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ABSTRACT 

The present work mainly deals with a class of physical problems in the broad area of wave 

structure interaction related to hydroelasticity. In the present study, the major emphasis is 

given 

• to analyse the hydroelastic behaviour of the very large floating structure based on the 

Timoshenko-Mindlin’s plate theory in both finite and shallow water depth, 

• to illustrate the significance of periodic array of articulation, change in bottom 

topography and wave attenuation due to the presence of vertical barriers in the 

hydroelastic analysis of floating structures which are of recent scientific interest in the 

field of Ocean and Coastal Engineering. 

In the present study, the generalized expansion formulae along with the orthogonal mode-

coupling relation is utilized to analyse the wave interaction with very large floating 

structure. The study is performed to analyse the influence of different edge support 

conditions on the hydroelastic behaviour of the floating elastic plate and the numerical 

results obtained based Timoshenko-Mindlin plate theory is compared with the Euler-

Bernoulli plate theory. The gravity wave scattering by single and multiple articulated 

floating finite elastic plates are analyzed based on small amplitude linearized water wave 

theory. In the case of periodic array of multiple articulated floating elastic plates, the 

solution for the boundary value problem is analyzed by using both eigenfunction expansion 

method and wide-spacing approximation method. The transformation of gravity wave due 

to multiple variations in bottom topography in the presence of articulated floating elastic 

plate is studied by using orthogonal mode-coupling relation. Further, using shallow water 

approximation, the flexural gravity wave scattering due to (i) articulated floating elastic 

plates and (ii) abrupt changes in bottom topography are analyzed and the explicit relation 

for the wave scattering coefficients are obtained. Finally, surface gravity wave scattering 

due to the presence of vertical barriers along with the floating articulated elastic plate are 

analysed and the energy relation associated with transformations of gravity waves in the 

presence of vertical porous barrier is discussed. The numerical results for the reflection and 

transmission coefficients, plate deflection, strain along the floating elastic plate, bending 

moment and shear force are computed in different cases and analyzed. 

 

Keywords: Orthogonal mode-coupling relation; Linearized small amplitude wave theory; 

Hydroelasticity; Timoshenko-Mindlin plate theory; Multiple articulation; Wide-spacing 

approximation. 
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NOMENCLATURE 

j   Velocity potential in the respective regions 

sm   Mass of the plate 

L   Plate length 

rh
  Water depth in reflected region 

jh
  Water depth below the floating plate 

th
  Water depth in the transmitted region 

d   Plate thickness 

jnk
 

Wave number in the respective regions 

   Density of water 

p   Density of plate 

E   Young modulus 

   Poisson’s ratio 

G   Shear modulus of the plate 

p   Pressure 


 Transverse deformation 

EI   Plate rigidity 

I   Rotary inertia 

S   Shear deformation 

rK
  Reflection coefficient 

tK
  Transmission coefficient 

dK
 Dissipation coefficient 

j
 

Surface deflection 

   Strain in the floating plate 

( )M x
 

Bending moment 

( )W x
 

Shear force 
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ABBREVIATIONS 

VLFS - Very Large Floating Structures 

BVP - Boundary Value Problem  

MIZ - Marginal Ice zones 

TRAM - Technological Research Association of Mega float 

IPCC - Intergovernmental Panel on Climate Change  

KFSBC - Kinematic Free Surface Boundary Condition  

DFSBC - Dynamic Free Surface Boundary Condition  

FEM - Finite Element Method  

BEM - Boundary Element Method  

BIEM - Boundary Integral Equation Methods  

HOBEM - Higher Order Boundary Element Method 

NWT - Nonlinear Wave Tank 

RCT - Residue Calculus Technique 

WSA - Wide Spacing Approximation 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 PREAMBLE 

The present era of innovation and technology has led to rapid industrialization and 

urbanization with increasing demand for land and energy. The recent developments in 

the construction of very large floating structures have made an attempt to provide a 

solution to the problem of land and energy shortage which includes exploration of 

ocean-related to coastal and offshore structures. These floating structures are mainly 

used to build infrastructures such as floating airports, floating ports, storage facilities 

(for oil & natural gas), military and emergency base, offshore renewable energy plants 

and recreation parks. Such huge floating structures are categorized as very large floating 

structures (VLFS). These types of ocean structures are unique in nature primarily 

because of their unprecedented length, displacement and associated hydroelastic 

response, analysis and design. These structures lie on the sea level like a giant plate 

floating on an inviscid fluid foundation and are suitable for use in calm waters, often 

inside a lagoon and near the shoreline. These floating structures act as an alternative to 

the traditional land reclamation processes and can be used for ocean space utilization 

for human activities like floating airports, storage facilities, military purposes, 

industrial space etc. Further, the majority of the world population is located along the 

coastal areas, out of which most cities are densely populated. The effect of global 

warming with a rise in global temperature has set an alarming situation of sea-level rise 

over these places. Natural disasters such as hurricanes, tsunamis are constant threats to 

these coastal cities. Land reclamation from the sea has raised serious concerns over 

damage to marine ecosystems. So, the construction of the very large floating structures 

(VLFS) is expected to have minimal impact on the marine ecosystem, water quality and 

natural current flows. 

A similar branch of study is related to the polar region, when ocean waves penetrate 

into the ice fields to generate flexural gravity waves and the floating ice-sheet is 

modelled as an elastic plate. These waves weaken and rupture continuously to sea-ice 
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forming cracks and fissures, which under the action of wind and current may contribute 

to the demise of the ice-sheet. As a result, more open water regions are created which 

allow more wave to penetrate into the marginal ice zones (MIZs) in both polar regions. 

In both cases, because of the large structural size, the hydroelastic responses are more 

important than their rigid body motions. The main advantages of hydroelasticity theory 

compared to rigid body analysis are physically more accurate idealization of the fluid-

structure interaction system and consequently, more rigorous analysis by which 

dynamic responses, such as the stresses and bending moments, in the waves can be 

obtained. This interdisciplinary branch of hydroelasticity embodies the basic equations 

of fluid mechanics, structural mechanics, concepts on wave propagation and the 

critically important role of some special type of boundary conditions. The complexities 

with this class of problems over the gravity wave problems are the conditions at the 

fluid-structure interface which are of higher order than the governing equations and 

most of the existing theories developed for the gravity wave problems have to be 

generalized to incorporate the elastic effects. It is assumed that the deformation 

gradients experienced by these floating structures due to waves are of sufficiently small 

amplitude and thus linear wave theory and small amplitude structural response are 

employed for various aspects of the hydroelastic analysis in the literature. However, for 

more accurate analysis, non-linear effects are to be considered taken into account to 

analyse the effect of irregular waves on which the literature is very scanty and the 

analysis is quite complex.  

The study of very large floating structures (VLFS) is gaining momentum to develop 

infrastructure facilities along the coastal and offshore regions. These floating structures 

create less conflicts with the marine environment and coastal hazards due to very less 

physical interaction with the sea bottom. These structures being huge in dimensions, 

hydroelastic analysis becomes dominant as compared to rigid body motions. These 

kinds of structures are usually constructed in modules at yards and joined on-site along 

the connecting joints. These articulated joints are also modelled to reduce the 

hydroelastic responses of the structures. These structures have a heavy risk of getting 

damaged due to constant interaction of ocean waves. In order to reduce the impact of 

ocean waves on to the structures, vertical barriers are placed in front of the VLFS. These 

vertical barriers are either bottom standing or surface piercing structures depending on 

the mode of operation and requirement to interact with the incoming ocean waves. 
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These vertical barriers are also designed for varying porosity in the structure to 

attenuate and dissipate the wave energy. The study in the consideration of vertical 

barrier to attenuate the wave energy in front of the large floating structures is very 

limited. 

1.1.1 Wave interaction with floating structures 

Very large floating structures are very large in length and width as compared to depth. 

These structures are usually built near the shore to construct important infrastructure 

facilities. The wavelength of ocean waves is too short as compared with the huge size 

of the structure to induce the rigid body motions. These structures are considered to be 

flexible as compared to other offshore structures and hence the study of hydroelastic 

behaviour is important. In decades to come, there is going to be a rise in the scarcity of 

land and this scarcity is leading to the construction of offshore floating structures. In 

recent years, the hydroelastic performance of the floating structure is given more 

attention due to the increased design and analysis of multi-use combined platform for 

the development of infrastructure in the ocean environment. These large floating 

structures are constructed for building infrastructures like floating airports, mobile 

offshore bases, floating cities, floating storage device and recreational parks. There is 

already significant research available for such kind of very large floating structures and 

some of the existing large floating structures vary from 100 m to 1000 m’s in length. 

1.1.2 Wave scattering due to the articulated elastic plate 

The VLFS to be operational, it has to be designed to take very minimal deflections even 

under extreme environment conditions. In order to overcome these problems, these 

large structures are fabricated in modules onshore. The large floating structures are 

constructed by articulating the small units using vertical liner spring and flexural 

rotational springs. The articulated joints are considered to restrain for linear and/or 

rotational motions. Most of the studies consider the structure to be thin for the 

hydroelastic analysis of VLFS based on Kirchhoff thin plate theory, but these structures 

have a considerable thickness and hence Timoshenko-Mindlin’s plate theory is more 

realistic for the analysis as formulated by Mindlin (1951). The studies on the effect of 

articulation are of practical importance to predict the strength and stability of the 

structure. 
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1.1.3 Wave transformation due to change in topography  

The VLFS is usually constructed near shore and hence the effect of sea bottom profile 

becomes significant. Sea bottom is not flat throughout, there is various kind of 

undulations which give rise to wave refraction, shoaling and wave breaking. The 

topographic variation is very common in most of the ocean-wave propagation 

problems. Even for the simplest of such problems, like wave scattering by a sudden 

change in bottom topography, one has to take recourse to approximate solutions. The 

study on the change in bottom topography provides an insight into the effect of sea bed 

profile over the wave interaction with floating thick elastic plate. 

1.1.4 Wave interaction with submerged structures 

Submerged structures are usually not as large as compared to VLFS. These structures 

are usually built to support the infrastructures such as floating airports, mobile offshore 

bases, energy plants, recreational parks maybe offshore or near to coastal structures. 

With the rise in the developments along the coastal and offshore regions, there is a need 

for submerged structures such as submerged breakwaters, large submerged pontoons 

supporting floating structures, submerged storage tanks, submerged rail/road tunnels 

and anti-motion devices.  These structures do not cause hindrance to the scenic beauty 

but reduce the wave effect on coastal and offshore structures. 

The studies performed on the wave structure interaction problem in the present thesis 

consist of both wave and structural part. The wave part is analyzed based on the 

assumption of the linearized theory of water waves whereas the structures are 

considered as floating elastic plate, which is modelled using Timoshenko-Mindlin 

equation. In the study of the wave-structure interaction problem, the physical modelling 

leads to a class of boundary value problems (BVPs) associated with Laplace equation 

satisfying certain higher-order boundary conditions. In the present thesis, the wave 

structure interaction problems analysed are based on the scattering theory of wave 

motion with emphasis on surface gravity wave and their mutual interactions. In the 

analysis of the wave scattering problem, the incoming wave is considered as normalized 

incident waves, the wave that is reflected back is known as “reflected wave” and the 

wave which is transmitted, is known as “transmitted wave”. The non-dimensional 

constant such as reflection and transmission coefficients ( ,r tK K ) are obtained using 
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the amplitude of incident, reflected and transmitted wave. The analysis and computation 

of the reflection and transmission coefficients are important in the analysis of the wave 

structure interaction problems. The knowledge of reflection and transmission 

coefficients reveals important information about the amount of wave energy reflected 

and/or transmitted by the structure. In the present thesis, the emphasis is given to 

perform hydroelastic analysis of the floating structures along with determination and 

analyse reflection and transmission coefficient, deflection of the floating elastic plate, 

strain along the floating elastic plate, bending moment and shear force on the floating 

elastic plate.  

1.2 MOTIVATION 

The floating and submerged structures are more advantageous as compared to 

permanent structures fixed to the sea bottom, extending from shore into open water or 

onshore structures, over traditional land reclamation in creating land from the sea. The 

advantage of the design and construction of VLFS are as follows: 

• The VLFS are environmentally friendly as they do not damage the marine 

ecosystem or silt-up deep harbours or disrupt the ocean currents. 

• The floating structures are easy to construct, since much of the construction is 

completed onshore and the installation is rapid and can be easily relocated, 

removed, or expanded. 

• The VLFS is immune to seismic shock since VLFSs are inherently base-isolated.  

• The VLFS is cost-effective when the water depth is large or sea bed is soft. They 

do not suffer from the differential settlement as in reclaimed soil consolidation. 

• There is no problem with rising sea level due to global warming and their location 

in coastal waters provide a scenic body of water all around making them suitable 

for development associated with leisure and water sport activities. 

• The position of VLFS with respect to the water surface is constant and thus 

facilitate small boats and ship to come alongside when used as piers and berths. 

The VLFS is designed for maximum wave height as well as for extreme conditions, but 

these structures are suitable for the use in calm waters associated with naturally 

sheltered coastal formations. So, the use of submerged breakwaters, anti-motion 

devices, anchor or mooring systems is required for the stability of the structures. 
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1.3 AIM AND OBJECTIVES 

The proposed work is focused on the study of the hydroelastic behaviour of large 

floating flexible structures based on Timoshenko-Mindlin plate theory. The 

significance and importance of rotary inertia and shear deformation in analysing the 

hydroelastic behaviour large floating structures are studied. This work aims at studying 

the influence of different types of edge support conditions, the effect of articulation, 

variation in bottom topography and the presence of submerged vertical barriers on the 

hydroelastic behaviour of the large floating elastic plate.  

1.3.1 Objectives of the research study 

The primary objective of this research is to investigate the hydroelastic behaviour due 

to the wave interaction with floating and submerged flexible structures based on 

Timoshenko Mindlin plate theory. In order to achieve the proposed work, the objective 

of the present study is  

• To formulate and analyse the hydroelastic behaviour of large floating elastic plate 

based on Timoshenko-Mindlin plate theory and compare the results with Kirchhoff 

thin plate theory at finite and shallow water depth.  

• To study the influence of different edge support conditions on the hydroelastic 

behavior of the floating elastic plate in finite and shallow water depth.  

• To understand the significance of articulations in analysing the hydroelastic 

behaviour of the large floating elastic plate. Further to study the application of wide 

spacing approximation in reducing the complexity due to the periodic array of 

multiple articulations in the floating elastic plate.  

• To study the significance of different types of bottom topography on the wave 

interacting with a large floating elastic plate over varying sea bed profile. 

• To study the wave attenuation due to the interaction of waves with submerged 

vertical porous barriers in front of the large floating structures. Further, the effect 

of articulation and different support conditions are studied. 
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1.3.2 Scope of work 

The scope of research work includes normalized values and realistic assumptions in the 

analysis of the wave structure interaction. In the present study, a very large floating 

flexible structure with varying length and infinite width along the lateral direction is 

considered. The plate thickness is varied along with the finite water depth and shallow 

water approximation is considered in the analysis. The types of edge boundary 

conditions considered for the analysis include free-free edge, simply supported edge, 

fixed edge and moored edge conditions. The bottom topography is considered to be flat 

and varied stepped for hump or sloping type sea bottom profile. The variation in 

rotational and linear spring stiffness is considered for the analysis of connected joints 

in the articulated floating elastic plate. Further, the analysis is performed considering 

the submerged bottom standing or surface piercing vertical porous barriers in front of 

the large floating elastic plate.  

1.4 BRIEF OVERVIEW OF THE THESIS    

The content of the thesis is organised consisting of seven Chapters depending on the 

physical problem investigated and the solution approach considered in the problem 

formulation. The detail description of the Chapters are as follows: 

In Chapter 1, the introduction and the motivation behind the present work is discussed 

along with the detail fundamental theory of wave and floating structure is presented. 

The boundary conditions associated with the wave structure interaction problems 

considering Timoshenko-Mindlin plate theory in finite and shallow water depths is 

presented and the development of the expansion formula is discussed in detail. The 

basic objective of this Chapter is to make the thesis self-contained.  

In Chapter 2, the detail review of literature relevant to the wave interaction with floating 

elastic plates, periodic arrays of articulated floating thick plates, wave transformation 

due to change in bottom topography and wave attenuation due to the presence of 

vertical barriers is discussed thoroughly.  Further, the research gap based on the 

literature review is discussed followed by a brief introduction to the research work 

pursued in this thesis. 

In Chapter 3, the hydroelastic response of very large floating structures (VLFS) under 

the action of ocean waves is analysed considering the small-amplitude wave theory. 
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The numerical study is performed to analyse the wave reflection and transmission 

characteristics of the floating plate under the influence of different support conditions 

using eigenfunction expansion method along with the orthogonal mode coupling 

relation in the case of finite water depth. The hydroelastic behaviour in terms of 

reflection and transmission coefficient, plate deflection, plate induced strain, bending 

moment and shear force of the floating thick elastic plate with support conditions is 

analysed and compared for finite and shallow water depth.  

In Chapter 4, the periodic array of multiple articulated floating elastic plate acted upon 

by ocean waves is analysed. The floating elastic plate is placed periodically and is 

interconnected with vertical linear and flexural rotational springs which act as an 

articulated joint. The interconnected joints are considered to be flexible, with variable 

translation and rotational stiffness. Further, the wide-spacing approximation method is 

employed to analyse the hydroelastic behaviour of the multiple articulated floating 

elastic plate. The results obtained using the eigenfunction expansion method is 

compared with the results based on wide-spacing approximation at finite water depth 

and validated with the results available in the literature.  

In Chapter 5, the propagation of gravity waves along the finite floating elastic plate 

over varying sea bottom profile is studied considering the abrupt change in the bottom 

profile such as (a) step-type, (b) sloping bottom, (c) hump and (d) double hump below 

the plate covered region. Detail comparison of the numerical results is performed for 

different step bottom topography on the hydroelastic characteristics of a floating elastic 

platform. The study provides an insight into the effect of ocean bottom profile on the 

wave propagation due to the presence of large floating elastic plate at finite water depth. 

In Chapter 6, the attenuation of the incident wave interacting with very large floating 

structures (VLFS) in the presence of vertical barriers is analysed considering small-

amplitude wave theory. The mitigation in the hydroelastic response due to the wave 

interaction with articulated floating elastic plate in the case of bottom standing and 

surface piercing vertical barrier is performed using eigenfunction expansion method 

along with the orthogonal mode coupling relation The influence of different edge 

support conditions in combination of articulation in mitigating the hydroelastic 

behaviour of floating elastic plate is discussed in detail. The study provides an 

understanding of articulation in combination with the different types of support and 

vertical porous barriers in mitigating the structural response. 
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Finally, Chapter 7 summarizes the work done in the thesis followed by the future scope 

of research. The major contributions made in the thesis are also highlighted in this 

Chapter. The following manuscripts are written during the preparation of the present 

thesis and the details of their publication status in various Journals, Book Chapters and 

Conference proceedings are given below. 

List of publication in Journals: 

1. Praveen, K.M., Karmakar, D. & Guedes Soares, C. (2020), “Wave interaction with 

floating elastic plate based on Timoshenko-Mindlin plate theory.” Journal of 

Offshore Mechanics and Arctic Engineering (ASME), vol 142(1), pp. 011601-1-15. 

2. Praveen, K.M., Karmakar, D. & C. Guedes Soares (2019), “Hydroelastic analysis 

of periodic arrays of multiple articulated floating elastic.” Ships and Offshore 

Structures, DOI: 10.1080/17445302.2019.1615167, (In Press). 

3. Praveen, K.M., Karmakar, D. & Guedes Soares, C. (2019), “Influence of support 

conditions on the hydroelastic behaviour of floating thick elastic plate.” Journal of 

Marine Science and Applications, vol. 18(3), pp. 295-313. 

4. Praveen, K.M., Karmakar, D. & Guedes Soares, C. (2018), “Hydroelastic analysis 

of articulated floating elastic plate based on Timoshenko–Mindlin plate theory.” 

