ar

se
D

is
cr

im
in

an
tE

m
be

dd
in

g
X

N
ha

ila
et

al
.(

20
15

)
H

om
og

en
ei

ty
+m

ut
ua

li
nf

or
m

at
io

n
X

L
ap

ar
ra

et
al

.(
20

15
)

D
im

en
si

on
al

ity
re

du
ct

io
n

vi
a

re
gr

es
si

on
X

B
ou

re
nn

an
e

an
d

Fo
ss

at
i(

20
15

)
W

av
el

et
tr

an
sf

or
m

+W
ie

ne
rfi

lte
r

X
W

an
g

an
d

W
an

g
(2

01
5)

G
lo

ba
lm

ix
tu

re
co

or
di

na
tio

n
fa

ct
or

an
al

ys
is

X
C

he
n

et
al

.(
20

16
)

Se
m

i-
su

pe
rv

is
ed

do
ub

le
sp

ar
se

gr
ap

h
X

Fe
ng

et
al

.(
20

17
)

Sp
ec

tr
al

si
m

ila
ri

ty
ba

se
d

di
sc

ri
m

in
an

ta
na

ly
is

X
M

ur
in

to
an

d
PA

(2
01

7)
SV

M
+

D
is

cr
im

in
an

tI
C

A
X

D
at

ta
et

al
.(

20
17

)
K

er
ne

lP
C

A
+D

B
SC

A
N

X
W

u
an

d
Pr

as
ad

(2
01

8)
Se

m
i-

su
pe

rv
is

ed
L

oc
al

Fi
sh

er
D

is
cr

im
in

an
tA

na
ly

si
s

X
Su

n
an

d
D

u
(2

01
8)

Fa
st

an
d

ro
bu

st
pr

in
ci

pa
l

co
m

po
ne

nt
an

al
ys

is
on

L
ap

la
ci

an
gr

ap
h

(F
R

PC
A

L
G

)
X

L
ie

ta
l.

(2
01

9)
Sp

ec
tr

al
sp

at
ia

ln
ei

gh
bo

rh
oo

d
gr

ap
h

(S
SN

G
)

X

19



2. Literature Review

Gomez-Chova et al. (2003) proposed a combination of the supervised and unsuper-

vised technique for HSI classification. In the unsupervised technique, the image size

is reduced by uniform spatial decimation. Then applied C-means clustering algorithm

on the data to find initial clusters. These clusters are used as initial seeds for Expecta-

tion Maximization (EM) algorithm and iteratively repeat this EM algorithm for density

estimation. They used classification Gaussian Maximum Likelihood method for clas-

sification. Once the classification over, the training spectral signature data of different

crops used for labeling. Therefore, this phase is a supervised method. The proposed

semi-supervised technique gave an excellent result in robustness and accuracy. How-

ever, this method is more suitable for classes with the Gaussian mixture distribution.

Hyperspectral classification using predefined spectral signature is another method.

Rao (2008) classifies three varieties of rice, chilies, sugar cane and cotton plants in An-

dra Pradesh, India using spectral signature. It gave accuracy up to 86-88%. Due to noise

addition, the spectral signature of different varieties of rice and sugar cane crop was the

same and it reduces classification accuracy. Hadoux et al. (2012) applied Partial Least

Square LDA (PLS-LDA) on spectral information for weed and wheat classification.

They used a reference surface set and spectral preprocessing to avoid the variable light-

ing condition. This model provides high robustness. However, it causes a classification

error due to the variability of images taken at different time. The classification accuracy

of hyperspectral images depends on image resolution. Alganci et al. (2013) investigated

the difference between pixel-based and object-based classification techniques for crop

identification. They used Maximum Likelihood, Spectral Angle Mapper and SVM for

pixel-based classification. The object-based classification with high resolution gives

better accuracy than others. Spectral angle mapper technique compares the spectral

similarity between every two bands in an image by measuring the angle between the

vectors. Since it is a pixel-based approach, it takes more time for processing and af-

fected by noise (Boitt 2014). Supervised waveform classification is another method

suggested by Moharana and Dutta (2014). Clustering technique used in this approach

reduces the noise and critical bands in HSI found using band-band correlation. Proper

selection of the similarity metric in clustering technique improves the accuracy.
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Sateesh and Sridhar (2014) used Niche Hierarchical Artificial Immune System (NHAIS)

based clustering technique for hyperspectral image classification. First, they performed

PCA on the input image for dimensionality reduction. Then each pixel and its weighted

neighbors are used for clustering iteratively. These weighted neighbor methods reduce

the edge degradation in images. However, NHAIS is not useful for randomly distributed

pixels and isolated pixels in DR images. Kernel-based SVM technique, an object-based

image analysis paradigm for crop mapping from hyperspectral images put forwarded

by Liu and Bo (2015). They used object mean, texture and geometrical features for

classification. This method provides overall accuracy of 90.3%. A hybrid model of

segmentation and classification approach offered by Zhang et al. (2016). They used

feature band set selection and object-oriented approach for crop discrimination. It out-

performed MNF based optimization, but the quality of segmentation controls the clas-

sification accuracy.

2014 onwards deep learning techniques introduced for hyperspectral image analy-

sis. Chen et al. (2014) proposed the concept of deep learning for hyperspectral image

classification for the first time. Their model is a hybridization of PCA, deep learn-

ing and logistic regression. PCA helps to find optimal bands in hyperspectral images.

They extract the spatial features and spectral features separately and classify the image

using separate features. They introduced a joint spectral-spatial classification by select-

ing dominating spatial features of each pixel and by merging spectral characteristics to

them. The training time for this method is comparatively high. However, this approach

opens a new window for researchers to work on spatial-spectral classification. Contex-

tual deep learning is another spatial- spectral feature based classification proposed by

Ma et al. (2015). This classification method is entirely a supervised technique, which

passes through three steps namely, spatial information extraction, spectral feature min-

ing, and feature smoothness. Since lots of unlabeled data available for hyperspectral

classification, this deep network is not adequate for HSIs.

A five-layered deep Convolutional Neural Network(CNN) was implemented for HSI

classification in spectral domain by Hu et al. (2015). This network classifies the image

purely based on supervised spectral signature features. Classification accuracy depends
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on the number of training samples, and thus it fails to classify categories with a small

number of samples. Chen et al. (2016) developed multilayered CNN for hyperspectral

image classification. They extracted both spectral and spatial features for crop discrimi-

nation. However, the limited number of input samples leads to overfitting. Virtual sam-

ples and post-classification processing may improve accuracy and robustness. Zhao and

Du (2016) suggested a combination of CNN and Balanced Local Discriminant Embed-

ding(BLDE) technique. BLDE is used for spectral feature extraction, and CNN is for

spatial features. They used PCA for dimensionality reduction and used these optimal

bands for spatial feature extraction in CNN. These two features were stacked and fed

into multiclass classifier for classification. This approach improves the classification

accuracy and fails in optimal observation scale selection.

Deep Belief Network(DBN) based classification is another deep learning approach

used for hyperspectral image analysis. Spatial updated DBN is a HSI classification

technique, which using spatial information within spectrally similar contiguous pixel

(Mughees et al. 2017). In this approach, hyperspectral image segmented into spatially

similar groups with similar spectral features and object-level features were computed

for classification. A systematic approach of hyper-segmentation depends on the clas-

sification accuracy of this method. Li et al. (2018) proposed a novel hyperspectral

classification using optimal DBN and Texture Feature Enhancement(TFE). First, they

grouped the bands into different sets based on band group method and performed tex-

ture feature enhancement using guided filters. These texture enhanced hyperspectral

images were used as an input for classification by DBN.

Most of the CNN based approaches consider both spectral and spatial features, while

still they fails in dimensionality optimization(Pan et al. 2018; Paoletti et al. 2018; Yu

et al. 2017). Multi-grained Network(Mug Net) combine different grain’s spatial and

spectral information for classification. This network used the semi-supervised tech-

nique for unlabeled samples (Pan et al. 2018). Li et al. (2017b) used 3D CNN for HSI

classification by considering both spectral and spatial features together. They consid-

ered the hyperspectral image as a cube and performed the convolution using 3D ker-

nels. However, this method can’t classify unlabeled samples. Ji et al. (2018) proposed
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another 3D CNN concept by considering both spatial and temporal features for crop

classification in hyperspectral images. It improves the efficiency of manual learning.

Pixel pair feature based hyperspectral image classification is a novel method suggested

by Li et al. (2017). In this method, a pixel and its neighbors are trained using CNN, and

test pixels are classified using a voting strategy. This method’s classification accuracy

is better than conventional CNN, but compromises the computational complexity.

Hyperspectral Reconstruction CNN (HRCNN) based classification (Li et al. 2017a)

has four steps namely normalization, band selection, reconstruction, and classification.

This method used the first PCA image as a reference image and calculate the widely

used six gray level co-occurrence feature for all the bands. They compare the co-

occurrence features of each band with a reference image feature and select the bands

with a minimum difference as optimal ones. HRCNN using four convolutional layers

and each is responsible for patch extraction and representation, feature enhancement,

non-linear mapping and reconstruction orderly. These reconstructed images are classi-

fied using Extreme Learning Machine(ELM). This technique is faster than all the state

of art methods and provides better accuracy with less amount of training samples.

Band-Adaptive Spectral-Spatial Network(BASS Net) (Santara et al. 2017) is an

end to end deep learning network developed to overcome the challenges in hyperspec-

tral image classification. This architecture extract band specific spectral-spatial features

for classification. The entire network design divided into three blocks. The aim of

block1 is spectral feature selection and band partitioning. Here the 3D volume input

image is partitioned into nonoverlapping bands of specific size using their spectral fea-

tures. Block2 has a specific number of parallel networks. Each band fed into each

fully connected network of block2 for spectral-spatial learning. Block3 concatenate

the output of block2 and perform classification. This network has better classification

performance and faster convergence than other deep learning networks.

Jiao et al. (2017) presented a novel spatial-spectral based hyperspectral image clas-

sification technique using the deep fully convolutional network. First, they used VGG-

verydeep16 based network to extract in-depth multiscale spatial information. Then

these spatial features were fused with spectral features by weighted fusion method. This
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fusion features fed into classifier for pixel-wise classification. This method performs ef-

fectively in highly nonlinear and diverse images. Chen et al. (2018) proposed another

spatial-spectral based hyperspectral image classification. They compute the spatial sim-

ilarity in each band using a spatial window and then find the spatial and spectral features

in each image blocks. These features are merged using convolutional layers and a fully

connected layer is used for classification. Moreover, this network design combined the

network with SVM for better classification and introduced a new adaptive spatial win-

dow size selection algorithm too. The window size is strict into two discrete values is a

constraint of this work.

Spectral-spatial Residual Network (SSRN) (Zhong et al. 2018), Spectral-spatial

Unified Network (SSUN) (Xu et al. 2018), Unsupervised spatial-spectral feature learn-

ing using 3D-convolutional autoencoder (Mei et al. 2019), spectral- spatial LSTM

Zhou et al. (2019), spatial-spectral ConvLSTM (Hu et al. 2019), capsule network

based HSI classification (Paoletti et al. 2019a), Deep pyramidal network based HSI

classification Paoletti et al. (2019b) and Hybrid SN (Roy et al. 2020) are some of the

latest works carried out in HSI classification by considering both spatial and spectral

features together. These works are outperformed the existing classification model that

consider any one of the feature alone. Table 2.2 summarizes various research works

done for classification of hyperspectral images in recent decades.

2.3 CROP YIELD PREDICTION MODELS: A REVIEW

Machine learning (ML) algorithms have gained much attention in recent years and are

used for crop yield prediction. ML techniques analyze climatic and vegetative data to

decide the type of crop to cultivate, time of cultivation, and management of the crop.

Machine learning-based prediction models trained using prior data aid the prediction of

yield for current conditions. Although there are many machine learning-based predic-

tion models, the most commonly used techniques in yield predictions are decision trees

(Shekoofa et al. 2014), random forest (Jeong et al. 2016), regression models (Johnson

et al. 2016) and neural networks (Bose et al. 2016).

Deep learning, the subset of machine learning, created a tremendous impact on
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Table 2.2: Summary of Research Works Done in Hyperspectral Image Classification

Research work Approach used
(Gomez-Chova et al. 2003) Semi-supervised classification(EM+Gaussian Mixture model)
(Rao 2008) Hyperspectral reflectance data
(Hadoux et al. 2012) Partial Least Square LDA on spectral information
(Alganci et al. 2013) Object based classification
(Boitt 2014) Spectral Angle Mapper
(Moharana and Dutta 2014) Supervised waveform classification
(Sateesh and Sridhar 2014) NHAIS
(Liu and Bo 2015) Kernel based SVM
(Zhang et al. 2016) Feature Band set+Object oriented approach
(Chen et al. 2014) Deep Neural Network
(Ma et al. 2015) Contextual deep learning
(Hu et al. 2015) Convolutional Neural Network(CNN)
(Chen et al. 2016) CNN
(Zhao and Du 2016) Balanced local discriminant embedding (BLDE)+ CNN
(Mughees et al. 2017) Deep Belief Network(DBN)
(Li et al. 2018) DBN+Texture feature enhancement
(Pan et al. 2018) MugNet
(Li et al. 2017a) Deep CNN
(Li et al. 2017) Pixel pair feature+CNN
(Li et al. 2017b) 3D CNN
(Ji et al. 2018) 3D CNN
(Santara et al. 2017) Bass net
(Jiao et al. 2017) Deep CNN
(Chen et al. 2018) Spectral-Spatial CNN
(Zhong et al. 2018) Spectral-Spatial Residual Network (SSRN)
(Xu et al. 2018) Spectral-Spatial Unified network (SSUN)
(Mei et al. 2019) 3D-Convolutional Autoencoder
(Zhou et al. 2019) Spectral-Spatial LSTM
(Hu et al. 2019) Spatial-Spectral ConvLSTM
(Paoletti et al. 2019a) Capsule Network
(Paoletti et al. 2019b) Deep Pyramid Network
(Roy et al. 2020) Hybrid SN
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many research fields. Deep neural networks(DNN) are similar to artificial neural net-

works used in machine learning. However, they have a large number of intermediate

layers to analyze the correlation between features. Since yield prediction is a tedious

task and yield depends on many parameters linearly and nonlinearly, researchers started

using deep learning techniques. The majority of deep learning models used for crop

yield prediction can be categorized into three. They are DNN based, convolutional

neural network (CNN) based, and long-short term memory (LSTM) based (van Klom-

penburg et al. 2020). CNN is a sort of deep neural network having convolutional layers

and pooling layers. CNN is a self-learned network mainly used in image data. The

pooling layer in CNN helps to downsample the data, thus generalize the feature map

and avoid overfitting (Brownlee 2019). LSTM is a recurrent neural network (RNN)

structure extensively used for temporal analysis of input data. Since the yield heavily

depends on temporal climatic and vegetative data, LSTM is a suitable yield prediction

method. It fundamentally explores the relationship between past long-period data and

present data.

