
CoAP BASED CONGESTION CONTROL

MECHANISMS FOR INTERNET OF THINGS

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Rathod Vishal Jitendrakumar

(155014 CS15F11)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575 025

January, 2022

Dedicated to
Lord Swaminarayan Bhagwan, the Almighty God

and to my ancestors

National Institute of Technology Karnataka, Surathkal

–––-

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled CoAP based Congestion Con-

trol Mechanisms for Internet of Things which is being submitted to the National

Institute of Technology Karnataka (NITK), Surathkal in partial fulfilment of the

requirements for the award of the Degree of Doctor of Philosophy in Computer Sci-

ence and Engineering is a bonafide report of the research work carried out

by me. The material contained in this Research Thesis has not been submitted to any

University or Institution for the award of any degree.

(155014 CS15F11, Rathod Vishal Jitendrakumar)

(Register Number, Name & Signature of Research Scholar)

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: January 28, 2022

––-

National Institute of Technology Karnataka, Surathkal

–––-

CERTIFICATE

This is to certify that the Research Thesis entitled CoAP based Congestion

Control Mechanisms for Internet of Things submitted by Rathod Vishal Jiten-

drakumar, (Register Number: 155014 CS15F11) as the record of the research work

carried out by him, is accepted as the Research Thesis submission in partial fulfillment of

the requirements for the award of degree of Doctor of Philosophy.

Dr. Mohit P. Tahiliani

Research Supervisor

(Name and Signature with Date and Seal)

Dr. Shashidhar G. Koolagudi

Chairman - DRPC

(Name and Signature with Date and Seal)

––-

28/01/2022

Mohit
28/01/2022

Acknowledgements

First and foremost, I would like to thank Swaminarayan Bhagwan, the Almighty, for

his blessings, strength and a healthy life in bringing this research to a successful conclusion.

I would like to express my deep and sincere gratitude to my supervisor, Dr. Mohit P.

Tahiliani (Assistant Professor, CSE Department) for his priceless advice and unwavering

support. During my Ph.D. at NITK, Surathkal, he inspired me to achieve all of my goals

and ambitions. I will always cherish all the useful discussions and brainstorming sessions

that we did. His wealth of knowledge and experience has aided me at each stage of my

research. He assisted me in overcoming many obstacles along the way, and without his

assistance, I would not have been able to accomplish what I did.

I would like to thank my Research Progress Assessment Committee (RPAC) Members

Dr. Basavaraj Talawar (Assistant Professor, CSE Department) and Dr. Ashvini

Chaturvedi (Associate Dean and Professor, ECE Department) for their guidance, valu-

able comments and support throughout the period of my research.

I am extremely grateful to Dr. Shashidhar G. Koolagudi (HoD, Associate Prof.

and DRPC Chairman, CSE Department) and Dr. Alwyn Roshan Pais (ex-HoD,

Associate Prof., CSE Department) for their perseverance, inspiration, and encouragement

throughout my Ph.D. journey.

My heartfelt gratitude goes to Mrs. Manasa Tahiliani for providing a family-like

environment. I will always remember the precious memories of Ved and Ridvi playing

together. I would also like to thank Dr. Prakash U. Tahiliani for his medical assistance.

I am grateful to the faculties of the CSE department, Prof. P. Shanti Thilagam,

Prof. K. Chandrasekaran, Prof. Annappa, Associate Prof. Vani M., Dr.

Manu Basavaraju and Assistant Prof. Dr. Jeny Rajan, Dr. Saumya Hegde,

Dr. Biswajit R Bhowmik, Dr. M. Venkatesan, Dr. Mahendra Pratap Singh

and Dr. Sourav Kanti Addya for their support during my study.

I would like to thank the technical and support staff of our department, Mr. Dinesh

Kamath, Mrs. Harshitha Shetty, Mrs. Mohini, Mr. Rakesh, Mrs. Seema Shiv-

aram, Mr. Sumedha Rao, Mrs. Yashavanthi, Mr. Pradeep D, Miss. Supriya,

Ravi, Arun Kumar and Mrs. Vanitha, for assisting me in running my Proposal and

Progress Seminars smoothly and for their ongoing support during my time at NITK.

I am grateful to Dr. B. R. Chandavarkar and NITK WiNG (Wireless Information

Networking Group) for giving me the opportunity to be part of this group. I would like to

thank the other members of WiNG, Radhesh, Bhanu Priya, Vivek, Vyom, Sourabh,

Shefali, Jendaipo, Shikha, Apoorva, Aditya, Susma for the wonderful moments we

spent on my Ph.D. journey. I would like to thank a few B.Tech students, Natasha,

Samanvita, Shruti, Leslie, Gautam, Ayush, Gauri and Sanjana or their lengthy

discussions and assistance in problem solving.

A special thanks to Sachin Sir (Bhau), who is always willing to help me in any situa-

tion at any time, and I will never forget the conversations we had during tea break. It was

a pleasure to share the research laboratory with my department colleagues, Mr Pravin

Ramteke, Dr. Manoj, Dr. Likewin, Dr. Vishnu, Dr. Sumith, Dr. Bheemappa,

Dr. Girish, Dr. Anil, Dr. Khyamlinga, Dr. Prabhu, Dr. Alok, Dr. Apurva,

Ambikesh, Dr. D. V. N. Shiva, Majunatha, Dr. Manjunath Mulimani, Dr. Na-

garatna, Dr. Raghavan, Dr. Pramod, Dr. Nikhil, Kallinatha, Sneha, Shubham,

Spoorthy, Arabhi and other peers for their encouragement and made my stay happier at

NITK. I would also like to thank research scholars from other departments, in particular

Arun Kumar (AMD), Uday Patil (Electrical), Deepak Kumar and Swamy Sir

(Mechanical) and Sunil Metti and Khalifa sir (MME), for the wonderful moments

we shared during the Research Premier League (RPL) tournament.

I would like to express my gratitude to Mr. Pritam (Broker) for assisting me in

my search for a home near NITK. My special thanks to Mr. Devraj Salian Kodical

and his family members for their support and for making my stay at 301, Nandshree

Apartment a better place to stay during my Ph.D. I would like to thank everyone at

Nandshree Apartment for making my stay so memorable. I would like to express my

gratitude to Mr. Namdev Suryavanshi and Mrs. Jayshree Suryavanshi for treating

us like family. His daughter Neha is Ridvi’s best friend, and the moments she spent with

my daughter were unforgettable. His son Sujay is always willing to assist at any time

and freely shared his thoughts.

I would like to express my gratitude to Dr. Biju R. Mohan (HoD, IT Department)

and Prof. Sai Dutta, Prof. Vidya Shetty and Prof. Dyanand Shetty for giving

me the opportunity to become a part of Direct Admission of Students Abroad (DASA) for

two consecutive years 2019 and 2020. Working in a real-time application was a fantastic

experience that allowed me to brush up on my programming skills.

I would like to thank the Director of NITK (Prof. K. N. Lokesh and Prof. Uma

Maheshwara Rao) and all the staff members of the main building for their support and

the provision of infrastructure to work in a wonderful environment.

A special thanks to my childhood friends, Malav, Pranav, Pathik, Bhaumik,

Palak and Jigar, who have always inspired and encouraged me to pursue higher ed-

ucation.

I am eternally grateful to my B.Tech friends, Shashin, Chintan, Manan, Nisarg,

Kaustubh, Nirmal, Ravi, Harshil, Dipak, Ripal and Vibha for their mental and

financial support.

I would like to express my gratitude to my financial advisor, Mr. Jignesh Shah for

managing my financial portfolio. I would also like to thank Mr. Vipul Gajjar, Tarjni

and Rekha madam for their enduring assistance.

I would like to thank my colleagues from the CSE Department, CHARUSAT Uni-

versity, Changa, where I worked before coming to NITK, for always encouraging me to

pursue Ph.D. at one of the NITs or IITs. A special thank you to Mr. Nishidh Chavda

for teaching me a core subject and guiding me on how to solve problems quickly and

efficiently. I would like to thank the other CHARUSAT colleagues who kept in touch with

me throughout my Ph.D. journey, especially Dr. Bimal Patel, Dr. Nirav Bhatt, Mr.

Ashish Patel, Mr. Hardik Mandora, Dr. Nikita Bhatt, Dr. Chintan Bhatt,

Mr. Divyesh Patel, Mr. Sagar Patel, Dr. Ashwin Makawana, Dr. Amit Gana-

tra, Mrs. Arpita Shah, Mr. Dhaval Bhoi, Mr. Mayur Patel, Dr. Ritesh Patel

and Dr. Parth Shah.

Special thanks to all the people who have always pleased me with their wishes with a

smile on my daily routine to NITK.

I am extremely grateful to my parents, Mr. Jitendrakumar Rathod and Mrs.

Sadhanaben Rathod, for their love, care and unwavering support in educating and

preparing me for the future. Without them, I would not be the person I am today.

I express my gratitude to my sister Tejal, her husband Shubham and niece Krishika

for their support and prayers. I would also like to thank Kalpesh and Bhavesh, my

elder cousins, for always being there for me and inspiring me.

I would like to thanks to my in-laws Pansiniya family (Ashwinbhai, Nayanaben,

Manishbhai, Jigarbhai, Latabhabhi, Kavitabhabhi, Vishv, Manvi and Arsh,

who have always supported me throughout my Ph.D. journey.

And last but not least, aa heartfelt thanks to my better half, Margi. She was a

constant source of inspiration and strength. She remained by my side to provide mental

support and to keep me from making a number of mistakes. I would like to acknowledge

my daughter, Ridvi, for being the most important person in my life. I feel rejuvenated

after playing with her. The time I spent with her was memorable, and I will remember

one thing she said every day, "Are you going to college? Please return early, and I will

open a door for you."

Finally, I would like to express my heartfelt gratitude to everyone who has contributed

to this thesis and supported me in some way during this incredible journey.

Place: Surathkal Rathod Vishal Jitendrakumar

Date: January 28, 2022

Abstract

Internet of Things (IoT) is a network where physical objects with Internet connectivity

can interact and exchange information with other connected objects. IoT devices are con-

strained in terms of power and memory, and have limited communication capabilities. A

large number of IoT devices are characterized by small memory and low processing speeds

that lead to congestion in the network when many such devices try to communicate with

each other. Typically, TCP is responsible for end-to-end congestion control and reliability.

However, in a constrained network, this can cause performance problems because most of

the communication happens over wireless links that are known to be challenging for TCP.

Consequently, the responsibility for controlling congestion is entrusted to the application

layer protocols. Among several IoT application layer protocols, only the Constrained

Application Protocol (CoAP) has a built-in congestion control mechanism and has been

standardized by the IETF.

CoAP is a lightweight messaging protocol which is widely used by various IoT appli-

cations in low power and lossy wireless networks. CoAP provides reliability and minimal

congestion control via a fixed Retransmission TimeOut (RTO) and Binary Exponential

Backoff (BEB). It does not maintain end-to-end connection information and therefore,

cannot adapt RTO based on the network conditions. CoAP Simple Congestion Con-

trol/Advanced (CoCoA) is an improved congestion control mechanism for CoAP which

adapts RTO based on the network conditions. Congestion control mechanisms for CoAP

can be classified into non-RTT and RTT based mechanisms. Non-RTT based mechanisms

(e.g., CoAP) are advantageous for applications that require a low memory footprint and

do not maintain the state information. RTT based mechanisms (e.g., CoCoA) are useful

for applications wherein memory footprint is not a major concern and maintaining the

state information is desirable.

Recently, it has been shown that the congestion control techniques in CoAP and Co-

CoA require further optimizations. In this work, we thoroughly evaluate the congestion

control mechanisms in CoAP and CoCoA, and subsequently propose one non-RTT and

i

three RTT based optimizations: (i) Geometric Sequence Technique for Effective RTO

Estimation in CoAP (GST-CoAP), (ii) Effective RTO estimation using Eifel Retransmis-

sion Timer in CoAP (CoAP-Eifel), (iii) Geometric Series based effective RTO estimation

Technique for CoCoA (GSRTC), and (iv) CoCoA++.

GST-CoAP is a non-RTT based mechanism to improve RTO estimation in CoAP by

using geometric sequence. CoAP-Eifel, GSRTC and CoCoA++ are RTT based mech-

anisms. CoAP-Eifel integrates the Eifel Retransmission Timer with CoAP to improve

RTO estimations and control congestion. GSRTC is a simple enhancement which adapts

the weight used in the Strong RTO estimator instead of using the fixed weight (0.5).

CoCoA++ uses delay gradients to get a better measure of network congestion, and im-

plement a probabilistic backoff to deal with congestion. A common characteristic in the

proposed mechanisms is that they are easy to deploy and do not add user configurable

parameters. All the four proposed mechanisms are extensively evaluated in a wide variety

of network environments using the Cooja simulator and a real testbed at FIT/IoT-LAB.

The performance metrics used for evaluation are Flow Completion Times (FCT), number

of retransmissions, throughput, RTO, delay and packet sending rate. We observe that the

proposed mechanisms offer a notable improvement in network performance compared to

the existing mechanisms.

Keywords: Internet of Things, Congestion Control, CoAP, CoCoA

ii

Table of Contents

List of Figures vii

List of Tables ix

Abbreviations and Nomenclature xi

1 Introduction 1

1.1 The Problem . 3

1.1.1 Packet loss . 3

1.1.2 Round Trip Time (RTT) . 4

1.2 Contributions of this thesis . 6

1.2.1 GST-CoAP . 6

1.2.2 CoAP-Eifel . 7

1.2.3 GSRTC . 7

1.2.4 CoCoA++ . 8

1.3 Outline of the thesis . 9

2 Background and Literature Review 11

2.1 Background . 12

2.1.1 TCP RTO calculation . 12

2.1.2 Congestion control in CoAP . 13

2.1.3 CoAP Simple Congestion Control/Advanced (CoCoA) 15

2.2 Related Work . 17

2.2.1 Application layer solutions . 18

2.2.2 Routing layer solutions . 27

3 Geometric Sequence Technique for Effective RTO Estimation in CoAP 29

3.1 Motivation . 30

3.1.1 Fullbackoff1 Variant . 31

3.1.2 Fullbackoff2 Variant . 31

iii

3.2 GST for RTO estimation in CoAP . 32

3.2.1 Design . 32

3.2.2 Implementation Challenges . 33

3.3 Evaluation . 35

3.3.1 Network Configuration . 35

3.3.2 Performance Metrics . 36

3.3.3 Results and Discussions . 36

3.4 Inferences . 38

4 Effective RTO estimation using Eifel Retransmission Timer in CoAP 41

4.1 Motivation . 41

4.2 Overview of TCP-Eifel . 42

4.2.1 TCP-Eifel . 42

4.2.2 Eifel Retransmission Timer . 43

4.3 CoAP-Eifel . 45

4.3.1 Design . 45

4.3.2 RTO estimation in CoAP using Eifel Retransmission Timer 45

4.3.3 Implementation Challenges . 46

4.4 Evaluation . 47

4.4.1 Network Configuration . 47

4.4.2 Results and Discussions . 48

4.5 Inferences . 52

5 Geometric Series based effective RTO estimation Technique for CoCoA 53

5.1 Motivation . 54

5.1.1 Fullbackoff1 Variant . 54

5.1.2 Fullbackoff2 Variant . 55

5.2 Geometric Series based RTO estimation Technique for CoCoA (GSRTC) . 56

5.2.1 Design . 56

5.2.2 Parameter Settings . 58

5.2.3 Implementation Challenges . 59

5.3 Evaluation . 59

5.3.1 Experimental Setup . 60

5.3.2 Performance Metrics . 62

5.3.3 Results and Discussion . 62

iv

5.4 Inferences . 68

6 CoCoA++: Delay Gradient based Congestion Control for Internet of
Things 69

6.1 CoCoA++: Delay Gradient based Congestion Control for Internet of Things 70

6.1.1 Overview of CAIA Delay-Gradient (CDG) 70

6.1.2 Design . 71

6.1.3 Implementation Challenges . 72

6.2 Evaluation . 74

6.2.1 Simulation Setup . 74

6.2.2 Simulation Results . 79

6.2.3 Testbed Setup . 88

6.2.4 Testbed Results . 90

6.3 Inferences . 91

7 Conclusions and Future Work 93

7.1 Conclusions . 93

7.2 Future work . 95

References 97

List of Publications 105

v

vi

List of Figures

1.1 Retransmission ambiguity . 5

1.2 Our Contributions . 6

2.1 IoT Protocol Stack . 11

2.2 Working of CoAP . 14

2.3 Working of CoCoA . 18

3.1 Contribution (highlighting (GST-CoAP)) 29

3.2 Working of Fullbackoff1 variant of CoAP 30

3.3 Working of Fullbackoff2 variant of CoAP 31

3.4 Working of GST for RTO estimation in CoAP 34

3.5 Grid Topology - GST-CoAP . 35

3.6 Comparison of FCT in Cooja and FIT/IoT-LAB 37

3.7 Total number of retransmissions: Cooja and FIT/IoT-LAB 38

3.8 Throughput of CoAP and Variants in FIT/IoT-LAB 39

4.1 Contribution (highlighting (CoAP-Eifel)) 41

4.2 Components of TCP-Eifel . 42

4.3 Half Dumbbell Topology . 47

4.4 CoAP-Eifel: RTT vs RTO . 48

4.5 RTO: CoAP vs CoAP-Eifel . 49

4.6 Throughput: CoAP vs CoAP-Eifel . 50

4.7 RTT: CoAP vs CoAP-Eifel . 51

5.1 Contribution (highlighting (GSRTC)) . 53

5.2 Working of Fullbackoff1 variant of CoCoA 55

5.3 Working of Fullbackoff2 variant of CoCoA 56

5.4 Working of GSRTC . 57

vii

5.5 Comparison of Wstrong with different values of r 59

5.6 Grid Topology - GSRTC . 60

5.7 Deployment of nodes in Saclay site . 62

5.8 Comparison of FCT in Cooja and FIT/IoT-LAB 63

5.9 Total number of retransmissions: Cooja and FIT/IoT-LAB 64

5.10 Throughput of CoCoA and Variants in Cooja 65

5.11 Throughput of CoCoA and Variants in FIT/IoT-LAB 67

6.1 Contribution (highlighting (CoCoA++)) 69

6.2 Working of CoCoA++ Algorithm . 73

6.3 Grid Topology . 75

6.4 Flower Topology . 76

6.5 Dumbbell Topology . 77

6.6 Chain Topology . 77

6.7 Comparison of CoCoA and CoCoA++ in Static Topologies 82

6.8 Comparison of CoCoA and CoCoA++ in Mobile Topologies 83

6.9 Comparison of CoCoA and CoCoA++ in terms of CDF 84

6.10 Grid Topology - CoCoA vs CoCoA++ . 85

6.11 Flower Topology - CoCoA vs CoCoA++ 85

6.12 Dumbbell Topology - CoCoA vs CoCoA++ 86

6.13 Chain Topology - CoCoA vs CoCoA++ 86

6.14 Random Way Point Mobility Model - CoCoA vs CoCoA++ 87

6.15 Gauss-Markov Mobility Model - CoCoA vs CoCoA++ 87

6.16 ManhattanGrid Mobility Model - CoCoA vs CoCoA++ 87

6.17 Pursue Mobility Model - CoCoA vs CoCoA++ 88

6.18 Deployment of nodes in Lille, Grenoble and Paris sites at FIT/IoT-LAB . . 88

6.19 Topology Selection from Lille, Grenoble and Paris sites of FIT/IoT-LAB . 89

6.20 Comparison of Performance Metric in Grenoble, Paris and Lille sites at

FIT/IoT-LAB . 90

viii

List of Tables

2.1 Classification of Congestion Control Mechanisms for CoAP 20

2.1 Classification of Congestion Control Mechanisms for CoAP - Contd... . . . 21

2.2 Summary of existing CoAP-based congestion control mechanisms 27

4.1 Throughput (in bytes/second) . 50

4.2 Packet Transmission Time (in seconds) . 51

4.3 Packet Delivery Ratio (PDR) . 52

5.1 Experimental Parameters and Configuration 61

5.2 Average RTO . 66

6.1 Sensor mote configuration . 74

6.2 Simulation Parameters . 79

6.3 Results with Static Topologies . 80

6.4 Results with Mobile Topologies . 81

ix

x

Abbreviations and Nomenclature

Abbreviations

6LoWPAN IPv6 over Low-power Wireless Personal Area Networks

ACK Acknowledgement

AMQP Advanced Message Queue Telemetry Transport

BEB Binary Exponential Backoff

CDG CAIA Delay-Gradient

CON Confirmable

CoAP Constrained Application Protocol

CoCoA CoAP simple Congestion control/Advanced

CoRE Constrained Restful Environments

DDS Data Distribution Services

FCT Flow Completion Time

GST Geometric Sequence Technique

HTML Hyper Text Transfer Langauage

IETF Internet Engineering Task Force

IoT Internet of Things

IoT-A Internet of Things Architecture

xi

LLN Low-power and Lossy Networks

MQTT Message Queue Telemetry Transport

MQTT-SN Message Queue Telemetry Transport - Sensor Network

NON Non-confimable

PBF Probabilistic Backoff Factor

RFC Request For Comment

RPL Routing Protocol for Low power and lossy network

RST Reset

RTO Retransmission TimeOut

RTT Round Trip Time

RTTVAR Round Trip Time VARation

RoLL Routing over Low-power and Lossy Networks

SRTT Smoothed Round Trip Time

TCP Transmission Control Protocol

UDP User Datagram Protocol

VBF Variable Backoff Factor

WSN Wireless Sensor Network

xii

Nomenclature

↵ weight constant used in RFC 6298

� weight constant used in RFC 6298

� absolute value

RTOinit initial timeout value

RTOnew new RTO value

RTOprev previous timeout value

RTTmax maximum RTT

RTTmin minimum RTT

a sampling period

cwnd congestion window

gmax maximum gradient

gmin minimum gradient

ssthresh slow start threshold

wn congestion window for nth iteration

weightnext new weight value

weightprev previous weight value

xiii

Chapter 1

Introduction

Internet of Things (IoT) is a network where physical objects with Internet connectivity can

interact and exchange information with other connected objects. IoT makes these physical

objects smart by leveraging their underlying communication and computing technologies,

Internet protocols and various applications (Al-Fuqaha et al., 2015; Atzori et al., 2010).

According to Juniper and Martech Advisor, there will be 46 billion Internet-connected

devices by the end of 2021, increasing to 125 billion by 2030 (Nick, 2021). When a

huge number of devices attempt to interact with one another, large amounts of data are

generated (i.e., International Data Corporation (IDC) forecasts 79.4 zettabytes (ZB) data

will be generated by IoT devices in 2025 (Helpnet Security, 2019)). IoT devices have

limited resources, such as memory, processing and power. A large number of IoT devices

have been deployed in a constrained environment, leading to a number of challenges

faced while developing network protocols for IoT. Due to several challenges posed by

the constrained nature of IoT devices, conventional protocols are not suitable for IoT

networks; so new network protocols are being developed to meet the requirements.

Congestion control mechanisms are vital to ensure efficient and fair use of network

resources. Typically, TCP is responsible for end-to-end congestion control and reliabil-

ity. However, in a constrained network, this can cause performance problems because

most of the communication happens over wireless links that are known to be challenging

for TCP (Patel et al., 2001; Fahmy et al., 2003; Tian et al., 2005; Gomez et al., 2018).

Consequently, the responsibility for controlling congestion is entrusted to the application

layer protocols. Message Queue Telemetry Transport (MQTT) (Banks and Gupta, 2014),

Extensible Messaging and Presence Protocol (XMPP) (Saint-Andre et al., 2004), Data

Distribution Services (DDS) (Pardo-Castellote, 2003), Advanced Message Queuing Pro-

tocol (AMQP) (OASIS Standard, 2012) and Constrained Application Protocol (CoAP)

1

(Shelby et al., 2014) are popular application layer protocols in IoT.

CoAP (RFC 7252) (Shelby et al., 2014) is a lightweight application layer protocol

that is standardized and developed by the Constrained Restful Environments (CoRE)

Working Group of the Internet Engineering Task Force (IETF). It is used as the default

application protocol for the messaging model in IoTivity (Open Connectivity Foundation

(OCF), 2015), an open-source IoT platform1 that enables seamless machine-to-machine

connectivity. CoAP is a simple low overhead protocol that supports end-to-end communi-

cation and has been specially designed for constrained devices and constrained networks.