Ships and Offshore Structures, 13(S1), pp. 287-301.  

5. Praveen, K.M., Venkateswarlu, V. & Karmakar, D. (2020). “Wave transformation 
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(Submitted).  

6. Praveen, K.M., Venkateswarlu, V. & Karmakar, D. (2020). “Hydroelastic response 

of floating elastic plate in the presence of vertical porous barriers.” (Submitted). 

List of publication in Book Chapters: 

7. Praveen, K.M., Karmakar, D., & Nasar, T. (2016), “Hydroelastic analysis of 

floating elastic thick plate in shallow water depth.” Perspectives in Science, Vol 8, 

pp 770-772. (International Conference on Recent Trends in Engineering and 

Materials Science (ICEMS-2016), 17th -19th March 2016, Jaipur National 

University, Jaipur).  
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8. Praveen, K.M., Karmakar, D. (2019), “Wave Transformation Due to Floating 

Elastic Thick Plate over Changing Bottom Topography.” Lecture Notes in Civil 
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Conference in Ocean Engineering (ICOE 2018), 18th - 21st February 2018, IIT 
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1.5 FUNDAMENTALS OF WAVES AND FLEXIBLE STRUCTURE 

In order to analyze the fluid-structure interaction problem, certain physical assumptions 

are made to formulate the mathematical model of the physical problem. In this Section, 

the basic equation for the water wave theory and the basic equations for the flexible 

floating structure along with the boundary conditions related to the present research 

work is discussed in brief. Further, the details on the development of the expansion 

formulae for the wave structure interaction problem is described and discussed. 

1.5.1 Basic equations of water wave  

In the present section, the fluid is considered to be irrotational motion, inviscid and 

incompressible which is bounded above the free surface and is under the action of 

gravity and constant atmospheric pressure. The monochromatic wave is assumed to act 

along the positive x-axis. A 2D Cartesian coordinate system is considered which has a 

longitudinal x-axis and the y-axis is vertically downwards positive. The fluid is bounded 

below by the smooth rigid bottom surface of uniform depth h  in the case of finite and 

shallow water depth and the fluid is of infinite horizontal extent in both the cases. The 

fluid occupies the infinite strip ,x z−  , 0 y h   in both the cases of fluid of 

finite and shallow depth. The instantaneous upper fluid surface is defined by the wave 

profile ( , , )y x z t=  where ( , , )x z t  is the free surface elevation at the time t  (see 

Figure 1.1).  

 

Figure 1.1: Schematic diagram for wave propagation.  

Under the assumption of the fluid to be irrotational motion, inviscid and incompressible 

as mentioned above, we have the existence of a velocity potential ( , , )x y t  which 

satisfies the Laplace equation given by 

y = 0 

y = h 

h 

x 

y 

Mean water level 

Direction of motion 

H a 

λ 

ζ(x,t) 

Bottom boundary 

Governing equation  
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2 2
0

j j

x y

   

 
+ =  at ,0 .x y h−       (1.1) 

In the wave structure interaction problems, the governing equation is the two/three-

dimensional Laplace equation as mentioned above. Next, we will discuss the various 

types of boundary conditions which arise in the wave structure interaction problems. 

1.5.1.1 Kinematic free surface boundary condition (KFSBC) 

Let us consider ( , , , ) 0F x y z t =  to be the surface that constitutes a fixed or moving 

boundary. Then, the kinematic boundary condition is derived based on the assumption 

that there is no gap across the surface/interface, which yields 

                                                      0,
DF

Dt
=  (1.2) 

where /D Dt  represents the material derivative, which is a combination of time and 

space derivatives and is given by 

                                               ,t x y z

D
u v w

Dt
  +  +  +   (1.3) 

where , and u v w  being the , and x y z components of the fluid velocity .V  In the context 

of water waves, we have two surfaces namely (i) the bottom surface and (ii) the free 

surface. In general, the bottom boundary surface is described as ( , , )y h x z t= , where 

the origin is at the mean free surface 0y =  and ( , , )h x z t  represents the water depth. In 

the context of the present work, the bottom surface is assumed to be impermeable and 

is given by ( , , , ) ( , , )F x y z t y h x z t= − . Thus, a similar assumption that there is no gap 

between the bottom surface and the fluid at ( , , )y h x z t=  yields 

                                                  0.t x zu w h v +  +  − =  (1.4) 

On the other hand, in the case of water of finite depth, i.e., for y h= , the bottom 

boundary condition is given by 

                                                    0
y


=


 at  .y h=  (1.5) 

In a similar manner, the free surface of a wave can be described as 

( , , , ) ( , , )F x y z t y x z t= − , where ( , , )x z t  is the vertical displacement of the free 
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surface about the horizontal plane 0y =  (referred to as the mean free surface). Thus, 

from the condition (1.2), the kinematic condition on the free surface becomes 

                                    
t x x z z y  + + =  on ( , , ).y x z t=  (1.6) 

Next, using the Taylor series expansion, we expand the terms present in the Equation 

(1.6) with respect to the mean free surface 0y = , which yield  

          ( ) ( )
0 0

... 0.y t x x z z y y t x x z z
y y

      
= =

 − − − +   − − − + =  (1.7) 

Under the assumptions of the linearized theory of water waves, the velocity of the water 

particles, the free surface elevation ( , , )x z t and their derivatives are small quantities, 

which yield that the product and square terms of   and   are very small. Hence, 

neglecting the product, square and higher powers of the dependent variables   and ,

the linearized kinematic condition on the mean free surface 0y = is obtained as 

                                                    
t y =   on 0.y =  (1.8) 

1.5.1.2 Dynamic free surface boundary condition (DFSBC) 

A fixed surface like rigid bottom topography can support the pressure variation, 

whereas the free surface like the air-water interface can not support the variations in 

pressure. Thus, a second boundary condition is required to describe the pressure 

distribution on the free surface boundary, which is called the dynamic free surface 

boundary condition. The dynamic free surface boundary condition is derived under the 

assumption that on the free surface ( , , )y x z t= , the hydrodynamic pressure is the 

same as the atmospheric pressure. Thus, from Bernoulli’s equation, we have 

                           2 2 21
,

2
t x y z

P
gy


 +  + + − =  on ( , , ),y x z t=  (1.9) 

where P  is the atmospheric pressure, which is assumed to be constant and is taken as 

0P =  without loss of generality. It may be noted that in the dynamic condition on the 

free surface, the effect of surface tension is neglected. Proceeding in a similar manner 

as in Equation (1.6), the Taylor series expansion of the terms present in Equation (1.8) 

with respect to the mean free surface 0y =  yields 
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   2 2 2 2 2 2

0 0

1 1
... 0.

2 2
t x y z y t x y z

y y

gy gy
= =

   
 +  + + − +   +  + + − + =   
   

 (1.10) 

Proceeding with similar assumption as in case of the kinematic condition (1.6), here 

also we neglect the product, square and higher powers of the dependent variables   

and  , to obtain the linearized dynamic free surface condition on the mean free surface 

0y =  as given by 

                                                     t g = on 0.y =  (1.11) 

It may be noted that these linearized forms in Equations (1.7) and (1.9) can also be 

obtained by using a perturbation series expansion for   and  , as in Stoker (1957). 

Eliminating  from the Equations (1.7) and (1.9), we arrive at the boundary condition 

on the mean free surface as given by 

                                                  
tt yg =  on 0.y =  (1.12) 

Once,   is obtained, ( , , )x z t  can be computed from any one of the Equations (1.7) 

and (1.9). Assuming that the fluid motion is simple harmonic in time with angular 

frequency  , the velocity potential ( , , , )x y z t  and the surface elevation ( , , )x z t  can 

be written in the form  ( , , , ) Re ( , , ) i tx y z t x y z e  − =  and  ( , , ) Re ( , ) i tx z t x z e   −=  

Thus, the spatial velocity potential ( , , )x y z  satisfies the Laplace Equation (1.1) and 

the bottom boundary condition (1.5). However, the linearized free surface boundary 

condition (1.10) yields  

                                                0y K + =  at 0,y =  (1.13) 

where 
2 .K g=  The condition (1.11) represents the free surface condition in the 

absence of surface tension in the linearized theory of surface water waves of 

homogeneous density having a free surface. 

1.5.1.3 Velocity potential, surface elevation and dispersion relation 

In the case of obliquely incident surface waves, the water surface profile associated 

with a monochromatic progressive wave is in general given by  

                                  ( ) ( ) ( , , ) cos ,
2

x z

H
x z t k x k z t = + −  (1.14) 
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where H  is water depth, ( )2 /k  = = is wavenumber,   is wavelength, ( )2 / T =

is angular frequency, T  is wave period, cosxk k =  and sinzk k =  with   being the 

angle made by the wave with the positive x − axis. The corresponding velocity potential 

( , , , )x y z t  satisfying the governing Equation (1.1) along with the bottom boundary 

condition (1.5a) and the linearized free surface condition (1.11) is expressed as 

                    ( ) ( ) 
cosh ( )

( , , , ) sin ,
2 cosh

x z

H g k h y
x y z t k x k z t

kh




−
 = + −  (1.15) 

where k   and    are related by the dispersion relation given by 

                                                     
2 tanhgk kh =    (1.16) 

Now we make a note on wave classification which is based on relative water depth 

/h  . The waves are called shallow-water waves or long waves if / 1 20h   . In case

/ 1 2h   , the waves are called deep water waves. In the intermediate range

1 20 / 1 2h   , the waves are termed as the intermediate depth waves. The 

dispersion relation for shallow water reduces to 2 2gk h =  and in case of deep water 

waves, it is given by 
2 .gk =  

1.5.1.4 Far-field boundary condition 

In the case of a BVP defined in an infinite/semi-infinite domain, the uniqueness of the 

solution demands the behaviour of the function at the far-field. In case of water wave 

problems, often the fluid domains are either the half/quarter-planes or infinite/semi-

infinite strips depending on whether the problem is considered in the water of infinite 

or finite depths. Without going into theoretical details, we will prescribe the far-field 

boundary conditions in the case of plane progressive waves as given by 

         
( ) ( )  cosh ( )

( , , , ) ~ ,
cosh

x z x zi k x k z t i k x k z t k h y
x y z t Ae Be

kh

 + − − + + −
 +  , ,x z →  (1.17) 

in the case of finite water depth and for the case of shallow water depth is given by  

                      
( ) ( ) ( , , , ) ~ ,x z x zi k x k z t i k x k z t

x y z t Ae Be
 + − − + +

 + , .x z →  (1.18) 

In the above conditions, A and B  are constants associated with the wave amplitudes at 

the far-field and depend upon the physical nature of the problem. 
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1.5.2 Basic structure equations  

In this subsection, the plate equations and boundary conditions associated with the 

floating elastic plate are discussed. The derivation of the Timoshenko-Mindlin plate 

theory is explained in detail.  

1.5.2.1 Timoshenko-Mindlin plate theory 

Timoshenko presented a method to account for rotary inertia and shear deformation for 

beam given by Timoshenko beam theory. The Timoshenko beam theory was extended 

by Mindlin (1951) know as Timoshenko-Mindlin plate theory applicable to thick plates. 

The Timoshenko-Mindlin theory is an extension of Kirchhoff-Love plate theory and it 

takes into account the shear deformations through the thickness of a plate. Main reason 

to the use of the Timoshenko beam theory is to take into account the shear deformation 

and rotational bending effects. Because of this it is applicable for thick beams, sandwich 

composite beams, or beams subject to high-frequency excitation when the wavelength 

approaches the thickness of the beam. This theory is special for the thick plates in which 

the normal to the mid plate surface remains straight but not necessarily perpendicular 

to the mid plate surface. Normally, this Mindlin plate theory is used to calculate the 

deformations and stresses in a plate whose thickness is of the order of one tenth the 

planar dimensions or higher. Taking into account the added mechanisms of deformation 

effectively lowers the stiffness of the beam and this can result into a larger deflection 

under a static load and lower predicted eigen frequencies for a given set of boundary 

conditions. This effect is more noticeable for higher frequencies as the wavelength 

becomes shorter (i.e. in principle comparable to the height of the beam or shorter). 

Thus, the distance between opposing shear forces decreases.  

Equilibrium approach is considered which utilizes the strain displacement relations, 

stress resultants to derive the Timoshenko-Mindlin plate theory (Rao, 2007). Using the 

stress-strain relations and strain-displacement relations, the force and moment 

resultants per unit length for the Timoshenko-Mindlin plate are given by  

                  ,      Shear force,x x y yQ Gd Q Gd
x y

 
   

   
= + = +   

    
   (1.19) 

       ,        Bending moment,
y yx x

x yM EI M EI
x y y x

  
 
       

= + = +    
       

   (1.20) 
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(1 )

   Twisting moment,
2

yx
xy yx

EI
M M

y x

   − 
= = +  

   
   (1.21) 

where x  denotes the rotation in the x z−  plane, 
y  is denotes the rotation in the y z−   

plane and  denotes the plate deflection. The equilibrium equations for the Mindlin 

plate by considering the effect of rotary inertia is given as  

Vertical force equilibrium in the z-direction:  

                                                 

2

2
.

yx
p

QQ
P d

x y t




 
+ + =

  
  (1.22) 

Moment equilibrium about the x-axis:  

                                            

3 2

2
.

12

y xy p y

y

M M d
Q

y x t

   
− + + =

  
  (1.23) 

Moment equilibrium about the y-axis:  

                                            

3 2

2
.

12

xy px x
x

M dM
Q

x y t

  
− + + =

  
  (1.24) 

Substituting force and moment resultants into the above equations, the equation of 

motion in terms of displacement unknowns ( ), , ,   and x yx z t   is given by  

                                          ( )2 2 ,p tGd P d    + + =     (1.25) 

     
3

2 2(1 ) (1 ) ,
2 12

x x x t x

EI d
Gd

x

 
     

 
 −  + +   − + =     

   (1.26) 

    

3

2 2(1 ) (1 ) ,
2 12

p

y y y t y

dEI
Gd

y


     

 
 −  + +   − + =     

   (1.27) 

where .
yx

x y

 
 = +

 
 Combining Eqs. (1.26) and (1.27) and rewriting, we get  

                                 
3

2 2 2 .
12

p

t

d
EI Gd Gd


   − −  =      (1.28) 

Combining Eqs. (1.25) and (1.28) and rewriting, we obtain the Timoshenko-Mindlin 

thick plate equation  
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3 2

2 2 2 2 2 2 21 ,
12 12

p p p

t t p t t

d dEI
EI d P

G Gd G

  
  

  

    
 −   −  +  = − −  +        
    

 (1.30) 

where 3 212(l )EI Ed = −  is the plate rigidity and ( )2 lG E = + is the shear modulus 

of the plate, 
2

12


 =  is the transverse shear coefficient, E  is Young’s modulus,   is 

the Poisson’s ratio, 
s pm d=  is the mass per unit area, 

p  is the density of plate, g is 

the acceleration due to gravity and d is the plate thickness. If the shear modulus of the 

beam material approaches infinity and the beam becomes rigid in shear and if rotational 

inertia effects are neglected, Timoshenko beam theory converges towards ordinary 

beam theory. Additionally, for the case for small deflections of a beam that are 

subjected to lateral loads only, the Timoshenko beam theory will reduce to the Euler-

Bernoulli beam theory. The Kirchhoff-Love theory or simply Kirchhoff’s thin plate 

theory is applicable to thinner plates. 

1.5.2.1 Kirchhoff’s plate theory 

Kirchhoff’s thin plate theory assumes the plate thickness to be small and neglects the 

effect of rotary inertia and shear deformation. If effects of rotary inertia, RI  and shear 

deformation, S  are neglected, then the terms involving 2 /12RI d=  and /S EI Gd=  

will be zero. Thus, the above equation (1.30) reduces to the Kirchhoff’s thin plate 

equation given by  

                                                   
4 2 .p tEI d p   +  =    (1.31) 

1.5.3 Coupled boundary conditions  

In the wave structure interaction problems, the fluid and structure parts are analysed 

separately and are coupled at the end to obtain required physical quantities. In the 

present Subsection, the boundary conditions at the interface of the structure and the 

fluid are coupled and are presented in terms of the velocity potential. As a result, the 

whole physical problem is easily expressed as a boundary value problem associated 

with the Laplace equation satisfying the higher-order boundary in terms of the velocity 

potential ( , , , )x y z t . Assuming the fluid characteristics as presented in Section 1.5.1, 

the fluid pressure sP  is obtained from the linearized Bernoulli’s equation given by  



  
 

Chapter 1: General Introduction 

19 
 

                                              ,s tP g  = −  +   on 0,y =  (1.32) 

where   is the density of the water and g  is the acceleration due to gravity. The 

linearized kinematic condition is given by 

                                                    
t y =  on 0y =  (1.33) 

Timoshenko- Mindlin thick plate equation in terms of the plate deflection ( , , )x z t  in 

two-dimension is given by 

( )2 2 2 2 2 21 ( , , ),s s R
s R t t s tt t

m S m I S
EI m I m S P x z t

EI EI
 

    
 −   −  + = − −  +     

    
   (1.34) 

where ( ), ,P x z t  is the external pressure due to the fluid and is given by (1.32). 

Combining the kinematic and dynamic boundary conditions (1.32), (1.33) and (1.34), 

the boundary condition on the plate covered mean free surface 0y =  is obtained as 

( )2 2 2 2 2 2 2

2 2

1

            1 .

s s R
s R t t s t y t y

s R
t tt

m S m I S
EI m I m g S

EI EI

m I S
S

EI





    
 −   −  +   + −  +      

    

 
= −  +   

 

 (1.35) 

In the case of time-harmonic motions with angular frequency  , the plate covered free 

surface condition (1.35) will reduce to the form as given by 

                          ( ) ( )2 4 2

0 1 2 0 1 0y      +  +  + −  =  on 0.y =  (1.36) 

Since   satisfies the Laplace equation, the above equation is often rewritten in the 

following form 

                          ( ) ( )2 4 2

0 1 2 0 1 0y y y y      −  +  + −  =  on 0,y =  (1.37) 

where 2

0 1 ,R
s

I S
m

EI
 

  
= −  

  
  

( )

2

1 2
,s R

s

m I
S

g m




 

  
= − 

−  

  
( )2 2

,
s

EI

g m


 
=

−
 

( )

2

2

0 2
1 ,

p R
s

s

I S
m

EIg m

 
 

 

 
= − 

−  
  

( )

2

1 2

p

s

S

g m

 


 
= −

−
  and 2 /12.RI d=   
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It may be noted that in the case of 10L d   , where L  is the characteristic length of 

the elastic plate, shear deformation and rotary inertia play important roles. In such a 

situation, one has to use the Timoshenko-Mindlin thick plate model to describe the 

dynamic behaviour of the floating elastic plate. On the other hand, if 10L d  , then 

shear deformation and rotary inertia can be neglected and in such a situation, the thick 

plate equation reduces to thin plate equation in one-dimension, based on Kirchhoff thin 

plate equation, and is given by 

                                                ( )4

2 01 0.y y    + + =   (1.38) 

It can be easily observed that if  0EI =  and 0p = , Equation (1.38) reduces to the 

linearized capillary gravity wave mean free surface boundary condition. 

1.5.3.1 Edge conditions  

The wave interaction with the floating elastic plate is based on the edge conditions at 

the plate edges. The floating elastic plate is considered to satisfy one of the following 

edge support conditions (Timoshenko and Krieger (1959), Rao (2007)). Three types of 

edge conditions i.e. free – free edge support, simply supported edge and fixed edge 

along with the articulation conditions at the connecting joints are considered in the 

analysis. 

Case 1: Freely floating elastic plate 

The freely floating elastic plate represents zero bending moment and zero shear force 

at the plate edge. In the case of finite water depth, the bending moment and shear force 

at the plate edge 0,x a= −  satisfies the relation given by 

      ( ) ( ) ( )3

3 4 2, 0 and  , ,   for  0,  at  0,y j j xy jxy
x y x y x y x a y   =  = = − =     (1.39) 

where 

2 ( )
,

m S I

EI

 +
=  

 
 j represents the respective domain in considerations. 