In 2019 Khaki and Wang designed a DNN model to predict the yield from genotype

and environmental factors provided by Syngenta Crop Challenge. The proposed deep

network has 21 hidden layers with 50 neurons in each layer. Since there are numer-

ous environmental factors available in the dataset, the researchers performed a feature

selection technique using a guided backpropagation algorithm and maintained the pre-

diction accuracy (Khaki and Wang 2019). Tsouli Fathi et al. (2020) formulated a deep

learning model for crop yield prediction in the Medeterenian region agro-chemical and

climatic data. They compared the proposed DNN with existing ML techniques and

achieved a low prediction error. Saravi et al. put forwarded a DNN model to predict

maize yield by considering precipitation and irrigation during the crop’s life cycle. This

model reduced the root mean square error in prediction. However, neglecting other

agro-climatic factors that influence yield (Saravi et al. 2020) is a major setback. Win-

ter wheat yield prediction within the season is another DNN based prediction model

proposed by Wang et al. They analyzed crop, soil, climatic data, and VI for prediction.

The model compared against AdaBoost, random forest, SVM and found that the sug-
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gested model performed better (Wang et al. 2020b). The extensive studies conducted

by Bhojani and Bhatt (Bhojani and Bhatt 2020) resulted in the introduction of new

activation functions to predict wheat yield using DNN. They evaluated the yield using

different climatic parameters and found the best pair of features for each geographical

area. The combination of multimodal data such as thermal, RGB, and spectral helps to

extract more number features to predict yield accurately(Maimaitijiang et al. 2020).

Manual collection of data through field surveys is tedious and often leads to inac-

curate prediction of yield. However, the usage of remote sensing data helps to extract

the features for a wide area with less overhead. Convolutional layers in CNN are the

best aid to extract features automatically. The CNN in (Rahnemoonfar and Sheppard

2017), is designed to count tomatoes from captured images. They developed a mod-

ified Inception-Resnet architecture and trained it using synthetic images. The model

displayed the ability to count fruits even from occluded and shaded images accurately.

Nevavuori et al. used NDVI and RGB images to predict wheat and barley yield for indi-

vidual croplands. They designed a CNN based deep learning model for yield prediction

without considering the climatic and soil features(Nevavuori et al. 2019). Similarly,

Yang et al. (2019) proposed another CNN model to predict rice grain yield. The au-

thors compared the RGB-based CNN model with the conventional regression model

and found it futuristic. (Chen et al. 2019), (Terliksiz and Altýlar 2019), (Shidnal

et al. 2019), (Yalcin 2019), and (Kang et al. 2020) are other studies related to yield

prediction using CNN.

In 2018 Wang et al. predicted soybean yield in Argentina with the help of remote

sensing data. They used LSTM cells in the proposed recurrent neural network and ap-

plied transfer learning technique to predict soybean yield in Brazil(Wang et al. 2018).

Schwalbert et al. (2020) also forecasted the soybean yield in Brazil using the LSTM

model in 2020. However, they used both climatic and satellite data to predict yield,

and the model outperformed other machine learning and deep learning techniques. The

combined use of remote sensing, meteorological, and phenological data for yield pre-

diction in LSTM models reduced the prediction error and helped early prediction. Jiang

et al. (2020), and Zhang et al. (2020) designed LSTM models to predict maize yield by
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considering the combination of all features. CNN-LSTM hybridization was the next

step in crop yield prediction techniques. The end-of-season soybean yield prediction

model is designed by Sun et al., and the model uses CNN for spatial data analysis and

LSTM for phenological dependency calculation. Therefore the hybrid model is more

accurate than existing deep learning techniques(Sun et al. 2019). A similar CNN-

LSTM model is proposed in (Wang et al. 2020a) for winter wheat yield prediction.

The CNN part in the proposed model is used for static feature analysis and the LSTM

for dynamic data analysis.

2.4 RESEARCH GAPS

Some of the important research gaps identified from the above literature review are

listed below.

• A new dimensionality reduction technique that reduces computational complexity

and improves classification accuracy is necessary for hyperspectral images

• 3D-CNN designs help to retain both spectral and spatial features, whereas the

number of learnable parameters in 3D-CNN models are very high

• The availability of hyperspectral images and its groundtruth in very less, and

image patches are used for most of the supervised classification techniques.

• Image patch size selection is another challenging issue. If the window size is

large, the more local similarity is considered and it lead to misclassification due

to noise.

• If the model consider smaller image patches for feature extraction, it fails to iden-

tify the correlation between pixels.

• Proper selection of vegetation parameters and climatic factors for yield prediction

model is necessary

• Continuous monitoring of crop land is needed for accurate prediction and most

of the existing prediction models fails continuous monitoring.
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• DNN based models fails in multivariate time based analysis

• Increase in receptive field of LSTM models increase the time complexity of the

model.

2.5 PROBLEM STATEMENT

The primary aim of this work is to design a crop yield prediction model from satellite

images and climatic data.

Discrimination of different crop area from high dimensional Hyperspectral images

and calculation of different vegetation index parameters are necessary for accurate pre-

diction of crop yield. However,the processing of hyperspectral images is computation-

ally complex due to its high dimensionality. Therefore research work aims to design

a crop yield prediction model using optimal bands of hyperspectral images, vegetation

indices and climatic data.

The objectives of the work are:

1. Extract the optimal bands from hyperspectral images for crop classification using

nonlinear dimensionality reduction techniques.

2. Crop area discrimination using deep learning technique by considering spectral

and spatial features.

3. Design a machine learning based prediction model using vegetation indices and

climatic factors

2.6 RESOURCES USED

This section familiarizes the datasets used in this research work for experimenral anal-

ysis.

2.6.1 Hyperspectral Image Datasets

Mainly three hyperspectral images and its groundtruth are used for dimensionality

reduction and classification. They are Indian pines(IP), Pavia University(PU), Sali-

nas(SA) and Houston dataset. IP, PU and SA collected from the website http://

29

http://www.ehu.eus/ccwintco/index.php
http://www.ehu.eus/ccwintco/index.php
http://www.ehu.eus/ccwintco/index.php


2. Literature Review

www.ehu.eus/ccwintco/index.php.

Indian pine dataset is captured from Indian pine test site using AVIRIS sensors.

Each spectral image in Indian pine is of size 145 × 145. Sensor acquired a total of

224 spectral bands within the wavelength range 0.4-2.5 micrometers. Out of these

224 bands, some of the bands (104–108, 150–163, and 220) are in the region of com-

plete water absorption and these are not helpful for classification process. After re-

moving the twenty water absorption bands, the remaining two hundred bands are used

for experiments. IP dataset contain 16 classes, most of the area is covered by vege-

tation. The classes are Alfalfa, Corn-notill, Corn-mintill, Corn, Grass-pasture, Grass-

trees, Grass-pasture-mowed, Hay-windrowed, Oats, Soybean-notill, Soybean-mintill,

Soybean-clean, Wheat, Woods, Buildings-Grass-Trees-Drives, and Stone-Steel-Towers.

Pavia university image is captured using ROSIS-03 optical sensors in 0.43 to 0.86-

micrometer wavelength range. The hyperspectral image contain a total of 115 spectral

bands. About 12 number of noise bands are removed from the sensor data and remain-

ing 103 spectral images of size 610× 340 with 1.3 meters geometric resolution is used

for experiments. Image ground truth is differentiated into 9 classes namely Asphalt,

Meadows, Gravel, Trees, Painted Metal Sheets, Bare Soil, Bitumen, Self-Blocking

Bricks, and Shadows.

Salinas dataset captured the Salinas Valley area of California using AVIRIS sensor

of 224 bands. Similar to Indian pine dataset, 20 bands of water absorption area are

removed from the original data, and the remaining 204 bands are used for the exper-

iment. Each spectral image is of size 512 × 214 with a spatial resolution of 3.7 me-

ters, and the ground truth has 16 class labels. The classes are Brocoli green weeds 1,

Brocoli green weeds 2, Fallow, Fallow rough plow, Fallow smooth, Stubble, Celery,

Grapes untrained, Soil vinyard develop, Corn senesced green weeds, Lettuce romaine

4wk, Lettuce romaine 5wk, Lettuce romaine 6wk, Lettuce romaine 7wk, Vinyard

untrained, and Vinyard vertical trellis. The class labels, number of samples present in

each dataset, and pseudo-colored image of ground truth are represented in Table 2.3.
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2.6.2 MODIS Vegetation Data

This research work focused on MODIS land data products and the data is collected from

https://modis.ornl.gov/globalsubset/. This work collected Normal-

ized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Two

Band Extended Vegetation Index (EVI2) using MOD13Q1, MOD13A1, and MOD13A2.

Other vegetation parameters such as Leaf Area Index (LAI), fraction of Photosyntheti-

cally Active Radiation (fPAR), and Gross primary Production (GPP) are collected from

the MODIS products MOD15A2 and MOD17A2. The land cover mask for the study

area is generated using MODIS land cover MCD12Q1.

2.6.3 Climatic Data

The research work uses the climatic parameters minimum temperature (min T), max-

imum temperature (max T), Rainfall, Wind, and Humidity to predict the yield. The

climatic parameters for the study area are collected from the website https://www.

worldweatheronline.com. Here, the temperature is measured in degree celsius(◦

C) and the amount of rainfall in millimeters (mm). The measuring units of wind and

humidity are kilometer per hour (km/h) and percentage (%), respectively

2.6.4 Crop Yield Data

The annual crop yield for Paddy in the study region is collected from The Indian

Ministry of Agriculture & Farmers Welfare website (http://agricoop.nic.in).

The website http://www.ecostat.kerala.gov.in/index.php/agricultures

also provides a detailed report of agricultural statistics in Kerala per year. This research

work uses the annual yield of Paddy from the year 2012 to 2019 in prediction model.

2.7 SUMMARY

This chapter critically reviewed the latest work done in dimensionality reduction and

classification techniques in hyperspectral images. A detailed review of crop yield pre-

diction models is also discussed in this chapter. The resources used section mentioned

various hyperspectral datasets used for evaluating the first two objectives of the research

work. The details and sources of MODIS data, crop yield data, and climatic data are
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2.7. Summary

also highlighted in this chapter. The research gaps are listed, and the current research

work’s problem statement is also included in one section of the chapter. The proposed

methodology for each of the objectives will explain in later chapters.
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CHAPTER 3

BAND EXTRACTION FOR HYPERSPECTRAL
IMAGES

3.1 INTRODUCTION

One of the most challenging problems faced by HSI processing is the curse of dimen-

sionality. The presence of highly redundant data acquired by hyperspectral sensors

leads to increased computational complexity and reduced classification performance.

The literature survey section thoroughly describes various band selection and band ex-

traction techniques. Here in this chapter, the main focus is the introduction of an effi-

cient nonlinear band extraction technique. The main focus of the research problem is

HSI classification, and it needs a better DR algorithm at its preliminary stage. Hence

the first objective was to model a highly efficient DR technique.

The proposed nonlinear DR technique incorporates the advantages of random pro-

jection and manifold learning. The JL lemma (Johnson and Lindenstrauss 1984) behind

random projection helps to reduce the dimensions of data while retaining its nonlinear-

ity.

The contributions of the chapter are :

• A hybrid nonlinear DR technique for HSI preprocessing.

• Usage of Gaussian random projection preserves the nonlinear property of natural

images.
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3. Band Extraction for Hyperspectral Images

• The performance of the DR techniques is compared against various available non-

linear techniques in terms of classification performance and execution time.

The chapter is organized as follows: Section 3.1 introduces the band extraction tech-

nique. Section 3.2 briefs preliminary concepts associated with random projection and

manifold learning. Section 3.3 describes the proposed band extraction technique along

with its pseudocode. Section 3.4 details the experimental setup and analysis of results,

and Section 3.5 summarizes the proposed method and its significance.

3.2 PRELIMINARIES

Hyperspectral image X is denoted as a 3-D cube of size M × N × D, where M and

N are the spatial width and height of the image and D denotes the number of spectral

bands. In dataset representation, each data X = {x1, x2, . . . , xS} ∈ RD×S belongs to

some class c and S is the total number of pixels (S =M ∗N ).

3.2.1 Random Projection

Random projection (Johnson and Lindenstrauss 1984; Venkatasubramanian and Wang

2011) is a dimensionality reduction technique, which maps the high dimensional data

into a lower dimension by preserving the distance between data points. Suppose the

input data X having size n×d random projection map X into a lower-dimensional data

Y of size n× k using a random projection matrix Rd×k. The computational complexity

of random projection is O(knd).

Y n×k = Xn×dRd×k (3.1)

The idea behind random projection is Johnson Lindenstrauss lemma (Johnson and Lin-

denstrauss 1984) : Suppose we have an arbitrary matrix X ∈ Rn×d . Given any ε > 0,

there is a mapping f : Rd → Rk, for any k ≥ O logn
ε2

, such that, for any two rows

xi, xj ∈ X , we have

(1− ε)||xi − xj||2 ≤ ||f(xi)− f(xj||)2 ≤ (1 + ε)||xi − xj||2 (3.2)

Equation 3.2 states that while converting input data from d dimension to k dimension,

its Euclidean distance is preserved with a factor of 1± ε.

Gaussian random projection(GRP) is one of the most commonly used random pro-
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3.2. Preliminaries

jections. Here the random matrix R generated from Gaussian distribution, which sat-

isfies Orthogonality and normality. For a m × n random matrix, the time complexity

for random projection to k dimension is O(mnk). Time complexity reduces to O(snk)

if the random matrix has only s number of non-zero elements. Thus Sparse random

projection(SRP) evolved with a new random matrixR having more zero elements (Das-

gupta and Gupta 2003; Johnson and Lindenstrauss 1984).

A simple format of Random matrix is known as sign matrix, its distribution is as

follows

Rij =


1√
k
, p=1/2

−1√
k
, p=1/2

(3.3)

whereRij is each element in random matrixR and k is the desired dimension. Achliop-

tas (2001) proposed a sparse random matrix from this sign matrix, its distribution is:

Rij =
1√
k
∗


1, p=1/6

−1, p=1/6

0, p=2/3

(3.4)

Choosing a measure for amount of sparsity in sparse matrix, Matousek designed a new

matrix

Rij =

√
q

k
∗


1, p=1/6

−1, p=1/6

0, p=2/3

(3.5)

where q is the measure of amount of sparsity. Achlioptas generally choose q = 3 and

construct the sparse random matrix as:

Rij =

√
3

k
∗


1, p=1/6

−1, p=1/6

0, p=2/6

(3.6)

In all the sparse random matrices, 2
3

portion is filled with zero, thus it reduce the com-

putational complexity of projection.
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3. Band Extraction for Hyperspectral Images

3.2.2 Kernel PCA

Kernel PCA is an extension PCA in nonlinear space, capable to capture the higher order

statistics of data. Input is transformed into new feature space, where the discrimination

power of each instant from other is very high. Convert data in RD to feature space F

by applying a nonlinear transformation φ on input data x.

RD → F : x→ φ(x) (3.7)

Choosing the proper φ for calculating the kernel matrix in Kernel PCA is a challenging

area of research. Gaussian kernel is used in this research work because hyperspectral

images follows Gaussian distribution in most of the cases. The kernel matrix K is

calculated as:

Kij = exp(
−1
2σ2
||xi − xj||) (3.8)

where Kij is each element in kernel matrix K, the value of σ depend on the dataset and

xi, xj are each pixel values in the image. The data is centered using the equation 3.9

Kc = K − 1NK −K1N + 1NK1N (3.9)

where 1N = 1
N
∗ ones(N,N), Kc is centered kernel and N the total number of sam-

ples(pixels) in hyperspectral image. ones(m,n) means a m × n matrix having all the

values will be one. Similar to linear PCA, kernel PCA follows eigen decomposition on

the kernel matrix Kc and find k eigen vectors with largest eigen values. Eigen decom-

position of N ×N matrix is computationally complex when compared with linear PCA

decomposition. Thus a group of representative pixel selection from each class of pixels

will reduce the computational complexity.

