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ABSTRACT

This thesis investigates thermodynamic phase transitions in anti-de Sitter (AdS)

black holes. Motivated by the inconsistency of Smarr relation and the first law of black

hole thermodynamics in AdS spacetime, cosmological constant Λ is given a status of

thermodynamic variable pressure. This modification has led to the addition of pressure-

volume term in the first law of black hole thermodynamics. In this extended phase

space, black hole phase behavior is found analogous to everyday physical phenomena.

We have focussed our studies on the van der Waals (vdW) like phase transitions and

their manifestations, including Joule-Thomson expansion and heat engine in asymptot-

ically AdS black holes. We have chosen charged black hole with a global monopole

and a regular Bardeen black hole in AdS spacetime for our study. A detailed study

of thermodynamical properties through the Hawking temperature, mass, entropy, heat

capacity, and Gibbs free energy is conducted. A first-order phase transition similar to

the liquid-gas phase transition is observed between small black hole (SBH) and large

black hole (LBH) phases. Critical exponents calculated near the critical point match

those of the van der Waals fluid. Further, we investigate the effect of global monopole

on the Joule-Thomson expansion (JT) of charged AdS-black holes. We have calculated

an exact expression for the JT coefficient, which determines the cooling and heating in

the final phase. Using the JT coefficient, we have analyzed the effect of the monopole

parameter in the inversion temperature and isenthalpic curves. Similarly, we have ex-

tended our studies to regular Bardeen black holes. In another aspect of our study, a

heat engine constructed using a black hole as a working substance. The heat engine

efficiency is calculated via thermodynamic cycle in the P−V plane, which receives

and ejects heat. It is observed that the heat engine efficiency is improved by adding

a quintessence field. In the second part of the thesis, we probe the phase structure of

the black hole using thermodynamic geometry. Constructing a thermodynamic met-

ric in the phase space, we studied the critical behavior and microstructure of the black

hole. Utilizing the analogy with vdW fluid, the thermodynamic geometry of a charged

Bardeen AdS black hole is analyzed.

Keywords: Joule-Thomson effect; Heat engine; Thermodynamic geometry.
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Chapter 1

Introduction

“Imagination is more important than knowledge. Knowledge is limited, whereas

imagination embraces the entire world, stimulating progress, giving birth to evo-

lution” - Albert Einstein

The word Physics means ‘knowledge of nature’ in Greek. Physics deals with under-

standing different phenomena occurring in nature, from subatomic particles to hyper-

giant stars and galaxies. Behind these events, we can see four types of fundamental

forces classified as Weak, Strong, Electromagnetic and Gravitational forces. Of these,

the weak and strong forces act at distances of the order of the size of atomic nuclei

and are responsible for the decay processes and nuclear binding; they find applica-

tions in nuclear power plants to the medical diagnosis. The electromagnetic force deals

with the interaction between charged particles; finds application in telecommunication

equipments to home appliances. The gravitational force acts universally on everything

and keeps us on earth. Out of these four interactions, the gravitational force is the oldest

one formulated in Isaac Newton’s Philosophiæ Naturalis Principia Mathematica which

describes gravity as a universal force of attraction between two bodies (Newton 1687).

The range and time scale of these forces are distinct; weak and strong interactions act

around femtometers, whereas the electromagnetic and gravitational forces interact over

an infinite range. Though four interactions are distinct in their properties, there were
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attempts to cast these interactions as a unified one by exploiting underlying symmetries.

The golden age of physics was the late-18th and early 19th century. In the late

18th century, studying the statistics behind the black body spectrum led to quantum

mechanics. Quantum mechanics restricted one to determine position and momentum

simultaneously and precisely in the microscopic world. I.e., a certain amount of uncer-

tainty is involved when we measure two conjugate quantities like position-momentum

or energy-time. In the early 19th century, incompatibility between Galilean mechanics

and electromagnetism led to a new theory by Albert Einstein called the special the-

ory of relativity. By that time, due to Maxwell’s work, there was a strong notion that

it is not the force but the field which is fundamental in physics. On the other hand,

Newton’s law for gravitation to a great extent was a success, which even led to the

theoretical prediction of an unknown planet Neptune. The prediction came as an out-

come of the discrepancies in Mercury and Uranus’s orbits, which, when combined with

the sun becomes a three-body problem. The three-body problem itself does not have a

closed-form solution, but is amenable to perturbative analysis. On the other hand, the

precession of the perihelion of Mercury’s orbit explained by Newton’s theory showed

deviation from the actual rate by 43 arcseconds per century.

Einstein, in his special theory, postulated that no signal could travel faster than light,

prohibiting action at a distance. Thus if the sun is removed from the solar system, the

earth will take at least 8 minutes to feel the effect. In search of a relativistic theory for

gravity, Einstein formulated a geometric theory for gravity called the general theory of

relativity in 1915 (Einstein 1915b). General relativity has been extremely successful in

explaining many phenomena happening on a large distance scale from the solar system

to cosmological scales. Eddington’s historic solar eclipse expedition in May 1919 pro-

vided observational confirmation of the deflection of light predicted by the general the-

ory of relativity. Einstein’s theory was also accurate in explaining various astrophysical

phenomena such as the perihelion precession of Mercury (Einstein 1915a), gravitational

redshift (Einstein 1911) and gravitational lensing (Link 1936, Einstein 1936).

The core idea behind the general theory of relativity is the principle of equivalence,

which states that, one cannot distinguish between the motion of a freely falling body in

2



a uniform gravitational field and the motion of the same body in a uniformly accelerated

frame in small enough regions of spacetime. This equivalence implies that gravity is

not a force but a manifestation of spacetime itself. The crux of Einstein’s theory can be

summarized by John Wheeler’s statement “spacetime tells matter how to move; matter

tells spacetime how to curve”.

Gravity is all about the curvature of spacetime caused by matter. The information

about geometry is encoded in a metric tensor gµν , which measures the distance between

two points in spacetime. Einstein’s field equations relate the dynamics of the metric

tensor with the energy-momentum tensor of the matter,

Rµν −
1
2

gµνR =
8πG
c4 Tµν , (1.1)

where gµν is the metric, Rµν is the Ricci tensor built out of the 2nd derivative of the

metric. Tµν is the energy-momentum tensor, which describes the density and flux of

energy-momentum in any given region of spacetime. Within few months from Ein-

stein’s proposal of general relativity, a German physicist, Karl Schwarzschild, came

up with a solution to the Einsteins equation. It was during world war II while he was

serving as a lieutenant on the Russian front. The solution was for the static spherically

symmetric gravitational field in the space surrounding massive spherical objects such

as a star (Schwarzschild 1916),

ds2 =−c2
(

1− 2GM
c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2 (sin2
θdθ

2 +dϕ
2) , (1.2)

where r = 2GM
c2 is the event horizon of the black holes. After a few years, a static solution

was calculated for Einstein-Maxwell’s action, a charged black hole solution, known as

Reissner–Nordström (RN) metric (Reissner 1916, Nordström 1918). However, John

Archibald Wheeler was the one to use the word “black hole” for the first time in 1958.

In the same year, David Finkelstein gave physical interpretation to the Schwarzchild

solution by discussing photon trajectories around the Schwarzchild radius (Finkelstein

1958). Observation of quasars(quasi-stellar) in the luminous galaxies in 1958 sped

up the research in black hole physics. In 1963, Roy Kerr (Kerr 1963) extended the

3



Schwarzschild solution to a rotating black hole called the Kerr black hole. In the next

few years, Ezra Newman found a charged-rotating Kerr-Newman black hole (Newman

et al. 1965, Newman and Janis 1965). Apart from these solutions, there has been a large

class of black holes in different scenarios.

However, combining Einstein’s theory of relativity with the well-established single-

particle quantum mechanics was hit with particle number conservation problem. As in

the case of β−decay, single-particle approaches failed to explain various decay pro-

cesses. A relativistic particle possesses enough energy to create particles. So naturally,

relativistic quantum mechanics makes way to a theory with infinite degrees of freedom.

The first work in this direction was to find a relativistic quantum theory for classical

electrodynamics. In 1927, P.A.M. Dirac came up with quantum electrodynamics (Dirac

1927), which was successful in explaining the fine structure of the hydrogen atom spec-

tra. Nevertheless, this early success didn’t last long, as it faced many infinities in theory

due to the “self energies.”

In 1950s, Richard Feynman (Feynman 1950), Julian Schwinger (Schwinger 1948),

Shinichiro Tomonaga (Tomonaga 1946) and Freeman Dyson (Dyson 1949) found a way

to extract useful information from those infinities known as the renormalisation theory.

Feynman reframed the theory into a more elegant version of Path integral formalism,

a much simpler way for calculating probability amplitude using Feynman diagrams.

Having a complete theoretical structure, there were attempts to put the other three in-

teractions also into this framework. The problem of non-renormalisability of weak and

strong interactions was solved by casting the theory into the gauge theory perspective.

The works of t’Hooft and Veltman on Yang-Mills theory in this regard initiated the

gauge theory revolution (’t Hooft and Veltman 1972). Based on the Glashow-Salam-

Weinberg model (Glashow 1961, Weinberg 1967, Salam 1968) with SU(2)×U(1) sym-

metric Yang-Mills field, the electromagnetic and weak interactions were unified into an

electro-weak theory. For strong interactions, with SU(3) color symmetric Yang-Mills

field, it was called as quantum chromodynamics (QCD). The success of the gauge theory

and quantum field theory (QFT) is captured in the standard model for particle physics,

where electro-weak and QCD theories are tied together with U(1)× SU(2)× SU(3)
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symmetry. Except for few things like baryon asymmetry, dark matter particle, and

neutrino mass, the standard model has a striking experimental confirmation in particle

physics.

Another way of unification is called the Grand Unified Theory (GUT), which uni-

fies three particle interactions at high energies of order 1015 Gev. But the situation is

markedly different in gravitational interactions, as there is no successful renormalizable

gauge theory for gravity. However, a quantum gravity theory has a great role to play

at these high grand unification energy scales. Given its significance, research has pro-

gressed to find a right candidate for the quantum gravity. The String theory and loop

quantum gravity are popular among various other options such as asymptotic safety,

causal set theory, and group field theory. String theory sees particles as an excitation of

a string field, whereas loop quantum gravity focuses on quantizing spacetime geometry.

Even though we are still waiting for a complete theory of quantum gravity, our

understanding of black holes has improved over the past two decades. The black holes,

being a macroscopic quantum mechanical system, are ideal for exploring the intrinsic

features of quantum gravity. Thus, during the past five decades, a large amount of

research has been conducted in the physics of black holes. One among them is black

hole thermodynamics, a field that emerged after the seminal work of Jacob Bekenstein

and Stephen Hawking in the early seventies. Bekenstein’s proposal that the black hole

entropy should be proportional to the horizon area and semi-classical calculations of

Hawking to find a surface gravity dependent black hole radiation paved the way for

black hole thermodynamics. Unexpected connection between fundamental theories,

general relativity, quantum field theory, and thermodynamics has lead to a surge of

interest in black hole thermodynamics (Hawking 1975, Bekenstein 1972, 1973, 1974).

With the temperature and entropy for a black hole defined, it is natural for it to obey the

laws of thermodynamics (Wald 2001). Realizing the thermodynamics of black holes,

the four laws of black hole mechanics were obtained by Bardeen, Carter, and Hawking

in parallel to four laws in classical thermodynamics (Bardeen et al. 1973a).

The significance of black hole thermodynamics in anti-de Sitter (AdS) space was

realized from the result that a thermodynamically stable black holes exist only in AdS
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space. This contrasts with the Minkowskian case where the black hole has a negative

specific heat and disappears by radiating Hawking radiation. This happens because the

boundary of AdS space acts like walls of a thermal cavity. Inside this closed box-like

space, below a certain temperature, only radiation can exist, and above this temper-

ature, the radiation becomes unstable and hence collapses, resulting in the formation

of black holes. Thus, the black holes exist in two forms, the larger one with positive

specific heat, which is locally stable, and a smaller one with negative specific heat that

is unstable. The phase transition between these black holes and radiation at the transi-

tion temperature is termed as Hawking Page transition (Hawking and Page 1983, Page

2005). In high-energy physics, the topic AdS space got the attention of a larger audi-

ence after the proposal of AdS/CFT correspondence by Maldacena (Maldacena 1999).

This gauge-gravity duality relates gravity theory in an AdS space to the conformal field

theories at the boundary of that space.

The first progress beyond Hawking Page phase transition happened after identify-

ing a rich phase structure isomorphic to van der Waals liquid-gas system in RN-AdS

black holes (Chamblin et al. 1999a,b) and in Kerr Newman-AdS black holes (Caldarelli

et al. 2000). In all black hole thermodynamic studies done, the crucial thermodynamic

variable pressure and volume were absent. In 2009, David Kastor introduced the pres-

sure term into this field through the cosmological constant Λ (Kastor et al. 2009). This

identification rectified the inconsistency between the Smarr relation and the first law.

In this approach, the conjugate quantity of cosmological constant is taken as the ther-

modynamic volume. Simultaneously, the expansion of phase space altered the first law

of thermodynamics with a V dP term, giving a new interpretation to the mass of the

black hole as enthalpy (Dolan 2011). The new perspective on mass and cosmological

constant in black hole thermodynamics resulted in phenomenal consequences in this

domain, enabling us to establish newer analogies to the known phenomena in classical

thermodynamics. In this extended phase space, the thermodynamics of charged AdS

black hole is found analogous to a van der Waals fluid system (Kubiznak and Mann

2012, Gunasekaran et al. 2012, Kubiznak et al. 2017). This has led to a new arena in

black hole physics called the black hole chemistry. Other analogies to classical ther-
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modynamics were also made like Joule Thomson expansion (Ökcü and Aydıner 2017),

holographic heat engines (Johnson 2014), Clausius-Clapeyron Equation (Zhao et al.

2015) and reentrant phase transitions (Altamirano et al. 2013).

1.1 Phase transitions and Critical Phenomena

Phase transition is a general feature of materials in nature. Interestingly, they follow a

common set of characters during the transition. The solid/liquid/gas, paramagnetic/ fer-

romagnetic, and superconductor/normal metal transitions are common examples. Phase

transition is the direct outcome of a system’s struggle to minimize energy and maximize

its entropy or disorder. We can define an order parameter to describe these phase transi-

tions, which appear in one phase and disappears during the transition. Order parameter

can simply be referred to as an increase or decrease in order, like in boiling of a liquid

to gas, freezing liquid to a solid, and arrangements of spins during para/ferromagnetic

transitions, i.e., the difference in densities in earlier case and magnetization in latter are

nothing but the order parameters.

One of the signatures of a phase transition is the existence of singularities in the

free energy or their derivatives with respect to thermodynamic variables. According to

Ehrenfest classification, the order parameter is the lowest derivative of free energy with

respect to the variable that exhibits a discontinuity. But in the modern-day classifica-

tion, a phase transition is classified into three types, first-order/discontinuous, second-

order/continuous, and infinite order/topological transitions. A discontinuous change in

order parameter, like density in the case liquid/gas transition is first order, and a contin-

uous change in order parameter as magnetization in the case of ferromagnetic transition

is the second-order. An infinite order transition does not possess singularities in free

energy derivatives; nevertheless, the free energy itself contains singularities. The order

parameter shows an exponential behavior near the transition point. Of which second-

order phase transition is of special interest because of its distinct characteristics. These

characteristic features are known as critical phenomena. The presence of large fluctua-

tion around the critical point is one feature of the critical phenomenon. The appearance

of discontinuities in response functions and divergence of the correlation length is asso-
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ciated with critical phenomena. Correlation length tells how spin, density, or any other

degrees of freedom are influenced by each other. Near the critical point, we can assign

some exponents to specify the nature of divergence. These are four numbers α,β ,γ and

δ called as critical exponents. Interestingly, these critical exponents exhibit universal-

ity for phase transitions, thus forming a universality class. At their critical point, the

Ising model, water, and van der Waals fluid share the same critical exponents. Hence,

systems are equivalent at their critical point, and they belong to the same universality

class. Another key feature near the critical point is the scale invariance, and the physics

is explained by the scale-invariant theories, or, more generally, conformal field theories

(CFT).

1.1.1 Conformal field theories and its AdS space correspondence

The conformal field theory is a quantum field theory that has a conformal symmetry.

Conformal transformation comprises of Poincare’
(
xµ → Λ

µ

ν xν +aµ
)

and some angle

preserving transformations. CFT remains invariant under the following transforma-

tions,

Translation :x
′µ → xµ +aµ ,

Lorentz tranformations :x
′µ → Λ

µ

ν xν ,

Dilations :x
′µ → λxµ ,

Special Conformal transformation :x
′µ → xµ +aµx2

1+2xµaν +a2x2 ,

where aµ is the acceleration. In d−dimensions, the conformal symmetry group is

SO(d,2) with (d+1)(d+2)
2 generators. Owing to AdS/CFT correspondence, conformal

field theories are essential in understanding quantum gravity. The AdS/CFT correspon-

dence tells us that a CFT on a d−dimensional spacetime is equivalent to a theory of

quantum gravity in a d + 1 dimensional asymptotically AdS spacetime, i.e., N = 4

supersymmetric Yang-Mills theory is dual to a type II B string theory in AdS5× S5.

The importance of AdS/CFT correspondence lies in the fact that it converts a result in

classical gravity to a scale-invariant condensed matter system. This has an interesting

consequence in strongly correlated field theories, where we have a significantly less an-
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Figure 1.1: The AdS/CFT correspondence: Duality between a theory of gravity in
asymptotic anti-de Sitter space in d = 2+ 1 dimensions with a conformal field theory
(CFT) residing on the boundary d = 2 dimensions.

alytic method to study its physics. This tool is very efficient due to strong/weak duality.

The main ingredient in this duality is AdS space geometry and Conformal field theory.

1.1.2 AdS spacetime

Anti-de Sitter spacetime abbreviated as AdS is the maximally symmetric hyperbolic

space with constant negative curvature. We can represent d−dimensional AdS space-

time as a hyperboloid embeded in a d+1 dimension flat Minkowski spacetime (eqn.1.2).

These are R2,d−1 space having two timelike directions. A hyperboloid can be repre-

sented by constraint equation,

−X2
0 −X2

1 +X2
2 + ...+X2

d =−L2,

where L is the radius of curvature of hyperboloid in the d+1 flat spacetime with metric,

ds2 =−dX2
0 −dX2

1 +dX2
2 + ...+dX2

d .

The space has a Lorentz symmetry SO(2,d− 1). We can parametrize AdS spacetime
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Figure 1.2: The anti-de Sitter spacetime as a hyperboloid embedded in a flat spacetime
with two time-like coordinates X0 and X1.

in 4−dimensions (AdS4) by intrinsic coordinates (t,ρ,θ ,φ),

X0 = Lsin t coshρ,

X1 = Lcos t coshρ,

X2 = Lsinhρ cosθ ,

X3 = Lsinhρ sinθ cosφ ,

X4 = Lsinhρ sinθ sinφ .

Now, the metric takes the form,

ds2 = L2 (−cosh2
ρdt2 +dρ

2 + sinh2
ρdΩ

2
2
)
, (1.3)

where dΩ2 = dθ 2 + sin2
θdφ 2 is 2-sphere. AdS4 is SO(2,3) invariant. The coordinates

(t,ρ,θ ,φ) cover entire space (ρ ≥ 0,0≤ t ≤ 2π), hence called the global coordinates.

It has a topology S1×R3. As time-like coordinate t is 2π periodic, it allows close time-

like curves. This pathology is an artifact of chosen coordinate and can be removed in

universal cover, where t ranges from (−∞,+∞). Conformally compactifying the space

10



by defining, tan χ := sinhρ or, coshρ := 1
cos χ

, metric (eqn.1.3) becomes,

ds2 =
L2

cos2 χ

(
−dt2 +dχ

2 + sin2
χdΩ

2
2
)
, (1.4)

where 0≤ χ ≤ π

2 and −∞ < t <+∞. Conformal boundary is located at θ =±π

2 which

corresponds to ρ → +∞ (spatial infinity) in the global coordinates. It is important to

note that the conformal boundary of AdS spacetime is the place for the dual fields.

The metric (eqn.1.4) is conformal to one-half of the Einstein static universe spacetime

represented by ds̃2 =
(
−dt2 +dθ 2 + sin2

θdΩ2
2
)
,

ds2 =
L2

cos2 χ
ds̃2,

ie, gµν = Ω
2(χ)g̃µν .

Conformal boundary of AdSd spacetime (χ = π

2 ) i.e., R× Sd−2 is same as that of

conformaly compactified Minkowski space in one lesser dimension R1,d−1. In sim-

ple words, anti-de Sitter spacetime is conformally flat. That is the core of AdS/CFT

correspondence. AdS spacetime is written in different coordinate chart like Poincare’

and static coordinates. Popular one is in static coordintes which is obtained by setting,

r = Lsinhρ ,

ds2 =−
(

1+
r2

L2

)
dt2 +

(
1+

r2

L2

)−1

dr2 + r2dΩ
2
2.

Any spacetime which approaches this metric in the asymptotic limit is said to be asymp-

totically AdS spacetime. To be more precise, any spacetime which can be conformally

compactified to match the conformal structure of AdS is called asymptotically AdS

spacetime.

The homogeneity and isotropy of a manifold imply that space should be maximally

symmetric. In that case, the curvature is the same everywhere, and the Riemann tensor

can be constructed from metric in a unique way. In d−dimensional manifold, Riemann
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tensor is given by,

Rµνρδ = κ
(
gµρgνδ −gµδ gνρ

)
,

where, κ = R
d(d−1) . Consider Einstein equations in vacuum with a cosmological con-

stant Λ,

Rµν −
1
2

gµνR+Λgµν = 0.

Here, the Ricci scalar R can be written in terms of cosmological constant Λ as,

R =
2d

d−2
Λ.

From the nature of cosmological constant Λ, there are three maximally symmetric

spacetimes; Minkowski with Λ = 0, de Sitter(dS) Λ > 0, and anti-de Sitter(AdS) Λ < 0.

In the case of AdS space in 4-dimensions, Ricci scalar R is equal to− 6
L2 and cosmolog-

ical constant Λ = − 3
L2 . In terms of cosmological constant, the AdS metric would read

as,

ds2 =−
(

1+
Λr2

3

)
dt2 +

(
1+

Λr2

3

)−1

dr2 + r2dΩ
2
2.

In the spirit of AdS/CFT correspondence, there has been a massive amount of research

on AdS black holes, in particular, black hole thermodynamics of AdS black holes.
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1.1.3 Objectives

The main objective of this thesis is the study of “Critical phenomena in anti-de sitter

black holes”. The work specifically focuses on:

• Study the phase transitions in the charged AdS black with a global monopole

by analyzing Hawking temperature, mass, entropy, heat capacity, and Gibbs free

energy in the extended phase space.

• Explore the effect of magnetic monopole parameter on the Joule-Thomson ef-

fect of charged AdS black hole through the inversion temperature and isenthalpic

curves.

• Investigation of thermodynamics in regular Bardeen black holes and the influence

of quintessence parameters in the phase transition.

• Study the heat engine constructed out of regular Bardeen black holes and analyse

the effect of quintessence on the efficiency of the engine.

• Study the thermodynamic geometry of regular Bardeen AdS black hole and the

effect of quintessence through Ruppeiner, Weinhold, and Quevedo approaches.

• Investigation of the interaction in the microstructure of regular Bardeen AdS

black holes via novel Ruppeiner geometry approach.
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1.2 Organization of the Thesis
The thesis is organized as follows:

Chapter 1 gives a brief introduction of anti-de sitter black holes, phase transitions,

AdS/CFT correspondence, critical phenomenon, and black hole thermodynamics. The

scope and objectives of the present research work together with the organization of the

thesis are also included at the end of this chapter.

Chapter 2 presents a brief introduction to symmetries and conserved charges in

general relativity. Killing vector field and Komar integral are introduced to derive laws

of black hole thermodynamics. Smarr relation and variation of the cosmological con-

stant is discussed via modified Komar integrals. A brief introduction to black hole

chemistry is also presented.

In Chapter 3, thermodynamics in AdS black holes with a global monopole is dis-

cussed. Hawking temperature, P−V criticality, swallowtail behavior in Gibbs free

energy, specific heat, and critical exponents are investigated. Joule-Thomson expan-

sion in AdS black hole with global monopole is explained. Using the Joule-Thomson

coefficient, the inversion and isenthalpic curves are discussed.

In Chapter 4, the phase structure and the microscopic interactions in regular Bardeen

AdS black holes are studied. The stable and metastable phases are analyzed through

coexistence and spinodal curves using numerical methods. Using the novel Ruppeiner

geometry approach, the microscopic interaction in the black hole is investigated.

In Chapter 5, thermodynamics of regular Bardeen black hole and effect of quintessence

is investigated. The effect of magnetic charge and quintessence parameter is discussed.

The final part is dedicated to the thermodynamic geometry of regular Bardeen black

holes.

In Chapter 6, a heat engine is constructed from regular black holes, and efficiency is

increased by adding a quintessence field. The efficiency of the heat engine is calculated

and compared with the traditional Carnot engine. The dependency of efficiency with

respect to magnetic charge and quintessence parameter is studied in detail.

