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NOTATIONS

V (G) → Vertex set of G
E(G) → Edge set of G
n → Order of graph G or |V (G)|
m → Size of G or |E(G)|
bxc → Largest integer at most x
dxe → Smallest integer at least x
N(u) → Open neighborhood of vertex u
N [u] → Closed neighborhood of vertex u
δ(G) → Minimum degree of G
∆(G) → Maximum degree of G
dG(u, v) → Distance between pair of vertices u and v in G
deg(v) → Degree of vertex v
rad(G) → Radius of G
diam(G) → Diameter of G
ecc(v) → Eccentricity of vertex v
α(G) → Independence number of G
I(S) → Influence of set S
ρ(G) → Packing number of G
γ(G) → Domination number of G
E → The class of all Efficiently dominatable graphs
F (G) → Efficient Domination number of G
Kn → Complete graph on n vertices
Kr, s → Complete Bipartite graph with partition (V1, V2),

where |V1| = r and |V2| = s
Pn → Path on n vertices
Cn → Cycle on n vertices
W (T ) → Set of all weak Supports of tree T
S(T ) → Set of all strong supports of tree T
L(T ) → Set of all leaf nodes of tree T
G− v → Induced subgraph of G obtained by deleting a vertex v ∈ V (G)
G− e → Induced subgraph of G obtained by deleting an edge e ∈ E(G)
G+ e → Induced subgraph of G obtained by adding an edge e ∈ E(G)
G−v → {G : G ∈ E and G− v ∈ E , for all v ∈ V (G)}
G−e → {G : G ∈ E and G− e ∈ E , for all e ∈ E(G)}
G+e → {G : G ∈ E and G+ e ∈ E , for all e ∈ E(G)}
G�H → Cartesian product of graphs G and H
G(v) → G-layer with respect to v in G�H
pG(S) → Projection of set S onto G in G�H





Acronyms

EDS → Efficient Dominating Set
PWDED → Pairwise Disjoint Efficient Dominating Set
WS → Weak Support
SS → Strong Support
UVR → Unchanging Vertex Removal
CVR → Changing Vertex Removal
UER → Unchanging Edge Removal
CER → Changing Edge Removal
UEA → Unchanging Edge Addition
CEA → Changing Edge Addition
UV RE → UV R ∩ G−v
CV RE → CV R ∩ G−v
UERE → UER ∩ G−e
CERE → CER ∩ G−e
UEAE → UEA ∩ G+e

CEAE → CEA ∩ G+e





ABSTRACT OF THE THESIS

In a graph G = (V,E), every vertex v ∈ V (G) dominates itself and its neighbors.

A set S ⊆ V (G) is a dominating set of G if each vertex in V (G) is either in S or has

a neighbor in S. The domination number of G, denoted by γ(G), is the cardinality of

a minimum dominating set of G. It is noted that if S is a dominating set, then the

vertices in V − S may have more than one neighbor in S. Imposing the additional

constraint on a dominating set S that, each vertex in V must have exactly one neighbor

in S (inclusive of vertices in S), leads to the notion of efficient domination in graphs.

A dominating set S ⊆ V (G) is an efficient dominating set (EDS) of G, if each

vertex in V (G) is either in S or has exactly one neighbor in S. A graph G is effi-

ciently dominatable, if it has an EDS. If S is an EDS of G, then S is also a minimum

dominating set of G, but not conversely. Thus, all efficient dominating sets have the

same cardinality, namely, γ(G). Though an EDS of G has the same cardinality as its

domination number, it is noted that for a given domination number, the properties of

a graph which does not contain an EDS need not be true for an efficiently dominat-

able graph. This necessitates an exclusive study of the class of efficiently dominatable

graphs. Though there is a significant amount of study in the literature related to

efficient domination, both from graph theoretical as well as algorithmic perspective, to

the best of our knowledge, it has not been much explored relative to the other domi-

nation parameters. Further, the concept of efficient domination also finds applications

in diverse fields like coding theory, parallel computing, wireless ad hoc networks, etc.

Motivated by the applications of efficient domination and the research gap identified

in the literature, interest is shown in this thesis to study the concept of efficient dom-

ination for an arbitrary graph and for a particular type of graph product, namely

cartesian product.

The contributions to this thesis are organized into three chapters, namely Chapter

3, 4 and 5. Chapter 3 deals with the study on Efficient domination in general/arbitrary

graphs. Some basic results on efficient domination in general graphs including some

improved bounds on domination number, efficient domination in trees and some special

classes of graphs are discussed. Further, the structural properties of graphs possessing

pairwise disjoint efficient dominating sets are studied along with an insight into the

applications of such structures in ad hoc and sensor networks.
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Chapter 4 focuses on the concept of criticality in the class of efficiently dominatable

graphs, where the concept of criticality in general, deals with the study of the behaviour

of a graph with respect to a graph parameter, upon the removal of a vertex or a set

of vertices, removal or addition of one or more edges. The study in this chapter

is restricted to the removal of a single vertex and removal or addition of a single

edge, at a time. Based on the research gap identified in the literature, fascinated by

the applications of the concept of criticality in the design of fault-tolerant networks

and its significance in graph theory, the study is initiated with respect to efficient

domination. A vertex whose removal from G alters γ(G) is referred to as a critical

vertex. Similarly, an edge, whose removal from G or whose addition between a pair

of non-adjacent vertices in G alters γ(G) is a critical edge. The collection of such

vertices (or edges) is a vertex (or edge) critical set. In this chapter, an attempt is

made to explore the properties of critical vertices, critical edges with respect to both

removal and addition. The vertex critical sets, edge critical sets and six classes of

graphs arising thereof are characterized. Finally, the relationship between all these

classes is identified and discussed.

Finally, Chapter 5 deals with the study of efficient domination in the cartesian

product of graphs. Here, the structural properties of the product in terms of its fac-

tors are discussed. The initial focus is on the product of two well-known graphs,

followed by the product of an arbitrary graph G with a well-known graph. Further,

the class of efficiently dominatable product graphs G�K1, p and G�Kp, for some pos-

itive integer p and an arbitrary graph G are characterized. The problem of deciding

whether or not a graph is efficiently dominatable is NP-complete and so also, for the

the products mentioned above. So, an attempt is made to design exact exponential

time algorithms, to determine whether the products are efficiently dominatable or not.

The study is also extended to Hamming graphs.

Keywords: Efficient domination, Efficient domination number, 2-packing, Inde-

pendent perfect domination, perfect 1-codes, perfect 1-domination, Efficiently

dominatable trees, Changing efficient domination, Unchanging efficient domina-

tion, Cartesian product, Hamming graphs.

ii



Contents

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1
1.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Efficient Domination in Graphs . . . . . . . . . . . . . . . . . . . . 9

1.3.1 A Brief Overview . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Significance of Efficient Domination . . . . . . . . . . . . . . 12

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 16

2 Literature Survey 19
2.1 Efficient Domination in graphs . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Prior work on Efficient Domination . . . . . . . . . . . . . . 19
2.1.2 Prior work on Variants of Efficient Domination . . . . . . . 25

2.2 Efficient Domination and Graph Products . . . . . . . . . . . . . . 27
2.3 Algorithmic aspects of Efficient Domination . . . . . . . . . . . . . 29
2.4 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Efficient Domination in Graphs 35
3.1 Efficient Domination in general graphs . . . . . . . . . . . . . . . . 35

3.1.1 Bounds on Domination number of Efficiently Dominatable
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Existence of Efficiently Dominatable graphs with domina-
tion number k, for any integer k > 0 . . . . . . . . . . . . . 42

3.1.3 Graphs of diameter three . . . . . . . . . . . . . . . . . . . . 43
3.1.4 Graphs having at least two pairwise disjoint efficient domi-

nating sets and Applications . . . . . . . . . . . . . . . . . . 44

iii



3.2 Efficient domination in Trees . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 Results on arbitrary Trees . . . . . . . . . . . . . . . . . . . 51
3.2.2 Trees with no strong support . . . . . . . . . . . . . . . . . 54
3.2.3 Some Classes of Efficiently Dominatable Trees . . . . . . . . 56

3.3 Efficient Domination in some special graphs . . . . . . . . . . . . . 63
3.3.1 Efficient Domination in Ciliates . . . . . . . . . . . . . . . . 63
3.3.2 Efficient Domination in Join, One-point union and Corona

of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Changing and Unchanging Efficient Domination in graphs 69
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Vertex removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Results on some well-known graphs . . . . . . . . . . . . . . 74
4.2.2 Properties of Critical vertices . . . . . . . . . . . . . . . . . 77
4.2.3 The UV RE Class . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Edge Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Results on some well-known graphs . . . . . . . . . . . . . . 91
4.3.2 Properties of Critical edges . . . . . . . . . . . . . . . . . . . 93
4.3.3 Efficiently Dominatable graphs belonging to the set G−e . . . 96

4.4 Edge Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.1 Results on some well-known graphs . . . . . . . . . . . . . . 101
4.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.3 Changing and Unchanging domination in graphs belonging

to the class G+e . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.4 The Classes of graph G /∈ G+e . . . . . . . . . . . . . . . . . 108

4.5 Relationship among the classes . . . . . . . . . . . . . . . . . . . . 110
4.5.1 Results on some well-known graphs . . . . . . . . . . . . . . 110
4.5.2 Representation of different classes . . . . . . . . . . . . . . . 112

5 Efficient Domination in Cartesian Product of Graphs 119
5.1 Efficient Domination in the cartesian product of two arbitrary graphs120
5.2 Efficient Domination in the cartesian product of some well-known

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Efficient Domination in the cartesian Product G�K1, p . . . . . . . 150

5.3.1 An Exact Exponential time Algorithm to find an
F (G�K1, p)-set . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4 Efficient Domination in the cartesian Product G�Kp . . . . . . . . 166

iv



5.4.1 An Exact Exponential time Algorithm to identify an F (G�Kp)-
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4.2 Some special classes of graphs G for which G�Kp ∈ E . . . 175
5.5 Efficient Domination in the cartesian Product �l

i=1Kni
. . . . . . . 176

6 Summary and Conclusion 181
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.3 Scope for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 190
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
List of Publications/Conference papers . . . . . . . . . . . . . . . . . . . 205

v



vi



List of Figures

1.1 An efficiently dominatable graph . . . . . . . . . . . . . . . . . . . 10

1.2 A graph which is not efficiently dominatable . . . . . . . . . . . . . 10

2.1 Graphs which are not efficiently dominatable . . . . . . . . . . . . . 24

3.1 Graphs belonging to the family A . . . . . . . . . . . . . . . . . . . 37

3.2 Graphs of order 3 or 5 with δ(G) ≥ 2 and γ(G) ≤
⌊n

2

⌋
. . . . . . . . 38

3.3 Some graphs in S(H) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 An efficiently dominatable graph with γ(G) =
n

1 + ∆(G)
, but not

regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 A graph with three pairwise disjoint efficient dominating sets . . . . 45

3.6 A graph with r + 1 pairwise disjoint efficient dominating sets . . . . 47

3.7 Efficiently dominatable tree in L0 . . . . . . . . . . . . . . . . . . . 57

3.8 Efficiently dominatable tree in L1 . . . . . . . . . . . . . . . . . . . 57

3.9 Efficiently dominatable tree in L2 . . . . . . . . . . . . . . . . . . . 57

3.10 Efficiently dominatable Spiders . . . . . . . . . . . . . . . . . . . . 59

3.11 Structure of a tree of diameter three . . . . . . . . . . . . . . . . . 60

3.12 Efficiently dominatable tree of diameter three . . . . . . . . . . . . 61

3.13 Structure of a tree of diameter four . . . . . . . . . . . . . . . . . . 61

3.14 Efficiently dominatable trees of diameter four . . . . . . . . . . . . 62

3.15 Structure of a tree of diameter five . . . . . . . . . . . . . . . . . . 63

3.16 Efficiently dominatable trees of diameter five . . . . . . . . . . . . 63

3.17 Ciliate C4,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.18 Illustration for the operations join, one-point union and corona . . . 67

vii



4.1 A graph G ∈ E with S = {2, 6} as its EDS; The set {1, 3, 6} is

obtained as an EDS of G− {2} using operation O1 . . . . . . . . . 85

4.2 A graph G ∈ E with S = {1, 6, 7} as its EDS; The set S ′ = {4, 5}

is obtained as an EDS of G− {1} using operation O2 . . . . . . . . 85

4.3 A graph G ∈ E with S = {2, 6, 9} as its EDS; The set S ′ =

{1, 3, 4, 7, 9} is got as an EDS of G− {2} using O3 . . . . . . . . . . 86

4.4 S ′ = {3, 6, 10} is got as an EDS ofG−{1} usingO3 (Replacing every

vertex of S − {1} by exactly one its neighbors, where S = {1, 5, 8}) 86

4.5 An efficiently dominatable tree with an EDS S = {u, v} . . . . . . . 109

4.6 The classes of changing and unchanging efficiently dominatable graphs113

4.7 Representations of Regions . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 A Graph G ∈ R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 The Structure of G�H and G(vj) and H(ui) layers . . . . . . . . . . 120

5.2 K3�K1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 K1, 3�K1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 P5�K1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 P6�K1, 2, when l0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 P6�K1, 2 - An example for Subcase(i) . . . . . . . . . . . . . . . . 133

5.7 P6�K1, 2 - An example for Subcase(ii) . . . . . . . . . . . . . . . . 133

5.8 P6�K1, 2 - An example for Subcase(iii) . . . . . . . . . . . . . . . . 133

5.9 C5�K1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.10 K4�K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.11 P4�K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.12 C4�K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.13 V (G) = N [S0] ∪ S1 ∪ · · · ∪ Sp (disjoint union) . . . . . . . . . . . . 154

5.14 G ∈ E whenever G�K1, p ∈ E . . . . . . . . . . . . . . . . . . . . . 155

5.15 G ∈ E whenever G�K1, p ∈ E . . . . . . . . . . . . . . . . . . . . . 155

5.16 The Block representing K3�K3 . . . . . . . . . . . . . . . . . . . . 177

5.17 An Independent set of K3�K3�K3 (Encircled vertices) . . . . . . . 179

5.18 An Efficient dominating set of K3�K3�K3�K3 (Encircled vertices) 179

viii



List of Tables

3.1 Efficiently dominatable trees of order n (n ≤ 7) with no strong

support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 A Comparision of properties possessed by any arbitrary graph and

a graph G ∈ E with respect to Vertex Removal . . . . . . . . . . . 115

4.2 A Comparision of properties possessed by any arbitrary graph and

a graph G ∈ E with respect to Edge Removal . . . . . . . . . . . . 116

4.3 A Comparision of properties possessed by any arbitrary graph and

a graph G ∈ E with respect to Edge Addition . . . . . . . . . . . . 116

ix



x



Chapter 1

Introduction

1.1 Brief History

The study of graphs arose with various recreational problems, such as problem of

Königsberg bridges and Knight’s tour (Biggs et al., 1986). In 1735, the renowned

Swiss Mathematician Leonhard Euler settled the famous Königsberg bridge prob-

lem, which has perplexed scholars for many years. His method of solution to the

problem laid the foundation for an entirely new branch of Mathematics namely

“Graph Theory”. The origin of Graph Theory is well recorded in Biggs et al.

(1986). This branch of mathematics has developed into a substantial body of

knowledge with a variety of applications in diverse fields such as Physics, Chem-

istry, Economics, Psychology, Business, Sociology, Anthropology, Linguistics and

Geography. Hence, Graph theory is considered to be one of the multi-faceted

branches of Mathematics, rich in interesting research problems and applications.

Further, a Graph is one of the useful tools to model and solve problems arising in

Computer Science and its allied areas, especially those frequently experienced in

networks. The design and analysis of interconnection networks is much inspired

by the ongoing advancements in technologies. Computer scientists and Engineers

from other fields commonly use graphs to model the topological structure of any

interconnection network.

Among the various topics studied in Graph Theory, the concept of domination

has its historical roots dating back to 1862, when the chess master C.F de Jaenisch

1



studied the problem of determining the minimum number of queens that can be

placed on a chessboard so that all squares are either attacked by a queen or

are occupied by a queen. This is equivalent to the problem of dominating the

squares of a chessboard. The evolution and the subsequent development of this

fertile area of domination theory from the chess board problem is surveyed in Ore

(1962); Haynes et al. (1998) and Berge (2001). The theory of domination finds

application in diverse fields, of which facility location problems, coding theory,

computer communication networks, biological networks and social networks are a

few.

In the evolution of domination theory, one of the main reasons that cap-

tivated a wide research community is the multitude of variations of domina-

tion. Numerous types of domination have been defined and studied by imposing

additional constraints on a dominating set. Each type of domination so obtained

meets a specific purpose in real time applications. Bacsó and Tuza (1990) put

forward the following problem: “Let P be a property satisfied by vertex subsets of

a graph. Characterize all graphs having a dominating set satisfying the property

P”. By varying the property P, many different domination parameters have been

introduced and studied. Generally, in the study of such domination parameters,

interests are shown to characterize graphs having subsets possessing the respective

properties, and in case, it is difficult to obtain such characterizations for a general

graph, additional constraints are imposed to restrict the study to special classes of

graphs; to obtain bounds or exact values of such parameters for various classes of

graphs and so on. A detailed review on the motivation and applications of graph

domination and comprehensive treatment of various domination parameters can

be found in Cockayne and Hedetniemi (1977); Haynes et al. (1998) and Haynes

(2017).

In line with that, this thesis deals with a particular variant of domination,

namely “Efficient domination”. An introduction to the notion of Efficient dom-

ination along with a brief discussion on its significance is given in Section 1.3.

Following this, the motivation behind the choice of this research topic and the
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objectives of this thesis are discussed in Section 2.5.

Some of the basic terminologies and notations required for further discussion

and understanding of this thesis are defined below, which are followed as in Bondy

et al. (1976); Haynes et al. (1998) and West (2001), unless specified otherwise.

1.2 Preliminaries

A graph G is defined as an ordered triple consisting of a vertex set V (or V (G)

with reference to the graph under consideration), an edge set E (or E(G)) and

a relation ψ (or ψG) called incidence relation that associates with each edge

a pair of elements of V (G) (not necessarily distinct) called its endpoints. Each

element of V (G) is called a vertex (also called a node or a point) and each element

of E(G) is called an edge (or a line or a link).

Here, V (G) may be finite or infinite and accordingly the graph is said to be

a finite or an infinite graph. If the incidence relation ψG associates with each

edge of G an ordered pair of vertices, then the graph G is said to be directed.

Otherwise, it is said to be undirected.

The number of vertices or the cardinality of V (G) is referred to as the order

of G and is denoted by |V (G)|. The number of edges or the cardinality of E(G)

is called the size of G, denoted by |E(G)|.

Throughout this thesis, the symbols n and m are used to denote

respectively the order and size of G, unless mentioned otherwise. A

graph of order n and size m is referred to as an (n,m)-graph.

A loop is an edge whose endpoints are same and multiple or parallel edges

are edges having the same pair of endpoints. A simple graph is a graph having

no loops or multiple edges. In most of the applications, loops and parallel edges

play relatively a less significant role. Hence, this study is restricted to simple

graphs.

All graphs considered in this thesis are finite, simple and undirected,

unless specified otherwise. In a simple graph, each edge can be uniquely iden-

tified by specifying its endpoints and hence throughout this thesis, ignoring
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the incidence relation in the definition of a graph, a graph G is denoted

as an ordered pair (V,E), rather than representing as a triplet.

If e ∈ E(G), where e = uv, then the vertices u and v are said to be adjacent

and neighbors of each other; the edge e is said to be incident with u and v.

Edges incident with the same vertex are said to be adjacent edges.

The open neighborhood of a vertex u, denoted by N(u), is the set of ver-

tices adjacent to u. That is, N(u) = {v ∈ V (G) : uv ∈ E(G)}. The closed

neighborhood of u, denoted byN [u], is the set N(u)∪{u}. For a set S ⊆ V (G),

the open neighborhood of S, denoted by N(S), is
⋃

u∈S N(u) and the closed

neighborhood N [S] of S is N(S) ∪ S.

The degree of a vertex v, denoted by deg(v), is the number of edges incident

with v. That is, deg(v) = |N(v)|. The minimum and maximum degrees of vertices

in V (G) are denoted by δ(G) and ∆(G) respectively. A graph G is said to be

regular of degree r or r-regular , if δ(G) = ∆(G) = r.

An odd vertex (or an even vertex ) is a vertex of odd (or even) degree.

A pendant vertex is a vertex of degree one and a pendant edge is an edge

incident with a pendant vertex. An isolated vertex or an isolate is a vertex of

degree zero.

A walk W = {u0, e1, u1, e2, . . . , uk−1, ek, uk} is a finite alternating sequence

of vertices and edges such that the edge ei has end points ui−1 and ui, for each

i (1 ≤ i ≤ k). With the understanding that each edge occurring in this se-

quence can be identified using its preceding and succeeding vertices as endpoints,

a walk is alternatively represented simply as a sequence of vertices (ignoring the

edges) visited during the traversal. A u0uk-walk is a walk that begins and ends

with vertices u0 and uk respectively. If u0 = uk, then W is said to be a closed

walk. Otherwise, it is said to be open. A trail is a walk with no repeated edges.

A closed trail is a circuit. A walk with k + 1 distinct vertices u0, u1, . . . , uk is

a path. If u0 = uk but u1, u2, . . . , uk−1 are distinct, then the trail is a cycle.

The length of a walk is the number of edges lying on the walk. Analogously,

the length of a trail, a path and a cycle are defined. A path on n vertices (or of
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length n− 1) is denoted by Pn and a cycle on n vertices (or of length n) by Cn.

For a pair u, v ∈ V (G), if there exists at least one uv-path in G, then the

length of a shortest uv-path is referred to as the distance between u and v,

denoted by dG(u, v) (or simply d(u, v), if no ambiguity). If no uv-path exists,

then the distance between u and v is considered to be infinity, if u 6= v and equal

to zero, if u = v. The eccentricity of u in G, denoted by eccG(u) (or simply

ecc(u)), is the distance between u and a vertex farthest from u. That is, ecc(u) =

max{d(u, v) : v ∈ V (G)}. The minimum and maximum of eccentricities of all

vertices in G are referred to as the radius (rad(G)) and diameter (diam(G))

of G respectively. That is, rad(G) = min{ecc(v) : v ∈ V (G)} and diam(G) =

max{ecc(v) : v ∈ V (G)}. A vertex v with ecc(v) = rad(G) is a central vertex.

A path with its length equal to diam(G) is called a diametral path in G.

A graph G is connected if there exists a uv-path for every pair of distinct

vertices u, v ∈ V (G). Otherwise, G is disconnected. A graph H is a subgraph

of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph G is said to contain

a copy of H , if H is a subgraph of G. Thus, if H is a subgraph of G, then

uv ∈ E(H) implies that uv ∈ E(G). If H satisfies the added property that for

every pair of vertices u, v ∈ V (H), uv ∈ E(H) if and only if uv ∈ E(G), then H

is an induced subgraph of G. The induced subgraph H with S = V (H) is called

the subgraph induced by S, denoted by < S >. A spanning subgraph of G

is a subgraph of G with vertex set V (G).

A subset S of V (G) isminimal (ormaximal) in G with respect to a property

P if no proper subset (or proper superset) of S possesses the property P inG. A set

S ⊆ V (G) is maximum with respect to property P in G if there exists no subset

S ′ of V (G) such that |S ′| > |S| and S ′ possesses the property P . Analogously, a

minimum set is defined. A set which is maximum (minimum) with respect to a

property P is also maximal (minimal).

A maximal connected subgraph of G is a subgraph that is connected and is

not properly contained in any other connected subgraph of G. A component of

G is a maximal connected subgraph of G. Clearly, G has exactly one component
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if and only if it is connected.

A complete graph is a simple graph whose vertices are pairwise adjacent and

a complete graph on n vertices is denoted by Kn. A graph with just one vertex is

called as trivial and all other graphs are referred to as nontrivial. Equivalently,

a trivial graph is the complete graph K1. A clique in a graph G is a maximal

complete subgraph of G.

A subset S of V (G) is an independent set of G if no two elements of S

are adjacent in G. An independent set S is maximum in G if G has no inde-

pendent set S ′ with |S ′| > |S| and an independent set S is maximal in G if G

has no independent set S ′ properly containing S. The independence number

of G, denoted by α(G), is the cardinality of a maximum independent set of G.

The minimum size of a maximal independent set in G is the lower independence

number of G and is denoted by i(G).

For a set S ⊆ V (G), G−S denotes the subgraph obtained by deleting the ver-

tices in S (together with their incident edges). If S = {v}, then the corresponding

graph G − S is simply written as G − v. Analogously, the graphs G − E′, for

E ′ ⊆ E(G) and G− e, for e ∈ E(G) are defined.

A cut-edge (or cut-vertex ) of a graph is an edge (or vertex) whose deletion

increases the number of components. A set S ⊆ V (G) is a vertex cut of graph G

if G− S is disconnected. The minimum cardinality of S such that G− S is either

disconnected or trivial is the connectivity of G. A graph G is k-connected

if its connectivity is at least k. Analogously, edge connectivity and k-edge-

connectedness are defined.

An acyclic graph is a graph containing no cycles. A forest is an acyclic graph.

A tree is a connected acyclic graph. A spanning tree is a spanning subgraph

which is also a tree. A caterpillar is a tree in which the removal of all pendant

vertices leaves a path and the resultant path is the spine of the caterpillar.

A rooted tree is a tree in which one vertex called the root, is distinguished

from all the other vertices. In a rooted tree, a vertex v is said to be at level li if

v is at a distance li from the root. Thus, the root is at level zero.
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A graph G is bipartite if V (G) is the union of two disjoint (possibly nonempty)

independent sets, say V1 and V2 of G, where (V1, V2) is called a bipartition of G

and V1 and V2 are partite sets of G. In general, a graph G is k-partite if V (G)

can be partitioned into of k (possibly nonempty) independent sets, where k ≥ 2.

For k ≥ 2, a graph G is complete k-partite (or multipartite), if G is k-partite

with partition (V1, V2, . . . , Vk) and uv ∈ E(G) if and only if u and v belong to

different partite sets. If |Vi| = ni, for each i (1 ≤ i ≤ k), then the complete

k-partite graph is denoted by Kn1, n2,...,nk
. Particularly, when k = 2, the graph is

referred to as a complete bipartite graph.

Two graphs G and H are isomorphic, written as G ∼= H , if there exists a

bijection f : V (G)→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H).

The complement of a graph G, denoted by G, is the graph having ver-

tex set V (G) and uv ∈ E(G) if and only if uv /∈ E(G). A graph G is self-

complementary if G ∼= G.

The union of k graphs G1, G2, . . . , Gk, denoted by G1 ∪G2 ∪ · · · ∪Gk, where

k ≥ 2 is the graph with vertex set
⋃k

i=1 V (Gi) and edge set
⋃k

i=1E(Gi). Similarly,

the intersection of k graphs G1, G2, . . . , Gk, denoted by G1 ∩ G2 ∩ · · · ∩ Gk,

where k ≥ 2 is the graph with vertex set
⋂k

i=1 V (Gi) and edge set
⋂k

i=1E(Gi).

Two graphs G1 and G2 are (vertex) disjoint if they have no vertex in common

and edge disjoint if they have no edge in common. If G1 and G2 are disjoint,

then G1 ∪G2 is also written as G1 +G2.

mG is the graph formed by taking m copies of G. A graph G is H-free if

G has no induced subgraph isomorphic to H. The kth power of a graph G,

denoted by Gk, has the same vertex set as G with two vertices adjacent in Gk

if and only if they are at distance at most k in G. That is, V (Gk) = V (G) and

E(Gk) = {uv : dG(u, v) ≤ k}.

The cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2),

denoted by G1�G2, is the graph with vertex set V1 × V2 and ((u1, v1), (u2, v2)) ∈

E(G1�G2) if and only if either (i) u1 = u2 and v1v2 ∈ E2 or (ii) u1u2 ∈ E1 and

v1 = v2 (Imrich and Klavžar, 2000).
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In the literature, the notation “×” is alternatively used in place of

“���” in the definition of Cartesian product. However, throughout this

thesis, the convention of using ��� is followed as in Imrich and Klavžar

(2000).

If G is an undirected graph without loops, where V (G) = {v1, v2, . . . , vn}, then

the adjacency matrix of G, denoted by A(G), is the n × n matrix defined as

A(G) = (aij), where aij is the number of edges with end points {vi, vj}. Clearly,

aij = aji, for all i, j and hence the adjacency matrix of an undirected graph is

symmetric. Further, for each i (1 ≤ i ≤ n), deg(vi) equals the sum of the entries

in ith row of A(G).

The floor bxc of x is the largest integer at most x and the ceiling dxe of x is

the smallest integer at least x.

For a given function g(n), the notation O(g(n)) is used to denote the set

of functions O(g(n)) = {f(n) : there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n), for all n ≥ n0}. Similarly, for a given function g(n), the

notation Ω(g(n)) is used to denote the set of functions Ω(g(n)) = {f(n) : there

exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n), for all n ≥ n0}. For

a given function g(n), a function f(n) ∈ O∗(g(n)), if there exists a polynomial

p(n) such that f(n) ≤ p(n).g(n), for all n ≥ n0.

Domination in Graphs

For a graph G = (V,E), a set S ⊆ V (G) is a dominating set of G if each vertex

v ∈ V (G) is either in S or has a neighbor in S. The cardinality of a minimum

dominating set of G is the domination number of G, denoted by γ(G). In

general, each vertex is said to dominate itself and all its neighbors. A dominating

set S is a minimal dominating set if no proper subset of S is a dominating set.

A set S ⊆ V (G) is a 2-packing of G if N [u]∩N [v] = ∅, for each pair u, v in S.

The cardinality of a maximum 2-packing is the packing number of G, denoted

by ρ(G). The minimum cardinality of a maximal 2-packing of G is called the

lower packing number of G, denoted by p2(G).
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The influence of a set S ⊆ V (G), denoted by I(S), is the number of vertices

dominated by S. Since every vertex v ∈ S dominates itself and deg(v) other

vertices, I(S) =
∑

v∈S(1 + deg(v)), or equivalently, I(S) = |N [S]|. In other

words, I(S) denotes the amount of domination done by S.

A dominating set S ⊆ V (G) is a perfect dominating set if |N(u) ∩ S| = 1,

for all u ∈ V (G)− S. Every graph has at least the trivial perfect dominating set

consisting of all vertices in V (G).

1.3 Efficient Domination in Graphs

1.3.1 A Brief Overview

The concept of efficient domination in graphs has its origin back to early 1970’s. In

the literature, the concept has been studied using different terminologies, namely,

perfect codes (Biggs, 1973; Kratochvíl, 1986), perfect 1-dominating sets (Liv-

ingston and Stout, 1990), independent perfect dominating sets (Fellows and Hoover,

1991) etc. The terminology “efficient domination” was introduced by Bange et al.

(1978). A detailed review of the literature pertaining to the discussion of this

thesis is given in Chapter 2. Throughout this thesis, the terminology namely,

“efficient domination” introduced by Bange et al. (1978) is adopted.

In general, if a set S is a dominating set of a graph G, then each vertex in V (G)

is dominated at least once by S. That is, each vertex in V − S has at least one

neighbor in S and the vertices in S may or may not have neighbors in S. Now, sup-

pose an additional constraint that each vertex in V (G) is dominated exactly once

by a dominating set, then such a dominating set is referred to as an efficient

dominating set. Thus, a dominating set S is an efficient dominating set if S is

independent and each vertex in V −S has exactly one neighbor in S. It is formally

defined as follows:

Definition 1.3.1. (Haynes et al., 1998) A dominating set S ⊆ V (G) is an effi-

cient dominating set (EDS) of G if |N [v] ∩ S| = 1, for all v ∈ V (G).

Equivalently, a dominating set S is an efficient dominating set if and only if S
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is a 2-packing. Further, every efficient dominating set is an independent perfect

dominating set.

For a vertex v ∈ V (G) and a set S ⊆ V (G), v is said to be efficiently

dominated by S if |N [v] ∩ S| = 1.

In general, unlike the case of a dominating set, a given graph may or may not

possess an efficient dominating set. This leads to the following definition.

Definition 1.3.2. (Haynes et al., 1998) A graph G is defined to be efficiently

dominatable if it possesses an efficient dominating set.

For example, the graph in Figure 1.1 is efficiently dominatable with S = {v2, v5}

as an EDS, whereas the graph in Figure 1.2 is not efficiently dominatable.

b b

b

b b

b
v1

v2 v3 v4 v5

v6

Figure 1.1: An efficiently
dominatable graph

b b b b

b

u1 u2

u3

u4 u5

Figure 1.2: A graph which is
not efficiently dominatable

An efficiently dominatable graph may have more than one EDS, but all EDSs

have the same cardinality. For instance, the graph in Figure 1.1 has four efficient

dominating sets, namely, {v1, v5}, {v1, v6}, {v2, v5} and {v2, v6}. It can be observed

that all the four sets have same cardinality. This fact was proved by Bange et al.

(1988) which is stated as follows:

Theorem 1.3.1. (Bange et al., 1988; Haynes et al., 1998) If G has an efficient

dominating set, then the cardinality of any efficient dominating set equals the

domination number of G. In particular, all efficient dominating sets of G have

the same cardinality.

However, it is noted that if a graph is not efficiently dominatable, then any

two 2-packings with (same) maximum influence may have different cardinalities.

Therefore, in order to prove that a graph is efficiently dominatable, it is enough to

show there exists a set (2-packing) which dominates all the vertices in the graph
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exactly once. On the other hand, in order that a graph is not efficiently dominat-

able, it is required to show that there exists no 2-packing with its influence equal

to the order of the graph and it is required to search for a set (2-packing) which

dominates the maximum number of vertices with the condition that each vertex is

dominated exactly once. Precisely, in the study of efficient domination in graphs,

the general focus is on finding the maximum number of vertices (efficiently) dom-

inated by a 2-packing rather than the cardinality of a dominating set. This leads

to the following definition of efficient domination number of a graph.

Definition 1.3.3. (Haynes et al., 1998) The maximum number of vertices domi-

nated by a 2-packing of G is called the efficient domination number of G and

is denoted by F (G). That is, F (G) = max{I(S) : S is a 2-packing}.

For every graph G, 1 ≤ F (G) ≤ n and G is efficiently dominatable if and only

if F (G) = n. In other words, if a graph G is not efficiently dominatable, then

F (G) < n.

It follows from the definition of an EDS that for any graph G of order n,

a 2-packing of G with its influence equal to n is referred to as an EDS of G,

provided one such exists. Whereas, for a convenient reference to a 2-packing with

maximum influence (less than n) in graphs which are not efficiently dominatable,

the following terminology is introduced in this thesis.

Definition 1.3.4. Let G be a graph with F (G) = k (possibly less than |V (G)|).

Then a set S ⊆ V (G) is an F (G)-set if S is a 2-packing and I(S) = k. That is,

an F (G)-set is a 2-packing with maximum influence in G.

It is understood that an F (G)-set with F (G) = n is an EDS of G.

The following are some of the basic observations on efficient domination in

graphs:

Observation 1.3.1.

1. If G ∼= nK1, then F (G) = n and V (G) is the unique EDS of G.
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2. F (Kn) = n and for each v ∈ V (Kn), {v} is an EDS of Kn. In other words,

Kn is efficiently dominatable, for all n.

3. Pn is efficiently dominatable for all n, Kp, q is efficiently dominatable if and

only if either p = 1 or q = 1.

4. Cn is efficiently dominatable if and only if n ≡ 0 (mod 3). Further,

F (Cn) =

n− 1 if n ≡ 1 (mod 3)

n− 2 if n ≡ 2 (mod 3).

1.3.2 Significance of Efficient Domination

As discussed earlier, given a graph G it is always possible to find a dominating

set D. Further, some vertices are dominated exactly once by D and some may be

dominated more than once. So, the basic intention is to minimize the amount of

excess domination done by a subset of V (G). The idea of minimizing the amount

of excess domination with the condition that each vertex is dominated exactly

once led to the notion of “efficiency” or “efficient domination”. Alternatively, the

idea of minimizing the amount of excess domination with the condition that every

vertex is dominated at least once led to the notion of “redundancy”. The parameter

namely, redundance of a graph G is a measure which determines how many times

vertices in G are dominated by a subset of V (G). That is, the redundance of

G (also called the total redundance), denoted by R(G) is defined as R(G) =

min{
∑

v∈V (G) |N [v]∩S| : S is a dominating set}. Equivalently, R(G) = min{I(S) :

S is a dominating set}. Another measure, called “cardinality redundance”

denoted by CR(G) is the minimum number of vertices dominated more than

once by a dominating set (redundantly dominated).

It can be observed that the value of F (G) is at most |V (G)| and

R(G) is at least |V (G)|. And, both the parameters are equal to |V (G)|

if only if G is efficiently dominatable and in which case CR(G) = 0.

It is known that the influence of a set S ⊆ V (G) measures the amount of

domination done by S in G. Thus, based on the above discussion, the parame-
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ters namely, efficient domination number, redundance and cardinality redundance

are alternatively referred to as “influence parameters” (Sinko and Slater, 2005,

2006). The study of influence parameters was introduced by Sinko and Slater

(2005) for chessboard graphs, wherein the efficient domination number and the

redundance number of such graphs were determined. Further, the other influence

parameters like the closed neighborhood order domination number, the closed

neighborhood order packing number were also studied together with their lin-

ear programming versions. Precisely, the parameters like domination number,

independence number, packing number etc., are determined with a focus on the

minimum or maximum cardinality of a subset S of V (G), which is a dominating

set or an independent set or a packing, as the case may be. But, in the case of

influence parameters, one is interested in the amount of domination done by a

subset S of V (G), rather than the cardinality of S.

Though an EDS of G has the same cardinality as its domination number, it can

be noted that for a given domination number, say k, all the properties of a graph

which does not contain an EDS need not be true for an efficiently dominatable

graph. Few trivial instances are: (i) the influence of a dominating set in an

efficiently dominatable graph is exactly equal to n while that of a dominating set

in a graph which is not efficiently dominatable is at least n. (ii) Further, if G is a

graph of even order having no isolated vertices then γ(G) = n
2
if and only if the

components of G are either C4 or H ◦K1, where H is connected (Haynes et al.,

1998). But with the additional hypothesis that G is efficiently dominatable, every

component of G must be H ◦ K1, where H is connected (as C4 is not efficiently

dominatable). There exist significant amount of properties which are true in the

collection of efficiently dominatable graphs but not true in the complement and

vice versa. This necessitates an exclusive study of efficiently dominatable graphs.

In the literature, there exists a significant amount of research dealing with the

algorithmic aspects of the problem. However, most of these are restricted only

to special classes of graphs like trees, perfect graphs and so on. The efficient

dominating set problem is the problem of answering the question: “Given a graph
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G, whether or not G is efficiently dominatable?”. Equivalently, it is the task of

answering the decision problem: “Is F (G) = n, for a given graph G?” This prob-

lem was proved to be NP-complete on general graphs by Bange et al. (1988) and

they also gave an O(|V (G)|) time algorithm for this problem on trees. In particu-

lar, the problem is NP-complete on the cartesian product of graphs. Though this

particular variant of domination has a long history, to the best of our knowledge,

it has not been much explored relative to the other domination parameters.

Further, the concept of efficient domination has varied and interesting applica-

tions in coding theory, graph embedding, facility location, resource allocation in

parallel processing systems and so on. For a given parallel computing architecture,

it is often necessary to distribute a limited set of resources among the processors

and it may be required to provide efficient file sharing mechanism. To effectively

distribute the resources and guarantee ready access to every resource, one can ini-

tially represent their communication scenario as a graph by considering the set of

processors as vertex set and joining any two processors capable of communicating

with each other directly, by means of an edge. Then, determining a dominating

set of processors in this underlying graph would suggest a good choice of locations

for placement of resources. To avoid multiple sharing, an additional constraint is

used; that is, a processor is permitted to access the resources available at only one

location and this is accomplished by determining an efficient dominating set of the

underlying graph. Various such considerations similar to the above assignment of

designated resources to processors make an efficient dominating set the best choice

of locations for resource allocation.

Similarly, considering a situation in computer networks where software pack-

ages like code libraries need to be placed at individual processor nodes. If every

node is installed with the software package, then the total cost of the design be-

comes very high. Hence, finding a minimum dominating set for designating code

libraries across the network is a definite solution to this problem. The more effec-

tive solution is the one which avoids overlaps in this allocation problem and this

can be facilitated by finding a more restricted version of a minimum dominating
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set, namely an efficient dominating set.

In the same way, one of the main objectives in the design of communica-

tion protocols for wireless ad hoc and sensor networks is to provide an energy-

efficient interference-free communication. This can be accomplished by establish-

ing a non-overlapping cluster-based communication. The problem of designing

non-overlapping clusters is equivalent to finding an efficient dominating set for the

underlying network topology (with permissible dummy links to make the topol-

ogy efficiently dominatable, in case it is not so) (Janakiraman and Thilak, 2012;

Thilak, 2013). The significant properties possessed by an efficient dominating set

namely, domination, independence and 2-packing makes it unique among all vari-

ants of domination and also suitable for the design of such protocols. Hence, the

problem has applications in the design of efficient resource management protocols

in distributed computing.

Summarizing the above discussion, the problem studied in this thesis is mo-

tivated by the applications of efficient domination in coding theory (Biggs, 1973;

Hammond and Smith, 1975), resource allocation in distributed/parallel comput-

ing (Livingston and Stout, 1988, 1990; Van Wieren et al., 1993; Milanič, 2013),

communication in sensor and ad hoc networks etc. (Yu and Chong, 2003, 2005;

Janakiraman and Thilak, 2011; Thilak, 2013). Biggs (1973) studied perfect d-

codes, wherein perfect domination is applied to coding theory. Related to the ap-

plications of interconnection networks in parallel computers, Livingston and Stout

(1990) studied perfect d-dominating sets, which are exactly same as the perfect

d-codes. The concept of efficient domination is precisely same as their perfect

1-domination. Further, the Cartesian product of graphs is one of the interesting

structures in Graph theory. It is also one of the widely used multi-dimensional

architectures in distributed computing systems and one of the commonly used

topologies for ad hoc, sensor and vehicular networks. On these lines, the problem

is of significant interest from both Graph theoretic as well as application perspec-

tive.
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1.4 Organization of the Thesis

The contents of this thesis are organized as follows: Chapter 1 deals with the

preliminaries required for the discussions carried out in this thesis followed by an

introduction to the concept of efficient domination in graphs and its significance

in terms of both theory and applications. In Chapter 2, a brief review of the

literature related to efficient domination in graphs and its variants is presented.

Next, the research gap identified from the literature and the objectives set for this

research work are discussed.

The contributions in this research work are organized into three chapters:

Chapters 3, 4 and 5. Chapter 3 deals with some basic results on efficient domi-

nation in general graphs, efficient domination in trees and efficient domination in

some special graphs. Further, in this chapter, the structural properties of graphs

possessing pairwise disjoint efficient dominating sets are discussed along with an

insight into the applications of such structures in ad hoc and sensor networks.

In Chapter 4, the study of the concept of criticality is initiated with respect

to efficient domination in graphs. Here, the notion of changing and unchanging

efficient domination in graphs is studied with respect to vertex criticality (vertex

removal) as well as edge criticality (edge removal and edge addition). The critical

vertices, critical edges with respect to both removal and addition, vertex critical

sets, edge critical sets and the six classes of graphs arising thereof are characterized.

Finally, the relationship between all these classes is identified and discussed.

Chapter 5 deals with the study of efficient domination in the cartesian product

of graphs. In this chapter, the structural properties of the product in terms of

its factors are discussed. The initial focus is on the product of two well-known

graphs, followed by product of an arbitrary graph G with a well-known graph.

Further, the class of efficiently dominatable product graphs G�K1, p and G�Kp,

for some positive integer p and an arbitrary graphG are characterized. In addition,

as the efficient domination problem is known to be NP-complete for an arbitrary

graph and hence for the cartesian product of graphs, an attempt is made to design

exact exponential time algorithms for finding an F(G�K1, p)-set and F(G�Kp)-set.
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The study is also extended to Hamming graphs.

Finally, Chapter 6 deals with the summary and conclusion of this research

work followed by the scope for future work.
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Chapter 2

Literature Survey

The concept of efficient domination in graphs has its origin back to early 1970’s.

The notion of efficient domination has been studied in the literature using different

terminologies, namely, perfect codes (Biggs, 1973; Kratochvíl, 1986), perfect 1-

dominating sets (Livingston and Stout, 1990), independent perfect dominating

sets (Fellows and Hoover, 1991) and efficient dominating sets. The terminology

“efficient domination” was introduced by Bange et al. (1978). As this Thesis deals

with results on general graphs and cartesian product of graphs both from graph

theoretic and algorithmic perspective, the existing results on efficient domination

in graphs is organized into three sections: Efficient domination in graphs, wherein

the existing graph theoretical results related to general graphs and special classes of

graphs is discussed, Efficient domination in product graphs and finally Algorithmic

aspects of efficient domination, which is dedicated exclusively to those existing

research works on efficient domination from an algorithmic perspective.

2.1 Efficient Domination in graphs

2.1.1 Prior work on Efficient Domination

Bange et al. (1978) have characterized the classes of trees with two disjoint min-

imum dominating sets, with two disjoint minimum independent dominating sets

(any two vertices in the set must be at distance at least two) and trees with two

disjoint minimum dominating sets where any two vertices in the obtained set must
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be at distance at least three. While giving such characterizations, they have de-

fined dominating sets of the third category as efficient dominating sets, as such

sets that have neither deficient nor excess domination. Later, Bange et al. (1988)

have extended the work by characterizing efficiently dominatable trees of diameter

at least three and proposed a procedure for computing F (T ) for an arbitrary tree

T . As stated in Theorem 1.3.1, one of their significant results is that if a graph

G is efficiently dominatable, then all its efficient dominating sets have the same

cardinality, namely, γ(G). Till then, the efficient dominating set problem was

viewed as the problem of finding an efficient dominating set with minimum cardi-

nality, if one such set exists. Later on, based on the above result, the researchers

started reviewing the problem as that of simply finding an efficient dominating

set in a graph (without concentrating on the cardinality) in a graph. As stated

in Section 1.3.2, the efficient domination number is alternatively referred to as

an influence parameter. There exists a significant amount of study related to

the influence parameters like redundance, cardinality redundance, closed neigh-

borhood order domination etc., as surveyed in (Haynes et al., 1998). Especially,

it includes some significant fundamental results on efficient domination and its

variants, both from graph theoretic as well as algorithmic perspective. The re-

lationship between efficient domination number and other influence parameters

is also discussed. Ten possible inequality chains connecting these parameters are

identified and it is proved that for each chain of inequality, there exist infinitely

many graphs satisfying the inequality. However, the convention of referring to such

parameters as “influence parameters” was introduced by Sinko and Slater (2005).

They have studied these parameters (including efficient domination number) for

chessboard graphs.

A set D ⊆ V (G) is a perfect d-code of a graph G if every vertex u ∈ V is at

most at a distance d from exactly one vertex in D. A perfect 1-code in a graph G

is an independent subset of vertices D ⊆ V (G) where every vertex of G is either

an element of D or is adjacent to exactly one vertex in D. Based on this definition,

Haynes et al. (1998) realized the notion of efficient domination as a generalization
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of perfect codes (also referred to as perfect 1-codes). Upon justifying the fact

that a perfect code (or perfect 1-code) is same as an efficient dominating set, the

following equivalent conditions have been proved.

Theorem 2.1.1. (Haynes et al., 1998) The following statements are equivalent:

(a) S = {u1, u2, ..., uk}is a perfect code for G.

(b) {N [u1], N [u2], ..., N [uk]} is a partition of V (G).

(c) S is a packing and
∑

u∈S(1 + deg(u)) = |V (G)|.

So, based on the above fact, it is noted that the study of efficient dominating

sets in graphs actually began in (Biggs, 1973), but using the terminology “perfect

1-codes”. In this article, the authors have investigated the existence of perfect d-

codes (d ≥ 1) for the class of distance-transitive graphs, where a graph G with an

associated distance function δ is distance-transitive if the following condition

is satisfied: Whenever u, v, x, y are vertices of G such that δ(u, v) = δ(x, y),

there exists an automorphism h of G such that h(u) = x and h(v) = y. The

notion of perfect domination has been discussed by Livingston and Stout (1990),

in which they define perfect d-dominating sets (equivalent to perfect d-codes). It

can be observed that a perfect 1-dominating set or perfect 1-code is exactly the

same as an efficient dominating set. In (Livingston and Stout, 1990), the authors

have investigated the existence of perfect d-dominating sets in a wide variety of

special classes of graphs like trees, hypercubes and hypercube related networks,

tori, series-parallel graphs and so on. Interestingly, the authors have used different

techniques namely, algorithmic, algebraic and combinatorial techniques to prove

the existence of perfect d-dominating sets as appropriate for each (specific) class

of graph under consideration. Weichsel (1994) has studied efficient domination in

the name of perfect domination for hypercubes and have proved that a perfect

dominating set (or EDS) of a hypercube induces a subgraph of the hypercube

whose components are also hypercubes, but of lesser dimension.

Efficient domination has also been studied for other special classes of graphs,

namely, Cocomparability graphs (Chang and Liu, 1993), Permutation graphs and
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Trapezoid graphs (Liang et al., 1997), orientations of a graph (Bange et al., 1998),

Sierpiński graphs (Klavžar et al., 2002), Cayley graphs (Dejter and Serra, 2003;

Chelvam and Mutharasu, 2013; Caliskan et al., 2020), Labeled rooted oriented

trees (Schwenk and Yue, 2005), Chessboard graphs (Sinko and Slater, 2005),

Knight graphs (Sinko and Slater, 2006), Circulant graphs (Obradović et al., 2007;

Kumar and MacGillivray, 2013; Deng, 2014; Deng et al., 2017), Vertex-transitive

graphs (Huang and Xu, 2008), Generalized Petersen graphs (Ebrahimi et al.,

2009), Bi-Cayley graphs (Chelvam and Mutharasu, 2010), Cubic Vertex-transitive

graphs (Knor and Potočnik, 2012), Circular arc graphs (Lin et al., 2015), Cubic

and Quartic Cayley graphs (Çalışkan et al., 2019), Mycielski’s graphs (Anitha and

Balamurugan, 2020).