Case 2: Simply supported floating elastic plate 

In this case the simply supported edge, the edge condition represents the bending 

moment and deflection to vanish at the edges or at the supports for finite water depth. 
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The plate edge is considered to be having zero deflection/displacement and zero 

bending moment at 0,x a= −  satisfying the relation   

                   ( ) ( )3, 0 and , 0  for  0,   at  0.y j y jx y x y x a y  =  = = − =  (1.40) 

Case 3: Fixed edge floating elastic plate 

In the case of fixed edge condition, the deflection and slope vanish at the edge. So, for 

finite water depth, we consider zero slopes and zero deflection/displacement at the plate 

edge 0,x a= −  which satisfies the relation  

                 ( ) ( )2, 0 and , 0  for  0,   at  0.y j xy jx y x y x a y  =  = = − =      (1.41) 

Case 4: Articulation conditions  

In the case of articulation in the floating elastic plate, the connecting joints are exhibited 

as connection with vertical linear and/or flexural rotational springs with stiffness 33k  

and 55k  respectively. The bending moment and shear force acting at the articulated 

edges are formulated based on the nature of 33k  and 55k  given by the relation (Xia et 

al., 2000, Chung and Fox, 2005) 

                           

 3 2 2

55 ( 1)( ,0) ( ,0) ( ,0) ,   + + = −  + − −y j xy j xy jEI x k x x  (1.42a) 

                         3 2 2

( 1) 55 ( 1)( ,0) ( ,0) ( ,0) ,  + + − = −  + − −y j xy j xy jEI x k x x  (1.42b) 

             3

4 2

33 ( 1)( ,0) ( ,0) ( ,0) ( ,0) ,j xy j y j y jxy
EI x x k x x    +

  + − + =  + − −
 

   (1.42c) 

    3

4 2

( 1) ( 1) 33 ( 1)( ,0) ( ,0) ( ,0) ( ,0) .j xy j y j y jxy
EI x x k x x   + + +

  − − − =  + − −
 

  (1.42d) 

Depending upon the nature of the vertical linear spring and/or a flexural rotational 

spring, the shear force and the bending moment at the articulated joints are formulated. 

The values of 33k  and 55k  tends to zero for the case of free edge condition. If either of 

the spring stiffness 33k  or 55k  tends to zero, then the connection illustrates a hinge 

connector or a slider connection. For a rigid connection, the stiffness values tend to 

infinity i.e. 33k →  and 55k →  as explained in as in Table 4.2. 
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Case 5: Continuity equations  

The continuity of velocity and pressure across the interfaces using the conservation of 

mass in the fluid domains is given by 

   ( ) ( ) ( ) ( ) ( ) ( )1 1
, ,  and , , , and 0,  0 .jx jj x j

x y x y x y x y x a x y h   
+ +

= = = − =     (1.43) 

In order to formulate the boundary value problem for varying bottom topography, the 

continuity equation (Karmakar et al., 2010) for deflection, slope, bending moment and 

shear force at the step interfaces is given by  

                                         ( ) ( ) ( )1
, , ,y j y j

x y x y 
+

 =   (1.44a) 

                                        ( ) ( ) ( )2 2

1
, , ,xy j xy j

x y x y 
+

 =   (1.44b) 

                                         ( ) ( ) ( )3 3

1
, , ,y j y j

x y x y 
+

 =   (1.44c) 

                       ( ) ( ) ( ) ( ) ( )3 3

4 2 4 2

1
, = , .xy j xy jxy xy

x y x y 
+

 −  −   (1.44d) 

1.5.3.2 Boundary condition at the vertical barrier  

Due to the presence of a vertical porous barrier in front of the floating elastic plate, the 

boundary condition considering Darcy's law is given by 

                                              
10 0 2 1( ), 1,2,jx ik G j   = − − =  (1.45) 

where 0 r iG G iG= +  is the complex porous parameter with the real part rG  represents 

the resistance effect of the porous material against the seepage flow while the imaginary 

part iG  denotes the inertia effect of the fluid inside the porous material. The complex 

effect porous parameter is defined by Yu and Chwang (1994) as given by 

                                                
( )

( )0 2 2

10

,
i

i

f iS
G

k d f S

 +
=

+
 (1.46) 

where   is the porosity constant, f  is the resistance force coefficient, iS   is the inertial 

force coefficient, d  is the thickness of the porous medium and 10k  is the wavenumber 

of the incident wave. The boundary conditions at the porous vertical barrier is derived 

by combining the boundary condition at the vertical porous barrier as in Eq. (1.45) and 

the continuity equation for velocity at 0x = (Yu and Chwang, 1994). 
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                             10 0 1

0, for open gap,

( )
, for vertical barrier.

j j j
ik G

x

  +




− − = 



  (1.47) 

1.5.4 Shallow water approximation  

In this section, we are considering the surface gravity waves that get influenced by the 

by water depth. This implies that the depth of water is equal to or less than the half of 

wavelength. These types of waves are called long waves. In the case of long waves, the 

horizontal component of the fluid velocity is much larger compared to the vertical 

components. In a fluid domain of finite depth which is infinitely large in both x  and z  

directions with q  being the fluid particle velocity with components ( , , )u v w  and y  

being considered vertically downward positive, the equation of motion for the 

linearized long waves takes the form 

                                            0,t xu g− =   0.t zw g− =  (1.48) 

Further, the equation of continuity for the two-dimensional long wave is given by 

                                              ( ) ( ) 0,t x zhu hw − − =  (1.49) 

which can be rewritten as 

                                                     2 ,t xzh =    (1.50) 

where ,xu =  ,yv =  zw =  and h  is the water depth.  

From Equations (1.49) and (1.50), the two-dimensional long wave having a free surface 

is obtained as 

                                                  .tt xx zzgh  = +  (1.51) 

The Timoshenko- Mindlin thick plate equation in terms of the plate deflection ( , , )x z t  

in two-dimension is given by 

( )2 2 2 2 2 21 ( , , ),s s R
s R t t s tt t

m S m I S
EI m I m S P x z t

EI EI
 

    
 −   −  + = − −  +     

    
 (1.52) 

where EI   is the flexural rigidity of the plate, ( , , )P x z t  is the external pressure due to 

the fluid and in the present case it is the hydrodynamic pressure. Equating the 

hydrodynamic pressure with the external pressure on the plate, we obtain 
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( )2 2 2 2 2 21 .s s R
s R t t s tt t t

m S m I S
EI m I m g S

EI EI
    

   
 −   −  + + = −  +    

   
 (1.53a) 

Differentiating eq. (1.50) with respect to t  and then in eq. (1.53) for  at uniform water 

depth h , we obtain the plate covered long wave equation in terms of  as  

( )2 2 2 2 2 2 2 21 .s s R
x s R t x t s x x t t

m S m I S
h EI m I m g S

EI EI
 

    
 −   −  + +   = −  +      

    
 (1.53b) 

Further, assuming the velocity potential to be in simple harmonic in time with wave 

frequency ,  the velocity potential is expressed as ( ) ( ) , Re
i t

x t x e



−

 = , where Re 

denotes the real part and ( )x denotes spatial velocity potential. Eliminating   from 

eq. (1.53b) and rearranging, we get the long wave equation of motion in the plate 

covered region based on the Timoshenko-Mindlin plate equation as 

    
( ) ( )

( )

2 2
4 2 2

2 2

22
2

2

1

                                                 1 0.  

s R s R
x x x

s s

s R
x

s

m I m I SEI
h S

EIg m g m

m I S
S

EIg m

 


   




 

     
  + −  + −    − −     

 
+ − −  = 

−  

 (1.54) 

In particular, for 0RI = and 0,S =  the above equation reduces to the long-wave 

equation for floating elastic plate based on Kirchhoff’s theory. Further, for 0EI =  and 

0sm = , the above equation reduces to the two-dimensional long wave equation. It may 

be noted that although the derivation of the long-wave equation for floating elastic plate 

is based on Timoshenko-Mindlin/Kirchhoff’s theory, the open water surface longwave 

equation is derived as a particular case. 

1.6 EXPANSION FORMULAE FOR WAVE STRUCTURE INTERACTION 

The wave interaction with very large floating elastic plate comes under a class of 

hydroelasticity problems associated with flexural gravity waves. These flexural gravity 

waves are defined by boundary value problems based on the Laplace equation for 

higher-order boundary conditions. Since the present study is concerned with the 

problems of hydroelasticity, so the mathematical formulation is based on the 

assumption of linearized hydroelasticity theory. In this section, the development of the 

expansion formula is explained in detail. 
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1.6.1 Havelock’s expansion formulae 

The solution procedure for the classical wavemaker problem involving free surface 

water wave motion was developed using the eigenfunction expansion method by 

Havelock (1929). The boundary value problem is based on the linearized wave theory 

for a water wave motions with free surface generated by a vertical plane wavemaker in 

the two-dimensional coordinate system. The spatial velocity potential ( , )x y  satisfies 

the two-dimensional Laplace equation  

                                                      

2 2

2 2
0.

x y

  
+ =

 
 (1.55) 

On the free surface boundary at 0y = , the velocity potential ( , )x y  satisfies the 

boundary condition of the following form 

                                              0,
x y x




     
+ =   

     
L M  (1.56) 

where 1,
x

 
= 

 
L and  K

x

 
= 

 
M , 2 /K g= is a constant. 

The mean free surface satisfies the combined linearised kinematic and dynamic 

boundary condition, bottom boundary condition are same as defined earlier. Using the 

method of separation of variables, the velocity potential is obtained as  

                                0

cosh ( )

cosh

ikxk h y
A e

kh


−
=   for finite water depth,  (1.57) 

where 0A  is the wave amplitude and k  is the wavenumber which is related with the 

frequency   given by the dispersion relation 

                                      tanhK k kh=  for finite water depth, (1.58) 

where 2K g= , Equation (1.58) has only one positive real root 
0k  and an infinite 

number of purely imaginary roots of the form n nk i=  , 1, 2,....n =   where n  satisfy 

                                                  tann nK h =    (1.59) 

By ordering 
nk  such that 

1 2 ...k k   it can be graphically seen that

(n 1/ 2) ,nk h n −     and 
nk h n→  as n → . 
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The two-dimensional spatial velocity potential ( , )x y  is expanded in the form 

           ( )
( ) ( )

( ) ( )

0

0

0 0

1

0 0

1

, for  0,

,

, for  0,

n

n

ik x x

n n

n

ik x x

n n

n

A e f y A e f y x

x y

B e f y B e f y x








 −

=


 +

=


+ 


= 
 + 





 (1.60) 

                                        ( )
( )cos

 for 0,
cos

n

n

n

k h y
f y n

k h

−
=   (1.61) 

with 
0 0,A B  are the unknown constants associated with the amplitudes of the plane 

progressive waves and , ,n 1,2,...n nA B =  are the unknown constants associated with the 

evanescent modes, which decay as x→  . It can be easily verified that these set of 

eigenfunctions are orthogonal in the range  0, h  with respect to the inner product as 

given by 

                                     
0

( ), ( ) ( ) ( ) ,

h

m n m nf y f y f y f y dy=    (1.62) 

and satisfy the orthogonality relation   

                                    
0    for  ,

( ), ( )
  for    ,

m n

n

m n
f y f y

N m n


= 

=
  (1.63) 

where 
2

2 sin 2
 for  0.

4 cos

n n
n

n n

k h k h
N n

k k h

+
=    

The nature of the constants depend on the physical problem at hand and the appropriate 

sign will depend on the direction of the wave propagation. The decaying modes are 

included in the expansion to describe the fluid motion local to any body non-uniform 

in the vertical coordinate in the fluid domain and decay exponentially away from the 

body. If there is no body to interact with an incident wave, these evanescent modes will 

not be present in the expansion and the potential will be described only by the 

propagating modes. 

The expansion formulae for ( , )x y  as given in the above relation Equation (1.60) is 

known as the Havelock’s expansion formulae. This formula is used to obtain expansion 

formulae associated with the BVPs in infinite and semi-infinite strip type domains apart 

from circular/rectangular/ square type domain. In the context of water wave problems, 
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it is used to solve a class of problems in finite water depth. One of the basic advantages 

associated with these expansion formulae is that the eigenfunctions are orthogonal 

which often reduces the BVPs into a diagonally dominant linear system of equations. 

As a result, the method becomes computationally efficient to solve the associated 

physical problem. However, Havelock’s expansion fails when the BVP involves a 

higher-order condition. 

1.6.2 Gravity wave in the presence of surface tension (Rhodes-Robinson, 1971)  

The wavemaker problem was investigated by Rhodes-Robinson (1971) taking into 

account the effect of surface tension which gives a third-order boundary condition. 

Green’s function approach was adopted to derive the expansion theorem for the 

potential functions in the finite water depth. Rhodes-Robinson (1979a,b) proposed 

orthogonal relations to study the wave interaction with rigid structures in the presence 

of surface tension. The fluid in the finite water depth is assumed to occupy the region 

0,x  0 .y h   The velocity potential ( ),x y satisfies the Laplace equation given by 

                                  

2 2

2 2
0

x y

  
+ =

 
    at 0,x  0 .y h   (1.64) 

On the free surface boundary at 0, 0y x=  , the velocity potential ( , )x y  satisfies the 

boundary condition with the surface tension of the following form 

                                          0,
x y x




     
+ =   

     
L M  (1.65) 

where 

2

2
1 M

x x

   
= +  

    
L  and .K

x

 
= 

 
M  

The boundary condition at the free surface due to the presence of surface tension is 

rewritten as 

                                            0, 0y yyyK M y  + + = =  (1.66) 

where 2K g=  and M T g= , T  is the surface tension,   the density and g  the 

acceleration of gravity. It may be noted that for 0,M =  the relation (1.56) reduces to 

plane wavemaker problem. The wavemaker at 0,0x y h=    satisfies the condition 

given by 
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                                           ( )x U y =  at 0,   0 ,x y h=    (1.67) 

where ( )U y  is complex-valued and suitably limited. The bottom boundary condition 

is given by 

                                      0
y


=


 on y h=  for finite water depth. (1.68) 

The condition for outgoing waves at infinity is of the form 

                   ( )  0

0, multiple of cosh ( ) as ,
ik x

x y k h y e x  − →   (1.69) 

where 
0  is the wavenumber with surface tension and satisfies the relation 

                                 2

0 0 0 0(1 )sinh cosh 0,k Mk k h K k h+ − =  (1.70) 

and 2(1 )sin cos 0n n n nM h K h   − + =  for  for 1,2,....n nik n = =  are infinite series on 

the imaginary axis. The wave-maker solution for finite depth in the presence of surface 

tension is obtained as 

  
( ) ( )

( ) ( )

0

0 0 0

2 2

0 0 0 0

2 2
1

cosh cosh ( )
( , ) 4

2 (1 ) (1 3 )sinh 2

cos cosh ( )
                  4 ,

2 (1 ) (1 3 )sin 2

n

i x

x

n n n

n n n n n

A k h k h y e
x y i

k h Mk Mk k h

A h h y e

h M M h





 

 


   

−

=

−
=

+ + +

−
+

− + −


  (1.71) 

where 
2

0
0 0

0 0

1
( )cosh ( )

cosh

h
Mk

A U y k h y dy M
k h




−
= − +  and 

2

0

1
( )cos ( ) ,  for  n 1,2,....

cosh

h

n
n n

n

M
A U y h y dy M

h


 

 

−
= − − + = , which depend on 

normal velocity )(U y . This has been derived for 0x  , 0 y h  .  

1.6.3 Flexural gravity wavemaker problems (Sahoo et al., 2001)  

In the present subsection, the expansion formulae are derived based on orthogonal 

mode-coupling relations in the case of semi-infinite strips as well as quarter-plane 

problems. In the case of finite depth, an equivalent form of the orthogonal relation of 

Lawrie & Abrahams (1999) is obtained for the semi-infinite strip. This form of the 

expansion formula provided the motivation behind the theoretical development of a 

new orthogonal mode coupling relation.  
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It is considered that, a semi-infinite elastic plate of thickness floats on the surface 

0,x−   0y =  of a fluid domain ,x−  0 y h   in a two-dimensional 

Cartesian coordinate system. The fluid is assumed to be inviscid and incompressible, 

and the flow is irrotational and simple harmonic in time with the angular frequency 

which ensures the existence of a velocity potential ( ), ,x y t  of the form 

( ) ( ) , , Re ,
i t

x y t x y e



−

 = . The spatial velocity potential ( ),x y  satisfies the 

Laplace’s equation given by 

                                        

2 2

2 2
0,

x y

  
+ =

 
,x−  0 .y h   (1.72) 

On the structural boundary at 0,y =  the velocity potential ( ),x y satisfies the 

boundary condition of the following form 

                                         0,y
x x
 

    
+ =   

    
L M  (1.73) 

where 

2 4

0 1 22 4x x x
  
    

= + +  
     

L  and 
0

x


 
= 

 
M , 

0 1 2 0, ,  and      are the 

constants. The rigid bottom boundary condition is given by 

                         0
y


=


 on y h=  , ,x−  for finite water depth.  (1.74) 

Under the assumption of a linearized theory of surface waves, the free surface condition 

in the absence of surface tension in the open water region is given by 

                                  
1+ =0  at   0, 0 ,K y x

y





=   


  (1.75) 

where 2

1 / .K g=  The fluid domain is divided into two regions such as the upstream 

open region 0 y h   and the plate-covered region 0 .y h   The spatial velocity 

potentials in the corresponding regions are expressed as 

                       

( )0 0

0

1 0 0 0

1

2 0 0

1

, for 0,

, for 0,

m

n n

ik x ik x k x

m m

m

IV
ip x p x p x

n n n n

n I n

I e R e R e x

T e f T e f T e f x

  




− −

=


−

= =

= + + 

= + + + 



 
 (1.76) 
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where 

0

0

cosh ( )
, ( 0),

cosh

cos ( )
, ( 1,2,3..., )

cos

m

m

m

k h y
m

k h

k h y
m

k h



+
=


= 

+ =


,

0

0

cosh ( )
, ( 0),

cosh

cos ( )
, ( , , , ,1, 2,3..., )

cos

n

n

n

p h y
n

p h
f

p h y
n I II III IV

p h

+
=


= 

+ =


, 

where 0
0

2

igH
I


= −  with 

0H  being the incident wave height.  

The constants satisfy the dispersion relations 

                              2

0 0tanh tan , (n 1,2,3...),n ngk k h gk k h = = − =   (1.77) 

with (n 1) / / ,nh k n h −    for (n 1,2,3...)= .  

The eigenfunctions ( 1,2,3...)m m =  are orthogonal and complete in the usual sense. 

On the other hand, 
np ’s satisfy the dispersion relations 

                     4

0 0 0(1 ) tanh ,K p Lp p h= +   (1.78a) 

                         4(1 ) tan , ( , , , ,1,2,3...)n n nK p Lp p h n I II III IV= − + =   (1.78b) 

with 2/ ( )sL EI g m = −  and 2 2/ ( )sK g m  = − . 

It should be noted that Ip  and IIp  are complex conjugates with positive real parts, IIIp  

and IVp  are complex conjugates with negative real parts, np ’s are positive and real 

(n 1) / / ,nh p n h −    (n 1,2,3...)=  and nR , nT , ( 0, , , , ,1,2,3...)n I II III IV=  are 

unknown constants to be determined to obtain the velocity potentials. The assumption 

that the velocity potentials are bounded at infinity suggests that 0III IVT T= = .  