CoAP has similar features to HTTP, but cannot be viewed as a compressed HTTP pro-

tocol. Unlike HTTP which operates on top of TCP, CoAP operates on top of the UDP2

and provides support for reliability with minimum congestion control. It adopts a simple

stop-and-wait approach for data transmission (Shelby et al., 2014). CoAP provides basic

congestion control technique based on Retransmission Time Out (RTO) and Binary Ex-

ponential Backoff (BEB). CoAP initializes the RTO to a fixed value, which is randomly

selected between [2s, 3s] for every new transmission and it doubles the value of RTO

when the packets get retransmitted. The default CoAP congestion control mechanism

needs improvements because it does not estimate the RTO based on RTT, resulting in

prolonged network delays and spurious retransmissions.

Several new solutions (Järvinen et al., 2018; Ancillotti and Bruno, 2017) have been

proposed to address the concerns with the default CoAP congestion control mechanism,

but CoAP Simple Congestion Control/Advanced (CoCoA) (Bormann et al., 2020) is the

one that is actively discussed at IETF and is used by several researchers to build new

congestion control mechanisms for CoAP (Jarvinen et al., 2018; Bolettieri et al., 2018).

CoCoA estimates the RTO based on the RTT measurements by running two estimators

in parallel, named Strong and Weak. CoCoA uses Variable Backoff Factor (VBF) instead

of a fixed backoff factor (BEB) when the packets get retransmitted. In addition, Co-

CoA includes an aging mechanism which is used to estimate RTO when RTT values are

not updated/measured frequently, thus ensuring that the value of RTO is not outdated.

Nevertheless, recent studies have shown that both CoAP and CoCoA require further op-

timizations (Järvinen et al., 2018; Ancillotti and Bruno, 2017; Demir and Abut, 2018;

Bolettieri et al., 2017).

1IoTivity is hosted by the Linux Foundation and funded by Open Connectivity Foundation (OCF).
2Though guidelines have been provided to use CoAP on top of TCP, the original CoAP RFC 7252

recommends using CoAP on top of UDP.

2

1.1 The Problem

The advent of IoT and its inclusion in everyday scenarios brings with it a fair share

of problems. A large number of IoT devices are characterized by small memory and

low processing speeds that lead to congestion in the network when many such devices

try to communicate with each other. The data packets being shared by the constituent

devices across the network in IoT systems have small payloads and hence, packet loss

due to congestion results in expensive retransmissions that lead to additional delays and

large overheads. IoT networks have a mobility factor associated with them as they do

not always deal with static nodes. The small packet size, costly re-transmissions and

mobility together make the nature of these constrained networks very different from the

conventional networks currently in place (Al-Fuqaha et al., 2015). Several mechanisms

have been designed that use different aspects of the network to control congestion, and

either actively or passively deal with it (Ghaffari, 2015). This section discusses the two

most important aspects that can be used to detect congestion in an IoT network.

1.1.1 Packet loss

Packet loss is one of the most commonly used signs of congestion. Once a source sends a

packet, it waits for a fixed amount of time for an acknowledgement from the destination

by maintaining a timer at its end. If no acknowledgement is received within this duration,

the packet is considered lost due to network congestion. Once a packet loss is detected,

the congestion control algorithm in place takes charge to control the network congestion.

Mechanisms that depend on packet loss to detect network congestion prove to be of no

use in IoT networks because: (i) these mechanisms assume that a packet loss happens

only due to congestion, which is not true for low power and lossy networks e.g., packet

loss can happen due to link errors or poor signal strength (Gomez et al., 2018), and (ii)

delaying congestion response until a packet is lost deteriorates the performance since IoT

packets usually carry time sensitive payloads and their retransmissions is costly, causing

additional delays (Gomez et al., 2018). Typically, the congestion control mechanisms that

rely on packet loss are tightly coupled with TCP. The major concern is that TCP is not a

de-facto transport protocol for IoT applications (Atzori et al., 2010), and hence, designing

congestion control mechanisms for IoT applications is a non-trivial task.

3

1.1.2 Round Trip Time (RTT)

Besides using packet loss, some mechanisms use one-way delay or Round Trip Time (RTT)

as an additional measure of network congestion (Brakmo and Peterson, 1995; Betzler

et al., 2013; Mishra et al., 2018). An increase in the RTT values is considered as an

indication of congestion building up in the network. These algorithms compare RTT

with a threshold value and trigger the congestion control mechanism if the measured

RTT exceeds the threshold. However, RTT is not a reliable metric to predict network

congestion because multiple factors, such as the processing time at the endpoints or

mobility of nodes, could lead to an increase/decrease in RTT. Finally, fairness issues

arise when RTT based congestion control algorithms share bandwidth with loss based

algorithms. In such shared systems, a backoff by RTT based algorithms may cause the

loss based algorithms to take up the freed bandwidth and the RTT based algorithms may

never get a chance to transmit messages (Mo et al., 1999; Ahn et al., 1995; Kurata et al.,

2000). It is, therefore, necessary to make sure that the congestion control algorithm in

place is able to detect the presence of such loss based algorithms sharing the network

bandwidth.

CoAP uses packet loss as an indication of network congestion and runs on top of UDP.

It tackles network congestion by using a simple congestion control mechanism based on

RTO with BEB. RTO is used to identify packet losses, and BEB ensures that retransmitted

packets do not worsen the state of network congestion (e.g., premature retransmissions

can lead to duplicate packets and increase congestion). However, it does not follow TCP-

like RTT measurements to update its RTO. CoCoA is an enhanced congestion control

mechanism for CoAP that follows TCP-like RTT measurements to update the RTO.

CoCoA runs two RTO estimators in parallel, named Strong and Weak. The Strong RTO

estimator is maintained for all the transmissions that get cleared without retransmissions

and the Weak RTO estimator is maintained for the transmissions that are cleared after

retransmissions. The Weak estimator is used to address the RTT ambiguity problem

which is described next.

RTT ambiguity

RTT is normally estimated as the difference between the time the packet was sent to

the time of receipt of the ACK. But this causes ambiguity when packets are retransmitted,

which is referred to as retransmission ambiguity, as shown in Figure 1.1. It can be seen

in the figure that it is difficult to state that ACK received by the client belongs to the

4

original Confirmable (CON) message (Karn and Partridge, 1987) or a retransmitted CON

message. If we assume that the ACK belongs to the retransmitted CON message, then

the measured RTT will be small. If we assume that the ACK belongs to the original

CON message, then the measured RTT will be large. A small value of RTT might reduce

the overall RTO and lead to spurious retransmissions, and on the other hand, a large

value of RTT might increase the overall RTO, thus causing long idle periods between

transmissions.

client server

CON

CON

ACKTimeout

RTT?

RTT?

Figure 1.1: Retransmission ambiguity

This retransmission ambiguity was noticed by Karn in the context of calculating RTO

for TCP (Karn and Partridge, 1987). He suggested the following rules to resolve the

ambiguity:

1. do not consider the RTT of the retransmitted packets for calculating RTO.

2. double the RTO for the retransmitted packets (Binary Exponential Backoff).

If the second rule is not applied, the client will resort to using the previous RTO

which was updated based on the RTT samples obtained from successful transmissions.

This has a risk of RTO value ending up being too low (because RTT measurements of

retransmitted packets are not accounted for), thus leading to spurious retransmissions.

CoCoA follows the second rule suggested by Karn, but not the first one because it

does not ignore the RTT measurements of retransmitted packets while calculating RTO.

5

CoCoA calculates the RTT of the retransmitted packet by considering the first packet

transmission time to the received ACK time (as shown in Retransmission phase of Figure

2.3). Such a RTT measurement is termed as Weak RTT measurement and the resulting

RTO is called Weak RTO. In order to limit the effect of the Weak RTT measurements

obtained from retransmitted packets, CoCoA uses a lower weight of 0.25 to estimate the

Weak RTO in Eq. (2.5). The weight used in Strong RTO is 0.5.

1.2 Contributions of this thesis

The main goal of this work is to develop new CoAP-based congestion control mechanisms

for IoT. We decided to base our work on CoAP because: (i) It has been standardized

by the IETF (RFC 7252). (ii) It has a built-in congestion control, and (iii) CoAP is

the default application protocol for communication in an open-source IoT platform called

IoTivity, that enables seamless machine-to-machine connectivity. Figure 1.2 highlights

the contributions made in this work (i.e., highlighted with green color in Figure 1.2).

Congestion control
mechanisms of CoAP

Non-RTT RTT

CoAP-Eifel CoCoA

CoCoA++

CoAP

GST-CoAP

GSRTC

Figure 1.2: Our Contributions

1.2.1 GST-CoAP

CoAP sets the initial RTO to a value selected randomly from the fixed interval [2s, 3s] for

every new transmission. If the transmission fails, BEB doubles the RTO value in order to

6

prevent congestion. When the network is not congested, CoAP does not adapt the RTO

and instead resets it to a low RTO value which could lead to spurious retransmissions

when RTT is high.

This work proposes a Geometric Sequence Technique for effective RTO estimation

in CoAP (GST-CoAP). Unlike CoAP, which resets the RTO to its default value after

receiving an ACK for the retransmitted packet, GST-CoAP gradually reduces the RTO

to its default value based on the number of consecutive successful transmissions. The

main idea is to minimize the Flow Completion Time (FCT), number of retransmissions

and enhance per-flow throughput.

1.2.2 CoAP-Eifel

The default CoAP congestion control mechanism is not efficient because it does not esti-

mate the RTO based on RTT. This makes CoAP insensitive to the network conditions.

If the selected RTO value is less than the RTT, it will result in spurious retransmissions.

If the RTO value is substantially higher than the RTT, the network will experience long

idle delays and the resources will be wasted. Thus, to improve network performance, an

adaptive mechanism that estimates RTO based on RTT measurements is required. Using

RTT measurements to estimate RTO has benefits when compared to loss based mecha-

nisms because it helps the end systems to become aware of network conditions and react

accordingly.

This work proposes a new congestion control mechanism by integrating the Eifel Re-

transmission Timer (Ludwig and Sklower, 2000) with CoAP (CoAP-Eifel) in order to

obtain better RTO estimates and control congestion. Eifel Retransmission Timer is a

RTO estimation technique that was initially designed for BSD-Lite’s (Berkeley Software

Distribution) distribution of TCP (TCP-Lite). Integrating it requires modifications in

CoAP because the design of this timer is tailored to work with TCP. The main idea is to

use Eifel Retransmission Timer to obtain an accurate prediction of the upper bound of

RTT and react faster to packet losses.

1.2.3 GSRTC

CoCoA uses an Exponential Weighted Moving Average (EWMA) to measure the RTO

for the next packet transmission. The weights used in the EWMA equation are fixed (0.5

for Strong and 0.25 for Weak) and the weights are selected on the basis of the recent

7

transmission made by a strong or weak estimator. If the network conditions are lossless

and consecutive packets are getting successfully cleared without retransmissions, these

fixed weights affect the RTO adaptation process.

Hence, in order to improve the RTO estimation, this work proposes a Geometric Series

based effective RTO estimation Technique for CoCoA (GSRTC). GSRTC improves the

network performance by rapidly adapting the weight of Strong RTO when the network is

not congested and packet transmissions are getting cleared consecutively without retrans-

missions. This helps CoCoA to adapt quickly and perform efficiently when the network

conditions are lossless.

1.2.4 CoCoA++

CoCoA uses per packet RTT measurements to predict network congestion. Per packet

RTT measurements are typically noisy and cannot be relied upon for predicting network

congestion. Hence, this work proposes an efficient congestion control mechanism called

CoCoA++ which uses CAIA Delay-Gradient (CDG) (Hayes and Armitage, 2011) to mea-

sure network congestion and the Probabilistic Backoff Factor (PBF) to control congestion.

CDG was designed to work with TCP (Jonassen, 2015), but is not bound to it; it

can be used with any other end-to-end protocol, such as CoCoA. CDG provides a better

estimate of network congestion as it mainly attempts to track the changes in the queuing

delay component in the RTT, and ignores other delay components such as processing,

propagation and transmission delays. Instead of considering per packet RTT samples,

CDG obtains a gradient of RTT over time and PBF helps to adjust the RTO on the basis

of the inferred congestion signal.

A key aspect of all contributions is that they are easy to deploy and do not require

setting additional parameters to obtain the performance gain. The proposed mechanisms

have been extensively evaluated using the Cooja network simulator (Osterlind et al.,

2006) and a real testbed at FIT/IoT-LAB (Adjih et al., 2015). We have considered static

topologies such as grid, flower, dumbbell and chain, and mobility models such as random

waypoint, Manhattan grid, pursue, and Gauss-Markov for evaluation. Dumbbell is the

most popular topology used to evaluate the performance of congestion control algorithms.

Grid topologies are popular in applications requiring long range and broad area coverage

such as smart grid, industrial automation and building automation (Betzler et al., 2013,

2015b; Ancillotti and Bruno, 2017). Flower topologies are used in applications such as

8

smart greenhouse management systems, cellular network, satellite network and wide area

network applications (Chan, 2008). The mobility models used for evaluation relate to ap-

plications such as smart traffic management, self-driving cars, home automation systems

with handheld devices and communication for security drones (Aschenbruck et al., 2010).

The primary metrics used to validate the effectiveness of all contributions are FCT, num-

ber of retransmissions, throughput, RTO, delay and packet sending rate. The proposed

mechanisms outperform the existing ones in terms of estimating network congestion and

improving the network performance. Since the proposed mechanisms are targeted towards

different set of use-cases, we do not evaluate their performance against each other.

1.3 Outline of the thesis

Chapter 2 presents the existing congestion control mechanisms for IoT. Furthermore, it

provides an overview of different low-power operating systems for constrained devices, as

well as simulators and open source testbeds used for evaluating the congestion control

mechanisms in IoT. Lastly, the literature related to IoT congestion control mechanisms

is presented, with a particular emphasis on the application and routing layers.

Chapter 3 presents the motivation to optimize the RTO estimation technique in CoAP.

Subsequently, it provides a brief overview of the Fullbackoff variants (the existing work

in the literature which is directly related to this work) and their issues. It presents the

GST-CoAP technique and how it seamlessly aligns with the design of CoAP. Finally,

the effectiveness of GST-CoAP is studied by comparing its performance with the default

CoAP and Fullbackoff variants using a simulator and real testbed.

Chapter 4 presents the design and implementation of the Eifel Retransmission Timer

in CoAP which calculates the RTO based on RTT measurements. Subsequently, it dis-

cusses the difficulty of incorporating the Eifel Retransmission Timer into CoAP. Lastly, it

presents the results and analysis based on a comparative study of CoAP-Eifel and CoAP.

Chapter 5 highlights the impact of using fixed weight values for RTO estimation in

CoCoA. Subsequently, the existing Fullbackoff mechanisms for CoCoA are discussed.

Later, it presents how to integrate geometric series into CoCoA, resulting in GSRTC,

to use an adaptive weight for Strong RTO estimation instead of using a fixed one (0.5).

Lastly, the results of GSRTC are compared with CoCoA and the Fullbackoff mechanisms.

Chapter 6 describes the CDG technique which was originally designed for TCP, but

is used in conjunction with CoCoA in this work. Subsequently, it presents the design and

9

development of CoCoA++. Lastly, the effectiveness of CoCoA++ is studied by comparing

its performance with CoCoA in both static and mobile scenarios.

Chapter 7 summarizes the work done in this thesis and discusses the future work in

this area.

10

Chapter 2

Background and Literature Review

Application
layer

Transport
layer

Network
layer

Physical & Link
layer

CoAP, MQTT,
AMQP, etc.

UDP, TCP

6LoWPAN/RPL

IEEE 802.15.4
IEEE 802.11

Figure 2.1: IoT Protocol Stack

One of the main components required for communication is a protocol stack. A de-

sirable property of an IoT stack is that it should consume less processing power, should

be lightweight, flexible and configurable. Figure 2.1 depicts the IoT stack proposed by

IETF. The physical and link layer of IoT stack consists of IEEE 802.15.4 (Low-rate Wire-

less Personal Area Network) and IEEE 802.11 (Kovatsch et al., 2011). Routing Protocol

for Low-power and lossy networks (RPL) has been proposed as a solution for routing in

Low-power and Lossy Networks (LLNs) like IoT, and cater to unique routing challenges

(Parasuram et al., 2016). RPL is designed to be highly adaptive to network conditions

and provides alternate routes whenever default routes are inaccessible. As far as transport

11

layer is concerned, UDP is the popular choice for IoT owing to its simplicity of deploy-

ment and lightweight functionality rather than TCP. The application layer of the IoT

stack consists of various lightweight application protocols such as CoAP, MQTT, AMQP

and others.

2.1 Background

2.1.1 TCP RTO calculation

The basic algorithm for calculating the value of the retransmissions timer in TCP is

described in RFC 6298 (Paxson et al., 2000). There are two state variables: smoothed

RTT (SRTT) and RTT variation (RTTVAR). SRTT keeps running average of the current

RTT sample and the previous RTT samples, and RTTVAR keeps the mean deviation of

the RTT samples. Until the first RTT measurement is received, the RTO value is set to

1 second, and then the RTO is calculated using Eq. (2.1).

SRTT = R

RTTV AR =
R

2

RTO = SRTT +max(G,K ⇥RTTV AR)

(2.1)

where, R represents the current RTT measurement. The RTO value for the subsequent

transmissions is calculated as shown in Eq. (2.2).

SRTT = (1� ↵)⇥ SRTT + ↵⇥R
0

RTTV AR = (1� �)⇥RTTV AR + � ⇥ |SRTT �R
0|

RTO = SRTTx +max(G,K ⇥RTTV AR)

(2.2)

where, R’ represents the new RTT measurements and the values of the constants ↵,

� and K are (18), (14) and 4, respectively. The values of ↵ and � control how quickly the

SRTT and RTTVAR adapt to changes.

This basic mechanism is leveraging the Karn/Partridge algorithm; thus, the RTT of

the retransmitted packet is ignored due to ambiguity. When the packet is retransmitted,

this mechanism uses exponential backoff and doubles the RTO value instead of basing it

on the previous RTT. The aim of using this backoff logic is to ensure that when network

12

congestion occurs, the sender does not react too quickly on every timeout, causing the

sender to be more cautious. This affirms that the timeout mechanism has an influence on

congestion. If the timeout occurred too soon, there may be unnecessary retransmissions,

which will cause network overheads.

2.1.2 Congestion control in CoAP

Constrained Application Protocol (CoAP) is a lightweight alternative to HTTP that is

specially designed for constrained devices to cope up with constrained network character-

istics. The main aim of designing CoAP is not to blindly compress HTTP functionalities,

but to follow the REpresentational State Transfer (REST) architecture by modifying or

optimizing some of the functionalities. CoAP has two logical sub-layers: the message

layer and the request/response layer. The message layer deals with UDP and addresses

the asynchronous message interaction. The request/response layer manages exchanges

between the client and the server using different request/response methods and codes.

Like HTTP, CoAP uses the methods such as GET, POST, PUT and DELETE to access

or manipulate resources on the server. CoAP has four types of messages: Confirmable

(CON), Non-confirmable (NON), Acknowledgement (ACK) and Reset (RST).

RTOnew = 2⇥RTOprev (2.3)

CoAP is primarily designed to work on top of UDP, making it suitable for IoT applica-

tions. Additionally, it provides end-to-end reliability through CON messages that require

an ACK from the destination endpoint. CoAP supports the built-in congestion control

mechanism by using RTO and BEB techniques. Moreover, CoAP limits the number of

outstanding CON messages to 1 to prevent congestion. CoAP sets the initial RTO to a

fixed value, which is randomly selected from [2s, 3s] for each new CON message transmis-

sion. The CoAP client waits for a response after a CON message has been sent. If the

reply is not received until the timeout, the message is retransmitted and RTO is doubled,

as shown in Eq. (2.3).

The working of the default CoAP congestion control mechanism is illustrated in Figure

2.2. There are two main phases in Figure 2.2: Normal phase and Congestion phase. The

Normal phase depicts CoAP’s standard behaviour, initializing every new transmission

with the default timeout value (i.e., randomly sets the RTO from the fixed interval [2s,

3s]). The Congestion phase depicts the CoAP’s behaviour when packets get dropped due

13

to congestion. If a client does not receive an ACK for a transmitted packet, the packet

is considered lost. When the timer expires (RTO), CoAP retransmits the same packet by

increasing the RTO to twice of its previous value (See ‘(BEB)’ label in Figure 2.2). When

the algorithm enters Normal phase again, it resets the RTO to a randomly selected value

between [2s, 3s].

RTO ([2s, 3s])

RTO ([2s, 3s])

RTO ([2s, 3s])

(BEB)
RTO = RTO * 2

CoAP
client

CoAP
server

CON

ACK

CON

ACK

CON

ACK

time time

(Reset)
RTO ([2s, 3s])

Normal
phase

Normal
phase

X

CON

ACK
X

Congestion
phase

CON

ACK

CON

ACK

(BEB)
RTO = RTO * 2

Figure 2.2: Working of CoAP

CoAP supports a non-adaptive congestion control mechanism because it selects RTO

from a fixed interval without estimating it from the RTT. If the estimated RTO is less

14

than the RTT, spurious retransmissions can occur, and if it is greater, longer wait times

lead to connections becoming idle, thus under utilizing the available network resources.

Therefore, an adaptive RTO mechanism, which estimates RTO based on RTT, is needed

to address the above mentioned issues and to improve the network performance.

2.1.3 CoAP Simple Congestion Control/Advanced (CoCoA)

CoAP Simple Congestion Control/Advanced (CoCoA) (Betzler et al., 2014) is an enhanced

congestion control mechanism for CoAP. CoCoA estimates RTO based on RTT measure-

ments where RTT samples are obtained according to the Karn/Patridge algorithm (Karn

and Partridge, 1987). However, one potential problem with updating RTO by using RTT

measurements is that it is difficult to calculate the RTT of retransmitted packets. To

overcome this problem, CoCoA maintains two RTO estimators namely, Strong and Weak.

Strong estimator considers RTT samples of transactions that are transmitted successfully

in a single transmission, while weak estimator considers RTT samples for the transactions

that are retransmitted (only the first two retransmissions are considered).

CoCoA leverages TCP’s standard algorithm (RFC 6298) (Paxson et al., 2000) to

estimate the RTT and RTO. CoCoA maintains two copies of Eq. (2.4) for Strong and

Weak estimator, respectively.

RTTx = (1� ↵)⇥RTTx + ↵⇥RTTx_new

RTTV ARx = (1� �)⇥RTTV ARx + � ⇥ (RTTx �RTTx_new)

RTOx = RTTx +Kx ⇥RTTV ARx

(2.4)

where, x represents either strong or weak, the values of the constants ↵ and � are (18)

and (14) respectively, and the RTO is computed using the constant K, where K = 4 for

both strong and weak estimator.

The overall RTO for CoCoA is then calculated as a weighted average of the strong or

weak RTO estimate and the previous overall RTO as shown in Eq. (2.5). CoCoA uses an

equal weight (0.5) for the current RTO estimate (strong or weak) and the previous RTO.

CoCoA uses the BEB approach to estimate the RTO for a retransmitted packet.

RTOnew = Wx ⇥RTOx + (1�Wx)⇥RTOprev (2.5)

CoCoA+ is an extension of CoCoA with three major enhancements (Betzler et al.,

15

2015b): (i) it modifies the Eq. (2.5) in case of RTOweak by assigning less weight to

RTOweak and more weight to previous RTO. This is to ensure that inaccurate RTT mea-

surements done in RTOweak do not largely affect the overall RTO. No changes are made

to Eq. (2.5) in case of RTOstrong. (ii) it adds a RTO aging mechanism to CoCoA. (iii) it

replaces the Binary Exponential Backoff (BEB) by a Variable Backoff Factor (VBF)1.

After estimating RTOx based on Eq. (2.4), a cumulative RTOnew is determined for

CoCoA as a weighted moving average as shown in Eq. (2.5) where the values of weight

for strong and weak estimators are Wstrong = 0.5 and Wweak = 0.25, respectively. The

RTOnew estimated using Eq. (2.5) is used as the initial RTO for the next transmission

to the same destination. Furthermore, in Eq. (2.4), the value of K is reduced from 4 to

1 when estimating the RTOx for weak estimator.