3.2.3 Local Linear Embedding

Local linear embedding(LLE) is an unsupervised nonlinear dimensionality reduction

techniques which transform high dimensional data to low dimension based on neigh-

borhood preservation. In the first step of LLE, find neighbors of each data points using

k-nearest neighbor algorithm. Each data point can be a linear combination of its neigh-

bor. Solving the linear equations to find the weight matrix W in such a way that the

cost function will be minimum. Cost function is represented as reconstruction error

E(W ) =
∑
i

|xi −
∑
j

Wijxj|2 (3.10)
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3.2. Preliminaries

In the above equation xi is the data point, xj is its neighbor andWij is the weight(contribution)

of jth data point for ith point reconstruction. The weight matrix must satisfy two con-

straints in solving this least square method. They are:

• Wij= 0 if xj not a neighbor of xi

•
∑

jWij= 1, i.e, sum of each row in weight matrix must be 1.

The lower dimension data points are calculated using eigen decomposition of weight

matrix. LLE transformation convert the weight matrix into a sparse matrixM , calculate

smallest k eigen vectors of M and find the dimensionally reduced data using linear

reconstruction technique. Here k is the desired dimension and M is created as:

M = (I −W )
′ ∗ (I −W ) (3.11)

, I is identity matrix. Hessian LLE is a variation of LLE, which works mainly for

smooth manifolds and it is computationally complex than normal LLE. The parameter

k for nearest neighbor estimation is chosen by cross validation.

3.2.4 Isomap

Isomap is a nonlinear dimensionality reduction technique, similar to LLE. In this tech-

nique, construct a neighborhood graph through finding the neighbors of each data points

using k-nearest neighbor algorithm. The shortest distance between each pair of data

points are calculated using Floyd- Warshall algorithm. This distance matrix is consid-

ered as the weight matrix W for further processing. Lower dimensional embedding of

data points are done through classical multi scale embedding(MDS) technique. MDS

calculate squared proximity matrix B from weight matrix W as:

W (2) = [w2
ij] (3.12)

Apply double centering on this matrix and find B, find m eigen vectors correspond to

largest eigen values and find low dimensional data using this eigen vectors.

3.2.5 Spatial spectral neighborhood graph(SSNG) technique

Most of the graph based nonlinear dimensionality reduction techniques focus on intrin-

sic graph construction. SSNG technique works on superpixel based segementation to
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3. Band Extraction for Hyperspectral Images

cluster the HSI pixels into different classes. Superpixels are esimated using principal

components of input hyperspectral image. Next step in SSNG is the consruction of

neighborhood graph. The distance between two superpixels are calculated using a new

distance metric, which is formulated as:

d(xi, xj) = ||xspei − x
spe
j ||2 + λ||xspai − x

spa
j ||2 (3.13)

xspei ,xspai are spectral and spatial pixel values and λ is a balancing coefficient. Then

calculate the weight matrix W from the neighborhood graph and create a Laplacian

matrix L using the following equation:

L = D −W (3.14)

where D is a diagonal matrix in which diagonal elements are each row sum of weight

matrix. Apply optimal linear transformation on Laplacian matix to map high dimen-

sional data to low dimensional data.

3.3 PROPOSED BAND EXTRACTION TECHNIQUE

As discussed in the preliminary section, hyperspectral images look like a 3D cube of

dimension M × N ×D. This 3D image is converted to two- dimensional data of size

S × D for the dimensionality reduction technique. The proposed DR technique is a

hybrid band extraction technique that uses both linear and nonlinear methods.

Hyperspectral images holding nonlinear behavior, and hence nonlinear DR tech-

niques are more relevant for preserving their nonlinear properties. However, direct im-

plementation of nonlinear DR techniques is computationally expensive. The proposed

DR technique is working in two phases. In the first phase, a linear dimensionality re-

duction technique converts the data from D dimension to an intermediate dimension

k1. The first phase of the proposed method using Random projection as linear DR

techniques. The JL lemma behind random projection helps to reduce the distortion

in data while mapping higher dimensions to lower dimensions. Hyperspectral images

are mapped to lower dimension k1 using two types of the random projection matrix:

Gaussian random projection (GRP) and sparse random projection (SRP).

In phase two of the proposed DR technique, nonlinear dimensionality reduction

techniques are applied on intermediate k1 dimensional data. Dominant nonlinear meth-
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3.3. Proposed Band Extraction Technique

ods such as KPCA, LLE, and Isomap have used the second phase. A new graph-based

DR technique was also used to correlate the effect of random projection before the non-

linear technique. Here the desired dimension is calculated by analyzing the cumulative

eigenvalue. The nonlinear technique is repeated for different dimension (from 2 to 30)

and find the minimum dimension value B whose cumulative eigenvalue greater than

95%. Algorithm 3.1 shows the pseudocode representation of proposed hybrid dimen-

sionality reduction technique.

The output obtained from this proposed DR technique is a dimensionally reduced

data of size XS×B. This data must be double-checked for classification accuracy before

feeding it as an input to the HSI classification technique. Dimensionally reduced image

is given into the k-nearest neighbor classifier. The performance of the proposed method

is evaluated using overall classification accuracy, the area under curve, and execution

time for classification. Classification accuracy and area under the curve are calculated

using a 10-fold cross-validation technique. Entire data is divided into ten blocks, and

classification is repeated ten times by considering one block as testing data and the

remaining nine blocks as training at a time.

Algorithm 3.1: Hybrid Dimensionality Reduction Technique
Input: Dataset X ∈ RS×D, D is dimension of input and S is number of samples
Output: Low dimensional dataset X ∈ RS×B, B is desired dimension

1: Choose an intermediate dimension k1 for Random projection
2: Create the random matrix RD×k1 using GRP and SRP
3: Perform random projection and create intermediate data XS×k1

4: for i = 2 to 30 do
5: Perform nonlinear DR techniques to reduce data as XS×i

6: Find percentage of cumulative eigen value for each i
7: end for
8: choose B = min(i), which having cumulative eigen value ≥95%
9: return XS×B
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3. Band Extraction for Hyperspectral Images

3.4 RESULTS AND DISCUSSIONS

3.4.1 Experimental Setup

The proposed method is evaluated by experiments in universally available hyperspec-

tral image datasets. All executions are done on Intel(R) Xeon(R) Silver 4114 CPU @

2.24 GHz with a RAM of 196 GB under CentOS Linux release 7.4.1708 (Core) us-

ing python3 programming implementation. Three hyperspectral datasets are used to

evaluate the performance of the proposed method and state-of-the-art techniques. They

are Indian pines, Pavia University, and Salinas. These datasets and their dimentions,

number of samples, and class lables are detailed in Section 2.6.1.

3.4.2 Performance Evaluation Measures

This section describes three evaluation measures, namely overall accuracy(OA), the

area under ROC curve(AUC), and execution time(ET) used for comparing the perfor-

mance of hybrid dimensionality reduction techniques with classic nonlinear techniques.

A detailed explanation of evaluation measures as follows:

Overall accuracy: Overall accuracy is a measure that states how many samples are

correctly mapped to their corresponding class. It is the most comfortable measure to

find the performance of a classifier. Consider a dataset that has N number of samples

and C class labels, then the confusion matrix M of classification is a square matrix of

size C × C. Overall accuracy is measured using the equation

OA =

∑C
i=1Mii

N
(3.15)

Diagonal elements Mii in the confusion matrix is the number of samples correctly clas-

sified, and the overall accuracy of a classifier is always measured on a percentage scale.

Area under ROC curve: The area under the ROC curve or precisely area under the

curve in classification performance evaluation is an aggregate measure over all possi-

ble classification thresholds. It was used when the model ranks random positives over

random negatives. It measures how well the prediction ranked than its absolute value;

therefore, AUC is scale-invariant. AUC value ranges from 0 to 1.
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3.4. Results and Discussions

Execution Time: The time taken for the classification of different dimensional data

is measured in seconds. This paper mainly focuses on reducing the computational com-

plexity of nonlinear DR techniques. Thus ET places a significant role in this perfor-

mance evaluation.

3.4.3 Result Analysis

As described in section 3.3, the proposed algorithm is a hybrid band extraction method.

The proposed method first performs Random projection on the input datasets to reduce

the dimension from D to k1 and then performs various nonlinear dimensionality reduc-

tion techniques in this k1 dimensional space.

In Random projection, the projection matrix may be either dense or sparse. Ac-

cording to the JL transform, the desired dimension depends on the number of samples.

Considering the datasets mentioned above, log(N) value for all the datasets is more

significant than their original dimension D. Thus the desired size for the random pro-

jection matrix is chosen based on the value of ε. The desired dimensionB was identified

for different ε values. The B value obtained for the minimum ε is selected and found

that the value is nearly equal to D/2 for all the datasets under evaluation. Therefore

the value of B is set to D/2 and represents the data using B Gaussian mixture ele-

ments. Now compare the hybrid model using both dense and sparse projection results

for performance evaluation.

The first phase of the proposed band extraction technique is to apply random projec-

tion to reduce the number of bands fromD toD/2. The datasets IP, PU, SA having 200,

103, and 204 bands were used as the input for the band extraction phase. The random

projection technique is carried out according to JL Lemma and ε value, and the num-

ber of bands in the input dataset reduced to 100, 52, and 102 for IP, PU, and SA. The

random projected output is fed as an input to different nonlinear DR techniques. The

cumulative eigenvalues for different hybrid band extraction techniques were computed

and listed out in tables 3.1, 3.2, and 3.3
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3.4. Results and Discussions

Table 3.1 lists the percentage of cumulative eigenvalues for IP datasets for various

principal components. The analysis on the table indicates that the cumulative eigen-

value of GRP-based band extraction techniques is higher than that of SRP-based band

extractions. GRP+KPCA produces more than 95 percent of cumulative eigenvalue for a

minimum of 16 principal components. GRP+LLE and GRP+ISOMAP meet the thresh-

old cumulative eigenvalue while considering 20 principal components. Although LLE,

ISOMAPGRP, and SSNG work based on neighborhood graph concepts, GRP+SSNG

performed better and meet threshold conditions at 18 principal components. While an-

alyzing the table 3.1, it is found that SRP+KPCA and SRP+SSNG perform similarly

and took 22 principal components to meet the criteria. Similarly, The performance of

SRP+LLE and SRP+ISOMAP are alike and meets the criteria in 24 principal compo-

nents.

The percentage of cumulative eigenvalues generated by different non-linear DR

techniques for the PU dataset is given in table 3.2. Even though the SRP is com-

putationally easier than GRP, the sparse nature of SRP leads to limited performance.

Therefore, the GRP-based band extraction techniques meet the threshold criteria with

minimal principal components for the PU dataset. GRP+KPCA and GRP+SSNG took

only 14 principal components to achieve the required threshold, whereas GRP+LLE and

GRP+ISOMAP took 16 principal components. All graph-based techniques on sparse

projected data tend to perform similarly and meet the criteria at 20 number of principal

components. SRP+KPCA achieved threshold criteria in 18 principal components.

Table 3.3 displays the percentage of cumulative eigenvalues for SA datasets for

various principal components. The results obtained are very similar to that of the IP

dataset because both datasets have spatially dependent pixel classes. The Gaussian

random projected data meets the threshold criteria in the lower number of principal

components compared to Sparse random projected techniques. 14, 18, 18, and 16 were

the required principal components for GRP-based non-linear techniques: GRP+KPCA,

GRP+LLE, GRP+ISOMAP, and GRP+SSNG. SRP+KPCA and SRP+SSNG required

20 principal components to meet the threshold, whereas the other two sparse projected

techniques took 22 components.
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3. Band Extraction for Hyperspectral Images

Table 3.4: Evaluation parameters for various DR techniques in IP dataset

Technique No of PCs OA AUC ET
KPCA 22 85.79 0.71 85.79
LLE 18 75.79 0.72 102.32
ISOMAP 18 77.15 0.73 118.72
SSNG 16 86.16 0.72 97.43
GRP+KPCA 16 78.14 0.75 44.61
GRP+LLE 20 74.80 0.71 73.42
GRP+ISOMAP 20 74.37 0.71 79.27
GRP+SSNG 18 85.92 0.72 56.48
SRP+KPCA 22 65.06 0.62 44. 54
SRP+LLE 24 72.24 0.69 61.53
SRP+ISOMAP 24 73.25 0.70 62.33
SRP+SSNG 22 80.32 0.68 48.75

Table 3.4 , 3.5, 3.6 displays evaluation parameters for various state of the art non-

linear dimensionality reduction techniques and the proposed hybrid techniques for the

datasets IP, PU, and SA. Each table lists the number of principal components, OA,

AUC, and ET, for each technique under study. The best values obtained for evaluation

parameters are highlighted in bold letters. It is clear that the execution time for SRP-

based techniques will always be lower than any other methods because of the sparse

nature of the data. However, the values of OA and AUC will be the decisive factor in

selecting an optimal DR method.

Table 3.4 represents the evaluation parameters obtained for the IP dataset when

different DR techniques are applied. SRP+KPCA method was able to finish the DR in

much lesser time(44.54), but they offered very low values for OA(65.06) and AUC(0.62).

The data in the table indicate that SSNG produced a higher OA value but failed to pro-

duce better values for AUC and ET. Hence SSNG is not a satisfiable dimensionality

reduction method. GRP+KPCA method was able to produce a better AUC value(0.75)

with minimal execution time(44.61) using only 16 principal components.

The evaluation parameters obtained for the PU dataset are listed in table 3.5. Here

also SRP+KPCA was able to finish in lesser time(40.82). However, they lack in classi-

fication performance. For this dataset, GRP+KPCA scored higher OA and AUC values

with minimal running time considering 14 principal components. Even though SSNG

48



3.4. Results and Discussions

Table 3.5: Evaluation parameters for various DR techniques in PU dataset

Technique No of PCs OA AUC ET
KPCA 20 73.89 0.77 75.14
LLE 18 81.66 0.80 92.14
ISOMAP 16 84.13 0.79 91.46
SSNG 14 85.36 0.81 84.16
GRP+KPCA 14 88.30 0.81 50.53
GRP+LLE 16 79.35 0.74 62.18
GRP+ISOMAP 16 81.43 0.77 60.25
GRP+SSNG 14 83.48 0.79 67.48
SRP+KPCA 18 71.13 0.73 40.82
SRP+LLE 20 72.57 0.71 42.15
SRP+ISOMAP 20 73.59 0.75 42.67
SRP+SSNG 20 79.42 0.75 45.39

Table 3.6: Evaluation parameters for various DR techniques in SA dataset

Technique No of PCs OA AUC ET
KPCA 16 80.549 0.82 85.95
LLE 16 83.54 0.79 88.46
ISOMAP 16 85.52 0.79 88.37
SSNG 16 88.58 0.81 87.99
GRP+KPCA 14 83.16 0.83 56.23
GRP+LLE 18 82.34 0.77 61.43
GRP+ISOMAP 18 83.39 0.78 62.58
GRP+SSNG 16 86.48 0.80 67.31
SRP+KPCA 20 76.22 0.81 48.19
SRP+LLE 22 80.32 0.77 51.34
SRP+ISOMAP 22 81.38 0.76 53.48
SRP+SSNG 20 82.64 0.78 54.19

produced a similar AUC value(0.81) similar to GRP+KPCA, the execution time was

much higher(84.16). Hence the best DR technique in this comparison is GRP+KPCA.