The inner products are defined as 

          
( ) ( )

3 3

3 3

0 0

,  ,
,

0             ,

h

m n m n
m n

m n y

f f f fL
f y f y dy m n

K y y y yf f

m n

=

     
+ + = 

   =   





  (1.79)  

for 0, , , , ,1,2,3.....m n I II III IV= =   
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4 4

0 0 0 0
0 0 4

0 0

2 (1 ) (1 5 )sinh 2
, ,

4 (1 )

p h Lp Lp p h
f f

p Lp

+ + +
=

+
  

          
4 4

4

2 (1 ) (1 5 )sinh 2
, ,

4 (1 )

n n n n
n n

n n

p h Lp Lp p h
f f

p Lp

+ + +
=

+
 ( , , , ,1, 2,3...),n I II III IV=  

which suggests that the set of functions are orthogonal with respect to the inner product 

as defined by the above relation. However, the eigenfunctions in the plate covered 

region are not standard ones as the operator involved is not self-adjoint.  

1.6.4 Modified expansion formulae (Manam et al., 2006)  

In the present section, expansion formulae are derived based on orthogonal mode-

coupling relations in the case of semi-infinite strips as well as quarter-plane problems. 

In the case of finite depth, an equivalent form of the orthogonal relation of Lawrie and 

Abrahams (1999) is obtained for the semi-infinite strip. The form of the expansion 

formula provides the motivation behind the theoretical development of a new 

orthogonal mode coupling relation. The spatial velocity potential ( ),x y  satisfies the 

Laplace’s equation given by 

                                  

2 2

2 2
0

x y

  
+ =

 
    at  0 ,x   0 .y h   (1.80) 

On the structural boundary at 0y = , the velocity potential ( , )x y satisfies the boundary 

condition of the following form: 
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where L  and M  are the linear differential operators of the forms   

0 2

2
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0
x


 
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M , 
k  and 

0  assumed to be known constants.  

Finally, the far-field radiation condition is of the form 

                           ( ) 00

0

cosh ( )
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ip xp h y
x y e

p h


 −



 (1.82) 

where 
0p  satisfy the relation 
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In the context of wave propagation problems, the above equation is referred to as the 

dispersion relation. The rigid bottom boundary condition is given by 

                                  0
y


=


 on y h=  for finite water depth.  (1.84) 

The BVP satisfying equation along with the boundary conditions and the radiation 

condition is not of standard Sturm–Liouville type and the eigenfunctions involved are 

not orthogonal in the usual sense. The more general expansion formulae based on the 

eigenfunctions are developed along with appropriate mode-coupling relations in the 

case of finite water depth. In the case of fluid of finite depth using the eigenfunction 

expansion method, the velocity potential ( ),x y  satisfying the governing equation, the 

boundary conditions and the radiation condition can be expanded in the generalized 

form as  
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where the unknown functions ( )nA x  are of the form 
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and the eigenfunctions ( )nI y  are of the form as given by 
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with 
np  satisfying the relations 
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The eigenfunctions ( )nI y  are not orthogonal in the usual sense. In this context, the 

relevant form of the orthogonal relation satisfied by ( )nI y  which was given by Lawrie 

and Abrahams (1999) for the two-dimensional problem with a rigid bottom boundary 

and give an equivalent form of the orthogonal relation, which is referred to as mode-

coupling relation is presented.  

The equivalent form of the orthogonal relation in the form of mode-coupling relation is 

given by  

            ( ) ( ) ( ) ( ) ( )
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 (1.90) 

In this case, the expansion formulae are modified considering the higher-order in the 

linear differential operator 
0 2

2
0

k k

k k
kx x


=

  
= 
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L  and constant value in the linear 

differential operator 
0.

x


 
= 

 
M  

1.6.5 Generalized Expansion Formulae (Karmakar et al., 2007) 

The generalised expansion formulae for wave structure interaction problems with 

applications in hydroelasticity is developed by Karmakar et al. (2007). The Fourier 

transform and Fourier series is used to obtain the solution for the BVPs in semi-infinite 

domains and in semi-infinite strips. The Fourier integral transform is applied to derive 

the expansion formula for the velocity potentials in a semi-infinite strip for a class of 
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BVPs arising in the broad area of fluid-structure interaction having higher-order 

boundary condition in one of the boundaries. These expansion formulae can be easily 

extended to half-plane or infinite strip by using the geometrical symmetry of the 

problem under study. The fluid is assumed to occupy the region 0 ,0 .x y h       

The spatial velocity potential ( ),x y  satisfies the Laplace’s equation given by 

                                                    

2 2

2 2
0.

x y

  
+ =

 
 (1.91) 

On the structural boundary at y = 0, the velocity potential ( , )x y satisfies the boundary 

condition of the following form 
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where L  and  M  are the linear differential operators of the forms 
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M  with 

n ’s and 
n ’s are assumed to be known constants,

0 0,n m N  and 0 0m n  . Further, assuming the existence of a wave-like solution, the 

far-field radiation condition is of the form 
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   (1.93) 

where 
0k  is assumed to be real and positive for the realistic physical problem and 

satisfices the relation in k  as given by  

                                               ( ) ( )0 0; ; tanh ,Q k m P k n kh=   (1.94) 
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= −  being the characteristic 

polynomials associated with the differential operators ( )x yL  and ( )xM , 

respectively. In the context of wave propagation problems, the above equation is 

referred to as the dispersion relation.  

Finally, the bottom boundary condition is given by 
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                                                       0
y
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=


  on .y h=   (1.95) 

The velocity potential ( , )x y  is assumed satisfies one of the following two boundary 

conditions on the vertical boundary at x = 0, which are given by 

                                           ( , ) ( ) and ( , ) ( ).xx y U y x y V y = =   (1.96) 

The general form of the velocity potential ( , )x y satisfying the governing Equation 

(1.91) along with the boundary conditions is given by 
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with 0 0( ) cosh ( ) coshnf y k h y k h= −   and n nk ik=  for 1,2,...n =   

Further, the expansion formula is based on the assumptions that Equation (1.94) has 

one positive real root at 0 0,2k k n=  number of complex roots nk k=  of the form 

i    for 0, ,...2n I II n=  and infinitely many imaginary roots of the form n nk ik=  for 

1,2,...n =  The mode coupling relation developed by Manam et al. (2006) is generalised 

and presented as a generalized mode coupling relation.  

The eigenfunctions ( )nf y  in the case of finite water depth associated with general 

higher-order boundary condition satisfy the orthogonal mode-coupling relation as given 

by  
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1.7 CLOSURE 

In this chapter, the importance of the hydroelastic analysis of the flexible floating 

structure is discussed in detail. The basic theory of water waves along with the flexible 

floating structure based on Kirchhoff’s thin plate theory and Timoshenko-Mindlin plate 

theory is presented. Further, the edge conditions associated with the plate theories for 

both finite and shallow water depth is discussed. In addition, the development of the 

expansion formula for the wave structure interaction problem using the Fourier 

transform technique by various researchers is explained.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 GENERAL INTRODUCTION  

This chapter presents the review of literature related to the hydroelastic analysis of a 

floating elastic plate under the action of ocean waves. The review includes literature on 

wave interaction with floating structures considering different types of edge support 

condition, different articulations, change in the seabed profile and the presence of 

submerged structures at finite water depth and shallow water approximations. A 

remarkable study based on numerous theories is discussed for the hydroelastic analysis 

of floating structures both analytically and numerically. Various studies carried out to 

understand the hydroelastic behaviour of floating structures and also on the propagation 

of flexural gravity waves over sea-ice is discussed. The study is concentrated on 

floating structures, different methods employed, wave loading and responses of VLFS. 

The recent progress and future studies on the research of hydroelastic responses are also 

summarised and gives an idea about the scope of work. 

2.2 WAVE INTERACTION WITH FLOATING STRUCTURES 

In the past few decades, Very Large Floating Structures (VLFS) has gained significant 

interest in the area of research and development for future infrastructures. The studies 

on the design and development of VLFS started at the beginning of the 18th century for 

various humanitarian activities and military operations.  In 1894, a 124m long floating 

wooden railroad bridge (now abandoned) was constructed over Mississippi River in 

Wisconsin. In 1943, the US navy constructed a pontoon type floating airfield which 

consisted of the flight deck and parking area. A floating bridge to Mercer Island across 

lake Washington in 1940 was renamed Lacey V Murrow floating bridge and a second 

parallel floating bridge was opened in 1989, named as Homer M Hadley floating bridge. 

In 1975, the Okinawa International Ocean Exhibition, Japan was held on Aquapolis, 

constructed as a large semi-submersible unit of a floating city. Two floating oil storage 

bases were constructed at the Kamigoto island of Nagasaki in 1988 and Shirashima 
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island offshore Fukuoka city in 1996. The Technological Research Association of Mega 

float (TRAM) project was founded in 1995 and research activities on mega float 

construction continued till 2001 in Tokyo Bay, Japan. A significant floating bridge was 

finished in 2002 in Osaka, Japan to solve the problem of maintaining a wide shipping 

channel. The floating pre-stressed concrete pier was constructed at Ujina Port, 

Hiroshima, Japan and a floating terminal dock at Valdez, Alaska. The floating rescue 

emergency bases were constructed at Tokyo and Osaka bay and floating heliport at 

Vancouver, Canada. In 2013, Japan has built a 70 MW floating solar plant in the 

Kagoshima prefecture of the southern part of Japan. The Kagoshima Nanatsujima Mega 

Solar Power Plant is the largest solar power plant in Japan and it can generate enough 

electricity to power approximately 22,000 average households.  

In literature, substantial research has been carried out on very large floating structures 

and some of the prominent works in the field of hydroelastic analysis for large floating 

structures are consolidated and presented by Kashiwagi (2000). The review on the 

recent progress and future studies on the research of hydroelastic responses of the large 

floating structure is discussed and the study is mainly divided into pontoon type and 

columns supported type structures using frequency-domain and time-domain analysis. 

Watanabe et al. (2004) presented the basic assumptions, equations and boundary 

conditions for preliminary hydroelastic analysis of floating structures. The review 

reported the development of more refined work on pontoon-type VLFS. Ohmatsu 

(2005) presented an overview of wave loading and responses of VLFS. The detailed 

outline is proposed on the development of various methods for the hydroelastic 

response and qualitative risk analysis of mooring system. Chen et al. (2006b) reviewed 

the hydroelastic theories for the global response on marine structures with special focus 

on VLFS. Squire (2007) presented a review paper on ocean waves and sea-ice. The 

study performed on the semi-infinite or infinite ice-sheet and the accumulation of 

independent flexible floating bodies is presented and discussed. Karmakar et al. (2011) 

reviewed the existing hydroelasticity theories to analyse different types of floating and 

submerged structures relevant to the field of Marine Technology and Arctic 

Engineering. The theoretical progress made in the application of hydroelasticity for the 

analysis of Very Large Floating Structures (VLFS) and large floating ice-fields is 

presented. A brief discussion on wave interaction with flexible breakwaters, an 
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overview of ship hydroelasticity and recent developments on wave propagation over a 

flexible bottom are analysed.  

In the study of the very large floating structure, Wang and Tay (2011) summarized two 

decades of work on the applications, research and development of VLFS. The study 

includes the recent innovative methods to minimize the hydroelastic motion, and to 

improve the mooring system with the structural integrity of the VLFS. Pardo et al. 

(2015) reviewed the application of VLFS for both coastal and offshore structures. The 

study categorized the advantages and disadvantages of different types of VLFS. An 

overview for various models, depths and proximity of the structures around the coast is 

studied and a brief comparison between VLFS and other types of floating structures is 

presented. Recently, Dai et al. (2018) reviewed the developments on floating 

breakwaters and the review includes the recent progress and future studies on the 

hydroelastic behaviour and wave loading of VLFS, and outlined the development of 

various methods to calculate the hydroelastic response at different conditions. The 

analysis is performed for the hydroelastic theories for the global response on marine 

structures and the study demonstrated the pontoon type and columns supported type 

structures based on frequency-domain and time-domain analysis. In addition, the 

application of VLFS is discussed and categorised the advantages and disadvantages of 

different types of VLFS in comparison to other types of floating structures. The study 

also includes various models, depths and proximity of the structures around the coast. 

2.2.1 Wave interaction with floating ice-sheets 

A significant amount of progress on wave-ice interaction is made in the literature using 

the floating elastic plate model which finds its application in the field of cold region 

science and technology as the large sheets of ice that covers a vast area of the ocean 

surface in the Arctic and Antarctic regions. In Polar and sub-polar Regions, waves 

travel from open-ocean onto ice-covered seas generating flexural waves. The waves 

travel over ice sheets have considerable surface elevation to induce stress in the ice 

sheets. These flexural waves are found to cause fractures and cracks in the ice sheets. 

Thus, the study of wave-ice interaction is an important subject of research. Press and 

Ewing (1951) derived equations for the propagation of elastic waves in floating ice 

sheet with emphasis on phase velocity for very large and small wavelengths. The 
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thickness and mechanical strength of the ice for position fixing and long-range 

signalling are determined and analysed. Bates and Shapiro (1980) developed a model 

for the floating ice sheet with compressive stress based on the thin elastic plate to find 

the impulse response of the system. It is observed that the floating membrane gravity 

waves exist at all frequencies below the flexural gravity wave band and an elastic plate 

supported on an elastic foundation was apt for these long-period waves. The study 

concluded that elastic energy stored in the compressed ice is sufficient to produce 

measurable long-period waves in floating ice.  

Squire and Dixon (2001) considered the effect of long ice coupled waves acting on an 

iceberg that is trapped in ice sheets of infinite extent in deep waters. The analysis 

considers the ice coupled waves to be generally of longer periods and the numerical 

method based on Green’s function is formulated approximating iceberg to follow thin 

elastic plate theory. A fully three-dimensional model for the motion and bending of a 

solitary ice floe due to wave forcing is presented by Meylan (2002). The ice floe is 

modelled as a thin plate and its motion is expanded in the thin plate modes of vibration. 

The scattered energy is calculated and it is shown that the scattering is strongly 

dependent on ice floe stiffness. Further, it is observed that there exists a critical value 

of stiffness, below which the scattered energy is not a significant function of ice floe 

geometry, and above which the average scattering is a significant function of ice floe 

geometry. Peter and Meylan (2004) extended the works on finite-depth interaction 

theory to the infinite water depth and structure of arbitrary geometry.  

The calculations for the structure of arbitrary geometry developed by Goo and Yoshida 

(1990) is extended to infinite depth, and the diffraction transfer matrix is calculated for 

rotating bodies. The developed interaction theory is applied to the wave forcing on 

multiple ice floes and a method to solve the full diffraction problem is presented. The 

convergence studies are performed comparing the interaction method with the full 

diffraction calculations and the finite and infinite depth interaction methods. A new 

coupled-mode system of horizontal equations for the hydroelastic analysis of large 

floating bodies or ice sheets of finite thickness, lying over variable bathymetry regions 

is presented by Athanassoulis and Belibassakis (2009) and the study extended the 

existing third-order plate theories to plates and beams of general shape. The variational 

principle is used with the one-field functional of the elastodynamics in the plate region, 
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and a pressure functional in the water region. The scattering of linear, coupled, 

hydroelastic waves propagating through an inhomogeneous sea ice environment is 

determined consisting of ice sheets of variable thickness and a non-mildly-sloped 

interface. Squire (2011) examined the current and emergent advances on the topic of 

hydroelasticity theory and response of sea ice under the action of ocean surface waves 

and swell. Kohout et al. (2011) derived a relation for the wave attenuation due to drag 

from the bottom roughness of ice floes. It is observed that the combined scatter and 

drag (CSD) model improved the rate of decay of the attenuation coefficient with the 

increasing period, but simultaneously weakened the representation of the attenuation at 

the rollover.  

The behaviour of flexural gravity waves propagating over a semi-infinite floating ice 

sheet under the assumptions of small amplitude linear wave theory is studied by 

Bhattacharjee and Guedes Soares, (2012). The higher-order mode-coupling relations 

are applied to determine the unknown coefficients present in the Fourier expansion 

formula of the potential functions and modelled ice-sheet as a thin semi-infinite elastic 

beam. Three different edge conditions are considered at the finite edge of the floating 

ice-sheet and also the effects of different edge conditions, the thickness of the ice-sheet 

and the water depth on the surface strain, the shear force along the ice-sheet, the 

horizontal force on the vertical wall, and the flexural gravity wave profile are analysed. 

Bennetts and Squire (2012) modelled the exponential attenuation of ocean surface 

waves in ice-covered regions of the polar sea considering thin elastic plate. The study 

showed the attenuation produced by long floes obtained from the scattering properties 

of a single ice edge and wave interaction theory in ice-covered regions requires 

evanescent and damped-propagating motions to be included when scattering sources 

are relatively nearby. Williams et al. (2013a) developed a theoretical model for wave-

ice interaction in the marginal ice zone (MIZ) based on floe size distribution. The 

attenuation of ocean surface waves by sea-ice and the concomitant breaking of the ice 

into smaller floes by the waves is calculated and discussed. Williams et al. (2013b) 

developed a numerical scheme to simulate the wave energy lost during ice breakage. 

The one-dimensional transects of the ocean surface are considered to test the 

sensitivities of the wave ice interaction using idealized ice thickness and concentration 

profiles. 
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Papathanasiou et al. (2014) presented a higher-order finite-element method (FEM) for 

the numerical simulation of the transient response of thin floating bodies in shallow 

water wave conditions. The hydroelastic initial-boundary value problem, in an 

inhomogeneous environment, characterized by bathymetry and plate thickness 

variation is analysed for two configurations: (i) a freely floating strip modelling an ice 

floe or a very large floating structure and (ii) a semi-fixed floating beam representing 

an ice shelf or shore fast ice, both under long-wave forcing. Papathanasiou et al. (2015) 

analysed the transient hydroelastic response of an ice shelf under long-wave excitation 

by means of the finite element method. Study presented a simple model for the 

simulation of the generated kinematic and stress fields in an ice shelf, when the latter 

interacts with a tsunami wave. Gerostathis et al. (2016) developed a coupled-mode 

model to study the hydroelastic behaviour of 3D large floating bodies of finite extent 

and shallow draft or ice sheets of small thickness, lying over variable bathymetry 

regions. Bai et al. (2017) investigated the response of ice floes in regular waves. The 

results of the numerical investigation from HydroSTAR and OpenFOAM are compared 

with the experimental data. 

2.2.2 Hydroelasticity based on different plate theories 

The study on the hydroelastic analysis of VLFS is mainly based on two plate theories: 

(a) Euler-Bernoulli beam theory and (b) Timoshenko-Mindlin thick plate theory. 

Mostly, the researchers studied the hydroelastic behaviour of large floating structure 

based on the Euler-Bernoulli beam theory. The Euler-Bernoulli beam theory neglects 

the effect of rotary inertia and shear deformation, but the large floating structures being 

large along the length and width also has considerable depth. So, the consideration of 

the effect of rotary inertia and shear deformation becomes inevitable for the 

hydroelastic analysis of floating structures using Timoshenko-Mindlin plate theory. 

The literature based on the Timoshenko-Mindlin plate theory considering the presence 

of rotary inertia and transverse shear deformation is very limited. Further, few 

researchers analysed the hydroelastic behaviour of ice sheets based on Timoshenko-

Mindlin thick plate theory interacting with ocean waves. All the above studies as 

presented in the subsection reported that, the sea-ice or floating platform is either 

infinite or semi-infinite in length. 