Goddard et al. (2000) have studied the two measures namely, the efficient

domination number (referred to as “efficiency” in the article) and the redundance

(referred to as “total redundance” in the article) of a graph. Here, the authors

have obtained upper and lower bounds on the efficient domination number and the

redundance for general graphs and for trees. They have also obtained Nordhaus-

Gaddum-type bounds for the efficient domination number of a graph G and its

complement G.

The paper by Brod and Skupien (2008) considers trees having the largest

number of efficient dominating sets and characterizes them. They define a tree T

on n vertices to be maximum if it has the largest number of efficient dominating

sets among all n-vertex trees. They have characterized all such trees and have

shown that the number of such n-vertex trees is bounded below by an increasing

exponential function in n.

Thilak (2013) has studied the concept of efficient domination for general graphs.

In particular, the author has obtained the necessary and/or sufficient conditions

for a graph of diameter three and its complement to be efficiently dominatable.

The relationship between this domination and other domination parameters like

geodomination, k-perfect geodomination etc are also discussed. Among the vari-

ous results discussed by the author, the following two results are used in further
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discussions of this Thesis.

Theorem 2.1.2. (Thilak, 2013) If G is a connected efficiently dominatable graph

with rad(G) ≥ 2 and S is an EDS of G, then for each u ∈ S, there exists at least

one vertex v ∈ S, such that d(u, v) = 3.

Theorem 2.1.3. (Thilak, 2013) If G is not efficiently dominatable, S is an F (G)-

set and S ′ = N [S], then for each x ∈ V −S ′, there exists a vertex u ∈ S such that

d(x, u) = 2.

With the perception that the difficulty in obtaining general characterizations

for efficiently dominatable graphs is probably because of their subgraphs not inher-

iting the property of being efficiently dominatable, Milanič (2013) has introduced

a new class of graphs, namely, hereditary efficiently dominatable graphs, defined

as follows: A graph G is said to be hereditary efficiently dominatable if every

induced subgraph of G contains an efficient dominating set. In this article, the

hereditary property of a graph with respect to efficient domination is discussed.

Presuming that the hereditary efficiently dominatable graphs must be contained

in the class of (bull, fork, C3k+1, C3k+2)-free graphs (refer to Figure 2.1) as the

bull, fork and cycles of the form C3k+1 and C3k+2 are not efficiently dominatable,

the author has initially proved a decomposition theorem for (bull, fork, cycle)-free

graphs. Later, using this result, the author has proved that the class hereditary

efficiently dominatable graphs equals the class of (bull, fork, C3k+1, C3k+2)-free

graphs. Further, it is shown that every hereditary efficiently dominatable graph

can be constructed from paths and cycles Cn, where n ≡ 0 (mod 3), with the help

of a sequence of operations as detailed in Milanič (2013).

Barbosa and Slater (2016) have studied the class of super-efficient graphs

(defined in the same way as hereditary efficiently dominatable graphs, introduced

by Milanič (2013)). However, in this article, the focus is on a bigger class of

graphs which includes the class of hereditary efficiently dominatable graphs as a

subcollection. The authors have introduced and studied a new family of graphs,

denoted by Sk, where Sk is the collection of all graphs G for which every induced

subgraph G − S with 0 ≤ |S| ≤ k < |V (G)| is efficiently dominatable. It is
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Figure 2.1: Graphs which are not efficiently dominatable
(Milanič, 2013)

observed that S0 is simply the collection of all efficiently dominatable graphs and

S0 ⊇ S1 ⊇ S2 ⊇ . . . and a graph G of order n is super-efficient (or hereditary

efficiently dominatable) if and only if G ∈ Sn−1. They have defined the efficiency

index of an efficiently dominatable graph G as the maximum value of k for which

G ∈ Sk. Further, they have obtained characterizations for trees, torii, cylinders,

grids and arbitrary graphs of diameter two to be super-efficient (or hereditary

efficiently dominatable).

Cardoso et al. (2016) have studied efficient domination using eigen values. The

authors have defined a set S ⊆ V (G) to be a (k, τ)-regular set in G if every vertex

in V − S has exactly τ neighbors in S and S induces a k-regular subgraph in G.

Thus, an EDS is nothing but a (0, 1)-regular set. It is discussed that the efficient

domination problem can be viewed as a particular case of determining whether

a graph possesses a (0, τ)-regular set. They have given a simplex-like algorithm

using the theory of star complements and some spectral results on (k, τ) -regular

sets for finding a (0, τ)-regular set in an arbitrary graph .

In general, a property P possessed by an efficiently dominatable graph G need

not be possessed by G2. Motivated by this fact, Karthick (2016) has posed and

attempted the following problem: Identify a family F of graphs such that if G is

efficiently dominatable and F -free, then G2 is also F -free. The author has shown

the existence of at least one particular class of graphs namely, (P6, banner)-free

graphs possessing the above property, where a banner is the graph obtained from a

chordless cycle on four vertices by adding a vertex that has exactly one neighbor on

the cycle. In this article, the author has proved that if G is efficiently dominatable
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and is (P6, banner)-free, then G2 is also (P6, banner)-free.

2.1.2 Prior work on Variants of Efficient Domination

Apart from the above, several variants of efficient domination like efficient open

domination, efficient edge domination, efficient multiple domination, weighted ef-

ficient domination etc., have also been studied from theoretical aspects as well as

from algorithmic perspective.

In a graph G, every edge e ∈ E(G) is said to dominate itself and all its

adjacent edges. A set E ′ ⊆ E(G) is an efficient edge dominating set (EEDS)

of G if each edge in E(G) is either in E ′ or dominated by exactly one edge in

E ′. The efficient edge dominating set problem (EED) asks for the existence of

an EEDS in a given graph G. The efficient edge domination problem is proved

to be NP-complete on bipartite graphs and line graphs of bipartite graphs (Lu

and Tang, 1998), planar bipartite graphs (Lu and Tang, 2002), p-regular graphs

(p ≥ 3) (Cardoso et al., 2008). In (Lu and Tang, 1998), a linear time algorithm

is proposed to solve the weighted version of efficient edge domination problem on

bipartite permutation graphs. The survey article by Brandstädt (2018) gives a

brief review of existing research works related to efficient domination and efficient

edge domination in graphs.

Given a graph G, a set S ⊆ V (G) is an efficient open dominating set

(also referred to as a perfect total dominating set) if for every v ∈ V (G), |N(v) ∩

S| = 1, that is, if the open neighborhoods N(v), for v ∈ S form a partition

of V (G). A graph G is called efficiently open dominatable if it possesses

an efficient open dominating set. Gavlas and Schultz (2002) have studied the

notion of efficient open domination for general graphs; discussed the existence of

efficiently open dominatable graphs; characterized efficiently open dominatable

trees and in addition, they have also defined and determined the efficient open

domatic number for graphs under degree restriction, where the efficient open

domatic number of an efficiently open dominatable graph G is the maximum

number of disjoint efficient open dominating sets in G. Further, analogous to the
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result proved by Bange et al. (1988) for efficiently dominatable graphs, the authors

have proved that, “If G has an efficient open dominating set S, then |S| = γt(G),

where γt(G) denotes the total domination number of G. In particular, all efficient

open dominating sets have the same cardinality”. The authors have also shown

that the efficient open dominating set problem is NP-complete.

Rubalcaba and Slater (2007) have defined and discussed efficient versions

of multiple domination, namely, k-tuple efficient domination, efficient double-

domination and efficient (j, k)-domination.

The paper on efficient edge domination in regular graphs by Cardoso et al.

(2008) relates maximum induced matchings and efficient edge dominating sets

showing that efficient edge dominating sets are maximum induced matchings and

that maximum induced matchings on regular graphs with efficient edge dominating

sets are efficient edge dominating sets. A necessary condition for the existence of

efficient edge dominating sets in terms of spectra of graphs is also established.

Efficient open domination in digraphs is discussed in (Knor, 2011). For a

digraph G, a set S ⊆ V (G) is called an efficient open (total) dominating set if

the set of open out-neighborhoods N−(v) ∈ S form a partition of V (G). If G is

a digraph, then its reverse digraph, G−, is obtained by reversing all the arcs of

G. The author has shown that G is efficiently open dominatable if both G and its

reverse digraph G− have an efficient open dominating set. Further, properties of

efficiently open dominated digraphs are also presented. A tournament is a digraph

G such that, for every u, v ∈ V (G), u = v, either −→uv ∈ E(G) or −→vu ∈ E(G). A

special attention is also given to tournaments and directed tori (cartesian product

of directed cycles).

In (Chelvam and Mutharasu, 2012), efficient open domination is studied for

cayley graphs. The authors have characterized efficiently open dominatable bipar-

tite cayley graphs and some classes of circulant Harary graphs. Further, they have

derived a chain of efficient dominating sets and that of efficient open dominating

sets in classes of circulant graphs.

Schaudt (2012) has proved that the efficient open domination problem is NP-
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complete for planar bipartite graphs of maximum degree 3 and is solvable in

polynomial time with complexity O(|V |3) in T3-free chordal graphs, where a T3-

free graph is a graph that does not contain as an induced subgraph a claw (or

K1,3), every edge of which is subdivided exactly twice. A graph is chordal if all

its induced cycles have length 3. Let n ≥ 3. An n-sun (or sun) is a chordal

graph on 2n vertices whose vertex set can be partitioned into W = {w1, . . . , wn}

and U = {u1, . . . , un} such that W is independent and ui is adjacent to wj if and

only if i = j or i = j + 1 (mod n), for all 1 ≤ i, j ≤ n. It is also shown that

the weighted version of efficient open domination problem on certain classes of

graphs, like odd-sun-free chordal graphs, strongly chordal graphs and claw-free

graphs (O(|V |3)) is solvable in polynomial time. In the article by Kuziak et al.

(2014), the efficiently open dominatable graphs among direct, lexicographic and

strong products of graphs have been discussed in detail.

2.2 Efficient Domination and Graph Products

Many large networks can be efficiently modeled using graph products. While

designing large scale networks, the product graphs serve as a base for easy and

economical control of large scale systems. Hence, researchers have shown interest

in studying various graph parameters for product graphs. On that line, there exist

considerable amount of studies related to efficient domination in different graph

products, as detailed below.

Cockayne et al. (1985) obtained bounds on the domination number of grid

graphs. While deriving these bounds, they defined a particular type of dominating

set, namely a ∗-dominating set, which is same as an efficient dominating set. The

authors discussed by the method of construction that the infinite grid graphs

Pn�Pn, for large n, must be efficiently dominatable. However, later Thilak (2013),

has disproved this statement and shown that Pn�Pn is efficiently dominatable if

and only if n = 4 and computed the efficient domination number for all other

products Pn�Pn, whenever n is finite. Kratochvíl (1986) has discussed the notion

of perfect codes in cartesian product of graphs. Here, the author has focused on
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identifying those product graphs possessing 1-perfect codes. It is proved that for

any graph G there exist infinitely many graphs H such that the product G�H

contains a 1-perfect code (or an efficient dominating set). Further, it is shown

that if G is self-complementary, then there exists a 1-perfect code of cardinality

|V (G)| in G2 and vice versa and for k > 1, the regular complete k-partite graphs

having more than k vertices do not possess 1-perfect codes.

Dejter (2007) has studied perfect domination in the cartesian product of toroidal

graphs Cm�Cn. The author has discussed about the existence of efficiently dom-

inatable torus Cp�Cq, cylinders Pn�Cn and grids Pn�Pq.

Mollard (2011) has studied perfect codes in cartesian products of graphs and

discussed about the existence of perfect codes in these products. Given a n-

regular graph, the author has defined a code-colouring as a vertex labeling c with

the integers from {0, 1, . . . , n} such that for any vertex u, its neighbors N(u) are

coloured distinctly from the set of colours {0, 1, . . . , n} \ {c(u)}. It is shown that

for all i ∈ {0, 1, . . . , n}, the set of vertices coloured i forms a perfect code. An

extended code-colouring is defined as a labeling c of the vertices with integers from

{0, 1, . . . , n} such that for any vertex u:

(i) The vertices in N(u) coloured 0 are coloured with distinct colours from the

set {1, . . . , n}.

(ii) The vertices in N(u) coloured with a colour from the set {1, . . . , n} are

coloured 0.

It is shown that, if c is an extended code-colouring of an n-regular graph G,

then G is bipartite. Also, the set of vertices coloured i, for all i ∈ {1, . . . , n}, forms

a perfect code. For any regular graph G of degree n, if there exists an extended

code-colouring in G�P2, then it is shown that G is bipartite and there exists a

code-colouring in G. For any two regular graphs (finite or infinite) G and H each

of degree n, if H is bipartite and if there exists a code-colouring in G and H, then

there exists a code-colouring in G�H�P2. Also, there exists a partition of perfect

codes in G�H�P2.
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Chelvam and Mutharasu (2011) have discussed about the existence of an EDS

in the cartesian product of two cycles and three cycles. They have also determined

all possible efficient dominating sets in the cartesian product of n-cycles �n
i=1Cki ,

where k′is are multiples of 2n+ 1 (prime numbers).

Thilak (2013) has studied efficient domination in the cartesian product of paths

and cycles. It is proved that Pn�P2 is efficiently dominatable if and only if n is odd.

Further, as mentioned earlier, it is shown that Pn�Pn is efficiently dominatable

if and only if n = 4 and Cn�K2 is efficiently dominatable if and only if n ≡ 0 (

mod 4). The exact values of the efficient domination number are obtained for the

graphs Pn�P2, where n is even, Pn�P3, for all n > 2.

2.3 Algorithmic aspects of Efficient Domination

From an algorithmic perspective, the efficient dominating set problem is defined

to be the problem of answering the following question: “Given a graph G, whether

or not G is efficiently dominatable? ”. In other words, it is the task of answering

the decision problem: “Is F (G) = n, for an arbitrary graph G of order n? ”

Though there exists a significant amount of work concerning the algorithmic

aspects of efficient domination, most of them are restricted to special classes of

graphs. Bange et al. (1988) proved that the efficient domination problem is NP-

complete on general graphs and gave anO(|V (G)|) time algorithm for this problem

on trees.

This problem is also proved to be NP-complete even on special classes of

graphs like, planar graphs of maximum degree at most three (Fellows and Hoover,

1991), bipartite graphs and chordal graphs (Smart and Slater, 1995; Chain-Chin

and Lee, 1996), planar bipartite graphs and chordal bipartite graphs (Lu and Tang,

2002), planar bipartite graphs of maximum degree three with girth at least g, for

every g ≥ 3 (Brandstädt et al., 2013; Nevries, 2014), 3-regular graphs (Kratochvíl,

1994) and extended to p-regular graphs, for p > 3 (Cardoso et al., 2008), interval

bigraphs, hypertrees and acyclic hypergraphs (Brandstädt et al., 2012), chordal

unipolar graphs (Eschen and Wang, 2014). Apart from this, the weighted efficient

29



domination problem is solved in polynomial time for special classes of graphs like

split graphs (O(|V (G)| + |E(G)|)) (Chang and Liu, 1993), series-parallel graphs

(O(|V (G)| + |E(G)|)) (Grinstead and Slater, 1994), interval graphs (O(|V (G)| +

|E(G)|)) (Chang and Liu, 1994), circular-arc graphs (O(|V (G)||E(G)|+ |V (G)|2))

(Chang and Liu, 1994), cocomparability graphs (O(|V (G)||E(G)|)) (Chang et al.,

1995), block graphs (O(|V (G)|+ |E(G)|)) (Chain-Chin and Lee, 1996), permuta-

tion graphs (O(|V (G)| + |E(G)|)) (Liang et al., 1997), trapezoid graphs

(O(|V (G)| log log |V (G)| + |E(G)|)) (Liang et al., 1997), bipartite permutation

graph (O(|V (G)|)), distance-hereditary graph (O(|V (G)|)) (Lu and Tang, 2002),

AT-free graphs (O(min{|V (G)||E(G)| + |V (G)|2, |V (G)|ω}), where ω < 2.3727)

(Brandstädt et al., 2015), (P6, banner)-free graphs (O(|V (G)|3)) (Karthick, 2016).

One of the recent articles by Brandstädt (2018) gives a survey of the research

progress in the Efficient domination problem from an algorithmic viewpoint. Fur-

ther, a dichotomy of the complexity of efficient domination is discussed for H-free

graphs, where H is a disjoint union of chordless paths Pk, for any k. H is a linear

forest if H is claw-free and Ck-free, for every k ≥ 3. Efficient domination problem

is NP-complete for chordal graphs, bipartite graphs and claw-free graphs (Brand-

städt, 2018). Efficient domination problem is NP-complete for (Ck, claw)-free

graphs (Brandstädt, 2018). For linear forests H, Efficient domination problem is

NP-complete for 2P3-free graphs (Brandstädt, 2018). Efficient domination prob-

lem is solvable in linear time for 2P2-free graphs (O(|V (G)| + |E(G)|)) (Brand-

städt et al., 2013), P5-free graphs (O(|V (G)||E(G)|)) and (P4 + P2)-free graphs

(O(|V (G)||E(G)|)) (Nevries, 2014). If efficient domination problem is polynomial

for H-free graphs, then it is polynomial for (H + kP2)-free graphs, for every fixed

k (Brandstädt and Giakoumakis, 2014). Efficient domination problem is solved

in polynomial time for P6-free graphs (Lokshtanov et al., 2017; Brandstädt et al.,

2017).
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2.4 Research gap

Efficient domination stands unique among other variants of domination because of

its three properties: Domination, Independence and 2-packing. Efficient domina-

tion has its wide applications in communication networks, mobile ad hoc networks,

coding theory, fault tolerance analysis, wireless sensor networks.

Though this particular type of domination has a long history, to the best of our

knowledge, it has not been much explored like the other domination parameters

from a graph theoretic perspective. Most of the research papers in the literature

deal with the algorithmic aspects of the problem either on arbitrary special graphs

or on some special classes of graphs like perfect graphs and so on. Related to

general graphs the results are very limited. Regarding product graphs, the existing

results are focused involving well known graphs like paths, cycles, etc. Only a few

results deals with arbitrary graphs and products like cross product, lexicographic

product, etc. To summarize, unlike other domination invariants, the concept of

efficient domination has not been studied much for general graphs and the study on

the properties of efficiently dominatable graphs and graphs which are not efficiently

dominatable have not been explored completely.

This research gap has led to our motivation on this problem and necessitates

an independent study of efficiently dominatable graphs.

2.5 Objectives of the Thesis

With the above motivation and research gap identified, the following were set as

the objectives for this research work.

Objective 1: To study the concept of efficient domination in general

graphs

• To obtain improved bounds on the domination number of efficiently domi-

natable graphs, bounds on efficient domination number in terms of degree,

order and size.
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• To explore the structural properties of graphs which are efficiently dominat-

able and those which are not efficiently dominatable.

• To study the notion of efficient domination in trees.

Objective 2: To study the critical aspects of efficient domination in

graphs.

In general, the removal of a vertex from a given graph may increase or decrease or

leave unaltered the domination number of the graph. Similar effects are observed

upon removal of an edge as well as addition of an edge. The study related to this

analysis is referred to as the study of criticality aspects with respect to domination.

While the concept of criticality is well explored with respect to domination and

its variants, to the best of our knowledge, the concept has not been studied with

respect to efficient domination, except for the study of super-efficient graphs by

Barbosa and Slater (2016). Therefore, motivated by the study of changing and

unchanging properties with respect to the classical/ordinary domination surveyed

in (Haynes et al., 1998) and with respect to its other variants in (Edwards, 2006;

Hou and Edwards, 2008; Ebrahimi and Ebadi, 2011; Samodivkin, 2016), the study

is initiated on criticality aspects for efficiently dominatable graphs. On these lines,

the following were set as the sub-objectives.

• To study changing and unchanging efficient domination with respect to ver-

tex criticality (Vertex removal).

• To study changing and unchanging efficient domination with respect to edge

criticality (Edge removal and Edge addition).

• To classify and relate all the critical sets and classes generated due to vertex

removal, edge removal and edge addition.

Objective 3: To study efficient domination in Cartesian product of

graphs.

With the intention of exploring the structural properties of efficiently dominat-

able cartesian product of two or more arbitrary graphs and those which are not
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efficiently dominatable, in this Thesis, the study is initiated on Cartesian product

of two graphs, one of whose factors is an arbitrary graph and the other factor is

a well-known graph like Pn, Cn etc. Based on this, the following were set as the

sub-objectives.

• To study efficient domination in the cartesian product of two well-known

graphs, namely, Pn, Cn, Kn and K1, n.

• To study efficient domination in the cartesian product of two graphs, where

one of the factors is an arbitrary graph and other is a well-known graph.

• To study efficient domination in the cartesian product of two arbitrary

graphs.

• To extend the study for cartesian product of graphs with more than two

factors.

• To design exact-exponential time algorithms to determine whether or not

the Cartesian product of two graphs is efficiently dominatable. (Here, one

of the factors is restricted to be Kn or K1, n).
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Chapter 3

Efficient Domination in Graphs

Based on the research gap identified from the literature and the objectives set

for this thesis, in this chapter, an attempt is made to obtain some basic results

on efficient domination in general graphs, graphs with restricted conditions and

trees. One of the critical issues in the design of network topology is to obtain a

fault tolerant structure so as to facilitate an uninterrupted efficient communica-

tion. In the literature, significant contribution has been made to the design of

fault-tolerant structures by adopting various graph theoretic techniques. In line

with that, some fault-tolerant graph structures are proposed that are suitable for

efficient communication in wireless sensor networks, based on the notion of efficient

domination.

3.1 Efficient Domination in general graphs

As stated in Theorem 1.3.1, if a graph G is efficiently dominatable, then any EDS

of G has its cardinality equal to γ(G). So, with the intent to examine if the

property of being efficiently dominatable has any influence on the interval for the

domination number of a graph, the initial focus is on bounds for the domination

number of efficiently dominatable graphs. Section 3.1.1 deals with some improved

bounds on γ for efficiently dominatable graphs. Section 3.1.2 deals with a discus-

sion on the existence of efficiently dominatable graphs having domination number

k, for any positive integer k and includes a procedure to construct such graphs.
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In Section 3.1.3, some basic necessary conditions are determined for a graph of

diameter three to be efficiently dominatable. In general, an efficiently dominat-

able graph may possess either a unique EDS or more than one EDS. When it has

more than one EDS, the sets may or may not intersect. Based on this fact, the

structural properties of those graphs possessing pairwise disjoint efficient dominat-

ing (PWDED) sets are studied with a brief discussion on the applications of such

structures; a characterization for such graphs is also obtained in Section 3.1.4.

Notation 3.1.1. For a convenient reference, throughout this thesis, the notation

E is used to denote the collection of all efficiently dominatable graphs.

Proposition 3.1.1. If G is a graph of order n, where n is even and G ∈ E , then

a vertex of degree n− 2 does not belong to any EDS of G.

Proof. Let G ∈ E and |V (G)| = n, where n is even. Let u be an arbitrary vertex

of degree n−2 in G. Then, there exists a vertex v ∈ V (G) such that dG(u, v) = 2.

Suppose that S is an EDS of G containing u, then u dominates exactly (n − 1)

vertices (including itself) and no other vertex can be included in S. Hence, v is left

undominated by S, contradicting that S is an EDS of G. Therefore, u /∈ S.

3.1.1 Bounds on Domination number of Efficiently Domi-

natable graphs

Various bounds on γ(G) have been obtained in terms of degree, order and size

of G (refer to (Haynes et al., 1998)). By revisiting those bounds for efficiently

dominatable graphs, the results are discussed below, some of which are immediate

consequences from the known bounds while few others are improved by restricting

the graphs under consideration to be efficiently dominatable.

Bounds on γ in terms of order of a graph

Theorem 3.1.2. (Haynes et al., 1998) If G is a graph of even order n with no

isolated vertices, then γ(G) =
n

2
if and only if the components of G are either C4

or H ◦K1, for any connected graph H.
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But, it is observed that C4 is not efficiently dominatable. Hence, Theorem 3.1.2

leads to the following immediate characterization for an efficiently dominatable

graph of even order and whose domination number is half the order.

Theorem 3.1.3. If G is an efficiently dominatable graph of even order n with no

isolated vertices, then γ(G) =
n

2
if and only if each component of G is isomorphic

to H ◦K1, for some connected graph H.

Let A denote the collection of graphs given in Figure 3.1. Then, the following

bound exists for a graph with minimum degree at least 2.
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Figure 3.1: Graphs belonging to the family A
(Haynes et al., 1998)

Theorem 3.1.4. (Haynes et al., 1998) If G is a connected graph of order n with

δ(G) ≥ 2 and G /∈ A, then γ(G) ≤ 2n

5
.

It can be observed that none of the graphs in the family A is efficiently domi-

natable. Hence, the following result is obtained as an immediate consequence of

Theorem 3.1.4, when restricted to the class E .

Theorem 3.1.5. If G is an efficiently dominatable connected graph of order n

with δ(G) ≥ 2, then γ(G) ≤ 2n

5
.

Lemma 3.1.6. Let G be an efficiently dominatable connected graph of order n

with δ(G) ≥ 2. Then, γ(G) =
⌊n

2

⌋
if and only if G ∼= K3.

Proof. If G ∼= K3, then clearly, γ(G) =
⌊n

2

⌋
. Conversely, let γ(G) =

⌊n
2

⌋
.

Suppose that n is even. Then n = 2k, for some k and γ(G) = k. As G is a
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connected graph such that G ∈ E and δ(G) ≥ 2, it follows from Theorem 3.1.5

that γ(G) ≤ 2n

5
. That is, k ≤ 4k

5
, which is absurd. Hence, n must be odd.

Further, as
⌊n

2

⌋
≤ 2n

5
, n must be equal to either 3 or 5. The graphs depicted

in Figure 3.2 are the only possible graphs of order 3 or 5 with δ(G) ≥ 2 and

γ(G) =
⌊n

2

⌋
. Of these, K3 is the only graph which is efficiently dominatable.

Hence, the result follows.
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Figure 3.2: Graphs of order 3 or 5 with δ(G) ≥ 2 and γ(G) ≤
⌊n

2

⌋
.

Notation 3.1.2. For any graph H, let S(H) denote the set of all connected graphs

obtained from H ◦K1 by adding a new vertex, say u, such that u is made adjacent

to exactly one pendant vertex of H ◦K1 and one or more vertices of H. (Refer to

Figure 3.3)

bb b b b

b

H
b b b b

b b b b

H ◦K1

b b b b

b b b b

b u
b b b b

b b b b

b u b b b b

b b b b

b u

Figure 3.3: Some graphs in S(H)

Lemma 3.1.7. Let G be an efficiently dominatable connected graph of order n

with δ(G) = 1. Then, γ(G) =
⌊n

2

⌋
if and only if the following conditions hold:

(i) Whenever n is even, G ∼= H ◦K1, for some connected graph H.
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(ii) Whenever n is odd, either G ∼= P3 or G must have exactly
⌊
n− 2

2

⌋
pendant

vertices, one vertex of degree two and the remaining vertices of degree at

least two (Precisely, G ∈ S(H), for some connected graph H).

Proof. If either condition (i) or condition (ii) holds according as n is odd or even,

then clearly γ(G) =
⌊n

2

⌋
.

Conversely, let γ(G) =
⌊n

2

⌋
. Suppose that n is even, then condition (i) follows

from Theorem 3.1.3. Whereas, if n is odd, then n = 2k + 1 for some k. Suppose

n = 3, then as δ(G) = 1, G ∼= P3. On the other hand, if n > 3, let S be an EDS

of G, where S = {v1, v2, . . . , vk}. Then, |V − S| = n −
⌊n

2

⌋
= n − k = k + 1.

Let V − S = {u1, u2, . . . , uk, uk+1}. Then, as S is an EDS of G, each ui must

have exactly one neighbor in S. Equivalently, as |V − S| = |S| + 1, every vertex

in S must have exactly one neighbor in V − S, except for one vertex which has

two neighbors in V − S. That is, each vertex in S is a pendant vertex except for

one vertex which is of degree two. Without loss of generality, let deg(vi) = 1, for

each i, where 1 ≤ i ≤ k − 1 and deg(vk) = 2; let vi be adjacent to ui, for each i

(1 ≤ i ≤ k − 1) and vk be adjacent to the two vertices uk and uk+1. Then, as S

is independent and G is connected, the subgraph induced by V − S must also be

connected. Therefore, by defining H =< V − S >, the graph G belongs to S(H).

Hence, the result follows.

Theorem 3.1.8. Let G be an efficiently dominatable connected graph of order n.

Then, γ(G) =
⌊n

2

⌋
if and only if one of the following conditions hold.

(i) G ∼= K3

(ii) G ∼= P3

(iii) G ∼= H ◦K1, for some connected graph H.

(iv) G ∈ S(H), for some connected graph H.

Proof. Clearly, if any of the conditions (i) to (iv) hold, then γ(G) =
⌊n

2

⌋
.

Conversely, let γ(G) =
⌊n

2

⌋
. If n is even, then by Theorem 3.1.3, condition (iii)

holds. On the other hand, suppose that n is odd. Here, if δ(G) = 1, then it follows
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from Lemma 3.1.7 that either condition (ii) or (iv) must hold and when δ(G) ≥ 2,

it follows from Lemma 3.1.6 that condition (i) holds.

Bounds on γ in terms of size of a graph

Next, some bounds on γ are discussed for efficiently dominatable graphs, in terms

of size. A known bound on γ in terms of the size ‘m’ of a graph G is as stated

below.

Theorem 3.1.9. (Haynes et al., 1998) For any graph G with γ(G) ≥ 2,

m ≤
⌊

1

2
(n− γ(G))(n− γ(G) + 2)

⌋
.

Revisiting this result for efficiently dominatable graphs, it is observed that the

bound is improved by a factor of
n− γ

2
. Further, the result holds even for all

graphs G ∈ E with γ(G) = 1, as discussed below.

Theorem 3.1.10. Let G be a simple, connected (n,m) graph such that G ∈ E .

Then, m ≤ (n− γ(G))(n− γ(G) + 1)

2
.

Proof. Let γ(G) = k and S be an EDS of G. Then, |S| = k and |V − S| = n− k.

Further, every vertex in V − S has a unique neighbor in S. Therefore, as G is

connected, exactly (n − k) edges connect S with V − S. As S is independent,

< S > has zero edges. And, < V − S > has at most
(n− k)(n− k − 1)

2
edges.

Thus, the maximum number of edges in G is (n − k) + 0 +
(n− k)(n− k − 1)

2
.

That is, m ≤ (n− k)(n− k + 1)

2
.

Corollary 3.1.10.1. For every connected (n,m) graph G, if G ∈ E then

γ(G) ≤ 2n+ 1−
√

8m+ 1

2
.

Proof. Let G be a connected (n, m)-graph such that G ∈ E and let γ(G) =

k. Then, it follows from Theorem 3.1.10 that 2m ≤ (n − k)2 + (n − k). On

completing the square,
(
n− k +

1

2

)2

≥ 2m+
1

4
. Here, as k ≤ n

2
,
(
n− k +

1

2

)
≥

0. Therefore, k ≤ 2n+ 1−
√

8m+ 1

2
.
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Bounds on γ in terms of minimum and maximum degree of a graph

In this section, some bounds are obtained for the domination number of an ef-

ficiently dominatable graph, in terms of the minimum and maximum degree of

the graph. The following result gives a lower and an upper bound on γ for an

arbitrary graph, in terms of the maximum degree.

Theorem 3.1.11. (Haynes et al., 1998) For any graph G,
⌈

n

1 + ∆(G)

⌉
≤ γ(G) ≤

n−∆(G).

Remark 3.1.1. It can be observed that the lower bound in Theorem 3.1.11 is

sharp, that is, γ(G) =
n

1 + ∆(G)
if and only if G is efficiently dominatable and

in particular, if S is any EDS of G, then deg(v) = ∆(G), for all v ∈ S. In other

words, the lower bound for γ in Theorem 3.1.11 is best possible for efficiently

dominatable graphs.

Proposition 3.1.12. If G ∈ E , then
⌈

n

1 + ∆(G)

⌉
≤ γ(G) ≤

⌊
n

1 + δ(G)

⌋
.

Proof. Let G ∈ E and S be an EDS of G. Then, |S| = γ(G) and I(S) = n.

Further, for each v ∈ V (G), δ(G) ≤ deg(v) ≤ ∆(G). Thus, |S|(1 + δ(G)) ≤

I(S) ≤ |S|(1 + ∆(G)). That is, γ(G)(1 + δ(G)) ≤ n ≤ γ(G)(1 + ∆(G)). Hence,

the result follows.

Remark 3.1.2. It can be observed from Remark 3.1.1 and Proposition 3.1.12 that

if G is a regular graph with γ(G) =
n

1 + ∆(G)
, then G must be efficiently domi-

natable. However, if G is an efficiently dominatable graph with γ(G) =
n

1 + ∆(G)
,

then G need not be regular. (refer to Figure 3.4)

b b

b

b bb b b b

b

Figure 3.4: An efficiently dominatable graph with γ(G) =
n

1 + ∆(G)
, but not

regular

Theorem 3.1.13. For any connected graph G with γ(G) ≥ 2 and γ(G) = n −

∆(G), G ∈ E if and only if rad(< V − S >) = 1, where S is a γ-set of G.
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Proof. Let γ(G) ≥ 2 and S be a γ-set of G.

Let G ∈ E and S be its EDS. For v ∈ V (G), let deg(v) = ∆(G).

Claim: v ∈ V − S

Suppose that γ(G) = k. Then, ∆(G) = n−k = deg(v). If v ∈ S, then v is adjacent

to none of the k − 1 vertices in S and its neighbors and hence deg(v) < n − k, a

contradiction. Thus, v ∈ V − S.

Since v ∈ V −S and deg(v) = n− k, v is adjacent to all the vertices in V −S and

thus rad(< V − S >) = 1.

Conversely, let rad(< V − S >) = 1. Let w ∈ V − S be adjacent to all the other

vertices in V − S. Then, for any pair u, v ∈ S, d(u, v) = d(u,w) + d(w, v) = 3 or

4, accordingly when w is adjacent or nonadjacent to one of the neighbors of u or

v. Thus, S is an EDS of G and hence G ∈ E .

Corollary 3.1.13.1. Let T be a tree with γ(T ) = n−∆(T ). Then, T ∈ E if and

only if T ∼= K1, n−1.

3.1.2 Existence of Efficiently Dominatable graphs with dom-

ination number k, for any integer k > 0

Given any positive integer k, the existence is proved for efficiently dominatable

graphs having domination number k and a method is proposed to construct such

graphs.

Theorem 3.1.14. Given any pair of integers n and k, where n ≥ 2 and 1 ≤ k ≤⌊n
2

⌋
, there exists an efficiently dominatable graph G of order n with γ(G) = k.

Proof. LetG′ be an arbitrary connected graph of order k and V (G′) = {v1, v2, . . . , vk}.

Now, construct a graph G from G′ as follows: Add k new vertices u1, u2, . . . , uk

such that for each i ∈ {1, 2, . . . , k}, uivi ∈ E(G) and deg(ui) = 1. Clearly,

|V (G)| = 2k and |E(G)| ≥ 2k − 1. If n is even and k =
n

2
, then G ∈ E

with {u1, u2, . . . , uk} as its EDS and γ(G) =
n

2
. Else, add n − 2k new vertices

w1, w2, . . . , wn−2k to G. For each i ∈ {1, 2, . . . , n − k}, join wi to uj, for some j,

such that 1 ≤ j ≤ k, subject to the condition that deg(wi) ≥ 1. Here, each wi is
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made adjacent to exactly one uj, while each uj may be adjacent to more than one

wi. Then, the set {u1, u2, . . . , uk} will be an EDS of the resultant graph G and

γ(G) = k.

3.1.3 Graphs of diameter three

Let us consider graphs G of order n having diameter three. It can be observed

that n ≥ 4 and the eccentricities of all the vertices of G are either 2 or 3.

Proposition 3.1.15. Let G ∈ E and diam(G) = 3. Then the following results

hold:

(i) 4(G) ≤ n− 2 and γ(G) ≥ 2.

(ii) γ(G) =
n

2
if and only if < V − S > is complete.

(iii) All the vertices in any EDS of G is of eccentricity three.

(iv) Any EDS of G contains all the pendant vertices of G, if exists.

(v) For n ≥ 4, G is cyclic.

Proof. Let S be an EDS of G.

(i) If 4(G) = n − 1, then rad(G) = 1 and diam(G) ≤ 2. Thus, 4(G) ≤ n − 2.

Since diam(G) = 3, at least two vertices are needed to efficiently dominate G.

Therefore, γ(G) ≥ 2.

(ii) Let S = {u1, u2, . . . , uk}. Since γ(G) =
n

2
, deg(ui) = 1, for every ui ∈ S.

Suppose that, there exist two nonadjacent vertices, say u, v ∈ V − S, such that

u ∈ N(u1) and v ∈ N(u2), for u1, u2 ∈ S. Then, d(u1, u2) > 3, contradicting that

diam(G) = 3. Thus, all the vertices in V − S are adjacent to each other. That is,

< V − S > is complete.

(iii) Let v ∈ S and suppose that ecc(v) 6= 3. Then, ecc(v) = 2. Since S is a

2-packing, all the vertices at a distance 2 from v cannot be in S and hence are

left undominated efficiently. Thus, v /∈ S, a contradiction. Thus, for all v ∈ S,

ecc(v) = 3 holds.
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(iv) Claim: There can be at most one pendant vertex adjacent to any vertex of

G.

Suppose there exist at least two pendant vertices adjacent to a vertex, say u, of

G. Then, u ∈ S and also ecc(u) = 2, which is not possible. Thus, G can have at

most one pendant vertex adjacent to any vertex.

Since diam(G) = 3, all the pendant vertices, if it exist, will have eccentricity three.

All the vertices adjacent to these pendant vertices will have eccentricity two and

hence cannot belong to any EDS of G. Since G ∈ E , all the pendant vertices must

be included in any EDS of G.

(v) For n ≥ 4, if G is acyclic, then Theorem 3.2.15 implies that G 6∈ E . Thus, G

is cyclic.

3.1.4 Graphs having at least two pairwise disjoint efficient

dominating sets and Applications

Let G ∈ E with γ(G) = k. For l ≥ 2, let S1, S2, . . . , Sl be l PWDED sets of G.

Then, |S1| = |S2| = · · · = |Sl| = k. Let S∗ = V (G) − (S1 ∪ S2 ∪ · · · ∪ Sl). Then,

|S∗| = n − kl = n∗ (say). The set S∗ may or may not be empty. Let |E(Si, Sj)|

represents the number of edges between the sets Si and Sj. Then G is isomorphic

to the structure shown in Figure 3.5. As Si (1 ≤ i ≤ l) is an EDS, for every

u ∈ V − Si, |N(u) ∩ Si| = 1. Every vertex in S∗ is adjacent to a unique vertex

from each Si. Based on the structure of G and discussion above, the following

properties are observed in G.

Proposition 3.1.16.

(i) For each v ∈ V (S∗), |N(v) ∩ Si| = 1, for i ∈ {1, 2, . . . , l}.

(ii) For each v ∈ V (Si), |N(v) ∩ Sj| = 1, for each i 6= j and 1 ≤ i, j ≤ l

(iii) If G contains at least l (l ≥ 2) PWDED sets, the γ(G) ≤ p

l
.

(iv) If G has at least l PWDED sets, then
kl(l − 1)

2
+ ln∗ ≤ |E(G)| ≤ kl(l − 1)

2
+

ln∗ + |E < S∗ > |.
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Figure 3.5: A graph with three pairwise disjoint efficient dominating sets

(v) For any v ∈ V (G), l ≤ deg<S∗>(v) ≤ n∗ + l − 1 and l − 1 ≤ deg<Si>
(v) ≤

n∗ + l − 1, for each i, i ∈ {1, 2, . . . l}.

Proof. Properties (i) to (iii) and (v) follow from the discussion above.

Proof of (iv): For each i ∈ {1, 2, . . . l}, since each vertex in each Si has a unique

neighbor in Sj, for i 6= j, |E(Si, Sj)| = k and hence
∑

1≤i 6=j≤l |E(Si, Sj)| =

kl(l − 1)

2
. Also, as every vertex in S∗ has a unique neighbor in Si, for i ∈

{1, 2, . . . l}, |E(Si, S
∗)| = n∗. Thus,

∑
1≤i 6=j≤l |E(Si, S

∗)| = ln∗. Since, E(G) =

E(Si, Sj) + E(Si, S
∗) + E < S∗ >, it follows that,

kl(l − 1)

2
+ ln∗ ≤ |E(G)| ≤

kl(l − 1)

2
+ ln∗ + |E < S∗ > |, where 0 ≤ |E < S∗ > | ≤ n∗(n− 1)

2
.

Proposition 3.1.17. Let G ∈ E . If ∆(G) ≤ l, then there can be at most (l + 1)

PWDED sets of G. If G has at least l PWDED sets, then δ(G) ≥ l − 1.

Proof. As G ∈ E , for all u ∈ V (G), either u ∈ S or one of its neighbors N(u)

belongs to S. If there exist k pairwise disjoint efficient dominating sets of G, then

k distinct vertices of N [u] will belong to k different efficient dominating sets of G.

Thus, if ∆(G) ≤ l, then a maximum of (l + 1) such efficient dominating sets are

possible in G. And if G has at least l pairwise disjoint efficient dominating sets,

then δ(G) ≥ l − 1.

Proposition 3.1.18. If G is connected and G ∈ E , then G has three pair wise

disjoint efficient dominating sets if and only if for all pairs u, v ∈ V (G), there

exists an EDS of G not containing both u and v.
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Proof. Suppose thatG contains at least three pairwise disjoint EDSs. Now, for any

u ∈ V (G), u and its neighbors belong to distinct EDSs. Hence, for all pairs u, v ∈

V (G) (adjacent or nonadjacent), there exists at least one EDS not containing both

u and v.

Conversely, suppose that for each vertex pairs u, v ∈ V (G), there exists an EDS

not containing both u and v. Then, as G is connected, it must have at least

three EDS. Suppose that G has exactly three EDS, say S1, S2 and S3. Clearly,

S1 ∩ S2 ∩ S3 = ∅.

Claim: Si ∩ Sj = ∅, for i 6= j.

Suppose that S1∩S2 6= ∅. If u ∈ V (G) where u ∈ S1∩S2, then u /∈ S3. As u /∈ S3,

a neighbor of u, say v, must be in S3. But then, the hypothesis does not holds for

the pair u, v. Hence, the result follows.

Remark 3.1.3. If G has l PWDED sets S1, S2, . . . , Sl, then Si ⊆ V − Sj, for

i 6= j and 1 ≤ i, j ≤ l.

Theorem 3.1.19. For r ≥ 1, G is an r-regular graph containing (r+ 1) pairwise

disjoint efficient dominating sets if and only if V (G) can be partitioned into (r+1)

independent sets Si (for i = 1 to r+ 1), each of cardinality
|V (G)|
r + 1

, such that each

vertex u ∈ Si has a unique neighbor in Sj, for every i 6= j.

Proof. Let G be an r-regular efficiently dominating graph and |V (G)| = n. Let

S1, S2, . . . , Sr+1 be r + 1 PWDED sets of G. Since G is r-regular, γ(G) =
n

r + 1
.

Thus, |S1| =
n

r + 1
= |S2| = · · · = |Sr+1|. Also, for any u ∈ V (G), since deg(u) =

r, the r+1 distinct vertices of N [u] will belong to r+1 distinct efficient dominating

sets of G. Thus,
⋃r+1

i=1 Si = V (G). In other words, S ′is (for 1 ≤ i ≤ r + 1) form

a partition of V (G). For any i, 1 ≤ i ≤ r + 1, since Si is an EDS, any vertex

u ∈ V − Si is adjacent to a unique vertex of Si. Hence, the result follows.

Conversely, Let V (G) be partitioned into (r+ 1) sets, say S1, S2, . . . , Sr+1, where

each Si is independent and |Si| =
n

r + 1
. Also, assume that each vertex u ∈ Si

has a unique neighbor in Sj, for every i 6= j. Thus, deg<Si>
u = r. Hence, G is

r-regular. Since S ′is are independent, for each u ∈ Si, |N [u] ∩ Si| = 1. Also by

our assumption, for each u ∈ V − Si, |N(u) ∩ Si| = 1. Thus, for each u ∈ V (G),
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|N [u] ∩ Si| = 1, for i = {1, 2, . . . , r + 1}. That is, S ′is are efficient dominating sets

of G. Hence, the result follows.

Remark 3.1.4. It follows from Theorem 3.1.19 that the set S∗ in Figure 3.5 is

empty and hence if G is an r-regular graph having (r + 1) PWDED sets, then G

is isomorphic to the structure shown in Figure 3.6.
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Figure 3.6: A graph with r + 1 pairwise disjoint efficient dominating sets

An Application to Wireless Ad hoc and Sensor Networks

Treating different functional units of a mobile (or static) device in a network as a

single unit, termed collectively as a node, a network topology can be modelled as

follows: In the network, the set of all nodes are considered as the vertex set and

vertices are joined by an edge if the respective network nodes are in the range of

transmission. The graph so obtained is termed as the “underlying graph” or “net-

work graph”. This general graph abstraction can be extended further to construct

graph models that satisfy specific network characteristics. Incorporating addi-

tional constraints on transmission range or other similar communication criteria,

the graph so obtained can be either directed or undirected.

Unlike wired/static network communication, in an ad hoc network environ-

ment, link failures, new link establishments, node failures and new node arrivals

are frequent occurrences. Therefore, in topology design, it is essential to ensure

that network communication is not affected much by node and link failures. In

other words, the network must be fault-tolerant.
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In general, the problem of fault-tolerance can be addressed at two levels. One

is at the level of network topology design as discussed above. The other one

is at the level of designing fault-tolerant virtual backbone (generally termed as

Clusters). The graph structures which are discussed in Section 3.1.3 focus on the

latter approach and help in designing fault-tolerant virtual backbone, also termed

as clusters for ad hoc and sensor networks. Clustering represents partitioning the

network into subnetworks, referred to as clusters, of varied or equal sizes. This

results in a virtual organization of the ad hoc network and is basically the problem

of graph partitioning. Clustering can be of two categories: Head-based and Non-

head-based. In head-based clustering, communication within the entire network is

facilitated with the help of cluster heads which are special nodes identified within

the network based on some strategy. Clustering is accomplished by determining

a set which dominates the underlying graph. Every vertex in the dominating set

together with its (1-hop) neighbors will form a cluster.

It is assumed that all wireless nodes are within a uniform transmission range

so that the underlying network graph is undirected.

Design Strategy of Networks supporting Fault-tolerant Communication

in Sensor Networks

Let us consider the structure as in Figure 3.6 given in Section 3.1.3. The underly-

ing graph consists of r+ 1 pairwise disjoint efficient dominating sets. Considering

this structure as the underlying topology of a network of a set of static wireless

nodes, its properties are analyzed. The structure proposed here (a) facilitates

interference-free communication, (b) Possesses a built-in non-overlapping clus-

tering architecture (c) Possesses an optimal cluster partition and (d) supports

fault-tolerant communication. A brief outline is given in the discussion to follow.

Clustering: The proposed structure satisfies the desired characteristics to be

a “well formed” cluster architecture. Every node is in exactly one cluster and

maintains full coverage. Each cluster possesses a distinctive node called cluster

head (CH) and the structure is in such a way that the set of all CH’s form an
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EDS of the underlying graph. It can also be observed that the set of CH’s of this

network forms an independent set and they are at a distance at least three from

other CH’s. In the process of cluster-based routing using the proposed cluster

architecture, the clusters are well-separated. At that same time, the CH’s are

neither too close nor too far from each other. Moreover, for each CH, it is always

possible to find a CH exactly at distance three (Thilak, 2013) and the two nodes

between these CH’s are said to form a gateway. The induced subgraph of the CH’s

together with these gateway nodes forms a dominating set which is also connected.

The degree of every node is r and hence this network is r − 1 connected.

A structure similar to Figure 3.6 possesses the following properties:

• The structure is efficiently dominatable and hence has at least one EDS,

thereby supports the process of clustering using EDS.

• The structure has r+1 pairwise disjoint efficient dominating sets, facilitating

a proper load balanced communication among all network nodes with the

help of a suitable activity scheduling. This makes the structure more suitable

for sensor networks.

• Each set Si (1 ≤ i ≤ r + 1) will induce a non-overlapping cluster, so as to

facilitate interference-free communication.

• For each Si (1 ≤ i ≤ r+ 1), every vertex u ∈ Si has a unique neighbor in Sj

for all i 6= j. Therefore, in case of failure of node u, the role of node u can

be handled by any one of its neighbors in one of the sets Sj (i 6= j), thereby

supporting fault-tolerant communication.

• To support an efficient channel assignment, for each i, where 1 ≤ i ≤ r + 1,

the set Si is independent. Assuming that if two vertices are adjacent in the

graph, those two wireless components cannot use the same channel/spectrum

for communication simultaneously due to possible wireless interference, as

each Si is independent, for all the vertices in Si, the same spectrum is as-

sociated from an available list of spectra. The concept of list colouring in

graphs will facilitate such a spectral assignment for the vertices in Si. At
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the same time, a vertex in Si will not be assigned the same spectrum as its

neighbors in Sj, for any i 6= j. Further, because of the differences in their

geographic locations, it is preferred to assign different sets of spectra for

different vertices and this can be facilitated with the help of list colouring.

The list colouring being a proper vertex colouring, guarantees that no two

vertices adjacent to each other are allocated the same spectrum. Thus, the

channel assignment problem can be effectively managed.

• Finally, as the network structure is in such a way that each set Si is an EDS,

any of these sets can be used to facilitate cluster-based routing in ad hoc

networks.