Chapter 7 summarize the critical findings of the present research work by high-

lighting the remarkable results of the thesis along with conclusions.
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Chapter 2

Introduction to Black hole thermodynamics

Summary

This chapter presents a brief introduction to the black hole thermodynamics. Be-

ginning with symmetries and charge conservation in gravity, we introduce Komar

integrals and conserved quantities. Using the concept of Killing horizon, we re-

view the laws of black hole thermodynamics. In the final section, we discuss the

thermodynamics in the AdS black holes.

2.1 Introduction
The symmetries and conservations play a key role in physics. They are related to each

other through Noether’s theorem, which states that for every continuous symmetry of

the action, there is a conserved Noether charge. When it comes to gravity, symmetries

are very significant due to the non-linear nature of Einstein’s equations. We can observe

certain symmetries in the metric tensor gµν called isometries, i.e., the geometry is in-

variant under certain transformations. In the case of the Minkowski metric, isometries

can be easily observed from translations and Lorentz transformations. The translational

invariance is apparent from the metric as its components are independent of some co-

ordinates. In general, any diffeomorphism φ : M→M is an isometry, if φ∗g = g, i.e.,

physics of set (M,gµν) and its pullback (M,φ ∗ gµν) remains invariant under general

coordinate transformations. It is a fancy way of telling a coordinate invariance in the
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geometry, or naively there does not exist a preferred coordinate system. This is the mes-

sage conveyed when we call a theory generally covariant or diffeomorphism invariant.

Killing vector fields

The isometries are generated by a Killing vector field, named after the German mathe-

matician Wilhelm Killing. Defining a Killing vector is a systematic procedure to find

the symmetries in the geometry. For example, time-translation and rotational symmetry

of the Schwarzschild metric in (t,r,θ ,φ) coordinates is defined by the Killing vector,

ξ
µ

0 = ∂
µ

t = (1,0,0,0) , (2.1)

Kµ

1 = ∂
µ

φ
= (0,0,0,1) , (2.2)

Kµ

2 =−cosφ∂
µ

θ
+ sinφ cotθ∂

µ

φ
= (0,0,−cosφ ,sinφ cotθ) , (2.3)

Kµ

3 = sinφ∂
µ

θ
+ cosφ cotθ∂

µ

φ
= (0,0,sinφ ,cosφ cotθ) , (2.4)

where ξ and K generates time-translations and rotatational invariance respectively in

the static and spherically symmetric spacetime. In covariant form, Killing vector is

written as,

ξ0µ = gµνξ
ν =

(
−
(

1− 2M
r

)
,0,0,0

)
, K1µ =

(
0,0,0,r2 sin2

θ
)
. (2.5)

An useful property of Killing vector is the linear superposition, i.e., the linear combi-

nation of two Killing vectors is also a Killing vector. In addition, the Killing vectors

satisfy the condition,

∇µξν +∇νξµ = ∇(µξν) = 0. (2.6)

This equation is called the Killing equation. We can explain the Killing equation using

the concept of Lie derivative introduced by the Norwegian mathematician Sophus Lie.

The Lie derivative is just another way of comparing the tensor fields at two different

points like a covariant derivative. Using the local diffeomorphism, the tensor field at

different points can be brought together. The Lie derivative describes the change of a

tensor field as we move along a vector field (diffeomorphism). It can be visualized as a

function describing fluctuations in thermometer reading of a sailor whose boat is driven
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by wind in a vast ocean. The Lie-derivative of vector field is normally expressed in the

Lie-bracket between two vectors. The Lie-derivative of a vector V along a vector field

ξ is defined as a Lie-bracket,

£ξV µ := [ξ ,V ]µ = ξ
ν
∂νV µ −V ν

∂νξ
µ . (2.7)

The Lie derivative of a tensor T µ1µ2...µk
ν1ν2...νl along a vector field V is defined as,

£V T µ1µ2...µk
ν1ν2...νl =V σ

∇σ T µ1µ2...µk
ν1ν2...νl

− (∇λV µ1)T λ µ2...µk
ν1ν2...νl

− (∇λV µ2)T µ1λ ...µk
ν1ν2...νl − . . .

+
(

∇ν1V
λ

)
T µ1µ2...µk

λν2...νl

+
(

∇ν2V
λ

)
T µ1µ2...µk

ν1λ ...νl
+ . . . (2.8)

For the metric tensor gµν , Lie derivative along a vector field V would read,

£V gµν =V σ
���

�:0
∇σ gµν +

(
∇µV λ

)
gλν +

(
∇νV λ

)
gµλ ,

=∇µVν +∇νVµ ,

=2∇(µVν).

As the Killing vector field ξ µ(x) generates one-parameter family of isometries, the Lie

derivative of a metric along the flow generated by the Killing vector ξ µ is zero,

£ξ gµν = 0. (2.9)

Using the definition of Lie derivative and Killing vector, we get back the Killing equa-

tion (eqn.2.6),

i.e.,∇µξν +∇νξµ = ∇(µξν) = 0. (2.10)
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Along a geodesic the Killing vector gives us a conserved quantity, which is the product

of the Killing vector and the four-momentum Pµ . The Killing equation (eqn.2.6) can

also be written in terms of Pµ as,

Pµ
∇µ (ξνPν) = 0. (2.11)

In the case of an arbitrary geodesic, the conserved quantities are energy E and angular

momentum J. Moreover, by Noether’s theorem each symmetry will produce a con-

served quantity. In defining the conserved charge through Komar integrals, the Killing

vector plays pivotal role. In addition, the derivatives of Killing vectors are related to

Riemann tensor Rρ

σ µν and Ricci tensor Rσν respectively as,

∇µ∇σ ξ
ρ = Rρ

σ µνξ
ν ; ∇µ∇σ ξ

µ = Rσνξ
ν . (2.12)

And using Bianchi identity and the Killing equation, (eqn.2.12) is written in terms of

Ricci scalar as,

ξ
µ

∇µR = 0. (2.13)

This shows that Ricci scalars are not changing along the Killing vector field. That means

the geometry is invariant along ξ µ . Thus the Killing vectors are a beneficial entity to

depict isometries of a spacetime.

Conservation laws and charges

The Noether’s theorem paves way to the continuity equation which tells that behind

every conserved current J there is a conserved charge Q,

∇µJµ = 0, Q =
∫

d3x J0. (2.14)

This definition of charge can be proved using Stoke’s theorem,

∫
M

∇ ·FdV =
∮

∂M
F ·dA. (2.15)
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Taking time-derivative of eqn.2.14, we obtain

∂tQ =
∫

d3x∂tJ0 =−
∫

d3x∂iJi =
∮

dAiJi = 0. (2.16)

These conservation equations are not restricted to flat spacetime M = R×R, but exists

in any n−dimensional manifold M as well. Stokes’s theorem can be generically written

with n−forms as, ∫
M

dω =
∫

∂M
ω. (2.17)

where ω is an (p−1) form and dω its exterior derivative which turns out to be a

p−form. And M is an n−dimensional manifold and ∂M is its n−1 dimensional bound-

ary. Thus Stokes’s theorem relates a quantity on the boundary with its exterior derivative

in the bulk. Using the vector identities and notations as given in the appendix (Appx.A),

Stoke’s theorem takes the form,

∫
M

dnx∂ν

(√
|g|V ν

)
=
∫

∂M
dn−1

√
|γ|nνV ν , (2.18)

where y is the coordinate on the boundary ∂M, γ is the determinant of the induced

metric and nν is the unit normal to ∂M. The integral in this form takes care of diffeo-

morphism invariance and remains same in every coordinate system. We will use Stoke’s

theorem to show that a conserved current defines a conserved charge. Given a space-

like hypersurface Σ of constant time and conserved current Jν , we can get a conserved

charge QΣ,

QΣ =−
∫

Σ

∗J =−
∫

Σ

dn−1y
√
|γ|nνJν . (2.19)

The current obtained here represents total charge throughout the spacetime at a partic-

ular time. The negative sign in front of the integral assures a positive total charge by

compensating negative sign coming from lowering the index of time component of unit

normal nν (nνnν =−1). Now consider a region R enclosed between two space-like

hypersurface Σ1 and Σ2 connected through a surface Λ at infinity as shown in the figure

(Fig.2.1). The boundary Σ2 lies in the future of the Σ2 and hence future directed unit

normal nµ pointing outward to the space-like hypersurface is positive for Σ2 and nega-
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Spatial In nity
R

Figure 2.1: Region R is enclosed between boundaries Λ at spatial infinity and two space
like hypersurface Σ1 and Σ2. The hypersurface Σ2 is the time translation of Σ1. Q(Σ1),
Q(Σ2) and Jµ are the charge and current density.

tive for Σ1. We can apply the Stoke’s theorem to Maxwell’s field. Recall the Maxwell’s

equations, which can be summarised in two equations,

F = dA,

d ∗F = 4π ∗ J or d (∗J) = 0.

Using the Stokes theorem (eqn.2.17), we can find total charge Q enclosed in the region

R as,

∫
R

d (∗J) =
∫

∂R
∗J,∫

R
dnx
√
|g|∇µJµ =

∫
Σ1+Σ2+Λ

dn−1y
√
|γ|nµJµ (2.20)

=
∫

Σ2

dn−1y
√
|γ|nµJµ +

∫
Σ2

dn−1y
√
|γ|
(
−nµ

)
Jµ +

∫
Λ

dn−1y
√
|γ|nµJµ

= QΣ2−QΣ1 = 0.

This provides a proof for the statement that a conserved current ∇µJµ = 0 leads to

the conserved charge QΣ2 = QΣ1 . In the last step of eqn.2.20, we have assumed that

the current through the boundary Λ is zero. The Stoke’s theorem can be used in elec-

20



trodynamics for showing the electric charge conservation. Maxwell’s equation is well

described in terms of antisymmetric field strength tensor as,

∇νFµν = 4πJµ . (2.21)

Conserved current Jµ enables us to define a conserved charge using eqn.2.19 and eqn.2.21

in a space-like hypersurface Σ.

QΣ =−
∫

Σ

d3x
√
|γ|nµJµ , (2.22)

=− 1
4π

∫
Σ

d3x
√
|γ|nµ∇νFµν . (2.23)

In special relativity, the space-like hypersurface is defined as,

Σt =
{

xµ ∈ R3 /constant time t
}
. (2.24)

And the induced metric, γi j = diag(1,1,1) and time-like unit normal to the hypersurface

Σt is, nµ = (1,0,0,0) and nµ = (−1,0,0,0). Using eqn.2.19, conserved charge read as,

QΣt =−
∫

Σt

d3x
√
|γ|nµJµ =−

∫
R3

d3x n0J0 =
∫

R3
d3x ρ(x). (2.25)

which is nothing but the total charge in the Minkowski space. This kind of conservation

is common to any spacetime. Eqn.2.23 can be rewritten using Stoke’s theorem as,

Q =− 1
4π

∫
Σ

d3x
√
|γ|nµ∇νFµν ,

=− 1
4π

∫
∂Σ

d2x
√
|α|nµσνFµν . (2.26)

Here, the boundary of the hypersurface is located at spatial infinity denoted by ∂Σ. αi j

is the induced metric on the boundary of space-like hypersurface ∂Σ and σ µ is the unit

normal pointing outward. As an example, we can find the conserved electric charge
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Figure 2.2: Foliation of spacetime: A spacetime
(
M,gµν

)
can be decomposed into 3-

slices (space-like hypersurfaces) {Σt}. A height-function tµ can be defined in between
the hypersurface Σt , tµ = Nnµ + β µ , where nµ is the unit time like normal to the
hypersurface, N is the lapse function and β is the Shift function. .

QRN for Reissner-Nordström black hole given by the metric,

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dΩ

2. (2.27)

With f (r) = 1− 2M
r + Q2

r2 , where M and Q are mass and charge parameters of black

hole. Making use of the time-translational symmetry in the metric, we choose space-

like hypersurface Σt and unit time-like normal to it as nµ . From the 3+ 1 foliation of

spacetime, nµ can be found. The induced metric on the hypersurface Σt is given by

γµν = gµν +nµnν .

nµ =−gab
ωb, and ωa = NΩa, (2.28)

where ω is the normalised 1−form to the space-like hypersurface Σt , Ω is the unnor-

malised 1−form and N a lapse function measuring proper time between these hypersur-

face obtained by normalising Ωa.

N =
1√

−gabΩaΩb
. (2.29)
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Here in the case of Reissner-Nordström black holes, Ωa = (1,0,0,0) and N = 1√
f (r)

.

Hence the unit normal nµ is obtained as

nµ =

(
1√
f (r)

,0,0,0

)
, and nµ = gµνnν =

(
−
√

f (r),0,0,0
)
. (2.30)

The boundary ∂Σ is assumed as a 2-sphere with infinite radius described by the metric,

αi j = r2 (dθ
2 + sin2

θdφ
2) . (2.31)

The unit normal to the ∂Σ is given by σ µ which satisfies σµσ µ =+1,

σ
µ =

(
0,
√

f (r),0,0
)

and σµ =

(
0,

1√
f (r)

,0,0

)
. (2.32)

Putting all things together, the total charge of the RN-black hole is obtained from

eqn.2.26,

QE =− 1
4π

∫
∂Σ

d2x
√
|α|nµσνFµν (2.33)

=− 1
4π

∫
∂Σ

dθdφ r2 sinθn0σrF tr (2.34)

=
1

4π

∫
∂Σ

dθdφ r2 sinθ
q
r2 = q. (2.35)

This shows that the total electrical charge in the RN-black hole is the same as in

Maxwell’s equation.

2.1.1 Komar Integral

After the electric charge, we now focus on other conserved quantities in the black hole,

which are mass and angular momentum. The conservation equation in general relativity

is expected to be the covariant conservation of stress-energy tensor Tµν like in any

quantum field theory.

∇µT µν = 0. (2.36)

But it is not true, we can show that T µν itself is not conserved in GR and ∇µTµν =

c4

8πG∇νR. A quantity defined as 8πG
c4

(
Tµν − 1

2gµνT
)

which is equal to Rµν is the right
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choice for the covariant conservation equation. This happens because divergence of

Ricci tensor do not vanishes and becomes equal to Ricci scalar.

∇µRµν =
1
2

∇
νR. (2.37)

In asymptotically flat stationary spacetime having a time-like killing vector ξ µ , we can

define a conserved current Jµ from T µν ,

Jµ = ξµT µν . (2.38)

Using the Stoke’s theorem (eqn.2.23) integrating over spatial hypersurface Σt , we can

find the total conserved energy E,

E =−
∫

Σ

d3x
√
|γ|nµJµ . (2.39)

Here our definition of current leads to subtlety that the total energy becomes zero due

to the vanishing of T µν . And this is indeed not true. Again as mentioned above, a right

choice will be Rµν ,

Jν = ξµRµν , (2.40)

= 8πGξµ

(
T µν − 1

2
gµνT

)
. (2.41)

To check whether this current Jν is conserved,

∇µJµ =���
��

��:0(
∇µξµ

)
Rµν +ξµ

(
∇µRµν

)
,

= ξµ

(
∇µRµν

)
=

1
2

ξν∇
νR = 0.

The first term vanishes due to the antisymmetric argument, and the second term is

rewritten using eqn.2.37 and eqn.2.13. This shows that a new definition for the cur-

rent in terms of Ricci tensor is the right choice. Now we proceed to write integral in
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terms of the new definition of current (eqn.2.41),

Q =−
∫

Σ

dn−1y
√
|γ|nµJµ ,

=−
∫

Σ

dn−1y
√
|γ|nµξνRµν ,

=−8πG
∫

Σ

dn−1y
√
|γ|nµξν

(
T µν − 1

2
gµνT

)
. (2.42)

Also, from eqn.2.12 we have,

ξµRµν = ∇µ∇
ν
ξ

µ . (2.43)

This expression (eqn.2.43) enables us to formulate the equation for the conserved charge

in terms of the derivatives of the Killing vector field. This also makes it easy to apply

Stoke’s theorem and to rewrite it as a surface integral on the boundary of Σ.

Q =−
∫

Σ

dn−1y
√
|γ|nµ∇ν (∇

µ
ξ

ν) (2.44)

=−
∫

∂Σ

d2x
√
|α|nµσν∇

µ
ξ

ν . (2.45)

This integral is called as Komar integral for a time-like Killing vector field ξ , where the

Σ is the space-like hypersurface, and ∂σ is the outer boundary of Σ. This is the most

general version of Noether’s theorem in classical physics. For example, translational

and rotational invariance leads to the conserved energy and angular momentum, respec-

tively. Komar integral is written in various forms using differential forms mentioned in

appendix (Appx.C).

The total energy (mass) of an asymptotically flat stationary spacetime is given by

the Komar mass formula,

MKomar =
1

4πG

∫
∂Σ

d2x
√
|α|nµσν∇

µ
ξ

ν . (2.46)

And the Komar angular momentum in an axisymmetric spacetime is given by,

JKomar =−
1

8πG

∫
∂Σ

d2x
√
|α|nµσν∇

µ
ξ

ν , (2.47)
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where the normalisation appearing infront of the integral comes from the normalisation

condition of Killing vector field at spatial infinity.

ξµξ
µ →−1 at r→ ∞. (2.48)

Also, integrals (eqn.2.46 and eqn.2.47) should reduce to expressions of energy and

momentum at the classical limit. Using the expression (eqn.2.42), we would have

MKomar =−
8πG
NM

∫
Σ

dV nµξν

(
T µν − 1

2
gµνT

)
≈−4πG

NM

∫
Σ

dV T tt ≈−4πG
NM

MNewton,

JKomar =−
8πG
NJ

∫
Σ

dV nµξν

(
T µν − 1

2
gµνT

)
≈ 8πG

NJ

∫
Σ

dV T tφ ≈ 8πG
NJ

JNewton.

On simplification at the spatial infinity, we have considered only the dominant term in

stress-energy tensor T µν . The normalization constants NM and NJ are fixed from the

Newtonian limit as −4πG and 8πG respectively.

The Komar integral result is interesting in the case of Schwarzschild spacetime,

where Rµν = 0.

Q =
∫

Σ

dSµRµν
ξν . (2.49)

Not only for Schwarzschild solutions, but for any vacuum solutions with Rµν = 0, re-

sults in Komar charge Q = 0. The black hole hypersurface Σ has two boundaries, one at

horizon H and the other an infinite sphere S2 at spatial infinity. The definition of mass

is obtained at spatial infinity, and hence the integral gives non zero mass regardless

of the interior of the black hole. Komar mass for Schwarzschild black hole becomes

equal to the mass parameter in the spacetime like that of electric charge parameter in

RN case. Moreover, this definition of mass (energy) (eqn.2.46) matches with the ADM

energy (Arnowitt, Deser and Misner) ) which is the total energy calculated using the

Hamiltonian formulation of gravity.

For any Killing vector associated with a spacetime, the Komar integral can be de-

fined. But the formula for mass and angular momentum holds only for asymptotically

flat spacetime at asymptotic infinity. In asymptotically flat spacetime, the Komar mass

obtained matches with ADM mass. But in general, Komar integral holds for any space-
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R

Figure 2.3: Region R with space-like hypersurface Σ1 and Σ2, a time-like hypersurface
S2, which is a large sphere at infinity and a null hypersurface H, which is the black hole
horizon.

time with symmetries encoded in a conserved ’Komar charge’ through an integral in-

volving Killing vector field ξ
µ

(a).

Q
ξ

µ

(a)
=

D−2
8πG

∫
Σ

dSµRµ

νξ
ν

(a) =
D−2
8πG

∫
∂Σ

dSµν∇
ν
ξ

µ

(a). (2.50)

At asymptotic infinity, in a static, stationary and axisymmetric spacetime Komar charge

calculated matches with mass M and angular momentum J parameter.

lim
r→∞

Q
ξ

µ

(t)
= M ; lim

r→∞
Q

ξ
µ

(φ)
= J. (2.51)

Consider a manifold describing the black hole spacetime, which contains two bound-

aries on the hypersurface Σ. In addition to an outer boundary 2-surface S2 at infinity,

there exists an inner boundary at the horizon H. For any antisymmetric tensor X µν ,

Stoke’s theorem takes the form of,

∫
V

dSµ∇νX µν =
∮

s2
dSµνX µν −

∮
H

dSµνX µν . (2.52)

Evaluating Komar integral at two boundaries, while taking the spacetime as static and
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Figure 2.4: The hypersurface Σ consists of an inner boundary H and outer boundary S2

at infinity.

stationary, we would get

∮
s2

dSµν∇
µ

ξ
ν =

∫
V

dSµRµν
ξν +

∮
H

dSµν∇
µ

ξ
ν , (2.53)

⇒MK
(
s2

∞

)
= Qs2

ξ
µ

(a)
=
∫
V

dSµRµν
ξν +QH

ξ
µ

(a)
. (2.54)

On further simplification, we get Komar mass MK ,

MK =
∫
V

d3x
√
|γ|
(

Tµν −
1
2

gµνT
)

nµ
ξ

ν +
κ

4πG
A. (2.55)

The first term on the r.h.s is the mass contribution from matter outside the horizon to

infinity and the second term gives the mass term, which is proportional to κA. For the

vacuum solutions, the first term vanishes, and the conservation of Komar charge turns

to be,

Qs2

ξ
µ

(a)
= QH

ξ
µ

(a)
. (2.56)

The second term can be determined from the Killing equation, ξ µ∇µξ ν = κξ ν .

1
4πG

∮
H

dSµν∇
ν
ξ

µ

(a) =
κA

4πG
. (2.57)

From eqn.2.56, we get Smarr’s relation which is very simple for the Schwarzschild

black hole, as it is a vacuum solution.

MK =
κA

4πG
. (2.58)

Smarr’s formula relates the mass with other parameters of the black hole for the static
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black holes (Smarr 1973). For the charged, axisymmetric spacetime, Smarr’s formula

includes parameters angular momentum and electric charge also.

2.1.2 Killing horizon

If the killing vector field ξ µ is normal to a null hypersurface Σ, then Σ is a Killing

horizon for ξ µ . Note that a normal to null hypersurface is always null, e.g., light cone.

Meaning ξ µξµ = 0. The null hypesurface is specified by a scalar function ξ 0 (=0, a

constant) which does not change along the directions tangent to the hypersurface. The

magnitude of (ξ )2 is constant along the horizon. Therefore the gradient,

gµν
∇ν(ξ

α
ξα) = ∇

µ(ξ α
ξα), (2.59)

is also normal to the null hypersurface Σ. On the horizon Σ, there exists a scalar function

κ called the surface gravity such that,

1
2

∇
µ(ξ α

ξα) =−κ ξ
µ . (2.60)

Eqn.2.60 can be written using the Killing equation as,

ξ
µ

∇µξ
ν =−κ ξ

ν . (2.61)

On simplification, we find the expressions for the surface gravity κ as,

κ
2 =−1

2
(∇µ

ξ
ν)
(
∇µξν

)
. (2.62)

In the case of Schwarzschild black hole (calculations in Appx.D), it becomes

κ =
1

4M
. (2.63)

It is important to note that the Killing horizon does not imply an event horizon a priori.

Killing horizon can exist in flat spacetimes like Minkowski spacetime which contains no

event horizon. But event horizons in some cases can be considered as a Killing horizon.

Event horizon H of a charged black hole is a null hypersurface, where we can have a
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Killing vector field everywhere normal to the null surface. Thus a unique surface gravity

κ can be assigned to it. In the Schwarzschild black hole, the event horizon H is also

the killing horizon, as the translational Killing vector field ξ µ is normal to the event

horizon H. For axisymmetric Kerr black hole, there will be an additional rotational

Killing vector field Rµ . Contrary to the static case, the translational Killing vector field

ξ µ is not normal to H due to the non-vanishing gtφ component. Instead, we have the

freedom to chose a local rotating frame, where the event horizon is static like in the

Schwarzschild case. This enables to define a time translational Killing vector field ξ µ

in the local frame, which rotates along with the event horizon. In a non-rotating frame,

the Killing vector should take care of rotation of the frame and translational invariance

as well. So the linear combination of two Killing vectors is the right choice of a Killing

vector field for the Kerr black hole.

ξ
µ = xµ +ΩHRµ , (2.64)

where ΩH is the angular velocity of particle at the horizon. For a Killing horizon Σ,

product of Killing vector field is zero ξ µξµ = 0. In the case of Kerr black holes, this

condition reduces to,

ξ
µ

ξµ =KµKµ +ΩHKµRµ +ΩHRµKµ +Ω
2
HRµRµ

=gtt +ΩHgtφ +ΩHgφ t +Ω
2
Hgφφ = 0.

On the stationary surface gtt = 0 and, there are two solutions for the angular velocity

but they becomes equal at event horizon r = r+,

ΩH =

− gtφ

gφφ

±

√(
gtφ

gφφ

)2

−
gφφ

gtt

∣∣∣∣∣
r=r+

(2.65)

=

(
−ω±

√
ω2− gtt

gφφ

)∣∣∣∣∣
r=r+

=
a

r2
++a2 . (2.66)

With the definition of Killing horizon, we can move to the laws of black hole mechanics.
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2.2 Laws of black hole mechanics

In this section, we review the works by J. M. Bardeen, B. Carter, and S. W. Hawking in

their article The Four Laws of Black Hole Mechanics (Bardeen et al. 1973a).