 
 

Chapter 2: Literature Review 

 

43 
 

2.2.2.1 Euler-Bernoulli beam theory 

A significant study on the hydroelastic analysis of the VLFS is performed considering 

Euler-Bernoulli beam theory. The study mainly considers the thickness of the structure 

to be thin and the assumption seems to be more realistic while analysing the very large 

floating structures where the horizontal dimensions are much larger than the vertical 

dimension. Some of the earliest work in the analysis of VLFS is proposed by Stoker 

(1958) for two-dimensional analysis of a floating elastic body. Meylan and Squire 

(1994) developed a linearized, model based on Euler-Bernoulli thin plate theory for an 

ice floe and a pair of adjacent ice floes of finite length under the action of ocean waves 

at infinite and finite water depths. Meylan and Squire (1996) presented a new model to 

study the behaviour of a solitary, circular, flexible ice-floe under the action of long-

crested sea waves. The vibration of a circular thin plate is considered to be governed by 

the Euler-Bernoulli beam equation with free edge conditions. The comparison of the 

result is performed with two independent methods: an eigenfunction expansion method 

for the thin circular plate, and Green's function approach for the ice-floe. The model is 

used to investigate the strain field generated in the ice-floe, surge response, and the 

energy initiated in the water encircling due to the ice-floe. Sim and Choi (1998) 

analysed the hydroelastic behaviour of large floating structures under the action of 

oblique waves.  Namba and Ohkusu (1999) presented a new mathematical model to 

analyse the bending vibration of a very thin elastic plate floating on waves. An oblique 

incident wave is considered in the analysis to interact with an infinitely long rectangular 

plate. The kinematic condition underneath the plate is imposed on the level of calm 

water surface. The plate is treated to be a part of the water surface and the fluid flow, 

and the deflection is determined.  

Taylor and Ohkusu (2000) used Green’s function theory for the hydroelastic analysis 

of beams and thin plates based on Euler-Bernoulli beam theory. The alternative forms 

are developed for the free-free beam, in terms of the sinusoidal eigenmodes of a pinned-

pinned beam and the rigid body modes. The direct formulation applying the Stokes 

transformation and an energy approach is used to obtain the Green function for the 

beam. Meylan (2001) derived a variational equation on the thin-plate equation of 

motion by including the wave forcing using the free surface Green function. The study 

is extended for the case of variable plate properties and to multiple floating plates. 
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Khabakhpasheva and Korobkin (2001, 2002a) described two approaches to reduce 

elastic deflection of floating plates with a 2D linear theory based on Euler homogenous 

beam model. The first approach is based on the concept of vibration absorber. The 

second approach considered the floating beam to be connected to the sea bottom with 

a spring and the rigidity of the spring is adjusted in such a way that the beam deflection 

due to incident waves is reduced. They modelled the beam to be (i) homogenous, (ii) 

cracked, (iii) compound with an elastic connection between the parts of the beam and 

(iv) elastically connected to the sea bottom.  

Takagi (2002) applied ray theory to study the hydroelastic behaviour of VLFS based 

on thin elastic plate theory. The wave amplitude is suddenly changed along the ray that 

passed through a corner and the parabolic approximation is applied as a smoothing 

function to overcome the difficulty at the corners. A small variation is applied for the 

incident angle from the head sea to represent the hydroelastic response. The 

approximation study gave an idea of the complexity involved with the corner effect on 

the analysis. Khabakhpasheva and Korobkin (2002) introduced an inverse method for 

solving the hydroelastic problem of floating plate based on Euler beam equation. The 

hydrodynamic pressures under the floating plate are evaluated for the liquid boundary 

and plate deflection is identified, and hence the distribution of the external loads along 

the plate is constructed. Chen et al. (2003) developed a numerical method for analysing 

the hydroelastic characteristics of a VLFS in multidirectional monochromatic incident 

waves taking into account the effect of the membrane forces. A pontoon type VLFS is 

considered as a thin plate undergoing large vertical deflections. Von Karman plate 

theory is used with the mode expansion method in the frequency domain to obtain the 

membrane forces. Chung and Linton (2003) derived a new mathematical model based 

on thin elastic plate coupled with an inviscid, incompressible fluid for computing the 

coefficients of the modal expansion of the velocity potential using Residue Calculus 

Technique (RCT). A new direct method was proposed by Ohkusu and Namba (2004) 

considering the draft of the plate to be asymptotically zero and the plate bottom surface 

to be located at the water surface. Thin plate theory is used to analyse the fluid-structure 

interaction in shallow water depth with incident waves along the length of the structure.  

The influence of flexural gravity waves on various irregularities in the ice field is 

investigated by Williams and Squire (2004). A uniform Euler-Bernoulli plate is 



 
 

Chapter 2: Literature Review 

 

45 
 

considered for the theoretical model and the Green’s function approach is used for the 

solution required in finite water depth. Finally, the investigation is carried out to select 

the type of irregularities which caused the observed low pass filter response. Andrianov 

and Hermans (2003, 2006) performed the hydroelastic analysis of VLFS considering 

the structure to be pontoon/mat type and modelled as a thin elastic isotropic plate. An 

integro-differential formulation with Green’s theorem is used to obtain velocity 

potentials and the plate deflection. The influence of water depth is compared for 

incompressible fluid at infinite, finite and shallow water depths. A geometrical-optics 

approach and Lindstedt method were used by Andrianov and Hermans (2006) to 

determine the reduced wavenumbers, amplitudes, deflection of zero draft order. 

Andrianov (2005) presented the motion of a floating structure and its response to 

surface water waves based on thin-plate theory. An analytical solution and numerical 

results are derived for various shapes and dimensions of the floating plate. New 

approaches for the hydroelastic analysis of the VLFS is proposed based on a general 

integro-differential equation method.  

A semi-analytic method to solve the free-surface wave interaction with a plate of finite 

thickness is developed by Hermans (2003a, 2003b, 2004, 2007). An integro-differential 

equation is formulated considering plate behaviour in terms of thin plate theory and 

water pressure at the plate applied at finite depth. Xu and Lu (2011) developed an 

analytical method to analyse the floating plate of arbitrary geometry for the hydroelastic 

analysis based on thin-plate theory. Vertical and angular eigenfunction methods were 

formulated at three cases of edge boundary conditions. Brocklehurst et al. (2012) 

modelled the ice sheet as a thin elastic plate based on Euler-Bernoulli thin-plate theory 

involving fourth-order derivatives of the plate deflection in space. The linear diffraction 

of hydroelastic waves is studied considering vertical cylinder and the behaviour of the 

forces under variation of parameters and the strain distribution in the ice sheet is 

investigated. Wang and Cheng (2013) studied the nonlinear hydroelastic waves under 

an ice-sheet lying over an incompressible inviscid fluid of finite uniform depth based 

on Homotopy Analysis Method (HAM). The effects of the water depth are studied and 

two important physical parameters including Young’s modulus and the thickness of the 

ice sheet on the wave energy and its elevation. Wang and Lu (2013) investigated a train 

of nonlinear hydroelastic progressive waves travelling in a thin finite elastic plate in 
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deep water. They demonstrated that the stiffness, thickness, density of plate and the 

amplitude of the incident wave have major effects on the hydroelastic response of an 

ice-sheet or a VLFS. Papathanasiou and Belibassakis (2014) presented three 

hydroelastic interaction models for wave interaction with floating bodies of large 

dimensions. They represented the water-wave potential with an enhanced mode 

expansion with unknown modal amplitudes in the free surface and structure deflection 

on the horizontal plane. Kara (2015) modelled three-dimensional transient wave-body 

interaction by the use of Boundary Integral Equation Methods (BIEM) and Neumann–

Kelvin linearization for the hydrodynamic part. The Euler–Bernoulli beam equation is 

used with analytically defined mode shapes for the structural part for the time domain 

prediction of the hydroelasticity of the floating bodies. Lu et al. (2016) introduced a 

new method based on multi-body hydrodynamics and Euler–Bernoulli beam 

assumption to study hydroelastic behaviours of very large floating structures. The 

numerical results are compared with experimental results and numerically calculated 

data by three-dimensional hydroelasticity theory. Liao and Ma (2016) presented the 

vibration characteristics of an elastic thin plate placed at the bottom of a three-

dimensional rectangular container filled with compressible inviscid fluid. 

2.2.2.2 Timoshenko-Mindlin theory  

The analysis to understand the hydroelastic characteristics performed using the Euler-

Bernoulli beam theory does not consider the significance of rotary inertia and shear 

deformation of an elastic plate. However, the elastic plate has a substantial thickness, 

hence the inclusion of the rotary inertia and shear deformation is important in analysing 

the hydroelastic characteristics for VLFS (Mindlin, 1951). Thus, Timoshenko-Mindlin 

plate theory which consists of the terms related to rotary inertia and shear deformation 

for a plate needs to be considered to analyse the hydroelastic characteristics of a VLFS. 

The study considering Timoshenko-Mindlin plate theory was introduced by Fox and 

Squire (1991) for the flexural gravity wave propagation over the ice-shelf. Fox and 

Squire (1991) performed the coupling of a long period surface gravity ocean waves 

with massive ice shelf considering the wave-induced strain on the ice shelf. Meylan and 

Squire (1996) developed a theoretical model to study the flexure for a circular disk 

acted upon by long-crested wave and the study reveals that the long-crested wave is not 

affected due to the deformation of thin ice floe but the bending induced in the ice floe 
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affects the wave motion in the free surface. Barrett and Squire (1996) studied the ice 

coupled waves travelling in an ice plate with abrupt changes in the plate properties. 

Two cases of plate discontinuity with the plate being either joined or crack is analysed.  

The flexural gravity wave propagation over the ice-covered region is performed by 

Keller (1998) in water of finite depth and the study is conducted for waves of any 

wavelength which is simplified for short and long waves. The reflection and 

transmission of surface gravity waves are presented by Balmforth and Craster (1999) 

for the ice sheets under the action of waves. The Fourier transforms and Wiener-Hopf 

technique is used in the simplification of the wave scattering problem. The wave 

interaction with a cracked floating ice sheet is analysed by Karmakar and Sahoo (2006) 

using the Fourier transform approach considering Timoshenko-Mindlin plate theory. 

Further, a detailed study on the hydroelastic characteristics of VLFS is analysed by 

Karmakar et al. (2009) considering the Fourier transform approach for the infinite and 

semi-infinite elastic plate.  

The study based on the Timoshenko-Mindlin plate theory considering the presence of 

rotary inertia and transverse shear deformation is very limited. Recently, the 

hydroelastic response was analysed for a pontoon-type VLFS connected with a flexible 

line connection by Gao et al. (2011) based on Mindlin plate theory. The solution 

procedure involved modal expansion method for the formulation of the physical 

problem and the solution is obtained using the BEM approach. The study was also 

extended for the ocean wave-ice interaction. A study on the reduction of the 

hydroelastic behaviour of VLFS was presented by Tay and Wang (2012) by altering 

the geometry of the structure considering the Mindlin plate theory. The floating 

structure was considered to be located in a channel to account for the head sea 

interaction of ocean waves. The study showed a reduction in the hydroelastic 

characteristics of floating structures by altering the geometry of the structure. 

Papaioannou et al. (2013) developed a method for hydroelastic analysis of VLFS 

subject to a directional wave spectrum. The analysis is carried out in the frequency 

domain by application of the modal expansion method. A BEM-FEM model is used to 

discretize the fluid-structure interaction based on Mindlin plate theory. The derived 

linear system allows for the application of linear random vibration theory for the 

evaluation of response spectra.  
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The hydroelastic characteristics of a VLFS connected by a flexible line along with gill 

cells at their bottom surface are examined by Gao et al. (2013) under the action of 

gravity wave. A substantial reduction in the hydroelastic characteristics was presented 

by suitably placing the flexible line and distributing gill cells. A nonlinear theory is 

developed by Ertekin and Xia (2014) to analyse the hydroelastic characteristics of large 

floating structures under the action of cnoidal waves. The boundary value problem is 

developed based on the Green-Naghdi theory in the open water region. Agarwal and 

Nair (2014) analysed the structural response of a floating airport subjected to 

landing/taking off of an aeroplane by using a Fourier Transformation in space in 

wavenumber domain rather than using the wave propagation method to reduce the 

analysis to a substructure. Ertekin and Xia (2014) developed a nonlinear theory to 

predict the hydroelastic response of a VLFS in the presence of cnoidal waves and 

compared the predictions with the linear theory. Papathanasiou and Belibassakis (2014) 

presented three hydroelastic interaction models with application to the problem of water 

wave interaction with VLFS. The dispersion characteristics of the hydroelastic models 

are studied based on standard beam theories. A brief discussion on the variational 

formulation of the derived equations and their finite element approximation is also 

studied. Zhao et al. (2015) analysed the relationships between the amplitude 

distribution of the deflection and bending moments for 2D compound floating plates 

and the stiffness of the connection under the action of different periods of incident 

waves on a fluid of finite depth is studied using Wiener-Hopf technique and the Mindlin 

plate theory. Liao and Ma (2016) presented a mathematical derivation of the vibration 

characteristics of an elastic thin plate placed at the bottom of a three-dimensional 

rectangular container filled with compressible inviscid fluid. Recently, Praveen et al. 

(2016, 2018) discussed the hydroelastic characteristics of the floating elastic plate in 

the case of shallow water approximations and the effect of interconnected joints in the 

plate is analysed considering Timoshenko-Mindlin’s theory. A significant variation is 

observed on the hydroelastic behaviour as compared to Euler-Bernoulli beam theory. 

2.2.3 Hydroelastic behaviour of VLFS with different support condition 

In order to study the influence of edge support conditions, various researchers have 

attempted to consider different edge support conditions based on the requirement of the 

structure. In most of the study on the hydroelastic behaviour of VLFS, considers the 
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structure to be freely floating based on the free edge boundary condition. The wave 

interaction with large floating structures induces vertical and horizontal motions and a 

mooring system is necessary to restraint the floating structure from wave-induced 

motion. In practical, the VLFS’s are anchored to the seabed with a mooring system or 

supported at the edges by different edge conditions such as simply supported or fixed 

edge support. Onsite, the edges of these large floating structures are secured on to the 

seabed with a mooring line based on different edge conditions such as simply supported 

or fixed edge support.  The consideration of edge support condition for the large floating 

structure is based on the functionality of the structure. Most of the studies consider a 

freely floating structure based on the free edge boundary condition. On the other hand, 

few researchers have considered different types of edge support conditions in the study 

of hydroelastic behaviour of VLFS. Teng et al. (2001) used a modified eigenfunction 

expansion method to analyse the reflection and transmission of ocean waves at a semi-

infinite thin elastic plate. The study is extended for the cases of simply supported and 

built-in edges and it was demonstrated that the modified error function method satisfies 

well for the energy conservation relation at all three cases of edge conditions. Sahoo et 

al. (2001) developed the orthogonal-mode coupling model based on the eigenfunction 

expansion approach to study the scattering of waves due to a floating semi-infinite 

elastic plate in the case of finite water depth. The influence of different edge conditions 

is investigated for the case of free-free, simply supported and a built-in edge.  The study 

summarized that the built-in edge condition induces the maximum wave reflection and 

the minimum wave transmission.  

The hydroelastic behaviour of a semi-infinite horizontal elastic plate floating on a 

homogenous fluid of finite depth is analysed by Xu and Lu (2009) using the 

eigenfunction expansion method. The study concluded that the plate thickness and the 

density of the plate do not influence the wave reflection and transmission 

characteristics. Kohout and Meylan (2009) studied the wave scattering by multiple 

floating elastic plates with spring connectors or hinges at the plate edges. The behaviour 

of the plate is observed depends strongly on the boundary conditions at the plate edges. 

Gao et al. (2011) analysed the hydroelastic response of pontoon-type, very large 

floating structures (VLFS) with a flexible line connection based on Mindlin plate 

theory. The modal expansion method is adopted in the frequency domain with a 
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combined BEM-FEM method. Karmakar and Guedes Soares (2012) analysed the wave 

scattering by a finite floating elastic plate connected with mooring lines at its corners 

in the presence of lateral pressure load. The hydroelastic behaviour of the floating 

elastic plate is investigated by analyzing the effect of the stiffness of the mooring lines 

on the reflection and transmission characteristics of the gravity waves.  Loukogeorgaki 

et al. (2014) implemented a 3D experimental and numerical investigation for the 

performance of a pontoon-type floating structure. The pontoon-type floating structure 

configuration is considered consisting of modules connected with hinge-type 

connectors and moored with chains. The study focused on the analysis of the wave 

characteristics effect on mooring lines tension and the hydroelastic response of the 

pontoon-type floating structure. 

The hydroelastic behaviour of an elastic floating plate connected to the sea bed using a 

time-domain approach is examined by Karperaki et al. (2016). The elastic plate is 

modelled based on Euler-Bernoulli theory in shallow water depth and the study mainly 

concentrates on the multiple elastic connectors joined by simple spring-dashpot systems 

along with the structure. Wang et al. (2016) developed a finite element model to analyse 

the hydroelastic response of a horizontal elastic plate. The threshold values of the 

forward speed and compressive force for the beam is calculated for various length and 

different edge boundary conditions. The deflection in the middle points of the plate 

with three different boundary conditions is compared with available experimental and 

numerical results and the study suggests that the deflection in the beam are affected 

largely due to the beam length and boundary conditions. The oblique scattering of 

waves by a semi-infinite floating elastic plate over a stepped topography was studied 

by Guo et al. (2016). The influence of three different types of edge conditions are 

examined and that the edge conditions have a considerable effect on the plate deflection 

and moment. Loukogeorgaki et al. (2017) conducted 3D experiments to investigate the 

hydroelastic and the structural response of a pontoon-type modular floating breakwater 

moored with chains modules, under the action of perpendicular and oblique regular 

waves. The oblique wave interaction with a floating flexible porous plate is studied by 

Koley et al. (2018) in both the cases of finite and infinite water depths. The effects of 

three types of plate edge conditions namely free-free, fixed and simply supported is 

analysed and the study suggested that the strain is lower in case of a plate having free 

edges compared with fixed and simply-supported edges. 
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2.2.4 Wave scattering due to the articulated floating elastic plate 

The studies on the effect of articulation are of practical importance to predict the 

strength and stability of the structure. The VLFS that are constructed in the open ocean 

is very long and wide, the draft is assumed to be small and the structure behaves like 

an elastic plate consisting of several modules. These large floating structures are usually 

fabricated in modules at shipyards and assembled together with connecting joints on-

site using welding. The effect of articulated joints in floating elastic plates has been of 

research interest in the reduction of hydroelastic responses. The studies on the effect of 

articulation are of practical importance to predict the strength and stability of the 

structure. The interaction of waves with articulated floating elastic plate considering a 

2D articulated plate with connectors based on Euler-Bernoulli’s beam theory is 

investigated by Xia et al. (2000). The study suggests that the hydroelastic characteristics 

depend on the connector stiffness and frequency of the incoming wave and extended 

the study for hydroelastic behaviour of the multi-module articulated plate.  

The hydroelastic behaviour of compound floating elastic plate anchored to sea bottom 

was analyzed by Khabakhpasheva and Korobkin (2002) based on coupled 

hydrodynamics and structural dynamics. The study suggests that, a rigid plate of 

smaller length in the front of the structure and a spring connecting the floating beam to 

the sea bottom with suitable spring rigidity can reduce the vibration of the floating 

structure. Karmakar and Sahoo (2005) presented the wave scattering for an articulated 

floating elastic plate at infinite water depth considering Euler-Bernoulli beam theory. 

The analysis of the hydroelastic behaviour of floating elastic plate of different spring 

stiffness is studied and the analysis suggests that the articulated joints behave as a 

continuous plate for higher values of spring stiffness. The wave propagation across the 

transition between two semi-infinite floating elastic plates considering the vertical and 

rotational springs is performed by Chung and Fox (2005) using the Wiener-Hopf 

technique. The wave propagation is observed dependent on the transition condition and 

the large fluctuation in the wave reflection due to a small change in the transition 

condition. Sturova (2009) proposed a method to analyze the linear unsteady behaviour 

of the floating hinged homogeneous elastic beam in shallow water. The beam behaviour 

for different hinged positions and actions of the medium is presented and analyzed. 

Karmakar et al. (2009) discussed the flexural gravity wave scattering by multiple 



 

 

Hydroelastic analysis of floating and submerged flexible structures 

 

52 

 

articulated floating elastic plate using the wide-spacing approximation and also direct 

method considering Euler-Bernoulli beam theory to analyze the effect of stiffness 

connectors on the wave propagation. The Bragg’s resonance in the periodic articulated 

floating plates is observed due to the periodic structures and it was suggested that a 

limiting value for both the stiffness constants exits, beyond which the articulated plate 

behaves as a continuous plate.  