To estimate the RTO for the retransmitted packet, CoCoA uses VBF instead of BEB

as shown in Eq. (2.6). The RTO for retransmitted packets is estimated by applying the

multiplicative factor. The RTO value is multiplied by 3 for each retransmission, as long

as the RTO value is less than 1s, to ensure that the maximum retransmission limit is

not exhausted in a short time span. Similarly, the RTO is multiplied by 1.5 for each

retransmission to ensure that transactions with large RTOs wait for some time to receive

an acknowledgement from the client before giving up. In other circumstances, RTO, like

BEB, is multiplied by 2.

V BF =

8
>>>>><

>>>>>:

3, RTO < 1s

2, 1s  RTO  3s

1.5, RTO > 3s

(2.6)

Finally, the RTO for the subsequent packet is estimated by using the Eq. (2.7).

RTOnew = RTOprevious ⇥ V BF (2.7)

The existing RTO values may become outdated if there are no RTT measurements

over a long period of time. Hence, CoCoA applies an RTO aging mechanism when the

RTO has not been updated for a long time. In IoT, network behaviour changes rapidly,

1Although the CoCoA paper (Betzler et al., 2014) contains discussions on using VBF instead of BEB,
the latest paper on CoCoA+ from same authors states VBF as one of the features added in CoCoA+
(Betzler et al., 2015b)

16

thus affecting RTT values. As a consequence, in order to prevent having incorrect RTO

values in such a network, aging mechanisms is applied to small and large RTO estimations.

As per Internet draft of the CoCoA (Bormann et al., 2020), if the RTO value is small

(RTO < 1s) and no new RTT measurements are made for upto 16 times to its current

value, then the RTO value is doubled. However, if the RTO value is large (RTO > 3s)

and has not been updated for 4 times to its current value, the RTO should be estimated

using Eq. (2.8).

RTO = 1s+ (0.5⇥RTO) (2.8)

Note: Since CoCoA+ is a minor extension of CoCoA, the congestion control mech-

anism in Contiki OS (Dunkels et al., 2004) is referred to as CoCoA although it actually

implements CoCoA+. Hence, for the sake of simplicity, we have also used the same ter-

minology throughout this thesis i.e., we have based our work on CoCoA+, but we use the

term CoCoA.

Figure 2.3 depicts the working of CoCoA, which is divided into two main phases:

Normal phase and Retransmission phase. The Normal phase illustrates the working of

the strong estimator that measures RTTstrong and updates the RTOstrong only if a client

receives an ACK for the transmitted packet without any retransmissions. The Retrans-

mission phase exhibits the working of a weak estimator that calculates RTTweak and

updates the RTOweak for packets that encounter retransmissions. A packet is considered

lost if a client does not receive an ACK for it. When the timer expires (RTO), CoCoA

retransmits the same packet and estimates the RTO for the retransmitted packet using

the VBF. When the algorithm returns to the Normal phase, it estimates the RTT and

updates RTO according to the strong estimator.

2.2 Related Work

The literature on congestion control in IoT spans across different layers of the network

stack. In this section, we focus on the recent developments directly related to our work i.e.,

application layer solutions to control network congestion in IoT. We also briefly discuss

a few routing layer solutions for network congestion control. Table 2.1 summarizes the

mechanisms proposed to improve the performance of CoAP and CoCoA.

17

client server

CON

ACK

CON

CON

ACK

CON

ACK

t t

Normal
phase

Normal
phase

RTTstrong

Update RTOstrong
and

Calculate RTOnew

X

Retransmission

RTTweak Timeout

RTO = RTO * VBF

Update RTOweak
and

Calculate RTOnew

RTTstrong

Update RTOstrong
and

Calculate RTOnew

Figure 2.3: Working of CoCoA

2.2.1 Application layer solutions

There has been a lot of interest in designing congestion control algorithms for CoAP. A

comprehensive survey of the congestion control mechanisms designed for CoAP is pre-

sented in (Pramanik et al., 2017; Tariq et al., 2020). Majority of the solutions include

modifying the default RTO estimation technique used by CoAP. These solutions improve

the performance of CoAP/CoCoA, but do not extract a clear congestion signal from noisy

RTT samples.

Several studies have focused on evaluating the performance of CoCoA in a wide vari-

ety of scenarios ranging from emulated Zigbee networks to large scale IoT deployments

(Betzler et al., 2016; Järvinen et al., 2015). Some of these studies have shown that CoCoA

provides better performance than CoAP (Betzler et al., 2015a; Ancillotti and Bruno, 2017;

18

Hasan and Ahmed, 2018), whereas others have discussed the shortcomings of CoCoA e.g.,

(Bolettieri et al., 2017) shows that CoCoA has more retransmissions than CoAP when

the number of requests increase.

A new method is proposed in (Balandina et al., 2013) to calculate RTO in CoAP

based on the experimental study of Eifel retransmission timer (Ludwig and Sklower,

2000), which is originally proposed for calculating TCP timeouts. During this study,

the authors observed that the default values of ↵ (18), � (14) and K (4) suggested in RFC

6298 might not be suitable for large senders load. Subsequently, they propose a new RTO

estimation algorithm that uses a single coefficient � instead of ↵ and �. � is defined as

a ratio between the current sample of RTT and RTO. Depending on the value of �, the

authors suggest to carefully adapting RTO.

Four modifications of CoCoA are discussed in (Bhalerao et al., 2016): CoCoA-Fast

(CoCoA-F), CoCoA-Strong (CoCoA-S), CoCoA-4-State and CoCoA-4-State-Strong. This

work mainly highlights that the performance of CoCoA is conservative in the presence

of lossy wireless links, owing to the side effect of its weak estimator. Initially, the au-

thors try to increase the aggressiveness of CoCoA by reducing the values of VBF, backoff

thresholds, initial and maximum RTO, and name the resulting variant as CoCoA-F. How-

ever, it is observed that the performance of CoCoA-F remains conservative like CoCoA.

Subsequently, the authors propose a 4-state higher granularity estimator that helps to

distinguish between wireless link losses and congestion losses. Finally, three schemes:

CoCoA-Strong, CoCoA-4-State and CoCoA-4-State-Strong are discussed to overcome the

performance problems of CoCoA in lossy wireless links. The results show that CoCoA-4-

State-Strong adapts to packet losses and achieves 35-60% more throughput than CoCoA.

However, it also leads to 20% more retransmissions than CoCoA.

An adaptive mechanism for handling congestion in CoAP is proposed in (Hassan et al.,

2016) that depends on traffic priority and considers the packet loss rate. This mechanism

has three main components: assigning traffic priority, adaptive RTO and adaptive backoff

timer. Priorities are assigned depending on whether the traffic emerges from a critical

device (e.g., medical sensors or fire monitoring systems) or a non-critical device (e.g.,

smart home devices). Depending on traffic priorities and the packet loss rate, RTO and

backoff timer values are calculated. The major limitation of this approach is that it is not

implemented and evaluated in the paper which raises concerns about the feasibility of its

deployment.

19

Table 2.1: Classification of Congestion Control Mechanisms for CoAP

Paper Name Overview Applications
Performance

Metrics

Simulation

Environments

Congestion Control in Reliable

CoAP Communication
Mechanism to handle congestion in CoAP Client - Server

Throughput and

Packet Delivery Ratio (PDR)

Contiki OS,

Cooja

Congestion Control for CoAP

Cloud Services

Analysis of congestion in CoAP with cloud

services
Publisher - Subscriber Throughput

Experimental

Testbed,

FlockLab

Modeling and Analysis on Congestion

Control in Internet of Things
Develop new protocol IRED

Accessing the IoT services

through AQM
PDR and Latency OMNeT++

Back pressure Congestion Control for

CoAP/6LoWPAN Networks

Comparison of congestion control scheme

with back pressure and UDP based

protocol stack

client transmits packet to server

through border router
Latency

network

simulator-3

CoCoA+: An Advanced Congestion

Control Mechanism for CoAP
Enhancement in CoCoA Client - Server Throughput and Latency

Contiki OS,

Cooja

Evaluation of Advanced Congestion

Control Mechanism for Unreliable

CoAP Communication

Analysis of congestion for unreliable

communication with CoAP Observe
Publisher - Subscriber Throughput, PDR and Latency

Experimental

Testbed

Experimental Evaluation of alternative

Congestion Control algorithms for

Constrained Application Protocol (CoAP)

Comparison of CoAP, CoCoA and other

two TCP based congestion control

algorithms

Client - Server

Number of retransmissions, Flow

Completion Time (FCT) and

RTO

Experimental

Testbed

CoAP Congestion Control

for the Internet of Things

Explain how we can handle congestion

using CoAP in IoT
Client - Server Throughput

Experimental

Testbed,

FlockLab

An Analysis and Improvement of

Congestion Control in the CoAP

Internet of Things Protocol

Improvement in the mechanism to estimate

Variable Backoff Factor
Client - Server Throughput

Contiki OS,

Cooja

Experiment Evaluation of Congestion

Control for CoAP Communications without

End-to-End Reliability

Handle the congestion that caused by

NON Confirmable messages
Publisher - Subscriber PDR and Latency

Experimental

Testbed,

FIT/IoT-LAB

Adaptive Congestion Control mechanism in

CoAP Application Protocol for

Internet of Things

Mechanism to handle congestion in CoAP

based on traffic priority
Client - Server - -

20

Table 2.1: Classification of Congestion Control Mechanisms for CoAP - Contd...

Paper Name Overview Applications
Performance

Metrics

Simulation

Environments

Round Trip Time based Adaptive Congestion

Control with CoAP for Sensor Network

Mechanism to handle congestion in CoAP

through retransmissions count
Client - Server RTO and Throughput

Experimental

Testbed

Design and Evaluation of a Rate based

Congestion Control mechanism in CoAP

for IoT Applications

Traffic based congestion control mechanism

for CoAP
Client - Server

Data collection delay, Inter-

packet delivery delay and

Packet Loss Ratio (PLR)

Contiki OS,

Cooja

pCoCoA: A precise Congestion

Control algorithm for CoAP

An adaptive congestion control mechanism

for CoCoA
Client - Server

RTO, Number of

retransmissions, Throughput

and Delay

Contiki OS,

Cooja

FASOR Retransmission TimeOut and

Congestion Control mechanism for CoAP

A new adaptive Retransmission Timeout

based congestion control mechanism for IoT
Client - Server

FCT, Number of retransmissions

and RTO

Experimental

Testbed

Is CoAP Congestion Safe?
Proposed new backoff techniques for CoAP

based congestion control mechanism
Client - Server FCT and Number of retransmissions

Experimental

Testbed

BDP-CoAP: Leveraging Bandwidth-Delay

Product for Congestion Control in CoAP

A new rate based congestion control mechanism

for CoAP (BBR + CoAP)
Client - Server

Goodput, Fairness and Number of

retransmission

Contiki OS,

Cooja

CoCo-RED: Congestion Control in

CoAP Observe group Communication

Modified the RED AQM mechanism and used

Fibonacci based backoff to develop a

new congestion control mechanism for CoAP

IoT services

through AQM
Response time and Packet loss

Contiki OS,

Cooja

CACC - Context Aware Congestion

Control algorithm for lightweight CoAP/UDP

based Internet of Things traffic

A novel congestion control mechanism for CoAP Client - Server
Throughput, Energy consumption,

Delay and Packet loss

Contiki OS,

Cooja

Enhancement of CoAP based Congestion

Control IoT Network - a novel approach

A new mechanism to handle the congestion

control in CoAP
Client - Server

Latency, Energy consumption, and

Packet loss

Contiki OS,

Cooja

mlCoCoA - a machine learning based

Congestion Control for CoAP

A machine learning based adaptive congestion

control mechanism for CoAP
Client - Server Throughput

Contiki OS,

Cooja

Distance based Congestion Control

mechanism for CoAP in IoT

A distance and RTT based technique to

predict the network congestion
Client - Server PDR and Delay

Contiki OS,

Cooja

EnCoCo-RED: Enhanced Congestion

Control mechanism for CoAP Observe

group Communication

Enhancement to the CoCo-RED congestion

control mechanism

IoT services

through AQM
Packet loss and Response time

Contiki OS,

Cooja

21

Yet another adaptive congestion control scheme for CoAP is proposed in (Lee et al.,

2016) which relies on accurately estimating the RTT of retransmitted packets, precisely

when a single packet needs multiple retransmissions (i.e., when retransmissions fail). The

authors show that this approach offers improvements in terms of throughput and number

of successful transactions when the number of clients is high (i.e., when the network is con-

gested), but otherwise performs similarly to CoAP. However, this approach is not effective

when a packet does not need multiple retransmissions (i.e., when a single retransmission

suffices).

Real-time IoT traffic is diverse in nature. Hence, a thorough study is presented (An-

cillotti and Bruno, 2017) to evaluate the performance of CoCoA by considering typical

IoT scenarios with different traffic patterns. CoAP and CoCoA have been assessed by

means of simulations with different loads that have been offered as per the increasing

number of clients. The performance of CoCoA is worse than that of CoAP when the

number of clients are less and with bursty traffic; it worsens further. It was observed that

the performance of CoCoA was poor for bursty traffic patterns due to inappropriate RTO

estimation.

CoAP with a new rate based congestion control (CoAP-R) (Ancillotti et al., 2018)

is yet another algorithm targeted to improve the performance of CoAP in bursty traffic

environments. CoAP-R controls the sending rate of CoAP sources and endorses a rate-

based mechanism (instead of window-based mechanisms) to control the traffic. CoAP-R

is designed to achieve maximum bandwidth from the bottleneck link capacity and allocate

the network resources based on the max-min fairness. The simulation results in the paper

show that CoAP-R distributes the network resources equally amongst the senders and

reduces the delay compared to CoAP and CoCoA.

Depending on extensive evaluation, (Bolettieri et al., 2018) highlights the shortcomings

of CoCoA: RTO too close to RTT, lack of weak estimator update, insufficient weak esti-

mator weight, RTO peaks in response to RTT decrease and Excessive RTO growth. This

work also makes an observation about the poor performance of CoCoA in bursty traffic

patterns. To address these limitations, a new extension called precise CoCoA (pCoCoA)

is proposed and evaluated. pCoCoA eliminates the use of weak estimator, introduces a

new way to initialize RTT measurement parameters and reduces spurious retransmissions.

The results show that pCoCoA reduces the number of retransmissions without affecting

the throughput and delay. However, some of the fixed values introduced in the paper

22

might not be suitable for a wide range of IoT scenarios.

IoT plays a crucial role in health-related applications. A comparative study of CoAP

and CoCoA in e-health scenarios is presented in (Hasan and Ahmed, 2018). The authors

evaluate the performance of CoAP and CoCoA in different topologies such as single client

to single server, multiple clients to single server, single client to multiple servers and mul-

tiple clients to multiple servers. The parameters considered for comparison are goodput,

packet delivery ratio, average delay and total number of packets dropped. It is observed

that the total number of packets dropped in CoCoA is much lesser than CoAP. Moreover,

CoCoA outperforms CoAP in terms of goodput in all topologies. The authors also show

that CoCoA consumes less bandwidth, is more adaptive and scalable than CoAP.

Bufferbloat refers to the problem of having excessive queue delays in the network. In

(Järvinen et al., 2018), the authors state that different congestion control mechanisms

designed for CoAP fail to handle the problem of Bufferbloat and perform spurious re-

transmissions. Through extensive evaluations, the authors show that CoAP and CoCoA

fail to handle the problem of Bufferbloat, and due to this, there is significant wastage

of the network bandwidth. Moreover, authors also find the main cause of inaccuracy in

the backoff logic of RTO. Subsequently, the RTO backoff is modified to overcome this

concern.

Along similar lines, (Jarvinen et al., 2018), attempts to overcome the problem of

bufferbloat in scenarios that are prone to heavy congestion. A new mechanism called

Fast-Slow RTO (FASOR) is proposed which tries to infer whether the packet loss is due

to the wireless link disruption or due to congestion. It implements the following three

fundamental functionalities: Fast RTO computation, Slow RTO computation, and Self-

adaptive retransmission timer backoff mechanism. Fast RTO computation is analogous

to the TCP RTO mechanism except the minimum RTO bound, and it is evaluated for

explicit RTO samples. Slow RTO’s functionalities are similar to those of Karn’s algorithm.

Its usage is to keep minimal time for backoff. The results show that FASOR has shorter

Flow Completion Times (FCT) compared to CoAP and CoCoA, and it controls the RTO

in heavily congested scenarios.

Evaluating a new algorithm in large-scale IoT deployment is a non-trivial task. In

(Vallati et al., 2018), the authors present an evaluation of the default congestion control

mechanism of CoAP in real time experiments with the WiSHFUL platform (Wireless

Software and Hardware platforms for Flexible and Unified radio and network ControL)

23

(Ruckebusch et al., 2017). WiSHFUL is a large-scale experimental platform which offers

a unique interface to design and control the experiment at run-time. The main goal of

this work was to verify the working of WiSHFUL platform, and as part of a case study,

the default CoAP congestion control is compared with a simple algorithm based on the

measured RTT value over time. The results show that the default congestion control

mechanism is more scalable and robust than the simple algorithm.

In (Mišic et al., 2018) a new feature called observe is proposed which provides informa-

tion about the state of a resource at CoAP server to a CoAP client. The authors conduct

experiments and highlight the need to have congestion control at both CoAP clients and

servers, particularly when features like observe are deployed. It is mentioned that different

RTT estimation algorithms can be used at clients and servers but there are no recom-

mendations about the choice of congestion control algorithms that are most suitable. The

authors in (Huang et al., 2014) use TCP-AQM mechanisms to handle congestion in IoT.

Similarly, the authors in (Suwannapong and Khunboa, 2019) attempt to solve the

problem of group communication and observe resources in CoAP that cause buffer over-

flow and packet loss. To overcome this, a new congestion control mechanism for CoAP

Observe Group Communication is proposed called Congestion Control Random Early De-

tection (CoCo-RED). It incorporates the following features: adaptive RTO calculation, a

modification and integration of the TCP AQM algorithm (Random Early Detection), and

the Fibonacci Pre-Increment Backoff (FPB) mechanism. EnCoCo-RED (Suwannapong

and Khunboa, 2021) is an enhancement over CoCo-RED that replaces the FPB with static

backoff and improves the drop probability in the revised RED algorithm to better control

the network congestion in different traffic scenarios. The authors show that EnCoCo-

RED effectively prevents the buffer overflow that leads to congestion and outperforms

the CoAP and the CoCo-RED in terms of the settling time, throughput, packet loss, and

response time.

A new rate based congestion control algorithm is proposed in (Ancillotti and Bruno,

2019) for CoAP, called BDP-CoAP, which is derived from the TCP BBR (Bottleneck

Bandwidth and Round-trip propagation time) protocol. BBR’s bottleneck bandwidth

estimator has been redesigned to deal with lossy links and channel unfairness, which are

common in constrained IoT networks. A node in an IoT network might acquire a channel

for a short time and achieve high instantaneous delivery rates. To avoid overestimation of

bandwidth in the event of short-term unfairness of channel access, BDP-CoAP employs

24

an estimator that combines both maximum and minimum delivery rate measurements to

derive bottleneck bandwidth estimates. CoAP sends only one packet at a time, hence

the typical BBR estimation technique does not fit in BDP-CoAP. Thus, BDP-CoAP

monitors the number of missed bandwidth samples over the observation period and uses

this information to make the bottleneck bandwidth estimator more or less aggressive in

order to adjust the transmission rate accordingly. The results show that BDP-CoAP

improves throughput and fairness while obtaining similar goodput as CoAP and CoCoA.

According to the Karn and Partridge algorithm (Karn and Partridge, 1987), RTT

calculation of retransmitted packets causes ambiguity which we described in Chapter 1.

CoCoA calculates the RTT of retransmitted packets, but it has been shown to be inac-

curate when the traffic is bursty (Ancillotti and Bruno, 2017; Hasan and Ahmed, 2018),

and hence, results in spurious retransmissions. In (Akpakwu et al., 2020), the author

proposed a new lightweight Context-Aware Congestion Control (CACC) mechanism for

CoAP that leverages CoCoA. CACC provides an adaptive congestion control mechanism

that employs strong, weak, and failed RTT estimators to determine the exact network

characteristics, as well as Retransmission Count (RC) for smoothed RTT observation and

lower bound restriction to address the issue of fluctuating IoT traffic. The results show

that CACC reduces the number of retransmissions while maintaining higher throughput,

and minimizes packet losses in various network scenarios when compared to CoAP and

CoCoA.

Several studies show that CoCoA does not adapt to the network conditions because it

uses constant coefficients and weight values to estimate the RTO (Ancillotti and Bruno,

2017; Hasan and Ahmed, 2018; Demir and Abut, 2020). Hence, the authors in (Demir

and Abut, 2020) proposed mlCoCoA, a new congestion control mechanism that uses

machine learning techniques to dynamically determine RTO-related coefficients based

on IoT network characteristics. The results show that mlCoCoA outperforms existing

mechanisms in terms of throughput. However, mlCoCoA makes use of a predefined dataset

that contains the constant coefficient values. It also takes into account the fixed input

variables such as number of clients, packet size, and physical layer PDR and applies a

machine learning method on top of that. Furthermore, the authors obtained the training

set offline during the learning phase and manually passed the predicted coefficients to

mlCoCoA for RTO estimation. These features of mlCoCoA make it unsuitable for real

IoT deployments because parameters such as the number of clients, packet size and PDR

25

are highly varying in nature, thus requiring more training.

A new CoAP based congestion control mechanism called FLCoCoA is proposed in

(Aimtongkham et al., 2021) that optimally adjusts the initial RTO using relative weights

and an adaptive RTO backoff mechanism by using fuzzy logic for retransmissions. It

estimates RTT based on the relative signal strength, RTT Interval, and RTT Jitter to

better respond to early congestion scenarios. The results show that FLCoCoA reduces the

number of retransmissions and consumes less power while achieving higher throughput

and less delay compared to other congestion control mechanisms.

The authors in (Gheisari and Tahavori, 2019) propose a new congestion control mech-

anism for CoAP that uses a learning automata to tune the group of parameters used to

control the congestion. An adaptive congestion control mechanism for CoAP is proposed

in (Deshmukh and Raisinghani, 2020) that employs a dynamic scaling factor rather than

a fixed scaling factor for RTO estimation.

To improve the CoAP congestion control mechanism, a new Distance-based Conges-

tion Control mechanism called DCC-CoAP is proposed in (Bansal and Kumar, 2020).

DCC-CoAP uses node distance and RTT measurements to limit the number of retrans-

missions. The primary goal of measuring distance is that it is inversely proportional to

signal strength and directly proportional to RTO. DCC-CoAP considers the distance be-

tween the two communicating nodes in the network. If the distance is large, the probability

of link failures is high due to low signal strength. The authors evaluate the performance of

the DCC-CoAP in homogeneous and mixed traffic scenarios with varying data rate. The

results show that DCC-CoAP has lesser retransmissions and a better packet delivery ratio

and delay than CoAP. However, DCC-CoAP does not take the samples for the retransmit-

ted packet into account. Moreover, DCC-CoAP calculates the distance between the client

and the server using Euclidean distance, which does not provide an accurate distance

when the nodes are dispersed in a multidimensional space. It also employs fixed RTT

values for the first two transmissions. For constants such as k and delta, DCC-CoAP uses

fixed values. DCC-CoAP is built on top of CoAP and estimates RTT using the timestamp

option, which adds overhead to the IoT network. Furthermore, DCC-CoAP employs a

maximum cap limit (i.e., 15 meters) for the distance between two nodes.

Table 2.2 lists the various CoAP-based application layer congestion control mecha-

nisms, along with their characteristics and the underlying mechanisms from which they

were derived.

26

Table 2.2: Summary of existing CoAP-based congestion control mechanisms

Congestion control scheme Backoff mechanism RTT/RTO estimators Derived from

CoAP BEB None None

CoCoA BEB Strong and Weak LinuxRTO

CoCoA+ VBF Strong and Weak CoCoA

CoCoA-S VBF Strong and Weak CoCoA

CoCoA-E VBF Strong and Weak CoCoA and Eifel

4-State-Strong 4-state VBF Four estimators CoCoA

Enhanced CoCoA VBF Strong CoCoA

pCoCoA VBF Strong CoCoA

CoAP-R Rate control Monitoring RTT variations CoAP and RTT monitoring

BDP-CoAP Rate control Strong TCP BBR

CCCLA Rate control Strong Learning automata

mlCoCoA VBF Strong and Weak Machine learning

CACC Dynamic RTO Strong, Weak and Failed CoCoA

CoCo-RED FPB None CoAP

2.2.2 Routing layer solutions

Another approach of controlling network congestion is by designing load-aware routing

protocols. It is done by making all communications follow a hop-by-hop approach, but

this significantly increases the control overhead in the network as each node has to share

the measured congestion level with other nodes. Several insightful RPL surveys have been

proposed, which reviewed the current state of RPL and the new enhancements required

to meet recent trends (Lim, 2019; Iova et al., 2016; Kim et al., 2017a; Kamgueu et al.,

2018; Ghaleb et al., 2018).