3.2 Efficient domination in Trees

This section deals with the properties of vertices in trees T , where T ∈ E and

T 6∈ E ; the necessary conditions for a tree to be efficiently dominatable (or not effi-

ciently dominatable). In Section 3.1.4, trees T are considered, for which S(T ) = ∅.

It is observed that if S(T ) = ∅, then the distance between any two leaf nodes is

at least three. When T ∈ E , the bounds or exact values for γ(T ) are obtained. It

is shown that trees with γ(T ) =
n

2
are efficiently dominatable and has S(T ) = ∅.

Section 3.2.2 identifies some special classes of efficiently dominatable trees. Effi-

ciently dominatable trees of bounded diameter at most five are classified, based on

the number of paths and strong supports adjacent to the central vertex (vertices)

and spiders containing efficient dominating sets are characterized.

Definition 3.2.1. A pendant vertex in any tree T is referred to as a leaf node.

The unique neighbor of a leaf node is referred to as its support vertex. A support

vertex with exactly one adjacent leaf node is called a weak support (WS) and a

support with at least two adjacent leaf nodes is called a strong support (SS). A

vertex which is neither a leaf node nor a support (WS/SS) is called an internal

vertex of T .

Notation 3.2.1. In the discussions to follow, T represents a tree; n denotes the
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order of T ; S(T ) and W (T ) represent the set of all strong supports and weak

supports in T , respectively and L(T ) denotes the set of all leaf nodes in T , unless

specified otherwise.

Observation 3.2.1. The path Pn ∈ E , for all n and γ(Pn) =
⌈n

3

⌉
. Let V (Pn) =

{u1, u2, . . . , un}. If n ≡ 0 (mod 3), then S = {u2, u5, . . . , un−1} forms an EDS of

Pn and it can be observed that it is the only EDS of Pn. If n ≡ 1 (mod 3),

S = {u1, u4, . . . , un} is the unique EDS of Pn. When n ≡ 2 (mod 3), S =

{u1, u4, . . . , un−1} and S = {u2, u5, . . . , un} are the only two efficient dominat-

ing sets of Pn. Also, it can be observed that an EDS of Pn contains a leaf node if

and only if either n ≡ 1 (mod 3) or n ≡ 2 (mod 3).

3.2.1 Results on arbitrary Trees

The following theorem proves the existence of a tree T on n vertices, where T ∈ E

and γ(T ) = k and also defines a procedure to generate such a tree T .

Theorem 3.2.1. Given a pair of integers n and k, where n ≥ 2 and 1 ≤ k ≤
⌊n

2

⌋
,

there exists an efficiently dominatable tree T on n vertices with γ(T ) = k.

Proof. Let T ′ be an arbitrary tree on k vertices and V (T ′) = {v1, v2, . . . , vk}.

Construct a tree T from T ′ as follows. Add k new vertices u1, u2, . . . , uk such that

for each i, for i = {1, . . . , k}, uivi ∈ E(T ). Clearly, T is a tree with |V (T )| = 2k

and |E(T )| = 2k − 1. If n is even and k =
n

2
, then T ∈ E and {u1, u2, . . . , uk}

forms an EDS of T . Otherwise, add n − 2k new vertices w1, w2, . . . , wn−2k to T .

For each j = {1, . . . , n − 2k}, wj is made adjacent to ui, for some i, 1 ≤ i ≤ k,

with the condition that deg(wj) = 1 and each ui may be adjacent to more than

one wj. Then, the set {u1, u2, . . . , uk} will be an EDS of the resultant tree T and

γ(T ) = k.

The corollaries given below follow immediately from Theorem 3.2.1.

Corollary 3.2.1.1. If T ∈ E , then γ(T ) = 1 if and only if T ∼= K1, n.

Using Theorem 3.1.3, a characterization is given for efficiently dominatable trees

whose domination number is half their order and is stated below.
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Theorem 3.2.2. Let T be a tree of even order and γ(T ) =
n

2
. Then, T ∈ E if

and only if T ∼= T ′ ◦K1, for some tree T ′ of order
n

2
.

Corollary 3.2.2.1. If T ∈ E is of even order, then γ(T ) =
n

2
if and only if L(T )

is the unique EDS of T .

Corollary 3.2.2.2. If T ∈ E , then γ(T ) =
⌊n

2

⌋
if and only if n is odd; |S ∩

L(T )| =
(n

2
− 1
)
and |S ∩ L(T )| = 1, for any EDS S of T .

Based on the definition of an EDS and support vertices, the following trivial

conditions necessary for a tree T ∈ E are observed.

Proposition 3.2.3. If T ∈ E and S is an EDS of T , then the following conditions

hold.

(i) S(T ) ⊆ S.

(ii) For each vertex w ∈ W (T ), either w ∈ S or the leaf node adjacent to w is

in S.

(iii) No internal vertex adjacent to a weak support is in S.

(iv) If {w1, w2} ⊆ W (T ) and w1w2 ∈ E(T ), then neither w1 ∈ S nor w2 ∈ S.

Proof. Let T ∈ E and S be any EDS of T .

(i) Let s be any strong support of T . Then for each vertex pairs x, y ∈ L(T ) ∩

N(s), d(x, y) = 2. Therefore, |L(T ) ∩N(s) ∩ S| = ∅ and hence, s ∈ S.

Conditions (ii) and (iii) follow immediately from the fact that S must be a 2-

packing.

(iv) Let w1 and w2 be two adjacent weak supports of T and v1, v2 be their adjacent

leaf nodes respectively. As T ∈ E , for each i, where 1 ≤ i ≤ 2, either vi ∈ S or

wi ∈ S. Therefore, the following cases arise: (a) v1, v2 ∈ S, (b) w1, v2 ∈ S, (c)

v1, w2 ∈ S and (d) w1, w2 ∈ S. But, both w1 and w2 cannot simultaneously be

in S. Now suppose w1 ∈ S, then as d(w1, v2) = 2, v2 will be left undominated.

Similarly, if w2 ∈ S, then v1 will be left undominated. Thus, the only possibility

is that both v1 and v2 must be in S. In other words, S does not contain any two

adjacent weak supports of T .
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Remark 3.2.1. If T ∈ E , then it follows from Proposition 3.2.3-(i) that for every

vertex pairs u, v ∈ S(T ), d(u, v) ≥ 3.

Proposition 3.2.4. For any tree T , if there exists a strong support adjacent to a

weak support, then T 6∈ E .

Proof. Suppose that u ∈ S(T ) and w ∈ W (T ) such that uw ∈ E(T ). Let v ∈

N(w) ∩ L(T ). Then, as u ∈ S(T ), by Proposition 3.2.3-(i), u ∈ S and also u

dominates w. But then, as d(u, v) = 2, neither v ∈ S nor v ∈ N(x), for any x ∈ S,

contradicting that T ∈ E .

Theorem 3.2.5. (Thilak, 2013) If G 6∈ E , S is an F(G)-set and S ′ = N [S], then

for each x ∈ V − S ′, there exists u ∈ S such that d(x, u) = 2.

The following theorem states the necessary conditions for a vertex to be left un-

dominated by an F(T)-set, whenever T 6∈ E .

Theorem 3.2.6. Let T 6∈ E and S ′ be an F (T )-set. If u ∈ V (T ) − N [S ′], then

the following conditions hold.

(i) u is neither a weak support nor a strong support.

(ii) If u is an internal vertex adjacent to a weak support, say w, then deg(w) ≥ 3.

(iii) u cannot be adjacent to a strong support.

Proof. Since T 6∈ E , 1 ≤ F (T ) ≤ n− 1. Suppose that u /∈ N [S ′].

(i) Let u be a weak support in T and v be the leaf node adjacent to u. Then as

u /∈ N [S ′], v is left undominated efficiently. Since u /∈ S ′, Theorem 3.2.5 follows

that there exists a vertex w ∈ S ′ where d(u,w) = 2. Then, d(v, w) = 3 and so

v can be included in S ′, contradicting that v is left undominated by S ′. On the

other hand, if u is a SS and if u is left undominated, then by a similar argument

as above, all the leaf nodes adjacent to u are also left undominated. Thus, u is

neither a weak support nor a strong support.

(ii) Let w be a weak support and u be an internal vertex adjacent to w. Suppose

deg(w) = 2 and v is the leaf node adjacent to w, then the vertex w ∈ S ′ will

efficiently dominate u, v and w, contradicting that u /∈ N [S ′]. Hence, deg(w) ≥ 3.
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(iii) Suppose that u is adjacent to a strong support, say s. Then, as u /∈ N [S ′] it

follows that s /∈ S ′. But, as S ′ is an F (T )-set, s must be in N(S ′). Let s ∈ N(v),

where v ∈ S ′. If v is a leaf node, then the other leaf nodes adjacent to s will be

at distance two from v and hence are left undominated efficiently. On the other

hand, if v is an internal vertex, then all the leaf nodes adjacent to s must be left

undominated efficiently. In either case, the set S ′′ = (S ′−v)∪{s} will be such that

I(S ′′) > I(S ′), contradicting that S ′ is an F (T )-set. Therefore, u is not adjacent

to any SS of T .

3.2.2 Trees with no strong support

Every tree T 6∼= K1,n has at least two support vertices. However, there exist trees in

which all the support vertices are weak supports. For example, all the trees listed

in Table 3.1 do not have any strong support. Here, the trees T are considered, for

which S(T ) = ∅.

Proposition 3.2.7. Let T ∈ E and S(T ) = ∅. Then, the following conditions

holds.

(i) For every vertex pairs x, y ∈ L(T ), d(x, y) ≥ 3.

(ii) The set of all leaf nodes which are mutually at a distance three is a subset

of every EDS of T .

Proof. (i) For any two vertices x, y ∈ L(T ), since S(T ) = ∅, x and y do not have

common neighbors and hence d(x, y) ≥ 3.

(ii) Let S be an EDS of T . Since T ∈ E , either the leaf node or the vertex adjacent

to it must be in S. Let u and v be any two leaf nodes such that d(u, v) = 3. If

u′ ∈ N(u) and v′ ∈ N(v), then d(u′, v) = 2, d(u, v′) = 2 and u′ is adjacent to v′.

Hence, neither u′ nor v′ will belong to S. Thus, both u and v must be in S.

Theorem 3.2.8. (Lemańska, 2004) If n ≥ 3 and |L(T )| = l, then γ(T ) ≥
n− l + 2

3
.
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Table 3.1: Efficiently dominatable trees of order n (n ≤ 7) with no strong
support

n = |V (T )| Trees T with no SS γ-set of T γ(T ), F (T )

n = 1

b
1 {1} 1, 1

n = 2

b

1

b

2 {1}, {2} 1, 2

n = 3

b b
3

b
1

b
2 {2} 1, 3

n = 4

b b
3

b
1

b
2

b b
4 {1, 4} 2, 4

n = 5
b b

3
b

1
b

2
b b

4
b

5 {1, 4}, {2, 5} 2, 5

n = 6
b b

3
b

1
b

2
b b

4
b
5
b b

6 {2, 5} 2, 6

b
1
b b

2

b

b

b

b

5
6

3
4 {1, 4, 6} 3, 6

n = 7
b b

3
b

1
b

2
b b

4
b
5
b b

6
b b

7 {1, 4, 7} 3, 7

bb b

2

b

b

b5

6

3 4
b b

7

b
1

b

{2, 7, 5} 3, 7

b
1

b b
2

b

b

b

b
5

6

3
4

b b

7

{1, 6, 5}, {2, 7, 5}
{1, 4, 7} 3, 7

Theorem 3.2.9. For any tree T with S(T ) = ∅ and |W (T )| = p, the following

holds.

(i) If p = 2, then T ∈ E .

(ii) If T ∈ E , then γ(T ) ≥ p.

(iii)
⌈
n+ 2

4

⌉
≤ γ(T ) ≤

⌊n
2

⌋
.
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Proof. (i) Let w1, w2 ∈ W (T ) and v1 and v2 be the leaf nodes adjacent to w1

and w2 respectively. Since T has exactly two weak supports, it has exactly two

pendant vertices and deg(u) = 2, for all u ∈ V (T ) and u 6= v1, u 6= v2. Therefore,

T is a path on n vertices and hence T ∈ E .

(ii) Let w1, w2, . . . , wm ∈ W (T ). For each i = {1, 2, . . . ,m}, let vi be the leaf node

adjacent to wi. If T ∈ E , then either vi ∈ S or wi ∈ S. Hence, at least m vertices

must be in any EDS of T and hence γ(T ) ≥ m.

(iii) Since S(T ) = ∅, |L(T )| = l = p = |W (T )|. Using Theorem 3.2.8 and the

result (ii) above, γ(T ) ≥ p ≥ n + 2 − 3γ(T ) and hence the lower bound follows.

The upper bound follows.

Among all trees of order n, for n ≤ 7, those trees without strong support are

depicted in Table 3.1 and it can also be observed that for each of these trees T ,

F (T ) = |V (T )| and hence all are efficiently dominatable. But for n > 7, it is

observed that the trees of order n having no strong support may or may not be

efficiently dominatable. Particularly, in Proposition 3.2.10, the value of F (T ) is

determined for all such trees of order n, 1 ≤ n ≤ 10.

Proposition 3.2.10. For any tree T with S(T ) = ∅, the following is true.

(i) For all n, n ≤ 7, T ∈ E .

(ii) For 8 ≤ n ≤ 10, if T 6∈ E , then F (T ) = n− 1.

3.2.3 Some Classes of Efficiently Dominatable Trees

Every tree has at least two leaf nodes. If there are more than two leaf nodes,

then for any pair of distinct leaf nodes x and y, d(x, y) ≡ c (mod 3), where

c ∈ {0, 1, 2}. For example, consider a star K1, n. Then, d(u, v) ≡ 2 (mod 3), for

every two distinct leaf nodes u and v.

For any tree T , let |V (T )| = n and |L(T )| = l. Let L denote the family of

trees in which for every pair of distinct leaf nodes x and y, d(x, y) ≡ c (mod 3),

where c is constant. For every pair of distinct leaf nodes x and y, let L0 = {Trees

T : d(x, y) ≡ 0 (mod 3)}, L1 = {Trees T : d(x, y) ≡ 1 (mod 3)}, L2 = {Trees
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T : d(x, y) ≡ 2 (mod 3)}. Then, L = L0 ∪L1 ∪L2.

Figures 3.7, 3.8 and 3.9 illustrates trees T ∈ L0, T ∈ L1 and T ∈ L2. The

encircled vertices form an EDS of T .
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Figure 3.7: Efficiently
dominatable tree in L0
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Figure 3.8: Efficiently
dominatable tree in L1
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Figure 3.9: Efficiently dominatable tree in L2

Lemańska (2004) gives a characterization for trees T , T ∈ L2, which is stated in

the result below.

Lemma 3.2.11. (Lemańska, 2004) Let T ∈ L2 and D be its minimum dominating

set having no leaf nodes. Then, d(u, v) ≡ 0 (mod 3), for every vertex pairs u, v ∈

D. In addition, γ(T ) =
n− l + 2

3
.

Theorem 3.2.12. Let T be a tree and T ∈ L . Then, T ∈ E .

Proof. Let T ∈ L = L0 ∪L1 ∪L2.

Case(i): T ∈ L2

It follows from Lemma 3.2.11 that, if T ∈ L2, then any dominating set D con-

taining all the weak supports forms an efficient dominating set. Thus, T ∈ E and

l = n+ 2− 3γ(T ).

Case(ii): T ∈ L0

Let P = {v0, v1, . . . , vl} be an arbitrary diametral path. Then, l ≡ 0 (mod 3).
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Claim: deg(v1) = 2 = deg(v2) = deg(vl−2) = deg(vl−1)

Suppose that deg(v1) ≥ 3. Let P ′ = {v0, v1, v11, v21, . . . , vk1} be a diametral path

through v1, different from P . Then, k ≡ 2 (mod 3). Hence, d(vk1 , vl) = d(vk1 , v1) +

d(v1, vl) = k + l− 1 ≡ 2 + 0− 1 = 1 (mod 3), a contradiction. Thus, deg(v1) = 2.

By a similar argument it can be shown that, deg(v2) = 2 = deg(vl−2) = deg(vl−1).

Consider the tree T ∗ ∼= T − N [L(T )]. Then, T ∗ ∈ L2. If D∗ is the dominating

set of T ∗, then S = D∗ ∪ L(T ) is an EDS of T and hence T ∈ E . Let n∗ and l∗

respectively denote the order and number of leaf nodes of tree T ∗. Then by Lemma

3.2.11, n∗ = l∗ − 2 + 3|D∗| and n = n∗ + 2l, where l = l∗. Since γ(T ) = |D∗| + l,

it follows that n = 3γ(T )− 2.

Case(iii): T ∈ L1

Let P = {v0, v1, . . . , vl} be a diametral path. Then, l ≡ 1 (mod 3).

Claim: deg(v1) = 2 = deg(vl−1)

Suppose that deg(v1) ≥ 3. Let P ′ = {v0, v1, v11, v21, . . . , vk1} be a diametral path

other than P . Then, k ≡ 0 (mod 3). Hence, d(vk1 , vl) = d(vk1 , v1) + d(v1, vl) =

k + l − 1 ≡ 0 + 1− 1 = 0 (mod 3), a contradiction. By a similar approach it can

be shown that deg(vl−1) = 2.

Consider the tree T ′ ∼= T − L(T ). Then, T ′ ∈ L2. Hence T ∈ E and γ(T ) =

l + |D′| − 1, where D′ is the dominating set of T ′. Let S be an EDS of T . Since,

either v0 ∈ S or v1 ∈ S, it is easy to observe that D′ 6⊆ S. Let n′ and l′ respectively

denote the order and the number of leaf nodes of T ′. Then, n = n′ + l′ and l′ = l.

Since, l′ = n′ − 3|D′|+ 2, it follows that n = 3γ(T )− l + 1.

Thus combining all the cases, if T ∈ L = L0 ∪L1 ∪L2, then T ∈ E .

Efficiently Dominatable Spiders

Definition 3.2.2. (Haynes et al., 1998) A wounded spider is the graph obtained

by subdividing at most (n− 1) edges of the star K1, n, for n ≥ 1. A healthy spider

is the graph obtained by subdividing all the n edges of the star K1, n, for n ≥ 1.

Theorem 3.2.13. Let k represent the number of subdivided edges in a star K1, n

to obtain a spider T , where 1 ≤ k ≤ n. Then, T ∈ E if and only if either k = n
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or k = n− 1 and γ(T ) = n. When T /∈ E ,

F (T ) =


n+1; if k <

n

2

2(k+1); if
n

2
≤ k < n− 1

Proof. Here |V (T )| = n + 1 + k. Let v0 be the central vertex (vertex of degree

n− 1) of K1, n.

Case(i): k = n

Then, T is a healthy spider and |V (T )| = 2n + 1. Let w be a weak support

in T . Then, w efficiently dominates v0 and the leaf node adjacent to it. The set

consisting of w together with the remaining (n−1) leaf nodes efficiently dominates

V (T ) and hence T ∈ E and γ(T ) = n.

Case(ii): k = n− 1

Here |V (T )| = 2n. All the n leaf nodes will form an EDS of T . Thus, T ∈ E and

γ(T ) = n.

Case(iii): k < n− 1

Then, v0 is a strong support. Suppose that S is an EDS of T . Then, v0 ∈ S. Since

ecc(v0) = 2, this is not possible. Thus, T 6∈ E . If 0 ≤ k <
n

2
, then {v0} will be an

F (T )-set and F (T ) = n+ 1. When
n

2
≤ k < n− 1, the k leaf nodes will efficiently

dominate 2k vertices. To dominate the vertex v0, choose one of the leaf nodes

adjacent to v0. It is observed that these k + 1 leaf nodes efficiently dominate the

maximum number of vertices and thus, F (T ) = 2k + 2 = 2(k + 1).

The Figure 3.10 illustrates efficiently dominatable spiders. The encircled vertices

forms an EDS.
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Figure 3.10: Efficiently dominatable Spiders
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Efficiently Dominatable Trees of bounded diameter

Consider a tree T on n vertices and diameter d, where d ≥ 1. Then, T has either

one centre or a pair of adjacent centres, according as d is even or odd, respectively.

Let ci (1 ≤ i ≤ 2) denote the central vertices of T (with the understanding that

c1 = c2, if d is even). The notations are as described below.

Notation 3.2.2.

• si → The number of strong supports adjacent to ci.

• li → The number of leaf nodes adjacent to ci.

• ki → The number of paths of length two appended to ci.

a) Trees of Diameter three

If T is a tree of diameter three, then li ≥ 1, si = 0 and ki = 0. (Refer to Figure

3.11)

bb b

b

b

b

b

bb
b

b

b

b

b

b

c1 c2

Figure 3.11: Structure of a tree of diameter three

Lemma 3.2.14. Any tree T of order n, for n ≤ 4 and diam(T ) ≤ 3 is efficiently

dominatable.

Proof. Let T be a tree of order n and n ≤ 4. If diam(T ) ≤ 2, then T ∼= K1

or T ∼= P2 or T ∼= P3. When diam(T ) = 3, T ∼= P4. Hence in all these cases

T ∈ E .

Theorem 3.2.15. Any tree T whose diameter is three is efficiently dominatable

if and only if T ∼= P4. Otherwise, F (T ) = ∆(T ) + 1, where ∆(T ) is the maximum

degree of T .
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Proof. As diam(T ) = 3, all the leaf nodes will be of eccentricity three. Also, there

are exactly two vertices of eccentricity two, namely, the central vertices c1 and c2,

which are adjacent to each other. Since n > 4, these two vertices must be support

vertices and hence, must be included in any EDS of T . But this is not possible

since c1 and c2 are adjacent and hence T 6∈ E . Also, either c1 or c2 or both have

the maximum degree (Refer to Figure 3.11). Thus, F (T ) = ∆(T ) + 1.

Figure 3.12 illustrates the only tree T ∈ E whose diam(T ) = 3. The encircled

vertices form an EDS.

b b b b

Figure 3.12: Efficiently dominatable tree of diameter three

b) Trees of Diameter four

Let diam(T ) = 4. Then, n ≥ 5 and γ(T ) ≥ 2 and the structure of T will be as

shown in Figure 3.13. Thus, l1 ≥ 0, s1 ≥ 0 and k1 ≥ 0.
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b
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b

b b
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b
b
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bb b

b

b
b

b
b
b

c1

b b

Figure 3.13: Structure of a tree of diameter four

Theorem 3.2.16. Consider a tree T of diameter four. For k1 ≥ 0, T ∈ E if and

only if T satisfies one of the conditions given below:

(i) l1 = 1 and s1 = 0.

(ii) l1 = 0 and s1 = 1.

(iii) l1 = 0 and s1 = 0.
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Proof. Let k1 ≥ 1. If l1 = 1 and s1 = 0, then any EDS of T includes all the leaf

nodes and T ∈ E . In this case, γ(T ) = k1 + 1. Let l1 = 0 and s1 = 1. Let u be the

strong support adjacent to c1. Then, any EDS of T includes the strong support u

and all the leaf nodes except N(u). In this case, γ(T ) = k1 + 1. Suppose l1 = 0

and s1 = 0, then any EDS of T includes any of the k1 − 1 leaf nodes and one

support vertex adjacent to the leaf node. In this case, γ(T ) = k1.

Conversely, let T ∈ E . If s1 > 1, then there will be at least two strong supports at

a distance two from each other and hence T 6∈ E , a contradiction. Thus, s1 ≤ 1. If

l1 > 1, then the central vertex c1 becomes a strong support. Since T ∈ E , s1 = 0

and k1 = 0. Let l ≤ 1, s1 ≤ 1 and k1 ≥ 1. Since T ∈ E , it follows from Theorem

3.2.3 that either l1 = 1 and s1 = 0 or l1 = 0 and s1 = 1 or l1 = 0 and s1 = 0.

Note: It can be observed that if T satisfies either condition (i) or condition (ii)

in Theorem 3.2.16, then γ(T ) = k1 + 1 and if it satisfies condition (iii), then

γ(T ) = k1.

Any tree T whose diam(T ) = 4 is efficiently dominatable if and only if it is

isomorphic to one of the trees shown in Figure 3.14. The encircled vertices form

an EDS.
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Figure 3.14: Efficiently dominatable trees of diameter four

c) Trees of Diameter five

Let diam(T ) = 5. Then, n ≥ 6 and γ(T ) ≥ 2. Also, for i = {1, 2}, ki ≥ 1, si ≥ 0

and li ≥ 0. (Refer to Figure 3.15)

By a similar reasoning as in Theorem 3.2.16, the following theorem can be dis-

cussed.

Theorem 3.2.17. Consider a tree T of diameter five. For i ∈ {1, 2}, if ki ≥ 0

for each i, then T ∈ E if and only if T satisfies one of conditions given below:
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Figure 3.15: Structure of a tree of diameter five

(i) li = 1 and si = 0.

(ii) li = 0 and si = 1.

(iii) li = 0 and si = 0.

Note: It can be observed in Theorem 3.2.17 that, if T satisfies condition (i), then

γ(T ) = l1 + l2 + k1 + k2, if it satisfies condition (ii), then γ(T ) = s1 + s2 + k1 + k2

and if it satisfies condition (iii), then γ(T ) = k1 + k2.

Any tree T whose diam(T ) = 5 is efficiently dominatable if and only if it belongs

to one of the trees in Figure 3.16. The encircled vertices forms an EDS.
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Figure 3.16: Efficiently dominatable trees of diameter five

3.3 Efficient Domination in some special graphs

3.3.1 Efficient Domination in Ciliates

This section deals with a special class of graphs, namely, the Ciliates, which was

introduced by Fajtlowicz (1988).

Definition 3.3.1. (Dankelmann et al., 1998; Fajtlowicz, 1988) For p, q ∈ N, the

Ciliate Cp, q (p ≥ 3) is the graph obtained from p disjoint copies of the path of length
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q by linking together one end-vertex of each path in a cycle Cp. Equivalently, the

Ciliate Cp, q (p ≥ 3) is the graph obtained by appending a path of length q to each

vertex on the cycle Cp. The Ciliate C4, 2 is shown in Figure 3.17.
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b
b

b

b

b
b

b
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1(0)

1(1)

1(2)

2(0)
2(1)

2(2)

3(0)

3(1)

3(2)

4(0)

4(1)

4(2)

Figure 3.17: Ciliate C4,2

Let the vertices of Cp, q be labelled as follows. The vertices lying on the cycle

Cp are labelled as 1(0), 2(0), . . . , p(0) in the clockwise direction. Let P i
q denote

the path of length q, appended to the vertex i(0) on the cycle Cp and its vertex

be labelled as i(0), i(1), . . . , i(q), as shown in Figure 3.17. Clearly, |V (Cp, q)| =

p+ pq = p(1 + q) = |E(Cp, q)|. An EDS of Cp, q or an F(Cp, q)-set can be generated

by extending an EDS of Cp (or P i
q) or an F(Cp)-set (or F(P i

q)-set) respectively.

With these notations, the following theorems are proved.

Theorem 3.3.1. For q ≡ 1, 2 (mod 3), Cp, q ∈ E and γ(Cp, q) = p
⌈q

3

⌉
.

Proof. Let p ≥ 3. For q ≡ 1 (mod 3), the set S =
⋃p

i=1 Si, where Si = {i(1), i(4), i(7),

. . . , i(q)} is an EDS of Cp, q. Thus, γ(Cp, q) = p
⌈q

3

⌉
. When q ≡ 2 (mod 3), the set

S =
⋃p

i=1 Si, where Si = {i(1), i(4), i(7), . . . , i(q−1)} is an EDS of Cp, q. In this case,

γ(Cp, q) = p
(q

3

)
.

Theorem 3.3.2. For q ≡ 0 (mod 3), Cp, q ∈ E if and only if p ≡ 0 (mod 3).

Otherwise, F (Cp, q) =

pq + p− 1 if p ≡ 1 (mod 3)

pq + p− 2 if p ≡ 2 (mod 3)
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Proof. Let q ≡ 0 (mod 3). An EDS of Cp, q cannot be generated by using EDSs of

P i
q (1 ≤ i ≤ q). Therefore, choose an EDS for Cp or an F(Cp)-set to generate an

EDS for Cp, q or an F(Cp, q)-set. For any p(≥ 3), the following three cases arise.

Case(i): p ≡ 0 (mod 3)

Since Cp ∈ E if and only if p ≡ 0 (mod 3), it follows that Cp, q ∈ E if and only if

p ≡ 0 (mod 3).

Let S ′ = {10, 40, . . . , (p − 2)0} be an EDS of Cp. For 1 ≤ i ≤ p, the set S =

{i(0), i(3), i(6), . . . , i(q) : i ∈ S ′} ∪ {i(2), i(5), i(8), . . . , i(q−1) : i /∈ S ′} forms an EDS

of Cp, q. Also, as Cp has three pairwise disjoint efficient dominating sets, Cp, q

also has three pairwise disjoint efficient dominating sets. In particular, γ(Cp, q) =
p

3
+ p

(q
3

)
=
pq + p

3
.

Case(ii): p ≡ 1 (mod 3)

In this case, Cp 6∈ E and F (Cp) = p − 1. There is one vertex left undominated

efficiently on the cycle Cp. Let S ′ = {10, 40, . . . , (p− 3)0} be an F (Cp)-set. Then,

the set S = {i(0), i(3), i(6), . . . , i(q) : i ∈ S ′} ∪ {i(2), i(5), i(8), . . . , i(q−1) : i /∈ S ′} forms

an F (Cp, q)-set which efficiently dominates all, except one vertex on the cycle Cp.

Thus, F (Cp, q) = pq + p− 1.

Case(iii): p ≡ 2 (mod 3)

In this case, Cp ∈ E and F (Cp) = p− 2. There are two vertices left undominated

efficiently on the cycle Cp. With the same F (Cp, q)-set as discussed in Case(ii)

above, it is observed that S efficiently dominates all, except the two vertices on

the cycle Cp. Thus, F (Cp, q) = pq + p− 2.

3.3.2 Efficient Domination in Join, One-point union and

Corona of graphs

In this section, the concept of efficient domination is discussed for composite

graphs/graph operations such as join, one-point union and corona of graphs.

Definition 3.3.2. The join of simple graphs G and H, denoted by G ∨ H, is

the graph obtained from the disjoint union G + H and adding the edges {xy :

x ∈ V (G), y ∈ V (H)}.
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If graphs G and H are of order p and q respectively, then V (G ∨H) = p+ q.

Figure 3.18a represents the join of G and H. The encircled vertices form an EDS

of G ∨H.

Theorem 3.3.3. Let G and H be graphs of order p and q respectively. G∨H ∈ E

if and only if γ(G) = 1 or/and γ(H) = 1. In particular, γ(G ∨H) = 1.

Proof. By definition, diam(G ∨H) = 2. Thus, G ∨H ∈ E if and only if rad(G ∨

H) = 1. But, rad(G ∨ H) = 1 if and only if either rad(G) = 1 or rad(H) = 1

or both holds. Thus, it follows that G ∨ H ∈ E if and only if γ(G) = 1 or/and

γ(H) = 1.

Definition 3.3.3. One-point union, G(p) of p copies of G is obtained by identifying

the roots of p copies of G.

Since |V (G)| = n, |V (G(p))| = p(n − 1) + 1. Figure 3.18b represents one-point

union H(3). The encircled vertices form an EDS of H(3).

Theorem 3.3.4. G(p) ∈ E if and only if G ∈ E . In particular, γ(G(p)) = p(γ(G)−

1) + 1.

Proof. Let G ∈ E and S = {u1, u2, . . . , uk} be its EDS. Let G(p) be obtained by

identifying p copies of G at the vertex v, where v ∈ S. Without loss of generality,

let v = u1. Let S ′ ⊆ V (G(p)) contain u1 and the remaining (k−1) vertices of S from

each of the p copies ofG. Then, S ′ = {u1, (u2, . . . , uk), (u2, . . . , uk), . . . , (u2, . . . , uk)

(p times)} is an EDS of G(p). Thus, G(p) ∈ E and γ(G(p)) = p(k − 1) + 1.

Conversely, suppose that G 6∈ E and S ′ be an F (G)-set. Let F (G) = l, l < n.

Then, G(p) can be obtained by identifying p copies of G at the vertex v, where

v ∈ V − S ′. Then, F (G(p)) = pl < (n− 1)p+ 1 = V (G(p)). Thus, G(p) 6∈ E .

b b

b b

b

bb

G H
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(c) G ◦H

Figure 3.18: Illustration for the operations join, one-point union and corona

Definition 3.3.4. Let G be a graph of order n. The corona of two graphs G and

H, denoted by G ◦H, is the graph obtained by taking one copy of G and n copies

of H, and then joining the ith vertex of G to every vertex in the ith copy of H.

If |V (H)| = p, then |V (G ◦H)| = n(p+ 1). For every v ∈ V (G), the subgraph Hv

of the corona G ◦ H is the copy of H whose vertices are attached one by one to

the vertex v.

Figure 3.18c represents the corona graph of G and H. The encircled vertices form

an EDS of G ◦H.

Theorem 3.3.5. Let G and H be connected graphs of order p and q respectively.

G ◦H ∈ E if and only if γ(H) = 1. In particular, γ(G ◦H) = p.

Proof. Let G ◦H ∈ E and S be its EDS. Let v ∈ S.

Claim: v ∈ V (H)

Suppose that v ∈ V (G). Then v will efficiently dominate NG[v] in G and all the

vertices in the corresponding subgraph Hv. S will be an EDS of G ◦ H if and

only if G contains only isolated vertices. This is not possible since G is connected.

Thus, v /∈ V (G).

Thus, v ∈ V (H). Then, v dominates NH [v] in H and the corresponding vertex in

G. In this case, v will dominate all the vertices of H if and only if rad(H) = 1,

that is, if and only if γ(H) = 1. Thus, any EDS S of G ◦H contains exactly one

vertex from each copy of H. Since there are p copies of H, S contains exactly p

vertices and γ(G ◦H) = p.
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Conclusion

In this chapter, a few results on efficient domination in arbitrary graphs are

presented. Some bounds in terms of order, degree and size on domination number

of efficiently dominatable graphs are discussed. The properties of graphs pos-

sessing pairwise disjoint efficient dominating sets are identified and a structure

is proposed which supports fault-tolerant communications in ad hoc and sensor

networks. Some significant results on efficient domination in trees are obtained.

Categorizing the vertices in a tree as support (strong and weak), the proper-

ties of vertices in efficiently dominatable trees and trees which are not efficiently

dominatable are studied. Efficiently dominatable trees of diameter up to five are

characterized. Characterization are obtained for the join of two graphs, one-point

union of graph and corona of graphs to be efficient dominatable.
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Chapter 4

Changing and Unchanging Efficient

Domination in graphs

A critical constraint in the topological design of a network is to ensure

uninterrupted network communication in the event of an unexpected occurrence

of faulty components like nodes or links. The influence of a faulty node (or a

link) on network communication can be analyzed by examining the influence of

removal of vertices (or edges) from the underlying graph. Further, to provide

a cost-effective communication, most of the applications require a subset of the

network nodes to be designated with special roles such as servers or heads and

are preferably as smaller subsets as possible. Such a subset can be identified by

finding a minimum dominating set of the underlying graph. Further, to provide

a non-overlapping/interference-free communication, it is required to fix an ad-

ditional constraint that each network node must have a unique neighbor in the

subset. This is accomplished by identifying an EDS in the underlying network.

The concept of criticality in graph theory deals with the study of the behaviour of

a graph with reference to a parameter, upon removing a vertex or a set of vertices,

removing or adding an edge or a set of edges. Hence, due its significance from

theoretical as well as application perspectives, a special interest is shown in the

study of critical concept at least for the past three decades.

In general, the removal of a vertex or the removal/addition of an edge in a

graph G may increase or decrease or leave unaltered the value of γ(G). That is, if
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a vertex v ∈ V (G) is removed from G, then γ(G− v) may be greater than or less

than or equal to γ(G). A vertex v ∈ V (G) such that γ(G− v) 6= γ(G) is referred

to as a critical vertex. Similarly, an edge e ∈ E(G) (or e ∈ E(G)) such that

γ(G− e) 6= γ(G) (or γ(G+ e) 6= γ(G)) is referred to as a critical edge. Based on

this, the vertices and edges in a graph are categorized into nine sets: V 0, V +, V −,

ER0, ER+, ER−, EA0, EA+ and EA−; which in turn results in a categorization

of the entire collection of graphs into six classes: UV R, CV R, UER, CER, UEA

and CEA, defined as in Section 4.1.

Though the properties of critical vertices have been well explored in the liter-

ature with respect to domination and other variants of domination, to the best of

our knowledge, the concept of criticality has not been much explored with respect

to efficient domination, except for the studies by Milanič (2013) and Barbosa and

Slater (2016). Furthermore, the properties possessed by a critical vertex (or a crit-

ical edge) in a graph which is not efficiently dominatable need not be the same for

such a vertex (or an edge) in an efficiently dominatable graph. For an instance, it

is known that for a vertex v ∈ V (G), γ(G−v) < γ(G) if and only if pn[v, S] = {v},

where pn[v, S] = {u : N [u] ∩ S = {v}} (refer to (Haynes et al., 1998)). But, if

G is efficiently dominatable, it follows from the definition of an EDS that for an

arbitrary EDS of G, say S, if v ∈ S then pn[v, S] = N [v] and consequently, the

properties possessed by v ∈ V (G) such that γ(G−v) < γ(G) differ in an efficiently

dominatable graph (as explored in Section 4.2). The existence of such properties

necessitates to revisit the study on critical concept with respect to efficient domi-

nation. Thus, motivated by the significance of the concept of criticality and based

on the research gap identified in the literature, in this chapter, the study of the

concept of criticality is initiated with respect to efficient domination.

By extending this study with respect to efficient domination, the following

classes are analogously introduced: UV RE and CV RE with respect to vertex

removal; UERE and CERE with respect to edge removal; UEAE and CEAE

with respect to edge addition in Sections 4.2, 4.3 and 4.4 respectively. Here, the

subscript E is used to indicate that the respective classes are restricted to the

70



class (E ) of efficiently dominatable graphs. The main objective of this chapter

is to explore those structures (referred to as fault-tolerant structures) which are

efficiently dominatable and continue to remain efficiently dominatable even after

the removal of a vertex or removal of an edge or addition of an edge. On that

line, initially, the properties of critical vertices, critical edges with respect to both

removal and addition, vertex critical sets, edge critical sets with respect to both

removal and addition are discussed. Later, the structural properties of the above

six classes of graphs arising thereof are studied and these classes are characterized.

Finally, the relationship between all these classes are identified and represented

in terms of a Venn diagram. At the end of this chapter, some of the significant

properties discussed for the class of efficiently dominatable graphs in this chapter

are compared against the respective properties for the class of arbitrary graphs

(that is, graphs which may or may not be efficiently dominatable) and presented

in Tables 4.1, 4.2 and 4.3.

4.1 Preliminaries

Throughout this chapter, the following acronyms are used as in (Haynes et al.,

1998): (C stands for changing; U for unchanging; V stands for vertex; E for

edge; R for removal and A for addition). With this convention, the following

abbreviations are in general used to denote the six classes of graphs which arise

due to the removal of a vertex or removal/addition of an edge, defined as below:

Let G denote the complement of a graph G. Then, any graph G belongs to

one or more classes defined below, based on the conditions stated for each class.

(a) UVR (Unchanging Vertex Removal) if γ(G− v) = γ(G), for all v ∈ V (G)

(b) CVR (Changing Vertex Removal) if γ(G− v) 6= γ(G), for all v ∈ V (G)

(c) UER (Unchanging Edge Removal) if γ(G− e) = γ(G), for all e ∈ E(G)

(d) CER (Changing Edge Removal) if γ(G− e) 6= γ(G), for all e ∈ E(G)

(e) UEA (Unchanging Edge Addition) if γ(G+ e) = γ(G), for all e ∈ E(G)
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(f) CEA (Changing Edge Addition) if γ(G+ e) 6= γ(G), for all e ∈ E(G)

Similarly, the vertices of G, edges of G and the edges of G are categorized as

follows:

(a) V 0 = {v ∈ V (G) : γ(G− v) = γ(G)}

(b) V + = {v ∈ V (G) : γ(G− v) > γ(G)}

(c) V − = {v ∈ V (G) : γ(G− v) < γ(G)}

(d) ER0 = {e ∈ E(G) : γ(G− e) = γ(G)}

(e) ER+ = {e ∈ E(G) : γ(G− e) > γ(G)}

(f) ER− = {e ∈ E(G) : γ(G− e) < γ(G)}

(g) EA0 = {e ∈ E(G) : γ(G+ e) = γ(G)}

(h) EA+ = {e ∈ E(G) : γ(G+ e) > γ(G)}

(i) EA− = {e ∈ E(G) : γ(G+ e) < γ(G)}

In general, a given graph G may or may not be efficiently dominatable. In the

same way, for any u ∈ V (G), G − u may or may not be efficiently dominatable.

And, for any e ∈ E(G), G − e (or G + e, for any e ∈ E(G)) may or may not be

efficiently dominatable. Based on these facts, an element p (may be a vertex or

an edge) is said to preserve the efficient domination property if and only if

G ± p ∈ E and based on this we categorize the entire collection G of all (finite)

graphs into four sets as below:

(i) G1 = {G : G /∈ E }

(ii) G2 = {G : G ∈ E and G− v /∈ E , for all v ∈ V (G)}

(iii) G3 = {G : G ∈ E and G− v ∈ E , for some v ∈ V (G)}

(iv) G4 = {G : G ∈ E and G− v ∈ E , for all v ∈ V (G)}
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A similar categorization can be done with respect to edge removal and edge

addition. For a convenient reference and comparison, throughout this thesis, the

set G4 is alternatively referred to as G−v. That is, G−v (= G4) refers to the

collection of all efficiently dominatable graphs G such that every vertex

in G preserves the efficient domination property. Analogously, the set

G−e is defined as {G : G ∈ E and G − e ∈ E , for all e ∈ E(G)} and

G+e = {G : G ∈ E and G+ e ∈ E , for all e ∈ E(G)}. As this chapter deals

with the concept of criticality with respect to efficient domination, the graphs

considered in this chapter are restricted to the class G − G1 (or G2 ∪ G3 ∪ G4).

But, it will be shown in the sections to follow that the class G2 does not exist.

Further, it follows from the definition that G4 $ G3. Hence, the overall focus is

reduced to those graphs belonging to the class G3. As defined in Chapter 2, a graph

G is hereditary efficiently dominatable (also called super-efficient graph) if every

induced subgraph of G contains an efficient dominating set. The studies carried

out by Milanič (2013) and Barbosa and Slater (2016) on hereditary efficiently

dominatable graphs (or super-efficient graphs) justify the existence of the class

G3. That is, every hereditary efficiently dominatable graph belongs to the class

G3, but not conversely.

Since the graphs considered in this chapter are restricted to the class

G3, it is noted that all graphs G considered throughout this chapter are

efficiently dominatable, unless mentioned otherwise. Further, for any

u ∈ V (G) (or e ∈ E(G)), G−u (or G−e) may or may not be connected.

An EDS of an efficiently dominatable graph is the union of EDS of its

components (taken one for each component).

4.2 Vertex removal

Let v ∈ V (G). Then, the vertex v is defined to be

(a) γ-critical if γ(G− v) 6= γ(G)

(b) γ+-critical if γ(G− v) > γ(G)
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(c) γ−-critical if γ(G− v) < γ(G)

Thus, a vertex is said to be γ-critical if it is either γ+-critical or γ−-critical.

With respect to vertex removal, restricting the two known classes UV R and CV R

to the class E of efficiently dominatable graphs, the two classes UV RE and CV RE

are defined as follows:

(a) UV RE = UV R ∩ G−v

(b) CV RE = CV R ∩ G−v

Remark 4.2.1. (Haynes et al., 1998)

For an arbitrary graph G, it is observed that

(a) removal of a vertex can increase γ(G) by more than one.

For example, γ(K1, n) = 1, γ(K1, n − u) = n (> 1), where u is the central

vertex.

(b) removal of a vertex can decrease γ(G) by at most one.

Hence, for any vertex v ∈ V (G), v is γ−-critical if and only if γ(G − v) =

γ(G)− 1.

(c) any isolated vertex in G is γ−-critical.

Hence, the above properties are also true for all graphs in the class G−v.

4.2.1 Results on some well-known graphs

This section is devoted to the discussion on the concept of criticality with respect

to efficient domination for some well known graphs.

Proposition 4.2.1. For n ≥ 2, K1, n /∈ UV RE ∪ CV RE .

Proof. Let V (K1, n) = {u0, u1, . . . , un}, where u0 is the central vertex and n ≥ 2.

Clearly, {u0} is an EDS of both K1, n and K1, n−uj, for each j (1 ≤ j ≤ n). Hence,

γ(K1, n − uj) = γ(K1, n), for each j (1 ≤ j ≤ n). But, for the graph K1, n − u0,

γ(K1, n − u0) = n with the set {u1, . . . , un} as its EDS. Hence, γ(K1, n − u0) >

γ(K1, n) resulting in the conclusion that K1, n /∈ UV RE and K1, n /∈ CV RE .
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Proposition 4.2.2. For n ≥ 2, Kn ∈ UV RE .

Proof. Let V (Kn) = {u1, . . . , un}. Then, for 1 ≤ i ≤ n, the set {ui} is an EDS

of Kn. It can be observed that for a fixed i and i 6= j, (i, j ∈ {1, 2, . . . , n}), the

set {uj} is an EDS of Kn − ui. Thus, γ(Kn − u) = γ(Kn), for all u ∈ V (Kn) and

hence, Kn ∈ UV RE .

It is known that Cn ∈ E if and only n ≡ 0 (mod 3). The result given below shows

that every efficiently dominatable cycle belongs to the class UV RE .

Proposition 4.2.3. For n ≥ 3, Cn ∈ UV RE if and only if n ≡ 0 (mod 3).

Proof. Let V (Cn) = {u1, u2, . . . , un} and n ≡ 0 (mod 3). Then, Cn ∈ E and

γ(Cn) = n
3
. For any ui ∈ V (Cn), Cn − ui ∼= Pn−1. It follows that n− 1 ≡ 2 (mod

3) and γ(Cn − ui) = γ(Pn−1) = dn−1
3
e = n

3
. Thus, γ(Cn − u) = γ(Cn), for all

u ∈ V (Cn) and Cn ∈ UV RE .

Conversely, let Cn ∈ UV RE . If n 6≡ 0 (mod 3), then Cn /∈ E and hence Cn /∈

UV RE , which is a contradiction. Thus, n ≡ 0 (mod 3).

It is known that Pn is efficiently dominatable for all n ≥ 1. Propositions 4.2.4

and 4.2.5 given below deal with the conditions under which Pn belongs to either

UV RE or CV RE or neither.

Proposition 4.2.4. For n ≥ 1, Pn ∈ UV RE if and only if n ≡ 2 (mod 3).

Proof. Let n ≡ 2 (mod 3) and V (Pn) = {u1, u2, . . . , un}. Then, the sets S1 =

{u1, u4, . . . , un−1} and S2 = {u2, u5, . . . , un} are two disjoint EDSs of Pn. Let

ui ∈ V (Pn). Then, one of the following three cases arise: (i) ui ∈ S1 (or) (ii)

ui ∈ S2 (or) (iii) ui is in neither S1 nor S2.

If ui ∈ S1 (or ui ∈ S2), then S2 (or S1) will be an EDS of Pn−ui and γ(Pn−ui) =

γ(Pn). If ui /∈ S1 and ui /∈ S2, then both S1 and S2 are two disjoint EDSs of Pn−ui
and hence, γ(Pn − ui) = γ(Pn). Since ui is arbitrary, it follows that Pn ∈ UV RE .

Conversely, let Pn ∈ UV RE and n 6≡ 2 (mod 3). Then, one of the following two

cases arise: n ≡ 0 (mod 3) or n ≡ 1 (mod 3)

Case (i): n ≡ 0 (mod 3)
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In this case, γ(Pn) = n
3
with the set S = {u2, u5, . . . , un−1} as its unique EDS.

For any ui /∈ S, S still remains as an EDS of Pn−ui and hence γ(Pn−ui) = γ(Pn).

On the other hand, let ui ∈ S. Since Pn − ui ∼= Pi−1 ∪ Pn−i, where i ≡ 2 (mod 3),

it follows that γ(Pn−ui) = γ(Pi−1)+γ(Pn−i) = d i−1
3
e+dn−i

3
e = (i−1)+2

3
+ (n−i)+2

3
=

n
3

+ 1. Therefore, γ(Pn − ui) > γ(Pn).

That is, for any ui ∈ V (Pn), if ui /∈ S, then γ(Pn − ui) = γ(Pn) and if ui ∈ S,

then γ(Pn − ui) > γ(Pn). Hence, Pn /∈ UV RE , which is a contradiction.

Case (ii): n ≡ 1 (mod 3)

In this case, the set S = {u1, u4, . . . , un} is the unique EDS of Pn and hence,

γ(Pn) = dn
3
e = n+2

3
.

Clearly, for any ui /∈ S, S is an EDS of both Pn and Pn−ui and hence, γ(Pn−ui) =

γ(Pn). Now, let ui ∈ S, where 1 ≤ i ≤ n. Since, γ(Pn − u1) = γ(Pn − un) =

γ(Pn−1) = dn−1
3
e = n

3
, it follows that γ(Pn − ui) < γ(Pn), when i = 1 or i = n.

For any i (1 < i < n), Pn − ui ∼= Pi−1 ∪ Pn−i, where i ≡ 1 (mod 3). Therefore, if

ui ∈ S where 1 < i < n, then γ(Pn − ui) = γ(Pi−1) + γ(Pn−i) = d i−1
3
e + dn−i

3
e =

i−1
3

+ n−i
3

= n−1
3
. Therefore, γ(Pn − ui) < γ(Pn), for every ui ∈ S and hence,

Pn /∈ UV RE , which is a contradiction.

So, it can be concluded from the above discussions that if Pn ∈ UV RE , then

n ≡ 0 (mod 3).

Further, the arguments stated in proving the converse part of Proposition 4.2.4

also lead to the following proposition.