Proceeding with Smarr Formula on the space-like hypersurface Σ with outer bound-

ary S2 and inner boundary H, we have

∫
Σ

dSµRµν
ξν =

∫
S2

dSµν∇
µ

ξ
ν −

∫
H

dSµν∇
µ

ξ
ν , (2.67)

where, r.h.s and l.h.s can be simplified as,

∫
Σ

dSµRµν
ξν =8πG

∫
Σ

dn−1y
√
|γ|nµξν

(
T µν − 1

2
gµνT

)
, (2.68)∫

S2
dSµν∇

µ
ξ

ν −
∫
H

dSµν∇
µ

ξ
ν =

∫
S2

d2x
√
|α|nµσν∇

µ
ξ

ν −
∫
H

√
|α|nµσν∇

µ
ξ

ν .

(2.69)

Rearranging the terms, the Smarr relation becomes,

∫
S2

dA nµσν∇
µ

ξ
ν = 8πG

∫
Σ

dV nµξν

(
T µν − 1

2
gµνT

)
−
∫
H

dA nµσν∇
µ

ξ
ν . (2.70)

On the null hypersurface, like an event horizon, unit normal satisfies the condition that

the unit normal is orthogonal to itself.

nµσ
µ =−1. (2.71)

And also, one can identify the future-directed time-like Killing vector ξ µ with the nor-

mal to the surface nµ . For an axisymmetric rotating black hole, killing vector k = ∂φ

and using the definition of Komar angular momentum J, eqn.2.70 reduces to,

J =
1

8πG

∫
H

dA ξµσν∇
µ

ξ
ν −

∫
Σ

dV nµmν

(
T µν − 1

2
gµνT

)
. (2.72)

In the stationary axisymmetric black hole, using the definition of Komar mass M, we
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can write

M =− 1
4πG

∫
H

dA ξµσν∇
µkν +2

∫
Σ

dV nµkν

(
T µν − 1

2
gµνT

)
. (2.73)

Using the Killing horizon,

kµ = ξ
µ −ΩHmµ . (2.74)

We rewrite expression for mass M (eqn.2.73) as,

M =− 1
4πG

∫
H

dA ξµσν∇
µ

ξ
ν +ΩH

1
4πG

∫
H

dA ξµσν∇
µmν

+2
∫

Σ

dV nµξν

(
T µν − 1

2
gµνT

)
−2ΩH

∫
Σ

dV nµmν

(
T µν − 1

2
gµνT

)
=− 1

4πG

∫
H

dA ξµσν∇
µ

ξ
ν +2

∫
Σ

dV nµξν

(
T µν − 1

2
gµνT

)
+2ΩH

[
1

8πG

∫
H

dA ξµσν∇
µmν)−

∫
Σ

dV nµmν

(
T µν − 1

2
gµνT

)]
.

(2.75)

The last two terms inside the angular bracket is the expression for Komar angular mo-

mentum J, on substitution we arrive at the relation,

M =− 1
4πG

∫
H

dA ξµσν∇
µ

ξ
ν +2

∫
Σ

dV nµξν

(
T µν − 1

2
gµνT

)
+2ΩHJ. (2.76)

Further, the first term on the r.h.s of the above equation is evaluated using the surface

gravity expression (eqn.2.61) and normalisation condition on the horizon (σνξ ν =−1),

1
4πG

∫
H

dA ξµσν∇
µ

ξ
ν =

1
4πG

∫
H

dA κ σνξ
ν =− κ

4πG
A. (2.77)

Thus the mass M is written in terms of horizon area A, surface gravity κ , angular veloc-

ity ΩH and momentum J as,

M =
κ

4πG
A+2ΩHJ+2

∫
Σ

dV nµξν

(
T µν − 1

2
gµνT

)
. (2.78)

This is the Smarr relation for a rotating charged black hole. In the case of a charged
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rotating black hole, there is an additional term with electromagnetic potential φH and

charge Q. The electromagnetic potential is calculated between the event horizon and

infinity. As the matter content in bulk is zero, the last term in eqn.2.78 vanishes for the

vacuum Einstein equation, and Smarr relation reduces to,

M =
κ

4πG
A+2ΩHJ+φHQ. (2.79)

The small perturbation around stationary axisymmetric black hole would result in a

relation for the differential mass dM. Variation of the above equation (eqn.2.79) for M

leads to,

dM =
1

4πG
(Adκ +κdA)+2(JdΩH +ΩHdJ)+(QdφH +φHdQ) . (2.80)

But it can be shown using Stokes theorem and ADM formulation of gravity that,

dM =− 1
4πG

Adκ−2JdΩH (2.81)

Adding equations (eqn.2.80) and (eqn.2.81), we obtain the first law of black hole me-

chanics,

dM =
1

8πG
κdA+ΩHdJ. (2.82)

This relation can be easily obtained through the scaling arguments using Euler’s the-

orem, which states that if a homogeneous function f (x,y) exhibits scaling behaviour

f (α px,αqy) = αr f (x,y), then they obey the relation,

r f (x,y) = p
(

∂ f
∂x

)
x+q

(
∂ f
∂y

)
y. (2.83)

Due to the no-hair theorem, black hole mass is uniquely characterized by the horizon

area A, angular momentum J, and charge Q. The mass M is a homogeneous function of

these variables,

M = M(A,J,Q2). (2.84)
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In charged Kerr solution, we see that M is a homogeneous function of degree 1
2 ,

M =

(
A

16π
+

4πJ2

A
+

Q2

2
+

πQ4

A

)1/2

. (2.85)

Applying Euler’s theorem (eqn.2.83), we can write

αM = M(α2A,α2J,α2Q2). (2.86)

Then, their partial derivatives and function obeys the relation,

M =2A
∂M
∂A

+2J
∂M
∂J

+2Q2 ∂M
∂Q2 ,

=2A
∂M
∂A

+2J
∂M
∂J

+ Q
∂M
∂Q

. (2.87)

Using the Smarr relation (eqn.2.79), mass M in the above equation is replaced,

κ

4πG
A+2ΩHJ+φHQ = 2A

∂M
∂A

+2J
∂M
∂J

+Q
∂M
∂Q

. (2.88)

Rearranging the terms from r.h.s and l.h.s of the above equation, we get

2A
{

κ

8πG
− ∂M

∂A

}
+2J

{
ΩH−

∂M
∂J

}
+Q

{
φH−

∂M
∂Q

}
= 0. (2.89)

Demanding the variables A, J and Q to be independent and free, we get

∂M
∂A

=
κ

8πG
;

∂M
∂J

= ΩH ;
∂M
∂Q

= φH . (2.90)

From differential calculus, for a function M (A,J,Q) total differential is written as,

dM(A,J,Q) =
∂M
∂A

dA+
∂M
∂J

dJ+
∂M
∂Q

dQ. (2.91)

Using eqn.2.90, we obtain differential mass relation,

dM =
κ

8πG
dA+ΩHdJ+φHdQ. (2.92)
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This is the first law of black hole mechanics, resembles the first law of classical ther-

modynamics,

dE = T dS+work terms. (2.93)

In black hole mechanics, the mass of the black hole M, horizon area A, and surface

gravity κ is identified with energy E, entropy S, and temperature T in the ordinary

thermodynamics. The terms ΩHJ and φHQ are work terms like that in classical thermo-

dynamics.

E←→M,

S←→ A
4G

,

T ←→ κ

2π
.

But classically black hole is a perfect absorber emitting nothing, so the temperature of

the black hole is constantly zero everywhere. Nevertheless, Stefan Hawking considered

quantum effects on the black holes. The quantum fluctuations around the horizon lead

to particle-antiparticle creation and, in effect, the ‘emission’ of particles from the hori-

zon. This thermal radiation, called the Hawking radiation, is proportional to the surface

gravity,

T =
κ

2π
. (2.94)

Like the first law, there is a zeroth and a second law for black hole thermodynamics

as well. We know the temperature of a black hole is given by surface gravity, which

is constant over the event horizon in a stationary black hole. The zeroth law of black

hole mechanics states that for a stationary black hole, the surface gravity κ is constant

over the horizon. This is in parallel with the zeroth law of classical thermodynamics,

which states that for a thermal body in equilibrium, the temperature is constant. The

second law of thermodynamics deals with the entropy of an isolated system that will

not decrease with time. The second law of black hole is in accordance with the area

theorem which states that the area of the event horizon cannot decrease with time. On

the other hand, considering quantum effects, a black hole can ‘evaporate’ completely
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by vanishing the area, thereby violating the area theorem. As the matter keeps falling

into the black hole, the entropy of the matter outside the black hole decreases δS < 0,

at the same time, this increases horizon area δA > 0. Reverse process δS > 0, δA < 0

happens during evaporation. This has led Bekenstein to propose a generalized second

law,

δSTotal = δ
(
Sstu f f +Sbh

)
≥ 0, (2.95)

ie, δ

(
Sstu f f +

A
4G

)
≥ 0, (2.96)

where the total entropy STotal is the sum of the entropy of stuff that fell into the black

hole plus the total the entropy of the black hole. The generalized second law guarantees

that the lost entropy of matter is compensated by an increase in the area of the horizon.

If one assigns A
4G as the entropy of the black hole, then the laws of black hole mechanics

are nothing more than the ordinary thermodynamics. But this encounters problems with

the usual definition of entropy as the logarithm of the number of accessible microstates.

The no-hair theorem puts a constraint on the number of microstates due to the fixed

mass, charge, and angular momentum of the black hole. In reality, entropy for a black

hole is not as small as expected from the no-hair theorem; it’s huge. In any quantum

gravity theory, the microscopic degrees of freedom should be eA/4. Black hole ther-

modynamics emphasises a deep connection between gravity, quantum mechanics, and

statistical mechanics. Another problem is the information paradox, information about

anything that fell into a black hole is lost permanently as the black hole evaporates.

This violates the very fundamental principle of physics. Resolution of these conflicts

requires a complete quantum theory of gravity.

2.3 Thermodynamics in AdS space
Though Schwarzchild black hole can be treated as a thermal object, it cannot be present

in thermal equilibrium. They will evaporate unless you put them in a thermal bath.

This happens due to the negative specific heat of black holes. Any increase in mass

or energy can reduce the black hole temperature. That makes Schwarzchild black hole

thermodynamically unstable. Immersed in a thermal bath, any amount of heat absorbed
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from the hot thermal bath can reduce the temperature of a black hole, contrary to a

thermodynamically stable object. This leads to the cooling down of the black hole

and eventually a runaway. The best way to stabilize the black hole is to put them in

a finite heat bath so that any absorption of heat can cool the black hole as well as the

bath. But the size of the box matters; if the bath is small, it can cool quicker than a

black hole, and again old problem persists. It was noticed by Hawking that the anti-de

Sitter spacetime could provide a natural box for the black hole to stabilize thermally

(Hawking and Page 1983). Also, the definition of Komar integral and Smarr formula

hold only for asymptotically-flat spacetimes. It does not holds same for spacetime with

a cosmological constant. The action for gravity with a cosmological constant Λ is given

by,

S =
∫

d4x
√
−g(R−2Λ) . (2.97)

For Λ 6= 0 cases, we have to find a new Komar boundary integrand to make sure that

volume integral vanishes to satisfy Komar charge Q = 0. Unlike the vacuum solutions,

for Λ 6= 0 case, Rµν = Λgµν 6= 0. As the Komar charge depends on Rµν , the Komar

integral now depends on the integral of the cosmological constant. This can lead to the

divergence of the Komar integral.

The metric for the AdS4 spacetime is given by,

ds2 =−r2

l2 dt2 +
l2

r2 dr2 + r2dΩ
2
2. (2.98)

where Λ = 3/l2, l is the AdS radius. We can calculate the Komar integral for this AdS

spacetime,

Qξ =
1

4πG

∫
∂Σ

dSµν∇
ν
ξ

µ =
1

4πG

∫
∂Σ

nµσν∇
µ

ξ
ν (2.99)

=
1

4πG

∫
∂Σ

dθdφ r2 sinθntσr∇
t
ξ

r =
1

4πG

∫
∂Σ

dθdφr2 sinθ
r
l2 . (2.100)

As we integrate at infinite radial distance, the integral diverges. So the Komar integral

relation used for arriving at Smarr formula needs to be modified. There are various

ways to resolve these divergences. We follow a method using definition of a Komar
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potential ωµν (Kastor et al. 2009). From the Killing equation, we write,

∇µξ
µ = 0. (2.101)

This enable us to define an antisymmetric potential ωµν , such that derivative of poten-

tial is same as the Killing vector ξ ν ,

ξ
ν = ∇µω

µν . (2.102)

The Killing potential is not unique, and we can always add a divergenceless term. So

that the new potential ωµν = ωµν +λ µν still satisfies the Killing equation. We can also

add an exact term λ µν = ∇αηαµν , where ηαµν is antisymmetric tensor. That will not

change the value of the final Komar integral. With the potential term as a counter term,

the Komar integral reads as,

Qξ =
1

4πG

∫
∂Σ

dSµν (∇
ν
ξ

µ +Λω
µν) . (2.103)

The counter term prevents Komar integral from divergence. The divergent term from

integral of ∇νξ µ is thus canceled by the counter term from the Killing potential. And

in the absence of a cosmological constant, one recovers the old Komar integral for

asymptotically flat spacetime case.

Consider the case of Schwarzchild-AdS spacetime with metric given by,

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dΩ

2
2 , f (r) = 1− m

r
− Λ

3
r2, (2.104)

where m is the mass parameter, which is related to total mass of black hole M through

the Komar integral.

M =
(d−2)

16π
ωd−2m , ωd−2 =

2π(d−1)/2

Γ(d−1)/2
, (2.105)

where ω(d−2) is the volume of unit S(d−2) sphere. As the only Killing vector associ-

ated is ξ µ =
(

∂

∂ t

)µ

= (1,0,0,0), we have to determine only rt component of Killing
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potential ωµν . Using the definition of Killing potential (eqn.2.102)

1
r2 ∂r

(
r2

ω
rt)= 1 (2.106)

Integrating the above equation, we get

ω
rt =

r
3
+

C
r2 . (2.107)

For the case of pure AdS spacetime, C = 0, but in Schwarzschild-AdS spacetime, there

is an extra term in ωrt . Then we are left with ∇rξt term in the Komar integral, that can

be simplified for Schwarzschild-AdS metric as,

∇rξt =
1
2

∇r
(
gttξ

t)=−1
2

∂r ( f (r)) . (2.108)

Evaluating Komar integral for pure AdS spacetime, we have

Qξ =
1

4πG

∫
∂Σ

dSrt
(
∇

r
ξ

t +Λω
rt) (2.109)

=
1

4πG

∫
∂Σ

dSrt

( r
l2 −

r
l2

)
= 0. (2.110)

The same procedure can be applied to derive Smarr relation for Schwarzschild-AdS

case. As Komar charge Q = 0, we can write the enhanced Komar integral in the

D−dimensional spacetime as,

D−2
8πG

∫
Σ

(
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

)
= 0. (2.111)

Where the (D−1) hypersurface Σ connects the horizon and infinity, infact Σ is bounded

by two surfaces , H on the event horizon and S∞ at the spatial infinity. Evaluating above

integral at the two surfaces, we get

0 =
D−2
8πG

(∫
S∞

dSµν

(
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

)
−
∫
H

dSµν

(
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

))
(2.112)

For pure AdS case, we have showed that the component of integral vanishes at infinity.
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But in the Schwarzschild-AdS spacetime integral will give a finite value, nevertheless

it can be removed by infinite background subtraction as prescribed in (Magnon 1985).

Adding and subtracting ω
µν

AdS potential will do the trick,

0 =
D−2
8πG

∫
S∞

dSµν

({
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

AdS

}
+

2Λ

D−2
ω

µν − 2Λ

D−2
ω

µν

AdS

)
(2.113)

− D−2
8πG

∫
H

dSµν

(
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

)
. (2.114)

Rearranging the terms, we get

D−2
8πG

∫
S∞

dSµν

(
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

AdS

)
=

D−2
8πG

∫
H

dSµν∇
µ

ξ
ν (2.115)

+
D−2
8πG

2Λ

D−2

(∫
H

dSµνω
µν −

∫
S∞

dSµν

(
ω

µν −ω
µν

AdS

))
.

(2.116)

We have already evaluated various terms in the above expression, where l.h.s is the

definition of Komar mass M,

D−2
8πG

∫
S∞

dSµν

(
∇

µ
ξ

ν +
2Λ

D−2
ω

µν

AdS

)
= (D−3)M. (2.117)

The integral of first term in the r.h.s is the product of surface gravity κ and area of event

horizon,
D−2
8πG

∫
H

dSµν∇
µ

ξ
ν = (D−2)

κA
8π

. (2.118)

The remaining terms left in eqn.2.116 are denoted by Θ, which can be seen later as the

conjugate volume,

Θ =
∫
H

dSµνω
µν −

∫
S∞

dSµν

(
ω

µν −ω
µν

AdS

)
. (2.119)

Combining terms together, we get the Smarr formula

(D−3)M = (D−2)
κA

8πG
−2

Θ

8πG
Λ. (2.120)
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In the case of 4−dimensional Schwarzschild-AdS black holes, it turns out to be,

M =
κA

4πG
−2

Θ

8πG
Λ, (2.121)

and

Θ =−4πrh
3

3
=−Vh. (2.122)

which is nothing but the volume of 3-sphere with a negative sign. The Smarr relation

can also be obtained from scaling argument using Euler’s theorem discussed earlier in

sec.2.2. The quantities mass M, area A and cosmological constant Λ scales as lD−3,

lD−2 and l−2 respectively. Then using Euler’s theorem,

(D−3)M = (D−2)
(

∂M
∂A

)
A−2

(
∂M
∂Λ

)
Λ. (2.123)

Equating with Smarr relation, we obtain

(D−2)
(

∂M
∂A

)
A−2

(
∂M
∂Λ

)
Λ = (D−2)

κA
8πG

−2
Θ

8πG
Λ. (2.124)

From the eqn.2.124, one can identify ∂M
∂A = κA

8πG and ∂M
∂Λ

= Θ

8πG . Differentiation of the

Smarr relation gives the first law of black hole thermodynamics in this extended phase

space,

dM =
κ

8πG
dA+

(
∂M
∂Λ

)
dΛ. (2.125)

The second term in the first law (eqn.2.125) and Smarr relation (eqn.2.123), fills the

missing PV term in the black hole thermodynamics. The cosmological constant Λ is

identified with thermodynamic pressure P,

P =− Λ

8π
. (2.126)

And the conjugate quantity Θ, we have shown that it is equal to the geometrical vol-

ume VH . The idea of considering cosmological constant as a dynamical variable was

put forward firstly by Teitelboim and Brown (Teitelboim 1985, Brown and Teitelboim

1988). Its significance and interpretation in thermodynamics were realized much later.
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Also, the first term in Smarr relation (eqn.2.123) can be written in terms of Hawking

temperature and entropy. The black hole emits particles with a thermal spectrum that

peaking at a temperature called Hawking temperature TH , which is related to surface

gravity κ .

TH =
h̄κ

2π
. (2.127)

And the entropy of a black hole SBH ,

SBH =
A

4h̄G
. (2.128)

Utilizing the above identifications, we can write

(D−3)M = (D−2)T S−2V P, (2.129)

dM = T dS+V dP. (2.130)

In the charged rotating black hole, extra terms corresponding to the charge and rotating

parameter will be added in Smarr relation and first law.

M = 2(T S+ΩJ−V P)+φQ, (2.131)

dM = T dS+V dP+φdQ+ΩdJ. (2.132)

where J and its conjugate Ω are angular momenta and angular velocity, respectively.

Similarly, Q and its conjugate quantity φ are electromagnetic charge and potential, re-

spectively.

2.4 Conclusion

In the first part of this chapter, we established the Smarr relation for asymptotically flat

black holes using two methods, a geometrical method via Komar integrals and then by

scaling arguments via Euler theorem. In the subsequent sections, we have illustrated

the failure of these methods in asymptotically AdS black holes. The failure of Smarr

relation for the AdS black holes led to the extended version of thermodynamics with the

cosmological constant Λ being interpreted as the thermodynamic pressure P. The Smarr
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relation involving the PV term in the extended space is obtained from the modified

Komar integrals. Mainly, we have reviewed the works of Kastor, Ray, and Traschen to

derive the modified Komar integral with a counter Killing potential term. Since then,

there has been a huge amount of interest in studying the thermodynamics of black holes

in this extended phase space. An immediate implication of this extension led to van der

Waals fluid-like phase structure in the AdS black holes (Kubiznak and Mann 2012). We

will review the works of Kubiznak and Robert Mann in the coming chapters.
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Chapter 3

Phase transitions and Joule-Thomson effect in AdS

black holes with a Global Monopole

Summary

This chapter is an edited version of our article (Naveena Kumara et al. 2019,

Ahmed Rizwan et al. 2019a). A detailed discussion on phase transitions and the

Joule–Thomson effects of charged AdS black hole with a global monopole is pre-

sented. In the analysis of critical behavior, the classical van der Waals analogy

is drawn from isotherms, which is followed by Gibbs free energy study, coexis-

tence curves, and critical exponents. We study the effect of the global monopole

parameter η on the inversion temperature and isenthalpic curves. The obtained

result is compared with Joule-Thomson expansion of van der Waals fluid, and the

similarities were noted.

3.1 Introduction
Black hole physics has changed from mere theoretical importance to experimental as-

pects due to the observational advances like gravitational waves and black hole imaging.

However, the theoretical developments are far ahead of experiments due to their impor-

tance in several directions like quantum mechanics, quantum gravity, and string theory.

Black hole thermodynamics began with a quest for incorporating quantum mechanical

nature to a black hole, which had purely classical origin in general relativity. Since the
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pioneering work in this regard by Hawking and Bekenstein, black hole thermodynamics

remains as an exciting topic in contemporary research.

In this chapter, we concentrate on the thermodynamics of AdS black hole with a

global monopole. Monopoles are one among the defects like textures, domain walls,

and cosmic strings, which are formed during the cooling phase of the early universe

(Kibble 1976, Vilenkin 1985). These topological defects are the consequence of a

non-uniform spontaneous symmetry breaking. Geometrically these defects are the re-

sult of the impossibility of shrinking the vacuum manifold into a single point. Global

monopoles are formed during the symmetry breaking of a self coupled triplet scalar

field of SO(3) gauge symmetry spontaneously broken into U(1) gauge. The energy

density of these global monopoles has a functional dependence on radial distance as

1/r2 and exhibits a solid angle deficit of 8π2η2 (where η is the scale of gauge symmetry

breaking). The static black hole solution with a global monopole was first obtained by

Barriola and Vilenkin (Barriola and Vilenkin 1989), the topological structure of which

is distinct from the Schwarzschild black hole solution. The physical properties of this

black hole solution with monopole are studied extensively (Shi and Li 1991, Banerjee

et al. 1996, Chen and Jing 2013, Jusufi et al. 2017). The solid angle deficit possessed

by this solution is analogous to the conical deficits due to cosmic strings.

Recently the thermodynamics of black holes with conical defects has been investi-

gated in the context of accelerating black holes (Appels et al. 2016, 2017). The effect of

global monopole in superconductor/normal metal phase transition was first investigated

by Chen et.al. (Chen et al. 2010). Later, in the spacetime of this monopole black hole,

the thermodynamics and phase transitions were investigated (Deng et al. 2018). In all

these studies, the global monopole showed its presence by affecting the phenomena un-

der consideration significantly. Motivated by these results, in this chapter, we study the

thermodynamics of charged AdS black hole with a global monopole.

The motivation for this research is to find the possible change in critical behavior

and the Joule-Thomson effect of the charged AdS black hole due to the solid angle

deficit induced by the global monopole. It is interesting because a similar solid an-

gle deficit is exhibited in Skyrme black hole (Flores-Alfonso and Quevedo 2019) and
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conical defect in accelerating black hole (Appels et al. 2017) has a great effect in their

thermodynamics.

This chapter is organized as follows. In section 3.2 we present a brief overview of

the charged AdS black hole with a global monopole. This is followed by the study of

thermodynamics in extended space in section 3.3. In sections 3.4 and 3.5, we discuss the

Joule-Thomson effect in van der Waals fluid and charged AdS black holes, respectively.

The chapter ends with section 3.6 where we discuss our observations and results.