An analysis of congestion in 6LoWPAN (IPv6 over Low-Power Wireless Personal Area

Networks) networks shows that a large number of packet drops at the routing layer are

due to buffer overflow rather than channel loss (Al-Kashoash et al., 2016a). So, the

authors in (Al-Kashoash et al., 2016b) proposed a new routing metric for RPL which

prohibited the number of packet losses due to buffer overflow when congestion occurred.

The authors proposed a new routing metric called Buffer Occupancy (BO) and a new

objective function called Congestion-Aware Objective Function (CA-OF). The proposed

27

technique shows improvement in the throughput and packet delivery ratio. Along the

same lines, the authors in (Al-Kashoash et al., 2016a) proposed that buffer occupancy

should be used as a measure of congestion, and accordingly proposed a new version of

RPL. Such an approach requires extra control messages to exchange the buffer occupancy

information among neighbor nodes, and hence incurs more overhead.

Most of the packet losses in heavy traffic scenarios are due to congestion and load

balancing problem that emerge during the parent selection in routing (Kim et al., 2016,

2017a). In order to tackle this issue, a new mechanism called simple Queue Utilization

based RPL (QU-RPL) has been proposed in (Kim et al., 2016). In QU-RPL, parent

selection is done based on queue utilization of the neighbor nodes as well as hop distances

from the RPL border router. This mechanism is very adequate in heavy queue losses

and increases the packet delivery ratio. In (Kim et al., 2017b), the authors note that

when transmission power and routing topology are controlled collectively and attentively,

a multihop wireless network gains better bandwidth and stability. There is a significant

loss in bandwidth due to the construction of routing topology (based on link quality

and hop distance) with fluctuation in transmission power. So, a robust and dispersed

mechanism called Power Controlled RPL (PC-RPL) is proposed. It’s a control mechanism

which handles transmission power and routing topology efficiently. In (Kim et al., 2015),

to understand the trade-offs in choosing TCP over RPL, an empirical study has been

done on it. Their results show how embedded TCP interoperates with Linux TCP and

underlying RPL (and vice versa).

This work mainly focuses on optimizing the congestion control mechanisms used in

CoAP and CoCoA.

28

Chapter 3

Geometric Sequence Technique for

Effective RTO Estimation in CoAP

CoAP

Non-RTT RTT

CoAP-Eifel CoCoA

CoCoA++

Fullbackoff 1

Fullbackoff 2

GST-CoAP

Fullbackoff 1

Fullbackoff 2

GSRTC

Figure 3.1: Contribution (highlighting (GST-CoAP))

This chapter discusses a simple non-RTT based congestion control mechanism pro-

posed in this work, called GST-CoAP, to improve RTO estimation in CoAP (as shown in

Figure 3.1). Unlike CoAP, which resets the RTO to its default value after receiving an

ACK for the retransmitted packet, GST-CoAP gradually reduces the RTO to its default

value based on the number of consecutive successful transmissions. This avoids a single

successful transmission causing a large value of RTO (due to several failed transmissions)

to fallback to the default value and unlearn the network behaviour.

29

3.1 Motivation

This section emphasizes on the need for a better RTO estimation technique for CoAP. For

every new transmission, CoAP sets the initial RTO to a value that is selected randomly

between [2s, 3s]. This means that when the network is not congested, CoAP does not

adapt the RTO and instead resets it to a low RTO value which could lead to spurious

retransmissions when RTT is high.

Two new techniques, namely Fullbackoff1 variant and Fullbackoff2 variant are pro-

posed in (Järvinen et al., 2018) to improve the RTO estimation in CoAP. These tech-

niques do not use RTT measurements; hence, the working of the original CoAP algorithm

remains largely unaffected. Unlike CoAP, both variants avoid resetting the RTO imme-

diately after receiving an ACK for the retransmitted packet.

RTO ([2s, 3s])

RTO ([2s, 3s])

RTO ([2s, 3s])

CoAP
client

CoAP
server

CON

ACK

CON

ACK

CON

ACK

time

Normal
phase

time

RTO
(Retained)

Normal
phase

X

CON

ACK
X

Congestion
phase

CON

ACK

CON

ACK

CON

ACK

(BEB)
RTO = RTO * 2

(BEB)
RTO = RTO * 2

(Reset)
RTO ([2s, 3s])

Normal
phase

Figure 3.2: Working of Fullbackoff1 variant of CoAP

30

3.1.1 Fullbackoff1 Variant

Initially, the working of this technique is similar to that of the original CoAP algorithm

as it can be noted from Figures 2.2 and 3.2. The primary difference in this technique is

that it does not reset the RTO when an ACK for a retransmitted packet is received. It

retains the older value of RTO for the subsequent transmissions (see RTO (Retained) label

in Figure 3.2) and resets the RTO only when the packet transmission succeeds without

retransmissions (see (Reset) label in Figure 3.2). However, a limitation is that a few

successful transmissions in between several failed ones (that needed retransmissions) can

often lead to RTO being reset.

3.1.2 Fullbackoff2 Variant

RTO ([2s, 3s])

RTO ([2s, 3s])

RTO ([2s, 3s])

CoAP
client

CoAP
server

CON

ACK

CON

ACK

CON

ACK

CON

ACK

Normal
phase

X

CON

ACK
X

Congestion
phase

CON

ACK

CON

ACK

(BEB)
RTO = RTO * 2

(BEB)
RTO = RTO * 2

Normal
phase

RTO
(Retained)

RTO > [2s, 3s]

RTO < [2s, 3s]

RTO = RTO / 2

RTO = RTO / 2

(Reset)
RTO ([2s, 3s])

Normal
phase

Normal
phase

CON

ACK

Normal
phase

CON

ACK

time time

Figure 3.3: Working of Fullbackoff2 variant of CoAP

31

This technique overcomes the limitation of Fullbackoff1 variant. Instead of resetting

the RTO when a single packet transmission succeeds without retransmissions, this tech-

nique gradually reduces the RTO value if consecutive packets are successfully cleared

without retransmissions. For every packet that is cleared without retransmissions, the

RTO is reduced by half as shown in Figure 3.3. Eventually, the RTO is reset when its

value falls below the recommended default value i.e., when RTO < [2s, 3s]. Thus, the

RTO value is increased in a binary exponential manner (i.e., doubled) when the packet

transmission fails and it is decreased in a binary exponential manner (i.e., halved) when

a packet is cleared without retransmissions. This approach of decreasing the RTO value

gradually ensures that a few successful transmissions in between several failed transmis-

sions will not cause the RTO to be reset, like it was done in theFullbackoff1 variant. The

geometric sequence technique proposed in this work builds upon the Fullbackoff2 variant.

3.2 GST for RTO estimation in CoAP

3.2.1 Design

GST-CoAP is a simple enhancement to the Fullbackoff2 variant. Unlike Fullbackoff2

variant which decreases RTO in a binary exponential manner (i.e., reduces RTO by half)

when packets are cleared without retransmissions, GST-CoAP decreases RTO in a pattern

that follows a geometric sequence, as shown in Eq. (3.1).

RTOnext = RTOprev ⇥ r
count

, count 6= 0 (3.1)

where RTOnext represents the RTO value to be used for the next transmission, RTOprev

represents the RTO value that was used for the previous transmission, r is a constant (12),

and count indicates the number of consecutive ACKs received.

The main goal of GST-CoAP is to increase the network throughput and minimize the

FCT by quickly reducing the RTO value to its default when the network is not congested

and packets are getting cleared consecutively without retransmissions. For example, as-

sume that the Fullbackoff2 variant technique is used and the current value of RTO is 128s

(= 27). It would take 7 packets to get cleared consecutively without retransmissions for

RTO to get reduced to its initial value of 2s1 because with every ACK arrival, the RTO is

reduced to half. In GST-CoAP, it would take only 3 packets to get cleared consecutively
1Typically the initial value of RTO is between 2s and 3s, but we avoid this and assume it to be exactly

2s to simplify the explanation.

32

Algorithm 1: Geometric Sequence Technique
1 Initialize the RTO from the interval [2s, 3s]
// count represents the number of consecutive ACKs received so far

2 count = 0
// RTO calculation

3 if this is a confirmable message then
4 if maximum number of retries are not exhausted then
5 if this is the first transmission then
6 RTO = RTO + (random() % response timeout backoff mask)
7 else

// Double the RTO

8 RTO <<= 1
9 end

10 end
11 end
12 if there are more packet transmissions to be done then
13 if this is not a first transmission then

// Retain the previous RTO

14 RTO = RTOprevious

15 else
// Increment the count variable

16 count++
17 RTO = RTO ⇥ (12)

count

18 if the current RTO is lesser than the default RTO then
// reset the RTO to the default

19 RTO = from the interval [2s, 3s]
20 end
21 end
22 end

without retransmissions for RTO to get reduced to its initial value of 2s because every

consecutive ACK arrival increases the count by 1 in Eq. (3.1). Thus, GST-CoAP avoids

unnecessarily keeping RTO value higher when the network is not congested and packets

are getting cleared consecutively without retransmissions. This approach improves the

network throughput and minimizes the FCT for IoT devices. GST-CoAP is described in

Algorithm 1 and its basic working is demonstrated in Figure 3.4.

3.2.2 Implementation Challenges

CoAP’s implementation in Contiki OS (Dunkels et al., 2004) has been used to imple-

ment Fullbackoff variants of CoAP and GST-CoAP. It requires 52 lines of code change

in the CoAP implementation. er-coap-transactions.c and er-coap-transaction.h files in

contiki/apps/er-coap directory have been modified to implement Fullbackoff variants of

CoAP and GST-CoAP.

33

RTO ([2s, 3s])

RTO ([2s, 3s])

RTO ([2s, 3s])

CoAP
client

CoAP
server

CON

ACK

CON

ACK

CON

ACK

CON

ACK

Normal
phase

X

CON

ACK
X

Congestion
phase

CON

ACK

CON

ACK

(BEB)
RTO = RTO * 2

(BEB)
RTO = RTO * 2

Normal
phase

RTO
(Retained)

RTO > [2s, 3s]

RTO < [2s, 3s]

RTO = RTO / 21

RTO = RTO / 22

(Reset)
RTO ([2s, 3s])

Normal
phase

Normal
phase

CON

ACK

Normal
phase

CON

ACK

time time

Figure 3.4: Working of GST for RTO estimation in CoAP

GST-CoAP uses a geometric sequence to reduce RTO as shown in Eq. (3.1). One of

the most difficult aspects of the GST-CoAP’s implementation was to integrate the exp ()

function in Contiki to reduce the RTO value in an exponential pattern. Although Contiki

contains some built-in functions, such as expf (), the implementation complexity causes

memory overflows. Hence, we have created a simple C function in er-coap-transaction.c

that uses the shift operator (integer arithmetic).

34

Border router ServerClient

1

9

2 3 4

5 6

7 8

Figure 3.5: Grid Topology - GST-CoAP

3.3 Evaluation

3.3.1 Network Configuration

There are several implementations of CoAP that are openly available, but the Fullback-

off1 and Fullbackoff2 variants in (Järvinen et al., 2018) were implemented in libcoap

(Bergmann, 2012). However, for our experiments, we have used the Cooja simulator (Os-

terlind et al., 2006) in Contiki-3.1 and a real testbed at FIT/IoT-LAB (Adjih et al., 2015).

Thus, besides GST-CoAP, we implemented the Fullbackoff1 and Fullbackoff2 variants in

Contiki-3.1. FIT/IoT-LAB is a state-of-the-art facility which provides a large-scale plat-

form for the research community to test their IoT protocols and applications. To perform

experiments in Cooja and FIT/IoT-LAB, we have considered a grid topology of (3 ⇥ 3)

as shown in Figure 3.5. Node 1 at the center is configured to be a Border router, Node

9 at the top-right corner is configured as a Server and all the other nodes are configured

as Clients. This is a popular topology used in the literature to evaluate the congestion

control mechanisms of CoAP (Betzler et al., 2014, 2015b). The most congested nodes

in the grid topology are internal nodes as they are within the transmission range of four

adjacent nodes. In the Cooja simulator, T-mote Sky (AdvanticSystemsServices, 2014) is

used for the Border router and Zolerita z1 (Zolertia, 2014) is used for Clients and Server,

whereas ARM Cortex microcontroller based M3 mote is used for all nodes in FIT/IoT-

LAB. Contiki’s erbium CoAP (er-coap) application has been used for the Clients to send

a request via the Border router, and wait for the Server to respond. The packet sending

35

interval has been set to 100ms. All experiments are repeated five times and the duration

of each experiment is 600s. We have used the average of these five runs to compare the

results obtained by using GST-CoAP to those obtained with original CoAP, CoAP with

Fullbackoff1 and CoAP with Fullbackoff2. The source code of GST-CoAP is available at

(SourceCode, 2020a).

3.3.2 Performance Metrics

The following performance metrics have been considered for evaluating the effectiveness

of the proposed technique.

• Flow Completion Time (FCT): It indicates the total amount of time needed

to complete the transmission of all the packets in one flow. In this work, FCT is

measured as the time taken to exchange 50 messages successfully.

• Total number of retransmissions: Retransmissions are very expensive in con-

strained networks because they lead to wastage of resources. Hence, this parameter

has been considered for our work.

• Throughput: The throughput is defined as the total number of bytes sent per

second. It has been measured over a 50ms interval for every client in this work.

3.3.3 Results and Discussions

A Flow Completion Time (FCT)

Figure 3.6 shows the comparison of different techniques in terms of FCT. We have mea-

sured the FCT for 50 request-response pairs successfully completed per client. Figure 3.6a

and 3.6b show the results obtained from Cooja simulator and FIT-IoT/LAB, respectively.

In the experiments performed on Cooja simulator, the FCT with GST-CoAP is 31.25%

lesser than that with CoAP, and 20.5% and 14.97% lesser than that with Fullbackoff1

and Fullbackoff2, respectively. In the experiments performed on FIT/IoT-LAB, the FCT

with GST-CoAP is 34.86% lesser than that with CoAP, and 23.36% and 16.84% lesser

than that with Fullbackoff1 and Fullbackoff2, respectively.

The default CoAP mechanism has the maximum FCT among all the techniques be-

cause it resets RTO for every new transmission, which leads to a large number of spurious

retransmissions. Hence, the transmission of 50 messages takes a lot more time due to

36

 20

 30

 40

 50

 60

N
od

e-
2

N
od

e-
3

N
od

e-
4

N
od

e-
5

N
od

e-
6

N
od

e-
7

N
od

e-
8

F
lo

w
 C

o
m

p
le

tio
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Clients

CoAP
CoAP-Fullbackoff1

CoAP-Fullbackoff2
GST-CoAP

(a) FCT (Cooja)

 20

 30

 40

 50

 60

N
od

e-
2

N
od

e-
3

N
od

e-
4

N
od

e-
5

N
od

e-
6

N
od

e-
7

N
od

e-
8

F
lo

w
 C

o
m

p
le

tio
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Clients

CoAP
CoAP-Fullbackoff1

CoAP-Fullbackoff2
GST-CoAP

(b) FCT (FIT/IoT-LAB)

Figure 3.6: Comparison of FCT in Cooja and FIT/IoT-LAB

frequent and unnecessary retransmissions. The Fullbackoff variants clearly offer an im-

provement over the default CoAP. When an ACK for a retransmitted packet is received,

Fullbackoff1 retains the previous RTO value rather than resetting it to the default value,

and hence, it has lesser FCT compared to CoAP. Fullbackoff2 has lesser FCT than Full-

backoff1 because Fullbackoff2 gradually reduces the RTO and hence, avoids spurious

retransmissions.

B Total number of retransmissions

If an ACK for a retransmitted packet is received, the default CoAP mechanism resets the

RTO to a low value between [2s, 3s]. This low value of RTO could have an impact on the

next packet transmission because if the network is congested and RTT is higher than the

RTO, spurious retransmissions would occur and overload the buffer, resulting in packet

drops. In Fullbackoff variants, the RTO value from the previous transmission is retained

to allow sufficient time for the client to wait for the ACK and avoid unnecessary retrans-

missions. As shown in Figure 3.7, GST-CoAP reduces the number of retransmissions

significantly when compared to other techniques. GST-CoAP uses a geometric sequence

to reduce the number of consecutive successful packet transmissions needed to reach the

default RTO value. Hence, if the network is not congested and packets get cleared with-

out retransmissions, GST-CoAP senses this as an opportunity to quickly reduce the RTO

and maximize the throughput. But if the network is congested and packet transmissions

require retransmissions, it keeps the RTO to a higher value to avoid spurious timeouts.

Fullbackoff2 has lesser retransmissions than Fullbackoff1 as expected, and Fullbackoff1

has lesser retransmissions than the default CoAP technique as anticipated.

37

 100

 200

 300

 400

 500

Simulation (Cooja) Testbed (FIT/IoT-LAB)

T
o

ta
l n

u
m

b
e
r

o
f

re
tr

a
n
sm

is
si

o
n
s

(i
n
 p

a
ck

e
ts

)

CoAP
CoAP-Fullbackoff1
CoAP-Fullbackoff2

GST-CoAP

Figure 3.7: Total number of retransmissions: Cooja and FIT/IoT-LAB

C Throughput

A Cumulative Distribution Function (CDF) is used in Figure 3.8 to compare the through-

put obtained with GST-CoAP and other techniques. The throughput of every client is

calculated in terms of the number of bytes sent per second. It is observed from the plots

that GST-CoAP offers a better overall throughput because it maintains RTO values such

that there are fewer timeouts. CoAP has the lowest throughput due to unnecessary re-

transmissions. It means that the client has to wait longer before sending new packets

over the network, resulting in lower network throughput. Additionally, GST-CoAP has

lesser FCT and retransmission rates than other techniques, which increases the chances

of the packet being transmitted successfully. As a result, the throughput of GST-CoAP

is higher when compared to other techniques. The default CoAP mechanism achieves

the least throughput, and Fullbackoff2 variant has a marginally better throughput than

Fullbackoff1.

3.4 Inferences

GST-CoAP uses a geometric sequence technique to gradually reduce RTO to its default

value based on the number of consecutive successful transmissions. The results obtained

from simulation studies and real time experiments validate that GST-CoAP minimizes

the FCT, reduces the total number of retransmissions in the network and enhances the

per-node throughput compared to existing Fullbackoff mechanisms and CoAP.

38

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(a) Client 1

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(b) Client 2

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(c) Client 3

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(d) Client 4

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(e) Client 5

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(f) Client 6

0 300 600 900 1200 1500

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
Fullbackoff1
Fullbackoff2
GST-CoAP

(g) Client 7

Figure 3.8: Throughput of CoAP and Variants in FIT/IoT-LAB

39

GST-CoAP is easy to deploy since it requires minor modifications to the working of

original CoAP mechanism, and it is easy to integrate with other CoAP-based congestion

control mechanisms developed so far. CoAP and GST-CoAP are non-RTT based, hence

the overhead involved in RTT calculations are avoided, thereby minimizing the memory

requirements. Thus, GST-CoAP is most suitable for devices that require memory foot-

print to be extremely low. Example use cases involve industry automation (smart grids)

and healthcare, where sensor devices with extremely low memory footprints are deployed.

40

Chapter 4

Effective RTO estimation using Eifel

Retransmission Timer in CoAP

4.1 Motivation

The default RTO estimation in CoAP is insensitive to network conditions because the

RTO is randomly selected from a fixed interval, relies on packet loss to update it, and

does not adapt according to the RTT. If the selected RTO value is lower than the RTT,

network resources will be wasted due to spurious retransmissions, whereas if the RTO

is significantly higher than the RTT, network resources will be wasted due to the large

amount of time taken to detect packet losses. Thus, an adaptive RTO which is based on

RTT is necessary to alleviate the aforementioned issues and improve network performance.

CoAP

Non-RTT RTT

CoAP-Eifel CoCoA

CoCoA++

Fullbackoff 1

Fullbackoff 2

GST-CoAP

Fullbackoff 1

Fullbackoff 2

GSRTC

Figure 4.1: Contribution (highlighting (CoAP-Eifel))

41

This chapter discusses an adaptive congestion control mechanism for CoAP which

estimates the RTO based on RTT measurements, as shown in Figure 4.1. The Eifel

Retransmission Timer is a popular algorithm originally proposed for TCP. It assesses

prevalent network conditions by measuring RTT and accordingly sets the TCP RTO. This

work proposes to leverage the benefits of Eifel Retransmission Timer by integrating it with

CoAP (when used with UDP) to obtain better RTO estimates and control congestion.

4.2 Overview of TCP-Eifel

4.2.1 TCP-Eifel

TCP-Eifel consists of three components: Eifel Algorithm (Ludwig and Sklower, 2000),

Eifel Retransmission Timer and Retransmit forever, as shown in Figure 4.2.

TCP Eifel

Eifel Algorithm Eifel Retransmission
Timer

Retransmit
forever

Figure 4.2: Components of TCP-Eifel

In the event of a packet loss followed by a retransmission, TCP RTO estimation process

faces an ambiguity due to the fact that an ACK received could belong to an original

transmission or the retransmission of the packet. The Eifel Algorithm eliminates this

ambiguity by using the timestamp information available in the TCP header to distinguish

ACK of an original packet and retransmitted packet.

Standard TCP decides to close down a connection after a fixed number of unsuccessful

retransmissions. However, this is not suitable for time-insensitive applications as they

can tolerate longer disconnections. Thus, the Retransmit Forever feature of TCP-Eifel

proposes that the decision to close down a connection must be made by the application

layer rather than the transport layer.

Eifel Retransmission Timer was introduced to eliminate the problems identified in

BSD-Lite’s (Berkeley Software Distribution) distribution of TCP (TCP-Lite). It was

42

observed that Eifel Retransmission Timer is a more accurate predictor of the upper bound

of RTT and reacts faster to packet losses. Hence, it was shown to be an effective alternative

to TCP-Lite’s retransmission timer.

4.2.2 Eifel Retransmission Timer

This timer was proposed to overcome four major problems identified with the RTO esti-

mation technique in TCP-Lite, which is the name given to the TCP implementation in

4.4 BSD-Lite distribution of Berkeley Socket Distribution (BSD). The RTO estimation

technique of TCP-Lite is governed by Eq. (4.1) to (4.4), where RTT is the last measured

RTT or current RTT, SRTT is the smoothed RTT estimator, � is the difference between

RTT and SRTT, RTTVAR is the SRTT deviation estimator and ticks represent the clock

ticks.

� = RTT � SRTT (4.1)

SRTT = SRTT + 0.125⇥ � (4.2)

RTTV AR = RTTV AR + 0.25⇥ (|�|�RTTV AR) (4.3)

RTO = MAX(SRTT + 4⇥RTTV AR, 2⇥ ticks) (4.4)

The four problems identified by the authors of Eifel Retransmission Timer with this

technique are: (i) using an absolute value of � in Eq. (4.3) leads to an increase in RTO

even when RTT < SRTT i.e., � is negative. (ii) the constants 0.125, 0.25 and 4 do not

work when RTT sampling rate is more than 1 packet per congestion window (cwnd) of

TCP sender. (iii) a bug in the re-initialization of RTO which makes the overall technique

conservative, and (iv) high timer granularity used in BSD operating system. A detailed

discussion of these problems is provided in (Ludwig and Sklower, 2000).

Accordingly, the authors (Ludwig and Sklower, 2000) propose Eifel Retransmission

Timer technique for RTO estimation, which is shown by Eq. (4.5) to (4.11), where flight,

ssthresh and cwnd indicate the amount of data sent by a TCP sender, slow start threshold

and the congestion window of a TCP flow, respectively. The constants 0.125, 0.25 and 4

used in TCP-Lite are replaced by a parameter GAIN. Thus, Eq. (4.2), (4.3) and (4.4) are

43

replaced by Eq. (4.9), (4.10) and (4.11), respectively to solve the problem (ii) described

earlier. Problem (i) of using an absolute value of � is addressed by Eq. (4.8) and (4.10).