The hydroelastic response of the flexible floating interconnected structure using 

translation and rotational stiffness based on general hydroelasticity theory is performed 

by Fu et al. (2007) taking into account hinged rigid modes. The effect of the connector 

is studied and it was found that the stiffness of the connectors and the modules are 

important for the determination of the hydroelastic response of the structure. Riyansyah 

et al. (2010) studied the minimum hydroelastic response on the floating body 

considering the mechanical semi-rigid connection of two floating beams using 

boundary element method for the fluid domain and finite element method for the 

structural domain. The study suggests that the presence of the rotational stiffness affects 

the compliance of the floating beam system and can improve the design of the floating 

beam system. Gao et al. (2013) investigated the hydroelastic response of a long 

rectangular VLFS under the action of the wave. The effect of flexible line connector 

and gill cells on the hydroelastic behaviour of VLFS is analyzed and it was observed 

that the presence of flexible line connector and appropriate distribution of gill cells in 

the VLFS were found to significantly reduce the hydroelastic response and stress 

resultants. The hydroelastic behaviour of compound hinged floating plates using the 

Wiener-Hopf technique is presented by Zhao et al. (2015) for different periods of 

incident waves to understand the influence of the hinge connection in the floating body. 

The study suggests that the vibration of the plate and the amplitude of the dynamic 

stress can be reduced by selecting proper spring stiffness and hinged position. 

2.2.5 Wave transformation due to bottom topography 

The floating structures are usually construed near shore and hence the effect of sea 

bottom profile becomes significant. Sea bottom is not flat throughout, there is various 

kind of undulations which give rise to wave refraction, shoaling and wave breaking. 

The wave transformation due to floating thick elastic plate over multiple stepped 

bottom topography has been of research interest due to the effect of sea bed unevenness 
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in the hydroelastic responses. Newman (1965) presented a theoretical and experimental 

results wave reflection and transmission over a step type bottom topography with finite 

and infinite depths. It is concluded that the wave frequency plays an important role in 

the shallow water domain for relatively long waves.  

The wave scattering due to a rectangular obstacle in a finite depth channel is analysed 

by Mei et al. (1969). The variational formulation for the numerical computations is 

employed and the scattering properties for bottom and surface obstacles of various 

proportions are presented including thin barriers and surface docks. The results are 

compared with existing experimental and theoretical data. A new approach was adopted 

by Evans and Linton (1994) to solve the wave scattering due to varying bottom 

topography using 2D linear water wave theory. The varying bottom topography is 

modelled as a uniform strip to be considered in the variable free surface boundary 

condition. Grue (1992) studied the incoming deep water wave propagating over a slight 

submerged circular cylinder or a rectangular shelf experimentally and theoretically in 

the wave channel. The theoretical model accounted for the nonlinearity by using the 

Boussinesq equations in the shallow water depth over the obstacle in combination with 

linearized potential theory at deep water. The wave underwent a strong deformation at 

the obstacle for a finite wave amplitude. O'Hare and Davies (1992) presented a new 

model for wave propagation over a region of arbitrary bottom topography. The 

smoothly varying sea bed profile is divided into a series of horizontal shelves separated 

by abrupt steps. A transfer matrix is used to relate the wave fields on either side of each 

step and a rotation matrix is defined for the wave propagation along the shelf between 

the adjacent steps. The model is observed to perform well for a rapidly varying bottom 

topography.  

Further, in O'Hare and Davies (1993) the successive application matrix model is 

compared with the extended mild slope equation derived by Kirby (1986). The two 

models are applied for the two types of bottom topography as given by the existing 

laboratory data for the wave reflection over a sinusoidal bed and doubly-sinusoidal 

beds. The models are observed to provide reasonably good results and the matrix model 

can be applied for rectangular shape and smoothly varying bottom topography. A 

consistent coupled-mode theory is employed by Athanassoulis and Belibassakis (1999) 

to analyse the wave propagation over variable bottom topography. The additional mode 
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is introduced to describe the influence of the bottom slope and modelled all the wave 

phenomena such as refraction, reflection, diffraction, which serves as a useful tool in 

the analysis. Athanassoulis and Belibassakis (1999) employed a consistent coupled-

mode theory and extension of the theory by Belibassakis and Athanassoulis (2005, 

2013) is used to analyse the wave propagation over variable seabed profile. Further, the 

extension of a consistent coupled-mode theory was applied by Belibassakis and 

Athanassoulis (2004) to analyse the hydroelastic behaviour of large floating bodies with 

a shallow draught and ice sheets of small and uniform thickness over variable bottom 

topography.  

The hydroelastic behaviour of large floating structures or ice-sheets is analysed by 

Athanassoulis and Belibassakis (2009) for finite thickness over a sea bed of varying 

bathymetry. A coupled-mode system is presented using the variational principle along 

with the plate covered region and pressure functional for the open water region. Three 

models based on the importance of rotary inertia and/or shear deformation is presented 

by Papathanasiou and Belibassakis (2014) in analysing the hydroelastic characteristics 

of VLFS with varying thickness. A coupled-mode system is proposed considering a 

consistent local mode expansion and solved using FEM solvers based on the variational 

formulation. The hydroelastic behaviour of a VLFS over varying sea bottom 

topography is considered by Kyoung et al. (2005) for four different cases. The FEM 

based on the variational formulation is used to calculate the sea-bottom effects in the 

fluid domain and Kirchhoff’s plate theory is used to model the pontoon type floating 

structure. The mode superposition method is adopted to calculate the hydroelastic 

behaviour of the floating structure. The wave scattering due to a semi-infinite floating 

membrane is analysed by Karmakar and Sahoo (2008) for a changing bottom 

topography. The steps are considered to be a finite and infinite step in the analysis of 

reflection, transmission and deflection of a floating membrane. Further, due to 

significant changes in the amplitude and length of the membrane gravity waves, it is 

suggested that the membrane can be used as an effective breakwater. The oblique 

flexural gravity wave scattering by multiple stepped bottom topography in finite water 

depth and shallow water approximations is analysed by Karmakar et al. (2010) acted 

upon by obliquely incident waves. The wide spacing approximation is employed to 

analyse the wave scattering from multiple steps and submerged blocks using the results 
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of a single step. The energy relation for oblique flexural gravity wave scattering is 

derived due to a change in bottom topography using the argument of wave energy flux.  

The diffraction pattern due to the obliquely incident wave onto a floating structure with 

a wall is analysed by Bhattacharjee and Soares (2011) over step type bottom topography 

in finite water depth and shallow water approximations. The eigenfunction expansion 

method is used to obtain the solution of the problem under the potential flow approach. 

The interaction of the oblique incident wave with a moored floating membrane is 

analysed by Karmakar and Soares (2012) for both the cases of finite water depth and 

shallow water approximation with changes in bottom topography. The energy relation 

for the oblique gravity wave in the presence of floating membrane due to an abrupt 

change in bottom topography is derived for various cases using the law of conservation 

of energy flux and alternately by the direct application of Green’s second identity. The 

edges of the membrane are considered to be moored on to the ocean bottom with various 

values of spring stiffness. The extension of the coupled-mode model is considered by 

Belibassakis et al. (2013) in the hydroelastic analysis of the shallow draft, 3D large 

floating bodies or ice sheets with small thickness over variable bottom topography. 

Dhillon et al. (2013) investigated the oblique wave scattering from a semi-infinite rigid 

dock over a varying bottom topography. They employed a simplified perturbation 

analysis with appropriate use of Green’s integral theorem to solve the boundary value 

problem. The study concludes that the sinusoidal bottom topography does not affect the 

incident wave for certain frequencies. Further, Bragg’s resonance is observed for all the 

cases. Dhillon et al. (2016) analysed wave scattering due to a floating rigid dock with 

finite width over a step type bottom topography with abrupt changes in water depth. 

The eigenfunction expansion method is considered along with matching conditions to 

solve the problem in both the cases of bottom profile with incoming waves from lower 

and higher water depth.  

The scattering of waves using a porous barrier near a rigid wall along a stepped type 

bottom topography is studied by Behera et al. (2015) under the action of oblique waves. 

The eigenfunction expansion method is used along with multi-mode approximation and 

the modified mild-slope equation is used to take into consideration the variations in 

bottom topography. The efficiency of a dual-chamber oscillating water column is 

analysed by Rezanejad et al. (2015) for step type bottom topography based on the 
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matched eigenfunction expansion and the boundary integral equation method (BIEM). 

The wave diffraction due to undulating bed along with different kinds of thin vertical 

barriers was examined by Choudhary and Martha (2016). The perturbation analysis and 

Green’s function technique is used to obtain the solution for the wave structure 

interaction. The coupled-mode model is extended by Gerostathis et al. (2016) to analyse 

the hydroelastic behaviour of 3D large floating bodies of shallow draft lying over 

variable bathymetry regions. They assumed a general bathymetry characterized by a 

continuous depth function combining two regions of constant or maybe even with 

varying depth. The scattering of waves due to the semi-infinite elastic plate over a step 

type bottom topography is analysed by Guo et al. (2016) acted upon by obliquely 

incident waves. An analytical method using matched eigenfunction expansions method 

is developed based on potential theory and the plate was modelled considering Euler-

Bernoulli beam theory. The effects of the wave incident angle, the plate draft, the plate 

edge conditions and the sea-bottom topography is analysed for various hydrodynamic 

quantities. Cheng et al. (2017) established a time-domain fully nonlinear NWT using 

HOBEM to analyse the hydroelastic behaviour of floating elastic plate over variable 

bottom topography. The analysis is carried out for various shapes and arrangements of 

the trapezoid-shaped bottom topography. They concluded that the plate surface 

nonlinearity increased for the propagation of wave over an uneven sea-bottom. 

Belibassakis et al. (2017) extended the coupled-mode model applied to the hydroelastic 

analysis of three-dimensional large floating bodies of shallow draft or ice sheets of 

small thickness, lying over variable bathymetry regions. The problem is formulated 

based on linearized water-wave and thin elastic-plate theory for the ice sheets. They 

used a complete, local, hydroelastic-mode series expansion of the wave field, enhanced 

by an appropriate sloping-bottom mode to treat the wavefield beneath the elastic 

floating plate, down to the sloping bottom boundary. 

2.2.6 Wave attenuation due to submerged structures 

The ocean wave interaction with large floating elastic plate produces hydroelastic 

response which could damage the structure. Hence, a proper mitigation method needs 

to be employed to reduce the wave interaction with the structure. The hydroelastic 

response due to the wave interaction with a pontoon-type VLFS along with a 

breakwater is presented by Ohmatsu (2000). The gap between the breakwater and the 
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floating structure determines the resonance phenomena based on the wavelength. The 

results are validated with the numerical and experimental results, further stating that the 

response decreased for low values of the reflection coefficient. The wave-induced 

response due to the interaction with the floating elastic plate with an attached 

submerged plate at the fore-end was analysed by Watanabe et al. (2003). The significant 

reduction in the response is achieved due to the attachment of the submerged plate. 

Wave interaction with multiple moored surface-piercing membrane acting as 

breakwaters was analysed by Karmakar et al. (2013). The BVP is solved using the 

eigenfunction expansion method along with least square approximation method. The 

gap between the vertical floating breakwaters was observed to attenuate the wave 

height. Cheng et al. (2014) analysed the hydroelastic response of the pontoon-type 

VLFS edged with the perforated, non-perforated plates and combination of both, which 

acts as an anti-motion device using both numerical and experimental methods. A higher 

wave energy dissipation and added damping are observed for a perforated-

impermeable-plate combination attached to the fore-end and back-end of the VLFS. 

The wave trapping by a porous barrier near a rigid wall with a step-type bottom bed 

was studied by Behera et al. (2015). The varying distance between the porous barrier 

and rigid wall showed full reflection for different values of wavenumber. Karmakar and 

Guedes Soares (2013, 2015) analysed the wave interaction with multiple bottom-

standing flexible porous breakwaters acted upon by oblique waves. The wave 

attenuation based on varying porosity, barrier depth, and the gap between the barriers 

is analysed to understand its effectiveness as a breakwater. The ocean wave trapping 

due to the porous barriers near a wall was studied by Kaligatla et al. (2017). A 

considerable reduction in wave reflection is observed due to the presence of dual porous 

barriers. The study suggests that on properly placing the dual porous barriers in front 

of the rigid wall could be efficient in wave trapping with negligible wave force on the 

rigid walls. 

The wave scattering due to a submerged permeable vertical flexible membrane barrier 

was investigated by Koley and Sahoo (2017) for obliquely incident waves considering 

a bottom-standing, surface-piercing and complete membrane barrier. The solution for 

BVP was obtained analytically by using the eigenfunction expansion method and 

numerically using coupled BEM-FEM method. The study is extended for a vertical 
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flexible porous plate (Koley et al., 2015) using Green’s function technique converting 

the BVP into a system of Fredholm integral equation. Recently, Singla et al. (2018) 

studied the effect of three different configurations of the vertical barrier in mitigating 

the hydroelastic behaviour of the large floating structures. The study concluded that the 

responses of the structure can be reduced by suitably selecting the configurations for 

the porous barriers in front of the very large floating structure. The previous study 

suggests that very limited studies were performed considering a vertical barrier to 

attenuate the wave energy in front of the large floating structures and further studies are 

required to be initiated to understand the effect of barriers in reducing the incident wave 

height. 

2.3 CRITICAL REVIEW  

In the past few decades, the research interest was to understand the behaviour of VLFS 

in ocean waves using Euler-Bernoulli beam theory. The elastic body motion is 

considered in comparison to the rigid body motions for the wave interaction with VLFS. 

The review of the literature shows that most of the floating structures are located in 

shallow water depths, whereas the studies are also performed for the floating structures 

in finite and infinite water depths. In the literature, the change in the bottom topography, 

multiple articulations of the elastic plate and different support conditions are analysed 

using different numerical approach. The literature indicates that, the study of the 

floating elastic plate using Timoshenko-Mindlin plate theory is limited and no 

significant research is performed considering the effect of rotary inertia and transverse 

shear deformation of the elastic plate. Further, the studies using the change in bottom 

topography is beneficial in the proper design of the floating structure. Most of the 

researcher conducted studies on the submerged structures such as submerged 

breakwaters, large submerged pontoons supporting floating structures, submerged 

storage tanks and anti-motion devices. The study on the submerged structures along 

with the VLFS based on Timoshenko-Mindlin plate theory is limited and no significant 

development on the floating and submerged structure are performed. The study on the 

wave interaction with floating structures based on Timoshenko-Mindlin theory and 

submerged structure will provide an effective analysis of the effect of rotary inertia and 

transverse shear deformation of the elastic plate.   
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2.4 CLOSURE  

In this Chapter, the wave interaction with floating and submerged structure and the 

hydroelastic behaviour of the floating structure are presented and discussed in detail. 

The detailed review of literature is presented for the fluid-structure interaction 

considering different types of theories at various water depths. The comprehensive 

study for the fluid-structure interaction is carried out and is grouped under various 

categories. The study performed based on Euler-Bernoulli beam theory and 

Timoshenko-Mindlin plate theory is grouped and discussed in detail. The numerical 

techniques adopted in the analysis of floating structure such as eigenfunction expansion 

method, Fourier analysis, Wiener-Hopf technique, partitioned approach, mild slope 

approach, approximate analysis, finite element method and boundary element method 

are presented and discussed in detail.  
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CHAPTER 3 

WAVE INTERACTION WITH FLOATING PLATE 

 

3.1 GENERAL INTRODUCTION  

In this chapter, the hydroelastic response of very large floating structures (VLFS) under 

the action of ocean waves is analysed considering the small-amplitude wave theory. 

The very large floating structure is modelled as a floating thick elastic plate based on 

Timoshenko-Mindlin plate theory and the analysis for the hydroelastic response is 

performed considering different edge boundary conditions. The numerical study is 

performed to analyse the wave reflection and transmission characteristics of the floating 

plate under the influence of different support conditions using eigenfunction expansion 

method along with the orthogonal mode-coupling relation in the case of finite water 

depth. Further, the analysis is extended for shallow water depth and the continuity of 

energy and mass flux is applied along the edges of the plate to obtain the solution for 

the problem. The hydroelastic behaviour in terms of reflection and transmission 

coefficient, plate deflection, strain, bending moment and shear force of the floating 

thick elastic plate with support conditions is analysed and compared for finite and 

shallow water depth. The study reveals an interesting aspect in the analysis of the 

floating elastic plate with support condition due to the presence of the rotary inertia and 

transverse shear deformation. Further, the study is extended for shallow water 

approximation and the results are compared for both Timoshenko-Mindlin plate theory 

and Kirchhoff’s plate theory.  

3.2 MATHEMATICAL FORMULATION   

The wave interaction with the finite floating elastic plate with different edge support 

conditions is analysed based on Timoshenko-Mindlin plate theory under the assumption 

of linearized wave theory. A two-dimensional coordinate system is considered for the 

wave-interaction with the floating plate as shown in Figure 3.1. The wave is incident 

normally along the positive x-axis horizontally and the y-axis is considered positive 

vertically downward. The thick elastic plate is considered to be floating at the free 
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surface of the fluid 
2 0, 0I a x y= −   =  and termed as plate covered region 2. The 

open water surface divided into upstream open water domain 
1 0 ,0I x y h=       

as region 1 and downstream open water domain 
3 0,0I x y h= −      as region 3. 

The plate width is considered to be extended infinitely in the lateral direction and the 

two edges of the floating thick elastic plate at 0x =  and x a= −  are considered to satisfy 

edge support boundary conditions.  

      

Figure 3.1: Schematic diagram for the floating elastic plate 

Under the assumption of the linearized wave theory the velocity potential,   satisfies 

the Laplace’s equation given by 

                                         2 0j  =  at ,0 .x y h−           (3.1) 

The linearized kinematic boundary condition at the mean free surface is of the form  

                                              ,jt jy =   at 0.y =    (3.2) 

The dynamic free surface boundary condition is given by 

                                       
atm    at   0,jt jg p y   − = =            (3.3) 

where atmp  is the atmospheric pressure. The bottom boundary condition is given by 

                                               0,jy =  at  .y h=   (3.4) 

In the plate covered region 2j = , it is assumed that the plate satisfies the Timoshenko-

Mindlin theory (Fox and Squire, 1991) which includes the effect of rotary inertia and 

transverse shear deformation of the form 

h 

Elastic plate 
 

Incident wave 

y = 0 

y = h 

Free surface 

x = 0 

x = - a 

x 

y 

Region 3 Region 2 Region 1 

z 

z = ∞ z = ∞ 
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 (3.5) 

where d  is the plate thickness, 
p  is the plate density, 3 212(1 )EI Ed = −  is the plate 

rigidity, E  is the Young’s Modulus,   is the Poisson’s ratio, ( )2 1G E = +  is the 

shear modulus of the plate, and 
2

12


 =  is the transverse shear coefficient of the plate.  

Assuming that the wave elevation and the plate deflection are simple harmonic motion 

in time with the frequency  , the velocity potential ( ), ,j x y t  and the surface 

deflection ( ),j x t  can be written as ( ) ( ) , , Re ,
i t

j j
x y t x y e




−
=  and  

( ) ( ) , Re
i t

j j
x t x e


  −

=  where Re  denotes the real part. In the open water region, the 

linearized free surface boundary condition is given by 

                             ( ) ( ), , 0,jy jx y x y − =  for 0x   and x a −    (3.6) 

where 2 g = . The plate covered boundary condition in the region 2j =  is obtained 

by combining the linearised kinematic condition at the surface, Bernoulli’s equation 

and Timoshenko-Mindlin equation as  

( ) ( )
( )

( )
( )

2 2
4 2

2 2

22
2

2

1 ,

1 , 0, for  0

s s
x x jy

s s

s
x j

s

m I m ISEI
S x y

EIg m g m

m IS
S x y a x

EIg m

 


   




 

     
  + −  + −   − −     

 
+ − −  = −   

−  

  (3.7) 

where   is the density of water, g is the acceleration due to gravity, 
s pm d=  is the 

mass per unit area, 
p  is the density of plate, d is the plate thickness, 2 12I d=  is the 

rotary inertia, and S EI Gd=  is the shear deformation.  