3.2 The charged AdS black hole with a global monopole

We begin this section by reviewing the details of charged AdS black hole with a global

monopole. The Lagrangian density that characterises the simplest model with a global

monopole is given by (Barriola and Vilenkin 1989),

Lgm =
1
2

∂µΦ
j
∂

µ
Φ
∗ j− γ

4

(
Φ

j
Φ
∗ j−η

2
0

)2
, (3.1)

where Φ j is self coupled scalar field triplet, γ is a self interaction term and η0 is the

energy scale of gauge symmetry breaking. The field configuration for the scalar triplet

which describe the monopole is,

Φ
j = η0h(r)

x j

r
, (3.2)

where x j = {r sinθ cosφ ,r sinθ sinφ ,r cosθ} with x jx j = r2. The generic metric ansatz

for static spherically symmetric spacetime reads as,

ds̃2 =− f̃ (r̃)dt̃2 + f̃ (r̃)−1dr̃2 + r̃2dΩ
2 (3.3)

where dΩ2 = dθ 2+sin2
θdφ 2. The energy-momentum tensor can be obtained from the

Lagrangian density, which is given by,

Tµν =
2√
−g

∂

∂gµν

(
Lgm
√
−g
)
= 2

∂Lgm

∂gµν
−gµνLgm. (3.4)
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The explicit forms of the components of Tµν are,

Ttt = f (r)

(
η2

0 h′2 f (r)
2

+
η2

0 h2

r2 +
1
4

γη
4
0 (h

2−1)2

)
,

Trr =
1

f (r)

(
−

η2
0 h′2 f (r)

2
+

η2
0 h2

r2 +
1
4

γη
4
0 (h

2−1)2

)
,

Tθθ = r2

(
η2

0 h′2 f (r)
2

+
1
4

γη
4
0 (h

2−1)2

)
,

Tφφ = r2 sin2
θ

(
η2

0 h′2 f (r)
2

+
1
4

γη
4
0 (h

2−1)2

)
.

We are using an approximate solution for the charged AdS black hole with a global

monopole (Barriola and Vilenkin 1989). The solution for the field equation correspond-

ing to the scalar action in curved space, and is approximated with that of flat space. This

approximation is made assuming the structure of the monopole is not affected by gravity

in a small range.

We obtained the field equation for the scalar action in the curved spacetime which

reads as follows,

f̃ ′′h′′+
2
r

f̃ h′+ f̃ ′h′− 2
r2 h−λη

2
0 h(h2−1) = 0. (3.5)

In the flat spacetime this reduces to,

h′′+
2
r

h′− 2
r2 h− h(h2−1)

δ 2 = 0, (3.6)

where δ ≈ (η0
√

λ )−1 is the monopole core size in the flat space. At small distances,

gravity does not substantially change the structure of the monopole for η0 < mp (where

mp is the Planck mass), so that the flat space estimation of δ applies in curved space.

The profile of h(r) in flat space can be obtained by the method of hyperbolic functions

by setting x = r/δ in eqn.3.6 as follows (Shi and Li 1991),

h(x) =
∞

∑
n=0

cn tanh2n+1 x√
2
, (3.7)
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where cn are the expansion coefficients.

From the profile of h(x), it is apparent that h(r) linearly increases for r < (η0
√

γ)−1

and exponentially approaches to unity when r > (η0
√

γ)−1. So, one can approximate

h(r) ≈ 1 outside the monopole core (Barriola and Vilenkin 1989). This is a valid as-

sumption in our calculation because the core is inside the black hole and thermodynam-

ics is studied on the horizon. Secondly, outside the core, the potential corresponding

to the monopole charge varies as 1/r, which makes h(r)≈ 1. With this approximation,

the components of energy-momentum tensors are reduced to,

T t
t ≈ T r

r ≈ η
2/r2 , T θ

θ ≈ T φ

φ
≈ 0. (3.8)

This is in agreement with the second argument presented above in terms of potential.

The energy depends on the square of the field. The useful Einstein equation for the

spherically symmetric static metric is,

f
(

1
r2 −

1
r

f
f ′

)
− 1

r2 = 8πGT t
t , (3.9)

f
(

1
r2 +

1
r

f ′

f

)
− 1

r2 = 8πGT r
r . (3.10)

The solution of these differential equations gives the required form of metric func-

tion f̃ (r̃),

f̃ (r̃) = 1−8πη
2
0 −

2m̃
r̃
. (3.11)

Incorporating the charge for the black hole in four dimensional AdS space, the func-

tion f (r) of the metric takes the form,

f̃ (r̃) = 1−8πη
2
0 −

2m̃
r̃

+
q̃2

r̃2 +
r̃2

l2 . (3.12)

Where m̃, q̃ and l are the mass parameter, electric charge parameter and AdS radius

of the black hole respectively. Under the following coordinate transformations,

t̃ = (1−8πη
2
0 )
−1/2t , r̃ = (1−8πη

2
0 )

1/2r, (3.13)
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and introducing new parameters,

m = (1−8πη
2
0 )
−3/2m̃ , q = (1−8πη

2
0 )
−1q̃ , η

2 = 8πη
2
0 , (3.14)

we have the line element

ds2 =− f (r)dt2 + f (r)−1dr2 +
(
1−η

2)r2dΩ
2, (3.15)

with

f (r) = 1− 2m
r

+
q2

r2 +
r2

l2 . (3.16)

The spacetime described by the above metric exhibits a solid angle deficit, i.e., the

area of the sphere is 4π(1−η2)r2 instead of 4πr2. The electric charge (Q) and the

Arnowitt-Deser-Misner (ADM) mass (M) can be expressed as,

Q =
(
1−η

2)q , M =
(
1−η

2)m. (3.17)

At the event horizon r = r+ the function f (r) vanishes. This condition can be used to

determine the mass parameter. The ADM mass now has the following form,

M =

(
1−η2)r+

2
+

Q2

2(1−η2)r+
+

(
1−η2)r3

+

2l2 . (3.18)

3.3 Thermodynamics in Extended Phase Space

In the extended phase space, the first law of thermodynamics and Smarr relation reads

as follows,

dM = T dS+ΦdQ+V dP , M = 2(T S−PV )+ΦQ. (3.19)

The existence of global monopole does not affect the form of the first law of thermo-

dynamics and the Smarr relation. This can be easily verified by using Euler’s homoge-

neous function theorem. However, global monopole will change the thermodynamics

through its explicit appearance in the thermodynamical quantities (Deng et al. 2018).

The crucial thermodynamic variable, to begin with, is the entropy S of the black hole,
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Figure 3.1: Plots of T versus r+ and T versus S for different values of Q and for η = 0.5.
These plots shows the behavior of Hawking temperature.

which is related to the area Abh of the event horizon,

S =
Abh

4
= π

(
1−η

2)r2
+. (3.20)

The soul of extended phase space lies in the identification of cosmological constant (Λ)

with the thermodynamic variable pressure (P), and association of its conjugate quantity

with the thermodynamic volume (V ),

P =− Λ

8π
=

3
8πl2 , V =

4
3

π
(
1−η

2)r3
+. (3.21)

Using eqn.3.18 in the first law, the Hawking temperature (T ) for the black hole is an

immediate result,

T =

(
∂M
∂S

)
P,Q

=
1

4πr+

(
1+

3r2
+

l2 −
Q2

(1−η2)
2 r2

+

)
. (3.22)

So far all the thermodynamic variables are modified in the presence of global monopole,

which has a message within it about its role in influencing the thermodynamics of the

black hole. Since a charged black hole is analogous to van der Waals fluid with similar

critical behavior, the tuning of η will enhance or suppress the phase transition (Deng

et al. 2018).

As the slope of the T −S graph is related to specific heat, it’s positive and negative
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values are related to the stability and instability of the system with respect to fluctua-

tions. The plots 3.1a and 5.1b show that there exists a critical point that indicates the

phase transition. Plugging eqn.3.21 into eqn.3.22 eliminates the cosmological constant

and the rearrangement of the remaining gives,

P =
T

2r+
− 1

8πr2
+

+
Q2

8π (1−η2)
2 r4

+

, r+ =

(
3V

4π (1−η2)

)1/3

. (3.23)

Therefore, eqn.3.23 can be seen as P = P(V,T ), which is the equation of state in the ex-

tended space. The above form is called geometric equation of state. Since, the variables

are not having proper dimensions, we carry out adequate scaling as follows,

P̃ =
h̄c
l2
P

P , T̃ =
h̄c
k

T, (3.24)

where lP is the Planck length. The functional dependence of the equation of state on r+

tempts one to identify it with the van der Waals system at first sight. The comparison is

complete by relating specific volume v to the horizon radius r+ as v = 2l2
Pr+.

Finally, we arrive at the physical equation of state,

P =
T
v
− 1

2πv2 +
2Q2

πa2v4 . (3.25)

The characteristic P− v diagram (Fig.3.2) is obtained from this eqn.3.25 which has

a van der Waals like behavior. The existence of three distinct regions with alternate

negative, positive and negative slopes is also a beacon of critical behavior. The negative

slope regions correspond to a stable state of the system, whereas the positive regions

are for unstable states since an increase in volume with pressure is physically mean-

ingless. These unphysical regions can be handled via Maxwell construction, where the

oscillating part of the isotherm is replaced by a straight line. Maxwell’s equal-area law

in extended phase space is, ∮
V dP = 0. (3.26)

It is well-established in the literature that, in a canonical ensemble where the charge
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Figure 3.2: P− v isotherms in extended phase space. The critical behaviour is seen
below a critical temperature TC. This behaviour reduces with increase in η . In all these
plots temperature is in decreasing order from top to bottom. (We have set Q = 1 in
every plot).
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is fixed, the asymptotically AdS black holes show a first-order phase transition analo-

gous to van der Waals system terminating in a second-order critical point (Chamblin

et al. 1999a). The effect of monopole parameter is seen in the series of plots (Fig. 3.2),

where η consistently suppresses the original behavior of all the isotherms and brings

them closer to the critical isotherm. Also, it appears as if η removes the oscillating

isotherms at the upper limit of its strength. This may be interpreted as the maximum

value of η destroys the van der Waals like nature of the charged black hole. But later,

we will see in Gibbs free energy plots that the inherent signature of criticality persists

at least in the smaller form (Fig.3.3) even at the maximum strength of η . The critical

parameters can be obtained by utilising the vanishing derivatives at the critical point,

(
∂P
∂v

)
T
=

(
∂ 2P
∂v2

)
T
= 0. (3.27)

Which are,

Pc =

(
1−η2)2

96πQ2 , vc =
2
√

6Q
(1−η2)

, Tc =

(
1−η2)

3
√

6πQ
. (3.28)

The presence of η in these parameters once again validates our quest for its effect on the

thermodynamics of charged black holes. Compared to the RN-AdS black hole, critical

quantities Pc and Tc decreases, while vc increases with η . As in classical thermody-

namics, the critical behavior of a system is more effectively represented by Gibbs free

energy G. This is because the thermodynamic potential G measures global stability in

an equilibrium process. In extended phase space, the total Euclidean action calculated

for fixed Λ is associated with Gibbs free energy (Kubiznak and Mann 2012). One can

obtain the Gibbs free energy by the Legendre transformation G = M−T S. In our case,

it is calculated as follows,

G(P,T ) =
1
4
(
1−η

2)r+

(
1−

8πPr2
+

3

)
+

3Q2

4(1−η2)r+
. (3.29)

The behavior of Gibbs free energy in terms of P is illustrated in Fig.3.3. The r+

in eqn.3.29 is replaced with r+(P,T ) from equation of state (eqn. 3.23). For T > Tc,

G is single-valued and hence locally stable. It has a swallow tail nature below the

critical temperature (T < Tc), which is a clear indication that there is a first-order phase
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transition in the system. This phase transition is between a small black hole (SBH) and

a large black hole (LBH). The effect of η in G−P plot comes into play slowly when

we increase its strength from zero to one. The swallowtail region (unstable states)

persists for all values of η , but its presence shrinks the tail to a smaller region. It

appears as if the swallowtail disappears for larger monopole strength, but a more close

observation falsifies this illusion (shown in the inset of figures). The coexistence of

large black hole and small black hole phases can be well depicted in a coexistence

curve in P− T plane. Along the coexistence curve, the black hole undergoes a first-

order phase transition. This can be achieved either from Maxwell’s equal-area law or

from the Clausius-Clapeyron equation directly. Another elegant way of obtaining this

curve is by exploiting the fact that the temperature and Gibbs free energy coincide for

SBH (with radius r = r1) and LBH (with radius r = r2) along the coexistence curve. We

assert the following abbreviations for the simplification of calculation,

r1 + r2 = x, r1r2 = y, a =
(
1−η

2) . (3.30)

The conditions which are mentioned earlier for coexistence curve lead us to the set of

three equations after some routine algebra. Equating Gibbs free energy on both sides,

1
r1

(
9Q2 +3a2r2

1−8πa2Pr4
1
)
=

1
r2

(
9Q2 +3a2r2

2−8πa2Pr4
2
)
, (3.31)

which reduces to

3a2y−8πa2Py(x2− y)−9Q2 = 0. (3.32)

Since the temperature on both sides are same, from the equation of state we have,

T0 =
1

4πr1

(
1+

3r2
1

l2 −
Q2

a2r2
1

)
, (3.33)

T0 =
1

4πr2

(
1+

3r2
2

l2 −
Q2

a2r2
2

)
. (3.34)
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Figure 3.3: The swallow tail behaviour of Gibbs free energy and its variation with η in
the extended phase space. The van der Waals like behaviour persists for all values of η .
The diminishing behaviour is enlarged in inlets for close examination. We have taken
Q = 1.

56



Equating the R.H.S of above two equations,

1
r3

1

(
a2r2

1 +8πPa2r4
1−Q2)= 1

r3
2

(
a2r2

2 +8πPa2r4
2−Q2) . (3.35)

which simplifies to,

8πPa2y3 +Q2(x2− y) = a2y2. (3.36)

Adding the eqn. 3.33 and eqn. 3.34, we get

2T0 =
1

4πa2

[
a2r2

1+8πPa2r4
1−Q2

r3
1

+
a2r2

2+8πPa2r4
2−Q2

r3
2

]
, (3.37)

and simplifying,

8πT0a2y3 = a2y2x+8πPa2y3x−Q2x(x2−3y). (3.38)

Eqn. 3.32, eqn.3.36 and eqn.3.38 are solved for P−T plane and the result is displayed

in Fig.3.4. The curve is quite similar to the van der Waals system. In the coexistence

curve, an increase in η reduces the region for the coexistence. This is another proof

for the aforementioned argument that the monopole term hinders critical behavior. This

argument is based on two defining features of the coexistence curve. Firstly, crossing

the curve in any way stands for a first-order phase transition. Secondly, the termination

of the curve is at a second-order transition point. The lowering of termination point

is related to the fact that Pc and Tc reduces with increasing η . A smaller region of

coexistence implies a smaller range of pressure and temperature, which gives phase

transition.

Critical Exponents

Here, we compute the critical exponents α,β ,γ,δ for the black hole with monopole

term in the extended phase space. These universal exponents describe the behavior of

response functions near the critical point. The exponent α is related to the specific heat,

β characterizes the order parameter, γ characterizes the isothermal compressibility, and

δ is the measure of the flatness of the critical isotherm. Firstly, we investigate the
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Figure 3.4: Coexistent curve in extended phase space for different values of η . Coex-
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transition terminates is marked as a circle.

behavior of specific heat CV , which can be obtained from the free energy,

F = G−PV =
1
2

(
ar+−2πTar2

++
Q2

ar+

)
. (3.39)

From this entropy can be calculated as,

S(T,V ) =−
(

∂F
∂T

)
V
= πar2

+. (3.40)

followed by the inference that CV = 0, since there is no dependence on temperature T

in eqn.3.40. Since CV ∝ |t|α the exponent α = 0.

The law of corresponding states is obtained by writing the equation of state in terms

of the reduced thermodynamic variables,

p =
P
PC

, ν =
v

vC
, τ =

T
TC

, (3.41)

the relevant among them are also written in a way how much they differ from critical

points as ν = 1+ω and τ = 1+ t. Using these and the expressions for critical values

(eqn. 3.28), the equation of state (eqn. 3.25) reduces to,

p =
8
3

τ

ν
− 2

ν2 +
1

3ν4 . (3.42)
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Eqn.3.42 is not altered by the presence of global monopole. Therefore, the remaining

calculations on critical exponents are identical to charged AdS black hole (Kubiznak

and Mann 2012). Expanding the eqn. 3.42 around the critical point, we get,

p = 1+
8
3

t− 8
9

tω− 4
81

ω
3 +O(tω2,ω4). (3.43)

Differentiating this with respect to ω and using Maxwell’s equal area law we obtain,

p = 1+
8
3

t− 8
9

tωl−
4
81

ω
3
l = 1+

8
3

t− 8
9

tωs−
4

81
ω

3
s , (3.44)

and

0 =
∫

ωs

ωl

ω(6t +ω
2)dω. (3.45)

The above two equations have unique solution ωs = −ωl = 3
√
−2t. Now we can cal-

culate,

η̃ =VC(ωl−ωs) = 2VCωl = 6VC
√
−2t. (3.46)

Since η̃ ∝ |t|β we have β = 1/2. Differentiating eqn.3.43 with respect to V and invert-

ing,
∂V
∂T

∣∣∣∣
T

∝−9
8

VC

TC

1
t
. (3.47)

And hence,

κT =− 1
V

∂V
∂T

∝
1
t
. (3.48)

From κT ∝ |t|−γ we get γ = 1. The remaining critical exponent δ is obtained by setting

t = 0 in eqn.3.43, which is the shape of the critical isotherm,

p−1 =− 4
81

ω
3. (3.49)

Since p−1 ∝ |ω|δ , δ = 3. All the critical exponents are unaffected by the presence of η

and exactly matches with that of van der Waals system as in the case of RN-AdS black

hole. The critical exponents must satisfy the universal scaling laws,

α +2β + γ = 2 , γ = β (δ −1). (3.50)
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These are satisfied in our case. This means that the SBH-LBH phase transition is anal-

ogous to van der Waals liquid-gas system and belongs to the same universality class.

3.4 Joule Thomson Expansion

3.4.1 Joule-Thomson Effect

Joule-Thomson effect is an irreversible adiabatic expansion of a gas when the gas is

pushed through a porous plug. In this process, a non-ideal gas undergoes a continuous

throttling process, leading to a temperature change in the final state. When the gas

in the higher pressure side having pressure Pi and temperature Ti is made to expand

through a porous plug, the gas passes through dissipative non-equilibrium states due to

the friction between the gas and the plug. Usual thermodynamic coordinates cannot be

used to define these non-equilibrium states, but it is found that enthalpy, which is the

sum of internal energy and product of pressure-volume, remains the same in the final

state (Zemansky et al. 2011). So a state function called enthalpy H =U +PV is defined,

which remains unchanged in the end states,

Hi = H f (3.51)

It is not entitled to say that enthalpy is a constant during this process since enthalpy

is not defined when gas traverses non-equilibrium states. The set of discrete points

in the phase diagram initial point (Pi,Ti) and all other points Pf and Tf representing

equilibrium states of some gas having the same molar enthalpy (h) at initial and all the

final equilibrium states. These discrete points corresponding to the same molar enthalpy

lie on a smooth curve known as isenthalpic curve. To summarise, an isenthalpic curve

is the locus of all points with the same molar enthalpy representing initial and final

equilibrium states. A set of such curves can be obtained for different values of enthalpy.

The slope of an isenthlpic curve on T −P plane is called the Joule Thomson coeffi-

cient µJ .

µJ =

(
∂T
∂P

)
H
. (3.52)

Joule Thomson coefficient is zero at the maxima of the isenthalpic curve. The locus
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of such points is called the inversion curve. The interior of the inversion curve where

the gradient of isenthalps (µJ) positive is called the region of cooling, and the exterior

where µJ is negative called the region of heating. The differential of molar enthalpy is

given by,

dh = T ds+ vdP. (3.53)

We recall the second T dS equation in classical thermodynamics (Zemansky et al. 2011),

T dS =CPdT −T
(

∂v
∂T

)
P

dP. (3.54)

Substituting eqn.3.54) in eqn.3.53, we get

dT =
1

CP

[
T
(

∂v
∂T

)
P
− v
]

dP+
1

CP
dh. (3.55)

Which gives,

µJ =

(
∂T
∂P

)
H
=

1
CP

[
T
(

∂v
∂T

)
P
− v
]
. (3.56)

As µJ = 0 defines the inversion temperature, we have,

Ti =V
(

∂T
∂v

)
P
. (3.57)

3.4.2 van der Waals fluid

van der Waals gas is the simplest model used to explain the behavior of the real gases,

which departs from the ideal gas description with richer outcomes as it includes the

intermolecular interaction and the non-zero size of the molecules. The equation of state

for a van der Waals gas is given by,

(
P+

a
V 2

m

)
(Vm−b) = RT. (3.58)

Here the constants a and b parameterizes the strength of the intermolecular interaction

and the volume excluded due to the finite size of the molecule. The equation of state

reduces to ideal gas equation under the limit a and b both set to zero. We used Vm for
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Figure 3.5: Fig. 3.5a Plotted isotherms of the van der Waals gas with temperature
decreases from top to bottom. Fig. 3.5b shows P− v diagram of charged AdS black
hole with global monopole where the parameters are chosen to be Q = 1 and η = 0.5.
Similar P−v diagrams can be obtained for different values of η . Variation of η does not
changes the nature of the P− v diagram even though it changes the critical parameters.

molar volume, which is simply V for one mole of a substance.

To calculate the critical points namely the temperature Tc, pressure Pc and volume

Vc we rearrange the equation of state (eqn. 3.58) for P as follows,

P =
RT

V −b
− a

V 2 . (3.59)

Using this equation, the P− v isotherms are plotted for van der Waals gas in Fig. 3.5a.

Fig. 3.5b is the P− v diagram of the charged AdS black hole, which is obtained from

eqn. 3.25. The P− v isotherm is having a typical behavior of a van der Waals fluid.

In both these graphs below a certain point called the critical point, there are inflection

points, and above that, a monotonic behavior is displayed. This is a general result for

AdS black holes (Kubiznak and Mann 2012). At the critical point
(

∂P
∂V

)
T
=
(

∂ 2P
∂V 2

)
T
=

0, which gives

Vc = 3b , Tc =
8a

27Rb
Pc =

a
27b2 . (3.60)

The internal energy of van der Waals gas is given by (Landau et al. 1980)

U(T,v) =
3
2

kBT − a
v
. (3.61)
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Figure 3.6: In Fig. 3.6a inversion curve separating the regions of heating and cooling
are shown. In fig 3.6b isenthalpic curves for different values of enthalpy is plotted along
with the lower half of inversion curve for the van der Waals gas. While plotting this, we
worked with dimensionless coordinates i.e., reduced pressure Pr = P/Pc and reduced
temperature Tr = T/Tc.

Making a Legendre transformation H =U +PV , we obtain the expression for enthalpy,

H(T,v) =
3
2

kBT +
kBT v
v−b

− 2a
v
. (3.62)

The inversion temperature is calculated from eqn. 3.57 as,

Ti =
1
kB

(
Piv−

a
v
+

2ab
v2

)
(3.63)

and from equation of state (eqn. 3.58), we have

Ti =
1
kB

(
Piv−Pib+

a
v
− ab

v2

)
. (3.64)

Eqn. 3.63 and eqn. 3.64 gives

Pbv2−2av+3ab = 0. (3.65)

Solving the above equation for v and substituting in equation of state (eqn. 3.58), we

obtain

Ti =
2
(

5a−3b2Pi±4
√

a2−3ab2Pi

)
9bkB

. (3.66)
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Using this, we plot the inversion curves (Fig. 3.6a). In Fig. 3.6b isenthalpic and inver-

sion curves are shown together. For the sake of comparison later with the isenthalpic-

inversion curve of the black hole we have taken only the lower half of Ti.

3.5 Joule Thomson Expansion of Charged AdS Black

Hole with Monopole Term

In this section, we study the JT expansion of charged AdS black holes with monopole

term. Because of the treatment of black hole mass equivalent to enthalpy in extended

phase space, the isenthalpic plots are replaced by constant mass plots in this case. Recall

the expression for Joule Thomson coefficient

µJ =

(
∂T
∂P

)
M
=

1
CP

[
T
(

∂V
∂T

)
P
−V

]
. (3.67)

From this, we obtain the inversion temperature

Ti =V
(

∂T
∂V

)
P
. (3.68)

For this, we rewrite the equation of state in terms of V as follows

T =

(
(1−η2)

48π2

)1/3 1
V 1/3 +P

(
6

π(1−η2)

)1/3

V 1/3− Q2

3(1−η2)

1
V
. (3.69)

Substituting this into eqn.3.68, we have the inversion temperature

Ti =−
1
6

(
(1−η2)

6π2

)1/3 1
V 1/3 +P

(
2

9π(1−η2)

)1/3

V 1/3 +
Q2

3(1−η2)

1
V

=
Q2

4πr3
+(1−η2)2

+
2
3

Pr+−
1

12πr+
. (3.70)

From eqn.3.23, we have

Ti =−
Q2

4πr3
+(1−η2)2

+2Pr++
1

4πr+
. (3.71)
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Figure 3.7: Effect of monopole term η on inversion curve. Here we have chosen differ-
ent values of monopole (η = 0 to 0.9 in steps) by keeping charge Q fixed.