� = RTT � SRTT (4.5)

flight = MAX(ssthresh,
cwnd

2
) (4.6)

GAIN =

8
>>>>><

>>>>>:

1
flight , if RTT sampling rate = 1

2
flight , if RTT sampling rate = 0.5

1
3 , if 1 sample is obtained per RTT

(4.7)

GAIN =

8
><

>:

GAIN, if (� �RTTV AR) � 0

GAIN
2
, if (� �RTTV AR) < 0

(4.8)

SRTT = SRTT + (GAIN ⇥ �) (4.9)

RTTV AR =

8
><

>:

RTTV AR +GAIN ⇥ (� �RTTV AR), if � � 0

RTTV AR, if � < 0
(4.10)

RTO = MAX((SRTT +
RTTV AR

GAIN
), RTT + (2⇥ ticks)) (4.11)

Among the three optimizations proposed in TCP-Eifel, this work proposes to leverage

only one of the features in CoAP: the Eifel Retransmission Timer. Integrating the Eifel

Algorithm in CoAP is not feasible due to the lack of support of timestamps in CoAP.

Additionally, CoAP supports the functionality which is partially similar to the one sug-

gested in Retransmit forever i.e., the application layer decides when to stop attempts to

retransmit. Nonetheless, this is not the first proposal towards leveraging the benefits of

TCP-Eifel in CoAP. In (Balandina et al., 2013), the authors propose a method to cal-

culate RTO for CoAP Simple Congestion Control/Advanced (CoCoA) (Bormann et al.,

2020) by combining ideas from the Eifel Retransmission Timer, Eifel Response Algorithm

(Ludwig and Gurtov, 2005) and wireless rate control techniques. However, the approach

proposed in this work significantly differs from the one proposed in (Balandina et al.,

2013) and follows a simplistic implementation in CoAP.

44

4.3 CoAP-Eifel

4.3.1 Design

Initially, a feasibility study to integrate all the three components of TCP-Eifel with CoAP

was carried out. The Eifel Algorithm could be used with the Eifel Retransmission Timer to

estimate an increasingly optimistic RTO that adapts to the measured fraction of spurious

timeouts. This approach relies on the TCP timestamp option field to resolve retransmis-

sion ambiguity. To replicate this mechanism in CoAP, a timestamp option is required,

but this introduces additional protocol overheads as CoAP does not have a timestamp

option field like TCP. The Retransmit Forever feature aims to keep the connection alive

by continuously retransmitting the last outstanding segment until the application layer

decides to close down the connection. However, this is an overhead for devices that are

constrained by memory and power. Moreover, CoAP partially supports this functionality

by attempting to retransmit atleast 4 times before marking the transmission as a failure.

Hence, only the Eifel Retransmission Timer is chosen to be integrated with CoAP.

4.3.2 RTO estimation in CoAP using Eifel Retransmission Timer

Eifel Retransmission Timer requires modifications before it could be integrated with CoAP

because it was designed to work alongside TCP. Two major changes are required: (i) CoAP

does not measure RTT, so a new RTT measurement technique is required for CoAP (ii)

CoAP does not maintain ssthresh and cwnd parameters, and as a consequence, the flight

parameter used in Eq. (4.6) and (4.7). Depending on the number of packets in flight and

the RTT sampling rate, (Ludwig and Sklower, 2000) suggests different values for GAIN.

CoAP limits the number of outstanding requests per destination to 1 for CON. It follows

a simple Stop-and-Wait mechanism, hence the number of unacknowledged messages is

always restricted to 1, and 1 RTT sample is obtained per RTT. Thus, the third case

shown in Eq. (4.7) holds true for CoAP because it keeps only one outstanding packet

in the network. The following sections describe the details of RTT measurement and

modified RTO estimation technique for CoAP.

A RTT Calculation

For RTT measurements in CoAP, the Karn/Patridge algorithm (Karn and Partridge,

1987) has been used i.e., RTT is not measured for retransmitted packets. Since the

timestamp option is not supported in the CoAP header, the sender cannot distinguish

45

whether the ACK received is for the original packet or the retransmitted packet. The

sender stores the transmission time of a CON message. Upon receiving an ACK, RTT is

measured using the current time and the stored time of transmission of the corresponding

CON message. This latest RTT sample is used to calculate RTO for subsequent packets

exchanged between a sender and receiver. Initially, the RTO is set to 2 ⇥ ticks.

B Estimating RTO

The proposed RTO estimation technique in CoAP by using the modified Eifel Retrans-

mission Timer is described by Eq. (4.12) to (4.17). The main difference is that Eq. (4.7)

has been reduced to Eq. (4.13) for CoAP.

� = RTT � SRTT (4.12)

GAIN =
1

3
, because 1 sample is obtained per RTT (4.13)

GAIN =

8
<

:
GAIN, if (� �RTTV AR) � 0

GAIN
2
, if (� �RTTV AR) < 0

(4.14)

SRTT = SRTT + (GAIN ⇥ �) (4.15)

RTTV AR =

8
<

:
RTTV AR +GAIN ⇥ (� �RTTV AR), if � � 0

RTTV AR, if � < 0
(4.16)

RTO = MAX((SRTT +
RTTV AR

GAIN
), RTT + (2⇥ ticks)) (4.17)

During the lifetime of a connection, SRTT and RTTVAR are updated for every sam-

pled RTT. Until an RTT sample has been obtained between the sender and receiver, RTO

is set to (2 ⇥ ticks) (Betzler et al., 2015b). Once an RTT sample is obtained, RTO is

computed using Eq. (4.17). In the event of a retransmission, the default BEB mechanism

of CoAP is used.

4.3.3 Implementation Challenges

The implementation of CoAP in Contiki OS has been extended to implement CoAP-Eifel.

We have added two new files to the contiki/apps/er-coap directory: er-coap-eifel.c and er-

46

coap-eifel.h. It also necessitates a 62 lines of code change in the er-coap-transactions.c and

er-coap-transactions.h files. In addition, to ensure that CoAP-Eifel compiles successfully,

we have included the er-coap-eifel.c file in Makefile.

Eifel Retransmission Timer uses a RTT calculation to calculate the RTO. Hence, the

most challenging aspect of CoAP-Eifel implementation was to integrate RTT calculation

to CoAP.

4.4 Evaluation

4.4.1 Network Configuration

The Eifel Retransmission Timer has been integrated in the CoAP implementation of

Contiki OS. To test the proposed approach, experiments have been carried out in a testbed

using in FIT/IoT-LAB. FIT/IoT-LAB is a real testbed that provides complete control

over a large number of heterogeneous network nodes and allows to monitor network-related

metrics such as throughput, delay, and others. For the purpose of validation, specially

developed M3 node (M3Node, 2012) on the Saclay site has been used for experiments,

which has STM32 (ARM Cortex M3) microcontroller and an Atmel AT86RF231 2.4 GHz

transceiver. The M3 node has 64 kB of RAM and 512 kB of ROM. The basic erbium

CoAP (er-coap) Contiki application has been used as the firmware for the nodes.

BORDER ROUTERSERVER CLIENTS

Figure 4.3: Half Dumbbell Topology (Saclay, 2012)

47

Dumbbell topology is the most commonly used topology for studying network conges-

tion control. In this work, a half-dumbbell topology has been considered for validation

that consists of three clients on one side connected to a server on the opposite side through

a router, as shown in Figure 4.3. The link between the router and the server creates a

bottleneck which provides an ideal condition to test the performance of the CoAP-Eifel.

Every experiment has been repeated five times for a duration of 300s each, and the av-

erage of these runs has been considered for the analysis. Furthermore, the performance

improvement at each client in the topology has been studied to understand the robustness

of the proposed approach.

4.4.2 Results and Discussions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50

T
im

e
(i

n
 s

ec
o

n
d

s)

Time data points

CoAP-Eifel RTT
CoAP-Eifel RTO

(a) RTT vs RTO: Client 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50

T
im

e
(i

n
 s

ec
o

n
d

s)

Time data points

CoAP-Eifel RTT
CoAP-Eifel RTO

(b) RTT vs RTO: Client 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50

T
im

e
(i

n
 s

ec
o

n
d

s)

Time data points

CoAP-Eifel RTT
CoAP-Eifel RTO

(c) RTT vs RTO: Client 3

Figure 4.4: CoAP-Eifel: RTT vs RTO

CoAP-Eifel is compared with the default RTO mechanism in CoAP. We have used a

testbed as described in Section 4.4.1, with all clients using either CoAP or CoAP-Eifel. For

the ease of understanding, we refer to C (CoAP) and E (CoAP with Eifel Retransmission

Timer) as qualifiers for a metric when referring to its definition or implementation. The

48

key metrics used to evaluate the performance are throughput, delay, and Packet Delivery

Ratio (PDR). Most IoT applications are sensitive to large delays even though a smaller

payload is being transmitted. Hence, a reduction in delay can improve the performance

of most of the IoT applications.

CoAP-Eifel enables RTO in CoAP to respond to changes in RTT. Figure 4.4 shows

the RTT and RTO obtained for each client in the network. For the purpose of validation,

we have compared the RTO of retransmitted packets (obtained after BEB) with the last

sampled RTT in CoAP-Eifel, because RTT of retransmitted packets is not considered in

CoAP-Eifel. As described in Section B of 4.3.2, the initial value of RTO in CoAP-Eifel is

set to (2 ⇥ ticks). Hence, we see an initial peak in RTO in Figure 4.4. It can be confirmed

from Figure 4.4a that RTO converges to RTT and backs off to a conservative level when

a retransmission occurs. The peaks in the graphs can be attributed to retransmissions as

the client falls back to BEB upon packet failure.

0 1500 3000 4500 6000

RTO (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
CoAP-Eifel

(a) RTO: Client 1

0 1500 3000 4500 6000

RTO (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP RTO
CoAP-Eifel RTO

(b) RTO: Client 2

0 1500 3000 4500 6000

RTO (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoAP RTO
CoAP-Eifel RTO

(c) RTO: Client 3

Figure 4.5: RTO: CoAP vs CoAP-Eifel

49

A Cumulative Distribution Function (CDF) is used to compare RTOE with RTOC

and the results are shown in Figure 4.5. It is observed that the range of maximum and

minimum values of RTOC are greater than that of RTOE. This is due to the conservative

approach of RTOC because CoAP does not maintain the network state information in

terms of RTT, whereas RTOE adapts to RTTE.

0 500 1000 1500

Throughput (Bytes/second)

0

0.2

0.4

0.6

0.8

1
C

D
F

CoAP
CoAP-Eifel

Figure 4.6: Throughput: CoAP vs CoAP-Eifel

ThroughputE is larger than ThroughputC as shown in Table 4.1. A Simple Mov-

ing Average (SMA) with an interval size of 50 has been used to compute the CDF of

ThroughputE and ThroughputC as shown in Figure 4.6. Note that the distribution range

of ThroughputE contains larger values as compared to ThroughputC. This behaviour is

due to the lower RTOE values, as observed in Figure 4.5. Hence, with the use of the

Table 4.1: Throughput (in bytes/second)

Time CoAP CoAP-Eifel

50 1141.0 1271.4

100 846.7 1043.2

150 945.4 978.0

200 880.2 945.4

250 1075.8 1238.8

300 358.6 1238.8

50

Eifel Retransmission Timer, CoAP can realize a packet drop earlier. This reduces the idle

time between retransmissions which results in higher throughput.

Table 4.2: Packet Transmission Time (in seconds)

Number of Packets CoAP CoAP-Eifel

500 64.58 65.73

1000 133.75 128.76

1500 204.56 193.65

2000 266.82 255.98

The packet Transmission Time (TT) for various number of packets is shown in Table

4.2. For the first 500 packets, TTC is lesser than TTE. This is due to different initial

RTOs used in CoAP and CoAP-Eifel. Contiki’s implementation of CoAP sets the initial

RTO value to (3 ⇥ ticks) whereas, CoAP-Eifel sets it to (2 ⇥ ticks). Hence, CoAP-Eifel

is initially more aggressive in retransmitting packets, but over time as congestion builds

up, the difference between TTE and TTC increases and stabilises to an average value of 11

seconds, with TTE being lesser than TTC. For convenient comparison of the distribution

of delays across both the experiments, the CDF of DelayE and DelayC is also compared

in Figure 4.7.

0 1000 2000 3000

RTT (ms)

0.2

0.4

0.6

0.8

1

C
D

F

CoAP
CoAP-Eifel

Figure 4.7: RTT: CoAP vs CoAP-Eifel

51

PDR is the ratio of the total number of packets received by the receiver to the total

number of packets sent by the sender. Table 4.3 presents the PDR obtained with both

algorithms, and it can be observed that both provide the same PDR.

Table 4.3: Packet Delivery Ratio (PDR)

CoAP CoAP-Eifel

0.9961 0.9987

The source code of CoAP-Eifel along with the instructions to reproduce the results

presented in this work is available at (SourceCode, 2020b).

4.5 Inferences

CoAP defines a conventional congestion control mechanism that is insensitive to network

conditions. CoAP-Eifel is a simple enhancement to the default algorithm, and it includes

an adaptive RTO calculation based on RTT measurements. The performance of CoAP-

Eifel has been validated and evaluated by performing experiments in a real testbed using

FIT/IoT-LAB. When compared to CoAP in a half dumbbell topology, CoAP-Eifel pro-

vides a better trade-off between delay and throughput, while providing a similar packet

delivery ratio.

The implementation of CoAP-Eifel is different from that of GST-CoAP because it

involves RTT measurements. However, RTT measurements in Eifel are lightweight as

compared to those used in TCP. This ensures that CoAP-Eifel can be easily deployed

in devices with low to moderate memory requirements. Example use cases involve IoT

deployments for home automation (smart homes) and smart agriculture.

52

Chapter 5

Geometric Series based effective RTO

estimation Technique for CoCoA

CoAP

Non-RTT RTT

CoAP-Eifel CoCoA

CoCoA++

Fullbackoff 1

Fullbackoff 2

GST-CoAP

Fullbackoff 1

Fullbackoff 2

GSRTC

Figure 5.1: Contribution (highlighting (GSRTC))

This chapter discusses a Geometric Series based effective RTO estimation Technique

for CoCoA (GSRTC), as shown in Figure 5.1. CoCoA uses fixed weights (0.5 for strong

RTO and 0.25 for weak RTO) to estimate the RTO for the subsequent transmissions.

GSRTC adapts the weight of Strong RTO by using a geometric series based on the number

of consecutive successful transmissions. This helps CoCoA to adapt quickly when the

network conditions are lossless.

53

5.1 Motivation

CoCoA is an enhanced congestion control mechanism over CoAP that adapts RTO based

on RTT. CoCoA uses an EWMA to estimate the RTO for the next transmission. How-

ever, the weights used to estimate the RTO are fixed. These fixed weights lead to slow

adaptation of RTO and affect the performance of the IoT applications. When the network

conditions are lossless, CoCoA fails to adapt the network conditions due to a fixed value

for Strong RTO estimation. Hence, an adaptive RTO estimation technique is needed

when the network is not congested.

Two approaches proposed in (Järvinen et al., 2018), namely Fullbackoff1 and Full-

backoff2 aim to improve the RTO estimation technique in CoCoA. These techniques are

simple improvements over CoCoA in order to make the RTO estimation technique more

efficient and prudent in terms of congestion.

5.1.1 Fullbackoff1 Variant

The working of Fullbackoff1 variant, as shown in Figure 5.2, is similar to the CoCoA

algorithm. The key difference in the Fullbackoff1 variant is that after the retransmitted

packets are successfully acknowledged, the client retains the backed off RTO value for the

subsequent transmissions, unlike CoCoA where Eq. (2.5) is used to calculate the RTO

for the next transmission.

The following example demonstrates the difference between original CoCoA design and

Fullbackoff1 variant design. Assume that the RTO is 32s when the packet is retransmitted.

Hence, the client would wait for 32s for an ACK, and if it does not receive an ACK

within this time period, the packet will be retransmitted again. The RTO for this second

retransmission would be 48s after applying the VBF (i.e., based on Eq. (2.6), 32s is

multiplied by 1.5). Let’s further assume that the client receives the ACK for the second

retransmitted packet. In case of CoCoA, RTTweak and RTOweak would be calculated based

on Eq. (2.4) and the RTOnew will be calculated for the next packet transmission based

on Eq. (2.5). On the other hand, Fullbackoff1 variant avoids using Eq. (2.5) and instead

chooses 48s (the backed off RTO) directly as RTOnew (highlighted with the Green color

in Figure 5.2) for the next packet transmission.

54

client server

CON

ACK

CON

CON

ACK

t t

Normal
phase

Normal
phase

RTTstrong

Update RTOstrong
and

Calculate RTOnew

X

Retransmission

RTTweak Timeout

CON

ACK

RTO = RTO * VBF

Update RTOweak
and

Calculate RTOnew

RTOnew = RTOBacked off
RTO

Figure 5.2: Working of Fullbackoff1 variant of CoCoA

5.1.2 Fullbackoff2 Variant

The Fullbackoff2 variant is a minor improvement over Fullbackoff1 variant. Unlike CoCoA

which uses Eq. (2.5) to calculate the RTOnew for the next transmission and Fullbackoff1

variant which considers the backed off RTO directly as the RTOnew for the next trans-

mission, Fullbackoff2 variant takes a maximum of both these cases as shown in Figure

5.3.

It can be noted from Fullbackoff1 and Fullbackoff2 variants that both focus on im-

proving the performance of CoCoA when the network is lossy and there are frequent

retransmissions (i.e., RTOnew is mostly updated by RTOweak). This work, instead, fo-

cuses on improving the performance of CoCoA when the network conditions are lossless

i.e., the client observes consecutive successful transmissions. RTOnew in such cases would

be mostly updated by RTOstrong.

55

client server

CON

ACK

CON

CON

ACK

t t

Normal
phase

Normal
phase

RTTstrong

Update RTOstrong
and

Calculate RTOnew

X

Retransmission

RTTweak Timeout

CON

ACK

RTO = RTO * VBF

Update RTOweak
and

Calculate RTOnew

RTOnew= Max (RTOweak , backed off RTO)

Figure 5.3: Working of Fullbackoff2 variant of CoCoA

5.2 Geometric Series based RTO estimation Technique
for CoCoA (GSRTC)

5.2.1 Design

GSRTC is an enhancement over the Fullbackoff2 variant. It is most effective when the

network conditions are lossless. It improves the network performance by rapidly adapting

the weight (Wstrong) of RTOstrong when the network is not congested and packet transmis-

sions are getting cleared consecutively without retransmissions. GSRTC uses a geometric

series to adapt the weight (Wstrong) applied to RTOstrong while calculating RTOnew in Eq.

(2.5). It keeps a count of consecutive successful transmissions. Depending on this count,

Wstrong is adapted as shown in Eq. (5.1).

56

weightnext = weightprev + r
count

, count 6= 0 (5.1)

where weightnext is used as Wstrong to estimate RTOnew in Eq. (2.5), weightprev

denotes the weight obtained from the previous sample, r is the constant ratio between

terms in a geometric series and count indicates the number of consecutive successful

transmissions. The main goal of GSRTC is to improve the network efficiency in terms of

FCT, number of retransmissions and throughput.

client server

CON

ACK

CON

t t

Normal
phase

Normal
phase

RTTstrong

Update RTOstrong
and

Calculate RTOnew

X

Retransmission

RTTweak
Update RTOweak

and
Calculate RTOnew

RTOnew= Max (RTOweak , backed off RTO)

Wstrong = 0.5

Wweak = 0.25

CON

ACK

Normal
phase

Update RTOstrong
and

Calculate RTOnew

Update RTOstrong
and

Calculate RTOnew

Wstrong= Wstrong+ 1!
2" # # $

2

CON

ACK
Normal
phase

Update RTOstrong
and

Calculate RTOnew

Wstrong= Wstrong+ 1!
2" # # $

3

CON

ACK

Normal
phase

Update RTOstrong
and

Calculate RTOnew

Wstrong= Wstrong+ 1!
2" # # $

4

Wstrong = 0.5

Timeout

RTO = RTO * VBF

CON

ACK

CON

ACK

Figure 5.4: Working of GSRTC

57

Algorithm 2 shows the working and Figure 5.4 depicts an example of GSRTC. After

every consecutive successful transmission, the weight associated with RTOStrong is up-

dated by adding a r
count to the previous value of the weight (Line 4-6 in Algorithm 2

and the part highlighted in yellow in Figure 5.4). GSRTC falls back to the default Co-

CoA algorithm when the network is lossy and RTOweak is to be calculated (Line 10-11 in

Algorithm 2).

Algorithm 2: GSRTC

Initialization: count = 0, r = 1
2 , weightprev = 0

1 On arrival of every ACK

2 Check whether the ACK belongs to original packet transmission or retransmission

3 if ACK belongs to an original packet transmission then

4 Calculate RTTStrong, RTTV ARStrong, RTOStrong as shown in Eq. (2.4)

// count represents the number of consecutive ACKs received

5 count++

// Calculate weight based on GSRTC

6 weightnew = weightprev + r
count

7 weightprev = weightnew

8 else
// Reset count and weightprev

9 count = weightprev = 0

10 Calculate RTTWeak, RTTV ARWeak and RTOWeak as shown in Eq. (2.4)

// Use the weight of Weak estimator

11 weightnew = 0.25
12 end

// Calculate RTOnew based on Eq. (2.5)

13 RTOnew = weightnew ⇥RTOcurrent + (1� weightnew)⇥RTOprevious

5.2.2 Parameter Settings

A Choice of r

IoT devices are typically connected to lossy wireless channels and do not experience

a large number of consecutive successful packet transmissions often. Hence, to ensure

that GSRTC rapidly increases Wstrong, r is chosen as 1
2 (i.e., it follows a binary increase

pattern). Figure 5.5 shows the rise of Wstrong when the number of consecutive successful

transmissions increases. For values lower than 1
2 (e.g., 1

3 ,
1
4), we see that despite a large

58

number of consecutive successful transmissions, the rise of Wstrong is not sufficient to

enhance the performance of CoCoA when the network conditions are lossless.

0 10 20 30 40 50
Number of consecutive successful transmissions

0.5

0.6

0.7

0.8

0.9

1

W
st

ro
n

g

r = 1/2
r = 1/3
r = 1/4

Figure 5.5: Comparison of Wstrong with different values of r

B Lower and Upper Bound of Wstrong

GSRTC uses 0.5 and 0.99 as the lower and upper bound for the Wstrong, respectively. We

chose 0.5 as the lower bound because it is the recommended default value defined in the

Internet draft of CoCoA (Bormann et al., 2020). The upper bound is chosen to 0.99 so

that the lossless network conditions can be leveraged to a maximum, while ensuring that

the previous values of RTO are not totally discarded.

5.2.3 Implementation Challenges

CoCoA’s implementation in Contiki OS1 has been used to implement Fullbackoff variants

of CoCoA and GSRTC. It requires 34 lines of code change in the CoCoA implementa-

tion. er-coap-transaction.c and cocoa.c files in contiki/apps/er-coap directory have been

modified to implement Fullbackoff variants of CoCoA and GSRTC.

5.3 Evaluation

This section describes the experimental setup and the performance metrics that have been

used to compare the performance of the GSRTC with CoCoA and its existing Fullbackoff
1Thanks to the authors of CoCoA for sharing their code (Betzler et al., 2015b).

59

variants.

5.3.1 Experimental Setup

The experiments have been performed on the Cooja simulator in Contiki OS (version 3.0)

and using a real testbed at FIT/IoT-LAB. Cooja is a network simulator and one of its most

notable features is that it supports emulation of off-the-shelf real sensor node hardware.

A compiled binary image file is to be uploaded to the simulated nodes, wherein the

compiled code is executed during simulation with the emulated model of the selected node

type. FIT/IoT-LAB is an open source platform that provides a comprehensive scalable

framework for users to test their applications by allowing them to perform experiments

with a variety of nodes.

The authors of Fullbackoff variants (Järvinen et al., 2018) integrated CoCoA in libcoap

(Bergmann, 2012), an open source C-based implementation of CoAP, and subsequently

implemented the Fullbackoff variants on top of it. However, we first integrated CoCoA

in Contiki based Cooja simulator, subsequently implemented the Fullbackoff variants in

the Contiki OS and lastly implemented GSRTC.