Proposition 4.2.5. If n ≥ 1 and n 6≡ 2 (mod 3), then Pn /∈ UV RE ∪ CV RE .

Remark 4.2.2. In connection with Proposition 4.2.5, the following conditions are

also noted.

If n ≥ 1 and n 6≡ 2 (mod 3), then two cases arise:

Case (i): n ≡ 0 (mod 3)

If u ∈ V (Pn) such that ecc(u) ≡ 1 (mod 3), then γ(Pn − u) = γ(Pn) + 1 and for

every other vertex u, γ(Pn − u) = γ(Pn). That is,
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γ(Pn − u) > γ(Pn); if ecc(u) ≡ 1 (mod 3)

= γ(Pn); otherwise

Case (ii): n ≡ 1 (mod 3)

In this case, if u ∈ V (Pn) such that ecc(u) ≡ 0 (mod 3), then γ(Pn−u) = γ(Pn)−1

and for every other vertex u, γ(Pn − u) = γ(Pn). That is,

γ(Pn − u) < γ(Pn); if ecc(u) ≡ 0 (mod 3)

= γ(Pn); otherwise

Thus, it follows from cases (i) and (ii) that Pn /∈ UV RE and Pn /∈ CV RE . Hence,

the result follows.

Remark 4.2.3. A common observation made in the discussions of Propositions

4.2.1 to 4.2.5 is that if G denotes any of the well known graphs discussed above

and u ∈ V (G) such that there exists at least one EDS of G which does not contain

u, then γ(G) = γ(G− u). This property is in general true for an arbitrary graph

(as evident from the result to be proved in Theorem 4.2.8).

4.2.2 Properties of Critical vertices

This section deals with some significant properties of the critical vertices of an

efficiently dominatable graph. The equivalent conditions for a vertex to be γ-

critical or otherwise in an efficiently dominatable graph are discussed. Further,

the structural properties of graphs belonging to the classes UV RE and CV RE are

studied and based on these results, the two classes are characterized.

Let G ∈ E and u ∈ V (G) such that G − u ∈ E . That is, G ∈ G3. Suppose

that S is an EDS of G. For any vertex u /∈ S, as S itself is an EDS of G − u,

γ(G − u) = γ(G) and hence, u ∈ V 0. On the other hand, if u ∈ S, then u

may or may not be γ-critical in G. Since S is an EDS of G containing u, upon

removing u from G, it can be observed that S − {u} cannot be an EDS of G− u.

However, S − {u} efficiently dominates all the vertices in G − u except NG(u).

So, the following natural question arises - “Is it possible to append one or more

vertices from NG(u) to S − {u} so as to efficiently dominate NG(u) and hence
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to efficiently dominate V (G − u) or replace one or more vertices in S − {u} by

their neighbors suitably so that the resultant set is an EDS of G−u?” If yes, then

it may be easier to compare γ(G) and γ(G − u), which in turn helps in easily

categorizing whether or not the vertex u is γ-critical. Focusing in this direction,

some of the properties of critical vertices and critical sets are discussed for an

efficiently dominatable graph in the results to follow. Based on these results, a

general construction is proposed to generate an EDS of G − u by starting with

an arbitrary EDS of G containing u and this procedure leads to a simpler way to

compare γ(G) and γ(G− u).

Proposition 4.2.6. Let G ∈ E and u ∈ V (G) such that deg(u) ≥ 1 and G−u ∈ E .

If Su is an arbitrary EDS of G− u, then Su ∪ {u} will not be an EDS of G.

Proof. Let Su be an arbitrary EDS of G − u. Then, in G − u, Su efficiently

dominates N(u) and hence, there exists at least one vertex x ∈ Su for which

d(x, u) ≤ 2. Therefore, Su ∪ {u} will not be a 2-packing in G and hence cannot

be an EDS of G.

Let G ∈ E and u ∈ V (G) such that G−u ∈ E . If S is an arbitrary EDS of G such

that u ∈ S, then it follows from the definition of an EDS that for each x ∈ NG(u),

NG[x] ∩ S = {u}. Hence, S − {u} cannot be an EDS of G − u. However, as

discussed earlier, S − {u} efficiently dominates all vertices in V (G − u) except

NG(u). Further, for each x ∈ NG(u) and for each y ∈ S − {u}, dG−u(x, y) ≥ 2.

Therefore, based on these facts, it may be possible to generate an EDS of G − u

in one of the following ways:

(i) If there exist vertices x ∈ NG(u) such that dG−u(x, y) ≥ 3, for all y ∈ S−{u},

then appending S − {u} with one or more such vertices from NG(u) which

can also dominate NG(u), may result in an EDS of G− u.

(ii) If there exist vertices in S − {u} which are at distance two from some or all

vertices in NG(u), then deleting such vertices from S − {u} and replac-

ing each such deleted vertex by exactly one of its suitable neighbors in

V (G− u)− [(S − {u}) ∪NG(u)] may result in an EDS of G− u.
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Suppose the set, say S ′, so generated does not dominate some vertices in

V (G − u) (precisely, in V (G − u) ∩ NG(u)) then further addition of one or

more suitable vertices from NG−u[S ′]−NG(u) may result in an EDS of G−u.

The Lemma 4.2.7 discussed below, guarantees the possibility of generating an EDS

of G − u by the above methods and in fact, it proves that every EDS of G − u

should have been generated in one of the above ways. Further, this lemma helps

in comparing γ(G) and γ(G− u) and thereby, helps in characterizing the critical

vertices in an efficiently dominatable graph.

Lemma 4.2.7. Let G ∈ E and u ∈ V (G) such that G−u ∈ E . If S is an arbitrary

EDS of G such that u ∈ S and Su is an arbitrary EDS of G− u, then there exists

a partition of Su into subsets, say, A and B of V (G− u), such that exactly one of

the following conditions hold:

(i) A = S − {u} and B ⊆ NG(u).

(ii) B = ∅ and there exists a one-to-one correspondence between the sets S−{u}

and A.

(iii) B 6= ∅ and there exists a one-to-one correspondence between the sets S−{u}

and A.

Proof. Let S be an arbitrary EDS of G such that u ∈ S. Then, as discussed

earlier, S−{u} cannot be an EDS of G−u. Let Su be an arbitrary EDS of G−u.

Then, as S−{u} ⊆ V (G−u), the following two cases arise: (i) S−{u} $ Su and

(ii) S − {u} " Su. That is, neither Su ⊃ S − {u} nor Su ⊂ S − {u}.

Case (i): S − {u} $ Su

Then, as Su is an EDS of G−u, S−{u} dominates only the vertices in V (G−u)−

NG(u) and hence, there exists at least one vertex, say x, such that x ∈ Su∩NG(u).

Define, A = S − {u} and B = Su ∩NG(u). Then, clearly B ⊆ NG(u), A ∩ B = ∅

and A ∪B = Su. Hence, condition (i) holds.

Case (ii): S−{u} " Su (Or equivalently, neither Su ⊃ S−{u} nor Su ⊂ S−{u})

In this case, the following facts are noted:
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(a) There exist vertices x, y ∈ V (G− u) such that x ∈ S − {u}, but x /∈ Su and

similarly, y ∈ Su, but y /∈ S − {u}.

(b) For each x ∈ (S − {u}) − Su, |NG−u(x) ∩ Su| = 1 and hence, for each

x ∈ (S−{u})−Su, there exists a unique yx ∈ Su such that xyx ∈ E(G−u).

(c) Su may or may not intersect with NG(u).

Define, A = Su−NG(u) and B = NG(u)∩Su. Clearly, A∩B = ∅ and A∪B = Su.

Further, it follows from the above stated property (c) that either B = ∅ or B 6= ∅.

In order to show that there exists a one-to-one correspondence between A and

S − {u}, define a mapping f : S − {u} → A such that for each x ∈ S − {u},

f(x) =

x; if x ∈ A

yx; otherwise, where yx is the unique neighbor of x in Su

Then, as S − {u} is a 2-packing of G − u, it is clear that for any two distinct

vertices x1, x2 in S − {u}, f(x1) 6= f(x2) and for each yx ∈ A, there exists a

unique x ∈ S − {u} such that either yx = x or xyx ∈ E(G − u). Therefore, f is

an isomorphism between the sets S − {u} and A, irrespective of whether B = ∅

or B 6= ∅. Hence, conditions (ii) and (iii) hold.

Theorem 4.2.8. Let G ∈ E and u ∈ V (G) such that G − u ∈ E . Then u is

γ-critical if and only if u is in every EDS of G.

Proof. Let u be γ-critical in G. Suppose there exists an EDS of G, say S, such that

u /∈ S, then S is an EDS of G− u also and hence, γ(G− u) = γ(G), contradicting

that u is γ-critical in G. Hence, u must be in every EDS of G.

Conversely, suppose that u is in every EDS of G. Let S and Su be arbitrary

efficient dominating sets of G and G− u, respectively. Then, u ∈ S and it follows

from Lemma 4.2.7 that there exist disjoint subsets A and B of V (G−u) such that

A ∪B = Su satisfying exactly one of the three conditions stated in Lemma 4.2.7.

Thus, |Su| = |A| + |B| = |S − {u}| + |B| = γ(G) − 1 + |B|. Further, as Su is an

arbitrary EDS of G− u, either NG(u) ∩ Su = ∅ or NG(u) ∩ Su 6= ∅.

Case (i): NG(u) ∩ Su = ∅.

Then, as B ⊆ Su, B = ∅ and hence, γ(G − u) = |Su| = γ(G) − 1. That is,
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γ(G− u) < γ(G). Therefore, u is γ-critical in G.

Case (ii): NG(u) ∩ Su 6= ∅

Then, either |NG(u) ∩ Su| = 1 or |NG(u) ∩ Su| > 1. If |NG(u) ∩ Su| = 1, then Su

efficiently dominates all the vertices in V (G) and hence, is an EDS of G, as well.

This implies that G has an EDS not containing u, which is a contradiction to our

hypothesis.

On the other hand, if |NG(u)∩Su| > 1, then |B| > 1 and hence, γ(G−u) = |Su| =

γ(G)− 1 + |B| > γ(G)− 1 + 1 = γ(G). That is, γ(G− u) > γ(G), which implies

that u ∈ V +. Hence, the result follows.

It can be observed from the discussion in Theorem 4.2.8 that, if u satisfies the

hypothesis of Theorem 4.2.8 and is γ-critical, then for every EDS Su of G − u,

either |NG(u) ∩ Su| = 0 or |NG(u) ∩ Su| > 1 and vice-versa. This leads to three

equivalent conditions for a vertex to be γ-critical in an efficiently dominatable

graph, as stated in Corollary 4.2.8.1 and also leads to Corollary 4.2.8.2

Corollary 4.2.8.1. Let G ∈ E and u ∈ V (G) such that G − u ∈ E . Then the

following conditions are equivalent.

(i) u is γ-critical.

(ii) u is in every EDS of G.

(iii) |NG(u) ∩ Su| 6= 1, for every EDS Su of G− u.

Proof.

It follows from Theorem 4.2.8 that condition (i) is equivalent to condition (ii).

Next, to prove condition (ii) is equivalent to condition (iii), suppose that u is in

every EDS of G. If there exists an EDS of G−u, say Su, such that |NG(u)∩Su| = 1,

then it follows by the same argument as in Theorem 4.2.8 that Su is an EDS of

G. This contradicts the hypothesis that u is in every EDS of G. Therefore,

|NG(u) ∩ Su| = 1.

Conversely, let |NG(u) ∩ Su| 6= 1, for every EDS Su of G − u. Then, either

|NG(u)∩Su| = 0 or |NG(u)∩Su| > 1. It can be observed by the same argument as
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in the converse part of Theorem 4.2.8 that u ∈ V − if |NG(u)∩Su| = 0 and u ∈ V +

if |NG(u) ∩ Su| > 1. Therefore, u is γ-critical and hence, by Theorem 4.2.8, u is

in every EDS of G.

Corollary 4.2.8.2. Let G ∈ E and S be an EDS of G. If u ∈ V (G) such that

u ∈ S and G− u ∈ E and if Su is an arbitrary EDS of G− u, then the following

conditions hold:

(i) u ∈ V 0 if and only if |NG(u) ∩ Su| = 1.

(ii) u ∈ V + if and only if |NG(u) ∩ Su| > 1.

(iii) u ∈ V − if and only if |NG(u) ∩ Su| = 0.

Remark 4.2.4. If u ∈ V +, then it follows from Corollary 4.2.8.2 that |N(u) ∩

Su| ≥ 2 and hence, it follows that there exist at least two nonadjacent vertices in

N(u) so that they can be included in the set Su.

Remark 4.2.5. If G ∈ E and u ∈ V (G), then it follows from Theorem 4.2.8 that

u ∈ V 0 if and only if there exists at least one EDS of G which does not contain

u. Consequently, if S is an arbitrary EDS of G and if u ∈ V − S, then u ∈ V 0.

Hence, V 0 ⊇ V − S and consequently, V + ⊆ S and V − ⊆ S. This leads to the

following bounds on the size the three critical sets, namely V 0, V + and V −.

Theorem 4.2.9. Let G ∈ G−v and |V (G)| = n. Then the following properties

hold.

(i) n− γ(G) ≤ |V 0| ≤ n

(ii) 0 ≤ |V +| ≤ γ(G)

(iii) 0 ≤ |V −| ≤ γ(G)

Proof. Let S be an EDS of G. Then |S| = γ(G). It follows from Theorem 4.2.8

(or Remark 4.2.5) that V 0 ⊇ V − S and hence, |V 0| ≥ |V − S| = n − γ(G).

Further, if a vertex u is in S, then either u ∈ V 0 or u may be γ-critical. Thus,

|V 0| ≤ (n− γ(G)) + γ(G) = n. Hence, result (i) holds. Next, results (ii) and (iii)
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hold trivially from the upper and lower bounds on |V 0| in condition (i) and the

facts that V + ⊆ S and V − ⊆ S.

It is known that if a graph G has no isolated vertices, then γ(G) ≤ bn
2
c (Refer to

(Haynes et al., 1998)). This fact along with Theorem 4.2.9 leads to the following

corollary.

Corollary 4.2.9.1. If G ∈ G−v and G has no isolated vertex, then

(i) dn
2
e ≤ |V 0| ≤ n

(ii) 0 ≤ |V +| ≤ bn
2
c

(iii) 0 ≤ |V −| ≤ bn
2
c

Remark 4.2.6. In general, it is known for an arbitrary graph that, |V 0| ≥ 2|V +|

(refer to (Haynes et al., 1998)). But, it is evident from Corollary 4.2.9.1 that for

any graph G ∈ G−v having no isolated vertex, |V 0| ≥ |V +| and |V 0| ≥ |V −|.

The following proposition shows that if G ∈ E , then for any u ∈ V (G) such that

G− u ∈ E and u ∈ V −, no neighbor of u can be a pendant vertex.

Proposition 4.2.10. Let G ∈ E and u ∈ V (G) such that G− u ∈ E . If u ∈ V −,

then degG(x) ≥ 2, for every x ∈ NG(u).

Proof. Let u ∈ V −. Suppose that x is a pendant vertex adjacent to u. Then,

in G − u, x becomes an isolated vertex and x must be included in every EDS of

G − u. Thus, |NG(u) ∩ Su| ≥ 1, for every EDS Su of G − u, contradicting that

u ∈ V −. Thus, deg(x) ≥ 2 for all x ∈ N(u).

It follows from Corollary 4.2.8.2 that if u ∈ V +, then every EDS of G − u will

contain at least two neighbors of u and hence, the following proposition follows

trivially.

Proposition 4.2.11. Let G ∈ E with γ(G) > 1. If degG(u) = 1 and u is in every

EDS of G, then u 6∈ V +.
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Procedure to construct an EDS of G− u, knowing an EDS of G: Sum-

marizing the discussions above, to facilitate an easier comparison of γ(G) and

γ(G−u), an EDS of G−u is generated from that of G as follows: Let G ∈ E and

u ∈ V (G) such that G− u ∈ E . Let S be an arbitrary EDS of G such that u ∈ S.

Then, using Lemma 4.2.7, it is possible to generate an EDS of G−u starting with

S − {u} using one of the following operations:

O1 : Generate a set S ′ ⊆ V (G−u) by appending one or more vertices from NG(u)

to S − {u} so as to efficiently dominate NG(u) and thereby, to efficiently

dominate V (G− u). (or)

O2 : Generate a set S ′ ⊆ V (G − u) by deleting one or more vertices in S − {u}

such that each vertex removed from S−{u} is replaced by exactly one of its

neighbors in V (G− u)− (S − {u}). However, it can be noted that for each

x ∈ NG(u) and for each y ∈ S − {u}, dG(x, y) = dG−u(x, y) ≥ 2 and hence,

none of the vertices in NG(u) can replace any of the vertices in S − {u}.

Therefore, the set S ′ generated here may or may not be an EDS of G− u.

O3 : If the set S ′ generated using operation O2 does not dominate some vertices

in V (G − u), then, further addition of one or more suitable vertices from

NG(u) will result in an EDS of G− u.

Remark 4.2.7. It is noted from the above construction that while performing

operation O2, each vertex removed from S − {u} is replaced by exactly one of its

neighbors. Now, suppose that Su is an EDS of G−u generated from S−{u} using

the above procedure. Then, the following properties are inferred.

(a) If Su is generated from S − {u} using operation O1 and |Su ∩ NG(u)| = 1,

then γ(G − u) = γ(G). On the other hand, if |Su ∩ NG(u)| > 1, then

γ(G− u) > γ(G).

(b) If Su is generated from S − {u} using operation O2, then |Su| = |S − {u}|

and hence, γ(G− u) < γ(G).
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(c) Suppose that Su is generated from S−{u} using O3, then, γ(G−u) = γ(G)

if |Su ∩N(u)| = 1 and γ(G− u) > γ(G) if |Su ∩N(u)| > 1.

Figures 4.1, 4.2, 4.3 and 4.4 are used to illustrate the above construction with a

note on the properties listed above. Notice that for the graph G given in Figure

4.1, the set S = {2, 6} is an EDS of G. By choosing u = 2, the set S−{u} (= {6})

dominates all vertices of G − {2} except N(2). Therefore, to dominate N(2)

in G − u, the set S − {u} is extended by adding two neighbors of 2, namely 1

and 3 (operation O1) so that {1, 3, 6} forms an EDS of G − u. As mentioned in

Remark 4.2.7, in this case, γ(G − u) > γ(G). Similarly, in Figure 4.2, the set S ′

is generated as an EDS of G − {1} from S − {1} using operation O2 alone and

γ(G − {1}) < γ(G). In Figure 4.3, the set S ′ is obtained as an EDS of G − {2}

from S − {2} using both the operations O3 such that |S ′ ∩ N(2)| = 3 > 1 and

hence, γ(G − {2}) > γ(G). Also, in Figure 4.4, S ′ is generated as an EDS of

G− {1} using O3. But |S ′ ∩N(1)| = 1 and hence, γ(G− {1}) = γ(G).

b b b b b b

b

1 2 4

3

5 6 7

Figure 4.1: A graph G ∈ E with S = {2, 6} as its EDS; The set {1, 3, 6} is
obtained as an EDS of G− {2} using operation O1

b

b

b

b b

b

b

1

2 3

4 5

6 7

Figure 4.2: A graph G ∈ E with S = {1, 6, 7} as its EDS; The set S ′ = {4, 5} is
obtained as an EDS of G− {1} using operation O2

In general, it is known that a graph G ∈ CV R if and only if V (G) = V − (refer

to (Haynes et al., 1998)). However, when restricted to the class of efficiently
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Figure 4.3: A graph G ∈ E with S = {2, 6, 9} as its EDS; The set
S ′ = {1, 3, 4, 7, 9} is got as an EDS of G− {2} using O3

b b b b b

b b b b b

1 2 3 4 5

6 7 8 9 10

Figure 4.4: S ′ = {3, 6, 10} is got as an EDS of G− {1} using O3

(Replacing every vertex of S − {1} by exactly one its neighbors, where
S = {1, 5, 8})

dominatable graphs, the following characterization is obtained for a graphG ∈ G−v

to be in CV RE .

Theorem 4.2.12. Let G ∈ G−v. Then, G ∈ CV RE if and only if G ∼= mK1, for

m ≥ 1.

Proof. Let G ∼= mK1, for m ≥ 1. Then, as every vertex in G is γ−-critical, it

follows that G ∈ CV RE . Conversely, let G ∈ CV RE and S be an EDS of G.

Then, for all u ∈ V (G), γ(G − u) 6= γ(G). That is, V 0 = ∅ and thus it follows

from Remark 4.2.5 that V − S = ∅. Hence, S = V (G) and this is possible only if

deg(u) = 0, for all u ∈ V (G). Equivalently, G ∼= mK1, where m ≥ 1.

Remark 4.2.8. Let G ∈ G−v. Then, it follows from the proof of Theorem 4.2.12

that V 0 = ∅ if and only if G ∼= mK1 if only if V (G) = V −.

It was discussed in Remark 4.2.5 that if G ∈ E and S is an EDS of G, then

V 0 ⊇ V − S and hence, |V 0| ≥ n− γ(G). The following result characterizes those

graphs G in G−v for which V 0 = V − S or equivalently, for which V + ∪ V − = S,

for any EDS S of G.
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Theorem 4.2.13. Let G ∈ G−v. Then, |V 0| = n − γ(G) if and only if G has a

unique EDS.

Proof. Suppose that G has a unique EDS, say S. Then, by Theorem 4.2.8, every

vertex u ∈ S is γ-critical and hence, S ∩ V 0 = ∅. In other words, V 0 = V − S.

Therefore, |V 0| = n− γ(G).

Conversely, let |V 0| = n− γ(G). Suppose that S is an arbitrary EDS of G. Then,

as V 0 ⊇ V − S and |S| = γ(G), it follows from the hypothesis that V 0 = V − S.

Therefore, every vertex in S must be γ-critical. Hence, by Theorem 4.2.8, each

vertex u ∈ S must be included in every other EDS of G. Since S is arbitrary EDS,

this is true for every EDS of G and hence, S is unique.

Theorem 4.2.14. Let G be a graph of order n such that G ∈ G−v and has a

unique vertex, say u, of degree (n− 1), then V 0 ∪ V + = V (G), where V + = {u}.

Proof. Let u be the unique vertex of degree n−1 in G. Then, S = {u} is the EDS

of G and γ(G) = 1 = |S|. Clearly, every vertex v ∈ V (G)− {u} must be in V 0.

Since, u is the unique vertex of degree n− 1, for every v ∈ V (G−u), degG−u(v) ≤

n − 3. In other words, for each vertex v ∈ V (G − u), there exist at least two

vertices in G− u, which are not adjacent to v. Therefore, γ(G− u) > 1 = |S| and

u ∈ V +. Hence, the result follows.

It follows from the definition of critical sets that for any graph G, the sets V 0,

V − and V + are disjoint and one or more of these sets together form a partition

of V (G). It has been proved in Haynes et al. (1998) that if u ∈ V + and v ∈ V −,

then u and v are not adjacent. In Theorem 4.2.15 to follow, it is shown that for

any graph G ∈ G−v, such that γ(G) ≤ 2, V (G) is the union of V 0 and either of V +

or V − (but not both). That is, the sets V + and V − do not exist simultaneously.

Further, it is shown in Theorem 4.2.16 that, for any connected graph G, if G ∈ E ,

then for any u ∈ V + and v ∈ V −, dG(u, v) ≥ 4.

Theorem 4.2.15. Let G ∈ G−v such that G is connected and γ(G) ≤ 2. Then

either V (G) = V 0 or V (G) = V 0 ∪ V − or V (G) = V 0 ∪ V +.
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Proof.

Case(i): γ(G) = 1

Suppose thatG has exactly one vertex of degree n−1, then it follows from Theorem

4.2.14 that V (G) = V 0 ∪ V +, where |V +| = 1. On the other hand, if G has at

least two vertices of degree n − 1, then V (G) = V 0. Thus, if γ(G) = 1, then

V (G) = V 0 ∪ V +.

Case(ii): γ(G) = 2

Suppose that S = {u, v} is an EDS of G. Then dG(u, v) = 3. Clearly, each vertex

in V − S is in V 0. Now, suppose at least one of u and v is in V 0, or both u and v

are in V + or both u and v are in V −, then the result follows immediately.

So, suppose that only one of u and v is in V + and the other is in V −. Without

loss of generality, let u ∈ V + and v ∈ V −. Then, as u ∈ V +, |NG(u) ∩ Su| ≥ 2,

for every EDS Su of G − u. This, in turn implies that, there exist at least two

vertices, say, x and y in NG(u) such that dG−u(x, y) ≥ 3.

Since v ∈ V −, γ(G − v) = 1. Let Sv be an EDS of G − v, where Sv = {x}.

Then, it follows from Corollary 4.2.8.2 that x /∈ NG(v) or equivalently, x ∈ NG(u).

And, x dominates all vertices in V (G − v). Therefore, for each pair of vertices

y, z ∈ NG(u), dG−v(y, z) = dG−u(y, z) ≤ 2, which is a contradiction. Hence, the

result follows.

Theorem 4.2.16. Let G ∈ G−v such that G is connected and γ(G) ≥ 3. Then,

for any u ∈ V + and v ∈ V −, dG(u, v) ≥ 4.

Proof. Let u ∈ V + and v ∈ V −. Let S be an EDS of G. Then, u, v ∈ S. Suppose

that dG(u, v) = 3. Consider the induced subgraph G∗ =< N [u]∪N [v] >. As G is

connected, G∗ is also connected and G∗ ∈ E with the set S∗ = {u, v} as its EDS.

Then, a similar argument as in case(ii) of Theorem 4.2.15 leads to a contradiction

to the hypothesis. Thus, dG(u, v) ≥ 4.

It was shown in Theorem 4.2.12 that a graph G ∈ G−v belongs to the class CV RE

if and only if G ∼= mK1, for m ≥ 1. Hence, if G ∈ E and G � mK1, then G may

or may not be in UV RE . The following section examines the properties of those

graphs belonging to the class UV RE .
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4.2.3 The UV RE Class

Every graph has a dominating set. But not all graphs have an efficient dominating

set. Hence, it follows from the definition of UV RE that UV RE is a subclass of

UV R . In Section 4.2.1, some of the well-known graphs belonging to the class

UV RE were identified and discussed. This section attempts to further explore the

existence of other graphs belong to the class UV RE and provides a characterization

for those graphs belonging to this class.

Theorem 4.2.17. Let G ∈ E such that G has at least two disjoint efficient dom-

inating sets. Then, G− u ∈ E , for all u ∈ V (G).

Proof. Let G ∈ E and S1 and S2 be two efficient dominating sets of G such that

S1 ∩ S2 = ∅. Let u ∈ V (G).

Case(i): u /∈ S1 ∪ S2

Clearly, both S1 and S2 are EDS of G − u. Hence, G − u ∈ E . In particular,

γ(G− u) = |S1| = |S2| = γ(G) and hence, u ∈ V 0.

Case (ii): Either u ∈ S1 or u ∈ S2

Without loss of generality, let u ∈ S1. Then, as S1∩S2 = ∅, u 6∈ S2. Since u 6∈ S2,

by Case(i), S2 is an EDS of G− u. Thus, G− u ∈ E . Here, γ(G− u) = γ(G) and

u ∈ V 0.

Hence, it follows from both the cases that u ∈ V 0, for all u ∈ V (G).

Remark 4.2.9.

(i) It is evident from the proof of Theorem 4.2.17 that if G has at least two

disjoint efficient dominating sets, then G ∈ UV RE .

(ii) The converse of the Theorem 4.2.17 is not true. For instance, if n 6≡ 2 (mod

3), Pn − u ∈ E , for all u ∈ V (Pn). But, Pn has a unique EDS when

n 6≡ 2 (mod 3).

The following theorem gives a necessary and sufficient condition for a graph

G ∈ G−v to be in the UV RE class.
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Theorem 4.2.18. Let G be a graph of order n, where n ≥ 2. Then, G ∈ UV RE

if and only if G has k efficient dominating sets S1, S2, . . . , Sk (k ≥ 2) such that

∩ki=1Si = ∅.

Proof. Let S1, S2, . . . , Sk be k distinct efficient dominating sets of G. Then, |Si| =

γ(G), for all i ∈ {1, 2, . . . , k}. Let u ∈ V (G).

Case (i): u 6∈ Si, for all i ∈ {1, 2, . . . , k}.

Then, each Si (1 ≤ i ≤ k) will be an EDS of G − u. Hence, G − u ∈ E and

γ(G− u) = γ(G). Therefore, u ∈ V 0.

Case (ii): u ∈ Si for some i, where 1 ≤ i ≤ k.

Then, as k ≥ 2 and ∩ki=1Si = ∅, there exists at least one j 6= i (1 ≤ i, j ≤ k) such

that u 6∈ Sj. Since u 6∈ Sj, Sj is an EDS of G − u and hence, G − u ∈ E . Thus,

γ(G− u) = γ(G) and u ∈ V 0.

Thus, it follows from both the cases that u ∈ V 0, for all u ∈ V (G) and hence, G ∈

UV RE .

Conversely, let G ∈ UV RE . Then, for each u ∈ V (G), G− u ∈ E and γ(G− u) =

γ(G). In other words, u ∈ V 0, for all u ∈ V (G). Further, γ(G) ≥ 1.

Let S be an EDS of G and u ∈ S. Then, as n ≥ 2, V − S 6= ∅. Let v ∈ V − S.

Clearly, both u and v are in V 0. Therefore, it follows by Theorem 4.2.8 that,

corresponding to the vertex u ∈ S, there exists an EDS of G, say S ′, which does

not contain u. If S ∩ S ′ = ∅, then the result holds. On the other hand, suppose

S ∩ S ′ 6= ∅, there exists a vertex w ∈ S ∩ S ′. Then, as w ∈ V 0, by a similar

argument as above, there exists another EDS of G, say S ′′, not containing w. If

S ∩ S ′ ∩ S ′′ = ∅, then the result holds. If not, then as G is finite, continuing the

above process will result in at least two efficient dominating sets which satisfy the

required conditions. Hence, the result follows.

Remark 4.2.10. It is evident from Theorem 4.2.18 that G ∈ UV RE if and only

if for each vertex u ∈ V (G), there exists an EDS of G which does not contain u.

Corollary 4.2.18.1. Let G ∈ G−v. If G has at least two vertices of degree (n−1),

then G ∈ UV RE .
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4.3 Edge Removal

Similar to the categorization of graphs with respect to vertex removal, the following

classes are defined with respect to the removal of edges:

• G3 = {G : G ∈ E and G− e ∈ E , for some e ∈ E(G)}

• G4 (or G−e) = {G : G ∈ E and G− e ∈ E , for all e ∈ E(G)}

In order to study the influence of edge removal on efficient domination, it is re-

quired that both G and G− e, for some e ∈ E(G), to be efficiently dominatable.

Hence, only those graphs G are considered, for which both G ∈ E and G− e ∈ E ,

for some e ∈ E(G). That is, graphs G ∈ G3. For e ∈ E(G), the edge e is

(a) γ-critical if γ(G− e) 6= γ(G)

(b) γ+-critical if γ(G− e) > γ(G)

(c) γ−-critical if γ(G− e) < γ(G)

Accordingly, the following two categorization of graphs are defined:

(a) UERE = UER ∩ G−e

(b) CERE = CER ∩ G−e

Remark 4.3.1. (Haynes et al., 1998) Let G ∈ G−e. Then, the removal of an edge

may increase the cardinality of an efficient dominating set by exactly one and in

any case, it will not decrease γ(G). Hence, if an edge e ∈ E(G) is γ-critical, then

γ(G − e) = γ(G) + 1. In other words, a γ-critical edge is always γ+-critical and

ER− = ∅.

4.3.1 Results on some well-known graphs

Proposition 4.3.1. For n ≥ 1, K1, n ∈ CERE .
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Proof. Let V (K1, n) = {u0, u1, . . . , un}, where u0 is the central vertex. Then,

S = {u0} will be an EDS of K1, n. For any edge e ∈ E(K1, n), e = u0ui, where

i 6= 0 and 1 ≤ i ≤ n. Then, K1, n − e = K1, n−1 ∪ {ui}. Thus, γ(K1, n − e) =

γ(K1, n−1) + 1 = 2 > γ(K1, n). Hence, K1, n ∈ CERE .

Proposition 4.3.2. For n ≥ 2, Kn ∈ UERE .

Proof. Let V (Kn) = {u1, . . . , un}. Then, S = {ui}, for any 1 ≤ i ≤ n, will be an

EDS of Kn. It can be observed that, for any edge e = uiuj, the set S = {uk},

where k 6= {i, j} and k ∈ {1, 2, . . . , n}, still forms an EDS of Kn − e. Therefore,

γ(Kn) = γ(Kn − e), for all e ∈ E(Kn). Hence, Kn ∈ UERE .

Proposition 4.3.3. For n ≥ 3, Cn ∈ UERE , if and only if n ≡ 0 (mod 3).

Proof. Let V (Cn) = {u1, u2, . . . , un} and n ≡ 0 (mod 3). Then, Cn ∈ E and

γ(Cn) = n
3
. For any edge e ∈ E(Cn), and e = uiuj, for 1 ≤ i, j ≤ n and i 6= j,

Cn − e ∼= Pn−1. It follows that n − 1 ≡ 2 (mod 3) and γ(Cn − e) = γ(Pn−1) =

dn−1
3
e = n

3
. Thus, γ(Cn) = γ(Cn − e), for any e ∈ E(Cn) and thus, Cn ∈ UERE .

Conversely, Let Cn ∈ UERE . That is, Cn ∈ UER ∩ G−e. If n 6≡ 0 (mod 3), then

Cn /∈ E and hence Cn /∈ UERE , which is a contradiction. Thus, n ≡ 0 (mod 3).

Proposition 4.3.4. For n ≥ 1, Pn ∈ UERE if and only if n ≡ 1 (mod 3).

Proof. Claim: Pn ∈ G−e.

It is known that Pn ∈ E . For any edge e ∈ E(Pn), Pn − e ∼= Pi ∪ Pn−i and hence

S ′ = Si∪Sn−i, where S ′, Si and Sn−i are respectively EDSs of Pn−e, Pi and Pn−i.

Thus, Pn − e ∈ E and hence, Pn ∈ G−e.

For any edge e ∈ E(Pn) and e = uv, the following three cases are discussed:

(i) u /∈ S and v /∈ S, (ii) u /∈ S and v ∈ S and (iii) u ∈ S and v /∈ S.

Let n ≡ 1 (mod 3). Then, γ(Pn) = n+2
3
, where the set S = {u1, u4, . . . , un} forms

an unique EDS of Pn, in which u1, un are pendant vertices. Let e ∈ E(Pn) and

e = uv. For any u /∈ S and v /∈ S, S will be an EDS of Pn − e and hence

γ(Pn) = γ(Pn − e). Let u /∈ S and v ∈ S. Then, Pn − e ∼= Pi ∪ Pn−i. Since,
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n ≡ 1 (mod 3), it follows that i ≡ 0 (mod 3) and n − i ≡ 1 (mod 3). Therefore,

γ(Pn − e) = γ(Pi) + γ(Pn−i) = i
3

+ n−i+2
3

= n+2
3

= γ(Pn). If u ∈ S and v /∈ S,

then since, n ≡ 1 (mod 3), it follows that i ≡ 1 (mod 3) and n − i ≡ 0 (mod 3).

Therefore, γ(Pn − e) = γ(Pi) + γ(Pn−i) = i+2
3

+ n−i
3

= n+2
3

= γ(Pn). Thus, in all

these cases γ(Pn) = γ(Pn − e), for all e ∈ E(G) and hence Pn ∈ UERE .

Conversely, let Pn ∈ UERE . The following cases are considered:

Case (i): n ≡ 2 (mod 3)

In this case, γ(Pn) = n+1
3
, where the set S = {u2, u5, . . . , un} forms an EDS of Pn.

Let e ∈ E(Pn) and e = uv. For u /∈ S and v /∈ S, S will be an EDS of Pn − e and

hence γ(Pn) = γ(Pn − e). Let u /∈ S and v ∈ S. Then, Pn − e ∼= Pi ∪ Pn−i. Since,

n ≡ 2 (mod 3), it follows that i ≡ 1 (mod 3) and n − i ≡ 1 (mod 3). Therefore,

γ(Pn−e) = γ(Pi)+γ(Pn−i) = i+2
3

+ n−i+2
3

= n+4
3
> n+1

3
= γ(Pn). If u ∈ S and v /∈

S, then since, n ≡ 2 (mod 3), it follows that i ≡ 2 (mod 3) and n−i ≡ 0 (mod 3).

Therefore, γ(Pn − e) = γ(Pi) + γ(Pn−i) = i+1
3

+ n−i
3

= n+1
3

= γ(Pn).

Case (ii): n ≡ 0 (mod 3)

In this case, γ(Pn) = n
3
, where the set S = {u2, u5, . . . , un−1} forms an unique EDS

of Pn. Let e ∈ E(Pn) and e = uv. For u /∈ S and v /∈ S, S will be an EDS of Pn−e

and hence γ(Pn) = γ(Pn−e). Let u /∈ S and v ∈ S. Then, Pn−e ∼= Pi∪Pn−i. Since,

n ≡ 0 (mod 3), it follows that i ≡ 1 (mod 3) and n − i ≡ 2 (mod 3). Therefore,

γ(Pn−e) = γ(Pi)+γ(Pn−i) = i+2
3

+ n−i+1
3

= n+3
3
> n

3
= γ(Pn). If u ∈ S and v /∈ S,

then since, n ≡ 0 (mod 3), it follows that i ≡ 2 (mod 3) and n − i ≡ 1 (mod 3).

Therefore, γ(Pn − e) = γ(Pi) + γ(Pn−i) = i+1
3

+ n−i+2
3

= n+3
3
> n

3
= γ(Pn).

Hence, if n ≡ 0 (mod 3) and n ≡ 2 (mod 3), it follows that Pn /∈ UERE .

4.3.2 Properties of Critical edges

In this section, some of the properties possessed by the critical edges in an effi-

ciently dominatable graph are discussed and also, a characterization is obtained

for any edge in an efficiently dominatable graph to be γ-critical.

In general, if G ∈ E and S is an EDS of G, then for any edge e ∈ E(G), at

most one of its end vertices can be in S. That is, if e = uv, then exactly one of
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the following conditions holds: (i) u ∈ S or v ∈ S (ii) u /∈ S and v /∈ S. In the

results to follow, the properties of a critical edge are analyzed by considering the

two cases separately.

If G ∈ E and S is an EDS of G, then for each vertex u ∈ S, generate a set S ′

from S − {u} using one of the following operations:

O′1 : Taking S ′ = S − {u} (or)

O′2 : Replacing one or more vertices of S−{u} by exactly one of their respective

neighbors in V − S − {u}.

Theorem 4.3.5 guarantees that for any edge e = uv in G, if Se is an EDS of G− e

and S is an EDS of G containing either u or v, then it is always possible to relate

S and Se. Perhaps, this helps in generating an EDS of G − e knowing an EDS

of G.

Theorem 4.3.5. Let e = uv ∈ E(G). Let S and Se be an EDS of G and G − e

respectively. For a vertex u ∈ S, if S ′ = Se − NG[u], then one of the following

holds:

(i) S ′ = ∅

(ii) S ′ = S − {u}

(iii) S ′ is a set generated from S − {u} using the operation O′2.

Proof. Let u ∈ S and S ′ = Se − NG[u]. Clearly, if γ(G) = 1, then S ′ = ∅. So,

assume that γ(G) ≥ 2. Then, Se = S ′ ∪ (NG[u] ∩ Se). Since Se is an EDS, it

follows that (NG[u]∩Se)∩NG[S ′] = ∅. Suppose that γ(G) ≥ 2 and S1 = S−{u}.

If Se = S1∪ (NG[u]∩Se), then S ′ = S1 = S−{u}. Otherwise, apply the operation

O′2 repeatedly for elements of S1 and generate S ′ until S ′ ∪ (NG[u]∩ Se) forms an

EDS of G− e and is equal to Se. Thus in this case, S ′ is generated from S − {u}

using the operation O′2.

Remark 4.3.2. Let S ′ be a set generated from S − {u} using the conditions in

Theorem 4.3.5.
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(i) It follows from Theorem 4.3.5 that |S ′| = |S1| = |S| − 1.

(ii) For any edge e = uv in E(G), either |NG[u] ∩ Se| = 1 or |NG[u] ∩ Se| = 2.

It follows from the above discussion that under the conditions of Theorem 4.3.5,

|Se| = |S ′|+ |NG[u] ∩ Se|.

If |NG[u] ∩ Se| = 1, then |Se| = |S ′|+ 1 = |S| which implies that e ∈ ER0.

If |NG[u] ∩ Se| = 2, then |Se| = |S ′|+ 2 = |S|+ 1 which implies that e ∈ ER+.

Suppose that e ∈ E(G), where e = uv and if S is an EDS of G not containing both

u and v, then S will also be an EDS of G − e and hence, the following theorem

follows.

Theorem 4.3.6. Let e ∈ E(G) and e = uv. If there exists an EDS of G, say S,

such that u 6∈ S and v 6∈ S, then e ∈ ER0.

Proof. Let S = {u1, u2, . . . , uk} be an EDS of G. Let e ∈ E(G), where e = uv

be such that u 6∈ S, v 6∈ S. Then, the vertices u and v are efficiently dominated

either by the same element, say u1, of S or by two different elements of S, say

u ∈ NG(u1) and v ∈ NG(u2), where u1, u2 ∈ S. In G − e, u and v are still

dominated by the same elements of S. Thus, S will still remain as an EDS of

G− e and γ(G− e) = γ(G). That is, e ∈ ER0.

Theorem 4.3.7. Let G ∈ E and G− e ∈ E , for e ∈ E(G). Let e = uv such that

deg(v) = 1. Then, e is γ-critical if and only if G has an EDS not containing v.

Proof. Let e ∈ E(G), where e = uv and deg(v) = 1. Then, G−e ∼= G1∪G2, where

G1
∼= G− v and G2

∼= K1 with V (G2) = {v}. Let e be γ-critical and suppose that

v is in every EDS of G. Then, clearly γ(G) > 1 and hence by Corollary 4.2.11,

v ∈ V −. Therefore, γ(G1) = γ(G)− 1 and hence, γ(G− e) = γ(G), contradicting

that e is γ-critical.

Conversely, let S be an EDS of G not containing v, then S will also be an EDS of

G− v. Hence, γ(G− e) = γ(G) + 1, which implies that e ∈ ER+. In other words,

e is γ-critical.
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Remark 4.3.3. It is evident from Theorem 4.3.7 that if G has a unique EDS, say

S and v ∈ S where deg(v) = 1, then the edge incident with v is in ER0.

Corollary 4.3.7.1. Let G ∈ E and G− e ∈ E , for e ∈ E(G). If e ∈ ER0, where

e = uv and if u belongs to an EDS of G, then deg(v) ≥ 2.

Next, the properties of those edges with one of the end vertices in an EDS of G

are examined. In the theorem to follow, a characterization is obtained for such an

edge to be in ER0.

Theorem 4.3.8. Let G ∈ E and G− e ∈ E , for e ∈ E(G) and e = uv. Suppose

that G has an EDS containing u. Then, e ∈ ER0 if and only if v is not in any

EDS of G− e.

Proof. Suppose that v is not in any EDS of G − e. Let Se be an EDS of G − e.

Clearly v /∈ Se and |NG−e[u] ∩ Se| = 1. Two cases arise: u /∈ Se and u ∈ Se.

Suppose u /∈ Se, then Se will also be an EDS of G and hence, e ∈ ER0.

On the other hand, if u ∈ Se, then as v /∈ Se, |NG[u]∩Se| = 1. Hence, as discussed

in Remark 4.3.2, e ∈ ER0. Conversely, let e ∈ ER0. Suppose that G − e has an

EDS, say Se, such that v ∈ Se. Then, |NG[u]∩Se| = 2 and hence by Remark 4.3.2,

e ∈ ER+, which is a contradiction. Therefore, v is not in any EDS of G− e.

Corollary 4.3.8.1. Let G ∈ E and G − e ∈ E , for e ∈ E(G) where e = uv.

If G has an EDS containing u, then e ∈ ER+ if and only if G − e has an EDS

containing v.

4.3.3 Efficiently Dominatable graphs belonging to the set

G−e

In this section, the edge critical sets ER0, ER+ in the class of efficiently domi-

natable graphs are characterized. Also, two classes of graphs namely, UERE and

CERE are defined and characterized. Throughout this section, it is assumed that

every graph G belongs to the class G−e, unless stated otherwise.
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Observation 4.3.1. Let e ∈ E(G), where e = uv. Let S be an EDS of G such

that u ∈ S. If Se, Su denote EDS of G− e and G− u respectively, then v ∈ Se if

and only if v ∈ Su.

Theorem 4.2.9 says that V (G) = V 0 ∪ V − if and only if |NG(u) ∩ Su| ≤ 1, for

all u ∈ V (G). In other words, if there exists a vertex v ∈ V (G) such that

v 6∈ NG(u) ∩ Su, for any EDS Su of G− u, then V (G) 6= V +.

Theorem 4.3.9. Let G ∈ G−v and G− e ∈ E , for e ∈ E(G) and e = uv. Suppose

that G has an EDS containing u. Then, e ∈ ER0 if and only if v is not in any

EDS of G− u.

Proof. Since u ∈ S, u ∈ V 0 or u ∈ V − or u ∈ V +. Let Se and Su be EDS of G− e

and G − u respectively. Assume that v /∈ Su. Then, it follows from Observation

4.3.1 that v /∈ Se. Hence, by Theorem 4.3.8, e ∈ ER0.

Conversely, let e ∈ ER0. Suppose that S = V 0 ∪ V − ∪ V +. Then, the following

cases occur:

Case (i): u ∈ V 0

Then, by Theorem 4.2.9, |NG(u) ∩ Su| = 1 and Su is also an EDS of G. Suppose

that v ∈ Su. Then, by Observation 4.3.1, v ∈ Se. Since NG[u] is efficiently

dominated by either u or v, it follows that u ∈ Se. As u ∈ Se and v ∈ Se,

Corollary 4.3.8.1 implies that e ∈ ER+, which is a contradiction.

Case (ii): u ∈ V −

Then, |NG(u) ∩ Su| = 0 and |Su| = |S| − 1. Then, it follows trivially that v /∈ Su,

as uv ∈ E(G).

Case (iii): u ∈ V +

Then, |NG(u) ∩ Su| ≥ 2 and |Su| > |S|.

Subcase (a): |NG(u) ∩ Su| = 2

Let v, w ∈ NG(u)∩Su. Then, w efficiently dominates u in G−uv, and v efficiently

dominates u in G− uw. Hence, Su is an EDS of both G− uv and G− uw. Thus,

e ∈ ER+ and e = uw ∈ ER+ and in both the cases |Se| = |Su| = |S| + 1. For

x /∈ NG(u) ∩ Su, Observation 4.3.1 implies that x /∈ Se. Since u is in every EDS

of G, u ∈ Se. In this case u ∈ Se and x /∈ Se, and Theorem 4.3.8 implies that
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e = ux ∈ ER0.

Subcase (b): |NG(u) ∩ Su| > 2

Since u is in every EDS of G, u ∈ Se. If v ∈ NG(u) ∩ Su, then by Observation

4.3.1, v ∈ Se and hence e ∈ ER+. If v /∈ NG(u) ∩ Su, then v /∈ Se and it follows

that e ∈ ER0.

Remark 4.3.4. For any graph G ∈ G−e, it can be concluded from Theorems 4.3.8

and 4.3.9 together with Theorem 4.3.6 that E(G) = ER0 if and only if for every

edge e = uv in E(G), v is not in any EDS of G−u if and only if for every e = uv

in E(G), v is not in any EDS of G− e.

The Property P:

In the discussions to follow, a graph G is said to satisfy the property P, if for

every pair of vertices u, v ∈ V (G), there exists an EDS of G not containing both u

and v. All graphs having at least three pairwise disjoint efficient dominating sets

satisfy Property P. For example, cycles C3n, complete graphs Kn.

The characterization for the class UERE follows.

Theorem 4.3.10. G ∈ UERE if and only if one of the following holds:

(i) Graph G satisfies Property P.

(ii) If S is an EDS of G and e ∈ E(G), where e = uv such that one of its end

vertices, say u ∈ S, then for every EDS Su of G− u, either NG(u)∩ Su = ∅

or NG(u) ∩ Su is not unique.

Proof. The necessary condition follow from Theorems 4.3.6 and 4.3.9.

Conversely, let G ∈ UERE . Then, e ∈ ER0, for all e ∈ E(G). Let e ∈ E(G),

where e = uv and Se be an EDS of G− e. It follows from the Theorem 4.3.9 that

v /∈ Se.

Case(i): u /∈ Se and v /∈ Se.

Then, Se is an EDS of G also. Therefore, there exists an EDS of G not containing

both u and v. As this holds for all e ∈ E(G), G satisfies Property P.

Case(ii): u ∈ Se and v /∈ Se.

98



By the discussion in the Theorem 4.3.9, it follows that u ∈ Se and v /∈ Se will hold

only if v /∈ NG(u) ∩ Su, for every EDS Su of G− u. That is, for every EDS Su of

G− u, either NG(u) ∩ Su = ∅ or NG(u) ∩ Su is not unique.

Remark 4.3.5. Let G ∈ UERE and G ∈ G−v. It follows that if condition (ii) of

Theorem 4.3.10 is satisfied, then V (G) = V 0 ∪ V −. Equivalently, if G ∈ UERE ,

then V + = ∅.

Theorem 4.3.6 says that for any e ∈ E(G) and e = uv, if e ∈ ER+, then one its

end vertices should be in an EDS of G. If this were to hold for all the edges of G,

then |E(< V − S >)| = 0, where S is an EDS of G. Also, as G is connected, it

follows that γ(G) = 1. This is stated in the result below.

Theorem 4.3.11. For any graph G, G ∈ CERE if and only if G ∼= K1, n.