From eqn.3.70 and eqn.3.71 we get,

8π(1−η
2)2Pr4

++2(1−η
2)2r2

+−3Q2 = 0. (3.72)

Solving the above equation for r+ and choosing the following appropriate root:

r+ =
1

2
√

2π

√√√√√
√(

(1−η2)
2
+24πPQ2

)
(1−η2)P

− 1
P
. (3.73)

Substituting this root into eqn.3.71, we obtain the expression for inversion temperature

(Ti) in terms of inversion pressure, charge and monopole parameter,

Ti =

√
Pi

(
1+ 16πPiQ2

(1−η2)2 −
√

24PiπQ2+(1−η2)2

(1−η2)

)
√

2π

(
−1+

√
24PiπQ2+(1−η2)2

(1−η2)

)3/2 . (3.74)

From this equation, the inversion curves are plotted for different values of η (Fig. 3.8).

From the graphs, one can infer that the JT coefficient µJ is sensitive to η values, i.e., µJ

increases with η . In Fig. 3.7, this inference is depicted taking different η values in the
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same plot for a fixed Q value. By demanding Pi = 0, we obtain T min
i

T min
i =

(1−η2)

6
√

6πQ
. (3.75)

Using this we calculate the ratio between T min
i and Tc as

T min
i
Tc

=
1
2
. (3.76)

This is an interesting result which matches with the earlier established resultS for the

charged AdS black hole (Ökcü and Aydıner 2017, 2018). At the end of this study, we

plot isenthalpic curves for various combinations of η and Q in the T −P plane. Inverse

points (Ti,Pi) on T −P plane separates the heating phase from the cooling phase of

JT expansion. Recall that the isenthalpic curve in this case is not a plot with constant

enthalpy, rather constant mass. The crossing diagram between inversion and isenthalpic

curve shown in Fig. 3.9 displays the sensitivity of inverse points (Ti,Pi) for the different

values of η and Q. All our calculations and graphs show that when the global monopole

parameter is zero, the results nicely reduce to the earlier studies on JT expansion of

charged AdS black holes.

66



1

2

10

20

0.0 0.2 0.4 0.6 0.8 1.0
P

1

2

3

4

T

Q values

(a)

1

2

10

20

0.0 0.2 0.4 0.6 0.8 1.0
P

1

2

3

4

T

Q values

(b)

1

2

10

20

0.0 0.2 0.4 0.6 0.8 1.0
P

1

2

3

4

T

Q values

(c)

1

2

10

20

0.0 0.2 0.4 0.6 0.8 1.0
P

1

2

3

4

T

Q values

(d)

1

2

10

20

0.0 0.2 0.4 0.6 0.8 1.0
P

1

2

3

4

T

Q values

(e)

1

2

10

20

0.0 0.2 0.4 0.6 0.8 1.0
P

1

2

3

4

T

Q values

(f)

Figure 3.8: Inversion curves for charged AdS black hole with global monopole param-
eter η = 0,0.1,0.3,0.5,0.7,0.9 from top to bottom. The plots are the locus of inversion
points (Pi,Ti). Increasing η increases the inversion temperature for fixed pressure.
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Figure 3.9: Crossing diagrams between inversion and isenthalpic curves for different
values of η . (η = 0,0.1,0.3,0.5,0.7,0.9 from top to bottom and Q = 1).
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3.6 Conclusions
In this chapter, we have explored the thermodynamic properties of the black hole and

analyzed the effect of η on these properties. Then the Joule-Thomson (JT) coefficient

µ , which determines the cooling and heating phase is obtained for van der Waals gas.

This is followed by the calculation of inversion and isenthalpic curves for the gas.

Further, we applied the idea of JT expansion to charged AdS black hole with global

monopole whereby our key ingredient was the symmetry breaking parameter η . The

traditional JT coefficient analysis, isenthalpic, and inversion curve studies were done for

this metric with different values of η . The result is an interesting one where we have

noticed that the dependence of thermodynamic behavior on η is crucial. The inversion

temperature and pressure both increase monotonically with η , which is evident from

the inversion and isenthalpic curves. From the inversion curves, we conclude that the

sensitivity of Ti for a given value of Pi with increasing η is stringent.

It is a well-known fact that in early universe the global monopole played an inter-

esting role in density fluctuations which led to the formation of galaxies and clusters

in several theoretical approaches. Hence we hope that the study of JT expansion with

monopole term will be significant from different perspectives.
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Chapter 4

Thermodynamics of Regular black holes in AdS

Spacetime

Summary

This chapter is an edited version of our article (Ahmed Rizwan et al. 2020b).

We study the phase structure and the microscopic interactions in regular Bardeen

AdS black holes. The stable and metastable phases in the black hole are analyzed

through coexistence and spinodal curves. In the second part of the chapter, we

probe the microscopic interactions of regular Bardeen AdS black holes using the

novel Ruppeiner geometry .

4.1 Introduction
Regular black holes are the ones that do not possess a singularity at the center. Even

though it is in the domain of quantum gravity theory to obtain a singularity-free solu-

tion, a phenomenological model can be constructed in classical gravity. Firstly such a

regular solution was derived by Bardeen (Bardeen et al. 1973b). Later many have found

that regular black holes can be an exact solution to gravity coupled with a non-linear

electromagnetic source (Ayon-Beato and Garcia 1998, 2000, Hayward 2006). We have

studied phase transitions of regular black holes in our recent papers (Ahmed Rizwan

et al. 2019b, Rajani et al. 2020, Naveena Kumara et al. 2020a). It is noticed that the

presence of magnetic monopole charge imparts a phase structure to the regular black
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holes similar to the electric charge. So we find it interesting to probe the microstructure

corresponding to the magnetically charged Bardeen black holes in asymptotically AdS

spacetimes.

The macroscopic picture of the black hole is used to propose a phenomenological

model for black hole microstructure (Ruppeiner 2008). Even though microscopic infor-

mation is not a requirement for thermodynamics, it may be used for quantum gravity

studies. A prominent model for drawing microscopic information from thermodynam-

ics is the Ruppeiner’s thermodynamic geometry (Ruppeiner 1995). It is constructed on

the equilibrium state space in the context of thermodynamic fluctuation theory but can

be useful in studying black holes too (Ruppeiner 2008). Through Gaussian fluctuation

moments, a Riemannian geometry is constructed in the thermodynamic equilibrium

space, whose metric tells us about the fluctuations between the states. This method is

applied to van der Waals fluids and to a variety of other statistical systems (Ruppeiner

1995, Janyszek and Mrugaa 1990, Oshima et al. 1999, Mirza and Mohammadzadeh

2008, May et al. 2013). These studies show that the thermodynamic geometry encodes

the information about the microscopic interaction. The thermodynamic scalar curva-

ture R is proportional to the correlation volume of the underlying system. The sign

of R indicates the type of interaction in the microstructure, positive for repulsive and

negative for attractive interactions. In recent times, there has been a lot of interest in

the thermodynamic geometry to investigate critical phenomena and microstructure of

various black holes in AdS spacetime (Wei and Liu 2015, Sahay 2017, Guo et al. 2019,

Miao and Xu 2018, Kord Zangeneh et al. 2018, Wei and Liu 2020b, Naveena Kumara

et al. 2019, 2020b, Xu et al. 2020, Chabab et al. 2018, Deng and Huang 2017, Miao

and Xu 2019b, Chen et al. 2019, Du et al. 2020, Dehyadegari et al. 2017, Ghosh and

Bhamidipati 2020b,a).

Recently, a novel approach for Ruppeiner geometry was developed to explore the

missing information due to the singularity in the scalar curvature (Wei et al. 2019a).

This is mainly due to the vanishing of heat capacity at constant volume. The new nor-

malized scalar curvature takes care of this problem. A metric can be defined by Taylor

expanding the Boltzmann entropy around the equilibrium value. The thermodynami-
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cal coordinates were chosen to be the temperature and volume, and the Helmholtz free

energy was chosen as the thermodynamic potential. Applying this method to the van

der Waals (vdW) fluid, it was found that dominant interaction in the microstructure is

attractive throughout the parameter space. Utilizing the analogy with vdW fluid, the

thermodynamic geometry of a charged AdS black hole is analyzed. In contrast to the

vdW fluid, the interaction is not attractive over the entire parameter space. Even though

the interaction is attractive for the large black hole (LBH) everywhere and the small

black hole (SBH) for most of the parameter space, there exists a weak repulsive inter-

action in the SBH phase at very low temperatures (Wei et al. 2019a,b). Interestingly,

this behavior is not universal for all asymptotically AdS black holes. In the case of a

five-dimensional neutral Gauss-Bonnet black hole, interaction similar to vdW fluid is

observed, with a dominant attractive interaction throughout the SBH and LBH phases

(Wei and Liu 2020b). Soon later, work is extended to 4−D Gauss-Bonnet black holes

Wei and Liu (2020a). Subsequently, the microscopic interactions for 4−D AdS topo-

logical black holes dRGT massive gravity were studied(Yerra and Bhamidipati 2020b,

Wu et al. 2020). The microstructure was found to be distinct, with the presence of both

repulsive and attractive interactions in both the SBH and LBH phases. In our recent pa-

per, we have investigated the microstructure of regular Hayward and Born-Infeld AdS

black holes (Naveena Kumara et al. 2020c, 2021). The microscopic interactions ob-

served are similar to the case of charged AdS black holes in the regular Hayward case.

In contrast, Born-Infeld AdS black holes show a reentrant phase transition, which has a

distinct microstructure. Apart from these studies, the study of microstructure using this

novel method is limited to a few black holes. Motivated by the recent progress, here we

explore the phase structure and microstructure of a regular Bardeen AdS black hole.

The chapter is organized as follows. In section (Sec.4.2), we review the action and

derivation of the regular Bardeen black hole in AdS spacetime. In section (Sec.4.3), we

mainly focus on the thermodynamics and phase structure of the black hole. Then the

Ruppeiner geometry and analysis of critical features are discussed in section (Sec.4.4.1).

The final section (Sec.4.5) is dedicated to the summary and conclusions.
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4.2 Regular Bardeen AdS Black hole

The Bardeen black hole emerges as the solution to the Einstein’s gravity coupled to a

non-linear electrodynamics source with a negative cosmological constant Λ. We will

consider an action,

S=
1

16π

∫
d4x
√
−g̃(R−2Λ−L(F)) , (4.1)

where R denotes the Ricci scalar, g̃ the determinant of metric tensor g̃µν , and Λ is the

cosmological constant. L(F) is the Lagrangian density of non-linear electrodynamics,

which is the function of the field strength F= FµνFµν with Fµν = ∂µAν−∂νAµ . Varia-

tion of the action (eqn.4.1) leads to Einstein’s and Maxwell’s equations of motion, given

by

Gµν +Λgµν = Tµν , ∇µ

(
∂L(F)

∂F
Fµν

)
= 0 and ∇µ (∗Fνµ) = 0. (4.2)

Gµν is the Einstein tensor and Tµν = 2
(

∂L(F)
∂F

Fµλ Fλ
ν − 1

4gµνL(F)
)

is the energy-

momentum tensor. The Lagrangian density in the case of Bardeen black holes is,

L(F) =
12
α

( √
αF

1+
√

αF

)5/2

, (4.3)

where α is a positive quantity with a dimension [Length]2. We take the following ansatz

for Maxwell’s field tensor,

Fµν = 2δ
θ

[µδ
φ

ν ]
Q(r)sinθ . (4.4)

But from Maxwell’s equations (eqn.4.2), dF = dQ(r)
dr dr∧ dθ ∧ dφ = 0 which require

Q(r) to be a constant Qm. For a spherically symmetric solution, the non-vanishing

components of Maxwell’s field tensor are Ftr and Fθφ . Since we are interested in a

magnetically charged regular solution, we choose gauge potential and Maxwell’s field
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tensor to be,

Aµ = Qm cosθδ
φ

µ , Fθφ =−Fφθ = Qm sinθ , (4.5)

where Qm is the magnetic monopole charge. The scalar function F is obtained from

Fθφ as,

F =
2Q2

m
r4 . (4.6)

We can rewrite Lagrangian density L(F) as a function of radial distance,

L(r) =
12
α

(
2αQ2

m
r2 +2αQ2

m

)5/2

. (4.7)

A static spherically symmetric solution for the Einstein’s equation can be put in the

form,

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2 (dθ

2 + sin2
θdφ

2) , (4.8)

with the metric function f (r) = 1− 2m(r)
r − Λr2

3 . Making use of the line element, the

Einstein’s equation is solved for fixing the functional form of m(r). Gtt and Grr com-

ponents of Einstein’s equation read as,

1
r2 ∂rm(r)−Λ =

1
4
L(r), (4.9)

1
r

∂
2
r m(r)−Λ =

(
1
4
L(r)− ∂L

∂F
Fθφ Fθφ

)
. (4.10)

Integrating the above differential equations, we obtain the mass function m(r) for a

regular Bardeen AdS black hole as,

m(r) =
Λr3

6
+

Mr3

(β 2 + r2)
3/2 , (4.11)

where M is the mass of the black hole and β is the charge parameter related to total

charge Qm,

Qm =
β 2
√

2α
. (4.12)
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So, the line element for Bardeen-AdS black hole is written with the metric function,

f (r) = 1− 2Mr2

(β 2 + r2)
3/2 −

Λr2

3
. (4.13)

4.3 Thermodynamics and phase structure

In this section, we review the thermodynamics of the black hole in an extended phase

space, where the cosmological constant Λ is given the status of a dynamical variable

pressure P. It can be justified from Smarr relation and the first law of black hole ther-

modynamics in the asymptotically AdS spacetimes. The thermodynamic pressure P is

related to Λ as,

P =− Λ

8π
. (4.14)

Firstly, we write the first law of black hole thermodynamics and Smarr relation for the

magnetically charged Bardeen AdS black hole (Fan and Wang 2016, Fan 2017),

dM =T dS+Ψdβ +V dP+Πdα, (4.15)

M =2(T S−V P+Πα)+Ψβ . (4.16)

This can be obtained either from Komar integral, or from scaling argument presented in

the paper by Kastor et al (Kastor et al. 2009). Notice that there exists additional terms

α and Π, they are the parameters related to the non-linear electromagnetic field and its

conjugate potential respectively. We can write black hole mass M using the condition

f (rh) = 0 at the event horizon r = rh,

M =

(
β 2 + r2

h

)3/2 (8πPr2
h +3

)
6r2

h
. (4.17)

The Hawking temperature of the black hole is obtained as,

T =
f ′(r)
4π

∣∣∣∣
r=rh

=− β 2

2πr(β 2 + r2
h)

+
rh

4π
(
β 2 + r2

h

) + 2Pr3
h

β 2 + r2
h
, (4.18)
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where we have used eqn.4.17 and eqn.4.14 for mass M and pressure P. The required

thermodynamic quantities for our analysis, volume V and entropy S can be obtained

from the first law,

V =

(
∂M
∂P

)
S,β

=
4
3

π
(
β

2 + r2
h
)3/2

, (4.19)

S =
∫ dM

T
= πr2

h

[(
1− 2β 2

r2
h

)√
1+

β 2

r2
h
+

3β 2

r2
h

log
(√

β 2 + r2
h + rh

)]
. (4.20)

The thermodynamic stability of black hole is specified by the heat capacity at constant

pressure CP and at constant volume CV , which is determined as,

CP =T
(

∂S
∂T

)
P
=

2S
(
πβ 2 +S

)(
−2πβ 2 +8PS2 +S

)
2π2β 4 +πβ 2S(24PS+7)+S2(8PS−1)

, (4.21)

CV =T
(

∂S
∂T

)
V
= 0. (4.22)

One can obtain the equation of state, P=P(V,T ), utilising the expression for the Hawk-

ing temperature (eqn. 4.18) and thermodynamic volume (eqn. 4.20),

P =

(6V
π

)2/3
(
−1+2πT

√(6V
π

)2/3−4β 2
)
+12β 2

2π

((6V
π

)2/3−4β 2
)2 . (4.23)

We study the phase structure of the black hole in the canonical ensemble with a fixed

monopole charge β . The P−V isotherms show a first-order van der Waals fluid like

phase transition between two phases, namely, the small black hole (SBH) and the large

black hole (LBH) phase. The critical point is obtained from the inflection point of the

P−V isotherm,
∂P
∂V

∣∣∣∣
r=rh

=
∂ 2P
∂V 2

∣∣∣∣
r=rh

= 0. (4.24)
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The critical quantities temperature (Tc), pressure (Pc) and volume (Vc), thus obtained

are given below,

Tc =

(
17−

√
273
)√1

2

(√
273+15

)
24πβ

, (4.25)

Pc =

√
273+27

12
(√

273+15
)2

πβ 2
, (4.26)

Vc =
4
3

πβ
3
(

1+
1
2

(√
273+15

))3/2

. (4.27)

Using critical quantities, we define the following reduced coordinates,

Tr =
T
Tc
, Pr =

P
Pc
, Vr =

V
Vc

. (4.28)

We can rewrite the equation of state in the reduced parameter space as,

Pr =

(√
273+15

)2
Vr

2/3
(

3
(√

273+17
)
−4Tr

√√
273+15

√
−2+

(√
273+17

)
Vr

2/3− 18
Vr

2/3

)
(√

273+27
)(

2−
(√

273+17
)

Vr
2/3
)2 .

(4.29)

The phase transition in a Bardeen AdS black hole was extensively studied by AG Tzikas

(Tzikas 2019). But there are a couple of things left out in the analysis due to the dif-

ficulty in inverting the equation of state and solving rh as a function of pressure and

temperature, rh = rh(P,T ). We address this problem numerically and obtain the coexis-

tence equation from the swallowtail behavior of Gibbs free energy.

We begin our analysis from the Gibbs free energy, which is defined as the Legendre

transform of enthalpy, recall that addition of V dP term leads to the identification of

mass as enthalpy H. The Gibbs free energy reads as,

G(P,rh,g) = H−T S. (4.30)

And change in the Gibbs free energy,

dG =−SdT +V dP+Φdg. (4.31)
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Figure 4.1: In Fig. 4.1a, the Gibbs free energy Gr is plotted as a function of reduced
temperature Tr for different reduced pressure Pr. The swallow tail behaviour is exhibited
when Pr < 1. In inlets, a magnified view of the swallow tail at a pressure Pr = P∗ < 1 is
shown. In Fig. 4.1b, Isotherm with reduced temperature Tr = T ∗ < 1 under Maxwell’s
construction is shown. The SBH, superheated SBH, unstable region, supercooled LBH
and stable LBH phases are labelled in the Fig. 4.1b.

The Gibbs energy and its change is important in determining the thermodynamic

stability of a system. In an equilibrium state, when the pressure, temperature, and

charge are fixed, G takes a minimal value. But often writing G explicitly as the function

of temperature and pressure, G(P,T ) is difficult. We can obtain the Gibbs free energy

plots parametrically using eqn.4.30 and eqn.4.18. In Fig. 4.1a, we plot reduced Gibbs

free energy (Gr) as the function of reduced temperature (Tr) for different pressures.

When reduced pressure Pr < 1, we can see a “swallow tail behavior ”which is a typical

signature of a first-order phase transition. A close observation will reveal that there

are three regions in the swallowtail, two branches corresponding to the stable SBH and

LBH phases, and a tail connecting these two. As the difference in Gibbs free energy

between two branches becomes zero, the transition takes place between SBH and LBH

phases. At the critical pressure or below, these two branches become distinct. But they

do intersect at a certain temperature T ∗, where two phases coexist. We use these data to

plot the coexistence curve and fit it into a coexistence equation numerically. Using the
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Figure 4.2: Coexistence and spinodal curves in Pr−Tr and Tr−Vr plane. The coexis-
tence curve is shown in solid line and the spinodal curves are shown in dashed line.

fitting method, we obtain an expression for the coexistence equation,

Pr =−0.022+0.625Tr−6.726T 2
r +48.312Tr

3−194.636Tr
4 +511.332Tr

5

−887.151Tr
6 +1009Tr

7−722.605Tr
8 +295.313Tr

9−52.4384Tr
10, (4.32)

Tr ∈(0,1).

In Fig.4.2a, we have obtained Pr−Tr coexistence diagram using the fitting formula.

The red line is the locus of coexistence phase pressure and temperature (P∗,T ∗). The

light magenta-shaded region below the curve is the LBH phase, and the light green

color region depicts the SBH phase. The black point at the coordinate (1,1) denotes

the critical point, and above that (unshaded region), differentiation of phases is impos-

sible known as supercritical region. In Fig.4.2a, along the coexistence curve, we have

also shown the spinodal curve marked by the blue dashed line. It is plotted using the

condition,

(∂VrTr)Pr
= 0, or (∂VrPr)Tr

= 0. (4.33)
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The spinodal curve equation obtained from the above condition is of the form,

Trsp =
3
(
17+

√
273
)(
−10+

(
17+

√
273
)

Vr
2/3
)√
−2+

(
17+

√
273
)

Vr
2/3

4
√

15+
√

273
(
−4+

(
17+

√
273
)

Vr
2/3 +

(
17
√

273+281
)

Vr
4/3
) ,

(4.34)

Prsp =
3
(
15+

√
273
)2
(
−12Vr

2/3 +9
(
17+

√
273
)

Vr
4/3−

(
281+17

√
273
)

Vr
2
)

2
(
27+

√
273
)

Vr
2/3
(

3
(
17+

√
273
)

Vr
2/3−

((
285
√

273+4709
)

Vr
2 +4

)) .
(4.35)

Using parametric plots, we have obtained spinodal curves, which are the locus of

extreme points separating metastable SBH and LBH phases from the unstable region.

And as it is evident from figures (Fig.4.2a and Fig.4.2b), the spinodal curve is the en-

velope of the saturated mixture of SBH and LBH phases. The spinodal curve also

has a maximum at the critical point. The coexistence phase structure is shown in the

Tr−Vr plane along with the spinodal curve in Fig.4.2b. Careful analysis of curves will

find that there are five regions, namely SBH phase, LBH phase, supercritical phase,

metastable superheated SBH, and supercooled LBH phase. In both the plots in Pr−Tr

and Tr−Vr planes, the extremal point coincides with the extrema in the spinodal curves.

To have more clarity, we can turn to Pr−Vr isotherms. When the reduced temperature

Tr of isotherm is below 1, we can see an oscillating behavior with an inflection point at

the critical point. At any temperature T ∗, corresponding to coexistence Tr−Vr curve,

which is obviously bounded below 1, the isotherm consists of fore mentioned five re-

gions. In Fig.4.1b, we have presented labelled Pr−Vr plot indicating different regions.

For Maxwell’s construction, a vertical line is drawn at the pressure P∗. The line divides

the isotherm into two equally occupied regions satisfying Maxwell’s equal-area law. At

the temperature, T ∗, the volume of the SBH and LBH phases is Vs and Vl , respectively.

The Vs and Vl are obtained from Tr−Vr coexistence curve. The terminology used here is

defined parallel to the analogous van der Waals fluid system. From the Pr−Vr isotherm,

we see that the SBH phase (thick blue) can exist till the pressure P∗ where it has the

volume Vs. When the pressure is reduced below P∗, the system moves to a superheating

phase without undergoing a transition. This phase denoted by the pink dashed portion
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Figure 4.3: log(∆Vr) vs Tr, The volume change ∆Vr = Vl −Vs as a function of re-
duced temperature Tr. Magnified view near the critical point is shown in the inlets.

is the superheated SBH phase. This state is metastable in the sense that it can un-

dergo a phase transition with even small fluctuation. The end of this metastable phase

is marked by a black dot which represents the spinodal curve. Further, there exists a

small unstable region with a positive slope denoted by the black dotted line in Fig.4.1b.

This unstable region terminates at the extremum, from there system moves to another

metastable state known as supercooled LBH. The unstable region is separated from the

metastable region by the spinodal curve. The supercooled LBH phase is marked as the

magenta dashed line in the plot. The system continues in this state till P∗, after that

system, undergoes rapid expansion with a slight change in pressure. The volume acts as

an order parameter during this transition. At the critical point, the difference between

the volumes of SBH and LBH phases vanishes, and they form a single supercritical

phase. These regions are also portrayed in the coexistence curve in Tr−Vr plane Fig.

4.2b. Using the numerical method, we plot the volume change ∆Vr = Vl −Vs as the

function of reduced temperature Tr in Fig.4.3. It shows that ∆Vr approaches zero at the

critical point and monotonously increases when the temperature is reduced. The series

expansion of ∆Vr around the critical point reads,

∆Vr = 4.03691(1−Tr)
0.537073. (4.36)

The critical exponent is 0.537, which is approximately equal to the universal value 1/2.

This result is similar to the one earlier obtained in different black holes (Wei et al.

2019a,b, Wei and Liu 2020b, Naveena Kumara et al. 2020c, Wu et al. 2020).
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4.4 Thermodynamic Geometry

Black hole thermodynamics would appear very much in need of some microscopic

foundation. This can be given by quantum gravity theories. Prominent candidates for

quantum gravity are String theory and Loop quantum gravity. From the famous quote

by Boltzmann, “If it is hot, it must have microstructure”. So without invoking any

quantum gravity theory, one can find that the black holes have a microstructure. We can

call it “atoms of spacetime,” and it is not odd to speculate the interaction between these

micromolecules using the observed thermodynamics of black holes. George Ruppeiner

proposed a phenomenological model for black hole microstructure in 2008 based on

the theory of fluctuations. The theory of fluctuation tells us that the physical quantities

describing a macroscopic body in equilibrium are almost always very nearly equal to

their mean values. Nevertheless, they fluctuate,i.e., they deviate from the mean values

though in a small amount. This fluctuation requires some probability distributions for

the physical quantities. Thus, the probability for finding a physical quantity x to be in

between (x0, ...,xN) and (x0 + dx0, ...,xN + dxN) is proportional to the number of the

microstates Ω,

P(x0, ...,xN)dx0...dxN =CΩ(x0, ...,xN)dx0...dxN . (4.37)

Using Boltzmann’s entropy formula, from microstates we construct macroscopic ther-

modynamic quantities. Inverting the formula by Einstein is the starting point for fluctu-

ation theory.