Border router ServerClient

1

4

7 8 9

6 5

2 3

Figure 5.6: Grid Topology - GSRTC

The parameters defined in Table 5.1, along with their respective values, have been

used to perform the experiments. T-Mote Sky (AdvanticSystemsServices, 2014) mote is

used for the Border Router, and Zolerita z1 (Zolertia, 2014) mote is used for Clients and

Server for experiments performed using the Cooja simulator. In Cooja, the transmission

60

Table 5.1: Experimental Parameters and Configuration

Parameters Value

Operating System Contiki-3.0

Simulator Cooja

Testbed FIT/IoT-LAB

Radio Medium
Unit Disk Graph Medium -

Distance Loss (UDGM)

Mote Type
T-Mote Sky, Zolerita Z1 (Cooja) and

M3 open node (FIT/IoT-LAB)

Topology Grid (3 x 3)

Node Transmission Range 10 m

Node Interference Range 20 m

Application Erbium-CoAP (er-coap)

Packet Sending Interval 100 ms

Duration 600 seconds

and interference range are set to 10m and 20m, respectively. We have used M3 motes

(M3Node, 2012) for performing experiments in FIT/IoT-LAB. It includes an STM32

microcontroller that is based on ARM Cortex M3 and has a built-in radio with four

different sensors. We conducted all our experiments at the Saclay site of FIT/IoT-LAB.

Figure 5.7 shows the deployment of nodes on the Saclay site.

We have considered a grid network topology of 9 nodes (3⇥ 3) for the experiments in

Cooja and FIT/IoT-LAB, as shown in Figure 5.6. Grid is a standard network topology

used to evaluate and validate the congestion control mechanisms in CoAP (Ancillotti and

Bruno, 2017; Betzler et al., 2015b, 2014). Node 1 is configured to be a border router,

Node 9 to be a server and Node 2-8 to be the clients. The Unit Disk Graph Medium-

Distance Loss (UDGM) model in Cooja is used for radio transmissions containing circular

transmission and interference areas.

61

Figure 5.7: Deployment of nodes in Saclay site (Saclay, 2012)

We have used the Erbium rest (er-rest) application for both client and server. Every

client generates CoAP messages and sends them to the server periodically at an interval

of 100ms. The CoAP client sends a request through the border router to retrieve data

from the server. Each experiment is run for 600 seconds and has been repeated five times.

An average of five runs has been considered for evaluation.

5.3.2 Performance Metrics

In order to determine the efficacy of GSRTC, we have considered the following performance

metrics:

1. Flow Completion Time (FCT): We have measured the FCT as the time taken

by a client to successfully exchange 50 messages.

2. Total number of retransmissions: In this metric, we have considered the total

number of packets retransmitted by all clients.

3. Throughput: Throughput has been measured as the total number of bytes deliv-

ered per second in a 50ms time interval for every client.

5.3.3 Results and Discussion

The results obtained from the experiments performed on Cooja and FIT/IoT-LAB are

discussed in this section. The results obtained for GSRTC are compared with those

obtained for CoCoA and the Fullbackoff variants.

62

A Flow Completion Time (FCT)

A wide range of IoT applications, such as healthcare, industrial and power systems are

critical and require rapid response from IoT devices. It is therefore desirable to complete

the transmissions as soon as possible. This makes FCT as one of the most critical param-

eters for evaluating the effectiveness of GSRTC. We have measured the FCT for every

client as the difference between the time the first packet sent to the ACK received for

the fiftieth packet. The performance of GSRTC with CoCoA and Fullbackoff variants in

terms of FCT is shown in Figure 5.8; the results obtained from the Cooja Simulator and

FIT/IoT-LAB are shown in Figures 5.8a and 5.8b, respectively.

 10

 20

 30

 40

 50

 60

 70

N
od

e-
2

N
od

e-
3

N
od

e-
4

N
od

e-
5

N
od

e-
6

N
od

e-
7

N
od

e-
8

F
lo

w
 C

o
m

p
le

tio
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Clients

CoCoA
CoCoA-Fullbackoff1

CoCoA-Fullbackoff2
GSRTC

(a) FCT (Cooja)

 10

 20

 30

 40

 50

 60

 70

N
od

e-
2

N
od

e-
3

N
od

e-
4

N
od

e-
5

N
od

e-
6

N
od

e-
7

N
od

e-
8

F
lo

w
 C

o
m

p
le

tio
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Clients

CoCoA
CoCoA-Fullbackoff1

CoCoA-Fullbackoff2
GSRTC

(b) FCT (FIT/IoT-LAB)

Figure 5.8: Comparison of FCT in Cooja and FIT/IoT-LAB

The average FCT of CoCoA, Fullbackoff1 and Fullbackoff2 is 53, 46 and 39 seconds

in Cooja, respectively. The average FCT of GSRTC is 30 seconds in Cooja, which is

42.34%, 33.93% and 22.90% lower than CoCoA, Fullbackoff1 and Fullbackoff2, respec-

tively. Similarly, the average FCT of CoCoA, Fullbackoff1 and Fullbackoff2 is 52, 44 and

33 seconds in FIT/IoT-LAB, respectively. The average FCT of GSRTC is 24 seconds in

FIT/IoT-LAB, which is 53.71%, 45.09% and 26.24% lower than CoCoA, Fullbackoff1 and

Fullbackoff2, respectively. To summarize, CoCoA has the highest FCT and GSRTC has

the least FCT among all the techniques.

The FCT of CoCoA is high because there are many packet retransmissions, as shown in

Figure 5.9. Retransmissions significantly increase the FCT and affect the overall through-

put as well (See Figures 5.10 and 5.11). If the number of retransmissions is high, RTOweak

(Eq. (2.4)) governs the value of RTOnew (Eq. (2.5)). Even when the network conditions

63

improve (i.e., packet retransmissions reduce), it takes quite some time for the RTOnew to

adjust according to the actual network conditions because the value of Wstrong is fixed.

This affects the throughput of CoCoA application. Fullbackoff variants clearly show an

improvement over CoCoA because the RTO estimation techniques adopted in both closely

reflect the actual network conditions, specially when the network is lossy. GSRTC further

improves the RTO estimation and brings it closer to actual network conditions in cases

when the network is lossless. Since GSRTC is built on top of Fullback variants, it has the

most effective RTO estimation for both network conditions.

B Total number of retransmissions

Figure 5.9 shows the performance of different congestion control techniques in terms of

the total number of retransmissions. CoCoA has the highest number of retransmissions.

Due to the retransmission ambiguity, CoCoA measures the RTT of the retransmitted

packet from its first transmission to the received ACK, which renders a high RTT sample

(RTTweak in Eq. (2.4)) and accordingly influences the RTOweak and RTOnew samples.

 100

 200

 300

 400

 500

Simulation (Cooja) Testbed (FIT/IoT-LAB)

T
o
ta

l n
u
m

b
e
r

o
f
re

tr
a
n
sm

is
si

o
n
s

(i
n
 p

a
ck

e
ts

)

CoCoA
CoCoA-Fullbackoff1
CoCoA-Fullbackoff2

GSRTC

Figure 5.9: Total number of retransmissions: Cooja and FIT/IoT-LAB

The Fullbackoff variants have lesser retransmissions than CoCoA because they re-

tain the RTO value of the previous transmission, thus giving the client ample time to

wait for the ACK and reduce unnecessary retransmissions. GSRTC further improves the

performance of Fullbackoff variants by adapting Wstrong. GSRTC has a total 184 re-

transmissions in the Cooja simulator, an average of 26 retransmissions per client and 129

retransmissions in FIT/IoT-LAB, an average of 18 retransmissions per client. The total

64

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(a) Node 2

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(b) Node 3

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(c) Node 4

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F
CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(d) Node 5

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(e) Node 6

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(f) Node 7

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(g) Node 8

Figure 5.10: Throughput of CoCoA and Variants in Cooja

65

number of retransmissions in GSRTC is 59.68%, 33.88%, 25.86% and 66.05%, 53.60%,

44.92% lower than CoCoA, Fullbackoff1 and Fullbackoff2 respectively.

C Throughput

For every client, the throughput is measured as the total number of bytes sent per sec-

ond over an interval of 50ms. Cumulative Distribution Function (CDF) has been used

to compare the throughput of GSRTC with other techniques. We have measured the

throughput by conducting experiments in the Cooja simulator and the FIT/IoT-LAB

testbed as shown in Figures 5.10 and 5.11, respectively. This representation style is se-

lected because the CDF plots provide a better distribution of the throughput samples

among different values.

CoCoA has the least throughput in simulations and real testbed as shown in Figures

5.10 and 5.11, respectively. Due to a large number of retransmissions, the average RTO

in case of CoCoA remains high (as shown in Table 5.2). It implies that the sender waits

for a longer duration before transmitting new packets in the network, thus reducing the

network throughput and increasing the FCT.

Table 5.2: Average RTO

Simulation

(Seconds)

Testbed

(Seconds)

CoCoA 79.97 81.92

Fullbackoff1 61.40 73.53

Fullbackoff2 61.24 60.85

GSRTC 55.96 47.21

There is an interesting observation with respect to the results obtained from Full-

backoff variants. The throughput of Fullbackoff2 variant is slightly lesser than that of

Fullbackoff1 variant in the plots obtained from FIT/IoT-LAB testbed. This behaviour

can be attributed to the fact that, unlike CoCoA which uses Eq. (2.5) to calculate the

RTOnew for the next transmission and Fullbackoff1 variant which considers the backed

off RTO directly as the RTOnew for the next transmission, Fullbackoff2 variant considers

RTO value which is a

66

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(a) Node 2

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(b) Node 3

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(c) Node 4

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F
CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(d) Node 5

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(e) Node 6

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(f) Node 7

0 500 1000 1500 2000

Throughput (BPS)

0

0.2

0.4

0.6

0.8

1

C
D

F

CoCoA
Fullbackoff1
Fullbackoff2
GSRTC

(g) Node 8

Figure 5.11: Throughput of CoCoA and Variants in FIT/IoT-LAB

67

maximum of both these cases. This is done with an aim to balance the trade-off between

throughput and other parameters, such as FCT and number of retransmissions.

Nevertheless, the Fullbackoff variants significantly improve the network throughput

as compared to CoCoA, and the performance of GSRTC is similar to those of Fullbackoff

variants in terms of throughput.

5.4 Inferences

GSRTC uses geometric series to adapt the weight used in the Strong RTO estimator

instead of using the fixed weight (0.5). GSRTC’s performance is evaluated using the

Cooja simulator and the FIT/IoT-LAB, and it is compared to the CoCoA and Fullbackoff

variants. The results indicate that GSRTC reduces the Flow Completion Times, minimizes

the number of retransmissions and provides higher network throughput.

GSRTC is a minor modification of the original CoCoA. Since CoCoA involves TCP-

like RTO calculations, and hence RTT measurements, such algorithms are most suitable

for devices with relatively more memory and computation capability. TCP-like RTO

calculations consume several CPU cycles and require a bit more memory to store RTT

variables. The same is true for all CoCoA based algorithms, including GSRTC. Neverthe-

less, the resources available in modern day IoT devices are sufficiently high to implement

CoCoA based algorithms. Example use cases involve IoT deployments in smart traffic

management.

68

Chapter 6

CoCoA++: Delay Gradient based

Congestion Control for Internet of

Things

CoAP

Non-RTT RTT

CoAP-Eifel CoCoA

CoCoA++

Fullbackoff 1

Fullbackoff 2

GST-CoAP

Fullbackoff 1

Fullbackoff 2

GSRTC

Figure 6.1: Contribution (highlighting (CoCoA++))

This chapter discusses a congestion control mechanism for CoAP, called CoCoA++ (as

shown in Figure 6.1), that relies on CAIA Delay-Gradient (CDG) (Hayes and Armitage,

2011) to predict network congestion and a Probabilistic Backoff Factor (PBF) to control

network congestion. CDG provides a better measure of network congestion by obtaining

a gradient of RTT over time (Hayes and Armitage, 2011) and PBF helps to adjust the

RTO based on the inferred congestion (Hayes and Armitage, 2011).

69

6.1 CoCoA++: Delay Gradient based Congestion Con-
trol for Internet of Things

6.1.1 Overview of CAIA Delay-Gradient (CDG)

CDG was proposed to work alongside TCP to provide better inferences of network con-

gestion. However, CDG can be integrated with any other end to end protocol (e.g., CoAP

in our case) since it is not tightly coupled with TCP. This section explains the working

of CDG with TCP to control network congestion. In the subsequent section, we provide

the details of integrating CDG with CoCoA to control network congestion in IoT.

TCP congestion control algorithms that use CDG try to predict congestion by tracking

minimum and maximum RTT for a fixed period of time (5 seconds as recommended in

(Hayes and Armitage, 2011)) for several intervals (denoted by n). The gradients (g) track

the rate of change of RTTmax and RTTmin values to determine if the network is congested.

Eq. (6.1) shows the calculation of delay gradients:

gmin,n = RTTmin,n �RTTmin,n�1

gmax,n = RTTmax,n �RTTmax,n�1

ḡn =
nX

i=n�a

gi

a

(6.1)

where, g is the delay gradient, gi = gmin,i for calculating ḡmin,n or gi = gmax,i when

calculating ḡmax,n, ḡn represents the average of gradients and a is the number of samples

in the moving average window.

The rate of change of RTT is used to calculate a probability of backoff. The probability

approaches 1 as the rate increases. The probability is then compared with a random

value to determine whether to reduce the congestion window of TCP (by a factor of 0.3

as suggested in (Hayes and Armitage, 2011)). When it decides not to reduce congestion

window, it is increased by 1 as per Eq. (6.2).

P [backoff] = 1� exp
�(ḡnG) (6.2)

where, G > 0 is a scaling parameter used to control the probability of backoff due to

delay gradient indications (Jonassen, 2015).

The decision to reduce the TCP congestion window is taken not only based on the

70

probability but also by differentiating between packet loss caused due to congestion and

packet loss caused because of other factors. In general, congestion occurs when the queue

becomes full. CDG estimates this based on the RTTmin and RTTmax values. If RTTmax

reaches its largest possible value and stops increasing and if RTTmin is still increasing, it

means that the queue is full and any packet loss during this time is because of congestion.

Hence, CDG updates the congestion window (W), as shown in Eq. (6.3) (Hayes and

Armitage, 2011):

Wn =

8
><

>:

Wn�1 ⇤ 0.7, P[backoff] > X and gmin > 0

Wn�1 + 1, otherwise
(6.3)

where, Wn indicates the congestion window during the nth interval and X is a uniformly

distributed random number, X = [0, 1].

The advantage of using CDG over other congestion indicators is that it is able to handle

shared systems that use loss-based congestion control. When a CDG connection shares

bandwidth with a loss based system, in the event of congestion building in the network,

CDG will back off. This gives the loss based system an opportunity to continuously pump

packets and take up the entire bandwidth. To deal with this, the CDG algorithm keeps

track of how the RTT values change after the back off. The correct functioning of CDG

demands that a decision to slow down must result in decreasing RTT values (gmin and

gmax become negative). If this is not observed, it is understood that CDG is competing

with a loss based system and the algorithm stops backoff. CDG also stores the previous

value of maximum congestion window which can be easily restored in case of a packet

loss.

6.1.2 Design

CoCoA++ is a congestion control mechanism for CoAP that integrates CDG with CoCoA.

The main goal of the proposed algorithm is to provide a better estimate of network

congestion to end points by leveraging the advantages of CDG. However, integrating

CDG with CoCoA is a non-trivial task because the design of CDG is tailored to work

alongside TCP. CDG provides information about network congestion which is then used

by TCP to update the congestion window. The major concern is that the concept of

congestion window does not exist in the CoCoA protocol, which makes it difficult to

seamlessly integrate CDG with CoCoA.

71

This issue is tackled in CoCoA++ by using the information obtained from CDG to

derive a better RTO estimate. CoCoA++ eliminates the need to maintain two RTO

estimates i.e., strong and weak RTO estimates. Moreover, CoCoA++ does not update

the RTO based on per packet RTT samples like CoCoA. Instead, it updates RTO when

periodic information about the delay gradients gmin and gmax is received from CDG1. As

a consequence, CoCoA++ does not rely on VBF for backoff since VBF assumes that RTT

is calculated for every packet. CoCoA++ replaces VBF by a Probabilistic Backoff Factor

(PBF) which is calculated as shown in Eq. (6.4).

PBF =

8
><

>:

1.42, P[backoff] > X and g > 0

0.7, otherwise
(6.4)

The probability of backoff obtained from CDG (Eq. (6.2)) is compared with a uniform

random value X to ensure that the flows with small RTT and those with large RTT have

a similar probability of backoff. The condition g > 0 ensures that the backoff is applied

to RTO only when the rate of change of RTT is positive.

When congestion is detected in the network (P [backoff] > X and g > 0), the RTO

is increased by a factor of 1.42. RTO is reduced by a factor of 0.7 when no congestion

is detected. The value 0.7 to reduce RTO is obtained by performing simulations with

a range of values from [0.5, 1.0]2. This range is considered with a goal to ensure that

RTO value reduces gradually, and that this reduction does not lead to congestion in the

network. It was observed that the best performance is obtained with 0.7. Accordingly,

its reciprocal (i.e., 1.42) was selected to increase the value of RTO when the network is

congested.

The overall working of CoCoA++ algorithm is summarized in Figure 6.2.

6.1.3 Implementation Challenges

We implemented CoCoA++ in Contiki-3.0, simulated it using the Cooja network simu-

lator and tested its performance in a real testbed at FIT/IoT-LAB. Modifications were

made to the existing CoCoA implementation to integrate CDG and PBF. All experiments

use the default Contiki OS stack for implementation and evaluation. Our implementation
1At most once every two RTT intervals as mentioned in (Hayes and Armitage, 2011). Although

designed to work with TCP, this period is also suitable for CoCoA++ because RTO calculations in
CoCoA++ are not significantly different than in TCP. Our results provided in (Results, 2019) confirm
that this period works well with CoCoA++.

2Results obtained from simulations with these values are provided in (Results, 2019).

72

Update RTT

Estimate RTO

For New Transaction

For Retransmission

Calculate RTTmin

Fixed RTTintervals

Calculate RTO

RTOinit

PBF

RTOprevious RTOnext

Calculate Gradient
of RTTmin

Calculate Gradient
of RTTmax

Calculate RTTmax

Apply

Sets

Retransmission

UpdateUpdate

RTT - Round Trip Time, RTO - Retransmission TimeOut,

RTTmin - Minimum RTT, RTTmax - Maximum RTT,

PBF - Probability Backoff Factor

Figure 6.2: Working of CoCoA++ Algorithm

73

of CoCoA++ uses a lookup table for e
x.

6.2 Evaluation

In this section, we discuss the methodologies used to evaluate the performance of Co-

CoA++ and compare it with CoCoA. The evaluation is carried out in two ways: (i) by

configuring static and mobile topologies in Cooja simulations, and (ii) by configuring a

real testbed at FIT/IoT-LAB. In addition, we extensively evaluate both the algorithms

with different traffic rates in Cooja and testbed. We track how the RTO values change

with time, and measure the average number of transactions per second.

6.2.1 Simulation Setup

From the available mote types in Cooja, Zolerita Z1 motes (Zolertia, 2014) are used

for clients and servers, with transmission and interference ranges set to 10m and 20m,

respectively. Z1 motes have large amounts of ROM that enables us to code applications

and implement congestion control mechanisms. T-mote (AdvanticSystemsServices, 2014)

Sky motes are used to configure the border router because we use IPv6 Routing Protocol

for Low-Power and lossy networks (RPL) in storing mode, and this requires larger RAM

capacity which is provided by Sky motes. Table 6.1 shows the configuration of T-mote Sky

and Zolerita Z1 motes in terms of RAM, ROM, Microcontroller Unit (MCU) and Radio

transceiver. After the RPL setup, the clients periodically send messages targeted at the

servers. Every scenario is run 30 times with a different random seed. The simulation

results for all runs are averaged and plotted against the simulation time.

Table 6.1: Sensor mote configuration

T-mote Sky Z1

RAM 10 kB 8 kB

ROM 48 kB 92 kB

MCU MSP430F1611 MSP430F2617

Radio CC2420 -

Initially, we evaluate the performance of CoCoA++ in static and mobile topologies,

74

which is followed by evaluation with different traffic rates.

A Static and mobile topologies

1. Static topologies: The nodes have fixed positions and zero mobility throughout

the simulation. Four different topologies are considered: grid, flower, dumbbell and

chain. Grid, dumbbell and chain topologies are analogous to the ones used for

evaluating CoCoA (Betzler et al., 2015b).

Grid topology: Grid topologies are popular in applications requiring long

range and broad area coverage such as smart grid, industrial automation and build-

ing automation (Betzler et al., 2013, 2015b; Ancillotti and Bruno, 2017). They are

designed in such a way that every node (a sensor or router node) has at least one

other node within its range of transmission. Data packets are relayed across several

nodes before they reach the server, and hence the network range is independent of

the transmission range of the individual nodes. In this topology, the internal nodes

of the grid, or in other words, nodes that are adjacent to four neighbours, act as the

potential points of congestion. The grid topology we use is a 6 x 6 grid consisting

of 2 servers, a border router and the clients, arranged in a grid where the nodes are

spaced 10m from each other (See Figure 6.3).

Border router ServerClient

Figure 6.3: Grid Topology

Flower topology: Flower topologies like the one illustrated in Figure 6.4 are

75

used in applications such as smart greenhouse management systems, cellular net-

work, satellite network and wide area network applications (Chan, 2008). These

consist of a central processing system that controls environment parameters like

water flow, temperature etc for the confined space based on the information it re-

ceives from sensors placed in the individual pots. All sensor information is relayed

across the array of potted plants that are represented by nodes in the branches of

the flower topology. The central server acts as a bottleneck, and hence is a potential

point of congestion. The flower topology we use consists of 36 nodes with a single

server, one border router and 34 clients as shown Figure 6.4. The communication

from client to server (when not in range for direct communication) happens through

the nodes arranged as petals.

Border router ServerClient

Figure 6.4: Flower Topology

Dumbbell topology: It is the most widely used topology for evaluation of

network congestion algorithms (Betzler et al., 2013, 2015b). The link between the

two halves of the dumbbell serves as the bottleneck. When the bandwidth offered

by this link cannot accommodate all client transactions, the link needs to be shared

in a fair manner which is ensured by the congestion control algorithm in place. The

dumbbell topology we use consists of 19 client nodes, one server and a border router

arranged in the shape of a dumbbell with the border router at the center as shown in

Figure 6.5. The set of clients forming one half of the dumbbell on the right side are

within the range of the server, whereas any communication between the clients in

76

the left half of the dumbbell and the server takes places through the border router.

Border router ServerClient

Figure 6.5: Dumbbell Topology

Chain topology: Networks using chain topology experience the least amount

of congestion. The communication from one end to the other takes place across the

chain as messages are relayed from a node to its immediate neighbour. The chain

topology we use consists of 18 clients, a server and border router arranged in a line

as shown in Figure 6.6.

Border router ServerClient

Figure 6.6: Chain Topology

2. Mobile topologies: The nodes move during the simulation based on four different

mobility models that exhibit the behaviour of mobile nodes in some IoT applica-

tions such as smart traffic management, self driving cars, home automation system

with handheld devices and communication for security drones (Aschenbruck et al.,

2010). Note that in all our mobility simulations we keep the border router and

servers stationary and only the clients are given some non-zero velocity. We have

used BonnMotion: a mobility scenario generation and analysis tool for generating

a position file of a particular mobility model (Aschenbruck et al., 2010).

Random Waypoint Mobility Model (RWMM) (Camp et al., 2002): Ran-

dom Waypoint is a mobility model where the nodes travel in a zig-zag manner.

Initially the nodes remain stationary for some fixed amount of time during which

they decide on a destination and a random speed within the feasible range. Once

they reach their destinations, they again pause for some interval before repeating

77

the process. The model is incorporated into the simulation using the mobility plu-

gin for Cooja where it is possible to specify a position.dat file that contains the

position of every node at different points in time. These positions are generated

using the Random Waypoint Mobility model (Ariyakhajorn et al., 2006).

Manhattan Grid Mobility Model (Martinez et al., 2008): Manhattan mo-

bility model is used widely in Vehicular Ad-hoc Networks. It is typically used to

simulate the behaviour of vehicles on a grid road topology and guide them to take

the right path. The nodes in this model move along the horizontal and vertical grid

lines. At each intersection the nodes turn right, left or continue straight with some

probability.