Analyzing evaluation parameters for the SA dataset listed in table 3.6, GRP+SSNG

yields a better overall accuracy(86.48); however, they fail to meet a good AUC and

ET value. SRP+KPCA executes in a minimal time(48.19), they still lack classification

performance. The better DR technique is GRP+KPCA, as they achieve higher classifi-

cation performance within minimal time.

Table 3.7 depicts the comparison of various hybrid DR techniques for the IP dataset

in terms of overall accuracy. Its graphical representation is shown in 3.1. In terms
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3. Band Extraction for Hyperspectral Images

Table 3.7: Comparison of various DR techniques in terms of OA for IP dataset

No of bands GRP+KPCA GRP+LLE GRP+Isomap GRP+SSNG SRP+KPCA SRP+LLE SRP+Isomap SRP+SSNG
2 55.95 55.62 52.12 67.52 55.67 55.66 53.89 70.99
4 60.86 59.91 57.21 70.72 59.74 59.87 56.4 72.59
6 64.44 60.72 60.77 74.34 64.97 62.45 60.54 73.89
8 65.03 62.15 61.12 77.24 64.7 63.79 62.38 77.9
10 67.31 64.6 63.8 80.29 64.68 64.45 64.87 77.12
12 70.07 65.06 66.61 83.58 63.46 65.04 66.91 79.48
14 75.14 68.94 69.14 85.35 64.72 69.13 70.69 79.31
16 78.14 69.33 69.22 85.25 64.14 69.76 70.23 78.83
18 78.16 71.13 70.13 85.92 63.53 71.13 72.9 79.11
20 77.2 74.8 74.37 85.67 64.64 71.8 72.38 79.74
22 77.79 74.09 74.23 85.35 65.06 72.06 72.13 80.32
24 77.94 73.1 73.45 84.47 65.95 72.24 73.25 80.38
26 77.95 73.15 74.69 83.45 63.13 71.47 73.9 80.65
28 78 74.18 74.57 85.46 64.33 72.43 73.28 79.93
30 76.09 74.15 74.12 85.51 64.65 72.97 72.38 79.12

Figure 3.1: OA against number of bands for IP dataset using various DR techniques

of overall accuracy, the GRP+SSNG techniques show higher performance over other

techniques. While analyzing the OA values of all techniques, it is found that all of them

show a steady improvement up to 14 number of principal components, and then OA val-

ues tend to converge. The comparison of OA against the number of bands for the PU
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3.4. Results and Discussions

Table 3.8: Comparison of various DR techniques in terms of OA for PU dataset

No of bands GRP+KPCA GRP+LLE GRP+Isomap GRP+SSNG SRP+KPCA SRP+LLE SRP+Isomap SRP+SSNG
2 73.96 74.23 73.01 81.11 64.61 65 68.25 65.13
4 74.49 76.91 74.81 81.72 65.37 67.35 65.13 68.34
6 75.54 78.24 76.75 82.21 66 69.76 69.11 67.45
8 78.58 78.15 77.34 82.98 66.23 70.15 69.92 70.9
10 82.21 78.47 79.74 82.46 67.78 70.24 70.87 71.12
12 85.53 79.11 80.34 83.23 68.35 71.12 71.21 71.95
14 88.3 79.32 80.32 83.48 68.63 71.35 71.94 73.31
16 87.81 79.35 81.43 83.99 69.22 72.56 71.23 76.83
18 87.45 79.01 80.92 83.35 71.13 72 72.49 78.11
20 88.23 79.17 81.22 83.67 71.07 72.57 73.59 79.42
22 88.74 78.33 81.88 82.45 70.45 72.11 73.13 79.56
24 87.01 77.1 81.14 82.64 71.5 71.25 73.25 79.22
26 88.95 78 80.69 82.81 71.45 72.87 72.9 79.55
28 88.1 77.12 80.98 83.46 71.9 71.53 73.28 79.35
30 88.09 78.49 81.87 83.51 70.64 71.97 73.38 78.12

dataset is represented in Table 3.8. Figure 3.2 shows the relationship between the num-

ber of bands and overall accuracy. The performance of GRP+KPCA dominates over

other hybrid DR techniques in terms of OA. Even though GRP+SSNG performs better

than other techniques for a lower number of bands, they lack performance improvement

at higher stages.

Figure 3.2: OA against number of bands for PU dataset using various DR techniques

The analysis of OA against the number of bands for the SA dataset is given in Table

3.9. The relationship between the number of bands and overall accuracy is pictured in
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Table 3.9: Comparison of various DR techniques in terms of OA for SA dataset

No of bands GRP+KPCA GRP+LLE GRP+Isomap GRP+SSNG SRP+KPCA SRP+LLE SRP+Isomap SRP+SSNG
2 75 75.73 72.21 83.52 73.67 73.33 73.25 74.99
4 75.48 79.22 75.22 83.72 75.54 72.22 73.4 74.59
6 76.54 80.24 77.46 84.97 74.73 74.24 74.54 76.88
8 78.63 81.15 78.34 85.98 74.28 74.57 75.38 77.9
10 80.31 81.6 80.35 85.61 74.33 78.55 77.87 78.12
12 81.02 81.34 81.12 85.23 75.46 79.47 79.91 79.95
14 83.16 81.32 81.42 86.35 75.72 79.15 80.69 80.31
16 82.99 81.33 83.22 86.48 75.14 79.33 80.23 80.83
18 82.16 82.34 83.39 86.35 76.53 80.46 81.9 81.11
20 83.23 82.12 83.31 86.67 76.22 80.56 81.38 82.64
22 83.74 82.93 83.12 86.35 76.95 80.32 81.38 82.77
24 83.94 81.1 82.45 85.47 76.95 80.25 81.25 81.38
26 82.95 82.14 83.69 85.45 75.13 79.47 80.9 82.65
28 83 81.32 83.57 86.46 76.33 80.43 81.28 82.93
30 83.09 81.49 83.11 86.51 76.65 80.97 81.38 82.12

Figure 3.3: OA against number of bands for SA dataset using various DR techniques
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Table 3.10: Comparison of various DR techniques in terms of AUC for IP dataset

No of bands GRP+KPCA GRP+LLE GRP+Isomap GRP+SSNG SRP+KPCA SRP+LLE SRP+Isomap SRP+SSNG
2 0.51 0.52 0.51 0.65 0.52 0.53 0.52 0.63
4 0.59 0.57 0.55 0.67 0.54 0.54 0.55 0.63
6 0.62 0.61 0.57 0.68 0.53 0.54 0.59 0.65
8 0.62 0.6 0.59 0.69 0.54 0.57 0.6 0.66
10 0.64 0.61 0.61 0.68 0.57 0.58 0.6 0.65
12 0.68 0.62 0.63 0.7 0.59 0.59 0.63 0.66
14 0.72 0.63 0.66 0.71 0.59 0.62 0.67 0.65
16 0.75 0.66 0.67 0.71 0.6 0.64 0.68 0.66
18 0.75 0.69 0.68 0.72 0.61 0.66 0.68 0.67
20 0.74 0.71 0.71 0.71 0.61 0.66 0.69 0.67
22 0.73 0.69 0.71 0.71 0.62 0.67 0.69 0.68
24 0.72 0.7 0.7 0.71 0.61 0.69 0.7 0.68
26 0.73 0.71 0.69 0.7 0.61 0.68 0.7 0.67
28 0.74 0.69 0.69 0.69 0.59 0.67 0.69 0.68
30 0.73 0.68 0.7 0.7 0.6 0.68 0.69 0.65

Figure 3.4: AUC against number of bands for IP dataset using various DR techniques

figure 3.3. Here also, GRP+SSNG outperformed the other techniques in terms of OA.

Performance of all the techniques tends to converge at a higher number of bands(after

14).

The relationship between AUC and the number of bands in the proposed hybrid

algorithms is analyzed using cross-validation. GRP+SSNG performed better than other

techniques for the lower number of bands for the IP dataset. While in higher bands,

GRP+KPCA outperformed and retained its AUC almost similar after 14 bands. Tabular
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Table 3.11: Comparison of various DR techniques in terms of AUC for PU dataset

No of bands GRP+KPCA GRP+LLE GRP+Isomap GRP+SSNG SRP+KPCA SRP+LLE SRP+Isomap SRP+SSNG
2 0.72 0.71 0.72 0.72 0.67 0.65 0.65 0.63
4 0.73 0.71 0.74 0.73 0.67 0.64 0.65 0.64
6 0.75 0.73 0.75 0.73 0.68 0.65 0.66 0.67
8 0.76 0.72 0.75 0.76 0.69 0.66 0.66 0.67
10 0.78 0.72 0.76 0.76 0.69 0.66 0.69 0.68
12 0.78 0.73 0.75 0.77 0.7 0.68 0.7 0.7
14 0.81 0.73 0.76 0.79 0.7 0.69 0.69 0.69
16 0.8 0.74 0.77 0.78 0.71 0.7 0.72 0.73
18 0.81 0.74 0.75 0.78 0.73 0.7 0.73 0.74
20 0.81 0.74 0.76 0.77 0.73 0.71 0.75 0.75
22 0.81 0.72 0.76 0.78 0.72 0.71 0.75 0.75
24 0.81 0.73 0.76 0.77 0.72 0.7 0.73 0.75
26 0.8 0.73 0.75 0.79 0.73 0.69 0.73 0.74
28 0.8 0.73 0.76 0.78 0.71 0.71 0.74 0.73
30 0.81 0.72 0.75 0.78 0.72 0.71 0.74 0.74

Figure 3.5: AUC against number of bands for PU dataset using various DR techniques

and graphical representation of the number of bands versus AUC for IP dataset is shown

in table 3.10 and figure 3.4.

The comparison of various hybrid DR techniques in terms of AUC for the PU dataset

is shown in table 3.11. AUC for GRP+KPCA and GRP+SSNG shows a similar pattern

of performance for the PU dataset. GRP+KPCA improves its performance after eight

bands and shows a slight increase than other techniques. The graphical representation

of this comparison is picturized in figure 3.5.
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Table 3.12: Comparison of various DR techniques in terms of AUC for SA dataset

No of bands GRP+KPCA GRP+LLE GRP+Isomap GRP+SSNG SRP+KPCA SRP+LLE SRP+Isomap SRP+SSNG
2 0.72 0.71 0.71 0.75 0.72 0.65 0.72 0.74
4 0.74 0.73 0.71 0.76 0.74 0.68 0.72 0.74
6 0.74 0.73 0.72 0.76 0.74 0.68 0.73 0.74
8 0.79 0.74 0.74 0.76 0.75 0.7 0.72 0.75
10 0.78 0.74 0.73 0.77 0.75 0.72 0.74 0.77
12 0.81 0.76 0.76 0.79 0.77 0.71 0.75 0.76
14 0.83 0.75 0.76 0.79 0.77 0.73 0.74 0.76
16 0.82 0.76 0.77 0.8 0.78 0.73 0.74 0.77
18 0.8 0.77 0.78 0.8 0.78 0.76 0.75 0.77
20 0.81 0.77 0.78 0.8 0.81 0.75 0.75 0.78
22 0.82 0.77 0.77 0.79 0.81 0.77 0.76 0.77
24 0.83 0.75 0.77 0.79 0.8 0.77 0.76 0.78
26 0.83 0.76 0.77 0.78 0.8 0.76 0.76 0.78
28 0.82 0.77 0.76 0.8 0.8 0.77 0.74 0.78
30 0.81 0.77 0.78 0.8 0.8 0.77 0.75 0.76

Figure 3.6: AUC against number of bands for SA dataset using various DR techniques
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The effect of AUC for the number of bands in the SA dataset is almost similar

to that of the IP dataset. Here, GRP+SSNG gives a higher value in lower bands and

then GRP+KPCA overshoots. For 10 and 16 band-reduced data, both show the same

performance, and in mid and higher bands, GRP+KPCA works better. Table 3.12 and

figure 3.6 are the representation of AUC against number of bands for SA dataset.

(a) IP groundtruth (b) KPCA (c) GRP+KPCA (d) SRP+KPCA

Figure 3.7: Classification map for Indian pines dataset

(a) PU groundtruth (b) KPCA (c) GRP+KPCA (d) SRP+KPCA

Figure 3.8: Classification map for Pavia University dataset

Figure 3.7, 3.8, and 3.9 picturizes the classification maps obtained for IP, PU, and

SA dataset while KPCA, GRP+KPCA, and SRP+KPCA applied. GRP+KPCA pro-

duced a better result in terms of OA and AUC, and the same technique was able to

complete nonlinear dimensionality reduction within a lesser time.
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3.5. Summary

(a) SA groundtruth (b) KPCA (c) GRP+KPCA (d) SRP+KPCA

Figure 3.9: Classification map for Salinas dataset

3.5 SUMMARY

This chapter mainly focused on the curse of dimensionality issue in hyperspectral im-

ages. A hybrid dimensionality reduction technique is introduced as a solution to reduce

the computational complexity of state-of-the-art nonlinear band extraction techniques.

This DR technique uses the advantage of the random projection concept in band ex-

traction. The application of Gaussian random projection before the nonlinear technique

thereby reduces the computational complexity.

The performance of the proposed technique is evaluated against other renowned

DR techniques. Various nonlinear DR techniques KPCA, LLE, Isomap, and SSNG,

are tried over gaussian and sparse random projection, and its classification performance

and execution time are evaluated. The research work concluded that GRP+KPCA is

the best hybrid DR technique for the given group of datasets regarding classification

performance and execution time. All the datasets give maximum performance in di-

mensionally reduced data having 14 or more dimensions. This data is used as the input

for the HSI classification model introducing in chapter 4.
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CHAPTER 4

HYBRID CNN BASED HSI CLASSIFICATION

4.1 INTRODUCTION

Classification of hyperspectral images is a challenging task. Accurate mapping of in-

dividual pixels in the hyperspectral images is highly desirable for various applications

such as crop area identification, land change detection, drought monitoring, etc. Chap-

ter 2 discussed different available classification techniques used for HSI classification.

Deep learning-based classification techniques’ evolution boosts performance and accu-

racy compared to conventional machine learning techniques. The methods that use spa-

tial and spectral features for classification outperform those using either one of these

features. The curse of dimensionality retard the performance of HSI classification.

Therefore all recent classification techniques use dimensionality reduction before clas-

sification.

The proposed Hybrid CNN classification model is designed to incorporate both spa-

tial and spectral features to maximize classification accuracy. The technique introduces

a dedicated module for multiscale feature extraction.

The contributions of the chapter are :

• Multiscale spatial and spectral feature extraction using 3D-CNN with different

window size.

• The usage of 2D-CNN on top of 3D-CNN to reduce the computational complexity

and learn more spatial features.

59



4. Hybrid CNN Based HSI Classification

• The proposed Hybrid CNN model extract more spatiospectral features and in-

crease the classification accuracy when compared with existing deep learning

models.

The chapter is organized as follows: Section 4.1 is for introduction, Section 4.2 briefs

the convolutional neural network and its major layers. Section 4.3 describes the pro-

posed hybrid CNN model and its block diagram, and Section 4.4 details the experi-

mental setup. Section 4.5 presents the results and its detailed analysis using various

evaluation parameters, and Section 4.6 summarizes the proposed method and its signif-

icance.