Next, the effect of edge removal is discussed on G ∈ G whose γ(G) = 1.

Theorem 4.3.12. Let G ∈ G−e with γ(G) = 1. If G has an unique EDS, then

E(G) = ER0 ∪ ER+.

Proof. Let e ∈ E(G), where e = uv and S be an unique EDS of G. If u /∈ S

and v /∈ S, Theorem 4.3.6 implies that e ∈ ER0. Without loss of generality, let

S = {u}.

Case(i): G− e is connected

Then, rad(G− e) = 2 and hence γ(G− e) ≥ 2. Thus, e ∈ ER+.

Case(ii): G− e is disconnected

Let G1 and G2 be the two components of G − e. Since γ(G) = 1, it follows that

deg(v) = 1. Let G1 = {v} and G2 = G − v. Then, γ(G1) = 1 and γ(G2) = γ(G)

(since v /∈ S). Therefore, γ(G − e) = γ(G1) + γ(G2) = 1 + γ(G), which in turn

implies that e ∈ ER+.

Thus, in all these cases E(G) = ER0 ∪ ER+.

It is known that for G with γ(G) = 1, V (G) = V 0 ∪ V +. Hence, by Theorems

4.3.10 and 4.3.12, the result follows.
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Theorem 4.3.13. For every graph G ∈ G−e with γ(G) = 1, G ∈ UERE if and

only if G satisfies Property P.

Proposition 4.3.14. The property P does not hold for any efficiently dominatable

tree.

Proof. Let T be a tree and T ∈ E . Since δ(T ) = 1, there can be at most two pair

wise disjoint efficient dominating sets. Suppose that v0 is a pendant vertex and

v0 ∈ NT (v1). Then, every EDS of T contains either v0 or v1. Hence, property P

does not hold for the edge e = v0v1.

With the observation made in Proposition 4.3.14 and from Theorem 4.3.10, the

result follows.

Theorem 4.3.15. For any tree T ∈ G−v, T ∈ UERE if and only if V − forms an

EDS of T .

Proof. Let T ∈ G−v and S be an EDS of T . Let e ∈ E(T ) and e = uv such that

one of its end vertices belong to S, say u ∈ S. Since δ(T ) = 1, for every EDS

Su of G− u, either NT (u) ∩ Su = ∅ or v ∈ NT (u) ∩ Su. By Proposition 4.3.14, it

follows that T ∈ UERE if and only if condition (ii) of Theorem 4.3.10 holds. Thus,

T ∈ UERE if and only if S = V −, or in other words, V − is an EDS of T .

4.4 Edge Addition

Analogous to the classes of efficiently dominatable graphs defined with respect

to vertex removal and edge removal, the following two classes are defined with

respect to edge addition.

• G3 = {G : G ∈ E and G+ e ∈ E , for some e ∈ E(G)}

• G4 (or G+e) = {G : G ∈ E and G+ e ∈ E , for all e ∈ E(G)}

In order to study the influence of edge addition on efficient domination, it is

required that both G and G + e are efficiently dominatable. Hence, only those
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graphs G are considered where both G and G+e are efficiently dominatable, where

e ∈ E(G). Equivalently, the graph G ∈ G3 is considered.

Similar to the categorization of graphs defined with respect to vertex removal and

edge removal, the following categorization of graphs are defined, with respect to

edge addition.

(a) UEAE = UEA ∩ G+e

(b) CEAE = CEA ∩ G+e

Remark 4.4.1. (Haynes et al., 1998) Let G ∈ G+e. Adding an edge cannot

increase the cardinality of an EDS of G, but can decrease γ(G) by at most one.

Hence, EA+ = ∅ and for any graph G in CEAE , γ(G + e) = γ(G) − 1, for all

e ∈ E(G).

4.4.1 Results on some well-known graphs

The following classes of graphs belong to the class UEAE :

Proposition 4.4.1. For n ≥ 1, K1, n ∈ UEAE .

Proof. Let V (K1, n) = {u0, u1, . . . , un}, where u0 is the central vertex. Then,

S = {u0} will be an EDS of K1, n. For any edge e ∈ E(G), e = uiuj, where i 6= j

and 1 ≤ i, j ≤ n. It can be observed that S still forms an EDS of G+e. Therefore,

γ(G) = γ(G+ e) and e ∈ EA0, for any edge e ∈ E(G). Hence, K1, n ∈ UEAE .

Proposition 4.4.2. For n ≥ 1, C3n ∈ UEAE .

Proof. Let V (C3n) = {u1, u2, . . . , u3n}. Clearly, C3n has three pairwise disjoint

EDSs, namely, S1 = {u1, u4, . . . , u3n−2}, S2 = {u2, u5, . . . , u3n−1} and S3 = {u3, u6,

. . . , u3n}. For any e ∈ E(C3n), e = uiuj, where i 6= j and 1 ≤ i, j ≤ 3n. Further,

j 6= i+ 1 and j 6= i− 1. Now, the following two cases are considered:

Case (i): |i− j| ≡ 0 (mod 3)

In this case, both ui and uj belong to the same EDS of C3n. Without loss of

generality, let ui, uj ∈ S1. Then, as the sets S2 and S3 are EDSs of C3n, not
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containing ui and uj, both S2 and S3 dominate V (C3n + e). Further, if u′i and

u′j are the vertices in S2 (or S3) which dominate ui and uj, respectively, then, in

C3n + e, d(u′i, u
′
j) = 3 and d(x, y) ≥ 3, for every other pair of vertices, x, y ∈ S2

(or S3). Therefore, in this case, both S2 and S3 are EDS of C3n + e and hence,

γ(C3n) = γ(C3n + e), for every e ∈ E(C3n).

Case (ii): |i− j| 6≡ 0 (mod 3)

In this case, both ui and uj belong to different EDSs of C3n. Without loss of

generality, let ui ∈ S1 and uj ∈ S2. Then, the set S3 is an EDS of C3n not

containing both ui and uj. By a similar argument as in Case (i), it can be observed

that S3 forms an EDS of C3n + e and hence, γ(C3n) = γ(C3n + e), for every

e ∈ E(C3n).

Thus, in both the cases, e ∈ EA0, for every e ∈ E(C3n) and hence, C3n ∈ UEAE .

Remark 4.4.2. It can be observed in Propositions 4.4.1 and 4.4.2 that in both

K1, n and C3n, the existence of an EDS not containing the end vertices of any newly

added edge, guarantees that their domination number does not alter due to edge

addition and hence, they belong to the class UEAE . This property is generalized in

Theorem 4.4.4 (or Remark 4.4.4) and is proved to be true for an arbitrary graph.

This in turn results in the identification of few other well known graphs belonging

to the class UAEE , as listed in Observation 4.4.1.

4.4.2 Main Results

In this section, investigation is made on some properties of edges that are critical

with respect to edge addition. Also, such critical edges are characterized.

In the following theorem, a constructive procedure is given to relate an EDS

of G with an EDS of G + e, which helps further in comparing the γ(G) value of

G and G+ e.

Theorem 4.4.3. Let G ∈ E and e ∈ E(G), where e = uv. If G has an EDS

containing both u and v and if S ′ is an EDS of G+e, then |S ′−(NG[u]∪NG[v])| =

γ(G)− 2.
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Proof. Let γ(G) = k and S = {u, v, u1, u2, . . . , uk−2} be an EDS of G. Let

S1 = S − {u, v} and S ′ be an EDS of G + e. Then, as S is a 2-packing of

G, NG[u] ∩ NG[ui] = ∅ and NG[v] ∩ NG[ui] = ∅, for 1 ≤ i ≤ k − 2. Let

T = S ′ ∩ (NG[u] ∪ NG[v]). Clearly, T ⊆ S ′ and T 6= ∅. Further, S1 6= S ′.

Now, by using one of the following two operations, we generate a set S ′1 from S1:

(i) If S1 ⊂ S ′, then, take S ′1 = S1.

(ii) Else, for each vertex x ∈ S1−S ′, replace x by the unique vertex in NG[x]∩S ′.

(As S ′ is an EDS of G + e, for each x ∈ S1 − S ′, the existence of such a unique

neighbor is guaranteed in S ′.) Let the new set generated be S ′1.

Clearly, in either case, |S ′1| = |S1| = |S| − 2 = γ(G) − 2. Further, as S ′ is a

2-packing of G+ e, T ∩NG[S ′] = ∅ or precisely, T ∩ S ′1 = ∅. Also, S ′ ⊇ S ′1 ∪ T .

Claim: S ′ = S ′1 ∪ T

Let S∗ = S ′1 ∪ T . Suppose there exists a vertex w ∈ S ′ − S∗. Then, as S ′

is a 2-packing of G + e, NG[w] ∩ NG[S∗] = ∅. As S ⊆ N [S∗], it follows that

NG[w] ∩ S = ∅, contradicting that S is an EDS of G. Thus, S ′ = S ′1 ∪ T . Hence,

|S ′| = |S ′1|+ |T | = γ(G)− 2 + |T |. This implies that |S ′| − |T | = γ(G)− 2. That

is, |S ′ − (NG[u] ∪NG[v])| = γ(G)− 2.

Remark 4.4.3. If T = S ′ ∩ (NG[u] ∪NG[v]), then as S ′ is a 2-packing of G + e,

|T | is either 1 or 2. Thus, it follows from the discussion in Theorem 4.4.3 that

if |T | = 1, then |S ′| = |S ′1| + 1 = γ(G) − 1. On the other hand, if |T | = 2, then

|S ′| = |S ′1|+ 2 = γ(G).

Corollary 4.4.3.1. Let G ∈ E and let e ∈ E(G), where e = uv. If G has an EDS

containing both u and v and S ′ is an EDS of G + e, then e ∈ EA0 if and only if

|S ′ ∩ (NG[u] ∪NG[v])| = 2.

Suppose G ∈ E and S is an EDS of G, then for any nonadjacent vertex pairs, say

u and v in G, the following cases arise: (i) u /∈ S and v /∈ S (ii) u ∈ S and v ∈ S

(iii) u ∈ S and v /∈ S. Based on these cases, the study is done on the effect of

adding an edge between a pair of vertices, which are not adjacent in G. Each of

these cases are discussed and characterizations are obtained for critical edges.
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Initially, in Theorem 4.4.4 and Corollary 4.4.4.1, the study is made on the

effect of adding an edge between a pair of nonadjacent vertices, both of which

either belong to or do not belong to at least one EDS of G (cases (i) and (ii)

stated above) and obtain a characterization for such an edge to be in the critical

sets EA0 and EA−. Later in Theorem 4.4.5 and Corollary 4.4.5.1, the discussion

is made on the effect of adding an edge falling under Case (iii) stated above and

obtain an independent characterization for such an edge to be in EA0 and EA−.

Theorem 4.4.4. Let G ∈ E , G + e ∈ E , for e ∈ E(G) and e = uv. If either

both u and v belong to an EDS of G, or both do not belong to an EDS of G, then,

e ∈ EA0 if and only if G+ e has an EDS not containing both u and v.

Proof. Let S ′ be an EDS of G+ e, not containing both u and v, then there exist a

pair of vertices, say u′ and v′ in S ′, (where u′ and v′ may or may not be distinct)

such that u, v ∈ NG+e(u
′) ∪NG+e(v

′). Clearly, dG+e(u
′, v′) is either 0 or 3, which

implies that dG(u′, v′) = 0 or dG(u′, v′) ≥ 3. Further, the remaining vertices can

be efficiently dominated in G, by the same vertices as in G + e. Thus, S ′ will be

an EDS of G also. Hence, |S ′| = γ(G) and consequently, e ∈ EA0.

Conversely, let e ∈ EA0. Suppose that one of the end vertices of e belong to S ′.

Without loss of generality, let u ∈ S ′. Since dG+e(u,NG[v]) ≤ 2, NG[v] ∩ S ′ = ∅.

Therefore, |S ′ ∩ (NG[u]∪NG[v])| = 1 and hence, by Theorem 4.4.3, |S ′− (NG[u]∪

NG[v])| = |S ′| − 1 = γ(G) − 2. That is, |S ′| = γ(G) − 1 which implies that

uv ∈ EA−, a contradiction. Hence, the result follows.

Remark 4.4.4. Precisely, it follows from Theorem 4.4.4 that for any nonadjacent

vertex pairs u and v in G, if G has an EDS, say S, not containing both u and v,

then uv ∈ EA0. For, S itself will be an EDS of G+ uv, as well.

Corollary 4.4.4.1. Let G ∈ E , G + e ∈ E , for e ∈ E(G) and e = uv. If G has

either an EDS containing both u and v or an EDS not containing both u and v,

then e ∈ EA− if and only if every EDS of G + e contains either u or v (but not

both).
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Theorem 4.4.5. Let G ∈ E and G+ e ∈ E , for e ∈ E(G), where e = uv. If S is

any EDS of G such that u ∈ S and v /∈ S, then e ∈ EA0 if and only if G+ e also

has an EDS, say S ′, such that v /∈ S ′.

Proof. Let S be an EDS of G. Without loss of generality, let u ∈ S and v /∈ S.

Then there exists say v′ ∈ S, such that v ∈ NG(v′).

Let S ′ be an EDS of G+ e such that v /∈ S ′. Then, the following cases arise:

Case (i): u ∈ S ′

In this case, in G+ e, u will efficiently dominate NG[u] and v. As dG+e(u, v
′) = 2,

the vertex v′ must be efficiently dominated in G+e by exactly one of its neighbors

in NG(v′) other than v. Therefore, |S ′ ∩ (NG[u] ∪ NG[v′])| = 2 and hence by

Corollary 4.4.3.1, e ∈ EA0.

Case (ii): u /∈ S ′

In this case, since S ′ is an EDS of G + e and as u /∈ S ′, v /∈ S ′, it follows that

u is dominated by exactly one of its neighbors in G + e, other than v. Similarly,

v is dominated by exactly one of its neighbors in G + e, other than u. That is,

|S ′∩NG+e[u]| = |S ′∩NG+e[v]| = 1. Further, |S ′∩ (NG[u]∪NG[v])| = 2. Therefore,

by Corollary 4.4.3.1, e ∈ EA0.

Conversely, let e ∈ EA0. Suppose that S ′ is an EDS of G+e such that v ∈ S ′−S.

Then, in G+e, v will efficiently dominate u and v′. Further, for each x ∈ NG(u)∪

(NG(v′)−{v}), dG+e(x, v) = 2. Therefore, except for v, none of the other vertices

in NG[u] ∪ NG[v′] will belong to S ′. In other words, |S ′ ∩ (NG[u] ∪ NG[v′])| = 1.

Hence, it follows from Theorem 4.4.3 that |S ′| = γ(G) − 1. Therefore, e ∈ EA−,

which contradicts our hypothesis and hence, v /∈ S ′.

Corollary 4.4.5.1. Let G ∈ E and G+ e ∈ E , for e ∈ E(G), where e = uv. If S

is any EDS of G such that u ∈ S and v /∈ S, then e ∈ EA− if and only if G + e

has an EDS containing v.

In Section 4.4.2, the edge critical properties in graphs G are discussed, where

G ∈ E and G + e ∈ E , for some e ∈ E(G). That is, those graphs in G3 ∪ G+e

were analyzed. In the next section, the study is done exclusively on those graphs

belonging to the class G+e.
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4.4.3 Changing and Unchanging domination in graphs be-

longing to the class G+e

In this section, the classes UEAE and CEAE are investigated. It is clear from the

definition that to study the two classes UEAE and CEAE , it is necessary for every

edge in E(G) to preserve the efficient domination property. Thus, it is assumed

throughout this section that G ∈ G+e, unless specified otherwise.

Theorem 4.4.6. If G ∈ G+e, then G ∈ CEAE if and only if G ∼= mK1, for

m ≥ 1.

Proof. Let G ∈ G+e. If G ∼= mK1 (m ≥ 1), then for every e ∈ E(G), γ(G + e) <

γ(G) and hence, G ∈ CEAE . Conversely, suppose that G ∈ CEAE and S be

an EDS of G. Suppose G 6= mK1, for any m ≥ 1. Without loss of generality,

let G be connected. Then, G 6= K1 and S ( V (G). Hence, there always exist a

pair of nonadjacent vertices u and v in G such that u /∈ S and v /∈ S. It follows

from Theorem 4.4.4 (or Remark 4.4.4) that the edge uv ∈ EA0, contradicting that

G ∈ CEAE . Hence, G ∼= mK1, where m ≥ 1.

The following theorem by Carrington et al. (1991); Haynes et al. (1998) gives a

characterization for the class UEA.

Theorem 4.4.7. (Haynes et al., 1998) G ∈ UEA if and only if V − = ∅.

Next, the class UEAE is characterized when γ(G) = 1 and when γ(G) ≥ 2; some

necessary/sufficient conditions are obtained for which G lies in the class UEAE .

Theorem 4.4.8. If γ(G) = 1, then G ∈ UEAE .

Proof. Let γ(G) = 1. Then, G ∈ E . Let S = {x} be an EDS of G. Let e ∈ E(G),

where e = uv. Clearly, u 6= x and v 6= x. That is, u, v ∈ V − S. Therefore, it

follows from Theorem 4.4.4 (or Remark 4.4.4) that e ∈ EA0. Since e is arbitrary,

e ∈ EA0, for all e ∈ E(G) and thus, G ∈ UEAE .

Proposition 4.4.9. Let G ∈ G−v. Let e ∈ E(G), where e = uv and S ′ be an EDS

of G+ e. If u ∈ V +, then u ∈ S ′.

106



Proof. Let u ∈ V +. Then, it follows from Theorem 4.2.8 that u is in every EDS

of G. Let e = uv and S ′ be an EDS of G + e. Suppose S ′ does not contain both

u and v, then S ′ will be an EDS of G also, contradicting that u is in every EDS

of G. Then, S ′ must contain either u or v.

Now, suppose u /∈ S ′. Then, v ∈ S ′ and as d(v, x) = 2, for all x ∈ NG[u],

S ′∩NG[u] = ∅. Further, S ′ efficiently dominates all except NG[u] in V (G). Hence,

S ′ will be an EDS of G− u also and thus, u ∈ V − which is a contradiction. Thus,

u ∈ S ′.

Theorem 4.4.10. Let G ∈ G−v and V + 6= ∅. Then, G ∈ UEAE if and only if

γ(G) = 1.

Proof. The sufficient part follows from Theorem 4.4.8. Conversely, let G ∈ UEAE

and S be an EDS of G. Suppose that |S| = γ(G) = k, where k > 1. As V + 6= ∅,

there exists, say u ∈ V +. Then, it follows from Theorem 4.2.8 that u ∈ S. Also,

since γ(G) > 1, there exists v ∈ S such that u and v are nonadjacent in G. Now,

consider the graph G + uv, in which u, v ∈ S. If S ′ is any EDS of G + uv, then

by Proposition 4.4.9, u ∈ S ′ and by Corollary 4.4.5.1, uv ∈ EA−, which is a

contradiction. Thus, γ(G) = 1.

Theorem 4.4.11. Let G ∈ G−v. If γ(G) ≥ 2 and G ∈ UEAE , then V + = ∅ and

V − = ∅. Equivalently, V (G) = V 0.

Proof. Let G ∈ UEAE and γ(G) ≥ 2. Suppose V + ∪ V − 6= ∅. Let u ∈ V + ∪ V −.

Then, either u ∈ V − or u ∈ V + or u lies in both. The following cases are

considered:

Case (i): u ∈ V −

Then, as V − 6= ∅, by Theorem 4.4.7, G /∈ UEA, contradicting our assumption

that G ∈ UEAE .

Case (ii): u ∈ V +

Let S be an EDS of G containing v and S ′ be any EDS of G+uv. As u ∈ V +∪V −,

by Theorem 4.2.8, u ∈ S. Further, as u ∈ V +, by Proposition 4.4.9, u ∈ S ′. Since

S ′ is arbitrary, it follows from Corollary 4.4.4.1 that uv ∈ EA−, contradicting that

G ∈ UEAE .
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Hence, from both the cases it follows that if G ∈ UEAE , then V − = ∅ and V + = ∅.

Equivalently, V (G) = V 0.

If G ∈ E and satisfies property P, then for any edge e ∈ E(G), it follows from

Theorem 4.4.4 (or Remark 4.4.4) that e ∈ EA0. This fact leads to the following

theorem.

Theorem 4.4.12. Let G ∈ E . If G satisfies property P, then G ∈ UEAE .

Similar to the well known graphs identified to be in the class UEAE in Section

4.4.1, by using Theorem 4.4.12, a few more well known graphs belonging to the

class UAEE are identified and listed them in Observation 4.4.1.

Observation 4.4.1. The following are some of the well known graphs satisfying

the hypotheses of Theorem 4.4.12 and hence, belong to the class UEAE :

1. Wheel graphs: Wn (= Cn−1 ◦K1)

2. Fan graphs: Fn (= Pn−1 ◦K1)

3. Hypercube: Q3 (= �3
i=1K2)

4. Km�K1,m, for m ≥ 3

5. C3n�K1, 3, for n ≥ 1

6. Km,n�Km, for m ≥ 3

7. Km,n�Kn, for n ≥ 3

4.4.4 The Classes of graph G /∈ G+e

As mentioned earlier, not all efficiently dominatable graphs belong to the class

G+e. For instance, Pn /∈ G+e, for all n. In this section, some classes of graphs that

do not belong to the class G+e are explored.

Theorem 4.4.13. Let G ∈ G−v and γ(G) ≥ 2. If S = V +, then G /∈ G+e.
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Proof. Let S be an EDS of G and S = V +. Suppose that G ∈ G+e. Let u, v ∈ S.

Then, G+uv ∈ E . Let S ′ be any EDS of G+uv. As S = V +, both u and v are in

V +, which in turn implies by Proposition 4.4.9 that u ∈ S ′ and v ∈ S ′. But, this

leads to a contradiction that S ′ is a 2-packing of G+ uv. Hence, G /∈ G+e.

Proposition 4.4.14. For any tree T with γ(T ) = 2 and T ∈ E , T 6∈ G+e.

Proof. Any tree T ∈ E having γ(T ) = 2 will be isomorphic to the graph in Figure

4.5. Let S = {u, v} be an EDS of T . Suppose that T ∈ G+e and S ′ is an EDS

of T + uv. Since there exists no EDS of T + uv not containing both u and v, it

follows that either u ∈ S ′ or v ∈ S ′. Suppose that u ∈ S ′. Then, as dG(x, u) = 2,

for all x ∈ NG(v), all the vertices in NG(v) are not dominated efficiently by S ′,

contradicting that S ′ is an EDS of T + uv. A similar contradiction arises when

v ∈ S ′. Hence, T 6∈ G+e.
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b
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u v

b
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b
b

Figure 4.5: An efficiently dominatable tree with an EDS S = {u, v}

Let G ∈ E and S be any EDS of G. If the induced subgraph G∗ ∼= 〈V − S〉 is

complete, then diam(G) = 3 and therefore γ(G) ≥ 2. Also, all the vertices in G∗

are of eccentricity two and hence cannot be in S. Thus, S is unique in this case.

Theorem 4.4.15. Let G ∈ E and γ(G) ≥ 2. If S is an EDS of G and the induced

subgraph 〈V − S〉 is complete, then G 6∈ G+e.

Proof. As the induced subgraph 〈V − S〉 is complete, for any pair of nonadjacent

vertices u, v ∈ V (G), at least one of u or v must be in S. Suppose that G ∈ G+e.

Let uv ∈ E(G) and S ′ be an EDS of G+ uv. The following cases are considered:

Case (i): γ(G) = 2.

Subcase(a): u ∈ S and v /∈ S

Let S = {u,w} be an EDS of G. Then, v ∈ NG(w). In G+uv, degG+uv(v) = n−1
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and thus S ′ = {v} is an EDS of G + uv. Thus, γ(G + uv) = 1 < γ(G), which

implies that uv ∈ EA−.

Subcase(b): u ∈ S, v ∈ S

Then, diam(G+ uv) = 2 and thus G+ uv /∈ E .

Case (ii): γ(G) > 2

In this case, any pair of vertices in S are mutually at a distance three from each

other. Also, every vertex in V − S is of eccentricity two and hence none of them

will belong to S ′. The following subcases are considered:

Subcase(a): u ∈ S, v /∈ S

Let v ∈ NG(u′), where u′ ∈ S. To dominate u, either u ∈ S ′ or v ∈ S ′ or any

one of the vertices of NG(u) should be a member of S ′. If u ∈ S ′, then u will

dominate NG[u] and v. Since dG+uv(u, u
′) = 2, u′ 6∈ S ′. To dominate u′, one of

the vertices in NG(u′) other than v must belong to S ′. But this is not possible

as NG(u′) ⊂ V − S. Hence u′ is left undominated efficiently by S ′. Therefore

u 6∈ S ′. By a similar argument, it can be shown that v 6∈ S ′. Also, by the above

discussion, no vertex of NG(u) will be a member of S ′, contradicting that S ′ is an

EDS of G+ uv. Thus, G+ uv /∈ E .

Subcase(b): u ∈ S, v ∈ S

Clearly, u /∈ S ′. Because, if u ∈ S ′, then all the vertices of NG(v) will be left

undominated efficiently. Similarly, v /∈ S ′. Also, no vertex of V − S can be a

member of S ′, contradicting that S ′ is an EDS of G+ uv. Thus, G+ uv /∈ E .

4.5 Relationship among the classes

In this section, throughout it is assumed that G 6= Kn and G ∈ G−v ∩ G−e ∩ G+e.

Here, the relationship is discussed among the classes arising from the chang-

ing/unchanging efficient domination with respect to vertex removal, edge removal

and edge addition and represent through the Venn diagram.

4.5.1 Results on some well-known graphs

1. K1, n ∈ UEAE ∩ CERE and V (K1, n) = V 0 ∪ V +.

110



2. Kn ∈ UV RE ∩ UERE , for n ≥ 3.

3. C3n ∈ UV RE ∩ UERE ∩ UEAE .

4. Pn ∈ UERE and V (Pn) = V 0 ∪ V −, when n ≡ 1 (mod 3).

When n ≡ 2 (mod 3), Pn ∈ UV RE and E(Pn) = ER0 ∪ ER+.

When n ≡ 0 (mod 3), E(Pn) = ER0 ∪ ER+ and V (Pn) = V 0 ∪ V +.

But, Pn /∈ G+e.

Proposition 4.5.1. Let G ∈ G−v∩G−e∩G+e. Then the following conditions hold.

(i) CERE ⊂ UEAE

(ii) CERE ∩ UV RE = ∅

(iii) UV RE ⊂ UEAE

Proof. (i) If G ∈ CERE , then by Theorem 4.3.11, G ∼= K1, n. By Theorem 4.4.10,

as γ(K1, n) = 1, G ∈ UEAE . Hence, CERE ⊆ UEAE . Since all graphs G with

γ(G) = 1 and G 6= K1, n belong to UEAE class but does not belong to the CERE

class, CERE ⊂ UEAE .

(ii) If G ∈ CERE , then by Theorem 4.3.11, G ∼= K1, n. Since V (K1, n) = V 0 ∪ V +,

it follows that G /∈ UV RE . Thus, the classes CERE and UV RE are disjoint. That

is, CERE ∩ UV RE = ∅.

(iii) Let S ′ be an EDS of G + uv. Suppose that G /∈ UEAE . Then, there exists

e ∈ E(G), where e = uv, such that γ(G + uv) = γ(G)− 1. Since uv ∈ EA−, one

of the following cases hold (by Corollaries 4.4.4.1, 4.4.5.1).

Case (i): If u ∈ S and v ∈ S, then either u ∈ S ′ or v ∈ S ′.

Suppose that u ∈ S ′. Then, for all x ∈ NG[v], dG+uv(u, x) ≤ 2 and N [v] ∩ S ′ = ∅.

Thus, S ′ is an EDS of G− v, where |S ′| < |S|. Hence, v ∈ V −.

Case (ii): If v /∈ S, then v ∈ S ′.

In this case, for all x ∈ NG[u], dG+uv(v, x) ≤ 2 and hence NG[u] ∩ S ′ = ∅. Thus,

S ′ is an EDS of G− u, where |S ′| < |S| and hence u ∈ V −.

Thus, in both of the cases it is observed that if G /∈ UEAE , then V − 6= ∅, which

111



in turn implies that G /∈ UV RE . That is, UV RE ⊆ UEAE . But, as an instance,

G ∼= K1, n ∈ UEAE and K1, n /∈ UV RE . Thus, UV RE ⊂ UEAE .

Theorem 4.5.2. For any graph G, G has at least three pairwise disjoint efficient

dominating sets if and only if G ∈ UV RE ∩ UERE ∩ UEAE .

Proof. Let S1, S2, . . . , Sk, for k ≥ 3, be EDSs of G such that Si ∩ Sj = ∅, for

1 ≤ i, j ≤ k and i 6= j. Since G satisfies property P (by Proposition 3.1.18),

Theorems 4.2.18, 4.3.10, 4.4.12 imply that G ∈ UV RE ∩ UERE ∩ UEAE .

Conversely, let G ∈ UV RE ∩ UERE ∩ UEAE . Then, V (G) = V 0. By Proposition

4.5.1, UV RE ⊂ UEAE . Thus, G ∈ UV RE ∩UERE . Let e ∈ E(G), where e = uv.

Since G ∈ UERE and V (G) = V 0, Theorem 4.3.10 implies that either G satisfies

Property P or NG(u) ∩ Su is not unique, where Su is an EDS of G − u. That is,

for every u in S, at least two neighbors exist, say v, w ∈ N(u), so that v and w

are in distinct EDS of G. Since, this is true for all the vertices in S, G must have

at least three pairwise efficient dominating sets. Hence, the result follows.

4.5.2 Representation of different classes

Motivated by the representation in Haynes and Henning (2003), an attempt is

made to represent the different classes of the efficiently dominatable graphs through

Venn diagram.

To represent graph classes as in Figure 4.6, it is assumed that graphs G considered

are connected and not complete, G ∈ E and G ∈ G−v ∩ G−e ∩ G+e.

If G ∈ E , then G /∈ CV RE and G /∈ CEAE . Also, UV RE ⊂ UEAE and

UV RE ∩ CERE = ∅. Thus, an efficiently dominatable graph is represented in

only four classes, as in Venn diagram given in Figure 4.6. The regions of the Venn

diagram are labeled from R1 to R7, as in Figure 4.7.

The following observations are made:

(a) The Region R6:

For any graph G, G ∈ R6 if and only if G ∈ UEAE ∩ UERE ∩ UV RE .

Equivalently, G ∈ R6 if and only if G satisfies property P, that is, if and

112



UERE

UEAE

UV RE
CERE

Figure 4.6: The classes of
changing and unchanging
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Figure 4.7: Representations of
Regions

only if G has at least three pairwise disjoint efficient dominating sets. For

example, for any n, C3n ∈ R6.

(b) The Region R3:

G ∈ CERE if and only if G ∼= K1, n, for n ≥ 2. Thus, R3 = {K1, n : n ≥ 2}.

(c) The Region R2:

For any graph G, G ∈ R2 if and only if G ∈ UEAE and G /∈ UV RE ∩

UERE ∩ CERE . In this region, V (G) = V 0 ∪ V +, where V + 6= ∅. Thus,

G ∈ UEAE if and only if γ(G) = 1 and G 6= K1, n. For example, the graph

G obtained by adding/appending one or more pendant edges to exactly one

vertex of Kn, for n ≥ 3, belongs to this region.

(e) The Region R5:

Theorem 4.5.3. For any connected graph G and G ∈ E , the subset R5 is

empty.

Proof. For any graph G, G ∈ R5 if and only G ∈ UERE ∩ UEAE , but

G /∈ UV RE . Since G /∈ UV RE , V − ∪ V + 6= ∅. If G ∈ UERE , then

V + = ∅ and if G ∈ UEAE , then V − = ∅. Hence, this is not possible. Thus,

R5 = ∅.

(f) The Region R4:

For any graph G, G ∈ R4 if and only if G ∈ UERE and G /∈ UV RE ∪UEAE .
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Thus, the graphs belonging to this region contain V (G) = V 0 ∪ V −, where

V − 6= ∅ and γ(G) ≥ 2. For example, the graph in Figure 4.8 belongs to R4.

b

b

b

bb b

b

b

bb

Figure 4.8: A Graph G ∈ R4

(g) The Region R1:

For any graph G, G ∈ R6 if and only if G ∈ UV RE ∩UEAE and G /∈ UERE .

Here V (G) = V 0 and γ(G) ≥ 2. Let S be an EDS of G. Since G /∈ UERE ,

for some u ∈ S, N(u) ∩ Su is unique, where Su is an EDS of G− u.

(h) The Region R7:

Not all efficiently dominatable graphs fall in one of the four classes UV RE ,

UERE , CERE and UEAE and hence, R7 6= ∅. The graphs G belonging to

R7 have V (G) = V 0 ∪ V − ∪ V +, where V − ∪ V + 6= ∅ and γ(G) ≥ 2.
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Table 4.1: A Comparision of properties possessed by any arbitrary graph and a graph G ∈ E with respect to Vertex Removal

Properties possessed by a graph Properties possessed by a graph G ∈ E

V 0 = {u ∈ V : γ(G− u) = γ(G)} V 0 = {(V − S) ∪ S ′ : S ′ ⊆ S and γ(G− u) = γ(G), for every u ∈ S ′}
V + = {u ∈ V : γ(G− u) > γ(G)} V + = {u ∈ S ′ : S ′ ⊆ S and γ(G− u) > γ(G), for every u ∈ S ′}
V − = {u ∈ V : γ(G− u) < γ(G)} V − = {u ∈ S ′ : S ′ ⊆ S and γ(G− u) < γ(G), for every u ∈ S ′},

for any EDS S and S ′ of G and G− u respectively.

Every vertex in V + lies in every dominating set of G. Every vertex u ∈ V − or V + if and only if u belongs to every EDS of G.
If v ∈ V −, then there exists a γ-set D of G such that v /∈ D.

γ(G) 6= γ(G− v), for all v ∈ V (G) if and only if V (G) = V −. γ(G) 6= γ(G− v), for all v ∈ V (G) if and only if V (G) = V − ∪ V +.

For any connected graph G and for u ∈ V −, v ∈ V +, dG(u, v) ≥ 2. For any connected graph G ∈ E and for u ∈ V −, v ∈ V +, dG(u, v) ≥ 4.

The class CV R exists. For any connected graph G ∈ E , the class CV RE does not exist.

A graph G ∈ UV R if and only if G has no isolated vertices G ∈ UV RE if and only if G has k efficient dominating sets
and for each vertex v either (a) there is an γ-set D such that S1, S2, . . . , Sk (k ≥ 2) such that ∩ki=1Si = ∅.
v ∈ D, pn[v, S] contains at least one vertex from V − S, or
(b) v is in every γ-set and there is a subset of γ(G) vertices in
and G−N [v] that dominates G− v.

115



Table 4.2: A Comparision of properties possessed by any arbitrary graph and a graph G ∈ E with respect to Edge Removal

Properties possessed by a graph Properties possessed by a graph G ∈ E

G ∈ UER if and only if V (G) = V 0 ∪ V − ∪ V +. If G ∈ UERE , then V (G) = V 0 ∪ V −.

A graph G ∈ UER if and only if, for each e = uv ∈ E(G), there exists A graph G ∈ UERE if and only if one of the following conditions
a γ-set D such that one of the following conditions is satisfied: hold: (a) G satisfies property P. (b) For e = uv ∈ E(G) and
(a) u, v ∈ D. (b) u, v ∈ V −D. (c) u ∈ D and v ∈ V −D implies u ∈ S, NG(u) ∩ Su = ∅ or not unique, where S and Su are EDS
|N(v) ∩D| ≥ 2. of G and G− u respectively.

Table 4.3: A Comparision of properties possessed by any arbitrary graph and a graph G ∈ E with respect to Edge Addition

Properties possessed by a graph Properties possessed by a graph G ∈ E

The class CEA exists. For any connected graph G ∈ E , the class CEAE does not exist.

G ∈ UEA if and only if V (G) = V 0 ∪ V +. For γ(G) ≥ 2, if G ∈ UEAE , then V (G) = V 0.
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Conclusion

In this chapter, the study of the concept of criticality is initiated for the class

of efficiently dominatable graphs. The behaviour of an efficiently dominatable

graph is analyzed with respect to vertex removal, edge removal and edge addition.

Some properties of critical vertices are discussed and the necessary and sufficient

conditions for a vertex to be γ-critical are obtained. The vertex critical sets V 0,

V + and V − and the classes UV RE , CV RE are characterized. An attempt is made

to characterize the critical edges, edge critical sets: ER0, ER+ and the classes

UERE , CERE obtained from them. Further, with respect to edge addition, the

critical edges, edge critical sets EA0, EA− and the two classes UEAE and CEAE

are characterized. Finally, the relationship among all the classes arising out of

vertex removal, edge removal and edge addition are discussed.
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Chapter 5

Efficient Domination in Cartesian Product

of Graphs

In this chapter, the concept of efficient domination is discussed for the cartesian

product of graphs. In the literature, significant interest is shown to study the

structural properties of the cartesian product of graphs with respect to different

graph parameters. Also, it is one of the widely used multi-dimensional architec-

tures in distributed computing, making the problem to be of sufficient interest

from both Graph theoretic as well as application perspective.

In this chapter, the structural properties of the cartesian product of graphs are

studied in terms of its factors. Initially, few basic properties of the product G�H

are discussed in terms of its factors. Next, the notion of efficient domination is

studied for the cartesian product of K1, p with some well-known graphs, namely,

the star graph K1, n, path Pn, complete graph Kn and cycle Cn, for all n and

for an arbitrary p. Similarly, the problem is studied for the cartesian product

of Kp with each of the aforesaid well-known graphs, for an arbitrary p. Later,

the study is extended to the products G�K1, p and G�Kp, where G is arbitrary.

Also, the necessary and sufficient conditions are derived for the products G�K1, p

and G�Kp to be efficiently dominatable, for an arbitrary G. Further, it is known

that the problem of deciding whether or not a graph G is efficiently dominatable

is NP-complete and so also, for the products G�K1, p and G�Kp. Hence, an

attempt is made in this chapter to provide an exact exponential time solution for
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the efficient domination problem in the Cartesian product G�K1, p and G�Kp, for

an arbitrary graph G. Finally, the study is generalized to the cartesian product

of two or more complete graphs, with a special focus on Hamming graphs.

5.1 Efficient Domination in the cartesian product of two

arbitrary graphs

Throughout this chapter, the basic notations and terminologies with reference to

cartesian product of graphs are followed as in (Imrich and Klavžar, 2000).

Definition 5.1.1. (Imrich and Klavžar, 2000) The cartesian product of two graphs

G = (V1, E1) and H = (V2, E2), denoted by G�H, is the graph with vertex set

V1×V2 in which two vertices (u1, v1) and (u2, v2) are adjacent if and only if either

(i) u1 = u2 and v1v2 ∈ E2 or (ii) u1u2 ∈ E1 and v1 = v2.

The graphs G and H are called the factors of G�H. For v ∈ V (H), the induced

subgraph G(v) of G�H, defined as G(v) =< {(u, v) ∈ V (G�H) : u ∈ V (G)} >

is called the G-layer with respect to v in G�H. Analogously, for u ∈ V (G), the

induced subgraph H(u) of G�H, defined as H(u) =< {(u, v) ∈ V (G�H) : v ∈

V (H)} > is called the H-layer with respect to u in G�H. The subgraph of G�H

induced by any G-layer (or H-layer) is isomorphic to G (or H).

The structure of the cartesian product of two graphs G and H and the layers

G(v) and H(u) are illustrated in Figure 5.1.
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b b b b b

b b b b b

b b b b b

u1 u2 u3 u4 u5

v1

v2

v3

G(v1)

H(u1)

H

G

Figure 5.1: The Structure of G�H and G(vj) and H(ui) layers
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Definition 5.1.2. (Imrich and Klavžar, 2000) The mapping pG : (u, v) � u (or

pH : (u, v) � v) from V (G�H) to V (G) (or V (H)) is called the projection from

G�H onto the factor G (or H).

It can be observed that if the product graph is efficiently dominatable, then its

factors may or may not be efficiently dominatable and vice versa. Also, for any

graph G, 1 ≤ F (G) ≤ n and a graph G ∈ E if and only if F (G) = n. The following

proposition is deduced from this fact.

Proposition 5.1.1. For any two graphs G and H, the following properties hold:

(i) If G, H and G�H are all efficiently dominatable, then F (G�H) = F (G)F (H).

(ii) If G�H is efficiently dominatable and at least one of G and H is not

efficiently dominatable, then F (G�H) > F (G)F (H).

(iii) If both G and H are efficiently dominatable, but G�H is not efficiently

dominatable, then F (G�H) < F (G)F (H).

Let G and H be two graphs of order n and p respectively and let V (G) =

{u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vp}. For any x ∈ V (G�H), x = (ui, vj)

for some i and j, where 1 ≤ i ≤ n, 1 ≤ j ≤ p. Moreover, x is identified as a vertex

in the jth row and ith column. Further, degG�H(x) = degG(pG(x))+degH(pH(x)) =

degG(ui)+degH(vj). Also, for any ui ∈ V (G), pG(ui, vj) = ui, for all j, (1 ≤ j ≤ p).

Similarly, for any vj ∈ V (H), pH(ui, vj) = vj, for all i, (1 ≤ i ≤ n). The following

results are obtained based on this fact.

Proposition 5.1.2. For any nonempty subset S ′ of V (G�H), IG�H(S ′) ≥ IG(S1)+

IH(S2)− |S ′|, where S1 = pG(S ′) and S2 = pH(S ′). The equality holds if and only

if |S ′| = |S1| = |S2|.

Proof. Let S1 = pG(S ′) and S2 = pH(S ′). Since there may exist two (or more)

vertices, say, x and y in S ′ such that pG(x) = pG(y), it follows that |S ′| ≥ |S1|.

Similarly, |S ′| ≥ |S2|. Hence,
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IG�H(S ′) =
∑

(ui,vj)∈S′
[degG�H(ui, vj)] + |S ′|

=
∑

(ui,vj)∈S′
[degG(pG(ui, vj)) + degH(pH(ui, vj))] + |S ′|

≥
∑
ui∈S1

[degG(ui)] +
∑
vj∈S2

[degH(vj)] + |S1|+ |S2| − |S ′|

Thus, IG�H(S ′) ≥ IG(S1) + IH(S2)− |S ′|.

If |S ′| = |S1| = |S2|, then

IG(S1) + IH(S2) = [|S1|+
∑
ui∈S1

degG(ui)] + [|S2|+
∑
vj∈S2

degH(vj)]

=
∑

(ui,vj)∈S′
[degG(pG(ui, vj)) + degH(pH(ui, vj))] + (|S1|+ |S2|)

=
∑

(ui,vj)∈S′
[degG�H(ui, vj)] + 2|S ′|

= IG�H(S ′) + |S ′|

Thus, IG�H(S ′) = IG(S1) + IH(S2)− |S ′|.

Conversely, let IG�H(S ′) = IG(S1) + IH(S2) − |S ′|. Since |S ′| ≥ 1, IG�H(S ′) <

IG(S1) + IH(S2). Let |S ′| = k, |S1| = l and |S2| = p. Clearly, k ≥ l and k ≥ p.

Claim: k = l = p.

Suppose l < k and p = k. Then, there exist at least two vertices, say, x and y

in S ′ such that pG(x) = pG(y) = u, where u ∈ V (G) ∩ S1 and hence, deg(u) is

counted at least twice in IG�H(S ′). Since p = k, for every v ∈ V (H) ∩ S2, deg(v)

is counted only once in IG�H(S ′). Consequently, IG�H(S ′)− IH(S2) = IG(S1) +k′,

where k′ > 0. That is, IG�H(S ′)−IH(S2) > IG(S1) or IG�H(S ′) > IG(S1)+IH(S2),

which is a contradiction. A similar discussion holds when l = k, p < k and l < k,

p < k. Thus, for the equality IG�H(S ′) = IG(S1) + IH(S2)− |S ′| to hold, we must

have l = k = p. That is, |S ′| = |S1| = |S2|.

As G(v) is isomorphic to G, for all v ∈ V (H), at most ρ(G) elements belong to

an EDS of G�H (or an F (G�H)-set), from each of these G-layers. A similar

argument holds for H(u), for all u ∈ V (G). This leads to the following upper

bound on the domination number of the product.
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Proposition 5.1.3. If G�H ∈ E , where G and H are graphs of order n and p

respectively, then γ(G�H) ≤ min{p× ρ(G), n× ρ(H)}.

5.2 Efficient Domination in the cartesian product of some

well-known graphs

In this section, the notion of efficient domination is discussed for the product

G�K1, p, when G is isomorphic to one of the following graphs: Kn, K1, n, Pn and

Cn. Further, the conditions under which these products are efficiently dominatable

are identified; the exact values of their respective efficient domination numbers are

also computed.

The Cartesian product Kn�K1, p:

Theorem 5.2.1. For n > 1, Kn�K1, p ∈ E if and only if p = n. When p 6= n,

F (Kn�K1, p) =


n+ p; if (i, 0) ∈ S ′ (for 1 ≤ i ≤ n )

p(n+ 1); if p ≤ n

n(n+ 1); if p > n

where S ′ is a maximal 2-packing of Kn�K1, p.

Proof. Let n > 1 and V (Kn�K1, p) = {(i, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ p}, where

(i, j) corresponds to a vertex in the ith column and jth row (refer to Figure 5.2).

In general, an F (Kn�K1, p) or an EDS of Kn�K1, p either contains one or more

b b b

b b b

b b b

(1,0) (2,0) (3,0)

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

Figure 5.2: K3�K1, 2

vertices from the layer K(0)
n or may not contain any vertex from K

(0)
n . So, based

on this fact, if S ′ is any F (Kn�K1, p) or an EDS of Kn�K1, p, then the following

two cases arise:
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Case(i): S ′ ∩ V (K
(0)
n ) 6= ∅

Every vertex in V (K
(0)
n ) (that is, in the first row) is of eccentricity two. Hence, if

a vertex from V (K
(0)
n ) is included in S ′, then no other vertex can be included and

in such a case, at most n+ p vertices are efficiently dominated by S ′.

Case(ii): S ′ ∩ V (K
(0)
n ) = ∅

In this case, exactly one vertex can be chosen from every other row. Without

loss of generality, choosing S ′ = {(1, 1), (2, 2), (3, 3), . . . , (p, p)}, when p ≤ n and

S ′ = {(1, 1), (2, 2), (3, 3), . . . , (n, n)}, when p > n, it can be observed that at most

p(n+ 1) vertices are dominated by S ′, when p ≤ n and at most n(n+ 1) vertices

are dominated by S ′, when p > n. Hence,

F (Kn�K1, p) =


n+ p; if (i, 0) ∈ S ′ (for 1 ≤ i ≤ n)

p(n+ 1); if p ≤ n

n(n+ 1); if p > n

which implies that F (Kn�K1, p) is equal to n+ p or p(n+ 1) or n(n+ 1). Further,

Kn�K1, p ∈ E if and only if F (Kn�K1, p) = n(p+ 1).

But, as n > 1, n+ p 6= n(p+ 1). Hence, F (Kn�K1, p) = (n+ 1) or n(n+ 1), as the

case may be. Now, suppose F (Kn�K1, p) = p(n + 1), then Kn�K1, p ∈ E if and

only if p(n+1) = n(p+1) if and only if p = n. Similarly, if F (Kn�K1, p) = n(n+1),

then Kn�K1, p ∈ E if and only if p = n. Hence, the result follows.

The Cartesian product K1, n�K1, p:

Let V (K1, n�K1, p) = {(i, j) : 0 ≤ i ≤ n, 0 ≤ j ≤ p}, where the vertices (0, j) and

(i, 0) represent the central vertices of K1, n and K1, p respectively (refer to Figure

5.3). In K1, n�K1, p, deg(0, 0) = n + p, deg(0, j) = n + 1, deg(i, 0) = p + 1 and

deg(i, j) = 2, for all i, j, where 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Theorem 5.2.2. For n ≥ 2 and p ≥ 2, K1, n�K1, p /∈ E . If S ′ is a maximal

2-packing of K1, n�K1, p, then
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b b b b

b b b b

b b b b

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

Figure 5.3: K1, 3�K1, 2

F (K1, n�K1, p) =



n+ p+ 1; if (0, 0) ∈ S ′

4p− 1; if n = p

max{4n+ 2, 3n+ p− 1}; if n < p

max{4p+ 2, 3p+ n− 1}; if n > p

Proof. Let S ′ be a maximal 2-packing of K1, n�K1, p.

Case(i): (0, 0) ∈ S ′

The vertex (0, 0) is of eccentricity two and hence if (0, 0) ∈ S ′, then no other vertex

can be included in S ′. Thus, if (0, 0) ∈ S ′, then |S ′| = 1 and S ′ can efficiently

dominate n+ p+ 1 vertices.

Case(ii): (0, 0) 6∈ S ′

For any n and l, K(l)
1, n
∼= K1, n. Therefore, for each i, j (0 ≤ i ≤ n, 0 ≤ j ≤ p), at

most one vertex from the layers K(i)
1, p and K(j)

1, n can be included in S ′.

Subcase(i): n = p

If any vertex from the first column (or the layer K(0)
1, p), say, (0, 1) is included in

S ′ (excluding the vertex (0, 0)), then there are p other possible choices of vertices

to include in S ′ (that is, one vertex from each of the layers K(i)
1, p, 1 ≤ i ≤ p).

Having chosen (0, 1) from the layer K(0)
1, p, without loss of generality, if the vertices

(1, 2), (2, 3), . . . , (p− 1, p) are chosen from the layers K(i)
1, p, (1 ≤ i ≤ p− 1) respec-

tively, then it can be observed that no vertex from K
(p)
1, p can be included in S ′, as

each vertex in K
(p)
1, p is at distance two from at least one vertex included already

in S ′. Hence, in such a case, I(S ′) = (p + 2) + 3(p − 1) = 4p − 1. Further, this

is the maximum influence among all 2-packings which include a vertex from the
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first column, as the maximum possible number of vertices have been chosen from

each column. On the other hand, if no vertex is chosen from the first column to

include in S ′, then in such a case also, it can be shown by a similar argument that

the maximum influence among all such 2-packings which do not include a vertex

from the first column is 4p− 1.