The continuity of velocity and pressure at the interface 0x =  and x a= −  for 1, 2j = , 

0 y h    is given by 

                           ( ) ( ) ( ) ( ) ( ) ( )1 1
, ,  and , , .jx jj x j

x y x y x y x y   
+ +

= =    (3.8) 

The far-field radiation condition is given by  
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                             ( )
( ) ( )

( ) ( )
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  as   ,

             as   ,
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e R e f y x
x

T e f y x


−

−

 + → 
= 

→ −

    (3.9) 

with 
0R  and 

0T  are the complex amplitudes of the reflected and transmitted waves. The 

eigenfunctions for 1,3j =  are of the form ( ) ( )0 0 0cosh coshj j jf y k h y k h= −  and 
0jk   

for 1,3j =  are the positive real roots satisfies the dispersion relation in the case of finite 

water depth given by  

                                             
2

0 0tanh 0.j jk k h g− =        (3.10) 

3.2.1 Edge-support condition of the elastic plate 

The type of supports at the edge forms a boundary condition at the plate edges. In the 

wave interaction with the floating elastic plate, different support conditions are 

considered in the study for the hydroelastic performance of the elastic plate under the 

action of ocean waves. The support conditions are based on the vertical shear forces, 

bending and twisting moments acting on the plate edges. These conditions represent the 

slope, deflection, bending moment and generalized shear force at the edges of the elastic 

plate. The consideration of the edge boundary condition in the hydroelastic analysis of 

large floating structures helps in the analysis and design of the VLFS.  

The major application of free-free edge boundary condition is in the study of the ocean 

wave interaction with the sea ice. The study mainly includes the wave attenuation due 

to the presence of sea ice and the breaking of the ice sheets due to incident ocean waves 

(Williams et. al., 2013). However, most of the manmade large floating structures such 

as floating runways, floating oil storage base, offshore renewable energy plants etc. 

needs to be anchored at the edges by cables, ropes or piles to ensure safety and stability 

of structures. The floating oil storage base requires the structure to be stable under the 

action of ocean waves, which requires strong edge support to restrain the heave motion 

of the structure. Hence, the consideration of support conditions such as simply 

supported or fixed edge support condition becomes significant in the analysis. The 

floating elastic plate is considered to satisfy one of the following edge support 

conditions (Timoshenko and Krieger, 1959; Rao. 2007). 
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3.2.1.1 Freely floating elastic plate 

The freely floating elastic plate represents zero bending moment and zero shear force 

at the plate edge or at the supports for finite water depth. In the case of finite water 

depth, the shear force and bending moment at the plate edge 0,x a= −  for 2j =  satisfies 

the relation given by 

           ( ) ( ) ( )3

3 4 2, 0 and  , ,   for  0,  at  0.y j j xy jxy
x y x y x y x a y   =  = = − =     (3.11) 

In the case of shallow water approximation, the zero bending moment and zero shear 

force at the plate edge 0,x a= −  satisfies the relation given by 

                       ( ) ( ) ( )4 5 30 and    for  0, ,x j x j x jx x x x a   =  = = −     (3.12) 

where 

2 ( )
.

m S I

EI

 +
=  

 
  

3.2.1.2 Simply supported floating elastic plate 

In this case the simply supported edge, the edge condition represents the bending 

moment and deflection to vanish at the edges or at the supports for finite water depth. 

The plate edge is considered to be having zero deflection/displacement and zero 

bending moment at 0,x a= −  for 2j =  satisfying the relation   

                      ( ) ( )3, 0 and , 0  for  0,   at  0.y j y jx y x y x a y  =  = = − =    (3.13) 

In the case of shallow water approximation, the zero deflection/displacement and zero 

bending moment at the plate edge 0,x a= −  for 2j =  satisfies the relation   

                                 ( ) ( )2 40 and  0  for 0, .x j x jx x x a  =  = = −                (3.14) 

3.2.1.3 Fixed Edge Floating Elastic Plate 

In the case of fixed edge condition, the deflection and slope vanish at the edge or at the 

supports for finite water depth. So, for finite water depth, we consider zero slope and 

zero deflection/displacement at the plate edge 0,x a= −  for 2j =  which satisfies the 

relation  

                     ( ) ( )2, 0 and , 0  for  0,   at  0.y j xy jx y x y x a y  =  = = − =          (3.15) 



 
 
Hydroelastic analysis of floating and submerged flexible structures 

 

 66   

 

In the case of shallow water approximation, we consider zero slope and zero deflection/ 

displacement at the plate edge 0,x a= −  for 2j =  which satisfies the relation  

                              ( ) ( )2 30 and  0  for  0, .x j x jx x x a  =  = = −       
 

 (3.16) 

In the next section, the solution procedure of the wave interaction with the finite floating 

elastic plate is presented and discussed in detail. 

3.3 METHOD OF SOLUTION 

The solution procedure for the wave interaction with finite floating elastic plate based 

on Timoshenko-Mindlin plate theory is analysed for both finite water depth and shallow 

water approximation. 

3.3.1 Finite water depth 

The boundary value problem for the scattering of the wave by a finite floating elastic 

plate with different edge boundary condition is formulated in the case of finite water 

depth. The velocity potentials ( ),j x y  for 1, 2,3j =  satisfying the governing Equation 

(3.1) along with the boundary condition (3.4), (3.6), (3.7) and (3.9) are of the form 

( ) ( ) ( ) ( )
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 

 or x a −

    (3.17) 

where , , 0,1,2...,n nR T n =  and , , 0, , ,1,2...n nA B n I II=  are the unknown constants to be 

determined. The eigenfunctions ( )jnf y ’s  for 2j =  is given by 

( )
( )cosh

 for 0, ,
cosh

jn

jn

jn

k h y
f y n I II

k h

−
= = and ( )

( )cos
 for 1,2,..

cos

jn

jn

jn

h y
f y n

h





−
= =   (3.18a) 

and the eigenfunctions ( )jnf y ’s  for 1,3j =  are of the form  

( )
( )cosh

 for 0
cosh

jn

jn

jn

k h y
f y n

k h

−
= =  and ( )

( )cos
 for 1,2,...

cos

jn

jn

jn

h y
f y n

h





−
= =  

 

(3.18b) 
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where 
jnk  for 1,3j =  and 2n =  are the eigenvalues satisfy the dispersion relation in 

the open water region given by  

                                             2

0 0tanh 0,j jk k h g− =   (3.19) 

with 
jn jnk i=  for 1,2...n =  and the dispersion relation has one real root 0jk  and an 

infinite number of purely imaginary roots  for 1,2...jn n =  In the plate covered region 

the 
jnk  for 2j =  satisfies the dispersion relation given by  

                              ( ) ( )2 4 2

0 1 2 0 1tanh 0,jn jn jn jn jnk k k k h k    − + − − =  (3.20) 

where 2

0 1 ,s
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m

EI
 
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S

g m
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s

EI
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s

IS
m

EIg m
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( )

2

1 2
,

s

S

g m




 
= −

−
 2 12I d=   is the rotary inertia, 

3 212(1 )EI Ed = − is the plate rigidity, S EI Gd=  is the shear deformation of the 

plate, ( )2 1G E = +  is the shear modulus of elastic material, 2 12 =  is the 

transverse shear coefficient, E  is Young’s modulus,   is the Poisson’s ratio, 
sm  is the 

mass of the plate.  

The dispersion relation as in Equation (3.20) has two real root 
0jk  and four complex 

roots
jnk , , , ,n I II III IV=  of the form .i     In addition, there are infinite numbers 

of purely imaginary roots  for 1,2....jn n =  

(a) (b)  
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(c) (d)  

Figure 3.2: Contour plot for the roots for the plate covered dispersion relation 

considering / 0.15,h L =  5E GPa=  and / 0.02d L =  at (a) 
10 5k h =  (b)

10 10k h =           

(c) 
10 15k h = and (d) 

10 20k h = . 

 

Figure 3.3: Contour plot of infinite number of imaginary roots for the plate covered 

dispersion relation considering / 0.15,h L =  5E GPa=  and / 0.02d L =  at 
10 10.k h =  

In order to visualize the variation of the roots of the plate covered dispersion relation, 

the contour plots are presented in Figure 3.2(a-d) and Figure 3.3 which demonstrate the 

existence of two real and four complex conjugate roots along with infinitely many 

imaginary roots for the plate covered region. The occurrences of the infinitely many 

imaginary roots show the existence of evanescent modes (Manam et al., 2005). The 

roots of the dispersion relation are determined using the Newton–Raphson method and 

the contour plots helps to identify the initial guess. It may be noted that the 

eigenfunctions ( )jnf y ’s in the open water and plate covered region satisfy the 

orthogonality relation as given by 

             
1,3

0    for  ,
,

  for    ,
jm jn j

n

m n
f f

C m n=


= 

 =
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,

  for    ,
jm jn j
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m n
f f
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
= 

 =
   (3.21) 
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with respect to the orthogonal mode-coupling relation defined by 

 

                                    
1,3

0
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=     (3.22) 

     
( )

 

( )
 

( )

1

2
0

2 1

, ( ) ( ) (0) (0)

                        (0) (0) (0) (0) (0) (0),

h

jm jn jm jn jm jnj
jn

jm jn jm jn jm jn

jn jn

f f f y f y dy f f
Q k

f f f f f f
Q k P k



 

=
 = −

   + + +


  (3.23) 

where 
2

2 sinh 2
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+
 =  for 1,3,  0,j m n= = =  
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with ( ) ( )2 4

2 0 1 2 2 2n n nP k k k  = − +  and ( ) ( )2

2 0 1 2 .n nQ k k = −  

The constant term ,nC  ,nC  ( )jnP k  and ( )jnQ k  for 1,2,...n =  are obtained by 

substituting 
jn jnk i=  for 1, 2,3n = . In order to determine the unknown coefficients, the 

mode-coupling relation is applied to the velocity potential along with the respective 

eigenfunction and the edge conditions to obtain the system of linear equation.  

Applying the mode-coupling relation as in Equation (3.23) on the velocity potential 

( )2 ,x y  at 0,x a= −  along with the eigenfunction ( )2mf y  to obtain the equations 

given by 
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(3.24b) 

for 0, , ,1, 2,...m I II=   
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Again applying the mode-coupling relation as in Equation (3.23) on the velocity 

potential ( )2 ,x x y  at 0,x a= −  along with the eigenfunction ( )2mf y  to obtain the 

equations given by 
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 (3.25b) 

for 0, , ,1, 2,...m I II=  The linear system of equation in Equations. (3.24a,b) and 

(3.25a,b) is reformulated using the orthogonal property of the eigenfunction ( )2mf y  as 

in Equation (3.21) along with continuity of pressure and velocity across the vertical 

interface 0,x a= −  and 0 y h   as in Equation (3.8). Further, the equations are 

simplified using the suitable edge boundary conditions to obtain a linear system of 

algebraic equations. The modified system of equation using the edge support condition 

is described in detail in the next subsection. 

3.3.1.1 Free-free edge support condition 

In the case of free-free edge condition, the bending moment and shear force terms 

vanish and the system of equations is simplified as 
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(3.26a) 
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 (3.26c) 
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 (3.26d) 

for 0, , ,1, 2,...m I II=   

3.3.1.2 Simply supported edge condition 

In the case of simply support edge condition, the bending moment and deflection terms 

vanish and the system of equation is simplified as 
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(3.27a)  
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(3.27b)  
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for 0, , ,1, 2,...m I II=   

3.3.1.3 Fixed edge/ built-in edge support condition 

In the case of fixed edge condition, the deflection and slope terms vanish and the system 

of equation is simplified as 
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For 0, , ,1, 2,...m I II=  Using the edge conditions, the linear equations as in sections 

3.1.1-3.1.3 for different edge conditions are truncated up to a finite number of M  terms 
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in order to solve the system of ( )4 12M +  equations. The velocity potentials for each 

of the three regions as in Equation (3.17) consists of ( )4 12M +  unknown coefficients 

such as ,n nR T , 0,1,2,... , 1, 2,n M M M= + +  , , 0, , ,1,2,..., .n nA B n I II M=  On solving 

the system of the algebraic equation the full solution is obtained in terms of the potential 

functions with the reflection and transmission coefficients are obtained as 

 
                                        30 30

0 0

10 10

tanh
 and .

tanh
r t

k k h
K R K T

k k h
= =   (3.29) 

The reflection and transmission coefficients are observed to satisfy the energy balance 

relation 2 2 1.r tK K+ =  

3.3.2 Shallow water approximation  

In the present section, the wave scattering due to the finite floating thick elastic plate 

with different support condition is analysed based on shallow water approximation. The 

geometry of the physical problem is considered the same as discussed in Section 2 but 

the wave motion is based on linearized long wave theory. Integrating the equation of 

continuity for fluids over the water depth, the relation between velocity potential and 

elevation for long waves is derived as  

                                              2     for    1,2,3.jt x jh j =   =        
  

(3.30) 

The long wave equation of motion in the fluid domain for 1,3j =  is given by 

                                          0,   for  0 and .jt jg x x a − =   −             (3.31) 

Considering the wave elevation and deflection in the plate to be in simple harmonic in 

time with wave frequency ,  the velocity potential is expressed as, 

( ) ( ) , Re
i t

j j
x t x e




−
 =  and the elastic plate deflection is expressed as  

( ) ( ) , Re ,i t

j j
x t x e


  −

=  where Re denotes the real part. Combining the long-wave 

equation of continuity as in Equation (3.30) and the long-wave equation of motion in 

the fluid domain given by Equation (3.31), the linearized long-wave equation in the 

fluid domain is derived as  

                                     2 0,   for  0   and   .x j jh x x a  − =   −        (3.32) 
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The long wave equation of motion in the plate covered region is obtained by combining 

the equation of motion for fluid and the Timoshenko-Mindlin plate equation given by 
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(3.33) 

where   is the density of water, 
sm  is the mass of the plate,   is the Poisson’s ratio, 

3 212(1 )EI Ed = − is the flexural rigidity, E  is Young’s modulus, ( )2 1G E = +  is 

the shear modulus and   is the transverse shear coefficient of the thick plate. The 

continuity of energy and mass flux at the interface 0,x a= −  for 1, 2j =  is given by 

                    ( ) ( ) ( ) ( ) ( ) ( )1 1
 and   at   and 0.jx jj x j

x x x x x a x   
+ +

= = = − =  (3.34) 

Further, the floating elastic plate is considered to satisfy the edge support conditions as 

described in section 3.2.1 for the case of shallow water depth. The far-field radiation 

condition in terms of velocity potential is given by  
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where 
0R   and 

0T  are the complex co-efficient of reflection and transmission and 
0jk  

at 1,3j =  are the roots of dispersion relation in shallow water  
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In order to analyse the wave scattering by a floating elastic plate based on shallow water 

approximation, the fluid domain is divided into three sub-domains as in Figure 1. The 

velocity potentials ( )j x  for 1, 2,3j =  at the free surface and the plate covered regions 

are of the form 
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where 
0 0,R T ,  0, ,..,nA n I IV=  and 

0A  are the unknown constants to be determined 

with 
jnk   at 2j =  and 0, , , ,n I II III IV=  are eigenvalues satisfy the dispersion relation 
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(3.38) 

On the application of the continuity equations as in Equation (3.35) and edge boundary 

conditions as in section 3 for the case of shallow water depth, a system of eight linear 

algebraic equations are obtained having the unknown constants 
0 0,R T

,  0, ,..,nA n I IV= . The unknown constants associated with the amplitude of the waves 

are determined by solving the system of algebraic equations. Once the unknowns 
0R

and 
0T  are obtained, the reflection and transmission coefficient is derived from the 

relation 

                                       
2

30
0 02

10

   and     .r t

k
K R K T

k

 
= =  

 
    (3.39) 

The reflection and transmission coefficients obtained for the shallow water 

approximation satisfy the energy balance relation 2 2 1.r tK K+ =
 

3.4 NUMERICAL RESULTS AND DISCUSSIONS 

The hydroelastic behaviour of the floating elastic plate under the action of the incident 

wave is analysed based on Timoshenko-Mindlin theory in finite and shallow water 

depth. The study is performed to analyze the reflection coefficient 
rK , transmission 

coefficient 
tK , plate deflection j , bending moment ( )M x , shear force ( )W x and 

strain on the plate   for different support conditions. Three different cases of edge 

support condition i.e. free-free edge, simply supported edge and fixed edge conditions 

are considered and compared in the present study.  The numerical computations are 

carried out for different water depth /h L  and plate thickness /d L  considering 

Young’s Modulus 5GPaE = , / 0.9,p w  = 0.3 =  and -29.8msg = . The numerical 
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parameters such as plate length 100mL =  and non-dimensional wave number 
10 5k h =  

for finite water depth and 
10 10k h =  for shallow water depth are considered to be fixed 

unless otherwise mentioned. The accuracy of the computed numerical results are 

checked with the energy relation which satisfies the energy balance relation 

2 2 1.r tK K+ =  
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Figure 3.4(a): Convergence of the reflection and transmission coefficients for the 

number of evanescent modes, N. 
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Figure 3.4(b): Validation of reflection coefficient along the plate length considering 

rotary inertia 0I =  and shear deformation 0S =  with Wang and Meylan (2002). 

The convergence of 
rK  and tK  for an increasing number of the evanescent modes are 

presented in Figure 3.4(a). The convergence of rK  and tK  is observed for an 

evanescent wave mode of 35N  . In Figure 3.4(b), the numerical result is presented 

considering negligible rotary inertia and shear deformation and is validated with Wang 

and Meylan (2002) keeping the parameters the same as in the literature. The plate 

equation as in Equation (3.7) for negligible rotary inertia and shear deformation results 
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in the Euler-Bernoulli equation. The numerical results obtained in Figure 3.4(b) is 

observed to agree well with Wang and Meylan (2002). 
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Figure 3.4(c): Comparison of plate deflection with (Andrianov and Hermans, 2006a) 

along the plate length plotted considering rotary inertia 0I = and shear deformation

0S = . 

The plate deflection versus the non-dimensional plate length is validated with the results 

obtained by (Andrianov and Hermans, 2006a) as shown in Figure 3.4(c) considering the 

plate length 300 ,L m=  plate thickness 2d m=  and wavelength, 60 .m =  The analysis 

of floating elastic plate is based on Kirchhoff thin plate theory by (Andrianov and 

Hermans, 2006a), and the present method is based on Timoshenko–Mindlin theory with 

negligible rotary inertia and transverse shear deformation in finite water depth. The 

results obtained using both the methods are observed to agree well considering the plate 

length 300 .L m=  In the case of rigid body analysis, the plate deflection is not 

significant as compared to hydroelastic analysis of floating plate. But, in this case it is 

observed that, the increase in the plate length increases the deflection suggesting the 

importance of hydroelstic behaviour for larger plate lengths.  