4.2 CONVOLUTIONAL NEURAL NETWORKS

Deep learning techniques for image classification is prevalent recently. The basics of

CNN is highly related to the structure of the human visual system. CNN is a multi-

layer neural network consist of a convolution layer, pooling layer, and fully connected

layer. CNN uses local connections to extract spatial features from 2-D images. CNN

also provides a facility of weight-share mechanism to adjust the parameters that define

the network’s performance. Typically, convolution layer is the input layer of a CNN

model, and this layer performs the convolution of image patches with a set of kernels.

Convolution is a dot product operation between two matrices, namely receptive field

and kernel (learnable parameters). Generally, the kernel is spatially smaller than that of

input data, and the kernel is sliding over the receptive field and produces a feature map

of the input data. The pooling layer comes next, and this layer is intended to perform

the minimization of the extracted feature map. The pooling layer helps to gather more

comprehensive and abstract features from the output of the convolution layer. It reduces

the spatial dimension of the feature map and replaces a set of outputs into a single value

based on the statistics of its nearby feature values. The most commonly used pooling

technique is max pooling, and it replaces a set of features by its maximum. The next

layer in a CNN architecture is the fully connected layers. The fully connected layer is

a multilayer perceptron in which all neurons are connected to every succeeding layer

neuron. This layer is used to map features into the output. The detailed descriptions of
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4.2. Convolutional Neural Networks

these layers are given below.

Convolutional Layers: Convolution layers are the receptive fields in the general CNN

architecture. Convolution layers extract the feature maps by convolving the input image

blocks with several learnable filters. A mathematical representation of the operations

in convolutions layers will deliver further clarity. The individual neuron’s output for

inputs x is calculated as

y = f(w ∗ x+ b) (4.1)

Here w is the filter weight, and b is bias. f(.) stands for the nonlinear activation applied

on a weighted sum of input.

Consider an image input X having dimensions m×n× d. Here m×n refers to the

spatial resolution, and d denotes the number of bands in the input. Consider xi as theith

feature map of the inputX . The convolution layer output yj is given as

yj =
d∑
i=1

f(xi ∗ wj + bj), j = 1, 2, . . . k (4.2)

The weight wj and bias bj represent the j th kernel among the total k kernels, ∗denotes

the convolution operator, and f() denotes the activation function.

2D-CNN model convolves the input data using a two-dimensional kernel before

activation. This helps to capture spatial features from the input image. Reframing the

equation (4.1) for 2D-convolution output of each neuron as

ymn = f(
∑
r

h−1∑
i=0

w−1∑
j=0

kijx(i+m)(j+n) + bmn) (4.3)

Here ymn is the feature extracted at position (m,n), k is the 2D-convolution kernel of

size h×w. In the case of a 2D image, this convolution process is performed over all the

feature maps r in the receptive field and took the sum of all values for nonlinear activa-

tion. This process repeated for all layers in the case of hyperdimensional data. When

the data is three dimensional (e.g., video, color images, hyperspectral or multispectral

images), these have both spatial and spectral or temporal dimensions. 2D convolution

fails for these input data because it captures only spatial features. 3D-CNN is the modi-

fied form of 2D-CNN models, which perform three-dimensional convolution instead of

2D convolution in 2D-CNN. 3D convolution helps to extract both spatial and spectral

features from three-dimensional spectral images. The feature extracted from 3D-CNN
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4. Hybrid CNN Based HSI Classification

model is:

ymnp = f(
∑
r

h−1∑
i=0

w−1∑
j=0

b−1∑
l=0

kijlx(i+m)(j+n)(l+p) + bmnp) (4.4)

Here the kernel k is three dimensional and features calculated by performing 3D con-

volution over 3D input data. The most commonly used activation function f used in

convolutional neural network is ReLU (Rectified Linear Unit) (Krizhevsky et al. 2012).

ReLU is faster than other activation functions while using gradient descent techniques

for training. The equation for ReLU is

ReLU(y) = max(0, y) (4.5)

Pooling Layers: Pooling layers are usually followed by convolution layers because

the output of convolution layers is mostly redundant. The pooling layer performs some

specific operations to reduce the feature redundancy. The introduction of a pooling layer

helps to reduce the spatial size of the obtained feature map. The reduction in the spatial

size of the feature map limits the number of parameters and reduces the complexity of

the CNN. The pooling layer outputs a more abstract feature map. The average pooling

operations z for a n× n windows size neighbour (S) is given below.

z =
1

F

∑
(i,j)∈S

xij (4.6)

where the number of elements in Sdenoted by F , and the activation values for (i, j)is

given by xij .

Fully Connected Layers: The fully connected layers receive the flattened output of

the pooling layer. In fully connected layers, there exist a connection between all layer

neurons to every succeeding layer neuron. The presence of such profound connections

helps to extract more in-depth features. This layer maps the generated feature maps to

outputs. The fully connected layer is given as

Y
′
=

C∑
i=1

f(WX
′
+ b) (4.7)

X, Y denotes the input and output, whereas W, b denotes the weight and bias of convo-

lutional layers. Softmax is another activation function generally used in the last layer of

a deep learning model for classification. Softmax produces the probability distribution

of all the samples, and its sum is equal to one.
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4.3. Proposed Classification Model

Different optimization techniques used in CNN for updating the weights using train-

ing data. The most commonly used optimization is gradient descent technique. Adam

(adaptive momentum estimation) is another optimizer generally used for nonconvex

problems (Kingma and Ba 2014). Adam maintains a separate learning rate for each

weight value in the network based on the first and second moment of gradient. The

parameters used in adam optimizer are learning rate (lr), beta1, and beta2. beta1 and

beta2 are the exponential decay of the first and second moments, respectively.

4.3 PROPOSED CLASSIFICATION MODEL

The proposed classification model uses a hybrid DR technique (discussed in chapter 3),

which is the combination of linear Gaussian Random Projection(GRP) and a nonlinear

form of PCA(Kernel PCA). The computational complexity of the nonlinear technique

diminished by applying GRP on input image X and thereby reducing the number of

bands from D to bD/2c. Then perform KPCA on this intermediate result and X’s

size change to M × N × B. Here the spatial dimension of input image retained after

DR while the spectral dimension reduced from D to B, the desired number of bands.

Ground truth of the input image Y is converted using one-hot encoding and represented

as Y = (y1, y2, . . . , yC), where C denotes the number of classes present in the input

image.

Input image X is divided into a total of M ∗ N overlapping 3D patches of size

w×w×B by considering each pixel xi as the central pixel of the patch where w denote

the window size. 3D-CNN convolve each image patch using the 3D convolution kernel

and extract the features having both spatial and spectral characteristics. A nonlinear

activation function is applied to this convolved features. In the proposed model, spatial

and spectral features are captured from each image patch using various window size,

and these features fed into 2D-CNN for more spatial feature extraction. This hybrid

model reduces the computational complexity of 3D-CNN as well as the number of

parameters required for tuning the model.

The flow diagram of the proposed hybrid model is shown in Fig 4.1. In block-I, the

proposed method consider three window size(w1 = 15, w2 = 13, w3 = 11) at a time
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4.3. Proposed Classification Model

and create image patches. Thus we get M ∗ N image patches of size wi × wi × B for

each window size wi. The convolution kernel for w1 is 32 × 3 × 3 × 7 × 1, 64 × 3 ×

3× 5× 32, 128× 3× 3× 3× 64 for each of the convolution layer consecutively. Here

128×3×3×3×64 means applying 128 3D- kernel of size 3×3×3 on 64 image feature

maps extracted from previous layer. Similarly 32× 3× 3× 7× 1, 64× 3× 3× 5× 32,

128× 1× 1× 3× 64 and 32× 3× 3× 7× 1, 64× 1× 1× 5× 32, 128× 1× 1× 3× 64

are the kernel size for w2 and w3 in respective convolution layers as shown in Fig 4.1.

Valid padding is used in all the convolutional layers, thus after each convolution the

dimension of feature map reduced. If the image patch of size w × w × B is convolved

using a three dimensional kernel of size i× j × j, then the size of feature map is:

(w − i+ 1, w − j + 1, w − k + 1) (4.8)

The feature map dimension of all window size coincide into a unique size of 128×W ×

W × BB where W = 9 and BB = B − 12 are the window size and number of bands

of the feature map after three consecutive 3D-convolution.

The block-II of the proposed classification model consist of 2D- CNN and fully

connected neural network. Outputs from previous blocks are reshaped into 2D maps of

size W ×W × DD, where DD = 128 ∗ BB. The input image is now divided into

image patches of sizeW×W×B and concatenate the three 2D-feature maps in spectral

dimension with this 2D image patch. Thus the feature map size for a 2D-convolution

layer is W ×W × (B + DD). Two 2D-convolution layers are used in the proposed

model with kernel size 64×5×5× (B+DD) and 128×3×3×64 . Now the output of

2D-block contains a sufficient number of features extracted by considering both spatial

and spectral properties of the input image without much loss in spectral features in less

execution time. The feature learning phase of the proposed model executed in less time

without much loss in spectral features.

The proposed model avoid pooling layer in CNN to maintain maximum spectral

and spatial information. The extracted features are flattened and fed into dense fully

connected layers for classification. Two fully connected layers are used in this model

with 256 and 128 neurons in each layer. A dropout of 0.2% is applied in each fully
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4. Hybrid CNN Based HSI Classification

Table 4.1: Summary of the proposed model on Indian Pines dataset

Layer (type) Output shape # Parameters Connected to
input 1 (InputLayer) (15, 15, 15, 1 ) 0
conv3d 1 (Conv3D) (13, 13, 9, 32 ) 2048 input 1
conv3d 2 (Conv3D) (11, 11, 5, 64 ) 92224 conv3d 1
conv3d 3 (Conv3D) (9, 9, 3, 128) 221312 conv3d 2
op1 (Reshape) (9, 9, 384) 0 conv3d 3
input 2 (InputLayer) (13, 13, 15, 1) 0
conv3d 4 (Conv3D) (11, 11, 9, 32 ) 2048 input 2
conv3d 5 (Conv3D) (9, 9, 5, 64) 92224 conv3d 4
conv3d 6 (Conv3D) (9, 9, 3, 128) 24704 conv3d 5
op2 (Reshape) (9, 9, 384) 0 conv3d 6
input 3 (InputLayer) (11, 11, 15, 1) 0
conv3d 7 (Conv3D) (9, 9, 9, 32) 2048 input 3
conv3d 8 (Conv3D) (9, 9, 5, 64) 10304 conv3d 7
conv3d 9 (Conv3D) (9, 9, 3, 128) 24704 conv3d 8
op3(Reshape) (9, 9, 384) 0 conv3d 9
input 4 (InputLayer) (9, 9, 15) 0

concatenate 1 (Con-
catenate)

(9, 9, 1167) 0
op1, op2,
op3, input 4

conv2d 1 (Conv2D) (5, 5, 64) 1867264 concatenate 1
conv2d 2 (Conv2D) (3, 3, 128) 73856 conv2d 1
flatten 1 (Flatten) ( 1152) 0 conv2d 2
dense 1 (Dense) (256) 295168 flatten 1
dropout 1 (Dropout) (256) 0 dense 2
dense 2 (Dense) (128) 32896 flatten 1
dropout 2 (Dropout) (128) 0 dense 2
dense 3(Dense) (16) 2064 dropout 2

Total parameters : 2,742,864

connected layer to avoid overfitting. The output dimension and number of parameters

used in each layer for the proposed model is shown in Table 4.1. ReLU activation

function is used in all convolution layers and softmax is used for classification. Adam

optimizer with loss function categorical-crossentropy having learning rate 0.0001 and

decay 1e − 06 used for optimatization. The training process repeats for 100 epochs of

batch size 100 without any batch normalization and augmentation.
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4.4 EXPERIMENTAL SETUP

Four hyperspectral datasets are used to evaluate the performance of proposed model

and state of the art techniques. They are Indian pines(IP), Pavia University(PU), Sali-

nas(SA) and Houston dataset2013 (IEEE GRSS Data Fusion Contest (Pacifici et al.

2013)).

The accuracy of CNN model depend on the sampling scheme (Lange et al. 2018)

and the selection of training and testing samples may interlace when we choose the sam-

ples randomly. Hence, we selected the Houston dataset, in which the training and testing

samples belongs to different area independent of spatial view. The Houston University

dataset is captured by Compact Airborne Spectrographic Imager (CASI) having spatial

resolution 2.5 meters in 2012 (Pacifici et al. 2013). The dataset consist of 144 bands

of size 349 × 1905 and 15 class labels. The classes are Healthy grass, Stressed grass,

Synthetic grass, Trees, Soil, Water, Residential,Commercial,Road, Highway, Railway,

Parking Lot 1, Parking Lot 2, Tennis Court and Running Track.

4.5 RESULTS AND DISCUSSIONS

The availability of ground truth for hyperspectral images is very less. Therefore, the

usage of a supervised deep learning model is not so adequate for hyperspectral image

classification. However, our model is a supervised technique, and it uses the minimum

amount of data for training the model. The IP, PU, and SA dataset were randomly di-

vided into 20% training set, 10% validation set, and remaining 70% for testing, whereas

the Houston dataset has specific training and validation samples given by IEEE GRSS

Data Fusion Contest. The proposed method is compared against six state -of- the- art

techniques starts from conventional SVM (Melgani and Bruzzone 2004) classifier to

new deep learning techniques such as 2-D CNN (Chen et al. 2016), 3D-CNN (Chen

et al. 2016), SSUN (Xu et al. 2018), SSRN (Zhong et al. 2018) and HybridSN (Roy

et al. 2020).
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4. Hybrid CNN Based HSI Classification

4.5.1 Evaluation Parameters

To evaluate the classification performance of the proposed model against other state-of-

the-art methods, we have considered the parameters Overall Accuracy (OA), Average

Accuracy (AA), and Kappa statistics (K).

OA is the fraction of samples that are correctly classified and total test samples. The

confusion matrix obtained from the classification is a square matrix of size C ×C, C is

the number of class labels present in the dataset. The equation for calculating OA from

the confusion matrix is

OA =
C∑
i=1

tii
t

(4.9)

tii denotes the number of correctly classified samples for class i, and t denotes total test

samples. tii is obtained from the diagonal elements of the confusion matrix.

AA denotes the mean of class-wise accuracy, where class-wise accuracy is obtained

from the confusion matrix as

CAi =
tii∑C
j=1 tij

(4.10)

CAi is the class-wise accuracy for class i and tij denotes the number of samples of class

i classified into class j, i.e., CA is the fraction of correctly classified samples for class i

and the total number of test samples in the same class. Average accuracy is defined as

AA =

∑C
i=1CAi
C

(4.11)

The row and column sum of the confusion matrix represents the chance of agreement of

classified result and the chance of agreement of actual result. The kappa statistic? is the

difference between these two values. K value lies in between -1 and 1, and classification

accuracy improves as K tends to 1. Let ti+ is the sum of row elements (
∑C

j=1 tij) and

t+i is the sum of column elements (
∑C

i=1 tij) in confusion matrix for class i. Kappa

statistic value is calculated as

K =
t
∑C

i=1 tii −
∑C

i=1 ti+t+i

n2 −
∑C

i=1 ti+t+i
(4.12)

4.5.2 Result Analysis

The support vector machine (Melgani and Bruzzone 2004) is the most popular pattern

recognition method used for multiclass classification. SVM provides high classifica-
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tion accuracy, and its sensitivity is less concerning the number of training samples.