S = kB lnΩ⇒Ω = eS(x)/kB. (4.38)

Substitute eqn.4.38 in the distribution eqn. 4.37,

P(x)dx =C× eS(x)/kBdx. (4.39)

Now, a Taylor expansion of S(x) around the equilibrium value x0 yields,

S(x) = S(x0)+
∂S
∂x

∣∣∣∣
x=x0

(x− x0)+
1
2

∂ 2S
∂x2

∣∣∣∣
x=x0

(x− x0)
2 + . . . (4.40)
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Around the equilibrium, system will have maximum entropy, ∂S
∂x

∣∣∣
x=x0

= 0. Define the

quantities in the expansion (eqn.4.40) as,

x− x0 = ∆x ;

− kB

∂ 2S
∂x2

∣∣∣
x=x0

=
〈
(∆x)2〉= σ

2. (4.41)

Substituting various terms, we can see that the probability distribution (eqn.4.39) is a

Gaussian,

P(x)dx =C× exp
(
− (∆x)2

2〈(∆x)2〉

)
dx. (4.42)

In a canonical ensemble when energy fluctuate around an average, it makes sense to

define a standard deviation of the energy, that is nothing but heat capacity at constant

volume CV ,

σ
2
E =

〈
(∆E)2〉= 〈E2〉−〈E〉2 = kBT 2CV . (4.43)

The statistical Mechanics provides the profound result that this response functions

whether it is heat capacity (CV ) or the compressibility (κ) are given exactly by the

mean square fluctuations of the respective conjugate thermodynamic properties of the

system.

Moving further by considering two fluctuating variables xµ and xν having their equi-

librium value xµ

0 and xν
0 respectively, ∆xµ = xµ−xµ

0 and ∆xν = xν−xν
0 . The probability

distribution (eqn.4.39) becomes,

P(x)dx =C× exp
S(x)|x0

+ 1
2

∂2S
∂xµ ∂xν

∣∣∣
x0

∆xµ ∆xν

=
1

(2π)1/2 exp−
1
2 gµν ∆xµ ∆xν

×
√

det
(
gµν

)
dx, (4.44)

where (∆l)2 = gµν∆xµ∆xν and gµν =− 1
kB

∂ 2S
∂xµ ∂xν . The line element (∆l)2 is the distance

between thermodynamic states, and it is in the form of second rank metric tensor gµν .

The distance between two fluctuating states is inversely proportional to the probability

of fluctuation between the states. So the metric speaks about thermodynamic stability.

The metric, which is the hessian of entropy function contains the response functions like

heat capacity (CV ) and compressibility (κ). This approach to thermodynamics using the
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differential geometry is popularly known as thermodynamic geometry. It is the work of

Weinhold (Weinhold 1976) and Ruppeiner (Ruppeiner 1979) which brought attention

to this field. The essential part of this method is the construction of a thermodynamic

metric. The first such metric is proposed by Weinhold in which hessian of internal

energy was the key entity, which is a function of entropy and other extensive quantity

(Weinhold 1975). Later, another construction of metric was given by Ruppeiner, where,

instead of internal energy, entropy is taken as generating function in the definition of

hessian (Ruppeiner 1979, 1995). This new construction appears more appropriate for

black hole thermodynamics since the entropy of the black hole is measured on the hori-

zon, whereas the internal energy is at the asymptotic infinity. However, one can show

that these different constructions are related to each other conformally with the inverse

of temperature as a conformal factor. In the fluctuation theory of equilibrium thermody-

namics, the inverse of the Ruppeiner metric gives the second moments of fluctuations.

At the critical point, thermodynamic scalar curvature becomes proportional to the cor-

relation volume of ξ of the thermodynamic system. The curvature scalar contains the

underlying microscopic structure of the corresponding statistical system, which shows

diverging behavior near the critical point. George Ruppeiner conjectured that the cur-

vature scalar captures the details about the microscopic or mesoscopic interactions.

The Sign of curvature scalar R indicates the type of interactions,

R < 0 Attractive interactions,

R = 0 no interactions or very weak interactions,

R > 0 Repulsive interactions.

So the curvature scalar vanishes for ideal gas since there is no intermolecular inter-

action. Several applications of thermodynamic geometry on different black hole space-

times revealed interesting results and newer possibilities (Ferrara et al. 1997, Aman

et al. 2003, Sarkar et al. 2006, Shen et al. 2007, Sarkar et al. 2008, Ruppeiner 2008,

Sahay et al. 2010a, Lala and Roychowdhury 2012, Hendi et al. 2015b, Li and Mo 2016,

Sahay 2017). The interplay between geometry and microscopic structure in the ther-
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modynamic geometric method is extremely useful in black hole thermodynamics since

the exact knowledge of constituent information of black hole is still a debatable issue.

It should be emphasized that in both ordinary thermal systems and black hole systems,

thermodynamic geometry gives only a phenomenological description, not the exact mi-

crostructure.

4.4.1 Microstructure of the Bardeen AdS Black Hole

In this section, we study the critical behaviour and the microstructure of the Bardeen

black hole using the novel Ruppeiner geometry put forward by Wei et.al (Wei et al.

2019a), where T and V are chosen as the fluctuation coordinates. The line element is

written in (T,V ) coordinates as,

dl2 =
CV

T 2 dT 2− (∂V P)T
T

dV 2. (4.45)

And the normalized scalar curvature RN is obtained from the above line element as,

RN = RCV =
(∂V P)2−T 2 (∂V,T P)2 +2T 2 (∂V )(∂V,T,T P)

2(∂V P)2 . (4.46)

We have seen from eqn. 4.22 that the heat capacity (CV ) at constant volume vanishes

for the black hole. This can result in a singularity, and this singular behavior in the

curvature scalar R is rectified by multiplying it with CV .

The normalized scalar RN gives information about the microscopic interactions

present in the black hole. The metric tensor is calculated using the line element (eqn.4.45),

and RN is obtained from the eqn.4.46. RN hence obtained is a complicated expres-

sion RN(T,V,g). After converting it in the reduced coordinates RN(Tr,Vr), it is plot-

ted against the reduced volume Vr with a fixed temperature is shown in Fig. 4.46.

In reduced coordinates, RN is independent of monopole charge g. From the figures

(Fig.4.4a, Fig.4.4b), we can see that RN has two divergent points below the critical

point Tr < 1. And when the temperature becomes equal to the critical temperature

Tr = 1, these divergences merge and shoot up at the point Vr = 1 as showed in Fig.4.4c.

As expected, the divergence vanishes for all temperatures above the critical temperature
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Figure 4.4: The normalised curvature scalar RN is plotted against the reduced volume
Vr at different reduced temperature Tr.

Tr > 1 (Fig.4.4d). This shows that the information about the phase transition and criti-

cal phenomenon is well expressed by the normalized curvature scalar RN . Interestingly,

these two divergent points correspond to the metastable points in the spinodal curves.

We can notice that even though RN is negative for most of the parameter space, there

exists a small range where it is positive, which are shown in the inlets of Fig (4.4).

The sign-changing curve is plotted in the Tr −Vr plane utilizing the condition scalar

curvature RN = 0.

The scalar curvature RN vanishes and changes its sign at the point T0, given by

T0 =
Trsp

2
=

3
(√

273+17
)((√

273+17
)

Vr
2/3−10

)√(√
273+17

)
Vr

2/3−2

8
√√

273+15
((√

273+17
)

Vr
2/3 +

(
17
√

273+281
)

Vr
4/3−4

) .

(4.47)
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Sign change also happens at the point,

Vr =V0 =
5
8

√
5
2

(
4709−285

√
273
)
. (4.48)

The sign-changing curve distinguishes regions of negative RN from positive. As we

know, the scalar curvature RN tells about the microscopic interaction. Positive RN

means a repulsive interaction, and negative RN signifies an attractive interaction in the

microstructure. To have more clarity, we have placed all three plots, coexistence, spin-

odal and sign-changing plots, in a single plot (Fig.4.5a). Different regions in Fig.4.5a

correspond to the stable and metastable phases. The light magenta shaded region under

the sign-changing curve has positive and the unshaded region has negative RN . The

region 1©, area common between the spinodal curve and sign-changing curve is a satu-

rated SBH+ LBH phase. This phase always has a repulsive interaction in the microstruc-

ture with a positive RN . Next, the left-most region bounded inside the line Vr =V0 also

has a repulsive interaction with a positive RN . In that, region 3© is an SBH phase and

region 2© is a metastable superheated SBH phase. Nevertheless, there is a stable SBH

portion that lies outside this positive RN region marked with 4©, which has an attractive

interaction in the microstructure. All other phases, supercooled LBH as well as stable

LBH phase, have negative RN , with dominant attractive interaction. It affirms that there

exists attractive and repulsive interaction in the black hole microstructure, a hint of this

is observed in the R−Vr plot (Fig.4.4).

In Fig. 4.5b, normalized curvature scalar RN is plotted as a function of temperature

along the coexistence line. This is obtained numerically from the Pr−Tr coexistence

fitting equation. Both of the branches, SBH and LBH, diverge to infinity at the critical

temperature Tr = 1. Besides this, we can see that sign of RN is always negative for

the LBH phase, but the same is not true for the SBH phase. As shown in inlets of

Fig. 4.5b, in the small temperature range, there exists a region with positive RN . Even

though the scalar curvature decreases with temperature for both the branches, the LBH

branch never attains positive RN . Like in the previous plot (Fig.4.4), this also leads to

the conclusion that there exists attractive and repulsive interaction in the microstructure

of the SBH phase. We also notice that the intensity of attractive interaction in the
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Figure 4.5: Fig.4.5a: The sign-changing curve of RN along with the coexistence and
spinodal curves. Fig.4.5b: The behaviour of normalised curvature scalar RN along the
coexistence line. The red (solid) line and blue (dashed) line correspond to a large black
hole and a small black hole, respectively. The inlet shows the region where the SBH
branch takes a positive RN value.

SBH phase is stronger than that of the LBH phase. It can happen due to the strong

correlation between the black hole molecules in the SBH phase than in the loosely

correlated LBH phase. This behavior is similar to the van der Waals liquid-gas system,

where the attractive interaction in the liquid phase is more intense than in the gaseous

phase.

Finally, we can find the critical exponent corresponding to the divergence of RN

along the coexistence line for the SBH and LBH branches. This can be obtained nu-

merically assuming that RN has the form,

RN ∼ (1−Tr)
p . (4.49)

Taking logarithm on both sides, it reduces to,

ln |RN |=−p ln(1−Tr)+q. (4.50)

We have numerically generated data for RN as a function of coexistence temperature Tr

in the range 0.9 to 0.999. Along the SBH branch, we can fit the data as,

log |R|=−1.90021log(1−Tr)−1.37767. (4.51)
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Figure 4.6: The behaviour of scalar curvature ln |RN | near the critical point is shown in
terms of ln(1−Tr) for the case of LBH in Fig.4.6b and SBH in Fig.4.6a. The numerical
data points are marked by black dotes and line obtained from fitting formula are in solid
blue line for SBH and in red line for LBH phase.

Similarly, for LBH branch, we obtain,

log |R|=−2.07412log(1−Tr)−2.62298. (4.52)

We have plotted these equations separately for SBH and LBH phases in the figure (Fig.

4.6a, 4.6b) along with the numerical data points. These plots show great consistency in

the solid lines and numerical data. Apart from the numerical errors, the results show

that the critical exponent p is approximately equal to 2. From equations (eqn.4.51) and

(eqn.4.52), we can write,

RN (1−Tr)
2 =−exp−(1.37767+2.62298)/2 =−0.135291. (4.53)

This ratio is slightly higher than the universal ratio −1/8 found in the vdW system and

other AdS black holes. Taking the numerical errors into account, the result we obtained

is very close to the universal ratio.

4.5 Summary and Conclusions

In this chapter, we have concentrated mainly on studying the thermodynamics and mi-

crostructure of regular Bardeen AdS black holes. Information about the coexistence

phases missing in earlier studies in the literature is addressed. We have dedicated initial

90



sections for obtaining coexistence Pr−Tr equations from the Gibbs free energy plots.

The Gibbs free energy in reduced coordinates is plotted as a function of reduced tem-

perature Tr with a fixed pressure Pr. The appearance of swallowtail behavior in these

plots below the critical pressure is used to generate data for obtaining the coexistence

equation. As it is difficult to obtain the coexistence equation analytically in Bardeen

black holes, from Maxwell’s equal-area law or Gibbs free energy, we have used the

fitting formula. Through the coexistence equation, different regions in Pr−Vr isotherm

are analyzed at a reduced temperature Tr < 1. It is noticed that a first-order phase tran-

sition analogous to the vdW system takes place between stable SBH and LBH phases.

Besides, there exists metatable superheated SBH and supercooled LBH phases. The

stable and metastable phases are distinguished from each other by plotting a spinodal

curve. The unstable regions are removed through Maxwell’s constructions. These dis-

tinct phases in the black hole are studied through the coexistence and spinodal curves

in Pr−Tr and Tr−Vr planes. The change in volume ∆Vr = Vrl −Vrs acts as an order

parameter during the SBH-LBH phase transition. Near the critical point, the critical

exponent is calculated, which matches with the universal value of 1/2.

In the second half of the chapter, we have studied thermodynamics through Rup-

peiner geometry. The novel method proposed by Wei et al. is used to calculate the

thermodynamic scalar curvature (Wei et al. 2019a). Using the reduced equation of state

for Bardeen black hole, novel scalar curvature is calculated and plotted against reduced

volume Vr at different temperatures. The critical behavior is well captured in the plots

with the appearance and disappearance of divergences below and above the critical

point. Moreover, it is noticed that scalar curvature attains both positive and negative

values in the plots. The sign of RN encodes the information about the microscopic in-

teractions. This leads one to an inference that both attractive and repulsive interaction

exists in the black hole microstructure. To have more details on the microstructure, we

have analyzed the behavior of scalar curvature along the coexistence curve. In the ab-

sence of analytical expression for the coexistence curve, we depend on the numerical

methods for obtaining RN vs. Tr plots for SBH and LBH branches. Both the branches

diverge to negative infinity at critical point Tr = 1. Except for the divergence, the mi-
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crostructure of the SBH and LBH are distinct. The LBH phase always has a larger |RN |

than the SBH branch.

Moreover, the SBH branch attains positive RN in the small temperature range. This

is in agreement with RN −Vr plots, SBH microstructure has repulsive as well as at-

tractive interactions, but the LBH microstructure has only attractive interactions. This

is in contrast to the vdW fluid system, where only attractive dominant interactions are

present between the molecules. Our results imply that the phase transition leads to a

change in the microstructure of the regular Bardeen AdS black holes. A similar type

of behavior is observed in charged AdS black holes and regular Hayward AdS black

holes. But this feature is not universal; in the five-dimensional neutral Gauss-Bonnet

black hole case, only attractive interaction present in the entire parameter space similar

to van der Waals fluid. In Born-Infeld AdS black holes and massive gravity theories,

the nature of interaction depends on the value of coupling and massive parameter, re-

spectively. Our result is interesting as it establishes that the microscopic interaction in

regular black holes is generic in nature. As an extension to our work, it is interesting to

probe the repulsive interactions in the other regular black holes as well.
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Chapter 5

Effect of Quintessence on Phase transitions and

Thermodynamic geometry of Regular black holes

Summary

This chapter is an edited version of our article (Ahmed Rizwan et al. 2019b). We

investigate the thermodynamics and geometrothermodynamics of regular Bardeen-

AdS black holes with quintessence. The thermodynamics of the black hole is stud-

ied using temperature-entropy (T −S), Pressure-Volume (P−v), and Gibbs energy

plots, which indicate a critical behavior. Using the concept of thermodynamic

Ruppeiner and Weinhold geometry, we calculated the thermodynamic curvature

scalar RR and RW in the quintessence dark energy regime (ω = −2/3). While

these curvature scalars enable us to identify the critical behavior, they do not

show divergence at the phase transition points observed in specific heat studies.

To resolve this puzzle, we have adopted the method of geometrothermodynamics

proposed by Hernando Quevedo.

5.1 Introduction
The accelerated expansion of the universe is due to the presence of an exotic field called

Dark energy. Quintessence is one among different models for dark energy (Ford 1987,

Kiselev 2003, Tsujikawa 2013). The cosmic source for inflation has the equation of

state pq = ωρq (−1 < ω < −1/3), and ω = −2/3 corresponds to quintessence dark
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energy regime. The energy density for quintessence has the form ρq =−a
2

3ω

r3(ω+1) , which

is positive for usual quintessence. Several attempts have been made to explore the

effects of quintessence on the black hole, with Kiselev’s phenomenological approach

being the notable one (Kiselev 2003). By using Kislev’s phenomenological model, we

can construct a regular-Bardeen black hole surrounded by quintessence. According to

the model, the quintessence comes from a fluid with the energy-momentum tensor,

T r
r = T t

t = ρq,

T θ
θ = T φ

φ
=−1

2
ρq (3ω +1) ,

ρq =−
a
2

3ω

r3(ω+1)
,

ω and a are the state parameter and the normalization constant related to quintessence

energy density ρq. Solving the Einstein equations, we can obtain metric for a regular-

Bardeen AdS black hole with quintessence (Saleh et al. 2018, Fan 2017, Li 2014, Kise-

lev 2003) (detailed steps given in Appx.F ),

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dθ

2 + r2 sin2
θdφ

2,

with f (r) =
(

1− 2M(r)
r

+
r2

l2 −
a

r3ω+1

)
.

Phase transitions in black holes surrounded by quintessence are widely studied. Ther-

modynamics of Reissner-Nordström and regular black holes surrounded by quintessence

were investigated by various groups (Yi-Huan and Zhong-Hui 2011, Thomas et al. 2012,

Tharanath and Kuriakose 2013, Li 2014, Fan 2017, Saleh et al. 2018, Rodrigue et al.

2020).

This chapter is organized as follows. In section 5.2, thermodynamics of regular

Bardeen black hole surrounded by quintessence is studied in the extended phase space.

In the next section 5.3, thermodynamic geometry for the black hole is constructed using

Weinhold and Ruppeiner metric, followed by geometrothermodynamics. Conclusion is

written in the final section 5.4.
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5.2 Thermodynamics of the black hole

First law of thermodynamics for the Bardeen black hole must be modified to include

quintessence as follows,

dM = T dS+Ψdβ +V dP+Ada. (5.1)

Where Ψ is the potential conjugate to the magnetic charge β and A is a quantity

conjugate to quintessence parameter a.

A=

(
∂M
∂a

)
S,β ,P

=− 1
2r3ω

h
. (5.2)

As we have mentioned earlier, in the extended phase space, the cosmological constant

is considered as thermodynamic pressure.

P =− Λ

8π
, Λ =− 3

l2 . (5.3)

We can derive Hawking temperature (eqn. 5.4) from the first law, which can be

combined with the area law to obtain the equation of state (eqn. 5.5).

T =
1
4

√
β 2 +

S
π

S−
3ω

2 −
5
2

(
3aπ

3ω

2 + 1
2
(
πβ

2(ω +1)+Sω
)
+S

3ω

2 + 1
2
(
−2πβ

2 +8PS2 +S
))

,

(5.4)

P =
1

8π

[
8πT√

4β 2 + v2
+32β

2v−3ω−5 (v3ω+1−3a8ω(ω +1)
)
−3a8ω+1

ωv−3(ω+1)− 4
v2

]
.

(5.5)

where v = 2rh is specific volume. Using the above equations the P−v and T −S curves

are plotted in figure (Fig. 5.1a, Fig. 5.1b). These two plots clearly show critical phe-

nomena around the critical points. The critical points are obtained from the conditions,

∂P
∂v

= 0 ,
∂ 2P
∂v2 = 0. (5.6)
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Figure 5.1: To the left we have P−v diagram for regular AdS black hole surrounded by
quintessence (a = 0.07, β = 0.1, ω =−2/3, Tc = 0.36). In the right side T −S plot for
different values of β is shown.
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by quintessence (a = 0.07, β = 0.1 , ω = −2
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Table 5.1: Critical points are found using eqn. 5.6 with quintessence state parameter
ω =−1,−2/3,−1/3. The ratio Pcvc

Tc
is calculated for each case.

ω Pc vc Tc
Pcvc
Tc

-1 0.2155 0.6426 0.3485 0.3973
−2/3 0.2073 0.6422 0.3376 0.3945
−1/3 0.1926 0.6426 0.3241 0.3819

In the absence of quintessence, the critical volume (Vc), critical temperature (Tc)

and critical pressure (Pc) of regular Bardeen-AdS black hole are obtained, which are as

follows,

Vc = 2
√

2β

√
2+
√

10 ,Tc =
25
(
13
√

10+31
)

432πβ
(
2
√

10+5
)3/2 ,

Pc =
5
√

10−13
432πβ 2 .

Using the critical quantities, we can calculate Pcvc
Tc

ratio.

Pcvc

Tc
=

(
−26+10

√
10
)(

5+2
√

10
)3/2

√
2
(
2+
√

10
)

775+325
√

10
.

which is numerically equal to 0.381931. For Reissner-Nordström AdS black hole, this

ratio matches with that of a Van der Waals gas (Pcvc
Tc

= 3/8).

The presence of quintessence affects the phase transition. As the analytic expres-

sion is difficult to obtain, the critical quantities are obtained numerically for the state

parameter ω =−1,−2/3,−1/3 (Table 5.1). An increase in the value of ω from −1 to

0 leads to a decrease in the ratio, which approaches 3/8.

In statistical mechanics, a phase transition is characterized by divergences in second

moments like specific heat, compressibility, and susceptibility. Hence to study more

details of phase transition, we focus on the heat capacity of the system. Sign of heat

capacity tells about the thermodynamic stability of black holes, which is positive for
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stable and negative for unstable. The heat capacity at constant pressure is given by,

CP = T
(

∂S
∂T

)
P
=

2S
(
πβ 2 +S

)(
S
(√

π(8PS+1)−2a
√

S
)
+β 2

(
πa
√

S−2π3/2
))

√
π
(
β 4
(
8π2−3π3/2a

√
S
)
+S2(8PS−1)+4πβ 2S

)
CP−S plot is obtained from this equation, which shows critical behavior Fig. 5.2 below

certain pressure (Pc). Fig. 5.2 shows that below the critical pressure P < Pc, there are

two singular points, which reduce to one when P=Pc, and above P>Pc, this divergence

disappears. In Fig. 5.2b, there are three distinct regions separated by two singular

points. The Small black hole (SBH) and large black hole (LBH) regions with positive

specific heat, and the intermediate black hole (IBH) with negative specific heat. As

the positive specific heat regions are thermodynamically stable, phase transition takes

place between the small black hole and a large black hole. From Fig.5.3, we observe

that the quintessence state parameter ω shifts the SBH-LBH transition to lower entropy

values. The specific heat plotted with ω =−1,−1
3 ,−

2
3 and 0 shows the deviation. When

ω = 0, the intermediate region vanishes. Only two regions exist, one with negative and

the other with positive specific heat; the behavior is similar to that of a regular Bardeen

black hole (Tharanath and Kuriakose 2013).

The small-large black hole phase transition observed in this black hole is analogous

to the liquid-gas transition in Van der Waals gas like in Reissner-Nordstr ”om AdS black

holes. The notable difference compared to Van der Waals gas is the ratio Pcvc
Tc

, which

does not appear to be a constant value 3/8, as the critical temperature Tc depends on the

quintessence.

5.3 Quintessence and Thermodynamic Geometry

After Albert Einstein’s theory of gravity based on differential geometry became a great

success, the method of differential geometry was identified as a mathematical language

for various gauge fields. It was Gibbs (Gibbs 1948) in the later part of the 19th century

and Caratheodory (Carathéodory 1909) in 1909, to use these ideas of differential ge-

ometry in classical thermodynamics. Hermann (Hermann 1973) and Mrugala (Mrugala

1978) applied differential geometry to the thermodynamic phase space using its con-
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tact structure. Then Weinhold (Weinhold 1975) and later Ruppeiner (Ruppeiner 1979,

1995) constructed thermodynamic metric to study phase transitions and microscopic in-

teractions in thermodynamic systems. Geometrothermodynamics is another geometric

formalism for the classical thermodynamics developed by H.Quevedo (Quevedo 2007).

The phase transition of the system can be seen in the divergence behavior of this curva-

ture scalar near the critical point.

Thermodynamic geometry is applied to van der Waals gas and different statistical

models including magnetic models (Ruppeiner 1995, Janyszek and Mrugaa 1990, Os-

hima et al. 1999, Mirza and Mohammadzadeh 2008, May et al. 2013). Considering

black hole as a thermodynamic system, the geometric formalism is used to study the

critical behavior of black holes during phase transitions (Ruppeiner 2008, Aman et al.