Subcase(ii): n < p

If a vertex from the layer K(0)
1, p, say, (0, 1) is included in S ′, then there are at most

n other possible choices of vertices to include in S ′ (choosing at most one vertex

from each of the other layers K(i)
1, p, for 1 ≤ i ≤ n). Thus, upon choosing (0, 1),

without loss of generality, if the vertices (1, 2), (2, 3), . . . , (n, n+1) are chosen, then

I(S ′) = (n + 2) + 3n = 4n + 2. It can be observed that the influence obtained

as above is the maximum among those 2-packings which include a vertex from

K
(0)
1, p, as n < p and the maximum possible vertices (that is, one vertex) have been

chosen from each of the n columns.

On the other hand, if no vertex is chosen from the layer K(0)
1, p, then start choosing

vertices from K
(1)
1, p. If vertex, say, (1, 0) is chosen from K

(1)
1, p to include in S ′, then

there are at most n−1 other possible choices of vertices to include in S ′ (choosing

at most one vertex from each of the other layers K(i)
1, p, for 2 ≤ i ≤ n). So, having

chosen (1, 0), without loss of generality, choosing the vertices (2, 1), (3, 2), . . . ,

(n, n− 1) to include in S ′, I(S ′) = (p+ 2) + 3(n− 1) = 3n+ p− 1. As discussed

earlier, it can be observed that the influence so obtained is the maximum among

those 2-packings which do not include any vertex from K
(0)
1, p.

Hence, comparing the above possible influences, it can be observed that whenever

n < p, for any 2-packing S ′ of K1, n�K1, p,

max{I(S ′)} =

4n+ 2; if n < p ≤ n+ 3

3n+ p− 1; if p > n+ 3

Subcase(iii): n > p

By a similar argument as above, it can be shown that if S ′ includes a vertex

from the first row, then S ′ can efficiently dominate at most 4p + 2 vertices and

{(1, 0), (2, 1), . . . , (p + 1, p)} is one such set. On the other hand, if S ′ does not
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include a vertex from the first row, then S ′ can efficiently dominate at most 3p+

n − 1 vertices and {(0, 1), (1, 2), . . . , (p − 1, p)} is one such set. Thus, comparing

the above possible influences, it can be observed that whenever n > p, for any

2-packing S ′ of K1, n�K1, p,

max{I(S ′)} =

4p+ 2; if p < n ≤ p+ 3

3p+ n− 1; if n > p+ 3

Hence, it follows from cases (i) and (ii) that

F (K1, n�K1, p) =



n+ p+ 1; if (0, 0) ∈ S ′

4p− 1; if n = p

max{4n+ 2, 3n+ p− 1}; if n < p

max{4p+ 2, 3p+ n− 1}; if n > p

The Cartesian product Pn�K1, p:

Let V (Pn�K1, p) = {(i, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ p}, where the vertex (i, 0)

represents the central vertex ofK1, p (refer to Figure 5.4). Then, degPn�K1, p(1, 0) =

p + 1 = degPn�K1, p(n, 0) and degPn�K1, p(i, 0) = p + 2, for 2 ≤ i ≤ n − 1. For

1 ≤ j ≤ p, degPn�K1, p(1, j) = degPn�K1, p(n, j) = 2. For all the other vertices,

degPn�K1, p(i, j) = 3.

b b b bb

b

b

b

b

b

b

b

b

b

b

(1,0) (2,0) (3,0) (4,0) (5,0)

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

Figure 5.4: P5�K1, 2

Let S ′ be a maximal 2-packing of Pn�K1, p and let |S ′ ∩ V (P
(j)
n )| = lj, for

j ∈ {0, 1, . . . , p}. The vertices in P
(j)
n , excluding (1, j) and (n, j), are called the

internal vertices of P (j)
n , for all j, where 0 ≤ j ≤ p. When l0 ≥ 1, then, for each

i, where 2 ≤ i ≤ n − 1, if (i, 0) ∈ S ′, then no other vertex from K
(i)
1, p and its

neighboring layers, namely, K(i−1)
1, p and K(i+1)

1, p can belong to S ′. Further, if (1, 0)

is included in S ′, then no other vertex from K
(1)
1, p and its neighboring layer, namely,
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K
(2)
1, p can be included in S ′. Similarly, if (n, 0) is in S ′, then no other vertex from

K
(n−1)
1, p and K(n)

1, p can belong to S ′.

Theorem 5.2.3. Pn�K1, 2 /∈ E , for n ≥ 3 and

F (Pn�K1, 2) =


8n
3

; if n ≡ 0 (mod 3)

8n
3

+ 1
3
; if n ≡ 1 (mod 3)

8n
3

+ 2
3
; if n ≡ 2 (mod 3)

.

Proof. Let S ′ be a maximal 2-packing of Pn�K1, 2 and let |S ′ ∩ V (P
(j)
n )| = lj,

for j ∈ {0, 1, 2}. As S ′ is a 2-packing, it can include at most one element from

each layers K(i)
1, 2, for i ∈ {1, 2, . . . , n}. Hence, |S ′| =

∑2
j=0 lj ≤ n. Also, S ′ either

contains one or more vertices from the layer P (0)
n or may not contain any vertex

from P
(0)
n . Based on this, the following cases are considered:

Case(i): n ≡ 0 (mod 3)

If l0 = 0, then S ′ must include vertices only from the two layers P (j)
n , where

1 ≤ j ≤ 2. In addition, for each j (1 ≤ j ≤ 2), S ′ ∩ V (P
(j)
n ) is a 2-packing of P (j)

n

and hence, |S ′ ∩ V (P
(j)
n )| ≤ ρ(P

(j)
n ) = dn

3
e. Thus,

|S ′| =
2∑

j=1

lj ≤ 2
⌈n

3

⌉
(5.1)

As n ≡ 0 (mod 3), |S ′| ≤ 2
(
n
3

)
= 2n

3
. Clearly, |S ′| < n and hence S ′ may or

may not include the vertices from {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2},

where degree of each vertex is two. The remaining (internal) vertices have de-

gree 3. After choosing maximal 2-packings having maximum influence one from

each layer P (j)
n , for j ∈ {1, 2}, it can be observed that only one vertex belongs

to {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2} (refer to Figure 5.5). Thus,

I(S ′) ≤ 4(
∑2

j=1 lj − 1) + 3 = 8n
3
− 1.

For the case l0 ≥ 1, the following subcases arise:

Subcase(i): S ′ includes neither (1, 0) or (n, 0).

Then, having chosen l0 (internal) vertices from the layer P (0)
n , no vertex from the

corresponding column and its neighboring columns can be considered for subse-

quent choices of vertices from the remaining rows, to include in S ′. Thus,
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|S ′| − l0 =
2∑

j=1

lj ≤ 2

⌈
n− 3l0

3

⌉
(5.2)

As n ≡ 0 (mod 3), |S ′| − l0 =
∑2

j=1 lj ≤ 2(n−3l0
3

) = 2n
3
− 2l0. Thus, |S ′| ≤ 2n

3
− l0.

In this case, a maximum of n − 2l0 + 1 vertices can be included in S ′. It follows

from (5.2) that |S ′| < n − 2l0 + 1 and hence S ′ may or may not include vertices

from {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2}. If (i, 0) is chosen in S ′, where

3 ≤ i ≤ n− 2, then S ′ ∩V (P
(j)
n ), for j ∈ {1, 2}, includes exactly two vertices from

{(1, j) : 1 ≤ j ≤ 2}∪{(n, j) : 1 ≤ j ≤ 2}, each of degree three. On the other hand

if (i, 0) ∈ S ′, for i = 2 or i = n− 1, then all the vertices included in S ′ ∩ V (P
(j)
n ),

for j ∈ {1, 2}, will have degree four, hence giving the maximum influence (refer

to Figure 5.6). Thus, in this case, I(S ′) = 5l0 + 4
∑2

j=1 lj ≤ 5l0 + 4(2n
3
− 2l0). It

can be observed that I(S ′) is maximum when l0 is minimum. Thus, for l0 = 1,

|S ′| ≤ 2n
3
− 1 and I(S ′) ≤ 5 + 4(2n

3
− 2) = 8n

3
− 3.

Subcase(ii): S ′ includes either (1, 0) or (n, 0)

Then, two columns for each choice of vertices (1, 0) or (n, 0) and three columns

corresponding to each (internal) vertex in S ′∩V (P
(0)
n ) cannot be considered, while

choosing vertices from the second and subsequent rows, for inclusion in S ′. Thus,

|S ′| − l0 =
2∑

j=1

lj ≤ 2

⌈
n− 3l0 + 1

3

⌉
(5.3)

But, it can be observed that after choosing a maximal 2-packing with maximum

influence of cardinality dn−3l0+1
3
e from the layer P (1)

n , a maximal 2-packing with

maximum influence of cardinality dn−3l0+1
3
e− 1 can be chosen from the layer P (2)

n .

Thus, |S ′| − l0 ≤ 2dn−3l0+1
3
e − 1 ≤ 2n

3
− 2l0 + 1 and hence |S ′| ≤ 2n

3
− l0 + 1. In

this case, a maximum of n− 2l0 + 1 vertices can be included in S ′. It follows from

(5.3) that |S ′| < n − 2l0 + 1 and hence S ′ may or may not include vertices from

{(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2}. After choosing maximal 2-packings

having maximum influence one from each layer P (j)
n , for j ∈ {1, 2}, it is observed

that only one vertex belongs to {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2} (refer to

Figure 5.7). Thus, I(S ′) ≤ 5(l0 − 1) + 4 + 4(2n
3
− 2l0 + 1− 1) + 3 = 8n

3
− 3l0 + 2.

Since, I(S ′) is maximum when l0 is minimum, choose l0 = 1. Thus, |S ′| ≤ 2n
3

and
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I(S ′) ≤ 8n
3
− 1.

Subcase(iii): S ′ includes both (1, 0) and (n, 0)

Then, two columns for each choice of vertices (1, 0) and (n, 0) and three columns

for each choice of (internal) vertex in S ′ ∩ V (P
(0)
n ) cannot be considered, while

choosing vertices from the second and subsequent rows, for inclusion in S ′. Thus,

|S ′| − l0 =
2∑

j=1

lj ≤ 2

⌈
n− 3l0 + 2

3

⌉
(5.4)

As n ≡ 0 (mod 3), |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0+2
3
e = 2n

3
− 2l0 + 2 and hence

|S ′| ≤ 2n
3
− l0 + 2. In this case, at most n − 2l0 + 2 vertices can be included

in S ′. But, from (5.4) it follows that |S ′| < n − 2l0 + 2 and hence, |S ′| may

or may not include vertices from {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2}.

After choosing maximal 2-packings having maximum influence one from each

layer P (j)
n , for j ∈ {1, 2}, it is observed that all the vertices included in S ′

from P
(j)
n , for j ∈ {1, 2}, have degree three each (refer to Figure 5.8). Thus,

I(S ′) ≤ 5(l0 − 2) + 4(2) + 4(2n
3
− 2l0 + 2) = 8n

3
− 3l0 + 6. As I(S ′) is maximum

when l0 is minimum, choose l0 = 2. Thus, |S ′| ≤ 2n
3

and I(S ′) ≤ 8n
3
.

Thus, comparing the influences when l0 = 0 and l0 ≥ 1, it can be observed

that Subcase (iii) gives the maximum influence. The set S ′ = {(1, 0), (n, 0)} ∪

{(3, 1), (6, 1), . . . , (n− 3, 1)}∪{(4, 2), (7, 2), . . . , (n− 2, 2)} is a maximal 2-packing

of Pn�K1, 2 of cardinality 2n
3

having influence 8n
3
. Therefore, when n ≡ 0 (mod

3), F (Pn�K1, 2) = 8n
3
.

Case(ii): n ≡ 1 (mod 3)

If l0 = 0, then as n ≡ 1 (mod 3), |S ′| ≤ 2dn
3
e = 2(n+2

3
) (using 5.1). After choosing

a maximal 2-packing with maximum influence of cardinality (n+2
3

) with maximum

influence from the layer P (1)
n , it can be observed that a maximal 2-packing of

maximum influence with cardinality (n+2
3

)− 1 can be chosen from the layer P (2)
n .

Thus, |S ′| ≤ 2(n+2
3

)−1 = 2n+1
3

can be chosen. After choosing maximal 2-packings

having maximum influence one from each layer P (j)
n , for j ∈ {1, 2}, it is noted

that two vertices belongs to {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2}. Thus,

I(S ′) ≤ 4(2n+1
3
− 2) + 3(2) = 8n

3
− 2

3
.
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For the case l0 ≥ 2, the following subcases arise:

Subcase(i): S ′ includes neither (1, 0) or (n, 0)

As n ≡ 1 (mod 3), using (5.2), we get |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0
3
e = 2(n−3l0+2

3
).

After choosing a maximal 2-packing with maximum influence of cardinality (n−3l0+2
3

)

from the layer P (1)
n , it can be observed that a maximal 2-packing with maxi-

mum influence of cardinality (n−3l0+2
3

) − 1 can be chosen from the layer P (2)
n .

Thus, |S ′| − l0 ≤ 2(n−3l0+2
3

) − 1 = 2n
3
− 2l0 + 1

3
and hence, |S ′| ≤ 2n

3
− l0 + 1

3
.

After choosing maximal 2-packings having maximum influence one from each layer

P
(j)
n , for j ∈ {1, 2}, it is observed that only one vertex belongs to {(1, j) : 1 ≤ j ≤

2}∪{(n, j) : 1 ≤ j ≤ 2}. Hence, I(S ′) ≤ 5l0 +4(2n
3
−2l0 + 1

3
−1)+3 = 8n

3
−3l0 + 1

3
.

Since, I(S ′) is maximum when l0 is minimum, choose l0 = 1. Thus, |S ′| ≤ 2(n−1
3

)

and I(S ′) ≤ 8n
3
− 8

3
.

Subcase(ii): S ′ includes either (1, 0) or (n, 0)

Using (5.3), as n ≡ 1 (mod 3), |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0+1
3
e = 2n

3
− 2l0 + 4

3

and hence |S ′| ≤ 2n
3
− l0 + 4

3
. After choosing maximal 2-packings having maxi-

mum influence one from each layer P (j)
n , for j ∈ {1, 2}, it is observed that only

one vertex belongs to {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2}. Hence,

I(S ′) ≤ 5(l0 − 1) + 4 + 4(2n
3
− 2l0 + 4

3
− 1) + 3 = 8n

3
− 3l0 + 10

3
. Since, I(S ′) is

maximum when l0 is minimum, choose l0 = 1. Thus, |S ′| ≤ 2n+1
3

and I(S ′) ≤
8n
3

+ 1
3
.

Subcase(iii): S ′ includes both (1, 0) and (n, 0)

As n ≡ 1 (mod 3), using (5.4), |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0+2
3
e = 2(n−3l0+2

3
) =

2n
3
− 2l0 + 4

3
. Thus, |S ′| ≤ 2n

3
− l0 + 4

3
. After choosing maximal 2-packings having

maximum influence one from each layer P (j)
n , for j ∈ {1, 2}, it can be observed

that all the vertices included in S ′ from P
(j)
n , for j ∈ {1, 2}, have degree three

each. Hence, I(S ′) ≤ 5(l0 − 2) + 4(2) + 4(2n
3
− 2l0 + 4

3
) = 8n

3
− 3l0 + 10

3
. Since,

I(S ′) is maximum when l0 is minimum, choose l0 = 2. Thus, |S ′| ≤ 2n−2
3

and

I(S ′) ≤ 8n
3
− 8

3
.

Comparing the influences obtained when l0 = 0 and l0 ≥ 1, it can be seen

that the influence obtained in Subcase(ii) gives the maximum influence. The set
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S ′ = {(1, 0)} ∪ {(3, 1), (6, 1), . . . , (n − 1, 1)} ∪ {(4, 2), (7, 2), . . . , (n, 2)} is a maxi-

mal 2-packing of Pn�K1, 2 of cardinality 2n+1
3

having influence 8n
3

+ 1
3
. Thus, when

n ≡ 1 (mod 3), F (Pn�K1, 2) = 8n
3

+ 1
3
.

Case(iii): n ≡ 2 (mod 3)

If l0 = 0, then as n ≡ 2 (mod 3), |S ′| ≤ 2dn
3
e = 2(n+1

3
) (using (5.1)). After choos-

ing maximal 2-packings having maximum influence one from each layer P (j)
n , for

j ∈ {1, 2}, it is observed that two vertices belongs to {(1, j) : 1 ≤ j ≤ 2}∪{(n, j) :

1 ≤ j ≤ 2}. Thus, I(S ′) ≤ 4(2(n+1
3

)− 2) + 3(2) = 8n
3

+ 2
3
.

For the case l0 ≥ 1, the following subcases arise:

Subcase(i): S ′ includes neither (1, 0) or (n, 0)

Using (5.2), as n ≡ 2 (mod 3), |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0
3
e = 2n

3
− 2l0 + 2

3

and hence |S ′| ≤ 2n
3
− l0 + 2

3
. After choosing maximal 2-packings having maxi-

mum influence one from each layer P (j)
n , for j ∈ {1, 2}, it can be observed that

one vertex belongs to {(1, j) : 1 ≤ j ≤ 2} ∪ {(n, j) : 1 ≤ j ≤ 2}. Hence,

I(S ′) ≤ 5l0 + 4(2n
3
−2l0 + 2

3
−1) + 3 = 8n

3
−3l0 + 5

3
. Since, I(S ′) is maximum when

l0 is minimum, choose l0 = 1. Thus, |S ′| ≤ 2n−1
3

and I(S ′) ≤ 8n
3
− 4

3
.

Subcase(ii): S ′ includes either (1, 0) or (n, 0)

As n ≡ 2 (mod 3), using (5.3), |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0+1
3
e = 2n

3
− 2l0 + 2

3
.

Thus, |S ′| ≤ 2n
3
− l0 + 2

3
. After choosing maximal 2-packings having maximum

influence one from each layer P (j)
n , for j ∈ {1, 2}, it can be observed that all the

vertices included in S ′ from P
(j)
n , for j ∈ {1, 2}, have degree three each. Hence,

I(S ′) ≤ 5(l0 − 1) + 4 + 4(2n
3
− 2l0 + 2

3
) = 8n

3
− 3l0 + 5

3
. Since, I(S ′) is maximum

when l0 is minimum, choose l0 = 1. Thus, |S ′| ≤ 2n−1
3

and I(S ′) ≤ 8n
3
− 4

3
.

Subcase(iii): S ′ includes both (1, 0) and (n, 0)

As n ≡ 2 (mod 3), using (5.4), |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0+2
3
e = 2(n−3l0+4

3
).

But, after choosing a maximal 2-packing with maximum influence of cardinality

(n−3l0+4
3

) from the layer P (1)
n , it can be observed that a maximal 2-packing with

maximum influence of cardinality (n−3l0+4
3

)− 1 can be chosen from the layer P (2)
n .

Thus, |S ′| − l0 ≤ 2(n−3l0+4
3

) − 1 = 2n
3
− 2l0 + 5

3
and hence, |S ′| ≤ 2n

3
− l0 + 5

3
.

After choosing maximal 2-packings having maximum influence one from each layer
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P
(j)
n , for j ∈ {1, 2}, it is noted that all the vertices included in S ′ from P

(j)
n , for

j ∈ {1, 2}, have degree three each. Hence, I(S ′) ≤ 5(l0−2)+4(2)+4(2n
3
−2l0+ 5

3
) =

8n
3
− 3l0 + 14

3
. Since, I(S ′) is maximum when l0 is minimum, choose l0 = 2. Thus,

|S ′| ≤ 2n−1
3

and I(S ′) ≤ 8n
3
− 4

3
.

Comparing influences obtained when l0 = 1 and l0 ≥ 1, it is observed that the

influence obtained when l0 = 0 gives the maximum influence. The set S ′ =

{(1, 1), (4, 1), . . . , (n− 1, 1)} ∪ {(2, 2), (5, 2), . . . , (n, 2)} is a maximal 2-packing of

Pn�K1, 2 of cardinality 2(n+1
3

) having influence 8n
3

+2
3
. Thus, when n ≡ 2 (mod 3) ,

F (Pn�K1, 2) = 8n
3

+ 2
3
.
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Figure 5.5: P6�K1, 2, when
l0 = 0
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Figure 5.6: P6�K1, 2 - An
example for Subcase(i)
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Figure 5.7: P6�K1, 2 - An
example for Subcase(ii)
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Figure 5.8: P6�K1, 2 - An
example for Subcase(iii)

Lemma 5.2.4. For n ≥ 3 and p ≥ 3, if S ′ is a maximal 2-packing of Pn�K1, p

and l0 = |S ′ ∩ V (P
(0)
n )|, then

I(S ′) ≤

4n− 2; if l0 = 0

4n+ (p− 9)l0 + 6; if l0 ≥ 1

Proof. Let S ′ be a maximal 2-packing of Pn�K1, p and let |S ′ ∩ V (P
(j)
n )| = lj,

for j ∈ {0, 1, . . . , p}. As S ′ is a 2-packing, it can include at most one element

from each column, (that is from each layer K(i)
1, p, for i ∈ {1, 2, . . . , n}). Hence,

|S ′| =
∑p

j=0 lj ≤ n. Also, S ′ either contains one or more vertices from the layer

P
(0)
n or may not contain any vertex from P

(0)
n . Based on this, the following cases
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are considered:

Case(i): l0 = 0

As l0 = 0, S ′ includes at most two vertices from {(1, j) : 1 ≤ j ≤ p}∪{(n, j) : 1 ≤

j ≤ p} (that is, at most one from each of the two layers K(0)
1, p and K(n)

1, p, excluding

(1, 0) and (n, 0)) and those vertices are of degree 2 each. The remaining (internal)

vertices have degree 3. Thus,

|S ′| =
p∑

j=1

lj ≤ n and (5.5)

I(S ′) ≤ 4(

p∑
j=1

lj − 2) + 2(3)

≤ 4n− 2 (5.6)

Case(ii): l0 ≥ 1

The following subcases are considered:

Subcase(i): S ′ includes neither (1, 0) nor (n, 0)

Then, as discussed above, having chosen l0 internal vertices from the first row (that

is, P (0)
n ), no vertex from the corresponding column and its neighboring columns

can be considered for subsequent choices of vertices from the remaining rows, to

include in S ′. Thus,

|S ′| − l0 =

p∑
j=1

lj ≤ n− 3l0 and (5.7)

I(S ′) ≤ (p+ 3)l0 + 4(

p∑
j=1

lj − 2) + 3(2)

≤ 4n+ (p− 9)l0 − 2 (5.8)

Subcase(ii): S ′ includes either (1, 0) nor (n, 0)

Then, as discussed earlier, two columns for each choice of vertices (1, 0) or (n, 0)

and three columns corresponding to each internal vertex in S ′ ∩ V (P
(0)
n ) cannot

be considered, while choosing vertices from the second and subsequent rows, for

inclusion in S ′. Further, as p ≥ 3, if (1, 0) ∈ S ′ and (n, 0) /∈ S ′, then exactly one

vertex from {(n, j) : 1 ≤ j ≤ p} will be included in S ′. Similar is the case, when

(n, 0) ∈ S ′ and (1, 0) /∈ S ′. Therefore,
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|S ′| − l0 =

p∑
j=1

lj

≤ n− [3(l0 − 1) + 2] = n− 3l0 + 1

⇒ |S ′| = n− 2l0 + 1 and (5.9)

I(S ′) ≤ (p+ 3)(l0 − 1) + (p+ 2) + 4(

p∑
j=1

lj − 1) + 3

≤ 4n+ (p− 9)l0 + 2 (5.10)

Subcase(iii): S ′ includes both (1, 0) and (n, 0)

Then, as discussed earlier, two columns for each choice of the vertices (1, 0) and

(n, 0) and three columns for each choice of the internal vertices in S ′∩V (P
(0)
n ) can-

not be considered, while choosing vertices from the remaining rows, for inclusion

in S ′. Hence,

|S ′| − l0 =

p∑
j=1

lj ≤ n− [3(l0 − 2) + 4] = n− 3l0 + 2 (5.11)

⇒ |S ′| ≤ n− 2l0 + 2 (5.12)

and I(S ′) ≤ (p+ 3)(l0 − 2) + 2(p+ 2) + 4(

p∑
j=1

lj)

≤ 4n+ (p− 9)l0 + 6 (5.13)

Comparing the three subcases (i), (ii) and (iii), the influence obtained in Sub-

case(iii) is found to be maximum. Hence, it is concluded from cases (i) and (ii)

that I(S ′) is at most 4n− 2, if l0 = 0 and at most 4n+ (p− 9)l0 + 6, if l0 ≥ 1.

Remark 5.2.1. It is noted from the discussion in Lemma 5.2.4 that whenever

p ≥ 3 and l0 ≥ 1, a maximal 2-packing has maximum influence only when it

includes both the vertices (1, 0) and (n, 0). Hence, in such a case, l0 must be at

least two.

Using these facts and Lemma 5.2.4, the efficient domination number of Pn�K1, p

is obtained for n ≥ 3 and p ≥ 3, in Theorems 5.2.5 and 5.2.6.

Theorem 5.2.5. For n ≥ 3 and 3 ≤ p ≤ 5, Pn�K1, p /∈ E and F (Pn�K1, p) =

4n− 2.
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Proof. Let S ′ be a maximal 2-packing of Pn�K1, p. It can be observed from Lemma

5.2.4 and Remark 5.2.1 that S ′ can attain maximum influence only when either

l0 = 0 or l0 ≥ 2 and S ′ includes both (1, 0) and (n, 0). Since 4n+ (p− 9)l0 + 6 ≤

4n− 2, when 3 ≤ p ≤ 5 and l0 ≥ 2, it follows that F (Pn�K1, p) is at most 4n− 2.

Hence, it is required to search for a maximal 2-packing of cardinality at most n

and having influence at most 4n− 2, if one such exists. The following three cases

are considered:

Case(i): n ≡ 0 (mod 3)

The set S ′ = {(1, 1), (4, 1), . . . , (n−2, 1)}∪{(2, 2), (5, 2), . . . , (n−1, 2)}∪{(3, 3), (6, 3),

. . . , (n, 3)} is a maximal 2-packing of Pn�K1, p with cardinality n and having

influence 4n− 2.

Case(ii): n ≡ 1 (mod 3)

The set S ′ = {(1, 1), (4, 1), . . . , (n, 1)}∪{(2, 2), (5, 2), . . . , (n−2, 2)}∪{(3, 3), (6, 3),

. . . , (n− 1, 3)} is a maximal 2-packing of Pn�K1, p with cardinality n and having

influence 4n− 2.

Case(iii): n ≡ 2 (mod 3)

The set S ′ = {(1, 1), (4, 1), . . . , (n−1, 1)}∪{(2, 2), (5, 2), . . . , (n−3, 2)}∪{(3, 3), (6, 3),

. . . , (n− 2, 3)} is a maximal 2-packing of Pn�K1, p with cardinality n and having

influence 4n− 2.

As in all the three cases, it is possible to find a maximal 2-packing of cardinality

n and having influence 4n− 2, it follows that F (Pn�K1, p) = 4n− 2.

Theorem 5.2.6. For n ≥ 3 and p ≥ 6, Pn�K1, p /∈ E and

F (Pn�K1, p) =

4n+ 2p− 12; if 6 ≤ p ≤ 9

4n+ pdn
3
e − 9dn−6

3
e − 12; if p ≥ 10

Proof. Let S ′ be a maximal 2-packing of Pn�K1, p. Following the discussion in

Remark 5.2.1, either l0 = 0 or l0 ≥ 2.

But, it follows from Lemma 5.2.4 that if l0 = 0, then |S ′| =
∑p

j=1 lj ≤ n and

I(S ′) ≤ 4n−2; if l0 ≥ 2 and S ′ includes both (1, 0) and (n, 0), then |S ′| ≤ n−2l0+2

and I(S ′) ≤ 4n+ (p− 9)l0 + 6. In particular, the following observations are made:

• When l0 ≥ 2 and p ≥ 6, 4n− 2 < 4n+ (p− 9)l0 + 6. Hence, in such a case,
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S ′ may attain maximum influence when l0 ≥ 2 and it includes both (1, 0)

and (n, 0).

• For 6 ≤ p ≤ 9, the quantity 4n + (p − 9)l0 + 6 is maximum when l0 is

minimum.

• For p ≥ 10, the quantity 4n+(p−9)l0 +6 is maximum when l0 is maximum.

• After choosing the vertices (1, 0) and (n, 0) from P
(0)
n to include in S ′, from

the remaining (n − 2) vertices in P
(0)
n , the vertices (2, 0), (3, 0), (n − 2, 0)

and (n − 1, 0) cannot be included in S ′, as S ′ is a 2-packing. Hence, from

the remaining (n − 6) vertices, at most dn−6
3
e vertices can be chosen from

P
(0)
n for possible inclusion in S ′. Hence, 2 ≤ l0 ≤ 2 + dn−6

3
e.

Based on these observations, it is required to search for a maximal 2-packing of

cardinality at most n− 2l0 + 2 which follows the above conditions. The following

three cases are considered:

Case(i): n ≡ 0 (mod 3)

For 6 ≤ p ≤ 9, with the minimum value of l0, that is, l0 = 2, the set S ′ =

{(1, 0), (n, 0)}∪{(3, 1), (6, 1), . . . , (n−3, 2)}∪{(4, 2), (7, 2), . . . , (n−2, 2)}∪{(5, 3),

(8, 3), . . . , (n − 4, 3)} is a maximal 2-packing of cardinality n − 2 and having

influence 4n+ 2p− 12.

For p ≥ 10, as n ≡ 0 (mod 3), the maximum value of l0 is 2 + dn−6
3
e = n

3
. The

set S ′ = {(1, 0), (n, 0)} ∪ {(4, 0), (7, 0), . . . , (n− 5, 0)} ∪ {(n− 4, 1), (n− 3, 2)} is a

maximal 2-packing of Pn�K1, p such that l0 = n
3
, |S ′| = n+6

3
and having influence

4n+ (p− 9)n
3

+ 6 = 4n+ pdn
3
e − 9dn−6

3
e − 12.

Case(ii): n ≡ 1 (mod 3)

For 6 ≤ p ≤ 9, with the minimum value of l0, that is, l0 = 2, the set S ′ =

{(1, 0), (n, 0)}∪{(3, 1), (6, 1), . . . , (n−4, 2)}∪{(4, 2), (7, 2), . . . , (n−3, 2)}∪{(5, 3),

(8, 3), . . . , (n − 2, 3)} is a maximal 2-packing of cardinality n − 2 and having in-

fluence 4n+ 2p− 12.

For p ≥ 10, as n ≡ 1 (mod 3), the maximum value of l0 is 2 + dn−6
3
e = n+2

3
. The

set S ′ = {(1, 0), (n, 0)} ∪ {(4, 0), (7, 0), . . . , (n − 3, 0)} is a maximal 2-packing of
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Pn�K1, p such that l0 = n+2
3
, |S ′| = n+2

3
and having influence 4n+(p−9)(n+2

3
)+6 =

4n+ pdn
3
e − 9dn−6

3
e − 12.

Case(iii): n ≡ 2 (mod 3)

For 6 ≤ p ≤ 9, with the minimum value of l0, that is, l0 = 2, the set S ′ =

{(1, 0), (n, 0)}∪{(3, 1), (6, 1), . . . , (n−2, 2)}∪{(4, 2), (7, 2), . . . , (n−4, 2)}∪{(5, 3),

(8, 3), . . . , (n − 3, 3)} is a maximal 2-packing of cardinality n − 2 and having

influence 4n+ 2p− 12.

For p ≥ 10, as n ≡ 2 (mod 3), the maximum value of l0 is 2 + dn−6
3
e = n+1

3
. The

set S ′ = {(1, 0), (n, 0)} ∪ {(4, 0), (7, 0), . . . , (n− 4, 0)} ∪ {(n− 3, 1)} is a maximal

2-packing of Pn�K1, p such that l0 = n+1
3
, |S ′| = n+4

3
and having influence 4n +

(p− 9)(n+1
3

) + 6 = 4n+ pdn
3
e − 9dn−6

3
e − 12.

Hence, the result follows.

The Cartesian product Cn�K1, p:

Let V (Cn�K1, p) = {(i, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ p}, where (i, j) represents a vertex

in ith column and jth row (refer to Figure 5.9). The vertex (i, 0) corresponds to the

central vertex of K(i)
1, p, for each i ∈ {1, 2, . . . , n}. Then, degCn�K1, p

(i, 0) = p + 2,

for 1 ≤ i ≤ n and degCn�K1, p
(i, j) = 3 for 1 ≤ i ≤ n, 1 ≤ j ≤ p. For 0 ≤ j ≤ p, a

vertex in the jth layer (that is, in C(j)
n ) is dominated either by itself or by any of

its neighbors in C(j)
n or by the neighbor in C(0)

n (that is, its copy in C(0)
n ).

Figure 5.9: C5�K1, 2

Let S ′ be a maximal 2-packing of Cn�K1, p and let |S ′ ∩ V (C
(j)
n )| = lj, for

j ∈ {0, 1, . . . , p}. Since S ′ can include at most one element from each of the layers

K
(i)
1, p, for i ∈ {1, 2, . . . , n}, it follows that |S ′| =

∑p
j=0 lj ≤ n. Also, S ′ either

contains one or more vertices from the layer C(0)
n or may not contain any vertex
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from C
(0)
n . Hence, in general I(S ′) = (p+ 3)l0 + 4

∑p
j=1 lj. Moreover, the following

observations are made:

1. If l0 = 0, then

|S ′| =
p∑

j=1

lj ≤ n and I(S ′) ≤ 4n (5.14)

2. If l0 ≥ 1, then for each choice of vertices, say, (i, 0) from C
(0)
n , no vertex

from its neighboring two layers, namely, K(i−1)
1, p and K(i+1)

1, p can belong to S ′.

Thus,
|S ′| − l0 =

p∑
j=1

lj ≤ n− 3l0 and

I(S ′) ≤ (p+ 3)l0 + 4(n− 3l0) = 4n+ (p− 9)l0 (5.15)

Based on these facts, the following results are obtained for Cn�K1, p.

Theorem 5.2.7. Cn�K1, 2 /∈ E , for n ≥ 3 and

F (Cn�K1, 2) =


8n
3

; if n ≡ 0 (mod 3)

8n−5
3

; if n ≡ 1 (mod 3)

8n−1
3

; if n ≡ 2 (mod 3)

Proof. Let S ′ be a maximal 2-packing of Cn�K1, 2. It follows from (5.14) and

(5.15) that if l0 = 0, then I(S ′) ≤ 4n. Otherwise, I(S ′) ≤ 4n− 7l0.

Case(i): n ≡ 0 (mod 3)

If l0 = 0, then it follows from (5.14) that |S ′| ≤ n and I(S ′) ≤ 4n. But, as

l0 = 0, S ′ must include vertices only from the two layers C(j)
n , where 1 ≤ j ≤ 2.

In addition, for each j (1 ≤ j ≤ 2), S ′ ∩ V (C
(j)
n ) is a 2-packing of C(j)

n and hence,

|S ′ ∩ V (C
(j)
n )| ≤ ρ(C

(j)
n ) = bn

3
c. Hence, as n ≡ 0 (mod 3), |S ′| ≤ 2bn

3
c = 2

(
n
3

)
=

2n
3
. The set {(1, 1), (4, 1), . . . , (n− 2, 1), (2, 2), (5, 2), . . . , (n− 1, 2)} is a 2-packing

of Cn�K1, 2 with cardinality 2n
3

and having influence 8n
3
. Since all the vertices

excluding the vertices from C
(0)
n have degree three, it follows that any 2-packing

of cardinality 2n
3

will have influence 8n
3
. Therefore, when l0 = 0, the maximum

influence is 8n
3

and is attained by a maximal 2-packing of cardinality 2n
3
.

Next, let us consider the case when l0 ≥ 1. Using (5.15), |S ′| ≤ n − 2l0 ≤ n − 2.
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Having chosen l0 vertices from C
(0)
n , the remaining vertices chosen from the n−3l0

columns to include in S ′ is given by
∑2

j=1 lj. Further, for every vertex chosen

from C
(0)
n , no vertex can be chosen from the corresponding column and its two

neighboring columns, while choosing vertices in the remaining rows (that is, in

C
(j)
n , for j > 0). Hence, from each C(j)

n (j > 0), we are left with n − 3l0 vertices.

As S ′ is a 2-packing of Cn�K1, 2 and the induced subgraph of the remaining vertices

of each layer C(j)
n (j > 0) is either Pn−3l0 or disjoint copies of Pl, where l ≤ n−3l0.

Hence, among the remaining n − 3l0 vertices, at most dn−3l0
3
e vertices can be

chosen from each row. Therefore, |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0
3
e = 2(n

3
) − 2l0, as

n ≡ 0 (mod 3). That is, |S ′| ≤ 2n
3
− l0 and the influence of any such set is at most

5l0 + 4(2n
3
− 2l0) = 8n

3
− 3l0, which is less than 8n

3
. Hence, when n ≡ 0 (mod 3),

F (Cn�K1, 2) = 8n
3
.

Case(ii): n ≡ 1 (mod 3)

If l0 = 0, then it follows from (5.14) that |S ′| =
∑2

j=1 lj ≤ n. But, as n ≡ 1 (mod

3), it can be shown by a similar argument as in Case(i) that |S ′| ≤ 2bn
3
c =

2
(
n−1
3

)
= 2n−2

3
and hence, I(S ′) ≤ 4(2n−2

3
) = 8n−8

3
.

On the other hand, let l0 ≥ 1. Then, by a similar argument as in Case(i) it

can be shown that |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0
3
e = 2n−6l0+4

3
, as n ≡ 1 (mod 3).

Thus, |S ′| ≤ 2n−6l0+4
3

+ l0. But, now it will be shown by a constructive proof that

|S ′| � 2n−6l0+4
3

+l0, for any 2-packing S ′ of Cn�K1, 2 and it will also be proved that

there exists a 2-packing in Cn�K1, 2 with cardinality (2n−6l0+4
3

− 1 + l0), having

maximum influence.

Suppose that l0 = 1. Without loss of generality, choose (1, 0) from the layer C(0)
n

to include in S ′. Next, start choosing vertices from the layer C(1)
n to include in

S ′. The vertex (1, 0) dominates itself and dominates the vertices (2, 0), (n, 0) and

(1, j), for 1 ≤ j ≤ 2. Next, (2, 1) can be dominated by itself or (1, 1) or (2, 0) or

(3, 1). Since S ′ is a 2-packing, it cannot include (2, 1) or (1, 1) or (2, 0). Therefore,

(3, 1) ∈ S ′. Continuing from (3, 1), choose vertices {(3, 1), (6, 1), . . . , (n − 1, 1)}

from the layer C(1)
n . It can be observed that dn−3l0

3
e = n+2−3l0

3
vertices from the

layer C(1)
n are included in S ′. Next, choose vertices from the layer C(2)

n . None of
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the vertices (i, 2), for 1 ≤ i ≤ 3 can be included in S ′, as they are either adjacent

or at a distance two from the vertices already included in S ′. Hence, excluding the

vertices lying in the first three columns (that is, K(i)
1, 2, for i ∈ {1, 2, 3}) of the layer

C
(2)
n , choose from the remaining vertices in C

(2)
n to include in S ′. Without loss

of generality, choose (4, 2) to include in S ′. Having chosen (4, 2), choose vertices

{(4, 2), (7, 2), . . . , (n− 3, 2)} to include in S ′. It can be observed that the vertices

(n−1, 2) and (n, 2) cannot be included in S ′, since they are at a distance two from

the vertices already included in S ′. Hence, from the layer C(2)
n , it is possible to

choose only dn−3l0
3
e−1 vertices. Similarly, for any choice of the initial vertex from

C
(2)
n other than (4, 2), it can be observed that at most dn−3l0

3
e − 1 vertices can be

chosen. Thus,
∑2

j=1 lj ≤
2n−6l0+4

3
− 1 = 2n−6l0+1

3
. Hence, |S ′| ≤ 2n−6l0+1

3
+ l0 =

2n−3l0+1
3

≤ 2n−2
3

and I(S ′) ≤ 5l0 + 4(2n−6l0+1
3

) = 8n
3
− (3l0 − 4

3
) ≤ 8n−5

3
.

The set S ′ = {(0, 0)} ∪ {(3, 1), (6, 1), . . . , (n− 1, 1)} ∪ {(4, 2), (7, 2), . . . , (n− 3, 2)}

is a 2-packing of Cn�K1, 2 with cardinality 2n−2
3

and having influence 8n−5
3

. It can

shown that for any other 2-packing T ′ of Cn�K1, 2, where |T ′ ∩ V (C
(0)
n )| = 1 and

|T ′| = 2n−2
3

, has influence 8n−5
3

. Moreover, it follows from (5.15) that any other

2-packing of Cn�K1, 2 such that l0 > 1 will have influence less than 8n−5
3

. Hence,

when n ≡ 1 (mod 3), F (Cn�K1, 2) = 8n−5
3

.

Case(iii): n ≡ 2 (mod 3)

If l0 = 0, then it follows from (5.14) that |S ′| =
∑2

j=1 lj ≤ n. But, as n ≡ 2 (mod

3), it can be shown by a similar argument as in Case(i) that |S ′| ≤ 2bn
3
c =

2
(
n−2
3

)
= 2n−4

3
and hence, I(S ′) ≤ 4(2n−4

3
) = 8n−16

3
.

On the other hand, if l0 ≥ 1, then by a similar argument as in Case(i) it can

be shown that |S ′| − l0 =
∑2

j=1 lj ≤ 2dn−3l0
3
e = 2n−6l0+2

3
, as n ≡ 2 (mod 3).

Hence, |S ′| ≤ 2n−6l0+2
3

+ l0 = 2n−3l0+2
3

≤ 2n−1
3

and I(S ′) ≤ 5l0 + 4(2n−6l0+2
3

) =

8n
3
− (3l0 − 8

3
) ≤ 8n−1

3
. The set S ′ = {(0, 0)} ∪ {(3, 1), (6, 1), . . . , (n − 2, 1)} ∪

{(4, 2), (7, 2), . . . , (n− 1, 2)} is a 2-packing of Cn�K1, 2 with cardinality 2n−1
3

and

having influence 8n−1
3

. By choosing vertices row by row, in a similar fashion as for

S ′, it can shown that any other 2-packing T ′ of Cn�K1, 2 such that |T ′∩V (C
(0)
n )| =

1 and |T ′| = 2n−1
3

has the same influence 8n−1
3

. Moreover, it follows from (5.15)

141



that any other 2-packing of Cn�K1, 2 such that l0 > 1 will have influence less than
8n−1

3
. Hence, when n ≡ 2 (mod 3), F (Cn�K1, 2) = 8n−1

3
.

Theorem 5.2.8. For n ≥ 3, Cn�K1, 3 ∈ E if and only if n ≡ 0 (mod 3).

When n 6≡ 0 (mod 3), the following holds:

F (Cn�K1, 3) =

4n− 4; if n ≡ 1 (mod 3)

4n− 6; if n ≡ 2 (mod 3)

Proof. Let S ′ be a maximal 2-packing of Cn�K1, 3. It follows from (5.14) and

(5.15) that if l0 = 0, then I(S ′) ≤ 4n. Otherwise, I(S ′) ≤ 4n − 6l0. Hence, if

l0 6= 0, then S ′ has maximum influence when l0 is minimum.

Case(i): n ≡ 0 (mod 3)

For S ′ = {(1, 1), (4, 1), . . . , (n−2, 1)}∪{(2, 2), (5, 2), . . . , (n−1, 2)}∪{(3, 3), (6, 3),

. . . , (n, 3)}, it can be seen that I(S ′) = 4n. Hence, Cn�K1, 3 ∈ E , if n ≡

0 (mod 3 ).

Case(ii): n ≡ 1 (mod 3)

If l0 = 0, then it follows from (5.14) that |S ′| =
∑3

j=1 lj ≤ n and hence, I(S ′) ≤ 4n.

But, as l0 = 0, S ′ must include vertices only from the three layers C(j)
n , where

1 ≤ j ≤ 3. In addition, for each j (1 ≤ j ≤ 3), S ′ ∩ V (C
(j)
n ) is a 2-packing of C(j)

n

and hence, |S ′| ≤ 3bn
3
c = 3

(
n−1
3

)
, as n ≡ 1 (mod 3). That is, |S ′| ≤ n − 1. The

set {(1, 1), (4, 1), . . . , (n− 3, 1)} ∪ {(2, 2), (5, 2), . . . , (n− 2, 2)} ∪ {(3, 3), (6, 3), . . . ,

(n− 1, 3)} is a 2-packing of Cn�K1, 3 with cardinality n− 1 and having influence

4(n− 1). Infact, as l0 = 0 and all the vertices excluding those in C(0)
n have degree

three, any 2-packing of cardinality n−1 which does not include vertices from C
(0)
n

will have influence 4(n − 1) and hence, in this case, the maximum influence is

4n− 4.

On the other hand, if l0 ≥ 1, then it follows from (5.15) that the maximum influ-

ence of a maximal 2-packing of Cn�K1, 3 is 4n− 6l0, which is less than 4n− 4.

Hence, when n ≡ 1 (mod 3), F (Cn�K1, 3) = 4n− 4.

Case(iii): n ≡ 2 (mod 3)

If l0 = 0, then |S ′| =
∑3

j=1 lj ≤ n. But, as n ≡ 2 (mod 3), it can be shown by a sim-

ilar argument as in Case(ii) that |S ′| ≤ 3bn
3
c = n− 2 and hence, I(S ′) ≤ 4(n− 2).
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On the other hand, if l0 ≥ 1, then using (5.15), |S ′| ≤ n − 2l0 ≤ n − 2. The

set S ′ = {(0, 0)} ∪ {(3, 1), (6, 1), . . . , (n − 2, 1)} ∪ {(4, 2), (7, 2), . . . , (n − 1, 2)} ∪

{(5, 3), (8, 3), . . . , (n− 3, 3)} is a 2-packing of Cn�K1, 3 with cardinality n− 2 and

having influence 4n−6. Moreover, |S ′∩V (C
(0)
n )| = 1 (that is, l0 = 1). By a similar

argument as in Case(ii), it can be seen that if T ′ is any other 2-packing of Cn�K1, 3

such that |T ′∩V (C
(0)
n )| = 1 and |T ′| = n−2, then I(T ′) = 4n−6 = I(S ′). Further,

it follows from (5.15) that any other 2-packing of Cn�K1, 3 such that l0 > 1 will

have influence less than 4n−6. Hence, when n ≡ 2 (mod 3), F (Cn�K1, 3) = 4n−6.

Also, it follows from all the above three cases that Cn�K1, 3 ∈ E if and only if

n ≡ 0 (mod 3).

Theorem 5.2.9. For p ≥ 4 and n ≥ 3, Cn�K1, p /∈ E and

F (Cn�K1, p) =

max{4n− 4, 4n+ p− 9}; for n ≡ 2 (mod 3) and p = 4

max{4n, 4n+ p− 9}; otherwise

Proof. Let S ′ be a maximal 2-packing of Cn�K1, p.

If l0 = 0, then it follows from (5.14) that |S ′| =
∑p

j=1 lj ≤ n and hence, I(S ′) ≤

4n. But, as l0 = 0, S ′ must include vertices only from the p layers C(j)
n , where

1 ≤ j ≤ p. In addition, for each j (1 ≤ j ≤ p), S ′ ∩ V (C
(j)
n ) is a 2-packing of C(j)

n .

Having chosen 2-packings from the layers C(j)
n , for j ∈ {1, 2, 3} to include in S ′

(as discussed in Theorem 5.2.8), it follows that

∑3
j=1 lj ≤


n; if n ≡ 0 (mod 3)

n− 1; if n ≡ 1 (mod 3)

n− 2; if n ≡ 2 (mod 3)

For n ≡ 1 (mod 3), S ′ can include the remaining one vertex from the layer C(4)
n

and for n ≡ 2 (mod 3), remaining two vertices can be chosen one each from the

layers C(4)
n and C

(5)
n to include in S ′. But, when p = 4, the layer C(5)

n does not

exists. Hence,

|S ′| ≤

n− 1; for n ≡ 2 (mod 3) and p = 4

n; otherwise
When n ≡ 0 (mod 3), the set S ′ = {(1, 1), (4, 1), . . . , (n−2, 1)}∪{(2, 2), (5, 2), . . . ,

(n−1, 2)}∪{(3, 3), (6, 3), . . . , (n, 3)} is of cardinality n and has influence 4n. When
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n ≡ 1 (mod 3), the set S ′ = {(1, 1), (4, 1), . . . , (n − 4, 1)} ∪ {(2, 2), (5, 2), . . . ,

(n− 2, 2)} ∪ {(3, 3), (6, 3), . . . , (n− 1, 3)} is of cardinality n and has influence 4n.

When n ≡ 2 (mod 3) and p = 4, the set S ′ = {(1, 1), (4, 1), . . . , (n − 4, 1 )} ∪

{(2, 2), (5, 2), . . . , (n − 3, 2)} ∪ {(3, 3), (6, 3), . . . , (n − 2, 3)} ∪ {(n − 1, 4)} is of

cardinality n − 1 and has influence 4(n − 1). For n ≡ 2 (mod 3) and p >

4, the set S ′ = {(1, 1), (4, 1), . . . , (n − 4, 1)} ∪ {(2, 2), (5, 2), . . . , (n − 3, 2)} ∪

{(3, 3), (6, 3), . . . , (n − 2, 3)} ∪ {(n − 1, 4)} ∪ {(n, 5)} is of cardinality n and has

influence 4n. Furthermore, when l0 = 0, any maximal 2-packing of Cn�K1, p with

cardinality n (or n− 1) will have influence 4n (or 4n− 1).