Therefore, this work chooses SVM with radial basis function as one of the existing

classification models for result comparison. The next state-of-the-art technique chooses

for performance comparison is a 2D-convolutional neural network. 2D-CNN (Chen

et al. 2016) model uses PCA as a preprocessing technique and chooses the first prin-

cipal component. Input to the 2D-CNN model is K × K neighborhood of each pixel

and extract the relevant features after each convolution and pooling. These learned fea-

tures are fed into a linear regression classifier and find the class labels for each pixel.

2D-CNN models extract only local spatial features and to compare the proposed model

with the spatio-spectral feature extracted technique, 3D-CNN (Chen et al. 2016) chose

as another state-of-the-art model. 3D-CNN model chooses K ×K × B neighborhood

for each pixel and performs three-dimensional convolution and pooling. Both 2d-CNN

and 3D-CNN models use ReLU as activation function and mini-batch update technique

for updating weights. The use of the dropout technique mitigates overfitting in both

models.

Spectral-spatial unified network (SSUN) is a deep learning model used as another

progressive model for comparison. SSUN integrates a spectral feature extraction, spa-

tial feature extraction model, and a classifier into a unified network. Spectral features

are extracted using an LSTM, and a multiscale CNN extracts spatial features. LSTM

uses the number of time steps as 3 for all the datasets, and mini-batch optimization of

batch 64 is used. The classification layer is a fully connected layer, which used 128

number of neurons. SSRN is similar to the 3D-CNN model, and it uses batch nor-

malization and a 50% dropout for regularization of the training process. Training is

continued up to 200 epochs with a batch size of 16, and residual blocks are used to

avoid the decrease in classification accuracy with an increase of convolutional layers.

HybridSN model is another spatiospectral feature-based classification technique used

for result analysis with the proposed technique. HybridSN uses PCA as a dimension-

ality reduction technique and a combination of 3D-CNN and 2D-CNN used for feature

extraction. The model used adam optimizer for training with a batch size of 256, and

the training continues for 100 epochs.
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Execution time is another parameter choose to compare the proposed method with

existing technologies. The reduction of computational complexity is a factor in the

design of deep learning models. Hybrid DR techniques reduce the number of compu-

tations and thus reduce the training time in feature extraction and classification. Tabu-

lar representation of evaluation parameters OA, AA, and K for different classification

methods on IP, PU and SA datasets are listed in Table 4.2. Table 4.3 shows the train-

ing time and testing time for the state-of-the-art technique and proposed model on IP,

PU and SA datsets. Table 4.4 list out the evaluation parameters and execution time for

Houston dataset. Here training time is measured in minutes and testing time in seconds.

Execution in dedicated GPU reduce the execution time and process the data faster than

CPU.

Indian pines dataset shows the very lowest accuracy in SVM based classification.

The average accuracy of SVM classification is less than 80%. i.e., the number of mis-

classifications is very high for each class. For the 2D-CNN model, 27 × 27 neighbor-

hoods of each pixel in the first principal component is taken as input. Three convolution

layers of kernel size 4× 4, 5× 5, and 4× 4 with 32, 64, and 128 filters are used in this

model. The first two layers perform pooling (2 × 2), and the second and third layers

perform a 50% dropout for regularization. The average accuracy of the 2D-CNN model

is better than that of the conventional SVM model, and it increased by almost 7%. Since

the 2D-CNN model using only one principal component, the training time is lesser than

that of SVM. 3D-CNN model also has three convolution layer and two pooling layers.

The convolution kernel size of each layer is 4 × 4 × 32, 5 × 5 × 32 and 4 × 4 × 32

with 128, 192 and 256 filters. 2 × 2 is performed after the first and second layers of

convolution with a 50% drop out after the second and third layers. The training time of

the 3D-CNN model is very high compared with all the techniques because this model

is not performing any DR technique and used 27× 27× 200 image patches for feature

extraction. The classification accuracy of SSUN and SSRN are better than those of all

the previous technique. These methods extract both spatial and spectral features, and

the use of residual block in SSRN increases the OA value 1% more than that of SSUN.

The training and testing time of SSRN is more than double of SSUN. The proposed

70



4.5. Results and Discussions

Ta
bl

e
4.

2:
C

om
pa

ri
so

n
of

cl
as

si
fic

at
io

n
ev

al
ua

tio
n

pa
ra

m
et

er
s

fo
rI

P,
PU

an
d

SA
da

ta
se

ts
us

in
g

di
ff

er
en

tm
et

ho
ds

M
et

ho
ds

IP
D

at
as

et
PU

D
at

as
et

SA
D

at
as

et
O

A
(%

)
A

A
(%

)
K

(%
)

O
A

(%
)

A
A

(%
)

K
(%

)
O

A
(%

)
A

A
(%

)
K

(%
)

SV
M

85
.3

0±
2.

8
79

.0
3±

2.
7

83
.1

0±
3.

2
94

.3
4±

0.
2

92
.9

8±
0.

4
92

.5
0±

0.
7

92
.9

5±
0.

3
94

.6
0±

2.
3

92
.1

1±
0.

2
2D

-C
N

N
89

.4
8±

0.
2

86
.1

4±
0.

8
87

.9
6±

0.
5

97
.8

6±
0.

2
96

.5
5±

0.
0

97
.1

6±
0.

5
97

.3
8±

0.
0

98
.8

4±
0.

1
97

.0
8±

0.
1

3D
-C

N
N

91
.1

0±
0.

4
91

.5
8±

0.
2

89
.9

8±
0.

5
96

.5
3±

0.
1

97
.5

7±
1.

3
95

.5
1±

0.
2

93
.9

6±
0.

2
97

.0
1±

0.
6

93
.3

2±
0.

5
SS

U
N

98
.4

0±
0.

3
98

.2
3±

0.
3

98
.1

4±
0.

4
99

.4
6±

0.
3

99
.2

8±
0.

3
99

.2
6±

0.
4

99
.8

3±
0.

1
99

.2
1±

0.
2

99
.7

5±
0.

3
SS

R
N

99
.1

9±
0.

3
98

.9
3±

0.
6

99
.0

7±
0.

3
99

.9
0±

0.
0

99
.9

1±
0.

0
99

.8
7±

0.
0

99
.9

8±
0.

1
99

.9
7±

0.
0

99
.9

7±
0.

1
H

yb
ri

dS
N

99
.2

1±
0.

1
98

.5
4±

0.
2

99
.1

1±
0.

1
99

.9
3±

0.
0

99
.8

3±
0.

0
99

.9
1±

0.
0

99
.9

9±
0.

0
99

.9
9±

0.
0

99
.9

9±
0.

0
Pr

op
os

ed
M

et
ho

d
99

.8
0±

0.
0

99
.7

1±
0.

1
99

.7
5±

0.
1

99
.9

9±
0.

0
99

.9
8±

0.
0

99
.9

9±
0.

0
10

0±
0.

0
10

0±
0.

0
10

0±
0.

0

Ta
bl

e
4.

3:
Tr

ai
ni

ng
tim

e(
m

in
)a

nd
te

st
in

g
tim

e(
se

c)
fo

rI
P,

PU
,S

A
da

ta
se

ts
fo

rd
iff

er
en

tH
SI

cl
as

si
fic

at
io

n
te

ch
ni

qu
es

M
et

ho
ds

IP
D

at
as

et
PU

D
at

as
et

SA
D

at
as

et
Tr

ai
ni

ng
tim

e(
m

in
)

Te
st

in
g

tim
e(

s)
Tr

ai
ni

ng
tim

e(
m

in
)

Te
st

in
g

tim
e(

s)
Tr

ai
ni

ng
tim

e(
m

in
)

Te
st

in
g

tim
e(

s)
SV

M
3.

5
1.

5
10

.2
5.

1
12

.7
7.

2
2D

-C
N

N
1.

27
1

2.
5

1.
3

2.
7

1.
7

3D
-C

N
N

74
.2

4
11

11
2.

32
23

.1
2

12
2.

15
27

SS
U

N
22

.1
6

33
.1

2
4

29
.1

2
4

SS
R

N
56

12
86

18
89

18
.2

4
H

yb
ri

dS
N

69
16

52
20

68
17

Pr
op

os
ed

M
et

ho
d

32
1

43
.1

11
45

.3
5

12

71



4. Hybrid CNN Based HSI Classification

Table 4.4: Classifcation evaluation parameters, training and testing time for Houston
dataset

Methods OA AA K Training time Testing time
SVM 65.09 66.34 62.31 24.5 2.1
2D- CNN 88.60 81.25 87.28 5.8 1.3
3D-CNN 89.35 85.62 88.13 274.26 2.6
SSUN 91.04 85.25 90.02 130.24 2.1
SSRN 95.24 92.23 94.70 191.33 2.78
HybridSN 98.13 95.54 96.18 73.57 1.89
Proposed Method 99.12 98.29 99.11 51.48 1.2

method gives maximum OA, AA value when compared with all the techniques. The

training time is less than that of other spatiospectral feature-based deep learning models.

Fig 4.2 shows the ground truth and classification map of the Indian pines dataset. The

map of the proposed method is almost similar to that of ground truth, i.e., the amount

of misclassification is very less.

Pavia University dataset is spatially larger than that of the IP dataset; the number of

training and testing samples high. PU dataset also uses a 27× 27 neighborhood similar

to IP in the 2D-CNN model. The number of convolution layers, kernel size, and the

number of filters are the same for this dataset. The OA, AA values are more than 95%,

and execution time was less than that of the SVM model for the same dataset. The

3D-CNN used for the PU dataset has a small variation from the 3D- CNN model used

for the IP dataset. In this model, the number of filters used in each convolution layer

is 32, 64, and 128. All other state-of-the-art techniques used similar models for every

dataset with the same batch size and epochs. The difference in OA, AA, and K for every

spatiospectral feature-based technique is minute. The training and testing time is less

for the proposed method is less than that of other methods. The classification map of

the Pavia University dataset is shown in Fig 4.3.

The classification map of the Salinas dataset is shown in Fig 4.4. Comparing the

classification accuracy of 2D-CNN and 3D-CNN for the SA dataset in the table, it

is found that OA, AA, and K value for 2D-CNN is better than that of 3D-CNN. The

proposed model gave 100% accuracy for the Salinas dataset, and its classification map

is precisely similar to that of ground truth. The training and testing time is less than
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Classification map for Indian Pines dataset (a)Ground truth, (b)SVM, (c)2D-
CNN, (d)3D-CNN, (e)SSUN, (f)SSRN, (g)HybridSN, and (h)Proposed
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Classification map for Pavia University dataset: (a)Ground truth, (b)SVM,
(c)2D-CNN, (d)3D-CNN, (e)SSUN, (f)SSRN, (g)HybridSN, and (h)Proposed
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that of HybridSN. All the three dataset uses 25 × 25 neighborhood for convolution in

HybridSN model. However, the number of extracted bands after the DR technique is

different for each dataset. IP uses 30 principal components, and PU and SA use the

first 15 principal components for feature extraction. The proposed model uses the same

number of principal components for every dataset and size of the receptive field, the

number of filters and filter size are similar.

The classification map of the Houston dataset is shown in Fig 4.5. To check the

proposed model is to work better for spatially independent training and validation sam-

ples, the samples are selected from the IEEE GRSS Data Fusion Contest and carried

out state-of-the-art techniques and proposed technique on these samples. The overall

accuracy of 2D-CNN and 3D-CNN models is almost similar in the Houston dataset.

The classification accuracy of recurrent neural network models SSUN and SSRN are

increased, while the training time taken for these models is high. The classification

evaluation parameters and execution time are better for the proposed model than all

other techniques, and its classification map is similar to its ground truth with very less

amount of misclassification. Analyzing table 4.2, table 4.3, table 4.4 and classification

map for all the datasets, it is concluded that the proposed model has higher classification

result in lesser training and testing time.

4.5.3 Effect of Limited Training Samples

The availability of labeled samples for hyperspectral images is very less, and its man-

ual labeling is expensive. Therefore it is necessary to check the performance of the

proposed model with a limited number of samples. According to the research paper

(Chen et al. 2018), the training samples are selected from each class using the criteria

min(di ∗ 20%, 200) where di is the number of samples in each class. The remaining

samples are taken to test the model. Table 4.5 shows the evaluation parameters for dif-

ferent classification methods on the four datasets using the limited number of training

samples selected using the above criteria. As per analyzing the table 4.5, it is found that

the proposed model performs better than that of all other techniques in a limited amount

of training samples.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Classification map for Salias dataset: (a)Ground truth, (b)SVM, (c)2D-
CNN, (d)3D-CNN, (e)SSUN, (f)SSRN, (g)HybridSN, and (h)Proposed
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Classification map for Houston dataset: (a)Ground truth, (b)SVM, (c)2D-
CNN, (d)3D-CNN, (e)SSUN, (f)SSRN, (g)HybridSN, and (h)Proposed
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4.6. Summary

If the number of training samples decreases, the large number of parameters in deep

learning networks leads to overfitting, and the classification accuracy decreases. Since

the proposed model has a lesser number of training parameters than other CNN models,

all parameters are correctly optimized in a lesser number of samples and avoid overfit-

ting. Thus the proposed method has better performance in lesser samples.

4.5.4 Effect of Input Window Size

The classification accuracy of CNN models depends on the window size. If the patch

size is too large, the patch may contain pixels with different target classes, and it reduces

the classification accuracy. If we choose smaller window size, the interclass diversity

in samples reduces and lead to misclassification. Table 4.6 shows the overall accuracy

of various datasets in the proposed method in different window sizes. From table 4.6 it

is found that for the set of window sizes w1 = 15, w2 = 13, w3 = 11 give maximum

overall accuracy for all the datasets.

4.6 SUMMARY

This chapter presented a solution for HSI classification with improved classification

accuracy in less computational time. The proposed hybrid CNN model analyzed both

spatial and spectral features for HSI classification. All the existing spatio-spectral clas-

sification models lag in multiscale feature analysis. However, the introduction of a

dedicated multiscale feature analysis module that extracts spatio-spectral features in

different window sizes helped improving classification accuracy. The model uses a

combination of 3D-2D CNN compared to existing 3D models. This Hybrid CNN na-

ture helped to minimize the number of learnable parameters effectively and significantly

reduce overall execution time.

The performance of the proposed Hybrid CNN model is evaluated against the ex-

isting machine learning and deep learning techniques. The dataset chosen for ana-

lyzing the model performance is heterogeneous, having vegetations, buildings, roads,

and other human-made object classes. The model exhibited better classification perfor-

mance for all types of classes. A classification technique needs to retain its performance

even for spatially independent data. The Houston dataset (IEEE GRSS Data Fusion
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4. Hybrid CNN Based HSI Classification

Contest Samples) is one such spatially independent dataset. The model was able to

produce higher accuracy in such challenging scenarios also. The model demonstrated

excellent performance even in the presence of limited training samples.
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CHAPTER 5

TCN BASED CROP YIELD PREDICTION

5.1 INTRODUCTION

Global food production depends heavily on accurate crop yield prediction systems. Ac-

curate and timely prediction of crop yield aids in ensuring national and global food

security. Hense crop yield prediction has a high socio-economic impact. Field surveys

were the only mode of data collection for crop yield prediction in the early days. Re-

cent advancements in the area of remote sensing greatly aid ahead of time crop yield

prediction by covering a large geographical area with significantly less workforce.