2003, Sarkar et al. 2006, Shen et al. 2007, Sarkar et al. 2008, Sahay et al. 2010b,a,

Banerjee et al. 2011b,a, Biswas and Chakraborty 2011, Akbar et al. 2011, Niu et al.

2012, Bellucci and Tiwari 2012, Lala and Roychowdhury 2012, Wei and Liu 2013, Yi-

Wen et al. 2013, Suresh et al. 2014, Zhang et al. 2015a, Mansoori et al. 2015, Zhang

et al. 2015b, Hendi et al. 2015b, Soroushfar et al. 2016, Li and Mo 2016, Sahay 2017,

Chaturvedi et al. 2017). But there were inconsistencies in the position of critical point,

as specific heat diverges at a point different from where scalar curvature diverges (Janke

et al. 2010, Wei et al. 2012, Suresh et al. 2014). The Legendre invariance was found

to be the key factor behind these discrepancies. Taking Legendre invariance into ac-

count a metric was constructed by Quevedo et al. (Quevedo 2007, 2008, Alvarez et al.

2008), which resolved the issue. Quevedo’s formalism named as Geometrothermody-

namics(GTD) is applied to various black holes (Bravetti et al. 2013, Quevedo et al.

2012, Tharanath et al. 2015, Sanchez 2016, Quevedo et al. 2016, Hu et al. 2017, Chan-

nuie and Momeni 2018) including regular black holes (Akbar et al. 2012).

In this section, we investigate thermodynamic phase transitions based on geometric

formalism proposed by Weinhold, Ruppeiner, and Quevedo. The divergent behavior of

curvature scalar plotted against entropy reflects the existence of critical points corre-

sponding to the thermodynamic phase transition.
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5.3.1 Weinhold Geometry

The Weinhold metric is defined adhoc in the thermodynamic equilibrium space as the

Hessian of the internal energy M,

ds2
W = gW

i j dxidx j = ∂i∂ jM(S,Na)dxidx j , (i, j = 1,2),

where Na represents any other thermodynamic extensive variables. Here, mass M is the

function of entropy S and extensive variable β , which is the monopole charge. A Hes-

sian is defined as a square matrix containing second derivative of energy with respect to

the entropy and other extensive parameters(Weinhold 1975, 1976),

gW =

M,SS M,Sβ

M,βS M,ββ

 .
Using the expression for mass of the black hole, the components of metric tensor turns

out to be,

gSS =
β 4
(

8π2−3π3/2a
√

S
)
+S2(8PS−1)+4πβ 2S

8
√

πS3
√

πβ 2 +S
, (5.7)

gSβ = gβS =
β
(
β 2 (3√πa

√
S−6π

)
+S(8PS−3)

)
4S2
√

β 2 + S
π

, (5.8)

gββ =

(
2πβ 2 +S

)(√
π(8PS+3)−3a

√
S
)

2S
√

πβ 2 +S
. (5.9)

From metric tensor gW
i j , one can calculate curvature scalar, which is found to be a

complicated expression, RW (S,P,b,ω,a). Plotting the curvature RW versus entropy S,

we have studied its divergence behavior, which occurs at multiple points Fig. 5.4. Even

at the critical point (Pc=0.207 for a=0.07 and β = 0.1), RW shows multiple divergences

Fig. 5.6a) which are different from that of the critical value of entropy (S) observed in

specific heat plots. From these randomly located diverging points, we can infer only
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Figure 5.4: Curvature divergence plots for Weinhold metric. In all three plots
quintessence parameter and monopole charge are fixed, a = 0.5 and β = 1. Pressure is
P = 0.01 in (5.4a), P = 0.01264 in (5.4b) and P = 0.0141 in (5.4c).
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Figure 5.5: Curvature divergence plots for Ruppeiner metric. In all three plots
quintessence parameter and monopole charge are fixed, a = 0.5 and β = 1. Pressure is
P = 0.01 in (5.5a), P = 0.01264 in (5.5b) and P = 0.0141 in (5.5c).

the critical behavior of the system but not the exact phase transition points. As there

is no agreement between the divergence points in Weinhold geometry and specific heat

study, next, we focus on Ruppeiner geometry.

5.3.2 Ruppeiner Geometry

The Ruppeiner metric is defined as a Hessian of the entropy function S of the system

instead of the internal energy M as in the Weinhold case. But one can transform the

Ruppeiner metric, which is a function of M and β originally, to the same coordinate

system used in the Weinhold metric, i.e., S and β . Technically, their geometries are

related to each other conformally (Ruppeiner 1979, 1995, 2008, 2010).

The Ruppeiner metric in the thermodynamic space states is given as ,

gR
i j =−∂i∂ jS (M,xα) , (i, j = 1,2),
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gR =

S,MM S,Mβ

S,βM S,ββ

 .
Because of the conformal property, the line elements in Ruppeiner and Weinhold for-

malism are related as

dS2
R =−

dS2
W

T
. (5.10)

Using eqn.5.7, eqn.5.8, eqn.5.9 and eqn.5.4 the components of Ruppeiner metric tensor

are easily obtained as ,

gSS =

√
π

(
b4
(

8π2−3π3/2a
√

S
)
+4πb2S+S2(8PS−1)

)
2S (πb2 +S)

(
b2
(
πa
√

S−2π3/2
)
+S
(√

π(8PS+1)−2a
√

S
)) , (5.11)

gSβ = gβS =
π3/2b

(
b2 (6π−3

√
πa
√

S
)
+S(3−8PS)

)
(πb2 +S)

(
b2
(
2π3/2−πa

√
S
)
−S
(√

π(8PS+1)−2a
√

S
)) , (5.12)

gββ =
2πS

(
2πb2 +S

)(√
π(8PS+3)−3a

√
S
)

(πb2 +S)
(
b2
(
πa
√

S−2π3/2
)
+S
(√

π(8PS+1)−2a
√

S
)) . (5.13)

The curvature tensor RR calculated from the above metric gR
i j is again a complicated

expression like in the Weinhold case. The obtained curvature function is plotted against

entropy S to study the critical behavior (Fig. 5.5 and Fig. 5.6b).

The Fig.5.6b shows that at the critical point Pc = 0.207, there are multiple diver-

gence around S = 0.06 and S = 0.48, which does not correspond to the critical value of

entropy (S = 0.32). From these multiple singularities for curvature scalar, it is difficult

to identify the critical points from Ruppeiner geometry. But it is interesting that Rup-

peiner geometry indicates a phase transition even though it cannot identify the exact

transition points (Fig.5.5), like Weinhold geometry. This kind of anomaly was found

in Kehagias-Sfetsos black hole (Janke et al. 2010) and in Gauss-Bonnet Born-Infeld

massive gravity theories (Hendi et al. 2016, 2015a). In both Weinhold and Ruppeiner

geometries, we note that the number of divergence points reduces of curvature scalar

decreases when the pressure increases and gradually disappear.
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5.3.3 Geometrothermodynamics

In this approach, the metric is constructed from a Legendre invariant thermodynamic

potential and their derivatives with respect to the extensive variables. For geometrother-

modynamic calculations, we will consider 2n+ 1 dimensional thermodynamic phase

space T. This phase space is constructed using the coordinates {Φ,Ea, Ia}, where Φ

is thermodynamic potential and Ea and Ia are extensive and intensive variables. Then

Gibbs one-form is introduced as Θ = dΦ−δabIaEb, satisfying Θ∧ (dΘ) 6= 0. Defining

a Legendre invariant metric G on T,

G = (dΦ−δabIaEb)2 +(δabIaEb)(ηcdIcEd), (5.14)

ηcd = diag(−1,1, ......1). (5.15)

T, Θ and G constitutes a Riemann contact manifold. Following this we define an n

dimensional Riemannian submanifold ε ⊂ T, which is the space of equilibrium ther-

modynamic states (equilibrium manifold) via a smooth map ϕ : ε → T. The Quevedo

metric, which is similar to Ruppeiner and Weinhold metric, is defined on this equilib-

rium submanifold using the inverse map ϕ∗(G).

gQ = ϕ
∗(G) =

(
Ec ∂Φ

∂Ec

)(
ηabδ

bc ∂ 2Φ

∂Ec∂Ed dEadEd
)
. (5.16)

In our case we consider a 5 dimensional phase space with the coordinates ZA =

{M,S,β ,T,Θ}, where S, β are extensive variables and T , Θ are their dual intensive

variables. Then we have the fundamental Gibbs one form as,

Θ = dM−T dS−Ψdβ . (5.17)

Now we can write the Quevedo metric as follows,

gQ =
(
SMS +βMβ

)−MSS 0

0 Mββ

 . (5.18)

Using the Quevedo metric, we calculate the corresponding curvature, which is a com-
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Figure 5.6: Curvature divergence plots for Weinhold (Fig. 5.6a), Ruppeiner (Fig. 5.6b)
and Quevedo metric (5.6c) around critical point (a = 0.5,β = 0.1 and Pc = 0.207).

plicated expression having the following form,

RQ =
f (S,β ,P,a)
g(S,β ,P,a)

, (5.19)

which is interesting as it has a diverging behavior. Using the plots of curvature scalar

RQ, we investigate the divergence. In Fig.5.6c, we can see a divergence peaked at

S ≈ 0.32, same as in the specific heat case. Contrary to what we obtained in Weinhold

and Ruppeiner geometries, the singular point of curvature scalar in geometrothermody-

namics exactly matches the specific heat singular point.

5.4 Conclusion
In this chapter, we have studied thermodynamics and thermodynamic geometry of a

regular Bardeen-AdS black hole surrounded by a quintessence. In the thermodynamic

study, we observed a critical behavior from P−v and T −S plots. Further confirmation

was obtained from the specific heat plots. The discontinuity in the specific heat at S =

0.32 indicates a phase transition of the system. We analyzed the effect of quintessence

in the phase transitions through the state parameter ω . The critical values for pressure

(Pc), volume (vc) and temperature (Tc) are obtained for ω =−1,−2
3 and −1

3 case. The

ratio Pcvc
Tc

showed slight decrease with increase of ω from -1 to −1
3 .

Following the study of black hole phase transition in the thermodynamic approach,

we carried out the geometrical investigation of the same. In the literature, it is a well-

known fact that the divergence behavior of curvature scalar also reflects the existence of

critical points. If we accept that the criticality of specific heat is the definition of phase

transition, the thermodynamic geometry, which shows divergence at the same point,
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turns out to be the correct geometrical description of the same phenomena. For the

metric under consideration, we found that, even though the Ruppeiner and Weinhold

geometries reflect the singularity of curvature scalar, it can only be taken as the indi-

cation of phase transition but not the accurate description of the same, as the diverging

points do not coincide with that of specific heat. There were multiple divergence and

mismatch in the thermodynamic scalar of Weinhold and Ruppeiner geometries. This

indicates an anomaly; to overcome this we have used Quevado’s geometrothermody-

namics. The main problem with the Weinhold and Ruppeiner geometry is that they

were not Legendre invariant and thus depend on the choice of thermodynamic poten-

tial. However, geometrothermodynamics being Legendre invariant, reproduces critical

point exactly.
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Chapter 6

Heat engine in the Regular AdS black holes surrounded

by Quintessence

Summary

This chapter is an edited version of our article (Rajani et al. 2020). We investi-

gate heat engine models constructed in the regular Bardeen-AdS black hole with

quintessence. The presence of a quintessence field improves the heat engine effi-

ciency significantly.An analytical expression for heat engine efficiency is derived

in terms of the quintessence dark energy parameters. We find that the quintessence

parameter a increases the efficiency, whereas the state parameter ωq decreases the

efficiency.

6.1 Introduction
The discovery of the heat engine was a revolution in human history. It was a time

when people cannot imagine a machine moving on its-own without a horse in front.

Even though rudimentary models were there from 1st century, it was firstly idealized

by Nicolas Sadi Carnot in 1824. A heat engine converts the heat available from a heat

source (hot reservoir) to mechanical work, and the remaining heat is rejected to a heat

sink (cold reservoir) at a lower temperature. A working substance in the engine is

brought from a higher state temperature to a lower state temperature. Any substance

with non-zero heat capacity can be chosen as a working substance, usually a gas or
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liquid. It generates work while transferring heat to the colder sink. During the process,

the working substance goes through a cycle, e.g., Stirling cycle, Otto cycle, Diesel

cycle. These heat engines are used in automobiles and thermal power stations; even

there are some natural heat engines.

Black holes being a thermal system exhibiting van der Waals fluid analogy, it is nat-

ural to construct a heat engine out of black holes. Such an innovative engine known as

holographic heat engine is designed recently by Clifford V. Johnson (Johnson 2014).

Holographic is termed due to the significance of heat engine in the holographic pic-

ture of spacetime. The heat cycles in bulk trigger a renormalization flow in the dual

field theory. Thus, the holographic heat engine fills the missing link between extended

thermodynamics and holography. These phenomena can happen only in systems with

large degrees of freedom where thermal effects dominate over quantum ones. Black

hole as a heat engine is in particular, exhibits this thermal dominance. This proposal

has drawn considerable attention and the concept of holographic heat engines were later

generalised to various other black holes (Jafarzade and Sadeghi 2017, Setare and Adami

2015, Johnson 2016a, Zhang and Liu 2016, Johnson 2016b, Belhaj et al. 2015, Wei and

Liu 2017, Mo and Li 2018, Hendi et al. 2018, Xu et al. 2017, Mo et al. 2017, Hennigar

et al. 2017, Zhang et al. 2018, Yerra and Bhamidipati 2020a, Yerra and Chandrasekhar

2019).

In this chapter, we extend the concept of a heat engine to regular Bardeen AdS black

hole, which possesses no singularity at the origin. A further effect of the quintessence

field on efficiency is also studied. This chapter is organized as follows. In section

(Sec.6.2), we discuss the heat engine model in the regular Bardeen AdS black hole. In

section (Sec.6.3), regular black holes with quintessence is considered, and their effect

on efficiency is scrutinized. The chapter ends with results and discussions, which are

presented in section (Sec.6.4).

6.2 Regular black hole as a Heat Engine
In this section, we calculate the efficiency of the heat engine constructed by taking reg-

ular Bardeen AdS black hole as a working substance. As shown in Fig. 6.1b, a simple

heat cycle includes a pair of isotherms at high temperature TH and low temperature TC.
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Figure 6.1: Schematic diagram of a traditional heat engine

These two paths are connected either by isochoric(constant volume) paths as in Stirling

cycle or adiabatic(no heat exchange) paths as in Carnot cycle. During isothermal ex-

pansion, (1→ 2), QH amount of heat is being absorbed, and it will exhaust QC amount

of heat during isothermal compression (3→ 4). The paths (2→ 3) and (4→ 1) are

isochoric paths. But for static black holes, entropy and volume are dependent on each

other. So adiabats and isochores are alike, meaning no difference between the Carnot

engine and Stirling engine. The efficiency of the heat engine is given by,

η =
W
QH

=

∮
PdV
QH

. (6.1)

It can be compared with the efficiency Carnot heat engine cycle ηC, which is the theo-

retical maximum possible value.

ηc = 1− QC

QH
= 1− TC

TH
. (6.2)
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The total work done along one complete cycle can be obtained as,

Wtot =W1→2 +W3→4 = P1(V2−V1)+P4(V4−V3)

=
4(P1−P4)

((
πβ 2 +S2

)3/2−
(
πβ 2 +S1

)3/2
)

3
√

π
. (6.3)

For static black holes, the heat capacity at constant volume CV = 0. From that, one can

conclude that no heat exchange takes place in the isochoric paths (2→ 3) and (4→ 1).

Therefore we have to compute heat exchanged QH during the isothermal process 1→ 2,

QH =
∫ T2

T1

CP(P1,T )dT =
∫ S2

S1

CP

(
∂T
∂S

)
dS =

∫ S2

S1

T dS = M2−M1,

=

(
πβ 2 +S2

)3/2
(8P1S2 +3)

6
√

πS2
−
(
πβ 2 +S1

)3/2
(8P1S1 +3)

6
√

πS1
.

(6.4)

Using eqn. 6.1, eqn.6.3 and eqn. 6.4, the efficiency of the engine is calculated as,

η =
W
QH

=
8(P1−P4)

((
πβ 2 +S2

)3/2−
(
πβ 2 +S1

)3/2
)

(πβ 2+S2)
3/2

(8P1S2+3)
S2

− (πβ 2+S1)
3/2

(8P1S1+3)
S1

. (6.5)

The upper bound of efficiency is set by the Carnot cycle, which is obtained from eqn.6.2.

As we can observe from schematic diagram (Fig. 6.1b), higher temperature TH is T2 and

lower temperature TC is T4. Hence the Carnot engine efficiency is,

ηC = 1−
√

S2
(
πβ 2 +S2

)(
−2πβ 2 +8P4S2

1 +S1
)

√
S1 (πβ 2 +S1)

(
−2πβ 2 +8P1S2

2 +S2
) . (6.6)

The efficiency η and the ratio η/ηC are plotted against entropy S2 using eqn.6.5 and

eqn.6.6. As we can see in Fig. 6.2a the heat engine efficiency monotonously increases

with S2 (corresponding volume V2) for all values of β , which implies that the increase

in volume difference between small black hole (V1) and large black hole (V2) increases

the efficiency. However, this trend does not continue forever as the efficiency reaches

saturation values after a certain value of S2. The dependence on charge β also visible

from the same figure; the rates of increment are different for different β values. The
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Figure 6.2: The variation of efficiency η of the engine with regular Bardeen black
hole as the working substance and the ratio η/ηc with different variables. In Fig.
6.2a and 6.2b, the entropy dependence is shown with different values of β . Here we
take P1 = 4,P4 = 1 and S1 = 1. In the second set of figures Fig. 6.2c and Fig. 6.2d,
the variation with pressure is studied with different values of β . In this case we take
P4 = 1,S2 = 4 and S1 = 1. In the last set figure Fig. 6.2e and Fig. 6.2f, the behavior
against charge β with different values of P1 is displayed. Here we take S2 = 20,P4 = 1
and S1 = 10. The parameters P1, P4, S1 and S4 are chosen accordingly for the proper
display of the nature of the plots.
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plot η/ηC versus S2 in Fig. 6.2b is consistent with second law, as it is bounded below 1.

With the increase in charge β , the ratio decreases. We also investigate the dependence

of efficiency η on pressure P1, the pressure at the source, which is shown in Fig. 6.2c

and 6.2d. Those two figures clearly show that the efficiency of the engine will approach

the maximum possible value as the pressure approaches infinity. Before concluding this

section, we also mention that the monopole charge β has a positive effect on efficiency,

i.e., the higher the charge, the higher is the efficiency (Fig. 6.2e, Fig. 6.2f).

6.3 Influence of Quintessence on efficiency

Following the work of Hang Liu and Meng, we study the effect of dark energy on

thermodynamics and heat engine efficiency of regular black holes (Liu and Meng 2017).

Quintessence is one of the candidates for dark energy, which leads to the accelerated

expansion of the universe (Kiselev 2003, Tsujikawa 2013). The real scalar field acts as

a cosmic source having equation of state pq = ωqρq (−1 < ωq < −1/3). The density

of quintessence field is given by,

ρq =−
a
2

3ωq

r3(ωq+1)
. (6.7)

Kiselev was the first one to study the effects of quintessence on a black hole (Kiselev

2003). Since then, there were many studies in black holes surrounded by quintessence,

to mention a few, in the contexts of gauge gravity duality (Chen et al. 2013) and quasi-

normal modes (Chen and Jing 2005). Phase transitions in Reissner-Nordström and

regular black holes with this exotic field were also studied (Yi-Huan and Zhong-Hui

2011, Thomas et al. 2012, Li 2014, Fan 2017, Saleh et al. 2018, Rodrigue et al. 2020).

When we include quintessence term in the metric of regular Bardeen AdS black hole,

f (r) is modified to

f (r) = 1− 2Mr2

(β 2 + r2)
3/2 −

a
r3ωq+1 −

Λr2

3
. (6.8)

Where a is the normalization constant or strength parameter related to quintessence

density and ωq is the state parameter. Now we proceed as in the earlier sections to
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obtain an expression for the efficiency of the engine. Using the defining condition of an

event horizon, f (rh) = 0, one can calculate the black hole mass as

M =−1
6
(
β

2 + r2
h
)3/2

r−3(ωq+1)
(

3a+
(
−8πPr2

h−3
)

r3ωq+1
h

)
. (6.9)

We can write the expression for temperature as,

T =
r−3ωq−2

h

(
3a
(
β 2(ωq +1)+ r2

hωq
)
+ r3ωq+1

h

(
−2β 2 +8πPr4

h + r2
h

))
4π
(
β 2 + r2

h

) . (6.10)

The heat capacity at constant pressure is,

CP =
2S(πβ 2+S)

(
3aπ

3ωq+1
2 (πβ 2(ωq+1)+Sωq)+S

3ωq+1
2 (−2πβ 2+8PS2+S)

)
S

3ωq+1
2 f1(S)−3aπ

3ωq+1
2 f2(S)

, (6.11)

where,

f1(S) =
(
2π

2
β

4 +πβ
2S(24PS+7)+S2(8PS−1)

)
,

f2(S) =
(
π

2
β

4 (3ω
2
q +5ωq +2

)
+πβ

2S
(
6ω

2
q +7ωq +4

)
+S2

ωq(3ωq +2)
)
.

Then we compute the heat QH along the process 1→ 2 (the earlier arguments on no

heat transfer for isochoric processes still holds),

QH =
∫ T2

T1

CP(P1,T )dT = M2−M1,

=
1

6
√

π

{(
πβ

2 +S1
)3/2

S
− 3

2 (ωq+1)
1

[
3aπ

3ωq+1
2 − (8P1S1 +3)S

3ωq+1
2

1

]
+
(
πβ

2 +S2
)3/2

S
− 3

2 (ωq+1)
2

[
(8P1S2 +3)S

3ωq+1
2

2 −3aπ
3ωq+1

2

]}
. (6.12)

Having all the required quantities, the heat engine efficiency is expressed in terms of

quintessence parameters a and ωq as,

η =
8(P1−P4)

((
πβ 2 +S2

)3/2−
(
πβ 2 +S1

)3/2
)

f (S1)+ f (S2)
. (6.13)
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Figure 6.3: The effect of quintessence on the efficiency η of the engine and on the
ratio η/ηc with different variables. In the first set of figures Fig.6.3a and Fig.6.3b, the
variation with entropy is displayed with different values of a. Here we take P1 = 4,P4 =
1 S1 = 1, ωq = −1 and β = 0.1. In the second set of figures Fig.6.3c and Fig.6.3d,
the variation with entropy for different values of ωq is shown. In this case we take
P1 = 4,P4 = 1 S1 = 1, a = 1 and β = 0.1. In the last set Fig. 6.3e and Fig. 6.3f, the
dependence on pressure for different values of a is observed with P4 = 1 S1 = 1, S2 = 4,
ωq =−1 and β = 0.1. Here also the fixed parameters are chosen appropriately for the
proper observation of the effect.
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where

f (S) =
(
πβ

2 +S
) 3

2 S−
3
2 (ωq+1)

[
3aπ

3ωq
2 + 1

2 − (8P1S+3)S
3ωq

2 + 1
2

]
.

The efficiency of the Carnot engine is also obtained as earlier,

ηC = 1−
(
πβ 2 +S2

)
S
− 3ωq

2 −1
1 S

3ωq
2 +1

2 g(S1,P4)

(πβ 2 +S1)g(S2,P1)
, (6.14)

where,

g(S,P) =
(

3aπ
3ωq

2 + 1
2
(
πβ

2(ωq +1)+Sωq
)
+S

3ωq
2 + 1

2
(
−2πβ

2 +8PS2 +S
))

.

The heat engine efficiency depends on pressure P, entropy S, monopole charge β

and quintessence parameters a and ωq. The above expressions reduce to the previous

case when quintessence parameters a = 0 and ωq = 0. There is a significant increment

in the efficiency against S2 when we increase the quintessence strength a with other

parameters being fixed (Fig. 6.3a). This change is visible in the ratio plot also (Fig.

6.3b). The plot for efficiency versus S2 for different values of ωq show similar functional

behaviour in Fig. 6.3c and Fig. 6.3d. But there is a difference in the physical effect;

higher values of ωq lead to smaller efficiency. With ωq = −1, the black hole shows

higher efficiency than ωq =−1/3 case, where efficiency takes a constant value of 0.75.

This is not a surprising result because the quintessence density (ρq) decreases with

an increase in ωq (6.7). Then we study the role of pressure P1 on η and η/ηC with

different values of quintessence strength a shown in Fig.6.3e and Fig.6.3f, where the

functional appearance remains same. The efficiency and its ratio improve with higher

pressures and with quintessence. But it is noticed that there is a faster convergence to

limiting value 1 in the quintessence case. The effect of quintessence on the efficiency

of a regular black hole heat engine is summarised in Table6.1.