Pursue Mobility Model (Camp et al., 2002): Pursue mobility model is de-

signed to exhibit the behaviour of one node (pursuer) following another node (tar-

get). The target node moves across the simulation region based on Random Way-

point and velocity of the pursuer node is directed towards the target.

Gauss-Markov Mobility Model: Gauss-Markov mobility model correlates

the velocity of mobile node with time (Ariyakhajorn et al., 2006). It is modelled

as a Gauss-Markov stochastic process (Bai and Helmy, 2004) where the velocity of

the node at some time slot t depends on its velocity in the previous time slot t� 1.

The model is a temporally dependent model with a parameter ↵ that determines the

degree of dependence. For zero dependence, ↵ is set to 0 (no memory or memoryless

model) and for very strong dependence the parameter ↵ is set to 1 (strong memory

model).

B Varying traffic rates

The scenarios used for evaluation in this section are identical to the ones mentioned in the

previous section for static and mobile topologies, except that we repeat the experiments

with different traffic rates. In these scenarios, each sensor periodically sends measurement

reports to the sink node. Different traffic loads are generated by varying the frequency

of reporting the sensor measurements. The main goal of this scenario is to evaluate the

robustness of CoCoA++ against different traffic rates.

The parameters used for simulations and their respective values are mentioned in

Table 6.2. The values shown in Table 6.2 are same as the ones used for evaluating CoCoA

in (Betzler et al., 2015b), except that we use mobility models like Random Way Point,

78

Gauss Markov, Manhattan Grid and Pursue to evaluate the performance of CoCoA++

in mobile IoT applications such as self-driving cars and drones. The parameter Radio

medium indicates the propagation loss model used in the simulation. Radio duty cycling

handles the sleep and wakes up cycle depending on the type of the RDC method used

by the motes. Motes are configured without Radio Duty Cycling (NullRDC) (Contiki

Tutorial, 2013), which means that the motes are always in listening mode and do not

sleep.

Table 6.2: Simulation Parameters

Operating System Contiki-3.0

Simulator Cooja

Radio Medium Unit Disk Graph Medium - Distance Loss (UDGM)

Radio Duty Cycling NullRDC

Mote Type T-mote Sky and Zolerita Z1

Number of Nodes Flower - 36, Grid - 36 , Dumbbell - 21 and Chain - 20

Node transmission range 10 m

Node Interference range 20 m

Transmission/Reception ratio 50 %

Traffic Type Periodic traffic from Client to Server, packet interval 0.4 sec

Simulation Duration 18 minutes for each simulation

Retransmission limit 4

Mobility Model RandomWayPoint, Gauss-Markov, Pursue and ManhattanGrid

6.2.2 Simulation Results

We evaluate and compare the performance of CoCoA and CoCoA++ under the same

simulation setup by looking at the variation in RTO values with simulation time. RTO

measurements give us an idea of how much delay is encountered in transmission, which

indirectly gives us an estimate of packet sending rates.

Each scenario is run 30 times with different seed values and the average RTO values

are plotted against the simulation time (Figures 6.7 and 6.8). The plots represent the

79

variations in RTO values with simulation time for both CoCoA and CoCoA++. Each

point on the graph represents the RTO value for a transaction that is initiated at the

time represented by the corresponding time on the simulation time axis. This gives us an

idea of the number of transactions that take place in the given simulation interval and

the distribution of RTO values. As shown in Table 6.3, the maximum and average RTO

values are calculated over all simulations for a particular scenario by averaging the values

obtained in the all 30 simulations.

Table 6.3: Results with Static Topologies

Scenario

(Static

topologies)

CoCoA CoCoA++

Max

RTO

(sec)

Avg

RTO

(sec)

Average

Transactions

per second

Max

RTO

(sec)

Avg

RTO

(sec)

Average

Transactions

per second

Grid 24.268 8.5789 8.7388 11.466 4.6999 21.7555

Flower 24.345 6.9081 10.2268 11.499 4.6174 19.9148

Dumbbell 37.717 6.2547 5.9268 12.968 3.5933 10.8953

Chain 24.288 8.4768 3.7666 11.480 4.6419 9.3231

From the plots and Tables 6.3 and 6.4; it is observed that in static scenarios, the RTO

values obtained for CoCoA++ do not exceed 13s, whereas the RTO values for CoCoA

go up to 38s, which is almost three times the maximum value obtained for CoCoA++.

Similarly, with all the mobility models discussed above, the RTO values obtained for

CoCoA++ do not exceed 20s, whereas the RTO values for CoCoA go up to 35s. On

average, the RTO measurements obtained for CoCoA++ are significantly lower than Co-

CoA, thereby reducing the transmission delays. In IoT networks where messages comprise

mostly of small payloads, a reduction in transmission delays can enhance performance by

a large margin. Lower transmission delays also increase the number of transactions per

second. As shown in Table 6.3, CoCoA++ records more than double the transaction

rate as compared to CoCoA in static scenarios. Similarly, with all the mobility models

discussed above, the transaction rates of CoCoA++ increase by nearly threefolds (Table

6.4). One of the many aspects that contribute to low RTO values and high packet trans-

80

mission rates in CoCoA++ is the use of PBF as shown in Eq. (6.4). The highest backoff

factor in PBF (1.42) is smaller than the lowest backoff factor in VBF (1.5).

Table 6.4: Results with Mobile Topologies

Scenario

(Mobile

topologies)

CoCoA CoCoA++

Max

RTO

(sec)

Avg

RTO

(sec)

Average

Transactions

per second

Max

RTO

(sec)

Avg

RTO

(sec)

Average

Transactions

per second

Random

Waypoint
35.498 8.5824 8.9685 19.209 4.4809 22.4953

Gauss-Markov 27.992 8.4312 8.8675 11.506 4.5830 22.0685

Manhattan-Grid 26.084 8.4062 8.9722 18.438 4.4525 22.9666

Pursue 30.803 8.5731 7.8296 13.584 4.5615 22.0712

The above observations can be justified based on the fact that delay gradients give a

better estimate of congestion that is persistent in a network. By taking the rate of change

of RTT rather than instantaneous values, we focus only on change in the queuing delay

components and ignore other delay components like processing time at the endpoints that

otherwise contribute to the RTT as well. Any congestion in the network will result in an

increase in queuing delay which is captured by the delay gradient and hence, acts as a

sign of true congestion.

Figure 6.7 presents the variations in RTO values with both CoCoA and CoCoA++

for static topologies. A point in the graph represents the RTO values with respective

to the simulation time. RTO values with CoCoA exhibit a linear incremental pattern

followed by a sharp decrement, and this cycle repeats throughout the simulation. The

noisy RTT signals in CoCoA lead to large variations in RTO values, making it to difficult

for the algorithm to converge to a stable operating point. On the other hand, CDG filters

out the undesired delay signals and provides clear information about network congestion.

Hence, the RTO values with CoCoA++, after the initial ramp up period, remain stable

throughout the simulation. In summary, the RTO values with CoCoA++ are more stable,

81

uniformly distributed and lower than those with CoCoA because the effect of the rate of

change of RTT gives good control over the RTO values in CoCoA++. Due to these

characteristics, CoCoA++ successfully completes more number of transactions in a unit

time than CoCoA.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(a) Grid topology: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(b) Grid topology: CoCoA++

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(c) Flower topology: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(d) Flower topology: CoCoA++

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(e) Dumbbell topology: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(f) Dumbbell topology: CoCoA++

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(g) Chain topology: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(h) Chain topology: CoCoA++

Figure 6.7: Comparison of CoCoA and CoCoA++ in Static Topologies

82

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(a) Random Waypoint: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(b) Random Waypoint: CoCoA++

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(c) Gauss-Markov: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(d) Gauss-Markov: CoCoA++

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(e) Manhattan Grid: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(f) Manhattan Grid: CoCoA++

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(g) Pursue: CoCoA

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

R
T

O
 (

in
 S

e
co

n
d

s)

Time (in Seconds)

(h) Pursue: CoCoA++

Figure 6.8: Comparison of CoCoA and CoCoA++ in Mobile Topologies

Figure 6.8 presents the variations in RTO values with both CoCoA and CoCoA++

for mobile topologies. Node mobility makes it further difficult to infer congestion from

RTT measurements because mobility leads to variations in the received signal strength.

Due to this, the overall RTT varies, and subsequently affects the RTO estimation. This

is evident when we compare the RTO values with CoCoA in static topologies and mobile

83

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, Grid
CoCoA++, Grid

(a) Grid topology: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, Flower
CoCoA++, Flower

(b) Flower topology: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, Dumbbell
CoCoA++, Dumbbell

(c) Dumbbell topology: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, Chain
CoCoA++, Chain

(d) Chain topology: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, RWMM
CoCoA++, RWMM

(e) Random Waypoint: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, Gauss−Markov
CoCoA++, Gauss−Markov

(f) Gauss-Markov: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, ManhattanGrid
CoCoA++, ManhattanGrid

(g) Manhattan Grid: CDF

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTO (s)

C
D

F

CoCoA, Pursue
CoCoA++, Pursue

(h) Pursue: CDF

Figure 6.9: Comparison of CoCoA and CoCoA++ in terms of CDF

topologies, and observe that the RTO values with CoCoA are largely scattered in mobile

environments. However, this is not the case with CoCoA++ because it does not directly

84

depend on RTT measurements for RTO estimation, but instead uses CDG. Since CDG

helps to detect network congestion in a reliable manner, the RTO values with CoCoA++

are not affected in mobile environments and continue to exhibit a stable behaviour.

We reproduce all the plots of CoCoA and CoCoA++ shown in Figure 6.7 and Figure

6.8 in terms of Cumulative Distribution Function (CDF) of the RTO values in Figure 6.9.

We choose this style of representing the results because the CDF plots provide a clear

understanding about the effectiveness of CoCoA++ in terms of keeping the RTO values

lower than CoCoA.

A Varying traffic rates

This section discusses the simulation results obtained with different traffic loads. The

traffic load in the network is varied from 0.5 Kbps to 2.5 Kbps, with an increment of 0.5

Kbps. We evaluate the performance of CoCoA and CoCoA++ in terms of the average

RTO, the total number of packets transmitted and average packet sending rate.

 0

 5

 10

 15

 20

 25

 30

 35

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 3

 6

 9

 12

 15

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 25

 50

 75

 100

 125

 150

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.10: Grid Topology - CoCoA vs CoCoA++

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 2

 4

 6

 8

 10

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 16

 32

 48

 64

 80

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.11: Flower Topology - CoCoA vs CoCoA++

1. Static topologies: Figures (6.10 - 6.13) show the results obtained in static topolo-

gies for CoCoA and CoCoA++ with different traffic rates. Increasing the traffic

85

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 2

 4

 6

 8

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 150

 300

 450

 600

 750

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.12: Dumbbell Topology - CoCoA vs CoCoA++

 0

 10

 20

 30

 40

 50

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 3

 6

 9

 12

 15

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 15

 30

 45

 60

 75

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.13: Chain Topology - CoCoA vs CoCoA++

rate increases congestion in the network and accordingly, the RTO values for both

algorithms increase. RTO values with CoCoA remain consistently higher than Co-

CoA++ in all the topologies even when the offered load is low. This is expected

because CoCoA relies on RTT and does not estimate queue delay. Similarly, the to-

tal number of packets transmitted and the average packet sending rate of CoCoA++

are always higher than CoCoA. Although the margin of improvement differs depend-

ing on the respective topology, the performance of CoCoA++ is significantly better

in all topologies. The probability backoff factor of CoCoA++ plays a vital role in

these scenarios by appropriately estimating the RTO values.

2. Mobile topologies: Figures (6.14 - 6.17) show the results obtained in mobile

topologies for CoCoA and CoCoA++ with different traffic rates. In mobile topolo-

gies, the average RTO values are almost halved in CoCoA++ as compared to Co-

CoA. The reason for this is that CoCoA falsely assumes that the increment in RTT is

an implication of congestion, and accordingly increases its RTO values. CoCoA++

measures queuing delay precisely, and it does not increase its RTO inadequately.

The average packet sending rate of CoCoA++ in mobile scenarios is also higher

than CoCoA. CDG and PBF both play an important role in these scenarios. The

86

retransmission timeout mechanism of CoCoA++ is highly dependent on the relative

movement of RTT; thus the total number of packets sent by CoCoA++ are much

higher than CoCoA.

 0

 4

 8

 12

 16

 20

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 2

 4

 6

 8

 10

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.14: Random Way Point Mobility Model - CoCoA vs CoCoA++

 0

 3

 6

 9

 12

 15

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 2

 4

 6

 8

 10

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 30

 60

 90

 120

 150

0.5 1.0 1.5 2.0 2.5
T

o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.15: Gauss-Markov Mobility Model - CoCoA vs CoCoA++

 0

 3

 6

 9

 12

 15

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 2

 4

 6

 8

 10

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 50

 100

 150

 200

 250

 300

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.16: ManhattanGrid Mobility Model - CoCoA vs CoCoA++

87

 0

 2

 4

 6

 8

 10

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 P

a
ck

e
t
S

e
n
d
in

g
 R

a
te

 (
P

e
r

S
e
co

n
d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Average packet sending rate

 0

 2

 4

 6

 8

 10

0.5 1.0 1.5 2.0 2.5

A
ve

ra
g
e
 R

T
O

 (
in

 S
e
co

n
d
s)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Average RTO

 0

 100

 200

 300

 400

 500

0.5 1.0 1.5 2.0 2.5

T
o
ta

l n
u
m

b
e
r

o
f
P

a
ck

e
ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted

Figure 6.17: Pursue Mobility Model - CoCoA vs CoCoA++

6.2.3 Testbed Setup

There are several testbeds available for IoT experimentation, like FlockLab (Lim et al.,

2013), FIT/IoT-LAB and others. For comparing the performance of CoCoA++ with

CoCoA we choose FIT/IoT-LAB because of its scalability, functionality, and variety of

nodes. FIT/IoT-LAB3 provides an extensive scalable framework to perform experimenta-

tion with tiny sensor devices and with complex communicating objects. This lab is a part

of the Future Internet of Things (FIT) platform. It gives full control to the researchers

for accessing the network nodes as well as the gateways to which the different nodes are

connected. FIT/IoT-LAB allows monitoring of the various network related performance

metrics like throughput, network overhead, power consumption of nodes and others. The

lab offers quick deployment of experiments, along with the ease of evaluation, results

collection and analysis. The only major limitation of this lab is that it does not provide

adequate support to perform mobile IoT experiments.

(a) Deployment: Lille (b) Deployment: Grenoble (c) Deployment: Paris

Figure 6.18: Deployment of nodes in Lille, Grenoble and Paris sites at FIT/IoT-LAB (Deployment, 2012)

The testbed contains various architectures which are distributed at seven different

locations across France: Grenoble, Lille, Saclay, Strasbourg, Paris, Nantes and Lyon.
3https://www.iot-lab.info/

88

FIT/IoT-LAB uses specially designed boards for the testbed, e.g. WSN430 node, M3

node, A8 node. In our experiments, we use the M3 open node which is based on an

STM32 (ARM Cortex M3) micro-controller. M3 open node supports FreeRTOS, Contiki

and RIOT operating systems. Out of the seven different locations of FIT/IoT-LAB, we

choose three locations for our experiments: Lille, Grenoble and Paris (See Figure 6.18).

Lille, Grenoble and Paris are the most active locations of FIT/IoT-LAB that support 640,

332 and 160 wireless sensor nodes, respectively. They also support a large number of M3

open nodes. Figure 6.18 shows the real setup of the IoT devices in every site.

We configure a grid topology in our testbed because the internal nodes in the grid

witness more congestion than any other nodes, and such a configuration would help to

evaluate the effectiveness of CoCoA++ in heavily congested networks. Figure 6.19 shows

the deployment of M3 open nodes and the selection of grid topology in each location. We

have selected 9 (3*3) M3 open nodes at Lille and 6 (3*2) at Paris and Grenoble for our

experiments.

(a) Topology: Lille (b) Topology: Grenoble

(c) Topology: Paris

Figure 6.19: Topology Selection from Lille, Grenoble and Paris sites of FIT/IoT-LAB (ToplologySelection,
2012)

89

6.2.4 Testbed Results

We configure five different traffic loads for evaluating the performance of CoCoA and

CoCoA++ in FIT/IoT-LAB. The traffic load has been varied from 0.5 Kbps to 2.5 Kbps

with an increment of 0.5 Kbps. We have used two performance metrics for evaluation:

total number of packets transmitted and average packet sending rate. As shown in Figure

6.20, the number of packets transmitted by CoCoA++ is much higher than CoCoA in all

three sites of the FIT/IoT-LAB. CoCoA++ uses CDG, and its RTO estimation depends

 0

 200

 400

 600

 800

 1000

 1200

0.5 1.0 1.5 2.0 2.5

N
u

m
b

e
r

o
f

P
a

ck
e

ts

Offered Load (Kbps)

CoCoA
CoCoA++

(a) Total Packets Transmitted: Lille

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.5 1.0 1.5 2.0 2.5

A
vg

 P
a

ck
e

t
S

e
n

d
in

g
 R

a
te

 (
P

e
r

S
e

co
n

d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(b) Avg Packet Sending Rate: Lille

 0

 100

 200

 300

 400

 500

0.5 1.0 1.5 2.0 2.5

N
u

m
b

e
r

o
f

P
a

ck
e

ts

Offered Load (Kbps)

CoCoA
CoCoA++

(c) Total Packets Transmitted: Grenoble

 0

 0.5

 1

 1.5

 2

 2.5

0.5 1.0 1.5 2.0 2.5

A
vg

 P
a

ck
e

t
S

e
n

d
in

g
 R

a
te

 (
P

e
r

S
e

co
n

d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(d) Avg Packet Sending Rate: Grenoble

 0

 100

 200

 300

 400

 500

0.5 1.0 1.5 2.0 2.5

N
u

m
b

e
r

o
f

P
a

ck
e

ts

Offered Load (Kbps)

CoCoA
CoCoA++

(e) Total Packets Transmitted: Paris

 0

 0.5

 1

 1.5

 2

 2.5

0.5 1.0 1.5 2.0 2.5

A
vg

 P
a

ck
e

t
S

e
n

d
in

g
 R

a
te

 (
P

e
r

S
e

co
n

d
)

Offered Load (Kbps)

CoCoA
CoCoA++

(f) Avg Packet Sending Rate: Paris

Figure 6.20: Comparison of Performance Metric in Grenoble, Paris and Lille sites at FIT/IoT-LAB

90

on the relative movement of RTT; hence it can transmit more packets than CoCoA. The

average packet sending rate of CoCoA++ is also better than CoCoA.

6.3 Inferences

CoCoA does not perform well due to the inability to infer network congestion from noisy

RTT samples. Since delay gradients provide a fairly accurate estimate of network conges-

tion, CAIA Delay-Gradients and a Probability Backoff Factor have been integrated with

CoCoA as an enhancement over the existing algorithm. The performance of CoCoA++

has been evaluated in static and mobile topologies to obtain a better understanding of how

the algorithm fares in various IoT scenarios. The results show that CoCoA++ has low

RTO values, thereby reducing transmission delays and increasing the transmission rate.

Additionally, we evaluated the functionality of CoCoA++ with different traffic rates and

noted that it provides the desired performance.

Depending on the inferences made from the simulations results, we tested the effec-

tiveness of CoCoA++ by deploying it in a real testbed at FIT/IoT-LAB. We evaluated

CoCoA++ with different workloads of a real-time IoT environment at three different loca-

tions of FIT/IoT-LAB: Lille, Paris and Grenoble. The results show that the total number

of packets transmitted and average packet sending rate with CoCoA++ is higher than

CoCoA.

The deployment complexity of CoCoA++ is highest when compared to GST-CoAP,

CoAP-Eifel and GSRTC. The primary reason for this is the usage of exponential function

in CDG. Nevertheless, we have used a table lookup to simplify the implementation of this

function. CoCoA++ is most suitable for mobile IoT environments since the RTT samples

in such scenarios can be extremely noisy. Example use cases of CoCoA++ include smart

logistics and transportation, Internet of Vehicles (IoVs), communication among drones

and others.

91

92

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Congestion control remains a critical issue in communication networks. It has recently

received a lot of attention in the context of IoT for efficient use of resources and optimum

network performance. CoAP is a standardized application protocol for IoT deployments

and has an in-built congestion control mechanism. However, the congestion control mech-

anism in CoAP is minimalistic and hence, a lot of improvements have been proposed

recently to strengthen it. This work focused on the design and development of CoAP

based congestion control mechanisms for IoT, named GST-CoAP, CoAP-Eifel, GSRTC

and CoCoA++.

After receiving an acknowledgment for the retransmitted packet, CoAP resets the RTO

to a default low value between [2s, 3s]. In this work, we demonstrated the shortcomings

of this approach by performing experiments on the Cooja simulator and a real testbed in

FIT/IoT-LAB. We showed that the existing Fullbackoff mechanisms outperform the de-

fault CoAP mechanism in terms of FCT, number of retransmissions and per-node through-

put. GST-CoAP proposed in this work is a non-RTT based congestion control mechanism

that requires a minor modification to the working of the original CoAP mechanism to im-

prove the RTO estimation in CoAP. It is designed to overcome the limitations of CoAP

and the existing Fullbackoff mechanisms. When the network is not congested and packets

are getting cleared consecutively without retransmissions, GST-CoAP uses a geometric

series to gradually reduce RTO. We carried out a performance evaluation of GST-CoAP

with the original CoAP mechanism and the Fullbackoff mechanisms by using the Cooja

simulator and the FIT/IoT-LAB. Our results show that GST-CoAP minimizes the FCT,

reduces the total number of retransmissions in the network and enhances the per-node

throughput.

93

CoAP defines a conventional congestion control mechanism that is insensitive to net-

work conditions. Hence, we proposed CoAP-Eifel, a RTT based simple enhancement

to CoAP that incorporates an adaptive RTO calculation based on RTT measurements.

The Eifel Retransmission Timer which was originally designed for TCP has been inte-

grated with CoAP (using UDP). The performance of CoAP-Eifel has been validated and

evaluated by performing experiments in a real testbed using FIT/IoT-LAB. Our results

show that CoAP-Eifel provides a better trade-off between delay and throughput, while

providing a similar packet delivery ratio compared to CoAP.

CoCoA is an enhanced congestion control mechanism over CoAP and it estimates the

RTO based on RTT measurements. It uses fixed weights to estimate RTO in addition to a

strong and weak RTO estimator. The Fullbackoff mechanisms are an improvement to Co-

CoA. In this work, we demonstrated that the Fullbackoff mechanisms indeed outperform

CoCoA in terms of FCT, number of retransmissions and throughput by conducting ex-

periments on Cooja simulator and a testbed in FIT/IoT-LAB. Subsequently, we proposed

GSRTC, a simple RTT based enhancement for predicting RTO in CoCoA. GSRTC uses

geometric series to adapt the weight used in the Strong RTO estimator instead of using

the fixed weight (0.5). The results obtained from simulation and real testbed show that

GSRTC reduces the flow completion time, minimizes the number of retransmissions and

provides higher network throughput compared to CoCoA and Fullbackoff mechanisms.

In this work, we show that congestion control algorithms that solely depend on per

packet RTT measurements, such as CoCoA, do not perform well due to the inability to

infer network congestion from noisy RTT samples. Hence, we proposed CoCoA++, a

novel congestion control algorithm built on top of CoCoA that estimates the network

congestion using delay gradients and a Probability Backoff Factor to control it. We

evaluated CoCoA++ in static and mobile topologies to obtain a better understanding of

how the algorithm fares in various IoT scenarios. Simulation results show that CoCoA++

has low RTO values, thereby reducing transmission delays and increasing the transmission

rate. The results from the testbed show that the total number of packets transmitted and

average packet sending rate with CoCoA++ is higher than CoCoA.

The newly proposed mechanisms are easy to deploy in real environments and can be

adopted in IoT frameworks, such as IoTivity.

94

7.2 Future work

CoAP is actively used by a number of IoT applications, it would be interesting to in-

vestigate how these proposed algorithms share the resources fairly. This work can be

expanded to assess fairness implications when CoAP-based and CoCoA-based congestion

control mechanisms coexist. Moreover, this work has covered one non-RTT and three

RTT-based optimizations to congestion control mechanisms for CoAP and CoCoA. This

work can be extended to include a comparison of these proposed algorithms with various

CoAP-based congestion control mechanisms such as FASOR, pCoCoA, BDP-CoAP, and

others. It would be interesting to investigate the impact when the various CoAP-based

congestion control mechanisms coexist with the algorithms proposed in this thesis.