On the other hand, if l0 ≥ 1, then using (5.15), |S|′ ≤ n − 2l0 ≤ n − 2. Also,

it follows that, the maximum influence of a maximal 2-packing of Cn�K1, p is

4n+ (p− 9)l0, that is, at most 4n+ p− 9. This value exceeds 4n, whenever p > 9.

Thus, if p > 9 and n ≡ 0 (mod 3), then the set S ′ = {(0, 0)} ∪ {(3, 1), (6, 1), . . . ,

(n− 3, 1)} ∪ {(4, 2), (7, 2), . . . , (n− 2, 2)} ∪ {(5, 3), (8, 3), . . . , (n− 1, 3)} is of car-

dinality n − 2 and has influence 4n + p − 9. Similarly, if p > 9 and n ≡ 1 (mod

3), then the set S ′ = {(0, 0)} ∪ {(3, 1), (6, 1), . . . , (n − 1, 1)} ∪ {(4, 2), (7, 2), . . . ,

(n−3, 2)}∪{(5, 3), (8, 3), . . . , (n−2, 3)} is of cardinality n−2 and has influence 4n+

p− 9 and when p > 9 and n ≡ 2 (mod 3), the set S ′ = {(0, 0)}∪{(3, 1), (6, 1), . . . ,

(n− 2, 1)} ∪ {(4, 2), (7, 2), . . . , (n− 1, 2)} ∪ {(5, 3), (8, 3), . . . , (n− 3, 3)} is of car-

dinality n − 2 has influence 4n + p − 9. Moreover, any 2-packing T ′ of Cn�K1, p

where |T ′ ∩ V (C
(0)
n )| = 1 and |T ′| = n − 2 has influence 4n + p − 9. Further, it

follows from (5.15) that any other 2-packing of Cn�K1, p such that l0 > 1 will have

influence less than 4n+ p− 9. Hence,

F (Cn�K1, p) =

max{4n− 4, 4n+ p− 9}; for n ≡ 1 (mod 3) and p = 4

max{4n, 4n+ p− 9}; otherwise

The Cartesian product Kn�Kp:

For any positive integer p, it is known that F (Kp�Kp) = 2p− 1 (Goddard et al.,

2000). In general, Kn�Kp is a regular graph of diameter two. Therefore, the

product is efficiently dominatable if and only if its radius is one. The following
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result supports this fact and in addition, it computes the exact value of the efficient

domination number of the product when it is not efficiently dominatable.

Theorem 5.2.10. Kn�Kp ∈ E if and only if either n = 1 or p = 1. Whenever

n ≥ 2 and p ≥ 2, F (Kn�Kp) = n+ p− 1.

Proof. Let V (Kn�Kp) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}, where (i, j) corresponds

to a vertex in the ith column and jth row (refer to Figure 5.10). If either n = 1 or

p = 1, then it is evident that Kn�K1 ∈ E , as Kn�K1
∼= Kn and K1�Kp

∼= Kp.

b b b b

b b b b

b b b b
(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2) (4, 2)

(1, 3) (2, 3) (3, 3) (4, 3)

Figure 5.10: K4�K3

Conversely, let n > 1 and p > 1. Then, it can be observed that Kn�Kp is a

regular graph of degree n+p−2 and is of diameter two. Hence, if S ′ is a maximal

2-packing of Kn�Kp, then |S ′| = 1 and I(S ′) ≤ n+p−1. The set S ′ = {(1, 1)} is a

maximal 2-packing of Kn�Kp with cardinality one and having influence n+p−1.

Thus, F (Kn�Kp) = n+ p− 1, for n, p ≥ 2.

The Cartesian product Pn�Kp:

Let V (Pn�Kp) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}, where (i, j) corresponds to

a vertex in the ith column and jth row (refer to Figure 5.11). Then, for j ∈

{1, 2, . . . , p}, degPn�Kp(1, j) = p = degPn�Kp(n, j) and for 2 ≤ i ≤ n − 1 and

1 ≤ j ≤ p, degPn�Kp(i, j) = p+ 1.

Let S ′ be a maximal 2-packing of Pn�Kp. For each i, j, where 2 ≤ i ≤ n− 1

and 1 ≤ j ≤ p, if (i, j) ∈ S ′, then no other vertex in V (K
(i)
p ) and its neighboring

layers (or columns), namely, V (K
(i−1)
p )∪V (K

(i+1)
p ) can belong to S ′. Furthermore,

it can be observed that if (1, j) ∈ S ′, for some j ∈ {1, . . . , p}, then no other vertex

from V (K
(1)
p ) ∪ V (K

(2)
p ) can be included in S ′. Similarly, if (n, j) ∈ S ′, for some

j ∈ {1, . . . , p}, then no other vertex from V (K
(n)
p ) ∪ V (K

(n−1)
p ) can be included
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(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2) (4, 2)

(1, 3) (2, 3) (3, 3) (4, 3)

Figure 5.11: P4�K3

in S ′. Also, S ′ can include at most one element from each of the layers K(i)
p , for

i ∈ {1, 2, . . . , n}. In other words, S ′ can include elements only from the alternating

columns. Thus,

|S ′| ≤
⌈n

2

⌉
and (5.16)

I(S ′) ≤ (p+ 2)
⌈n

2

⌉
(5.17)

In particular, S ′ may or may not contain the vertices (1, j) and (n, j), for some j

(j ∈ {1, 2, . . . , p}). Accordingly, for any j ∈ {1, 2, . . . , p}, the following cases arise:

Case(i): S ′ includes neither (1, j) nor (n, j)

Then as discussed above, for each choice of vertices, say (i, j), where 2 ≤ i ≤

n − 1 and 1 ≤ j ≤ p, no vertex from the ith column (that is, from V (K
(i)
p )) and

its neighboring columns (that is, V (K
(i−1)
p ) ∪ V (K

(i+1)
p )) can be considered for

subsequent choices of vertices from the remaining rows, to include in S ′. And, all

the vertices included in S ′ are of degree p+ 1. Thus,

|S ′| ≤
⌈n

2

⌉
− 1 and

I(S ′) ≤ (p+ 2)(
⌈n

2

⌉
− 1) = (p+ 2)

⌈n
2

⌉
− (p+ 2) (5.18)

Case(ii): S ′ includes either (1, j) or (n, j)

Then as discussed above, for each choice of vertices, say (i, j), where 1 ≤ i ≤ n

and 1 ≤ j ≤ p, no vertex from V (K
(i)
p ) and its neighboring column(s) can be

considered for subsequent choices of vertices from the remaining rows, to include

in S ′. And, all the vertices included in S ′ are of degree p + 1, except (1, j) (or

(n, j)), where (1, j) (or (n, j)) is of degree p. Thus,
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|S ′| ≤
⌈n

2

⌉
and

I(S ′) ≤ (p+ 1) + (p+ 2)(
⌈n

2

⌉
− 1)

≤ (p+ 2)
⌈n

2

⌉
− 1 (5.19)

Case(iii): S ′ includes both (1, j) and (n, j)

Then as discussed above, for each choice of vertices, say (i, j), where 1 ≤ i ≤ n

and 1 ≤ j ≤ p, no vertex from the corresponding column and the neighboring

column(s) can be considered for subsequent choices of vertices from the remaining

rows, to include in S ′. And, all the vertices included in S ′, except (1, j) and (n, j)

(which are of degree p), are of degree p+ 1. Thus,

|S ′| ≤
⌈n

2

⌉
and

I(S ′) ≤ 2(p+ 1) + (p+ 2)(
⌈n

2

⌉
− 2)

≤ (p+ 2)
⌈n

2

⌉
− 2 (5.20)

Using the above facts, the following result is proved.

It is already known that P1�K1
∼= P1 ∈ E and P1�K2

∼= K2 ∈ E , hence the

Theorem 5.2.11 is discussed for remaining values of n and p.

Theorem 5.2.11. If n ≥ 2 and p ≥ 3, then Pn�Kp /∈ E and

F (Pn�Kp) =


pn+2n−2

2
; if n is even

pn+2n+p−2
2

; if n is odd

Proof. Let n ≥ 2 and p ≥ 3. Suppose that S ′ is a maximal 2-packing of Pn�Kp.

Then, the following two cases are considered:

Case(i): n is even

Since n is even, it is noted from the above discussion that |S ′| ≤ dn
2
e = n

2
.

And, I(S ′) ≤ (p + 2)dn
2
e − 1 = (p + 2)(n

2
) − 1 = (pn+2n−2)

2
. Since I(S ′) 6= np,

Pn�Kp /∈ E . It is required to find a 2-packing of Pn�Kp having the max-

imum influence. It can be observed that for n ≡ 0 (mod 4), the set S ′ =

{(1, 1), (5, 1), . . . , (n− 3, 1)}∪{(3, 2), (7, 2), . . . , (n− 1, 2)} is a maximal 2-packing

of Pn�Kp with cardinality (n
2
) and having influence (pn+2n−2)

2
.

And, for n ≡ 2 (mod 4), the set S ′ = {(1, 1), (5, 1), . . . , (n− 1, 1)} ∪ {(3, 2), (7, 2),
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. . . , (n− 3, 2)} is a maximal 2-packing of Pn�Kp with cardinality (n
2
) and having

influence pn+2n−2
2

.

Case(ii): n is odd

Claim: S ′ includes both (1, j) and (n, j)

Since n is odd, if S ′ includes (1, j), say without loss of generality, let (1, 1) ∈ S ′,

then S ′ = {(1, 1), (5, 1), . . . , (n, 1)} ∪ {(3, 2), (7, 2), . . . , (n − 2, 2)}, when n ≡

1 (mod 4) and S ′ = {(1, 1), (5, 1), . . . , (n−2, 1)}∪{(3, 2), (7, 2), . . . , (n, 2)}, when-

ever n ≡ 3 (mod 4). Thus, it can be observed that if S ′ includes (1, j), then it

also includes (n, j) and vice versa.

Thus, in both of these cases |S ′| ≤ dn
2
e = n+1

2
and I(S ′) ≤ (p + 2)dn

2
e − 2 =

(p+ 2)(n+1
2

)− 2 = (pn+2n+p−2)
2

.

Thus, F (Pn�Kp) =


pn+2n−2

2
; if n is even

pn+2n+p−2
2

; if n is odd

The Cartesian product Cn�Kp:

Let V (Cn�Kp) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}, where (i, j) corresponds to a

vertex in the ith column and jth row (refer to Figure 5.12). Then, for 1 ≤ i ≤ n

and 1 ≤ j ≤ p, degCn�Kp(i, j) = p+ 1.

b

b

b

b

b

b

b

b

b

b

b

b

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2) (4, 2)

(1, 3) (2, 3) (3, 3) (4, 3)

Figure 5.12: C4�K3

Let S ′ be a maximal 2-packing of Cn�Kp. It can be observed that S ′ can

include at most one element from each of the layers K(i)
p , for i ∈ {1, 2, . . . , n}.

Also, for each i, j, where 1 ≤ i ≤ n and 1 ≤ j ≤ p, if (i, j) ∈ S ′, then no other

vertex from V (K
(i)
p ) and its neighboring layers, namely, V (K

(i−1)
p )∪V (K

(i+1)
p ) can

belong to S ′. Hence, S ′ can include elements only from the alternating columns.
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Thus,

|S ′| ≤
⌊n

2

⌋
and (5.21)

I(S ′) ≤ (p+ 2)
⌊n

2

⌋
(5.22)

Theorem 5.2.12. If n ≥ 2 and m ≥ 3, then Cn�Kp /∈ E and

F (Cn�Kp) =


pn+2n

2
; if n is even

pn+2n−p−2
2

; if n is odd

Proof. Suppose that S ′ is a maximal 2-packing of Cn�Kp. Then, two cases arise:

Case(i): n is even

Since n is even, by choosing vertices from the alternating columns as discussed

above and using (5.21) and (5.22), |S ′| ≤ bn
2
c = n

2
. And, I(S ′) ≤ (p + 2)bn

2
c =

(p+ 2)(n
2
) = (pn+2n)

2
.

If n ≡ 0 (mod 4), then the set S ′ = {(1, 1), (5, 1), . . . , (n − 3, 1)} ∪ {(3, 2), (7, 2),

. . . , (n− 1, 2)} is a maximal 2-packing of Cn�Kp with cardinality (n
2
) and having

influence (pn+2n)
2

.

For n ≡ 2 (mod 4), the set S ′ = {(1, 1), (5, 1), . . . , (n − 5, 1)} ∪ {(3, 2), (7, 2), . . . ,

(n − 3, 2)} ∪ {(n − 1, 3)} is a maximal 2-packing of Cn�Kp with cardinality (n
2
)

and having influence (pn+2n)
2

.

Case(ii): n is odd

Since n is odd, it follows from the above discussion and (5.21) and (5.22) that

|S ′| ≤ bn
2
c = n−1

2
. And I(S ′) ≤ (p+ 2)bn

2
c = (p+ 2)(n−1

2
) = (pn+2n−p−2)

2
.

If n ≡ 1 (mod 4), the set S ′ = {(1, 1), (5, 1), . . . , (n − 4, 1)} ∪ {(3, 2), (7, 2), . . . ,

(n − 2, 2)} is a maximal 2-packing of Cn�Kp with cardinality (n−1
2

) and having

influence (pn+2n−p−2)
2

.

For n ≡ 3 (mod 4), the set S ′ = {(1, 1), (5, 1), . . . , (n − 2, 1)} ∪ {(3, 2), (7, 2),

. . . , (n−4, 2)} is a maximal 2-packing of Cn�Kp with cardinality (n−1
2

) and having

influence (pn+2n−p−2)
2

. Thus,

F (Cn�Kp) =


pn+2n

2
; if n is even

pn+2n−p−2
2

; if n is odd
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5.3 Efficient Domination in the cartesian Product G�K1, p

It is known that K1�K1, p
∼= K1, p and is efficiently dominatable. Hence, from

now on, it is assumed that the factor G in the product G�K1, p is connected and

G 6= K1.

In this section, with the motivation of identifying the class of efficiently dom-

inatable graphs having K1, p as one of the factors, initially some conditions are

derived for any vertex subset of G�K1, p to be an F (G�K1, p)-set. Then, effi-

ciently dominatable product graphs G�K1, p are characterized.

Throughout the discussions to follow, the following notations are used, unless

specified otherwise:

Let V (G) = {u1, u2, . . . , un} and V (K1, p) = {v0, v1, . . . , vp}, where v0 represents

the central vertex. Then, |V (G�K1, p)| = n(p + 1). For any vertex (ui, vj) ∈

V (G�K1, p), where 1 ≤ i ≤ n and 1 ≤ j ≤ p, degG�K1, p
(ui, vj) = degG(ui) + 1

and degG�K1, p
(ui, v0) = degG(ui) + p. Clearly, for any set S ′ ⊆ V (G�K1, p),

if S ′ is an F (G�K1, p)-set, then the set S ′0 may or may not be empty, where

S ′0 = S ′ ∩ V (G(v0)).

Notation 5.3.1.

• |V (G)| = n

• For any set S ′ ⊆ V (G�K1, p), S denotes pG(S ′)

• For 0 ≤ j ≤ p, S ′j = V (G(vj)) ∩ S ′ and Sj = pG(S ′j)

Fact 5.3.1. Let S ′ be an F (G�K1, p)-set and S = pG(S ′). Then the following

properties are noted:

1. For any i ∈ {1, 2, . . . , n}, |V (K
(ui)
1, p ) ∩ S ′| ≤ 1 and hence, |S ′| ≤ n. Further,

|S ′| = |S|.

2. IG(S) + |S| ≤ F (G�K1, p) ≤ IG(S) + p|S|.
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Proof. For any (ui, vj) ∈ V (G�K1, p),

degG�K1, p
(ui, vj) =

degG(ui) + p; if j = 1

degG(ui) + 1; otherwise.

Further, as |S ′| = |S|,∑
ui∈S

[degG(ui) + 1] ≤
∑

(ui,vj)∈S′
degG�H(ui, vj) ≤

∑
ui∈S

[degG(ui) + p]

⇒ |S|+
∑
ui∈S

degG(ui) ≤
∑

(ui,vj)∈S′
degG�H(ui, vj) ≤ p|S|+

∑
ui∈S

degG(ui),

for all (ui, vj) ∈ V (G�K1, p).

Therefore, |S|+ IG(S) ≤ IG�K1, p(S ′) ≤ p|S|+ IG(S). Equivalently,

IG(S) + |S| ≤ F (G�K1, p) ≤ IG(S) + p|S|.

3. F (G�K1, p) = IG(S) + |S| if and only if S ′0 = ∅.

4. F (G�K1, p) = IG(S) + p|S| if and only if S ′j = ∅, for all j, where 1 ≤ j ≤ p.

Proposition 5.3.1. Let G be a graph of order n, where n ≥ 2. If G�K1, p ∈ E

and S ′ is its EDS, then either p ≤ δ(G) + 1 or p ≤ n−∆′(G)− 1, where ∆′(G) =

max{deg(u) : u ∈ pG(S ′0)}.

Proof. Let S ′ be an EDS of G�K1, p. As discussed earlier, for any u ∈ V (G),

|V (K
(u)
1, p) ∩ S ′| ≤ 1. Also, for any j (0 ≤ j ≤ p), exactly one vertex is chosen from

NG[u]× {vj} to efficiently dominate (u, vj). Two cases arise: S ′0 = ∅ and S ′0 6= ∅.

Case(i): S ′0 = ∅

In this case, the maximum number of copies of u dominated efficiently by

∪pj=1(NG[u] × {vj}) is deg(u) + 1. Hence, p ≤ deg(u) + 1. Since u is arbitrary,

p ≤ δ(G) + 1.

Case(ii): S ′0 6= ∅

Let u ∈ pG(S ′0). Then, (u, v0) dominates V (K
(u)
1, p) ∪ [NG[u] × {v0}]. Let x ∈

NG(u). Then, V (K
(x)
1, p) ∩ S ′ = ∅. Hence, to efficiently dominate each of the p

vertices in V (K
(x)
1, p) − {(x, v0)}, p distinct vertices are needed, one from each

set [V (G) − N [u]] × {vj}, (1 ≤ j ≤ p). Hence, p ≤ |V (G) − N [u]|. That is,
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p ≤ n− degG(u)− 1. Since, u is arbitrary, this is true for every vertex in pG(S ′0).

Hence, p ≤ n−∆′(G)− 1, where ∆′(G) = max{deg(u) : u ∈ pG(S ′0)}.

Suppose S ′ = ∪p
j=0S

′
j, where S ′j ⊆ V (G(vj)) and Sj = pG(S ′j), for 0 ≤ j ≤ p,

then it is observed that S ′ is a 2-packing of G�K1, p if and only if S ′j, for each

j ∈ {0, 1, . . . , p}, is a 2-packing inG(vj) if and only if Sj is a 2-packing inG, for each

j ∈ {0, 1, . . . , p}. Also, I(S ′) =

p∑
j=0

I(S ′j). Based on this fact the following theorem

gives a necessary and sufficient condition for an arbitrary subset of V (G�K1, p) to

be an F (G�K1, p)-set.

Theorem 5.3.2. Let S ′ ⊆ V (G�K1, p). Then S ′ is an F (G�K1, p)-set if and only

if for each j (0 ≤ j ≤ p), there exists a set S ′j ⊆ V (G(vj)) such that S ′ = ∪pj=0S
′
j

and Sj = pG(S ′j) satisfying the following conditions:

(i) Sj is a 2-packing in G, for each j ∈ {0, 1, . . . , p}.

(ii) (N [S0] × {vj}) ∩ S ′j = ∅, for all j ∈ {1, 2, . . . , p} and Si ∩ Sj = ∅, for

i, j ∈ {1, 2, . . . , p} and i 6= j.

(iii)
p∑

j=0

I(S ′j) is maximum of all sets S ′j ⊆ V (G(vj)), for each j (0 ≤ j ≤ p), such

that S ′ = ∪pj=0S
′
j.

Proof. Suppose that S ′ is an F (G�K1, p)-set. Clearly, S ′ = ∪pj=0S
′
j, where S ′j ⊆

V (G(vj)), for each j (0 ≤ j ≤ p). Further by definition, each S ′j is a 2-packing in

G�K1, p and hence Sj is a 2-packing in G.

Moreover, if S ′0 6= ∅, then for any x ∈ (N [S0] × {vj}), d(x, S ′0) ≤ 2, for each

j ∈ {1, 2, . . . , p}. Therefore, x /∈ S ′j and consequently, (N [S0] × {vj}) ∩ S ′j = ∅,

for each j ∈ {1, 2, . . . , p}. Now, suppose u ∈ Si ∩ Sj, for any i, j ∈ {1, 2, . . . , p}

with i 6= j, then (u, vi) ∈ S ′i and (u, vj) ∈ S ′j. Further, d((u, vi), (u, vj)) ≤ 2 in

G�K1, p, contradicting that S ′ is a 2-packing in G�K1, p. Hence, the sets Sj, for

1 ≤ j ≤ p are pairwise disjoint. Also, I(S ′) =

p∑
j=0

I(S ′j) and is maximum, as S ′ is

an F (G�K1, p)-set.

Conversely, suppose that conditions (i), (ii) and (iii) hold for some subset S ′ of

V (G�K1, p). Then, conditions (i) and (ii) together imply that S ′ is a 2-packing
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of G�K1, p. Further, as I(S ′) =

p∑
j=0

I(S ′j), condition (iii) guarantees that S ′ is an

F (G�K1, p)-set.

Theorem 5.3.3. G�K1, p ∈ E if and only if there exists a subset S ′ of V (G�K1, p)

such that the following conditions hold:

(i) pG(S ′ ∩ V (G(v0))) is a 2-packing in G.

(ii) If S0 = pG(S ′ ∩ V (G(v0))) and G∗ ∼=< V (G) − N [S0] >, then V (G∗) can be

partitioned into p sets, say, S1, S2, . . . , Sp such that each Sj is an EDS of

G∗.

(iii) For every vertex v ∈ N(S0) and for each j (1 ≤ j ≤ p), |N(v) ∩ Sj| = 1.

Proof. Suppose that there exists a subset S ′ of V (G�K1, p) satisfying conditions

(i), (ii) and (iii). Since S1, S2, . . . , Sp are pairwise disjoint efficient dominating sets

of G∗, forming a partition of V (G∗), it follows that |V (G∗)| = pγ(G∗). For each

j, (0 ≤ j ≤ p), let S ′j = Sj × {vj}. For each j (1 ≤ j ≤ p), as Sj is an EDS of

G∗, S ′j is a 2-packing of G�K1, p and it follows from condition (i) that S ′0 is also

a 2-packing of G�K1, p. Further, S ′ = ∪pj=0S
′
j.

Claim: S ′ is an EDS of G�K1, p

Let j ∈ {1, 2, . . . , p}. Then, S ′j dominates G∗(vj) and also copies of the vertices of

S ′j in the layer G∗(v0). That is, S ′j dominates V (G∗(vj)) ∪ (Sj × {v0}). In addition,

it follows from condition (iii) that each S ′j dominates N(S0)× {vj}, as well. This

is true for each j (1 ≤ j ≤ p). Further, S ′0 dominates N [S ′0]. Thus, S ′ = ∪pj=0S
′
j

forms an EDS of G�K1, p and γ(G�K1, p) = |S0|+ pγ(G∗).

Conversely, let G�K1, p ∈ E and S ′ be its EDS.

Claim: S ′ satisfies conditions (i) to (iii).

For each j, 0 ≤ j ≤ p, define S ′j = S ′ ∩ V (G(vj)) and Sj = pG(S ′j) so that

S ′ = ∪pj=0S
′
j. Further, as S ′ is an EDS of G�K1, p, each S ′j (0 ≤ j ≤ p) is a

2-packing of G�K1, p and hence each Sj (0 ≤ j ≤ p) is a 2-packing of G. Further,

for each j (1 ≤ j ≤ p), S ′j dominates efficiently all vertices in the layer G(vj)

except V (G(vj)) ∩ N(S ′0). Consequently, each Sj (1 ≤ j ≤ p) is an EDS of G∗,

where G∗ ∼=< V (G)−N [S0] >.
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Claim 1: ∪pj=1Sj = V (G∗)

Clearly, ∪pj=1Sj ⊆ V (G∗). Suppose that there exists a vertex w ∈ V (G∗) and

w /∈ Sj, for all j (1 ≤ j ≤ p). Then (w, vj) /∈ S ′, but it is dominated by S ′j and

hence the vertex (w, v0) is left undominated by S ′, contradicting that S ′ is an EDS

of G�K1, p. Hence, ∪p
j=1Sj = V (G∗).

Claim 2: Si ∩ Sj = ∅, for all i 6= j, 1 ≤ i, j ≤ p

Suppose that u ∈ Si ∩ Sj. Then, (u, vi) ∈ S ′i and (u, vj) ∈ S ′j, which implies

that both (u, vi), (u, vj) are in S ′. But, (u, vi) and (u, vj) are at distance two in

G�K1, p, contradicting that S ′ is an EDS of G�K1, p. Hence, Si ∩ Sj = ∅, for all

i, j ∈ {1, 2, . . . , p} and i 6= j.

Therefore, {Sj : 1 ≤ j ≤ p} is a partition of V (G∗) where each Sj is an EDS of

G∗. Further, as G is connected, for each i (1 ≤ i ≤ p) and for any v ∈ N(S0),

|N(v)∩Sj| ≥ 1. Moreover, as S ′ is an EDS of G�K1, p, |N(v)∩Sj| � 2 and hence,

condition (iii) follows.

Remark 5.3.1. If G�K1, p ∈ E and S ′0 6= ∅, it follows from condition (ii) of

Theorem 5.3.3 that {S1, S2, . . . , Sp} forms a partition of V (G∗), where G∗ ∼=<

V (G) − N [S0] >. Hence, V (G) = N [S0] ∪ S1 ∪ · · · ∪ Sp (disjoint union). Figure

5.13 gives an illustration of the general structure of G for which G�K1, p ∈ E and

has an EDS say, S ′ such that S ′0 6= ∅.

S0

N(S0)

S1

S2

Sm

�
�
�

G∗

Figure 5.13: V (G) = N [S0] ∪ S1 ∪ · · · ∪ Sp (disjoint union)
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If G�K1, p ∈ E and G has one of the structures shown in Figures 5.14 and

5.15, then G must also be efficiently dominatable. However, there may be other

cases wherein both G�K1, p and G are efficiently dominatable. Few such cases are

explored in Corollaries 5.3.3.1, 5.3.3.2 and 5.3.3.3. Precisely, the set N(S0) forms

an EDS of G if the structure of G is as in Figure 5.14 and the set (S0−{u})∪{w}

forms an EDS ofG ifG has a structure similar to Figure 5.15. This fact is discussed

in detail in Corollaries 5.3.3.1 and 5.3.3.2.

�

�

�
� �

�

�

�

� �

� �

S0

N(S0)

S1

S2
S3

S4

G∗

Figure 5.14: G ∈ E whenever G�K1, p ∈ E

�

� �

�

� �

� �

S0

N(S0)

S1

S2
S3

S4

�

u v

w
G∗

Figure 5.15: G ∈ E whenever G�K1, p ∈ E
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Corollary 5.3.3.1. Let G be connected, G ∈ E and G�K1, p ∈ E . If S ′ is an

EDS of G�K1, p such that S ′0 6= ∅, then the following conditions hold:

(i) For any j (0 ≤ j ≤ p), Sj is not an EDS of G.

(ii) N(S0) is an EDS of G if and only if N(S0) is a 2-packing of G and |N(S0)| =

|Sj|, for each j ∈ {0, 1, . . . , p}.

Proof. Let S be an EDS of G. As G�K1, p ∈ E and S ′0 6= ∅, it follows from

condition (ii) of Theorem 5.3.3 that {S1, S2, . . . , Sp} forms a partition of V (G∗),

where G∗ ∼=< V (G)−N [S0] > and hence V (G) = N [S0] ∪ S1 ∪ · · · ∪ Sp.

Proof of (i):

Since dG(S0, Sj) ≥ 2, for all j ∈ {1, 2, . . . , p}, it follows that S0 cannot be an EDS

of G. In addition, for any j ∈ {1, 2, . . . , p}, it follows from conditions (ii) and (iii)

of Theorem 5.3.3 that each Sj efficiently dominates V (G∗) ∪N(S0), but does not

dominate S0. Hence, Sj cannot be an EDS of G, for all j (0 ≤ j ≤ p).

Proof of (ii):

Suppose that N(S0) is an EDS of G. Then, clearly N(S0) is a 2-packing of G.

Also, G is connected and hence, |N(S0)| = |S0|.

Claim: |N(S0)| = |Sj|, for all j ∈ {1, 2, . . . , p}

It follows from condition (iii) of Theorem 5.3.3 that, |N(S0)| ≤ |Sj|, for all j ∈

{1, 2, . . . , p}. Suppose |N(S0)| < |Sj|, for any j (1 ≤ j ≤ p), then there exists a

vertex u ∈ Sj, which is not adjacent to any vertex in N(S0), contradicting that

N(S0) is an EDS of G.

Conversely, suppose that N(S0) is a 2-packing of G and |N(S0)| = |Sj|, for all j ∈

{0, 1, . . . , p}. Then, clearly for all u ∈ N [S0], |N [u]∩N(S0)| = 1 and hence N(S0)

efficiently dominates N [S0]. Further, it follows from condition (iii) of Theorem

5.3.3 that for all j ∈ {1, 2, . . . , p} and for every u ∈ V (Sj), |N(u) ∩ N(S0)| = 1

and hence N(S0) efficiently dominates ∪pj=1Sj. Hence, N(S0) is an EDS of G.

It is noted that if G∗ ∼= Kp, then |Sj| = 1 and |N(S0)| ≥ |Sj|, for all j ∈

{1, 2, . . . , p}. Corollary 5.3.3.1 states that if G ∈ E and |N(S0)| = |Sj|, for all

j ∈ {0, 1, . . . , p}, then N(S0) is an EDS of G. On the other hand, if |N(S0)| 6= |Sj|,
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then G may or may not be efficiently dominatable. In particular, if G ∈ E , then

N(S0) cannot be an EDS of G. In Corollary 5.3.3.2, the necessary and sufficient

conditions are determined for a graph G to be efficiently dominatable, whenever

|N(S0)| 6= |Sj|, for any j ∈ {0, 1, . . . , p}.

Corollary 5.3.3.2. Let G�K1, p ∈ E and S ′ be an EDS of G�K1, p such that

S ′0 6= ∅. Suppose that G∗ ∼= Kp, where G∗ ∼=< V (G) − N [S0] >. Then, G ∈ E if

and only if G has a pendant vertex, say u, such that u ∈ S0 and dG(u, v) > 3, for

all v ∈ S0 − {u}.

Proof. As G�K1, p ∈ E , it follows from Theorem 5.3.3 that Sj is an EDS of G∗,

for all j ∈ {1, 2, . . . , p}. In addition, it follows from condition (iii) of Theorem

5.3.3 that each vertex in N(S0) is adjacent to every vertex in ∪pj=1Sj. Thus, if

G∗ ∼= Kp, then |Sj| = 1, for j ∈ {1, 2, . . . , p}.

Let G ∈ E and S be an EDS of G. It follows from Corollary 5.3.3.1 that S 6= Sj.

Also, S 6⊆ Sj, for all j ∈ {1, 2, . . . , p}. Thus, S ⊂ N [S0]. Since, each vertex in

N(S0) is adjacent to every vertex in ∪pj=1Sj, it follows that |N(S0) ∩ S| = 1. Let

w ∈ |N(S0) ∩ S|.

Claim: dG(w,w′) ≥ 2, for all w′ ∈ N(S0)− {w}

Suppose that, dG(w,w′) = 1, for some w′ ∈ N(S0)− {w}. Then, since w ∈ S, the

vertex N(w′) ∩ S0 is not dominated efficiently, contradicting that G ∈ E . Thus,

for all w′ ∈ N(S0)− {w}, dG(w,w′) ≥ 2.

Hence, it follows that dG(w, v) ≥ 3, for all v ∈ S0. Let u ∈ N(w) ∩ S0. Then, it

follows that dG(u, v) ≥ 4, for all v ∈ S0 − {u}.

Claim: degG(u) = 1

Suppose that degG(u) ≥ 2. Then, dG(w, x) = 2, for all x ∈ N(u) − {w}. As

w ∈ S, this is not possible. Thus, u is a pendant vertex in S0.

Conversely, suppose that G has a pendant vertex, say u, such that u ∈ S0 and

dG(u, v) > 3, for all v ∈ S0 − {u}. If w ∈ N(u), then dG(w, v) ≥ 3, for all

v ∈ S0 − {u}. Then, the set (S0 − {u}) ∪ {w} forms an EDS of G.

Corollary 5.3.3.3. G�K1, p ∈ E and it has an EDS, say S ′ such that S ′0 = ∅

if and only if G has p pairwise disjoint efficient dominating sets. Moreover, p =
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|V (G)|
γ(G)

.

Remark 5.3.2.

1. If G�K1, p ∈ E and has an EDS, say S ′ such that S ′0 = ∅, then it follows from

Corollary 5.3.3.3 that G has p pairwise disjoint efficient dominating sets,

Sj (1 ≤ j ≤ p). Hence, {S ′j : 1 ≤ j ≤ p} can be chosen to efficiently dominate

G�K1, p in p! ways. Therefore, there are p! distinct efficient dominating sets

and p pairwise disjoint efficient dominating sets in G�K1, p.

2. If G�K1, p ∈ E and has an EDS, say S ′ such that S ′0 = ∅, then it follows

from Theorem 3.1.19 that G must be an (p−1)-regular efficiently dominatable

graph, but not conversely.

5.3.1 An Exact Exponential time Algorithm to find an

F (G�K1, p)-set

As already discussed, the problem of deciding whether or not, a graph G has an

EDS is NP-complete. The same is the case for the product G�K1, p. However,

it is evident from the existing literature that designing efficient exact exponential

algorithms is one of the well-adopted methods to solve most of the NP-complete

problems. So in this section, an attempt is made to solve the efficient domina-

tion problem for the product G�K1, p using an exact exponential time algorithm,

namely “ED_StarCProd ”. To the best of our knowledge, this is the first of this

kind which provides an exact exponential solution for the problem in the case of

G�K1, p, whenever G is arbitrary.

The algorithm presented in this section, namely ED_StarCProd, verifies whether

the product G�K1, p is efficiently dominatable or not and in case, the product is

identified not to be efficiently dominatable, the algorithm computes the value of

F (G�K1, p); Finally, it returns an EDS, if it exists or an F -set for the product

and the value of F (G�K1, p), otherwise.

Except for the vertex set of K1, p as a part of its input, the proposed algo-

rithm completely uses the sets (2-packings) generated from G and the structure
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of G rather than those of the product G�K1, p. Thereby, the time complexity is

reduced substantially compared to the traditional exhaustive search techniques.

The algorithm begins by enumerating all 2-packings of G. Lemma 5.3.4 given

below gives an upper bound on the total number of 2-packings of G enumerated

in Step (1) of ED_StarCProd.

In general, an F (G�K1, p)-set may or may not intersect with V (G(v0)). That is,

it may or may not include vertices of the form (u, v0), for any u ∈ V (G). Based on

this, initially, among the various 2-packings of G�K1, p which do not intersect with

V (G(v0)), the one having maximum influence is generated by using the subroutine

“M2P_StarCProd1 ”. In case, the influence of the 2-packing so generated is equal

to n(1 + p), M2P_StarCProd1 itself returns an EDS of the product, concluding

that G�K1, p is efficiently dominatable.

On the other hand, if the influence of the set returned by M2P_StarCProd1

is less than n(1 + p), then the main algorithm (ED_StarCProd) proceeds fur-

ther. The other maximal 2-packings of G�K1, p, which intersect with V (G(v0))

are also enumerated. Finally, among all these and the 2-packing returned by

M2P_StarCProd1, the one with maximum influence is returned as the required

F (G�K1, p)-set.

Before proceeding further to ED_StarCProd(G, n, p) (Algorithm 2), the sig-

nificant steps required to analyse its time complexity are discussed below:

(1) Enumerating all 2-packings of G and

(2) The subroutine - M2P_StarCProd1(G, n, p, P, |P|).

Lemma 5.3.4. (Junosza-Szaniawski and Rzażewski, 2012) The maximum number

of 2-packings in a connected graph on n vertices does not exceed O(1.5399 . . .n).

Moreover, all 2-packings in a connected graph on n vertices can be generated in

time O∗(1.5399 . . .n).

Remark 5.3.3. It is shown by K.J-Szaniawski and Paweł Rzażewski in Junosza-

Szaniawski and Rzażewski (2012) that the maximum number of 2-packings in a

connected graph is between Ω(1.4970 . . .n) and O(1.5399 . . .n). In Lemma 5.3.4, the

authors claim that the number of 2-packings in G does not exceed O(1.5399 . . .n).
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And, all the local operations involved in the process (that is, finding a spanning

tree, finding the longest path in a tree, deleting vertices, checking if a set is a 2-

packing etc.) may be performed in polynomial time. Hence, the total computational

complexity of the algorithm is O∗(1.5399 . . .n). Precisely, if G is a graph on n

vertices and m edges, then finding a spanning tree takes O(n + m) steps, finding

the longest path in a tree can be done in linear time (Club et al., 2002; Uehara and

Uno, 2007), deletion of the vertices can be done in O(n) steps, checking if a set

is a 2-packing can be done in O(n) steps (by using an appropriate data structure,

like Hashing technique). Hence, all 2-packings of a connected graph on n vertices

can be generated in O(n2l) time, where l is the number of 2-packings of G and

l ≤ (1.5399 . . . )n.

An Overview of M2P_StarCProd1 :

The main objective of M2P_StarCProd1 is to generate a 2-packing of G�K1, p,

say S ′′, having maximum influence among all those 2-packings of the product,

which do not include (u, v0), for any u ∈ V (G). That is, to generate a 2-packing

S ′′ of the product such that S ′′ ∩ S ′0 = ∅ and has maximum influence among

all such 2-packings. This is accomplished by generating a collection (of size at

most p) of mutually disjoint 2-packings of G such that the total influence (the

sum of influence of all the elements in the collection) is maximum among all such

collections. To determine such a collection, one of the brute-force techniques is

to generate all 2-packings of G, say P1, P2, . . . , Pl; then for each Pi (1 ≤ i ≤ l),

all distinct collections of mutually disjoint 2-packings of G containing Pi can be

generated, which in turn helps in generating all collections of mutually disjoint

2-packings of G; finally, the one with maximum total influence is picked up. But

this procedure is not efficient in terms of complexity. Hence, with the intention

of reducing the complexity, in M2P_StarCProd1, initially, all 2-packings of G

are enumerated. Then, these 2-packings are sorted in the nonincreasing order of

their influence in G. The sets with same influence are taken in the nonincreasing

order of their cardinality. Then, for each i, where 1 ≤ i ≤ l, a collection of

mutually disjoint 2-packings of G containing Pi having maximum total influence
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is determined among all such collections containing Pi. Next, for each of the above

newly generated collection, the elements in the collection are further sorted, in the

nonincreasing order of their influence in G. In the event that a collection includes

more than p elements, only the first p elements are retained after sorting. Finally,

the required collection (of size at most p) whose total influence is the maximum

compared to the others is determined.

Lemma 5.3.5. Given the collection of all 2-packings of a connected graph G of

order n, M2P_StarCProd1 generates a maximal 2-packing of G�K1, p, say S ′′,

which does not intersect with V (G(v0)) in O∗(cn) time, where I(S ′′) = max{I(P ′) :

P ′ is a 2-packing of G�K1, p; P ′ ∩ V (G(v0)) = ∅} and 5.0221 · · · ≤ c ≤ 5.6230 . . . .

Proof.

Correctness of M2P_StarCProd1: Let P = {P1, P2, . . . , Pl} be the given

collection of all 2-packings of G. M2P_StarCProd1 starts by sorting P in the

nonincreasing order of the influence (in G) of the 2-packings included in P. To

break a tie, if any, the sets are taken in the nonincreasing order of their cardinali-

ties. Let P ′ = {P ′1, P ′2, . . . , P ′l } be the sorted list. A series of steps is performed to

generate a collection of mutually disjoint 2-packings of G by choosing an element

from P ′. This step is carried out for all the elements in P ′.

Initially, starting with P ′1 ∈P ′, a collection S1 of mutually disjoint 2-packings of

G and containing P ′1 is generated by comparing P ′1 with the other elements in P ′.

First, set S1 = P ′1 and include it in S1. To choose the next element to include

in S1, it is required to pick up the next packing of maximum influence as well as

disjoint with S1. So, if P ′2 ∩ S1 = ∅, then let S2 = P ′2 and include it in S1. If not,

proceed checking P ′3 and so on. For the third and subsequent choice of elements

to include in S1, it is required to compare the next candidate P ′i with all S ′is

included earlier in S1. In this way, a collection of mutually disjoint 2-packings

containing P ′1, namely S1 is generated. At each stage, as the elements are chosen

in the order they appear in the sort list (based on influence), it is evident that the

generated collection has maximum total influence compared to all those disjoint

collections containing P ′1.
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Next, the elements in P ′\S1 are considered in the order they appear in P ′. The

above process is continued by starting with the first element appearing in the list

P ′\S1 and generate the collection S2 and so on.

Claim: The Collections S1,S2, . . . ,Sq are mutually distinct.

Proof of Claim: Once the collection S1 is determined, it is clear that all elements

present in S1 are mutually disjoint from each other. Hence, repeating the step by

choosing a 2-packing already in S1 may result either in a duplication of collections

or a collection having lesser total influence than S1. Hence, to generate a distinct

collection S2, the process is continued by choosing the first 2-packing in P ′\S1.

Similarly, the collection S3 is generated by choosing the first member of P ′\(S1∪

S2) and so on. Hence, the collections S1,S2, . . . ,Sq are mutually distinct.

Next, for 1 ≤ i ≤ q, the elements in each Si are sorted in the nonincreasing order

of their influence. Sets with same influence are taken in the nonincreasing order

of their cardinality in the sorted list so that the influence is maximum in G�K1, p.

Finally, excluding G(v0), as there are only p rows (or p copies of G) in G�K1, p, at

most k elements, where k ≤ p, are retained in each Si.

Thus, for each i (1 ≤ i ≤ q), if S ′
i = {S ′1, S ′2, . . . , S ′k} is the sorted list of 2-

packings, then the set S ′′i = (S ′1 × {v1}) ∪ (S ′2 × {v2}) ∪ · · · ∪ (S ′k × {vk}) will be

the corresponding 2-packing of G�K1, p not containing (u, v0), for any u ∈ V (G).

Then, among these S ′′i ’s, the one with maximum influence is the required 2-packing

of maximum influence in G�K1, p not intersecting with V (G(v0)).

Time Complexity of M2P_StarCProd1: In Algorithm 1, the sorting done in

Step 2 requires O(l log l) time. Steps 14 - 19 take at most n2 time. The while loop

in Step 13 executes at most l times. Hence, the innermost while loop in Steps

13 - 20 takes at most ln2 steps. The while loop in Step 11 is executed at most l

times. Hence, Steps 11 - 24 take at most l2n2 time. Next, the while loop in Step

6 executes at most l times and Step 26 is executed q times, where q ≤ l and each

execution takes l log l times. The sets S ′′q in Step 28 and I(S ′′q ) computed in Step

29 are used to generate a 2-packing, say S ′′, of G�K1, p in Step 38 and this takes

O(p) time (since m ≤ p). Thus, Steps 5 - 35 take at most l(l2n2 + l2 log l + p)
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steps. As while loop in Step 4 executes at most l times, Steps 4 - 36 take at most

l(l(l2n2 + l2 log l+ p)) = l4n2 + l4 log l+ pl2 steps. Thus, M2P_StarCProd1 takes

O(l4n2 + l4 log l + pl2) = O(l2(l2n2 + p)) steps (using Lemma 5.3.4).

Now, suppose p ≤ n, then clearly, O(l4n2 + l2p) = O(l4n2). On the other hand,

if p > n, then p = n + k, for some k > 0. Therefore, as l2p = l2(n + k) < l4n2,

O(l4n2 + l2p) = O(l4n2). Thus, in either case, it can be observed that the time

complexity for M2P_StarCProd1 is O(l4n2) = O∗(l4). Or precisely, it follows

from Remark 5.3.3 that M2P_StarCProd1 takes O∗(cn) time, where 5.0221 · · · ≤

c ≤ 5.6230 . . . .

Theorem 5.3.6. For any connected graph G = (V,E), the algorithm

ED_StarCProd(G, n, p) finds an EDS of G�K1, p or an F (G�K1, p)-set in O∗(cn)

time, where 5.6230257 · · · ≤ c ≤ 8.658897 . . . .

Proof. The correctness of the algorithm follows from Theorems 5.3.2 and Lemma

5.3.5. Next, it will be shown that ED_StarCProd computes an F (G�K1, p)-set (or

an EDS of G�K1, p) in O(l3(l2n2 + p)) steps, where l is the number of 2-packings

of G.

In ED_StarCProd(G, n, p), Step 1 generates all 2-packings of G in O(n2l) steps,

where l is the number of 2-packings of G (refer to Remark 5.3.3). As discussed

earlier, an F (G�K1, p)-set may or may not include elements from V (G(v0)). Based

on this, the algorithm ED_StarCProd involves two major sequence of steps, exe-

cuted based on the validity of the ‘if’ statement in Step 3. Initially, Step 2 calls

M2P_StarCProd1 (G, n, p,P) to find a maximal 2-packing, say, S ′′ of G�K1, p

which does not contain (u, v0), for any u ∈ V (G) and having maximum influence

among all such 2-packings of the product. Upon checking whether I(S ′′) = n(1+p)

(that is, if S ′′ is an EDS of G�K1, p) in Step 3, the algorithm ED_StarCProd either

terminates by returning S ′′ (as an EDS of the product) and its influence or proceeds

further. If it terminates at Step 7, then the total complexity of ED_StarCProd

will be O(n2l+ l2(l2n2 + p)) = O∗(cn), where 5.0221 · · · ≤ c ≤ 5.6230 . . . (refer to

Lemma 5.3.5).
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Algorithm 1: M2P_StarCProd1 (G, n, p, P, |P|)
Input: A connected graph G of order n, V (K1, p) = {v0, v1, . . . , vp} (p ≥ 1), P - Set of

all 2-packings of G and |P|
Output: A 2-packing of G�K1, p not containing (u, v0), for any u ∈ V (G) and having

maximum influence among all such 2-packings of the product
1 Let |P| = l and P = {P1, P2, . . . , Pl}
2 Sort P in the nonincreasing order of influence of P ′is. Sets with same influence are taken

in the nonincreasing order of their cardinality in the sorted list. Let
P ′ = {P ′1, P ′2, . . . , P ′l } be the sorted list of 2-packings.

3 q = 0; r = 1; k = 0; T = ∅
4 while r ≤ l do
5 if k ≤ l then
6 while P ′r /∈ T do
7 q ++
8 t = 1; St = P ′r; I(St) =

∑
x∈St

(1 + degG(x))

9 T = T ∪ {P ′r}; k ++
10 j = 1
11 while j ≤ l do
12 i = 1
13 while i ≤ t do
14 if P ′j ∩ Si 6= ∅ then
15 j++; goto Step 11
16 end
17 else
18 i++
19 end
20 end
21 t++; St = P ′j ; I(St) =

∑
x∈St

(1 + degG(x))

22 T = T ∪ {P ′j}; k ++

23 j ++

24 end
25 Sq = {S1, S2, . . . , St}
26 Sort Sq in the nonincreasing order of influence of S′is. To break a tie, if any,

take the sets in the nonincreasing order of their cardinalities. In the sorted
collection Sq, retain only the first p elements, in case it includes more than
p sets.

27 S ′q = {S′1, S′2, . . . , S′m}m≤p be the sorted collection got in Step 26.
28 S′′q = ∪mi=1(S

′
i × {vi})

29 I(S′′q ) =
∑m

i=1(I(S
′
i) + |S′i|)

30 end
31 r ++; goto Step 4
32 end
33 else
34 goto Step 37
35 end
36 end
37 Imax = max{I(S′′1 ), I(S′′2 ), . . . , I(S′′q )}
38 S′′ = S′′q such that I(S′′q ) = Imax

39 I(S′′) = IS′′
q

40 return S′′ and I(S′′)
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Algorithm 2: ED_StarCProd(G, n, p)

Input: A connected graph G of order n, V (K1, p) = {v0, v1, . . . , vp} (p ≥ 1)
Output: F (G�K1, p) and an F (G�K1, p)-set
// If F (G�K1, p = n(1 + p)), then the F-set returned is an EDS of

G�K1, p.
1 Generate all 2-packings of G. Let P be the set of all 2-packings of G.
2 Call M2P_StarCProd1 (G, n, p, P, |P|)
3 if I(S′′) == n(1 + p) then
4 print “G�K1, p is efficiently dominatable and S′′ is an EDS of G�K1, p.”
5 F (G�K1, p) = I(S′′)
6 return S′′, F (G�K1, p)

7 end
8 else
9 for i = 1 to l do

10 S0 = Pi

11 G∗ ∼=< V (G)−N [S0] >
12 Generate all 2-packings of G∗. Let P∗ be the set of all 2-packings of G∗.
13 Call M2P_StarCProd1 (G∗, |V (G∗)|, p, P∗, |P∗|)
14 P ′′i = S′′ ∪ (S0 × {v0})
15 I(P ′′i ) = I(S′′) +

∑
v∈S0

(degG(v) + 1) + p|S0|
16 end
17 end
18 S = {S′′, P ′′1 , P ′′2 , . . . , P ′′l }; Imax = max{I(S) : S ∈ S }
19 Let S′ be the set in S whose influence is equal to Imax.
20 F (G�K1, p) = Imax

21 if F (G�K1, p) = n(1 + p) then
22 print “G�K1, p is efficiently dominatable and S′ is an EDS of G�K1, p.”
23 end
24 else
25 print “G�K1, p is not efficiently dominatable and S′ is an F (G�K1, p)-set.”
26 end
27 return S′, F (G�K1, p)

On the other hand, if the test condition in Step 3 fails, then the algorithm

proceeds further. For each Pi ∈ P (1 ≤ i ≤ l), Step 13 calls the subrou-

tine M2P_StarCProd1 for G∗, where G∗ is the graph induced by V (G) − N [Pi].