The literature study conducted in crop yield prediction revealed that the predicted

yield heavily depends on climatic and vegetation parameters. The continuous monitor-

ing of these parameters during the entire crop cycle is necessary for accurate yield pre-

diction, as discussed in Chapter 2. The deep learning-based prediction models, such as

LSTM, RNN, etc., have better performance than conventional machine learning tech-

niques. However, all the existing deep learning models fail to carry out multivariate

time-based data analysis; also, the models have to increase their receptive field to ana-

lyze the data for a considerable period.

The proposed prediction technique implements the principles of dilated convolu-

tions in the temporal convolutional network (TCN) to counterbalance the drawbacks of

existing prediction models.

The contributions of the chapter are :
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5. TCN Based Crop Yield Prediction

• Proposed a crop yield prediction model that accounts for multivariate time-based

analysis of vegetation and climatic data.

• A reduction in prediction time complexity is achieved by using dilated convolu-

tion in TCN blocks.

• The impact of variations in vegetation and climatic parameters on yield are stud-

ied.

The chapter is organized as follows: Section 5.1 is for introduction, Section 5.2

briefs the various vegetation parameters used in this research and gives an overview of

a basic TCN module. Section 5.3 describes the proposed TCN based prediction model

and an explanation of various materials and data used for prediction. A diagrammatic

representation of the proposed model is included in this section. Section 5.4 presents

the results and its detailed analysis using various evaluation parameters, and Section 5.5

highlights the success story of our model, and the chapter is concluded in section 5.6.

5.2 PRELIMINARIES

5.2.1 Vegetation Indices

Vegetation indices (VI) measure the growth, health, vegetation cover either qualitatively

or quantitatively with remote sensing images. The red, green, and blue bands of the

visible spectrum, ultraviolet, near, and mid-wave infrared, are the major multispectral

bands used to calculate VI. Since the sensors, platforms, and instruments used to capture

remote sensing images vary, the algorithm or expression to measure VI is not uniform

(Batten 1998). Apart from health and growth, VI is used to measure protein content in

the plant, land-water content, pigmentation, etc. This section familiarizes the VI used

in the proposed prediction model and why they were chosen for vegetation analysis.

Normalized Difference Vegetation Index (NDVI): In the early days, Red (R) and

near-infrared (NIR) reflectances are commonly used to measure vegetation, and most

of the vegetation indices are calculated using these two bands only (Pearson and Miller

1972). Ratio vegetation index (RVI) and vegetation index number(VIN) are some of
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5.2. Preliminaries

the older VI and is calculated as

RV I =
R

NIR
(5.1)

V IN =
NIR

R
(5.2)

In order to increase the discriminative power of former VI and avoid the sensitivity to-

wards atmospheric parameters, a new vegetation index was later introduced and named

as normalized difference vegetation index (NDVI). NDVI is the most familiar vegeta-

tion index, and its value ranges between 0 and 1. The equation to measure NDVI is

given in ??. Here R and NIR are the mean reflectances of red and near-infrared spectral

bands. NDVI is also affected by atmospheric disturbances, clouds, and other climatic

factors (Rouse et al. 1974).

NDV I =
NIR−R
NIR +R

(5.3)

Enhanced Vegetation Index (EVI): EVI is an optimized vegetation index designed

to improve vegetation and sensitivity monitoring by de-coupling atmospheric signals

and other background disturbances. EVI is computed as:

EV I = G ∗ NIR−R
NIR + C1 ∗R− C2 ∗B + L

(5.4)

Here NIR, R, and B are the atmospherically corrected or partially corrected surface re-

flectance of near-infrared, red and blue bands, respectively. L represents the nonlinear

canopy adjustment parameter, C1 and C2 denote the aerosol resistance terms. Accord-

ing to MODIS EVI algorithm the values for each coefficients are L=1, C1 = 6, C2 =

7.5, and G (gain factor) = 2.5.

Two Band Extended Vegetation Index (EVI2): The blue band has a lesser wave-

length, and it cannot travel for a considerable distance. Therefore, the blue band has

less reflected energy and the signal-to-noise ratio, leading to an EVI calculation error.

Another challenge is that some of the sensors are not designed to capture the blue band.

Hence an optimized vegetation index with two bands is mandatory, and a two-band

extended vegetation index (EVI2) is introduced; it is calculated as

EV I2 = 2.5 ∗ NIR−R
NIR + 2.4 ∗R + 1

(5.5)

Leaf Area Index (LAI): Leaf area index is the total leaf area of the crop canopy. It

is calculated as leaf area per unit ground area. Since LAI is a ratio of two areas, it is a
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5. TCN Based Crop Yield Prediction

dimensionless quantity. LAI is the best indicator for crop productivity and is commonly

used to measure photosynthesis rate, evapotranspiration, and so forth (Jensen 2007;

Zheng and Moskal 2009). Based on disciplines and applications, researchers were

using different types of LAIs and a set of various LAI is listed in Table 5.1.

Table 5.1: Different LAI definitions

Name Definition Application
Total Leaf Area Index (To-
LAI)

One side leaf photosyn-
thetic tissue area per unit
ground area

Wide leaf measure-
ment

Projected Leaf Area Index
(PLAI)

Area of horizontal
shadow cast above a
horizontal leaf

Maximum area of
leaf from overhead
orbital view

Silhouette Leaf Area Index
(SLAI)

Area of leaves inclined to
horizontal surfaces

Identify shape of
leaves

Effective Leaf Area Index
(ELAI)

One half of the total area
of light intercepted by
leaves per unit horizontal
ground surface area

Describe radiation
inteception

True Leaf Area Index
(TLAI)

One half the total green
leaf area per unit hor-
izontal ground surface
area

Characterize radia-
tion regimes

Photosynthetically Active Radiation (PAR): Plants use only a portion of sunlight

for photosynthesis. The spectral range of radiation actively used for photosynthesis

is called photosynthetically active radiation (PAR). PAR depends on daily radiation,

sunlight hour, and so on. Yield is positively correlated with PAR and photosynthesis

rate. For multispectral images, a fraction of PAR, named fPAR used to analyze the crop

and yield (Jiang et al. 2004).

Gross Primary Production (GPP): Gross primary production (GPP) is the quantity

of biomass produced in photosynthesis per unit time. GPP is also defined as the conver-

sion rate of carbon to yield in the ecosystem without considering the plant’s respiration.
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5.2.2 Temporal Convolutional Networks (TCN)

Time-based analysis is a challenging area in most engineering and scientific applica-

tions such as stock market, weather forecasting, population analysis, etc. Any two

points in a time series data are measured within an equal interval of time and are ar-

ranged in time order. Therefore the data points are discrete values measured in con-

tinuous time. Time series prediction uses historical data to predict future observations.

The future data may either be more related to its recent time-based data or long-ago

observations.

The recurrent neural network is one of the deep learning models designed for time

series analysis and prediction. However, parallelism is not achievable in RNN, and

repeated usage of the same operations in long sequence data leads to vanishing gradi-

ent problem. LSTM and gated recurrent unit (GRU) are designed to overcome these

difficulties of RNN. The usage of convolutional networks in sequence data created a

significant improvement in its analysis and forecasting. Adapting the idea of convolu-

tional network and convolution of current timestamp data with past timestamp data in

previous layer (van den Oord et al. 2016) , a new family of neural network architecture

for sequence data named temporal convolutional network (TCN) or temporal convolu-

tional neural network (TCNN) is introduced (Bai et al. 2018; Lea et al. 2016). TCN is

designed based on two principles:

1. The model can take an input sequence of any length and produce an output se-

quence of same length (similar to recurrent neural network design)

2. The model is using causal convolution to avoid information leakage

Causal convolution means the value at time t is dependent only on the previous times-

tamp results and not on future timestamps. TCN uses one-dimensional (1D) data to

achieve the first principle mentioned above, and all the hidden layers in the network

are designed with an equal number of neurons. Therefore, causal convolution recalls

the data in previous layers linearly with an increase in depth of the network. This up-

gradation results in the receptive field’s linear growth and needs higher network depth to

cover all input dependencies. TCN employs dilated convolution to avoid this drawback,
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5. TCN Based Crop Yield Prediction

which increases the receptive field exponentially and covers entire input dependencies

in lesser network depth.

Dilated Convolution: Dilated convolution covers a large receptive area by skipping

certain steps of input time series. For an input sequence X ∈ RT and a filter h :

{0, 1, . . . k − 1} → R, dilated convolution is defined as

H(x) =
k−1∑
i=0

hiXs−d.i (5.6)

Here k denotes the size of the filter, and d is the dilating factor. Since the receptive field

grows exponentially in each layer of the network, d = 2ν where ν is the level of the

network.

Figure 5.1: Dilated Causal Convolution with filter size=2

Consider figure 5.1, it shows the dilated convolution of an input sequence with a

filter H of size k = 2. In level zero of the network, i.e.,ν = 0 the dilating factor
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d = 2ν = 20 = 1.

H(x) =
2−1∑
i=0

hiXs−1.i

=
1∑
i=0

hiXs−i

= h0Xs + h1Xs−1

(5.7)

By analyzing equation 5.7, it is found that the output of each neuron in hidden layer 1

(level zero) is the convolution of the filter with the input in the current timestamp and

previous timestamp. Similarly while considering the hidden layer 2 (level ν = 1) and

d = 21 = 2

H(x) =
2−1∑
i=0

hiXs−2.i

= h0Xs + h1Xs−2

(5.8)

i.e., the output of the neuron at hidden layer 2 is the result of the convolution of the

filter with the previous layer neuron at the same timestamp and second to the same

timestamp. This process will repeat for each successive hidden layer with a backshift in

time as s-1, s-2, s-4, s-8, and so on. Therefore dilation is introducing a fixed time step in

every two filter maps. The receptive field in TCN can be increased in two ways; either

increase the filter size k or increase the dilation factor d by introducing more hidden

layers.

Residual Blocks: Residual units are the building blocks of temporal neural networks.

Residual blocks contain a series of residual connections, which perform a series of

transformations on input and add it to the input. A residual block can have several

dilated convolution layers and activation layers based on the application (Guirguis et al.

2021). Batch normalization and dropout are possible in each residual block to optimize

the network. The output o of each residual block can be represented as:

o = Activation(F (X) +X) (5.9)

where F is a set of transformations and X denotes the input. ReLU is the standard

activation function used in most of the TCN designs.
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5.3 MATERIALS AND METHODS

5.3.1 Study Area

The study area chosen for testing the proposed TCN based crop yield prediction model

is Kuttanad, the rice bowl of Kerala state in India. The Kuttanad region is spread across

three districts of Kerala, namely Kottayam, Alappuzha, and Pathanamthitta. Kuttanad

is familiar for its geographical feature as it is the lowest altitude land in India. The

majority of paddy land areas are below sea level, and it is one of the critical places

where paddy cultivation is carried out below sea level among the entire world. The

Kuttanad region is further categorized into Lower Kuttanad, Upper Kuttanad, and North

Kuttanad. This research work chose a 20.5km× 20.5km area @ 9.537103, 76.447742

in the Upper Kuttanad region for analyzing the proposed TCN based prediction model.

Figure 5.2 shows the map of the study area in the Upper Kuttanad region.

Figure 5.2: Study area in Upper Kuttanad region

5.3.2 Crop data

Paddy is the common crop in the study area; therefore, the prediction model predicts

rice yield. Kerala has three seasons of Paddy cultivation, namely Virippu, Mundakan,

and Puncha. Virippu(I crop) is also known as Autumn seasonal, starts its sowing time in

April or May and plans its harvesting from September to October. Mundakan begins in

September or October and ends in December or January. Therefore Mundakan is also

known as Winter seasonal or II crop. Puncha or Summer harvest starts its sowing after

Mundakan, and harvesting ends before May. Puncha is the III crop while considering
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a crop year from May to April. Since Kuttanad is below sea level, Puncha or Summer

seasonal has high significance in this region. The Puncha in the Upper Kuttanad region

starts in October and ends in February. Therefore all crop-related data collection for the

study area is significant between October and February. The repositories from which

the annual crop yield data are mentioned in section 2.6.4

5.3.3 Climatic data

The correlation between climatic parameters and the yield of the crop is critical. There-

fore, the collection of climatic data for the prediction model is significant. The proposed

research work uses the climatic parameters minimum temperature (min T), maximum

temperature (max T), Rainfall, Wind, and Humidity to predict the yield. The source of

climatic data and its measures are discussed in section 2.6.3.

5.3.4 MODIS Data

The land cover mask for the study area and various vegetation parameters are collected

from various MODIS products as mentioned in section 2.6.3. The land cover of study

region consists of 17 classes, out of which 11 types are vegetation classes. This work

merges classes 12 (cropland) and 14 (cropland/ natural vegetation) for crop mask and

uses this area to calculate vegetation parameters. The classification map for the study

region is shown in Figure 5.3. All MODIS data is resampled into 250m resolution, and

the same spatial resolution scale is used for yield prediction. Since MODIS collects data

only for clear pixels without any shadows, the average values for a given crop mask are

better for yield prediction.

5.3.5 TCN Based Yield Estimation Model

The proposed TCN model uses three TCN blocks to identify the long-term dependency

of vegetation indices and climatic parameters for rice yield prediction. Figure 5.4 shows

the diagrammatic representation of the proposed TCN based prediction model. All TCN

blocks in the proposed architecture use Rectified Linear Unit (ReLU) activation func-

tion. Instead of directly feeding feature maps to fully connected layers, the proposed

model uses Global Average Pooling and Global Max Pooling layers. The introduc-

89



5. TCN Based Crop Yield Prediction

Figure 5.3: Classification map of study area

tion of these pooling layers contributes to the accurate identification of dependencies

between feature maps and yield. The feature maps from global average pooling and

global max-pooling are concatenated and passed to the following dense layer having 16

neurons. The overfitting problem is solved by the use of 0.1% dropout. The last layer of

the proposed model performs rice yield prediction using the linear activation function.

Model optimization is carried out using adam optimizer with loss function mean square

error (mse). The proposed TCN model completed training in 500 epochs with minimal

error.

Six vegetation parameters (NDVI, EVI, EVI2, LAI, fPAR, GPP), five climatic pa-

rameters (min T, max T, Wind, Rainfall, Humidity), yield measured in kilogram per

hectare (kg/ha) are passed as the input to TCN block. Each TCN block comprises two

1D- convolution layers and a dilated convolution layer. The dilated convolution layer

is designed to have two hidden layers apart from the input and output layer (i.e., the

dilation parameter is set as [1,2,4]). A dropout of 0.1% is also applied to handle overfit-

ting in the TCN block. The first TCN block of the proposed model uses 128 filters for

convolution, and the number of filters reduced to 64 and 32 for succeeding TCN blocks.

The convolution kernel size is set to 4 for all blocks. Since TCN uses the residual con-

nection, the output of each TCN block is calculated as the sum of input and transformed

input as mentioned in equation 5.9. The flow diagram of the proposed TCN block is
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5.3. Materials and Methods

Figure 5.4: Block diagram of proposed TCN based prediction model

Figure 5.5: Architecture of each TCN block

shown in Figure 5.5.
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5.4 RESULTS AND DISCUSSIONS

The proposed model is implemented in python and executed on Intel(R) Xeon(R) Silver

4114 CPU @ 2.24 GHz paired with 196 GB RAM. The experimental study is conducted

for a short duration variety of paddy whose life span lies between 105 to 120 days.