At the final stage of our investigation, we focus on the action of quintessence pa-

rameter a and ωq. For all three values of ωq, efficiency increases exponentially when

it is plotted against quintessence constant a (Fig.6.4a). The scenario remains the same

for the ratio plot, with an exception at ωq = −1/3, which has a slight decaying nature
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Figure 6.4: The effect of quintessence on the efficiency η of the engine and on the ratio
η/ηc with different variables. In the Fig.6.4a and Fig.6.4b the dependence on a is
studied with different values of ωq. Here we take P1 = 4,P4 = 1 S1 = 1, S2 = 4 and
β = 0.1. In the second set of figures (Fig.6.4c and Fig.6.4d) behaviour against state
parameter ω with different values of a is shown. In this case we take P1 = 4,P4 = 1
S1 = 1, S2 = 4 and β = 0.1.
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Table 6.1: Deviation in heat engine efficiency η , with variation of quintessence equa-
tion of state parameter ωq and strength parameter a.

a ωq η a ωq η

1 -1/3 0.800 3 -1/3 0.804
1 -2/3 0.809 3 -2/3 0.833
1 -1 0.817 3 -1 0.859

initially (Fig.6.4b). We note that in these two plots, the efficiency shoots over unity

which is a clear violation of the second law of thermodynamics. To avoid this unphysi-

cal situation we must be careful enough to choose quintessence parameters. In Fig.6.4c

and Fig.6.4d, we present the effect of ωq on η and η/ηC for different values of a. In

the light of earlier point, quintessence density (ρq) decreases with increasing ωq, the

efficiency is higher for smaller values of ωq. This inference is drawn by considering the

physically meaningful range −1 < ωq <−1/3.

6.4 Conclusions and Discussions

Regular black holes are of great interest in physics as they do not possess singularity. In

this chapter, we demonstrated that the regular Bardeen AdS black hole could be used as

an engine to extract energy. The efficiency of the engine is improved by immersing the

black hole system in a quintessential field, which has the motivations from cosmology

where quintessence can be interpreted as a candidate for dark energy.

In this chapter, we constructed a heat engine by taking the regular Bardeen black

hole as a working substance. A cycle in the P−V plane is assigned for the black hole

with two isotherms and isochores. The efficiency of the engine is calculated by using

the work is done and heat absorbed during the cycle. As it is customary to compare the

efficiency of any engine with the Carnot engine, we have compared our results with the

corresponding Carnot efficiency. Detailed analysis of the dependence of efficiency η

on S2 (entropy of LBH phase), P1 (pressure in SBH phase) and β (monopole charge)

are done. Among the several observations, we emphasize that the increase in entropy

difference between the SBH phase (S1) and LBH phase (S2) increases the efficiency of

the engine. We have made a successful attempt to improve the efficiency of the engine
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by adding a quintessence field. The heat engine efficiency depends on the quintessence

parameters ωq and a. We have presented a detailed discussion on the improvement of

engine efficiency with quintessence parameters. The quintessence parameter a increases

the efficiency, and ωq decreases the efficiency η . We observed a drop in the efficiency η

in the quintessence range −1 < ωq <−1/3. This happens because quintessence matter

density (ρq) decreases with an increase in ωq value. It is worth mentioning that acceler-

ated expansion of the universe takes place in this quintessence range of ωq. And in this

range, the presence of quintessence matter around the black hole improves the efficiency

of the heat engine. The effect of intensity of quintessential matter field on the heat en-

gine efficiency of regular black holes underlines the importance of quintessence in black

hole thermodynamics. This result is promising when one considers the quintessence as

a viable model for dark energy. We expect that our study in this regard will shed light

on the thermodynamics of quintessential AdS black holes.
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Chapter 7

Summary and Future Work

“And I cherish more than anything else the Analogies, my most trustworthy mas-

ters. They know all the secrets of Nature, and they ought to be least neglected in

Geometry” - Johannes Kepler

This thesis focuses on aspects of black hole thermodynamics in anti-de Sitter space-

time. Black hole thermodynamics is a subject that helps a theoretical physicist to unveil

the deep connection between gravitation, quantum theory, and statistical physics. The

subject is mainly motivated by the emergent nature of spacetime. The gravitational field

does not possess any fundamental degrees of freedom, rather emerges as an effective

theory of an underlying many-body system. These ideas are well understood in anti-

de Sitter (AdS) space, where AdS-gravity finds a dual conformal field theoretic (CFT)

description on its boundary. The AdS/CFT correspondence appears to be an outcome

of spacetime’s emergent nature from a non-gravitational condensed matter system. We

were motivated by the emergent gravity approach proposed by T. Jacobson and several

others, based on the connection between horizon thermodynamics and gravity. This

approach does not invoke any quantum gravity theory and relies on Boltzmann’s argu-

ment “ If you can heat it, it should have a microstructure”. So the existence of horizon

temperature directly implies ‘atoms of spacetime’ at the microstructure. But as in hy-

drodynamics, gravity is very immune to these ‘atoms of spacetime.’ Inspired by these
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advances, we have focused our studies on black hole thermodynamics, mainly the van

der Waals fluid analogy of the horizon.

The thermodynamics of black holes in AdS spacetime was devoid of the consistency

between the first law and Smarr relation. The required consistency is brought by treat-

ing the cosmological constant (Λ) as a thermodynamical variable, pressure. With the

identification, the black hole phase space is extended with the PdV term in the first-law.

This has to lead to a new arena of black hole chemistry. In the extended phase space,

the asymptotically AdS black holes undergo a vdW like first-order phase transition be-

tween a small black hole (SBH) and large black hole phase (LBH). Subsequently, an

enormous amount of research conducted in phase transitions of asymptotically-AdS

black holes found that all belong to the same universality class of the vdW system. In

addition, we have also analyzed other manifestations of vdW fluid analogy, including

Joule-Thomson expansion and heat engine in asymptotically AdS black holes.

In the first chapter of the thesis, a brief history of theoretical physics is presented; also,

the properties of AdS space and its CFT correspondence is introduced. In the second

chapter, we have reviewed the laws of black hole thermodynamics in light of Komar

Integrals and charge conservations in gravity. In the later parts of the chapter, an ex-

tended version of thermodynamics in the AdS space is analyzed using the concept of

black hole enthalpy.

In chapter 3, we have studied the thermodynamics of charged AdS black holes in the

presence of a global monopole. A detailed analysis of critical behavior in the black hole

is carried out. The classical van der Waals analogy is drawn from P−v isotherms which

is followed by Gibbs free energy study and coexistence curves. The critical exponents

calculated, matches with the universality class. In the last section of the chapter, we

have included the study of Joule-Thomson (JT) expansion in the presence of a global

monopole. During the JT expansion, the mass remains constant, so it is also called the

isenthalpic process. This process will result in either heating or cooling in the final

phase. We studied the effect of the global monopole parameter on the inversion tem-
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perature and isenthalpic curves. The obtained result is compared with Joule–Thomson

expansion of van der Waals fluid and the similarities were noted. It is observed that the

presence of a global monopole has a drastic effect on the JT coefficient.

In chapter 4, we have extended our studies to regular Bardeen black holes. The

stable SBH and LBH phase, metastable superheated SBH and supercooled LBH phase,

and supercritical phases are analyzed deeply through numerical techniques. Further,

using the novel Ruppeiner geometry, we have studied the microscopic interactions in

the stable phases. A difference in the microscopic interaction is found in the SBH

phase. There exists a repulsive interaction in the SBH phase during the low-temperature

regime.

The study of black hole thermodynamics of regular black holes is continued in

chapter 5 with an additional quintessence field. The critical behavior and effect of the

quintessence parameter is scrutinized. It is observed that the quintessence parameter

shifts the transition to the lower entropy values. In the second part of the chapter, the

concept of thermodynamic geometry is applied. Using the Ruppeiner, Weinhold, and

Quevedo geometry, the curvature scalar divergence is analyzed. It is found that in the

quintessence black hole case, the divergence in the curvature scalar of Ruppeiner and

Weinhold metric does not represent the phase transition. The Quevedo metric is more

suitable here as the curvature scalar divergence matches with the specific heat studies.

In chapter 6, taking the vdW analogy further, a black hole heat engine is constructed

in a regular Bardeen black hole. The efficiency of the engine is calculated using the

work done and heat absorbed during the process. In the final sections of the chapter,

the heat engine efficiency is improved by adding a quintessence field. Then the ana-

lytical expression for the efficiency is calculated in terms of quintessence parameters.

Besides the natural extension of black hole thermodynamics, the study of a heat engine

is significant in the holographic picture of spacetime. The heat cycles in bulk trigger a

renormalization flow in the dual field theory. Thus, the holographic heat engine fills the

missing link between extended thermodynamics and holography.
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Besides the works mentioned in the thesis chapters, we have done some work on pho-

ton orbits and Reentrant phase transitions (RPT) in AdS black holes. In photon orbit

studies on regular black holes, we found that the photon orbit radius and minimum im-

pact parameter have some signatures of the phase transition in extended phase space.

Our study hints at a relationship between gravity and thermodynamics (Naveena Ku-

mara et al. 2020a, Hegde et al. 2020). We have also worked out Reentrant phase

transitions in Born-Infeld AdS black holes (Naveena Kumara et al. 2021). RPT is

another fascinating feature observed in nicotine/water mixture, nematic/smectic liquid

crystals, etc., where a monotonic change in the thermodynamic variable results in two

(or more) phases, with the same initial and final macrostate. A similar kind of RPT

occurs in black holes between Large /Intermediate/Large black hole phases. The mo-

tivation behind that was to find out the underlying micro-molecules behind this exotic

phenomenon using Ruppeiner’s phenomenological approach. Apart from these works,

we have recently written an article on the BSW (Banados, Silk, and West) mechanism

for rotating black holes with an anisotropic matter field (Ahmed Rizwan et al. 2020a).

It is shown that a rotating black hole can act as a particle accelerator, which appeared as

a possible candidate for highly energetic astrophysical phenomena like active galactic

nuclei, gamma-ray bursts, and ultrahigh-energy cosmic rays.

Outlook and Future Directions

Recent progress in astrophysical research from LIGO/Virgo collaborations and event

horizon telescope (EHT) has inspired us to search signatures for black hole thermody-

namics from the observational data. During the ring-down phase of binary black hole

mergers, a perturbed black hole emits gravitational waves in the form of quasinormal

radiation. There exists a connection between photon orbit radius measured from EHT

and quasinormal modes observed in GW events. One can find a relation by calculat-

ing the Lyapunov exponent associated with divergence of radial velocity and imaginary

parts of QNMs. Interestingly, the Lyapunov exponent comes in quantum gravity theo-

ries as the out-of-time ordered correlators which measure the amount of chaos. There

are several ways to extend our work,

1. An immediate and interesting extension would be the study of the vdW like be-
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havior and other manifestations of the analogy in light of gauge/gravity duality.

Mainly to ponder the reasons behind the phase transitions in black holes on the

grounds of quantum theories of gravity.

2. Another possibility is to further extend the vdW-like fluid analogy of black holes

to other exotic everyday phenomena. That can establish a new link between black

hole physics and many-body systems.

3. Another direction is the thermodynamics in de Sitter spacetime, which is more

sensible in cosmology. Holographic heat engine and Joule-Thomson expansion

can find a new meaning in the de-Sitter patch of the universe.

4. Finally, with the availability of data from Ligo/Virgo and EHT, I hope to link these

observational aspects with quantum gravity theories. In particular, black hole

shadow, quasinormal modes, and echoes have a deep connection with AdS/CFT

correspondence. One of the directions in this regard is through the Lyapunov ex-

ponent. Holographic dual operator for out-of-time-ordered-correlator can answer

at least some questions.
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Appendix A

Differential Forms

A differential p−form is an antisymmetric (0, p) tensor. In an n−dimensional space-

time, there are n!
p!(n−p)! linearly independent p−forms. Meaning in 4−dimensions, there

can be one independent 0−form and four 1−forms. The advantage of writing in the

language of differential form is that it can be integrated and differentiated in an elegant

way. From p−form A and q−form B, we can form a p+ q form by taking the wedge

product A∧B, which is an antisymmetric tensor product.

(A∧B)
µ1...µp+q

=
(p+q)!

p!q!
A[µ1...µpBµp+1...µp+q]. (A.1)

In case of wedge product of two 1-forms,

(A∧B)
µν

= AµBν −AνBµ = 2A[µBν ]. (A.2)

The exterior derivative turns a p−form into p+1 form by antisymmetrised partial dif-

ferentiation and it is a tensor.

(dA)
µ1...µp+1

= (p+1)∂[µ1Aµ2...µp+1]. (A.3)

The exterior derivative of a 0−form is simply a gradient,

(dφ)
µ
= ∂µφ . (A.4)
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For product of a p−form A and q−form B, exterior derivative is given by

d (A∧B) = (dA)∧B+(−1)p A∧ (dB) . (A.5)

Another operation on an n−dimensional manifold is the Hodge duality, done using a

Hodge dual star operator which maps a p−form to a (n− p)form,

(∗A)µ1...µn−p =
1
p!

ε
ν1...νp

µ1...µn−p Aν1...νp, (A.6)

where ε is the Levi-Civita tensor, which is obtained from Levi-Civita symbol ε̃ . We can

obtain back the original form by applying Hodge star operator twice,

∗∗A = (−1)s+p(n−p)A, (A.7)

where s is the number of negative eigen values of the metric, for Lorentzian and Eu-

clidean signature, s is −1 and +1 respectively. The Levi-Civita symbol is defined as,

ε̃µ1µ2...µn =


+1, if µ1µ2 . . .µn is an even permutation of 1 . . .(n−1)

−1, if µ1µ2 . . .µn is an odd permutation of 1 . . .(n−1)

0, otherwise

(A.8)

The Levi-Civita symbol is an antisymmetric object which does not transform like a

tensor but transforms very close to a tensor; such objects often are called tensor den-

sities. Nevertheless, tensor densities can be converted to a tensor by multiplying with

|g|w/2 where w is the weight of the density. The weight is the power of Jacobian in

the transformation equation. Note that the determinant of a metric is a tensor density

with weight −2. Hence multiplying the Levi-Civita symbol of weight 1 with |g|1/2 can

promote it to a tensor. Levi-Civita tensor is given by,

εµ1µ2...µn =
√
|g|ε̃µ1µ2...µn. (A.9)
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In Euclidean spacetime, Levi-Civita symbol is not not different from tensor as
√
|g|= 1.

We can also show that the Levi-Civita tensor is infact the volume element.

√
|g|dnx =

√
|g|dx0∧·· ·∧dxn−1 =

1
n!

εµ1...µndxµ1 ∧·· ·∧dxµn. (A.10)

ie, the integral of function f (x) in a n−dimensional manifold can be written in abstract

form as, ∫
f (x)

√
|g|dxn =

∫
f (x)ε. (A.11)

Raising and lowering of indices in the Levi-Civita tensor requires a metric tensor.

Through the Levi-Civita tensor, Hodge dual has a dependency on the metric. The

contraction of indices on Levi-Civita tensor gives the antisymmetrised product of Kro-

necker delta. Contracting p−indices,

ε
µ1µ2...µpα1...αn−pεµ1µ2...µpβ1...βn−p = (−1)s p!(n− p)!δ [α1

β1
. . .δ

αn−p]

βn−p
. (A.12)

If you want to contract all the indices except one, p = n−1, then

ε
µ1µ2...µpα

εµ1µ2...µpβ = (−1)s (n−1)!δ α

β
. (A.13)

In 3−dimensional Eucleadean space, Hodge dual of a wedge product of two 1−forms

turns out to be a normal cross product, giving a 1−form.

∗ (A∧B) = ε
jk

i AiBk. (A.14)

This is a peculiar feature in 3−dimensions; two dual vectors can be identified with a

third dual vector.
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Appendix B

Stoke’s Theorem

The form notation presents an elegant way of deriving Stoke’s theorem in coordinate

free notation. First step is to notice that a (n−1)-form ω can be written as Hodge dual

of 1−form V in an n−dimensional manifold.

ω = ∗V. (B.1)

This can be written in component form using definition (Appendix A.6),

ωµ1...µn−1 = (∗V )
µ1...µn−1

,

= ε
ν

µ1...µn−1
Vν .

The exterior derivative of (n−1)−form ω , dω is a n−form.

(dω)
λ µ1...µn−1

= (d ∗V )
λ µ1...µn−1

,

= n∇[λ

(
ε|ν |µ1...µn−1]V

ν
)
,

= nεν [µ1...µn−1∇λ ]V
ν . (B.2)
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Any n−form by definition can be written as a function f (x) times ε or Hodge dual of

f (x). ie,

dω =∗ f (x) = f (x)ε,

or ∗dω =∗∗ f (x) = f (x). (B.3)

Taking dual on both sides of equation (AppendixB.2),

∗(dω)
λ µ1...µn−1

= ∗
(
nεν [µ1...µn−1∇λ ]V

ν
)
,

=
n
n!

ε
λ µ1...µn−1

(
εν [µ1...µn−1∇λ ]V

ν
)
,

=
1

(n−1)!
(−1)s (n−1)!δ λ

ν ∇λV ν = (−1)s
∇νV ν . (B.4)

In the final step, we have used property of Levi-Civita symbol on contraction of indices.

Now we can write,

dω = ∗((−1)s
∇νV ν) = ∇νV ν

√
|g|dnx. (B.5)

We know from vector calculus that the divergence of a vector can be written as,

∇νV ν =
1√
|g|

∂ν

(√
|g|V ν

)
. (B.6)

Putting things together, left hand side of Stoke’s theorem becomes,

∫
M

dω =
∫

M
dnx∂ν

(√
|g|V ν

)
. (B.7)

The right hand side of Stoke’s theorem involves the induced volume on the boundary.

The volume on the boundary or on the particular hypersurface is written in terms of

induced metric γi j on the hypersurface,

ε̂ =
√
|γ|dn−1y. (B.8)
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Thus r.h.s of Stoke’s theorem becomes,

∫
∂M

ω =
∫

∂M
dn−1y

√
|γ|nνV ν . (B.9)

where y is the coordinate on the boundary ∂M and nν is the unit normal to ∂M. When

a hypersurface is the boundary of a certain region, nν can be pointing inwards or out-

wards. If the boundary is time-like (space-like), then unit normal nν should be chosen

to be pointing inward(outward). Hence, Stoke’s theorem takes the form,

∫
M

dnx∂ν

(√
|g|V ν

)
=
∫

∂M
dn−1y

√
|γ|nνV ν . (B.10)
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Appendix C

Komar Integrals in Various Notations

The expression for conserved charge Q is written in different forms,

Q =−
∫

R
d (∗J) =−

∫
Σ

∗J. (C.1)

Or, Q =−
∫

R
dnx
√
|g|∇µJµ =−

∫
Σ

dn−1y
√
|γ|nµJµ . (C.2)

Formula in terms of Killing vector

−
∫

Σ

dn−1y
√
|γ|nµJµ =−

∫
Σ

dn−1y
√
|γ|nµRµν

ξν , (C.3)

=−
∫

∂Σ

d2x
√
|α|nµσν∇

µ
ξ

ν . (C.4)

In more sophisticated notation,

Q =
∫

Σ

dSµRµν
ξν =

∫
∂Σ

dSµν∇
µ

ξ
ν , (C.5)

where dSa = nµ

√
|γ|dn−1y and dSµν =

(
nµσν −nνσµ

)√
|α|d2x. In differential form,

Q =−
∫

Σ

∗J =−
∫

Σ

(d ∗dξ ) =−
∫

∂Σ

∗dξ . (C.6)

Sometimes also written as,

Q =−
∫

∂Σ

εαβ µν∇
µ

ξ
ν . (C.7)
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Appendix D

Komar Integral for Schwarzschild

Black Hole

The unit normal to the hypersurface (Σ) nµ and to the boundary of hypersuface ∂Σ is

very similar to RN- black hole case discussed earlier.

nµ =

(
−

√(
1− 2GM

r

)
,0,0,0

)
and σµ =

0,
1√(

1− 2GM
r

) ,0,0
 . (D.1)

Schwarzschild spacetime is static and stationary, hence killing vector is time-like, ξ µ =

∂t = (1,0,0,0). Now we can evaluate integral for Komar mass,

MKomar =
1

4πG

∫
∂Σ

d2x
√
|α|nµσν∇

µ
ξ

ν . (D.2)

Where,

nµσν∇
µ

ξ
ν = n0σ1∇

0
ξ

1 =−∇
0
ξ

1. (D.3)
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And,

∇
0
ξ

1 = g00
∇0ξ

1 = g00
(

∂0ξ
1 +Γ

1
0λ

ξ
λ

)
, (D.4)

= g00
Γ

1
00ξ

0 =− 1(
1− 2GM

r

)GM
r2

(
1− 2GM

r

)
, (D.5)

=−GM
r2 . (D.6)

Substituting these things in equation(D.2), we get

MKomar =
1

4πG

∫
s2

dθdφr2 sinθ

(
GM
r2

)
,

=
1

4πG
4π(GM) = M. (D.7)
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Appendix E

Surface Gravity and Killing Horizon

From Frobenius theorem, any vector~V is hypersurface orthogonal, if~V is orthogonal to

every tangent vectors on the hypersurface.

V[µ∂νVα] = 0. (E.1)

Applying it for Killing vector field ξµ on the horizon,

ξ[µ∇νξα] = 0,

=
1
3
(
ξµ∇[νξα]−ξν∇[µξα]+ξα∇[µξν ]

)
,

=
1
3
(
ξµ∇νξα −ξν∇µξα +ξα∇[µξν ]

)
,

=⇒ −2ξ[µ∇ν ]ξα = ξα∇[µξν ] = ξα∇µξν . (E.2)

In last step, we have used Killing equation and definition of antisymmetric tensor,

∇[µξν ] =
1
2
(
∇µξν −∇νξµ

)
= ∇µξν .

We have obtained the relation,

ξα∇µξν =−2ξ[µ∇ν ]ξα . (E.3)
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Multiply equation (AppendixE.3) by antisymmetric ∇µξ ν tensor which dissolves the

antisymmetric part in the r.h.s,

(∇µ
ξ

ν)ξα

(
∇µξν

)
=−2(∇µ

ξ
ν)ξ[µ∇ν ]ξα ,

=−2(∇µ
ξ

ν)ξµ∇νξα ,

=−2
(
ξµ∇

µ
ξ

ν
)
(∇νξα) ,

=−2κξ
ν
∇νξα =−2κ

2
ξα . (E.4)

We observe the expressions for the surface gravity κ as,

κ
2 =−1

2
(∇µ

ξ
ν)
(
∇µξν

)
. (E.5)
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Appendix F

Bardeen Black Hole with a

Quintessence

We start with a static spherically symmetric metric ansatz in four dimensions such that,

ds2 =−
(

1− 2m(r)
r

)
dt2 +

dr2(
1− 2m(r)

r

) + r2 (dθ
2 + sin2

θdφ
2) . (F.1)

The field equation can be written as,

Gµν +Λgµν = T (q)
µν +T (NL)

µν . (F.2)

where Gµν = Rµν − 1
2gµνR, and gµν are the Einstein field tensor and the metric tensor,

respectively. Rµν and R are, respectively, the Ricci tensor and Ricci scalar. Whereas,

T (q)
µν , and T (NL)

µν are, respectively, the energy-momentum tensors for quintessence field

and the nonlinear electrodynamics. The independent components of the field equations

are written as,

2m′(r)
r2 −Λ = T t

t
(q)

+T t
t
(NL)

, (F.3)

m′′(r)
r
−Λ = T θ

θ

(q)
+T θ

θ

(NL)
,
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where,

T t
t
(q)

= T r
r
(q) = ρq =

3aωq

r3(ωq+1)
,

T t
t
(NL)

= T r
r
(NL) = 2L(r) =

6Mβ 2

(r2 +β 2)
5/2 . (F.4)

T θ
θ

(q)
= T φ

φ

(q)
= −1

2
ρq
(
3ωq +1

)
=−a

2
3ωq

(
3ωq +1

)
r3(ωq+1)

, (F.5)

T θ
θ

(NL)
= T φ

φ

(NL)
= 2

(
L(r)− ∂L

∂ r

(
∂F

∂ r

)−1

Fθφ Fθφ

)
=

3Mβ 2 (3r2−2β 2)
(r2 +β 2)

7/2 .

Substituting for T r
r
(q) and T r

r
(NL), we have

2m′(r)
r2 −Λ =

3aωq

r3(ωq+1)
+

6Mβ 2

(r2 +β 2)
5/2 ,

m′(r) =
Λ r2

2
+

a
2

3ωq

r(3ωq+1)
+

3Mβ 2 r2

(r2 +β 2)
5/2 . (F.6)

Integrating the above equation, we get

m(r) =
∫ r

0
dr

Λ r2

2
+
∫ r

0
dr

a
2

3ωq

r(3ωq+1)
+
∫ r

0
dr

3Mβ 2 r2

(r2 +β 2)
5/2 ,

m(r) =
Λ r3

6
+

a
2

1

r(3ωq+1)
+

Mr2

(r2 +β 2)
3/2 . (F.7)

Therefore, the metric function reads

f (r) = 1− 2m(r)
r

= 1− 2M r2

(r2 +β 2)
3/2 −

a

r(3ωq+1)
− Λ r2

3
. (F.8)

This way, we can get the required solution for the regular Bardeen black hole with a

quintessence.
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