Every call of Step 13 takes O(l4i n
2)-steps, where li is the number of 2-packings of

< V (G) − N [Pi] >. Thus, the for loop in Steps 9 - 16 takes n2(
∑l

i=1 l
4
i ) steps.

That is, the for loop in Steps 9 - 16 runs in O(l5n2) time, since li ≤ l, for each i

(1 ≤ i ≤ l).

The maximum influence computed in Step 18 takes O((l + 1) log(l + 1)) time

and the remaining steps take constant time. Hence, the total time complexity to
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execute ED_StarCProd is O(n2l+ l5n2 +(l+1)log(l+1)) = O(l5n2) = O∗(l5). Or

precisely, it takes O∗(cn) time, where 7.5181 · · · ≤ c ≤ 8.6589 . . . (Using Remark

5.3.3).

Remark 5.3.4. If ED_StarCProd(G, n, p) ends at Step 7, then the the overall

complexity will be reduced by a factor of l. That is, the algorithm takes O∗(l4)

time, where l is the number of 2-packings of G. Otherwise, it takes O∗(l5) time.

Thus, the problem of finding an F (G�K1, p)-set has time complexity Ω(l4n2) and

O(l5n2).

5.4 Efficient Domination in the cartesian Product G�Kp

In this section, the notion of efficient domination is discussed for the cartesian

product of complete graphs with other graphs in terms of their factors. A neces-

sary and sufficient condition is obtained for the product G�Kp to be efficiently

dominatable. Given a subset of V (G�Kp), a characterization is obtained for the

existence of an F (G�Kp)-set and finally an algorithm is presented to find an

F (G�Kp)-set. It is known that G�K1
∼= G and hence, the product is efficiently

dominatable if and only if G ∈ E . Hence, it is assumed throughout that in the

product G�Kp, the factor G is connected, G 6∼= K1 and p ≥ 2.

Throughout this section, the following notations are used:

Let V (G) = {u1, u2, . . . , un} and V (Kp) = {v1, v2, . . . , vp}. Then, |V (G�Kp)| = np.

For any (ui, vj) ∈ V (G�Kp), degG�Kp
(ui, vj) = degG(ui) + (p− 1), for 1 ≤ i ≤ n

and 1 ≤ j ≤ p.

Notation 5.4.1.

• |V (G)| = n, |V (Kp)| = p

• For any set S ′ ⊆ V (G�Kp), S denotes pG(S ′)

• For 1 ≤ j ≤ p, S ′j = V (G(vj)) ∩ S ′ and Sj = pG(S ′j)

Fact 5.4.1. If S ′ is an F (G�Kp)-set and S = pG(S ′), then the following properties

hold:
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1. For any i ∈ {1, 2, . . . , n}, |V (K
(ui)
p )∩S ′| ≤ 1 and hence, |S ′| ≤ n. Moreover,

|S ′| = |S|.

2. If S ′ is an F (G�Kp)-set, then S is independent in G.

3. F (G�Kp) = IG(S) + (p− 1)|S|

Proof. For any (ui, vj) ∈ V (G�Kp), where 1 ≤ i ≤ n and 1 ≤ j ≤ p,

degG�Kp
(ui, vj) = degG(ui) + (p− 1). Further, as |S ′| = |S|,∑

(ui,vj)∈S′ degG�Kp
(ui, vj) =

∑
ui∈S[degG(ui)+p−1], for all (ui, vj) ∈ V (G�Kp).

This implies that

F (G�Kp) =
∑

(ui,vj)∈S′
[degG�Kp

(ui, vj) + 1]

=
∑
ui∈S

degG(ui) + p|S|

Equivalently, F (G�Kp) = IG(S) + (p− 1)|S|.

Proposition 5.4.1. Let G be a connected graph of order n, where n ≥ 2. If

G�Kp ∈ E , then p ≤ n− δ(G).

Proof. Let G�Kp ∈ E and S ′ be an EDS of G�Kp. Without loss of generality,

let (u1, v1) ∈ S ′. Then, (u1, v1) dominates V (K
(u1)
p )∪ (NG[u1]× v1). Without loss

of generality, let u2 ∈ NG(u1). Then, V (K
(u2)
p ) ∩ S ′ = ∅. Hence, to efficiently

dominate each of the (p − 1) vertices in V (K
(u2)
p ) − {u2, v1}, (p − 1) distinct

vertices are required, one from each set (V (G)−N [u1])× vj, (1 ≤ j ≤ p). Hence,

p − 1 ≤ |V (G) − N [u1]|. That is, p ≤ n − degG(u1). Since u1 is arbitrary,

p ≤ n− δ(G).

Proposition 5.4.2. Let S = {S ⊆ V (G) : S is independent in G and |S| ≤ n−
1
p

∑
ui∈S degG(ui)}. If S ′ is an F (G�Kp)-set and S = pG(S ′), then the following

conditions hold:

(i) S ∈ S .

(ii) IG(S) + |S|(p− 1) = maxT∈S {IG(T ) + |T |(p− 1)}.
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In particular, |S ′| ≤ α(G), where α(G) is the independence number of G.

Proof. Let S ′ be an F (G�Kp)-set and S = pG(S ′). Let |V (G)| = n. Then,

it follows from Fact 5.4.1(2) that S is an independent set in G. Since S ′ is an

F (G�Kp)-set,

IG�Kp(S ′) ≤ pn (5.23)

But, using Fact 5.4.1(3),

IG�Kp(S ′) = IG(S) + |S|(p− 1)

=
∑
ui∈S

(degG(ui) + 1) + |S|(p− 1)

=
∑
ui∈S

degG(ui) + p|S| (5.24)

Therefore, from (5.23) and (5.24), |S| ≤ n− 1
p

∑
ui∈S degG(ui). Hence, S ∈ S .

Also, as S ′ is an F (G�Kp)-set, it follows by definition that IG�Kp(S ′) is maximum

among the influences of all 2-packings of G�Kp.

To prove condition (ii), it is required to show that IG(S) + |S|(p− 1) ≥ IG(T ) +

|T |(p− 1), for all T ∈ S . Suppose to the contrary that there exists a set T ∈ S

such that IG(T ) + |T |(p− 1) > IG(S) + |S|(p− 1). Then, IG�Kp(T ′) > IG�Kp(S ′),

where T ′ is the 2-packing in G�Kp such that T = pG(T ′). This contradicts our

hypothesis. Hence, condition (ii) holds.

Further, as S is independent in G, |S| ≤ α(G), where α(G) is the independence

number of G. Therefore, |S ′| = |S| implies that |S ′| ≤ α(G).

In general, if S ′ = ∪pj=1S
′
j, where S ′j ⊆ V (G(vj)) and Sj = pG(S ′j), for 1 ≤ j ≤ p,

then it is observed that S ′ is a 2-packing in G�Kp if and only if S ′j is a 2-packing

of G(vj) if and only if pG(S ′j)(= Sj) is a 2-packing of G, for each j ∈ {1, 2, . . . , p}.

Also, I(S ′) =
∑p

j=1 I(S ′j). With these facts, the following result gives a necessary

and sufficient condition for an arbitrary subset of V (G�Kp) to be an F (G�Kp)-

set.

Theorem 5.4.3. Let S ′ ⊆ V (G�Kp). Then, S ′ is an F (G�Kp)-set if and only

if there exist sets S ′j ⊆ V (G(vj)) (1 ≤ j ≤ p) such that S ′ = ∪pj=1S
′
j, where one or
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more S ′j’s are possibly empty and for each j ∈ {1, 2, . . . , p} such that S ′j 6= ∅ the

following conditions hold:

(i) pG(S ′j) is a 2-packing in G.

(ii) For any given k, l, where k 6= l and 1 ≤ k, l ≤ p, S ′l∩(N [pG(S ′k)]×{vj}) = ∅.

(iii)
p∑

j=1

I(S ′j) is the maximum among all sets T ′j ⊆ V (G(vj)) (1 ≤ j ≤ p) such

that S ′ = ∪pj=1T
′
j.

Proof. Let S ′ be an F (G�Kp)-set. Define for each j (1 ≤ j ≤ p), S ′j = S ′ ∩

V (G(vj)). Clearly, one or more S ′js are possibly empty and S ′j ⊆ V (G(vj)), for all

j (1 ≤ j ≤ p). Further, S ′ = ∪pj=1S
′
j.

For all S ′j 6= ∅, since S ′ is a 2-packing of G�Kp, S ′j is a 2-packing of G(vj) and

hence, pG(S ′j) is a 2-packing in G. Thus, condition (i) holds.

For each j ∈ {1, 2, . . . , p} define Sj = pG(S ′j) and S = pG(S ′). Let k, l ∈

{1, 2, . . . , p} such that k 6= l and j ∈ {1, 2, . . . , p} such that S ′j 6= ∅. Then,

for each x ∈ (N [Sk]×{vj}), dG�Kp(x, S ′j) ≤ 2 and hence, x /∈ S ′j. Or equivalently,

(N [Sk]× {vj}) ∩ S ′j = ∅ (5.25)

Further, as (N [Sk]× {vj}) ⊆ V (G(vj)),

(N [Sk]× {vj}) ∩ S ′l = ∅ (5.26)

for all k 6= l (1 ≤ k, l ≤ p).

As (5.25) and (5.26) are true for all k 6= l (1 ≤ k, l ≤ p) and any arbitrary j

(1 ≤ j ≤ p) for which S ′j 6= ∅, condition (ii) holds. Further, as S ′ is an F (G�Kp)-

set, I(S ′) =
∑p

j=1 I(S ′j) is maximum (Clearly, I(S ′i) = 0 whenever S ′i = ∅). That

is,
∑p

j=1 I(S ′j) = max{
∑p

j=1 I(T ′j) : T ′j ⊆ V (G(vj)) and ∪pj=1T
′
j = S ′} and hence

condition (iii) holds.

Conversely, suppose that conditions (i), (ii) and (iii) hold for any subset S ′ of

V (G�Kp). Then, conditions (i) and (ii) together imply that S ′ is a 2-packing

of G�Kp. Further, as I(S ′) =

p∑
j=1

I(S ′j), condition (iii) guarantees that S ′ is an

F (G�Kp)-set.
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The following theorem gives a necessary and sufficient condition for G�Kp to be

efficiently dominatable.

Theorem 5.4.4. Let G be a connected graph. G�Kp ∈ E if and only if there

exists a collection P of p mutually disjoint equal sized subsets of V (G�Kp) such

that

(i) pG(K) ∩ pG(T ) = ∅, for all K, T ∈ P.

(ii) ∪T∈PpG(T ) is a maximal independent set of G.

(iii) If S = ∪T∈PpG(T ) and u ∈ V − S, then |NG(u) ∩ pG(T )| = 1, for every

T ∈ P.

Proof. Let G�Kp ∈ E and S ′ be an EDS of G�Kp. For each j ∈ {1, 2, . . . , p}, let

S ′j = V (G(vj)) ∩ S ′. Then, clearly S ′j ⊂ V (G�Kp). Define P = {S ′j}1≤j≤p.

S ′ consists of p subsets of V (G�Kp). Let P be the collection of p such subsets. Let

S = ∪T∈PpG(T ). Then, it follows from Proposition 5.4.2 that S is independent in

G. Since G�Kp ∈ E , for any u ∈ V −S, |NG(u)∩S| = p. Furthermore, it follows

that the independent set S is maximal. For, if there exist w ∈ V (G) such that

S ∪ {w} is independent in G, then for every x ∈ NG(w), x ∈ V − (S ∪ {w}) and

|NG(w)∩(S−{w})| = 0, a contradiction. As S ′ is a 2-packing of G�Kp, it follows

that have |T ∩ (NG(u)× {vj})| = 1, for j ∈ {1, 2, . . . , p}, for every u ∈ V − S and

T ∈ P . In other words, |NG(u) ∩ pG(T )| = 1, for every u ∈ V − S and T ∈ P .

Also, as for every u ∈ V − S, |NG(u) ∩ S| = p, it follows that the elements in P

are mutually disjoint and |pG(K)| = |pG(T )|, for all K, T ∈ P .

Conversely, let P be a collection of p mutually disjoint equal sized subsets of

V (G�Kp) such that conditions (i) and (ii) hold. It follows from conditions (i) and

(ii) that |NG(u) ∩ S| = p. Since S(= ∪T∈PpG(T )) is a maximal independent set

of G, we have |T ∩ (N(u)× {vj})| = 1, for j ∈ {1, 2, . . . , p}, which inturn implies

that each T ∈ P forms a 2-packing of G�Kp and hence S ′ = ∪T∈PT in turn forms

a 2-packing of G�Kp. As for every u ∈ V − S, |N(u) ∩ S| = p, S ′ = ∪T∈PT

efficiently dominates V (G�Kp). Hence, G�Kp ∈ E .
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5.4.1 An Exact Exponential time Algorithm to identify an

F (G�Kp)-set

Following the discussions given in Section 5.3.1, it is known that the problem of

deciding whether or not a graph G has an EDS is NP-complete and so also for the

product G�Kp. Therefore, in this section, an exact exponential time algorithm

is proposed to compute the exact value of F (G�Kp) and thereby, to determine

whether or not the product G�Kp is efficiently dominatable.

Given a connected graph G of order n and knowing the value of p (the order of

the complete graph in the product G�Kp), the proposed algorithm

“ED_CompCProd(G,n,p)” (refer to Algorithm 4) computes F (G�Kp). Based on

the value of F (G�Kp), it is determined whether the product is efficiently dominat-

able. The algorithm generates an F (G�Kp)-set simply by using the independent

sets of G rather than directly searching for subsets of G�Kp. This helps in con-

siderably reducing the time complexity compared to the traditional exhaustive

search techniques.

Based on the results discussed in Proposition 5.4.2 and Theorems 5.4.3 and

5.4.4, given a connected graph G of order n, the proposed algorithm

“ED_CompCProd(G,n,p)” generates an F (G�Kp)-set using the following

procedure:

1. Find all distinct independent sets, say, I1, I2, . . . , Ik of G.

2. Among these independent sets, identify those sets which satisfy the condition

|Ii| ≤ n− 1
p
(
∑

u∈Ii deg(u)).

3. For those independent sets identified in Step 2, partition each independent

set into 2-packings of G. Suppose Ij is an independent set satisfying the

inequality in Step 2, then Ij is partitioned into 2-packings, say S1, S2, . . . ,

St of G. Then, placing each of these 2-packings of G in distinct rows of

the product G�Kp results in a 2-packing of the product G�Kp. Repeating

this process for each independent set identified in Step 2 results in differ-

ent 2-packings of the product. Upon comparing the influences of all the
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2-packings of G�Kp so obtained, the one with maximum influence is re-

turned as an F (G�Kp)-set. Based on the value of F (G�Kp), it is decided

whether or not G�Kp is efficiently dominatable. It is guaranteed by Propo-

sition 5.4.2 and Theorem 5.4.3 that an F (G�Kp)-set must be one among

the sets generated as above and hence, it is sufficient to compare the influ-

ences of these sets rather than all 2-packings of G�Kp. This again helps in

significantly reducing the complexity of the algorithm.

The above procedure involves two major steps, which significantly influence the

complexity of the proposed algorithm: (1) Generating all independent sets of G

and (2) the procedure “M2P_CompCProd ” (used as a subroutine in the proposed

algorithm).

It is shown in (Kirschenhofer et al., 1983) that if G is a connected graph of

order n and k is the number of independent sets in G, then 1 + n ≤ k ≤ 2n−1 + 1.

An outline of the subroutine “M2P_CompCProd ” is discussed below:

An Overview of M2P_CompCProd :

It is known that if P is a 2-packing of a graph H, then P × {vj}, for some j

(1 ≤ j ≤ p), forms a 2-packing in the product H�Kp and IH�Kp(P × {vj}) =

IH(P ) + |P |(p− 1).

Given any connected graph H and an independent set S of H, the main

objective of M2P_CompCProd is to partition S into 2-packings of H, say S =

{S ′1, S ′2, . . . , S ′m}m≤p in such a way that the ∪mi=1(S
′
i×{vi}) has maximum influence

among the influences of all 2-packings of H�Kp generated using such partition

of S into 2-packings. To determine such a collection, the algorithm takes an in-

dependent set of H as input. Among all those 2-packings of H, a collection of

2-packings P of H is generated such that P ⊆ S (P ∈ P). Using this collection

P , a partition of S is identified. This is done by sorting these 2-packings in the

nonincreasing order of their influence in H. The sets with same influence are taken

in the nonincreasing order of their cardinality. Let P = {P1, P2, . . . , Pl′}. For a

given i (1 ≤ i ≤ l′), there may be one or more collections of mutually disjoint

2-packings of H containing Pi. Among all such collections containing Pi, the one
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having maximum influence (the sum of influence of all the elements in the collec-

tion), say Sq is determined (refer to Step 25). Next, for each of the above newly

generated collections Sq, the elements in the collection are further sorted in the

nonincreasing order of their influence in H. In the event that a collection includes

more than p elements, only the first p elements are retained after sorting. Finally,

the required collection (of size at most p) whose total influence in the correspond-

ing product H�Kp is maximum among all such collections generated using the

above procedure is determined (refer to Step 37).

Lemma 5.4.5 is proved by using a similar discussion as in Lemma 5.3.5 and is

stated as below.

Lemma 5.4.5. Given the collection of all 2-packings of a connected graph H of or-

der n′, M2P_CompCProd generates a 2-packing of H�Kp, say S ′′, in O(l2(l2n′2+

p)) steps, where l is the number of 2-packings of H.

Theorem 5.4.6. For any connected graph G = (V,E) of order n, the algorithm

ED_CompC_prod(G,n,p) identifies an EDS of G�Kp or an F (G�Kp)-set in

O(kl2(l2n2 + p)) steps, where k and l are respectively the number of independent

sets and 2-packings of G.

Proof. The correctness of the algorithm follows from Proposition 5.4.2, Theorem

5.4.3 and Lemma 5.4.5.

In the main algorithm ED_CompC_prod(G,n,p) (Algorithm 4), Step 1 generates

all independent sets of G in O(nk) steps, where k is the number of independent

sets of G (Lawler et al., 1980). The for loop in Steps 3-10 generates a collection

S = {S ′i : 1 ≤ i ≤ k} of pairwise disjoint 2-packings of the independent sets Sj’s,

where S is of size at most k. Steps 4-6 takes constant time. For each Sj in Step 6,

Step 8 calls the subroutine M2P_CompCProd(H,S, p,P, |P|) for the subgraph

H =< N [Sj] > which partitions Sj into 2-packings such that its corresponding

influence in H�Kp is maximum among all 2-packings of H�Kp generated using

such partitions of Sj into 2-packings. Every call of Step 8 takes O(l′2(l′2n′2 + p))

steps, where n′ = |V (< N [Sj] >)| and l′ is the number of 2-packings of < N [Sj] >
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Algorithm 3: M2P_CompCProd(H, S, p, P, |P|)
Input: A connected graph H of order n′, an independent set S of H,

V (Kp) = {v1, v2, . . . , vp} (p ≥ 1), P = {P : P is a 2-packing of H and P ⊆ S}
and |P|

Output: A partition of S into 2-packings S = {S′1, S′2, . . . , S′m}m≤p of H such that
∪mi=1(S

′
i × {vi}) has maximum influence among the influences of all those

2-packings in H�Kp obtained by using any such partition of S.
1 Let |P| = l′ and P = {P1, P2, . . . , Pl′}
2 Sort P in the nonincreasing order of influence of P ′is. Sets with same influence are taken

in the nonincreasing order of their cardinality in the sorted list. Let
P ′ = {P ′1, P ′2, . . . , P ′l′} be the sorted list of 2-packings.

3 q = 0; r = 1; k = 0; T = ∅
4 while r ≤ l′ do
5 if k ≤ l′ then
6 while P ′r /∈ T do
7 q ++
8 t = 1; St = P ′r; I(St) =

∑
x∈St

(1 + degH(x))

9 T = T ∪ {P ′r}; k ++
10 j = 1
11 while j ≤ l′ do
12 i = 1
13 while i ≤ t do
14 if P ′j ∩ Si 6= ∅ then
15 j++; goto Step 11
16 end
17 else
18 i++
19 end
20 end
21 t++; St = P ′j ; I(St) =

∑
x∈St

(1 + degH(x))

22 T = T ∪ {P ′j}; k ++

23 j ++

24 end
25 Sq = {S1, S2, . . . , St}
26 Sort Sq in the nonincreasing order of influence of S′is. To break a tie, if any,

take the sets in the nonincreasing order of their cardinalities. In the sorted
collection Sq, retain only the first p elements, in case it includes more than
p sets.

27 S ′q = {S′1, S′2, . . . , S′m}m≤p be the sorted collection got in Step 26.
28 S′′q = ∪mi=1(S

′
i × {vi})

29 I(S′′q ) =
∑m

i=1(I(S
′
i) + |S′i|(p− 1))

30 end
31 r ++; goto Step 4
32 end
33 else
34 goto Step 37
35 end
36 end
37 Imax = max{I(S′′1 ), I(S′′2 ), . . . , I(S′′q )}
38 S′′ = S′′q such that I(S′′q ) = Imax

39 I(S′′) = I(S′′q )
40 return S′′ and I(S′′)
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Algorithm 4: ED_CompCProd(G,n,p))
Input: A connected graph G of order n, V (Kp) = {v1, v2, . . . , vp}
Output: F (G�Kp) and an F (G�Kp)-set

1 Generate all independent sets I1, I2, . . . , Ik of G.
2 j = 0
3 for i = 1 to k do
4 if |Ii| ≤ n− 1

p
(
∑

u∈Ii deg(u)) then
5 j = j + 1
6 Sj = Ii
7 Generate all 2-packings P of < N [Sj] > such that P ⊆ Sj. Let Pj

be the collection of all such 2-packings.
8 S ′′j =M2P_CompCProd(< N [Sj] >, Sj, p, Pj, |Pj|)
9 end

10 end
11 Smax = S ′′i such that I(S ′′i ) = max{I(S ′′1 ), I(S ′′2 ), . . . , I(S ′′j )} and

F (G�Kp) = I(S ′′i )
12 if F (G�Kp) = np then
13 print “G�Kp is efficiently dominatable and S ′′ is an EDS of G�Kp.”
14 end
15 else
16 print “G�Kp is not efficiently dominatable and S ′′ is an F (G�Kp)-set.”
17 end
18 return S ′′ and F (G�Kp)

such that each 2-packing is a subset of Sj. As n′ ≤ n and l′ ≤ l, where l is the

number of 2-packings of G, Steps 3-10 takes O(kl2(l2n2 +p)) steps. The collection

S = {S ′i : 1 ≤ i ≤ k} of pairwise disjoint 2-packings of Sj’s, generated at the

end of Step 10, is used in Step 11 to generate a 2-packing, say Smax of G�Kp,

which takes O(n log n) time. The remaining steps are executed in constant time.

Hence, the total time complexity to execute Algorithm ED_CompC_prod(G,n,p)

(Algorithm 4) is at most kl2(l2n2 + p) = kl4n2 + kl2p.

5.4.2 Some special classes of graphs G for which G�Kp ∈ E

In this section, the existence of some special classes of graphs G for which G�Kp ∈

E are discussed.

1. Let G ∼= K1, p, where V (G) = {u0, u1, u2, . . . , up}, V (Kp) = {v1, v2, . . . , vp}

and u0 be the central vertex. Then, the set S ′ = {(u1, v1), (u2, v2), . . . , (up, vp)}
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forms an EDS of G�Kp.

2. A special class of graph G ∼= T (l) is defined as follows:

T (l) is a rooted tree whose root, say r, is of degree l and all the vertices

at an even distance from the root r are also of degree l. Equivalently, all

the vertices at an even level from the root (including the root) are of degree

l. T (l)�Kp ∈ E if and only if l = p. If S ′ is any EDS of G�Kp, then

pG(S ′) ={All the vertices at an odd distance from the root r in G}.

3. Let G ∼= Kp, n be a complete bipartite graph with partite sets V1 and V2,

where |V1| = p and |V2| = n. For any set S ′ ⊆ V (G�Kp), if pG(S ′) = V1,

then S ′ is an EDS of G�Kp. Similarly, if pG(S ′) = V2, then S ′ is an EDS of

G�Kn.

5.5 Efficient Domination in the cartesian Product �l
i=1Kni

Hamming graphs, a special class of graphs, is the cartesian product of complete

graphs. Some known results in the existence of perfect Hamming error correct-

ing codes can be found in (Bannai, 1977; Hamming, 1950). In this section, the

results discussed in Section 5.4 are extended to identify some efficiently dominat-

able graphs among the Hamming graphs.

Let G ∼= �l
i=1Kni

= Kn1�Kn2� . . .�Knl
, for positive integers l, n1, n2, . . . , nl.

Then, G is a regular graph of degree (n1 − 1) + (n2 − 1) + · · · + (nl − 1) =

(n1 + n2 + · · ·+ nl)− l. For ease of reference, (i, j) is used to represent (ui, vj).

For positive integers l, n1, n2, . . . , nl, let G ∼= Kn1�Kn2� . . .�Knl
, where n1 ≥

n2 ≥ · · · ≥ nl. Let G′ ∼= Kn1�Kn2 be called as a block. For ease of representation,

the edges in the block (with respect to the product of two complete graphs) are

drawn in dotted lines, where each row and each column induces a complete graph

(For an example, refer to Figure 5.16).

Fact 5.5.1. For positive integers l, n1, n2, . . . , nl, let G ∼= Kn1�Kn2� . . .�Knl
,

where n1 ≥ n2 ≥ · · · ≥ nl. Then, there are (n3 × n4 × · · · × nl) blocks G′ in the

product graph G.
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Figure 5.16: The Block representing K3�K3

Theorem 5.5.1. For positive integers l, n1, n2, . . . , nl, let G ∼= Kn1�Kn2� . . .�Knl
,

where n1 ≥ n2 ≥ · · · ≥ nl and S be a maximum independent set of G. Then, the

following conditions hold:

(i) |S| = n2 × n3 × · · · × nl.

(ii) For every u ∈ V (G) − S, |NG(u) ∩ S| ≤ l. Equality holds if and only if

n1 = n2 = · · · = nl.

Proof. (i) LetG′ ∼= Kn1�Kn2 be considered as a block. Then, by Fact 5.5.1, G con-

tains (n3×n4×· · ·×nl) blocks of G′. Let V (G′) = {(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.

Then, G′ is a diameter two graph, in which at most one vertex from each row or

each column forms an independent set of G′. Since n1 ≥ n2, exactly one vertex

from each n2 rows or n2 columns forms an independent set and hence, there will

be (n1 − n2) columns whose vertices do not belong to any independent set of G′.

As there are (n3 × n4 × · · · × nl) blocks G′ in G, a set of n2 vertices (one ver-

tex from each row) from each block G′ can be chosen to be in any independent

set S of G. The vertex so chosen from each block follows a permutation order

so that S is independent. For instance, if {(i, i) : 1 ≤ i ≤ n2} forms an inde-

pendent set for one block, then {(i, i + 1) : 1 ≤ i ≤ n1, i + 1 ≡ 0 (mod n1)},

{(i + 1, i) : 1 ≤ i ≤ n2, i + 1 ≡ 0 (mod n2)} forms the independent set for the

other blocks. It can be noted that as exactly one vertex from each row and each

column forms an independent set, the set S so obtained is the best maximum

possible. Thus, any maximum independent set S of G can be generated by choos-

ing n2 vertices from each block and hence, |S| = n2 × n3 × · · · × nl.

(ii) Consider, G ∼= �l
i=1Kni

= �l−1
i=1Kni

�Knl
∼= G∗�Knl

(say). If S is an indepen-

dent set of G, then for each u ∈ V (G) − S, u is adjacent to at most two vertices
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from the same block and to at most l−2 vertices from the remaining blocks. Thus,

|NG(u) ∩ S| ≤ l and the equality holds if and only if n1 = n2 = · · · = nl.

Proposition 5.5.2. Let G ∼= Kn1�Kn2� . . .�Knl
, where n1 ≥ n2 ≥ · · · ≥ nl. If

S ′ is an F (G)-set, then |S ′| ≤ n3 × n4 × · · · × nl.

Proof. Let S ′ be any F (G)-set. If G′ ∼= Kn1�Kn2 is considered as a block, then

G contains (n3 × n4 × · · · × nl) blocks of G′. Since each G′ is a diameter two

graph, at most one vertex from each block can be included in S ′ and thus, |S ′| ≤

n3 × n4 × · · · × nl.

For any positive integers p and l, let G ∼= �l
i=1Kp = Kp�Kp� . . .�Kp (l times).

Then, |V (G)| = pl and G is a regular graph of degree (p − 1) + (p − 1) + · · · +

(p− 1) (l times)= l(p− 1).

Theorem 5.5.3. Let G ∼= �l
i=1Kni

. If n1 = n2 = · · · = nl and l = p + 1, then

G ∈ E . In particular, γ(G) = pl−2.

Proof. Let G ∼= �l
i=1Kni

= �l−1
i=1Kni

�Knl
∼= G∗�Knl

(say). Let S ′ be a maximum

independent set of G∗. Then, by Theorem 5.5.1, |S ′| ≤ n2 × n3 × · · · × nl−1

and for every u ∈ V (G) − S ′, |NG(u) ∩ S ′| ≤ l − 1. Let n1 = n2 = · · · = nl

and l = p + 1. Then, G ∼= �l
1Kp = �l−1

1 Kp�Kp
∼= G∗�Kp (say). Let S ′ be a

maximum independent set of G∗. Then, by Theorem 5.5.1, |S ′| = pl−2 and for

every u ∈ V (G)−S ′, |NG(u)∩S ′| = l−1. It follows from the discussion in Theorem

5.4.4 that if for every u ∈ V (G) − S ′, |NG(u) ∩ S ′| = p, then G ∼= G∗�Kp ∈ E .

Since l − 1 = p, G ∼= �l
1Kp ∈ E . In particular, γ(G) = |S ′| = pl−2.

Remark 5.5.1. From the Theorem 5.5.3 it follows that,

a) For p = 1, K1�K1 = �2
1K1 ∈ E and γ(�2

1K1) = 1.

b) For p = 2, K2�K2�K2 = �3
1K2 ∈ E and γ(�3

1K2) = 2.

c) For p = 3, K3�K3�K3�K3 = �4
1K3 ∈ E and γ(�4

1K3) = 32 = 9.

d) For p = 4, K4�K4�K4�K4�K4 = �5
1K4 ∈ E and γ(�5

1K4) = 43 = 64.

In general, �p+1
1 Kp ∈ E and γ(�p+1

1 Kp) = pp−1.
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Example 5.5.1. Let G ∼= �4
1K3 = K3�K3�K3�K3

∼= G∗�K3, where G∗ ∼=

K3�K3�K3. If S is an independent set of G∗, then |S| = 9 (refer to Figure

5.17). Here, G ∈ E and γ(G) = 9 (refer to Figure 5.18). (In Figures 5.17 and

5.18, each block (in dotted lines) represents K3�K3. For ease of visualization,

only a few set of edges are shown in Figure 5.18).
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Figure 5.17: An Independent set of K3�K3�K3 (Encircled vertices)
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Figure 5.18: An Efficient dominating set of K3�K3�K3�K3 (Encircled vertices)

Remark 5.5.2. The converse of Theorem 5.5.3 is not true. For example, �7
1K2 ∈ E .

In this case, l = 7 and p = 2, but l 6= p+ 1.

Conclusion

This chapter deals with the concept of efficient domination in the cartesian prod-

uct of graphs. Initially, the notion of efficient domination is discussed for the
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product G�H, when G and H are isomorphic to one of the graphs: Pn, Cn, Kn

and K1, n. The conditions are identified under which these products are effi-

ciently dominatable or otherwise; the exact values of their respective efficient

domination numbers are evaluated. Further, the efficiently dominatable products

G�K1, p and G�Kp are characterized in terms of their factors . Furthermore, two

exact-exponential time algorithms are proposed for identifying when the prod-

ucts G�K1, p and G�Kp are efficiently dominatable or not. Finally, the study is

extended to efficiently dominatable Hamming graphs.
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Chapter 6

Summary and Conclusion

For a graph G = (V,E), a subset S of V is a dominating set, if each vertex in V is

either in S or has a neighbor in S. The size of a minimum dominating set is called

the domination number of G, denoted by γ(G). A set S is an efficient dominating

set (EDS) of G if each vertex u in V is either in S or has exactly one neighbor

in S (inclusive of u). In general, not all graphs possess an EDS; a graph which

possesses an EDS is said to be efficiently dominatable. Hence, the general interest

is to find a subset of V which dominates the maximum number of vertices such

that each vertex is dominated exactly once. This maximum number is referred to

as the efficient domination number of G, denoted by F (G).
In this thesis, the notation E is used to denote the class of efficiently dominat-

able graphs. Thus, G ∈ E if and only if G has an efficient dominating set (EDS).

If G ∈ E , then any EDS of G has its cardinality equal to the domination number

of G, denoted by γ(G) (Bange et al., 1988). The structural properties of a graph

G having a given domination number, say γ(G) = k, have been well studied in the

literature. But, the properties of an efficiently dominatable graphG with γ(G) = k

need not be the same for a graph G, where G 6∈ E , but with γ(G) = k. This ne-

cessitates an independent study of the class of efficiently dominatable graphs.

6.1 Summary

Based on the research gap identified in the literature and motivated by the appli-

cations of the notion of efficient domination, this research work focuses on three
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aspects: (1) Study on efficient domination in general graphs (2) Critical aspects

of efficient domination and (3) Efficient domination in the cartesian product of

graphs. The results discussed on these three aspects are categorized into three

chapters and some of the significant contributions in these chapters are summa-

rized as below:

Chapter 3: In this chapter, the focus is on exploring the notion of efficient

domination in arbitrary graphs and trees. Some significant contributions to this

chapter are summarized as follows:

• Given any positive integer k, the existence of efficiently dominatable graphs

having domination number k is discussed together with a procedure for the

construction of such graphs.

• Some improved bounds are obtained for the domination number of an effi-

ciently dominatable graph.

• The properties of graphs possessing pairwise disjoint efficient dominating

sets are discussed.

• For r ≥ 1, G is an r-regular graph containing (r + 1) pairwise disjoint

efficient dominating sets if and only if V (G) can be partitioned into (r + 1)

independent sets Si (for i = 1 to r + 1), each of cardinality
|V (G)|
r + 1

, such

that each vertex u ∈ Si has a unique neighbor in Sj, for every i 6= j.

• As an attempt to explore the applications of such r-regular structures, a

discussion is included which guarantees that these structures possess an in-

built simultaneous solution to the problems related to topology control, fault-

tolerance, efficient routing, channel assignment in ad hoc as well as sensor

networks.

• The properties of efficiently dominatable trees and those of trees which are

not efficiently dominatable are studied based on the existence/non-existence

and nature of support vertices.
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• If S(T ) denotes the support vertices of a tree T , then it is shown that, for

any tree T with S(T ) = ∅,
⌈
n+ 2

4

⌉
≤ γ(T ) ≤

⌊n
2

⌋
.

• Some efficiently dominatable trees are also identified based on the distance

between any pair of distinct leaf nodes. That is, if T ∈ L , where L denotes

the family of trees in which for any pair of distinct leaf nodes x and y,

d(x, y) ≡ c (mod 3), where c ∈ {0, 1, 2}, then T ∈ E .

• Efficiently dominatable trees of diameter upto five are characterized.

• Efficient domination in some special classes of graphs, namely, join, one-

point union and corona of graphs are also discussed.

Chapter 4: This chapter is devoted to the study of the critical aspects in effi-

ciently dominatable graphs. On that line, the study on changing and unchanging

efficient domination in graphs is initiated with respect to vertex criticality (vertex

removal), edge criticality (edge removal and addition).

In general, on removing a vertex u from G, γ(G − u) is either same as γ(G)

or lesser or greater than that of G. Interest is shown on studying the properties

of such vertices whose removal leaves γ(G) unaltered, those which decrease or

increase γ(G). Some of the significant results obtained on these topics are listed

below:

Vertex Removal:

• Let G ∈ E and u ∈ V (G) such that G− u ∈ E . Then, u is γ-critical if and

only if u is in every EDS of G.

• Let G ∈ E and u ∈ V (G) such that G − u ∈ E . Then, the following

conditions are equivalent:

(i) u is γ-critical.

(ii) u is in every EDS of G.

(iii) |NG(u) ∩ Su| 6= 1, for every EDS Su of G− u.

• Let G ∈ G−v and |V (G)| = n. Then, the following properties hold:
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(i) n− γ(G) ≤ |V 0| ≤ n

(ii) 0 ≤ |V +| ≤ γ(G)

(iii) 0 ≤ |V −| ≤ γ(G)

• Let G ∈ G−v. Then, G ∈ CV RE if and only if G ∼= mK1, for m ≥ 1.

• Let G ∈ G−v. Then, |V 0| = n− γ(G) if and only if G has a unique EDS.

• LetG ∈ G−v such thatG is connected and γ(G) ≤ 2. Then either V (G) = V 0

or V (G) = V 0 ∪ V − or V (G) = V 0 ∪ V +.

• Let G ∈ G−v such that G is connected and γ(G) ≥ 3. Then, for any u ∈ V +

and v ∈ V −, dG(u, v) ≥ 4.

• Let G be a graph of order n, where n ≥ 2. Then, G ∈ UV RE if and only if G

has k efficient dominating sets S1, S2, . . . , Sk (k ≥ 2) such that ∩ki=1Si = ∅.

Edge Removal:

• It is shown that for any edge e = uv in G, if Se is an EDS of G− e and S is

an EDS of G containing either u or v, then it is always possible to relate S

and Se. A procedure is also proposed to construction of an EDS of G − e,

knowing an EDS of G containing either u or v and this helps in comparing

γ(G) and γ(G− e) easily.

• Let e ∈ E(G) and e = uv. If there exists an EDS S of G such that u 6∈ S

and v 6∈ S, then e ∈ ER0.

• Let e ∈ E(G) and e = uv. Suppose that G has an EDS containing u. Then,

e ∈ ER0 if and only if v is not in any EDS of G− e.

• Let e ∈ E(G) and e = uv. Suppose that G has an EDS containing u. Then,

e ∈ ER0 if and only if v is not in any EDS of G− u.

• It is defined that a graph G satisfies the property P, if for every pair of

vertices u, v ∈ V (G), there exists an EDS of G not containing both u and
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v. Using this, it is shown that G ∈ UERE if and only if one of the following

holds:

(i) Graph G satisfies Property P.

(ii) If S is an EDS of G and e = uv ∈ E(G) such that one of its end vertices,

say u ∈ S, then for every EDS Su of G − u, either NG(u) ∩ Su = ∅ or

NG(u) ∩ Su is not unique.

• For any graph G, G ∈ CERE if and only if G ∼= K1, n.

• For any tree T , T ∈ UERE if and only if V − forms an EDS of T .

Edge Addition:

• Let G ∈ E and e ∈ E(G), where e = uv. If G has an EDS containing both u

and v and if S ′ is an EDS of G+ e, then |S ′ − (NG[u]∪NG[v])| = γ(G)− 2.

• Let G ∈ E and e ∈ E(G), where e = uv. If either, both u and v belong to

an EDS of G, or both do not belong to an EDS of G, then, e ∈ EA0 if and

only if G+ e has an EDS not containing both u and v.

• Let G ∈ E and e ∈ E(G), where e = uv. If S is any EDS of G such that

u ∈ S and v /∈ S, then e ∈ EA0 if and only if G + e also has an EDS, say

S ′, such that v /∈ S ′.

• If G ∈ E , then G ∈ CEAE if and only G ∼= mK1, for m ≥ 1.

• Let G ∈ E and V + 6= ∅. Then, G ∈ UEAE if and only if γ(G) = 1.

• If γ(G) ≥ 2 and G ∈ UEAE, then V + = ∅ and V − = ∅. Equivalently,

V (G) = V 0.

• Let G ∈ E . If G satisfies property P, then G ∈ UEAE.

• Let G ∈ E and γ(G) ≥ 2. If S = V +, then G /∈ G+e.
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• All the categories of classes arising from the notion changing/unchanging

efficient domination with respect to vertex removal, edge removal and edge

addition are related and represented through a Venn diagram.

Chapter 5: This chapter deals with the concept of efficient domination in the

cartesian product graphs. Some of the properties of the product are discussed in

terms of its factors. Mainly, the class of efficiently dominatable product graphs

G�K1, p andG�Kp, for an arbitrary graphG, are characterized. As the problem of

deciding whether a graph G is efficiently dominatable is NP-complete and so also,

for the above two products, exact exponential algorithms are presented to identify

an F(G�K1, p)-set and an F(G�Kp)-set in the respective products and thereby,

to decide whether the products are efficiently dominatable. Finally, the result is

extended to identify efficiently dominatable graphs among the product of complete

graphs (Hamming graphs). The following are some significant contributions in this

chapter:

1. Efficient domination number of Cartesian Product of some well known graphs

are obtained.

2. For any nonempty subset S ′ of V (G�H), IG�H(S ′) ≥ IG(S1)+IH(S2)−|S ′|,

where S1 = pG(S ′) and S2 = pH(S ′). The equality holds if and only if

|S ′| = |S1| = |S2|.

3. If G�H ∈ E , where G and H are graphs of order n and p respectively, then

γ(G�H) ≤ min{p× ρ(G), n× ρ(H)}.

Efficient domination in Cartesian product G���K1, p

• Let G be a graph of order n, where n ≥ 2. If G�K1, p ∈ E and S ′ is its EDS,

then either p ≤ δ(G) + 1 or p ≤ n−∆′(G)−1, where ∆′(G) = max{deg(u) :

u ∈ pG(S ′0)}.

• Let S ′ ⊆ V (G�K1, p). Then S ′ is an F (G�K1, p)-set if and only if for each

j (0 ≤ j ≤ p), there exists a set S ′j ⊆ V (G(vj)) such that S ′ = ∪pj=0S
′
j and

Sj = pG(S ′j) satisfying the following conditions:
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(i) Sj is a 2-packing in G, for each j ∈ {0, 1, . . . , p}.

(ii) (N [S0] × {vj}) ∩ S ′j = ∅, for all j ∈ {1, 2, . . . , p} and Si ∩ Sj = ∅, for

i, j ∈ {1, 2, . . . , p} and i 6= j.

(iii)
p∑

j=0

I(S ′j) is maximum of all sets S ′j ⊆ V (G(vj)), for each j (0 ≤ j ≤ p),

such that S ′ = ∪pj=0S
′
j.

• G�K1, p ∈ E if and only if there exists a subset S ′ of V (G�K1, p) such that

the following conditions hold:

(i) pG(S ′ ∩ V (G(v0))) is a 2-packing in G.

(ii) If S0 = pG(S ′ ∩ V (G(v0))) and G∗ ∼=< V (G) − N [S0] >, then V (G∗)

can be partitioned into p sets, say, S1, S2, . . . , Sp such that each Sj is

an EDS of G∗.

(iii) For every vertex v ∈ N(S0) and for each j (1 ≤ j ≤ p), |N(v)∩Sj| = 1.

• For any connected graph G = (V,E), the algorithm ED_StarCProd(G, n, p)

finds an EDS of G�K1, p or an F (G�K1, p)-set in O∗(cn) time, where

5.6230257 · · · ≤ c ≤ 8.658897 . . . .

Efficient domination in Cartesian product G���Kp

• Let G be a connected graph of order n, where n ≥ 2. If G�Kp ∈ E , then

p ≤ n− δ(G).

• Let S = {S ⊆ V (G) : S is independent inG and |S| ≤ n−1
p

∑
ui∈S degG(ui)}.

If S ′ is an F (G�Kp)-set and S = pG(S ′), then the following conditions hold:

(i) S ∈ S .

(ii) IG(S) + |S|(p− 1) = maxT∈S {IG(T ) + |T |(p− 1)}.

In particular, |S ′| ≤ α(G), where α(G) is the independence number of G.

• Let S ′ ⊆ V (G�Kp). Then, S ′ is an F (G�Kp)-set if and only if there exist

sets S ′j ⊆ V (G(vj)) (1 ≤ j ≤ p) such that S ′ = ∪pj=1S
′
j, where one or more
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S ′j’s are possibly empty and for each j ∈ {1, 2, . . . , p} such that S ′j 6= ∅ the

following conditions hold:

(i) pG(S ′j) is a 2-packing in G.

(ii) For any given k, l, where k 6= l and 1 ≤ k, l ≤ p, S ′l ∩ (N [pG(S ′k)] ×

{vj}) = ∅.

(iii)
p∑

j=1

I(S ′j) is the maximum among all sets T ′j ⊆ V (G(vj)) (1 ≤ j ≤ p)

such that S ′ = ∪pj=1T
′
j .

• LetG be a connected graph. G�Kp ∈ E if and only if there exists a collection

P of p mutually disjoint equal sized subsets of V (G�Kp) such that

(i) pG(K) ∩ pG(T ) = ∅, for all K, T ∈ P .

(ii) ∪T∈PpG(T ) is a maximal independent set of G.

(iii) If S = ∪T∈PpG(T ) and u ∈ V − S, then |NG(u)∩ pG(T )| = 1, for every

T ∈ P .

• For any connected graph G = (V,E) of order n, the algorithm

ED_CompC_prod(G,n,p) identifies an EDS of G�Kp or an F (G�Kp)-set

in O(kl2(l2n2 + p)) steps, where k and l are respectively the number of

independent sets and 2-packings of G.

Efficient domination in Cartesian product ���l
i=1Kni

• For positive integers l, n1, n2, . . . , nl, let G ∼= Kn1�Kn2� . . .�Knl
, where

n1 ≥ n2 ≥ · · · ≥ nl and S be a maximum independent set of G. Then, the

following conditions hold:

(i) |S| = n2 × n3 × · · · × nl.

(ii) For every u ∈ V (G)− S, |NG(u)∩ S| ≤ l. Equality holds if and only if

n1 = n2 = · · · = nl.

• Let G ∼= Kn1�Kn2� . . .�Knl
, where n1 ≥ n2 ≥ · · · ≥ nl. If S ′ is an F (G)-

set, then |S ′| ≤ n3 × n4 × · · · × nl.

188



• Let G ∼= �l
i=1Kni

. If n1 = n2 = · · · = nl and l = p + 1, then G ∈ E . In

particular, γ(G) = pl−2.

6.2 Conclusion

The problems studied in this thesis are motivated by the applications of efficient

domination in coding theory (Biggs, 1973; Hammond and Smith, 1975), resource

allocation in distributed/parallel computing (Livingston and Stout, 1988, 1990;

Van Wieren et al., 1993; Milanič, 2013), communication in sensor and ad hoc

networks etc. (Yu and Chong, 2003, 2005; Janakiraman and Thilak, 2011; Thilak,

2013).

Based on the results and discussions in this thesis, it is justified that even

though every efficient dominating set is also a minimum dominating set and all

efficient dominating sets have the same cardinality, namely, the domination num-

ber of the graph, the properties possessed by an efficiently dominatable graph differ

considerably from those possessed by a graph which is not efficiently dominatable.

By revisiting some of the existing results related to the concept of criticality and

exploring some new properties of critical vertices and critical edges, it is noted that

the properties of such elements differ significantly when restricted to the class of

efficiently dominatable graphs (refer to Tables 4.1, 4.2 and 4.3).

Further, the structure of cartesian product of graphs is one of the widely used

multi-dimensional architectures in distributed computing systems and is also one

of the commonly used topologies for ad hoc, sensor and vehicular networks. Thus,

the problem studied in this thesis will facilitate the problems related to the design

of efficient resource management protocols in distributed computing. Further, an

efficient dominating set possesses three significant properties, namely, domination,

independence and 2-packing, which makes it unique among other domination pa-

rameters and makes it suitable for the design of energy efficient and interference

free communication protocols in ad hoc and sensor networks. From a graph the-

oretic perspective, the two exact exponential algorithms proposed in this thesis

will help in the solving the decision version of the efficient domination problem,
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at least for the two products under consideration.

6.3 Scope for future work

The concept of efficient domination in graphs is explored to some extent in some

special class of graphs, both from theoretical and algorithmic perspectives.

Attempts can be made to improve further, the bounds on domination number

of an efficiently dominatable graph G, by imposing additional constraints on G, or

focusing on some special significant classes of graphs. To the best of our knowledge,

a strong characterization for a graph to be efficiently dominatable or otherwise, is

yet to be obtained. The properties of efficiently dominatable graphs can still be

explored to a great extent.

It is known that the decision version of the efficient domination problem is

NP-complete for an arbitrary graph and even in case of some special classes of

graphs. To the best of our knowledge, an efficient approximation or an exponential

time algorithm is yet to be proposed for an arbitrary graph.

In this thesis, some properties of efficiently dominatable trees are discussed and

efficiently dominatable trees upto diameter five have been characterized. However,

the properties of efficiently dominatable trees of arbitrary diameter, are yet to be

explored. Extending the ideas discussed in this thesis, or exploring some other

better procedures, will be helpful in characterizing trees with diameter d, for

d ≥ 6. Thus, with respect to trees, the following problems is worth exploring:

• Characterize efficiently dominatable trees of an arbitrary diameter.

Further, among all the products, cartesian product of graphs is of special interest

from both graph theoretic as well as application perspective, as it is one of the

widely used multi-dimensional architectures in distributed computing. To the

best of our knowledge, there exist very limited results concerning the concept of

efficient domination in the cartesian product of two or more arbitrary graphs. On

that line, the thesis deals with the results on the notion of efficient domination

in the cartesian products having K1, p or Kp as one of the factors. The study on
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similar lines for products of two or more arbitrary graphs will be of special interest

and significance. Thus, the following problems will be interesting to deal with:

• For arbitrary graphs G and H, obtain some properties/bounds on efficient

domination number for the product G�H.

• Study the concept of efficient domination in the cartesian product of graphs

having trees and/or other special classes of graphs, as factors.

• Explore the notion of efficient domination in other interesting graph prod-

ucts.
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