Therefore, 19 weeks of vegetation and climatic parameters are collected from the study

area for each agricultural crop year between 2012 and 2019.We collected various yield

predicting parameters from October to February and used these data for prediction. In

February, paddy is in the ripening stage of the crop cycle. For any rice variety, the

ripening stage’s length is similar, therefore choosing this stage is more accurate.

5.4.1 Experimental Results

The proposed yield prediction model is a supervised deep neural network utilizing the

features of temporal convolution. Input samples are divided into 70% training set, 20%

validation set, and remaining for testing. Various machine learning and deep learning

based prediction models such as regression (Johnson et al. 2016; Son et al. 2013),

deep neural network (Khaki and Wang 2019), LSTM (Schwalbert et al. 2020), CNN-

LSTM (Sun et al. 2019) and CNN-RNN (Khaki et al. 2020) are compared against the

proposed TCN based model.

Evaluation Parameters: The model is evaluated using the parameters coefficient of

determination(R2), mean absolute error (MAE), and root mean square error (RMSE).

MAE is the average of the difference between the predicted value and observed

value, and is calculated as

MAE =
1

N

N∑
i=1

|Pi −Oi| (5.10)

Pi is the predicted value, Oi is the observed value, and N is the total number of samples

used for prediction.

RMSE provides an estimate of difference between predicted values and observed

values, and is given by

RMSE =

√√√√ 1

N

N∑
i=1

(Pi −Oi)2 (5.11)
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Coefficient of Determination (R2) is another measure to find the relationship be-

tween predicted values and observed values. It is calculated using the equation 5.12

R2 = 1−
∑N

i=1(Pi −Oi)
2∑N

i=1(Pi −O)2
(5.12)

Here O denotes the mean of observed values over N samples.The value of R2 falls in

a range −∞ to 1. A desirable prediction model must have minimal MAE and RMSE

with maximum R2.

5.4.2 Result Analysis

Regression is the most commonly used prediction technique for forecasting crop yield

using remote sensing data. Regression models use combinations of NDVI, EVI, and

LAI for predicting yield. Since yield depends on more than one parameter, a mul-

tiple linear regression (MLR) model is highly desirable. The works inJohnson et al.

(2016) and Son et al. (2013) used multiple linear regression models to predict yield

from MODIS NDVI-EVI, MODIS EVI-LAI, respectively. DNN based model in Khaki

and Wang (2019) used genotype, soil, and climatic parameters to predict maize yield.

This DNN model is optimized using adam optimizer with a learning rate of 0.03% and

employed L2 regularization to avoid overfitting. The above model results indicated that

the effect of genotype in crop yield is minimal compared to environmental factors.

LSTM based prediction model is chosen as the next state-of-the-art model to com-

pare the proposed technique’s performance because it helps in the temporal analysis.

The model predicts the yield by analyzing NDVI, EVI, land surface temperature (LST),

and precipitation. The integration of time series data with conventional static data re-

duced the error in prediction (Schwalbert et al. 2020). However, the accurate selection

of yield prediction features is a crucial challenge and can be solved by introducing CNN.

The CNN-LSTM (Sun et al. 2019) model used CNN for feature selection and LSTM

to perform temporal analysis on relevant features. CNN-RNN (Khaki et al. 2020) is

another hybrid prediction model chosen to examine the potential of the proposed TCN

architecture. Although the CNN performs feature selection in both CNN-LSTM and

CNN-RNN, the latter employs independent convolution networks for weather and soil

data.

93



5. TCN Based Crop Yield Prediction

The usage of dilation convolution in the proposed prediction model helps to increase

the network’s receptive field with fewer learnable parameters. Hence this work com-

pares the execution time of the training and testing phase of the proposed method with

other yield prediction models. Table 5.2 lists the evaluation parameters MAE, RMSE,

and R2 in the training and validation phase for the state-of-the-art and proposed predic-

tion model. The execution time taken for training and testing various prediction models

is shown in table 5.3. The training time is measured in minutes and testing time in

seconds.

Table 5.2: Comparison of evaluation parameters among various prediction models

Method Training
MAE

Training
RMSE

Training
R2(%)

Validation
MAE

Validation
RMSE

Validation
R2(%)

MLR (NDVI-EVI) 6.38 6.51 77.78 9.32 9.49 64.74
MLR (EVI-LAI) 4.21 4.39 90.92 11.98 12.78 40.82
DNN 4.15 4.35 90.36 5.89 6.25 72.07
LSTM 3.91 4.13 90.89 3.85 4.11 91.11
CNN-LSTM 3.5 3.84 93.22 3.44 3.76 93.25
CNN-RNN 3.01 3.08 95.35 4.11 4.32 87.08
Proposed Model 0.97 1.17 97.89 0.91 0.97 98.03

Table 5.3: Training time(min) and Testing time(sec) among various prediction models

Method Training
time (min)

Testing
time (sec)

MLR (NDVI-EVI) 3.6 2.5
MLR (EVI-LAI) 3.4 2
DNN 6.76 4
LSTM 7.6 4.1
CNN-LSTM 9 4.2
CNN-RNN 11 5
Proposed Model 2.3 2

Analysis on Table 5.2 indicates that multiple linear regression based models are un-

derperforming and produce higher error rates with lesser R2 values. The regression

model using EVI-LAI combination performs better than a model with NDVI-EVI com-

bination in terms of MAE, RMSE, and R2 during training. A good fit model must have

the capability to fit both training and validation data very well. In terms of validation

performance, the model using NDVI-EVI outperformed the other. Even though the

94



5.4. Results and Discussions

(a) (b)

(c) (d)

(e)

Figure 5.6: The effect of vegetation idices on rice measured for 19 weeks of crop cycle
(a)Average NDVI vs Weeks, (b)Average EVI vs Weeks, (c)Average EVI2 vs Weeks,
(d)Average LAI vs Weeks, (e)Average fPAR vs Weeks
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prediction performance of DNN improved over conventional regression methods, they

fail in validation performance. i.e., the DNN model produced higher validation MAE,

RMSE, and lesser R2compared to their training stage. The residual characteristics of

LSTM help to improve the prediction capability compared to the DNN model. LSTM

prediction model achieves a validation performance boost up to 20% over its former

techniques. The CNN-RNN model produced lesser prediction errors than the CNN-

LSTM model during the training phase, but it is found that the model is overfitting. The

proposed TCN based prediction model outperforms all the other state-of-the-art tech-

niques in both the training and validation phase. The very minimal MAE and RMSE

values of the proposed model indicate that the model is reliable and capable of accurate

early yield prediction.

While comparing the training time taken for various prediction models listed in Ta-

ble 5.3, it is found that the multiple linear regression model takes less than 4 minutes

for both MLR techniques. An increase in the number of intermediate layers in the DNN

model increases its train and test phase time. Prior feature extraction and feature se-

lection phase using CNN raise the training time of the hybrid models CNN-LSTM and

CNN-RNN compared to other conventional techniques. Independent convolution mod-

els for soil and weather data in CNN-RNN increase the number of trainable parameters

than CNN-LSTM based prediction model, and hence the training and testing time of

CNN-RNN is higher than that of CNN-LSTM. The proposed TCN based prediction

model is computationally less complex than other state-of-the-art techniques.

Figure 5.6 shows the variation in values of various vegetation indices for 19 weeks

of the rice crop cycle. For a short-duration paddy, the life cycle can be divided into

three stages: the vegetative stage, the reproductive stage, and the ripening stage. The

vegetative stage lasts up to nine weeks of the life cycle, and the next four weeks (up

to 13 week), the plant is in the reproductive stage, i.e., paddy started flowering after

nine weeks. In the last 5-6 weeks, the plant is in a mature state and starts grain filling.

The distribution of NDVI, EVI, and EVI2 are almost similar throughout the crop cycle.

Their values are reducing slightly up to weeks 3 to 4 (transplanting and tillering stage)

and increasing in the vegetative stage. The value of these three vegetation indices is
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(a) (b)

(c) (d)

Figure 5.7: The effect of vegetation idices on rice yield (a)Average NDVI vs Yield,
(b)Average EVI vs Yield, (c)Average LAI vs Yield, (d)Average fPAR vs Yield

steady-state in the paddy’s reproductive stage and stated decreasing slowly in harvesting

time. Similarly, the distribution of LAI and fPAR are same as shown in figure 5.6d

and 5.6e. LAI and fPAR have an abrupt increase in paddy’s reproductive stage, and it

continues to increase around half of the reproductive stage.

The effect of vegetation indices in rice yield from 2012 to 2018 is picturized in

Figure 5.7. The yield is represented in Tons per hectare in all subgraphs of Figure 5.7

and Figure 5.8. Although the vegetation parameters NDVI and EVI are directly propor-

tional to yield, the study found that the relationship is not satisfied for the agricultural

year 2015. Analysis of subgraphs 5.7c and 5.7d indicates that LAI and fPAR contribute

to yield similarly. An increase in LAI naturally increases the photosynthetic rate and
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(a) (b)

(c) (d)

(e)

Figure 5.8: The effect of climatic parameters on rice yield: (a)Average min T vs Yield,
(b)Average max T vs Yield, (c)Average Wind vs Yield, (d)Average Rain vs Yield,
(e)Average Humidity vs Yield
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thereby results in a higher yield. The contradiction in the relationship between yield

and vegetation parameters seen in Figure 5.7 is concrete evidence of climatic factors’

effect on yield.

Figure 5.8 illustrates the effect of climatic factors on yield. Each subgraph plots the

average value of climatic parameters for each agricultural year. The clarifications for the

reduction in yield during 2015 is obtained from subgraphs 5.8b and 5.8d. Even though

the vegetation parameters are favorable for high yield during 2015, the heavy rain and

higher daytime temperature resulted in crop damage and less productivity. A consistent

wind rate of 7-9 km/hr is beneficial for paddy growth and yield as per subgraph 5.8c.

In 2018, the rainfall and temperature were higher compared to other agricultural years.

However, the presence of higher LAI and fPAR result in higher productivity even in

adverse climates.

5.5 SUCCESS STORY OF THE WORK

The forecast report of summer paddy for the year 2019-2020 by The Indian Ministry

of Agriculture & Farmers Welfare (http://agricoop.nic.in) shows that the

predicted yield for the Upper Kuttanad region is 4.37 ton per hectare. This prediction

was conducted with the help of climatic data, vegetation data, and field surveys. The

proposed TCN model predicted a relatively similar yield of 4.34 tons per hectare using

remote sensing data and climatic parameters only. The study opens the door to accu-

rate automated crop yield forecasting from high-resolution remote sensing data with

minimal field survey and workforce.

5.6 SUMMARY

This chapter introduced a TCN based crop yield prediction model that outperformed

the existing models. The model was able to perform the desired multivariate time-based

analysis for accurate prediction efficiently. The application of dilated convolutions in

TCN layers significantly reduced the receptive field size of the network and thereby

reduced the prediction time.

The performance of the proposed TCN model is evaluated against the existing ma-
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5. TCN Based Crop Yield Prediction

chine learning and deep learning prediction techniques. The chosen study area culti-

vates paddy as the principal crop, and the prediction model attempted to predict the

summer rice yield. The research work identified the effect of climatic and vegetation

parameters on yield. The predicted result of yield for the study area was significantly

close to the Indian Ministry of Agriculture & Farmers Welfare forecast.
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

Food security is a significant concern of the world population. Precision agriculture

made a massive impact in ensuring the availability of food. Early yield prediction is

one of the solutions used in precision agriculture for food security. The crop yield is

dependent on many factors such as vegetation indices, climatic data, soil conditions,

and so on. Therefore temporal analysis of these parameters and continuous monitoring

of cultivation land is necessary for accurate yield prediction. The field survey was a

solution for this data collection in the early days. However, satellite images for data

analysis help reduce human resources, and it significantly covers large areas accurately.

A thorough literature study is carried on various satellite image-based yield predic-

tion models and found that spectral images such as multispectral, hyperspectral images

are widely used. The contiguous bands in hyperspectral images help in discriminating

objects in the earth’s surface clearly. Nevertheless, the redundancy in bands and the

curse of dimensionality are significant concerns in hyperspectral image analysis. This

research work focused on hyperspectral image-based crop classification as one of the

objectives in an account of these concerns.

To design the best classification model for hyperspectral images, it is essential to

perform a pre-processing step to extract optimal bands. Since most of the band ex-

traction techniques are linear and nonlinear extraction techniques are computationally

complex, it is advantageous to design a new computationally more accessible nonlin-

ear dimensionality reduction technique for HSI. The proposed band extraction uses the
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random projection technique to reduce computational overhead in the nonlinear DR

methods. Gaussian random projection is applied prior to kernel PCA and reduces the

number of bands by half. The GRP and KPCA combination extracted the optimal bands

from input HSI and fed them to the classification model for further processing.

The second work of this thesis focused on developing a deep learning-based classi-

fication model for HSI. The existing deep learning models that use spatial and spectral

features are classified better than a model that uses either of the features. Therefore,

our model also focused on spatio-spectral feature extraction using convolutional neu-

ral networks. The multiscale spatiospectral feature-based hybrid CNN overcomes the

drawbacks of existing deep learning models and produces a promising improvement in

results. The hybridization of 3D-CNN and 2D-CNN in the proposed model helped to

reduce the computational complexity too.

The following contribution of this research work is to design a crop yield prediction

model using vegetation parameters and climatic data. The Upper Kuttanad region in

Kerala state was chosen as the study region and predicted the rice yield for summer

cultivation. The multivariate time-based analysis of yield predicting parameters is done

with the help of a temporal convolution network. The dilated convolution module in

the proposed model helps to find the dependencies of parameters without increasing the

receptive field.

6.1 FUTURE SCOPE

As the techniques proposed in this thesis are performed better than existing models for

HSI classification and yield prediction, this area is still in its infant stage. Therefore,

there is significant scope for future works. Further research directions exist in this area

are:

• The existing band extraction techniques are not so efficient for hyperspectral im-

age analysis. Nonlinear DR techniques are still lagging in nonlinearity preserv-

ing. Hence design a best band extraction technique using optimization techniques

is a future topic for research.
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• The availability of ground truth for hyperspectral images is significantly less.

Hence, designing an unsupervised classification model or using transfer learning

in hyperspectral image classification requires more attention in the future.

• Yield of a crop depends on many environmental and vegetation parameters. This

study uses multispectral images to collect the vegetation parameters. While pa-

rameter collections using hyperspectral images and other high-resolution satellite

images improve the prediction results.

• Most of the yield prediction models are designed for a particular crop in a specific

area. Hence develop a general yield prediction model using various dependency

parameters is still a new path.

In conclusion, this dissertation proposes a new deep learning model for hyperspectral

image classification. The classification model uses the band extraction technique as

preprocessing step to solve the curse of dimensionality in HSI. The combination of

GRP and kernel PCA is used as the band extraction technique, and random projection

helps to reduce the computational overhead of KPCA. A new yield prediction using

vegetation and climatic parameters is proposed for rice yield in the Upper Kuttanad

region. The model uses dilated convolution technique in TCN for multivariate time-

based analysis.
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