The performance metrics covered in this work are: Flow Completion Times (FCT),

number of retransmissions, throughput, RTO, delay, and packet sending rate. IoT devices

are powered by batteries, hence it is important for the algorithms to be energy efficient.

It would be interesting to investigate the proposed algorithm’s effectiveness in various

performance metrics such as energy consumption.

This work considered common traffic scenarios for evaluation, in which sensors send

data to the gateway on a periodic or continuous basis. This work can be expanded by

performing extensive evaluations of the proposed algorithms in different real-time traffic

scenarios, such as bursty traffic. It would be interesting to see how the proposed algorithms

perform in different traffic scenarios.

CoCoA uses fixed weights to estimate RTO in addition to a strong and weak RTO

estimator (0.5 for strong and 0.25 for weak). However, in this thesis, GSRTC adapts the

weight used in the Strong RTO estimator instead of using the fixed weight (0.5). This

work can be extended by developing a congestion control mechanism that can adapt the

weight used in the Weak RTO estimator rather than using fixed weight (0.25).

GSRTC adapts the weight of Strong RTO (0.5) using a geometric series. Stochastic

Gradient Descent (SGD) can help in obtaining the optimal weight value over time be-

tween the lower (0.5) and upper (0.99) bounds for improving the performance of GSRTC.

Besides, CAIA Delay Gradient in CoCoA++ continuously tracks the rate of change of

RTTmax and RTTmin to determine whether the network is congested or not. SGD would

aid in determining the optimal value of gradients of RTTmax and RTTmin, allowing for a

more accurate estimate of network congestion.

95

IoTivity is an open source software framework that enables seamless device-to-device

connectivity to address emerging requirements of the IoT network. It adheres to the

Open Connectivity Foundation (OCF) standards which allows simple and secure com-

munication between endpoints. CoAP is the default application protocol in IoTivity,

which enables communication between two heterogeneous devices. Therefore, it would

be interesting to evaluate the proposed algorithms’ effectiveness by integrating them with

IoTivity. For instance, one device communicates via CoCoA, while another communicates

via CoCoA++, and both devices run distinct applications. It would be worth exploring

how two algorithms work collaboratively.

96

References

Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R.,

Saint-Marcel, F., Schreiner, G., Vandaele, J., et al. (2015). FIT/IoT-LAB: A Large

Scale Open Experimental IoT Testbed. In 2015 IEEE 2nd World Forum on Internet of

Things (WF-IoT), pages 459–464. IEEE.

AdvanticSystemsServices (2014). Telosb (Sky) mote. https://telosbsensors.

wordpress.com/. Accessed: 13-09-2017.

Ahn, J. S., Danzig, P. B., Liu, Z., and Yan, L. (1995). Evaluation of TCP Vegas: Emula-

tion and Experiment. In Proceedings of the Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, pages 185–195.

Aimtongkham, P., Horkaew, P., and So-In, C. (2021). An Enhanced CoAP Scheme Us-

ing Fuzzy Logic With Adaptive Timeout for IoT Congestion Control. IEEE Access,

9:58967–58981.

Akpakwu, G. A., Hancke, G. P., and Abu-Mahfouz, A. M. (2020). CACC: Context-Aware

Congestion Control approach for lightweight CoAP/UDP-based Internet of Things traf-

fic. Transactions on Emerging Telecommunications Technologies, 31(2):e3822.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015).

Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications.

IEEE Communications Surveys & Tutorials, 17(4):2347–2376.

Al-Kashoash, H. A., Al-Nidawi, Y., and Kemp, A. H. (2016a). Congestion Analysis

for Low power and Lossy Networks (LLNs). In 2016 Wireless Telecommunications

Symposium (WTS), pages 1–6. IEEE.

Al-Kashoash, H. A., Al-Nidawi, Y., and Kemp, A. H. (2016b). Congestion-aware RPL for

6L0WPAN Networks. In 2016 Wireless Telecommunications Symposium (WTS), pages

1–6. IEEE.

97

Ancillotti, E. and Bruno, R. (2017). Comparison of CoAP and CoCoA+ Congestion

Control Mechanisms for different IoT Application Scenarios. In 2017 IEEE Symposium

on Computers and Communications (ISCC), pages 1186–1192. IEEE.

Ancillotti, E. and Bruno, R. (2019). BDP-CoAP: Leveraging Bandwidth-Delay Product

for Congestion Control in CoAP. In 2019 IEEE 5th World Forum on Internet of Things

(WF-IoT), pages 656–661. IEEE.

Ancillotti, E., Bruno, R., Vallati, C., and Mingozzi, E. (2018). Design and Evaluation

of a rate-based Congestion Control Mechanism in CoAP for IoT applications. In 2018

IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia

Networks"(WoWMoM), pages 14–15. IEEE.

Ariyakhajorn, J., Wannawilai, P., and Sathitwiriyawong, C. (2006). A Comparative Study

of Random Waypoint and Gauss-Markov Mobility Models in the Performance Evalua-

tion of MANET. In 2006 International Symposium on Communications and Informa-

tion Technologies, pages 894–899. IEEE.

Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., and Schwamborn, M. (2010). Bonn-

Motion: a Mobility Scenario Generation and Analysis Tool. In Proceedings of the 3rd

International Conference on Simulation Tools and Techniques, page 51. ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering).

Atzori, L., Iera, A., and Morabito, G. (2010). The Internet of Things: A Survey. Computer

Networks, 54(15):2787–2805.

Bai, F. and Helmy, A. (2004). A Survey of Mobility Models. Wireless Adhoc Networks.

University of Southern California, USA, 206:147.

Balandina, E., Koucheryavy, Y., and Gurtov, A. (2013). Computing the Retransmis-

sion Timeout in CoAP. In Internet of Things, Smart spaces, and Next Generation

Networking, pages 352–362. Springer.

Banks, A. and Gupta, R. (2014). MQTT version 3.1.1. OASIS Standard.

Bansal, S. and Kumar, D. (2020). Distance-based Congestion Control mechanism for

CoAP in IoT. IET Communications, 14(19):3512–3520.

98

Bergmann, O. (2012). libcoap: C-Implementation of CoAP. URL: https://libcoap.net/.

Accessed: 13-09-2020.

Betzler, A., Gomez, C., and Demirkol, I. (2015a). Evaluation of Advanced Congestion

Control Mechanisms for Unreliable CoAP Communications. In Proceedings of the 12th

ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous

Networks, pages 63–70.

Betzler, A., Gomez, C., Demirkol, I., and Kovatsch, M. (2014). Congestion Control for

CoAP Cloud Services. In Proceedings of the 2014 IEEE Emerging Technology and

Factory Automation (ETFA), pages 1–6. IEEE.

Betzler, A., Gomez, C., Demirkol, I., and Paradells, J. (2013). Congestion Control in Reli-

able CoAP Communication. In Proceedings of the 16th ACM International Conference

on Modeling, Analysis & Simulation of Wireless and Mobile Systems, pages 365–372.

Betzler, A., Gomez, C., Demirkol, I., and Paradells, J. (2015b). CoCoA+: An Advanced

Congestion Control Mechanism for CoAP. Ad Hoc Networks, 33:126–139.

Betzler, A., Gomez, C., Demirkol, I., and Paradells, J. (2016). CoAP Congestion Control

for the Internet of Things. IEEE Communications Magazine, 54(7):154–160.

Bhalerao, R., Subramanian, S. S., and Pasquale, J. (2016). An Analysis and Improvement

of Congestion Control in the CoAP Internet of Things Protocol. In 2016 13th IEEE

Annual Consumer Communications & Networking Conference (CCNC), pages 889–894.

IEEE.

Bolettieri, S., Tanganelli, G., Vallati, C., and Mingozzi, E. (2018). pCoCoA: A precise

Congestion Control Algorithm for CoAP. Ad Hoc Networks, 80:116–129.

Bolettieri, S., Vallati, C., Tanganelli, G., and Mingozzi, E. (2017). Highlighting some

Shortcomings of the CoCoA+ Congestion Control Algorithm. In International Confer-

ence on Ad-Hoc Networks and Wireless, pages 213–220. Springer.

Bormann, C., Betzler, A., Gomez, C., and Demirkol, I. (2020). CoAP Sim-

ple Congestion Control/Advanced (Work in Progress)(Latest). URL https://core-

wg.github.io/cocoa/draft-ietf-core-cocoa.html.

99

Brakmo, L. S. and Peterson, L. L. (1995). TCP Vegas: End-to-End Congestion Avoidance

on a Global Internet. IEEE Journal on Selected Areas in Communications, 13(8):1465–

1480.

Camp, T., Boleng, J., and Davies, V. (2002). A Survey of Mobility Models for Ad Hoc

Network Research. Wireless Communications and Mobile Computing, 2(5):483–502.

Chan, M. T. Y. (2008). Wide-area Wireless Network Topology. US Patent App.

11/782,524.

ContikiTutorial (2013). MAC protocols in ContikiOS. http://anrg.usc.edu/contiki/

index.php/MAC_protocols_in_ContikiOS. Accessed: 07-02-2017.

Demir, A. K. and Abut, F. (2018). Comparison of CoAP and CoCoA Congestion Con-

trol Mechanisms in Grid Network Topologies. Gümüşhane Üniversitesi Fen Bilimleri

Enstitüsü Dergisi, 8(ÖZEL SAYI):53–60.

Demir, A. K. and Abut, F. (2020). mlCoCoA: a machine learning-based Congestion

Control for CoAP. Turkish Journal of Electrical Engineering & Computer Sciences,

28(5).

Deployment (2012). Wireless Sensor Nodes Deployment at FIT/IoT-LAB Site(s). https:

//www.iot-lab.info/deployment/. Accessed: 16-06-2021.

Deshmukh, S. and Raisinghani, V. T. (2020). AdCoCoA-Adaptive Congestion Control

Algorithm for CoAP. In 2020 11th International Conference on Computing, Commu-

nication and Networking Technologies (ICCCNT), pages 1–7. IEEE.

Dunkels, A., Gronvall, B., and Voigt, T. (2004). Contiki-a Lightweight and Flexible

Operating System for Tiny Networked Sensors. In 29th annual IEEE International

Conference on Local Computer Networks (LCN), pages 455–462. IEEE.

Fahmy, S., Prabhakar, V., Avasarafa, S. R., and Younis, O. M. (2003). TCP over wireless

links: Mechanisms and Implications. Computer Science Technical Reports, pages 1–6.

Ghaffari, A. (2015). Congestion Control Mechanisms in Wireless Sensor Networks: A

Survey. Journal of Network and Computer Applications, 52:101–115.

100

Ghaleb, B., Al-Dubai, A. Y., Ekonomou, E., Alsarhan, A., Nasser, Y., Mackenzie, L. M.,

and Boukerche, A. (2018). A Survey of Limitations and Enhancements of the IPv6

Routing Rrotocol for Low-power and lossy networks (RPL): A Focus on Core Opera-

tions. IEEE Communications Surveys & Tutorials, 21(2):1607–1635.

Gheisari, S. and Tahavori, E. (2019). CCCLA: A Cognitive approach for Congestion

Control in Internet of Things using a Game of Learning Automata. Computer Com-

munications, 147:40–49.

Gomez, C., Arcia-Moret, A., and Crowcroft, J. (2018). TCP in the Internet of Things:

from Ostracism to Prominence. IEEE Internet Computing, 22(1):29–41.

Hasan, H. M. and Ahmed, A. I. (2018). A Comparative Analysis for Congestion Mecha-

nism in CoAP and CoCoA. Engineering and Technology Journal, 36(8 Part A).

Hassan, R., Jubair, A. M., Azmi, K., and Bakar, A. (2016). Adaptive Congestion Control

Mechanism in CoAP Application Protocol for Internet of Things (IoT). In 2016 Inter-

national Conference on Signal Processing and Communication (ICSC), pages 121–125.

IEEE.

Hayes, D. A. and Armitage, G. (2011). Revisiting TCP Congestion Control using Delay

Gradients. In International Conference on Research in Networking, pages 328–341.

Springer.

Helpnet Security (2019). Connected IoT devices forecast. https://www.

helpnetsecurity.com/2019/06/21/connected-iot-devices-forecast/. Accessed:

10-07-2021.

Huang, J., Du, D., Duan, Q., Sun, Y., Yin, Y., Zhou, T., and Zhang, Y. (2014). Mod-

eling and Analysis on Congestion Control in the Internet of Things. In 2014 IEEE

International Conference on Communications (ICC), pages 434–439. IEEE.

Iova, O., Picco, P., Istomin, T., and Kiraly, C. (2016). RPL: The Routing Standard for

the Internet of Things... Or Is It? IEEE Communications Magazine, 54(12):16–22.

Järvinen, I., Daniel, L., and Kojo, M. (2015). Experimental Evaluation of Alternative

Congestion Control Algorithms for Constrained Application Protocol (CoAP). In 2015

IEEE 2nd World Forum on Internet of Things (WF-IoT), pages 453–458. IEEE.

101

Jarvinen, I., Raitahila, I., Cao, Z., and Kojo, M. (2018). FASOR Retransmission Timeout

and Congestion Control Mechanism for CoAP. In 2018 IEEE Global Communications

Conference (GLOBECOM), pages 1–7. IEEE.

Järvinen, I., Raitahila, I., Cao, Z., and Kojo, M. (2018). Is CoAP Congestion Safe? In

Proceedings of the Applied Networking Research Workshop (ANRG), pages 43–49.

Jonassen, K. K. (2015). Implementing CAIA Delay-Gradient in Linux. Master’s thesis,

Department of Informatics, Faculty of Mathematics and Natural Sciences, University

of Oslo.

Kamgueu, P. O., Nataf, E., and Ndie, T. D. (2018). Survey on RPL enhancements: a

focus on Topology, Security and Mobility. Computer Communications, 120:10–21.

Karn, P. and Partridge, C. (1987). Improving Round-Trip Time estimates in Reliable

Transport Protocols. ACM SIGCOMM Computer Communication Review, 17(5):2–7.

Kim, H.-S., Im, H., Lee, M.-S., Paek, J., and Bahk, S. (2015). A Measurement Study of

TCP over RPL in Low-power and Lossy Networks (LLNs). Journal of Communications

and Networks, 17(6):647–655.

Kim, H.-S., Kim, H., Paek, J., and Bahk, S. (2016). Load balancing under heavy traffic

in Routing Protocol for Low power and lossy networks (RPL). IEEE Transactions on

Mobile Computing, 16(4):964–979.

Kim, H.-S., Ko, J., Culler, D. E., and Paek, J. (2017a). Challenging the IPv6 Routing

Protocol for Low-power and lossy networks (RPL): A Survey. IEEE Communications

Surveys & Tutorials, 19(4):2502–2525.

Kim, H.-S., Paek, J., Culler, D. E., and Bahk, S. (2017b). Do not lose bandwidth:

Adaptive Transmission Power and Multihop Topology Control. In 2017 13th Interna-

tional Conference on Distributed Computing in Sensor Systems (DCOSS), pages 99–

108. IEEE.

Kovatsch, M., Duquennoy, S., and Dunkels, A. (2011). A low-power CoAP for Contiki.

In 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems,

pages 855–860. IEEE.

102

Kurata, K., Hasegawa, G., and Murata, M. (2000). Fairness Comparisons between TCP

Reno and TCP Vegas for Future Deployment of TCP Vegas. In Proceedings of INET,

volume 2000, page 2.

Lee, J. J., Chung, S. M., Lee, B., Kim, K. T., and Youn, H. Y. (2016). Round Trip

Time based Adaptive Congestion Control with CoAP for Sensor Network. In 2016

International Conference on Distributed Computing in Sensor Systems (DCOSS), pages

113–115. IEEE.

Lim, C. (2019). A Survey on Congestion Control for RPL-based Wireless Sensor Networks.

Sensors, 19(11):2567.

Lim, R., Ferrari, F., Zimmerling, M., Walser, C., Sommer, P., and Beutel, J. (2013).

Flocklab: A testbed for Distributed, Synchronized Tracing and Profiling of Wireless

Embedded Systems. In Proceedings of the 12th International Conference on Information

Processing in Sensor Networks (IPSN), pages 153–166.

Ludwig, R. and Gurtov, A. (2005). The Eifel Response Algorithm for TCP. Technical

report, RFC 4015, February.

Ludwig, R. and Sklower, K. (2000). The Eifel Retransmission Timer. ACM SIGCOMM

Computer Communication Review, 30(3):17–27.

M3Node (2012). IoT-LAB - M3 Node. Available at https://www.iot-lab.info/docs/

boards/iot-lab-m3/. Accessed: 10-03-2020.

Martinez, F. J., Cano, J.-C., Calafate, C. T., and Manzoni, P. (2008). Citymob: a Mobility

Model Pattern Generator for VANETs. In ICC Workshops-2008 IEEE International

Conference on Communications Workshops, pages 370–374. IEEE.

Mishra, N., Verma, L. P., Srivastava, P. K., and Gupta, A. (2018). An Analysis of IoT

Congestion Control Policies. Procedia Computer Science, 132:444–450.

Mišic, J., Ali, M. Z., and Mišic, V. B. (2018). Architecture for IoT domain with CoAP

Observe Feature. IEEE Internet of Things Journal, 5(2):1196–1205.

Mo, J., La, R. J., Anantharam, V., and Walrand, J. (1999). Analysis and Comparison of

TCP Reno and Vegas. In IEEE INFOCOM’99. Conference on Computer Communi-

cations. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and

103

Communications Societies. The Future is Now (Cat. No. 99CH36320), volume 3, pages

1556–1563. IEEE.

Nick (2021). How Many IoT Devices Are There in 2021? [All You Need To Know]. https:

//techjury.net/blog/how-many-iot-devices-are-there/. Accessed: 10-07-2021.

OASIS Standard (2012). Advanced Message Queuing Protocol (AMQP). https://www.

amqp.org/. Accessed: 10-07-2021.

Open Connectivity Foundation (OCF) (2015). IoTivity: an open-source IoT platform.

https://iotivity.org/. Accessed: 25-10-2019.

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., and Voigt, T. (2006). Cross-level

Sensor Network Simulation with Cooja. In Proceedings. 2006 31st IEEE Conference on

Local Computer Networks (LCN), pages 641–648. IEEE.

Parasuram, A., Culler, D., and Katz, R. (2016). An Analysis of the RPL Routing Stan-

dard for Low power and Lossy Networks (LLNs). Electrical Engineering and Computer

Sciences University of California at Berkeley.

Pardo-Castellote, G. (2003). Object Management Group (OMG) Data-Distribution Ser-

vice (DDS): Architectural overview. In 23rd International Conference on Distributed

Computing Systems Workshops, 2003. Proceedings., pages 200–206. IEEE.

Patel, M., Tanna, N., Patel, P., and Banerjee, R. (2001). TCP over wireless networks:

Issues, Challenges and Survey of Solutions. University of Texas, Dallas, pages 1–6.

Paxson, V., Allman, M., Chu, J., and Sargent, M. (2000). Computing TCP’s Retrans-

mission Timer. Technical report, RFC 6298, November.

Pramanik, A., Luhach, A. K., Batra, I., and Singh, U. (2017). A Systematic Survey on

Congestion Mechanisms of CoAP based Internet of Things. In International Conference

on Advanced Informatics for Computing Research, pages 306–317. Springer.

Results (2019). CoCoA++ Supporting Files. https://github.com/

steps-to-reproduce/cocoapp-supporting-files.git. Accessed: 07-04-2017.

Ruckebusch, P., Giannoulis, S., Garlisi, D., Gallo, P., Gawlowicz, P., Zubow, A., Chwal-

isz, M., De Poorter, E., Moerman, I., Tinnirello, I., et al. (2017). WiSHFUL: Enabling

104

coordination solutions for managing heterogeneous Wireless Networks. IEEE Commu-

nications Magazine, 55(9):118–125.

Saclay (2012). Wireless Sensor Nodes Deployment at FIT/IoT-LAB Site(s). https:

//www.iot-lab.info/deployment/. Accessed: 16-06-2021.

Saint-Andre, P. et al. (2004). RFC 3920: Extensible Messaging and Presence Protocol

(XMPP): Core. Internet Engineering Task Force (IETF).

Shelby, Z., Hartke, K., and Bormann, C. (2014). The Constrained Application Protocol

(CoAP) - RFC 7252. Internet Engineering Task Force (IETF).

SourceCode (2020a). Geometric Sequence Technique for Effective RTO Estimation in

CoAP. https://gst-coap.github.io/.

SourceCode (2020b). Implementation of Eifel Retarnsmission Timer in CoAP. https:

//eifel-retransmission-timer-nitk.github.io.

Suwannapong, C. and Khunboa, C. (2019). Congestion Control in CoAP Observe Group

Communication. Sensors, 19(15):3433.

Suwannapong, C. and Khunboa, C. (2021). EnCoCo-RED: Enhanced Congestion Control

mechanism for CoAP Observe Group Communication. Ad Hoc Networks, 112:102377.

Tariq, M. A., Khan, M., Raza Khan, M. T., and Kim, D. (2020). Enhancements and

Challenges in CoAP - A Survey. Sensors, 20(21):6391.

Tian, Y., Xu, K., and Ansari, N. (2005). TCP in wireless environments: Problems and

Solutions. IEEE Communications Magazine, 43(3):S27–S32.

ToplologySelection (2012). Topology Selection at FIT/IoT-LAB Site(s). https://www.

iot-lab.info/deployment/. Accessed: 16-06-2021.

Vallati, C., Righetti, F., Tanganelli, G., Mingozzi, E., and Anastasi, G. (2018). ECOAP:

Experimental Assessment of Congestion Control Strategies for CoAP using the WiSH-

FUL Platform. In 2018 IEEE International Conference on Smart Computing (SMART-

COMP), pages 423–428. IEEE.

Zolertia (2014). Z1 mote. https://github.com/Zolertia/Resources/wiki/

The-Z1-mote. Accessed: 13-09-2017.

105

List of Publications

Journal Publications

1. Rathod, V., Jeppu, N., Sastry, S., Singala, S., and Tahiliani, M. P. (2019). Co-

CoA++: Delay Gradient based Congestion Control for Internet of Things. Future

Generation Computer Systems, 100: 1053-1072

2. Rathod, V. and Tahiliani, M. P. (2021). Geometric Series based effective RTO esti-

mation Technique for CoCoA, Ad Hoc Networks, Elsevier journal. [Under Minor

Revision]

Conferences

1. Rathod, V. J., Krishnam, S., Kumar, A., Baraskar, G., and Tahiliani, M. P. (2020).

Effective RTO estimation using Eifel Retransmission Timer in CoAP. In Inter-

national Conference on Electronics, Computing and Communication Technologies

(CONECCT) (pp. 1–6). IEEE. [(Best Paper Award - Academia)]

2. Rathod, V. J. and Tahiliani, M. P. (2020). Geometric Sequence Technique for Effec-

tive RTO Estimation in CoAP. In International Conference on Advanced Networks

and Telecommunications Systems (ANTS), (pp. 1–6). IEEE.

106

Brief Bio-Data

Personal Details

Rathod Vishal Jitendrakumar

Date of Birth :- 24th February 1988

Research Scholar

Department of Computer Science and Engineering

National Institute of Technology Karnataka, Surathkal

P.O. Srinivasnagar

Mangalore - 575025

Karnataka, India.

Phone: +91 9879957770

Email: rathodvishal78@gmail.com

Permanent Address

Rathod Vishal Jitendrakumar

S/o Jitendrakumar Chimanlal Rathod

15, Vishalnagar, Opp. Amit Park

Isanpur, Ahmedabad - 382 443

Gujarat, India.

Qualification M. Tech. in Computer Engineering, Dharmsinh Desai Institute of Technol-

ogy (DDIT), Dharmsinh Desai University (DDU), Nadiad - 387 001, Gujarat, India, 2011.

B. E. in Computer Engineering, Charotar Institute of Technology Changa (CITC), Gu-

jarat University (GU), Changa 388 421, Anand, Gujarat, INDIA, 2009.

Work Experience

Assitant Professor, Department of Computer Enigneering, Charotar University of Science

and Technology (CHARUSAT), Anand, Gujarat. (2011-2015)

107