3.4.1 Finite water depth 

In this section, the wave scattering due to floating thick elastic plate in finite water depth 

is analysed considering different edge support conditions. The hydroelastic behaviour 

of the floating plate is studied by analysing the reflection and transmission coefficients, 

surface deflection, strain in the elastic plate, bending moment and shear force of the 

plate.  
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3.4.1.1 Reflection and Transmission Coefficient 

The wave reflection and transmission coefficient for the floating elastic plate in relation 

(3.29) is having the wave number in the incident and transmitted region the same. So, 

the reflection and transmission coefficient reduces to 

                                               0 0  and   .r tK R K T= =     (3.40) 

In Fig. 3.5(a,b), the 
tK  is plotted versus 

10k h  for varying non-dimensional plate 

thickness /d L  and non-dimensional water depth /h L . The transmission coefficient 

tK  is almost unity for lesser values of 
10k h . The transmission coefficient equals to unity 

signifies the complete transmission of waves due to the resonance phenomena. It may 

be noted that for the least value of 
10k h , the wavelength for the incident wave and wave 

period is high. This shows that in the case of large wavelength and wave period all the 

waves gets transmitted below the plate. In Fig. 3.5(a), the unity in the values of 
tK
 
is 

also observed for certain values of 
10k h  and with the surge in the plate thickness /d L  

a reduction in the unity for 
tK  is observed due to increase in plate rigidity. The observed 

bumps for the case of low plate thickness might be due to the plate excitation for higher 

frequency. The forward shift in the 
tK  within 

100.1 10k h   for lower values of 
10k h  

is due to higher values of wavelengths. The surge in the plate thickness /d L  has caused 

the unity in the transmission coefficient to take place for higher values of wavelength. 
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Figure 3.5: Transmission coefficient versus non-dimensional wavenumber  for different 

values of (a) plate thickness /d L  at / 0.15h L = , (b) water depth /h L at / 0.02d L = . 

Further, Fig. 3.5(b) demonstrate that with the surge in the values of /h L , the unity in 

the values of tK  increases and is observed to shift towards higher values of 10k h . The 

h 
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study reveals that, with the surge in the water depth, majority of waves gets transmitted 

for smaller wavelengths at certain values of 
10k h . An opposite pattern in the wave 

reflection is witnessed and found to follow the energy balance relation 2 2 l.r tK K+ =  
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Figure 3.6: (a) Reflection and (b) transmission coefficient versus non-dimensional 

wavenumber 
10k h  for different support conditions in finite water depth at / 0.02d L =  

and / 0.15h L = . 

In Figure 3.6(a,b), the reflection and transmission coefficients are plotted versus non-

dimensional wavenumber 
10k h  for different support condition considering / 0.02d L =  

and / 0.15h L = . The zeros in the reflection coefficient at certain values of 
10k h  indicate 

the complete transmission of waves and may be termed as local minima. Initially for 

100 0.1,k h   the wave reflection is minimum and the wave transmission is maximum 

for all the support conditions. The fixed edge support shows higher wave reflection for 

as compared to the free-free edge and simply supported edge condition. The wave 

reflection coefficient approaches to one with the increase in 
10k h  which suggests that 

for the wave with smaller wavelength, the wave reflection is higher. The forward shift 

in the zeros in the wave reflection and transmission coefficient is noted for different 

support conditions. The transmission coefficient approaching one indicates complete 

wave transmission for that particular 
10k h . In the case of simply supported edge 

condition the zeros in reflection coefficient or full-wave transmission are observed for 

105 5.5k h   and 
1016 17,k h   whereas in the case of free-free edge condition, the 

full-wave transmission is observed for 108 9.k h   The study shows that the optimum 

values of reflection and transmission are higher for simply supported edge condition. 
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3.4.1.2 Plate deflection and wave-induced strain 

The plate deflection and wave-induced strain in the floating elastic plate are given by 

the relation 

                                          on   0,  2.j jy

i
y  j 


= = =   

 
 (3.41) 

                                      2

2 3

2 2 =    at   0.
2 2

x x y

d id
y  


=   =

 
 (3.42) 

In Figure 3.7(a), the surface deflection along the length of the plate for different support 

conditions are presented. The plate deflection is found to be least for simply supported 

edge and highest for free-free edge support condition. The lower value to plate 

deflection for simply support edge condition and fixed edge condition as compared to 

free-free edge condition is due to the effect of restraints at the edge. Further at the 

incident edge, 0x L = , the plate deflection is observed to be zero for the case of simply 

supported and fixed edge condition whereas, the plate deflection is zero at the centre of 

plate for the case of free-free edge condition.  
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Figure 3.7: (a) Plate deflection and (b) wave-induced strain along the plate length x L   

for different edge support conditions in finite water depth at 
10 5,k h =  / 0.02d L =  and

/ 0.15h L = . 

On the other hand, in Figure 3.7(b), the strain induced in the floating elastic plate due 

to the action of ocean waves are analyzed for different support conditions. The wave-

induced strain is found to be least for simply supported edge and highest for fixed edge 

support condition. The strain along the floating elastic plate is higher for the free-free-

edge condition at the incident edge 0x L = , whereas the strain in the transmitted edge

1x L = − , is higher for fixed edge condition. Further, for the case of fixed edge support, 
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it is observed that the wave-induced strain is reduced at the centre of the floating elastic 

plate due to higher rigidity at the edges of the structure. 

3.4.1.3 Bending moment and shear force  

The bending moment and shear force of the floating elastic plate due to the interaction 

of wave are given by the relation  

                                            3

2( )    on   0.yM x EI y=  =            
 

 (3.43) 

                                    3

4 2

2 2( )     on   0.xyxy
W x EI y =  − =              

 
 (3.44) 

In Figure 3.8(a), the bending moment resultants due to the wave interaction with the 

floating elastic plate are plotted along the plate length for different support conditions. 

The bending moment resultant is observed to be least for the floating structure with a 

simply supported edge and highest for free-free edge support condition. On the other 

hand, the bending moment is observed to increase at the centre of the structure for the 

case of free-free edge support which may be due to the change in the phase of the 

incident, reflected and transmitted waves propagating below the floating elastic plate.  
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Figure 3.8: (a) Bending moment and (b) shear force resultants along the plate length 

x L   for different edge support conditions in finite water depth at 
10 5,k h =  / 0.02d L =  

and / 0.15h L = . 

The shear force resultants (Figure 3.8b) due to the wave interaction with the floating 

elastic plate are plotted along the plate length for different support conditions. The shear 

force resultant is observed to be least for floating structure with a simply supported edge 

and highest for free-free edge support condition as observed similar in the case of 

bending moment along the plate length. The shear force and bending moment for the 

simply supported edge and fixed edge condition is minimum at the incident edge 

h 

h 



 
 
Hydroelastic analysis of floating and submerged flexible structures 

 

 82   

 

0x L =  and at the transmitted edge 1.x L = −  Further, at the centre of the plate the 

shear force is higher for the free-free edge condition as compared to simply supported 

and fixed edge condition. 

3.4.2 Comparative study based on plate theories 

The comparison of the thin and thick elastic plate based on Timoshenko-Mindlin plate 

theory and Kirchhoff’s plate theory for the simply supported edge condition and fixed 

edge condition is presented. The detailed comparison of the thin and thick plate is 

performed on analysing hydroelastic characteristics of the floating elastic plate. 

3.4.2.1 Simply supported edge condition 

The wave reflection and transmission coefficients (Figure 3.9a, b) based on Kirchhoff’s 

plate theory are compared with Timoshenko-Mindlin plate theory varying non-

dimensional wave number in the case of simply supported edge condition. The values 

rK  and 
tK  for both the plate theories are the same for 

100 2.5,k h   but with the 

increase in the non-dimensional wave number the deviation in the 
rK  and 

tK  are noted. 

The wave transmission is observed more for thin plate theory for higher values of non-

dimensional wave number. This suggests that for lower wavelength the wave 

transmission is more in the case of thin plate theory. Timoshenko Mindlin plate theory 

shows higher resistance to wave transformation, whereas the complete transmission 

peaks are observed to be similar for both the theories. The comparison using both plate 

theories suggests that the presence of rotary inertia and shear deformation is significant 

in the wave transformation and hydroelastic behaviour of the floating elastic plate. 

(a)
0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

io
n
 C

o
ef

fi
ci

en
t,

 K
r

k
10

h

 Kirchoff's plate theory

 Timoshenko-Mindlin plate theory

(b)
0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

 Kirchoff's plate theory

 Timoshenko-Mindlin plate theory

T
ra

n
sm

is
si

o
n
 C

o
ef

fi
ci

en
t,

 K
t

k
10

h  

Figure 3.9: (a) Reflection and (b) transmission coefficient versus non-dimensional 

wavenumber 
10k h  are plotted considering 5GPaE =  and / 0.15,h L =  / 0.02.d L =  
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In Figure 3.10(a-d), the plate deflection, wave-induced strain, bending moment and 

shear force of a floating elastic plate are compared based on Timoshenko-Mindlin’s 

plate theory and Kirchhoff’s plate theory for the simply supported edge condition. The 

variation it the plate deflection (Figure 3.10a) using both the plate theory is minimal but 

the deflection is higher at the plate centre and at the incident edge 0x L =  of the plate. 

A significant variation in the strain in the floating elastic plate (Figure 3.10b) using both 

Kirchhoff’s plate theory and Timoshenko-Mindlin plate theory is noted. The strain in 

the floating elastic plate is higher for the Timoshenko-Mindlin plate theory. The 

bending moment and shear force (Figure 3.10c,d) are higher for Kirchhoff’s plate theory 

as compared to Timoshenko-Mindlin plate theory. Thus, the study shows that due to the 

presence of rotary inertia and shear deformation, a significant reduction in bending 

moment and shear force with a slight reduction in plate deflection and increase in wave-

induced strain is obtained as compared to Kirchhoff’s thin plate theory. 
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Figure 3.10: (a) Plate deflection, (b) wave-induced strain, (c) bending moment and (d) 

shear force along the plate length plotted considering 
10 5,k h =  5GPaE =  and 

/ 0.15,h L =  / 0.02.d L =  

h 

h h 

h 



 
 
Hydroelastic analysis of floating and submerged flexible structures 

 

 84   

 

3.4.2.2 Fixed edge support condition 

The wave reflection and transmission coefficients based on Kirchhoff’s thin plate 

theory is compared with Timoshenko Mindlin plate theory versus non-dimensional 

wave number for the fixe edge condition in Figure 3.11(a,b). The variation in the 
rK  

and 
tK  is significant for 

102.5 7.5k h    and with the increase in the non-dimensional 

wave number the variation is minimal. The wave reflection and transmission 

characteristics using Timoshenko Mindlin plate theory are higher whereas the complete 

transmission of waves is observed to be same within 
105 5.5k h   for both the plate 

theories. The variation of 
rK  and 

tK  using both the theories suggests that the presence 

of rotary inertia and shear deformation plays a significant role in the wave 

transformation and hydroelastic behaviour of fixed edge supported elastic plate.  
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Figure 3.11: (a) Reflection and (b) transmission coefficient versus non-dimensional 

wavenumber 
10k h  are plotted considering 5GPaE =  and / 0.15,h L =  / 0.02.d L =  

The hydroelastic behaviour in terms of plate deflection, wave-induced strain, bending 

moment and shear force of a floating elastic plate with fixed edge support are compared 

based on Timoshenko-Mindlin plate theory and Kirchhoff’s plate theory in Figure 

3.12(a-d). The variation in plate deflection (Figure 3.12a) is significant as compared 

using both Timoshenko-Mindlin plate theory and Kirchhoff’s plate theory. The plate 

deflection near to the incident edge 0x L =  is higher for the Kirchhoff’s plate theory 

whereas at the central plate section the plate deflection using Timoshenko-Mindlin plate 

theory is slightly more as compared to Kirchhoff’s plate theory. The strain (Figure 

3.12b) in the floating elastic plate is higher for Timoshenko-Mindlin plate theory and 

the reduction in the bending moment and shear force (Figure 3.12c,d) is observed for 
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Timoshenko-Mindlin plate theory. Thus, the presence of rotary inertia and shear 

deformation shows reduction in plate deflection, wave-induced strain, bending moment 

and shear force at the incident edge of the floating plate, whereas an increase in 

hydroelastic behaviour is observed at the transmitted edge. 
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Figure 3.12: (a) Plate deflection, (b) wave-induced strain, (c) bending moment and (d) 

shear force along the plate length plotted considering 
10 5,k h =  5GPaE =  and 

/ 0.15,h L =  / 0.02.d L =  

3.4.3 Shallow water approximation 

In this section, the wave interaction with a floating elastic plate is analyzed based on 

shallow water approximation. The hydroelastic behaviour of the floating elastic plate in 

shallow water depth analyzed and compared with the different cases of edge support 

conditions. 

3.4.3.1 Reflection and transmission coefficient 

The reflection and transmission coefficients for the floating elastic plate based on 

shallow water approximation are same as described in Equation (3.40). In Figure 

3.13(a,b), the reflection and transmission coefficients versus the non-dimensional wave 
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number are plotted for different cases of edge support conditions. It is observed that the 

zeros in the wave reflection is least for free-free edge support condition and higher for 

fixed edge support condition. At very low values of non-dimensional wave number, the 

variation in reflection and transmission coefficient is observed to be more as compared 

to higher values of
10k h . Further, the higher transmission of waves is observed at very 

low frequencies for free-free edge support condition due to zero restraints at the edges. 

The simply supported edge is observed to transmit a higher number of waves as 

compared to fixed support edge but lesser than free-free support condition due to the 

constraint in deflection at the edges. 
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Figure 3.13: Wave (a) reflection and (b) transmission coefficient versus non-

dimensional wavenumber 
10k h

 
for different support conditions in shallow water depth 

at / 0.10h L =  and / 0.02.d L =  

3.4.3.2 Plate deflection and wave-induced strain 

The plate deflection and wave-induced strain of the elastic plate in shallow water depth 

are given by the relation 

                                           
2   for .j x j

ih
 j = 2 


=                                                                (3.45) 

                                           
2 4

2 2 = .
2 2

x x

d idh
  


=          

                                                        
(3.46) 

The plate deflection along the length of the plate at different edge support conditions 

are presented in Figure 3.14(a). The plate deflection is observed to be zero at the edges 

of the plate for the case of simply supported and fixed edge support conditions, which 

is due to restraints at the edges. The plate deflection is observed to be higher at the edges 

of the plate for free-free edge boundary condition due to zero restraints at the edges. 

Due to the zero deflection at the plate edge for the simply supported edge and fixed 
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edge condition, the deflection is observed to be lesser for simply supported edge and 

fixed edge condition as compared to free-free edge support. In Figure 3.14(b), the strain 

induced in the plate due to the action of ocean waves is plotted for different support 

edge conditions. It is observed that the wave-induced strain is highest at the plate edges 

for fixed edge support condition and zero for the cases of free-free edge and simply 

supported edge condition which is mainly due to restraints in the plate for the 

corresponding edge conditions. A lower strain is observed for the free-free edge and 

simply supported edge due to the non-zero slope condition. An increase in wave-

induced strain is observed at the centre of the structure for the case of fixed edge 

condition due to zero slope condition. 
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Figure 3.14: Plate deflection and strain along the plate length /x L  for different support 

conditions in shallow water depth at 
10 10,k h =  / 0.10h L =  and / 0.02.d L =  

3.4.3.3 Bending moment and shear force  

The bending moment and shear force of the floating elastic plates is given by  

                                            4

2( ) .xM x EI =          
 

 (3.47) 

                                         5 3

2 2( ) .x xW x EI  =  −           
 

 (3.48) 

In Figure 3.15(a), the bending moment on the plate due to incident waves is plotted 

along the length of the plate for different edge support conditions. At the edges of the 

plate, the bending moment is observed to be zero for the case of a free-free edge and 

simply supported edge due to zero moment condition. On the other hand, a maximum 

bending moment is observed at the edges and at the centre of the structure due to the 

edge restraints in the case of fixed edge support condition. The shear force on the plate 

due to incident waves is plotted along the length of the plate in Figure 3.15(b) for 

different edge support conditions. At the plate edges, zero shear force is observed for 
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the case of a free-free edge condition but for the case of fixed edge support, a maximum 

shear force is observed at the edges and zero at the centre of the structure due to edge 

constraints. 
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Figure 3.15: (a) Bending moment and (b) shear force resultants along the plate length 

/x L  for different support conditions in shallow water depth at 
10 10,k h =  / 0.10h L =  

and / 0.02.d L =  

3.4.4 Comparative study based on Kirchhoff’s and Timoshenko-Mindlin theory 

The hydroelastic behaviour of the finite floating plate is compared and analysed based 

on both Timoshenko-Mindlin’s plate theory and Kirchhoff’s plate theory in finite water 

depth. The wave reflection and transmission coefficients, plate deflection and wave-

induced strain along with bending moment and shear force along the plate are presented 

and compared. 

3.4.4.1 Reflection and transmission coefficient   

In Figure 3.16(a,b), the reflection and transmission coefficient based on Kirchhoff’s 

plate theory and Timoshenko-Mindlin plate theory is analyzed. The deviation in the 

 and r tK K  is observed at 
100.01 6.0k h   but at high values of 

10k h  the  and r tK K   

are almost same for both the plate theories. The variation of  and r tK K  within 

100.01 6.0k h   suggests a significant variation in the values of  and r tK K  for the 

waves with higher wavelength. The variation in the  and r tK K  for 
100.01 6.0k h   in 

the presence of rotary inertia and shear deformation shows a substantial effect on the 

hydroelastic characteristics of the floating elastic plate acted upon by ocean waves. The 

wave reflection tends towards unity for 10 4.0k h   which suggest that additional waves 

get reflected for waves of shorter wavelength. It is observed that the reflected waves are 

h 
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higher for a thick plate theory up to certain wavenumber and it reduces thereafter, 

signifying the effect of variation in wavenumber. The comparative study based on 

Timoshenko-Mindlin plate theory and Kirchhoff’s plate theory illustrates the 

importance of rotary inertia and shear deformation in the hydroelastic analysis of the 

floating structures.  
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Figure 3.16: (a) Reflection and (b) transmission coefficients versus non-dimensional 

wavenumber 
10k h  considering / 0.25d L =  and / 1.0.h L =  

3.4.4.2 Surface deflection and wave-induced strain 

In Figure 3.17(a,b), the normalized deflection and wave-induced strain along the length 

of the plate for Timoshenko-Mindlin and Kirchhoff’s plate theory are compared.  In 

order to analyze the hydroelastic analysis for shorter wavelength, the deflection and 

wave-induced strain along the plate length is compared for high values of 
10k h . The 

plate deflection is observed to reduce for the case of Timoshenko-Mindlin plate theory 

as compared with the Kirchhoff’s plate theory.  
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Figure 3.17: (a) Plate deflection (b) wave-induced strain along the plate length for 

Timoshenko-Mindlin’s and Kirchhoff’s plate theory considering 5 ,E GPa=  
10 20,k h =  

/ 0.05d L =  and / 0.20.h L =  
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The variation in the deflection using both the theories is around 15%. The normalized 

plate deflection is within ( )4 4

2 06.0 10 / 4.0 10x I− −   −   and the plate deflection at 

the plate edges is reduced for Timoshenko-Mindlin plate theory as compared with the 

Kirchhoff’s plate theory. The reduction is due to the consideration of rotary inertia and 

shear deformation in the analysis. Further, Figure 3.17(b) compares the strain-induced 

along the length of the plate considering Timoshenko-Mindlin and Kirchhoff’s plate 

theory. The wave-induced strain in the floating plate is reduced by around 16% for 

Timoshenko-Mindlin plate theory. The strain in the elastic plate is within 

7 68 10 1.2 10− −−      but the absence of rotary inertia and shear deformation shows 

an increase in the strain for Kirchhoff’s plate theory. Thus, the variation in the deflection 

and strain is observed for waves of shorter wavelength.  

3.4.4.3 Bending moment and shear force  

In Figure 3.18(a,b), the non-dimensional bending moment ( )M x and shear force ( )W x  

and along the non-dimensional plate length are studied considering Timoshenko-

Mindlin and Kirchhoff’s plate theory. The bending moment (Figure 3.18a) is observed 

high for Timoshenko-Mindlin plate theory as compared to Kirchhoff’s plate theory. The 

bending moment based on Timoshenko-Mindlin plate theory is within 

( )5 54.0 10 4.0 10M x−      but for Kirchhoff’s plate theory the bending moment lies 

within ( )5 52 10 2 10 .M x−      The presence of rotary inertia and transverse shear 

deformation shows an increase in ( )M x  for Timoshenko-Mindlin plate theory.  
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Figure 3.18: (a) Bending moment and (b) shear force along the plate length for 

Timoshenko-Mindlin and Kirchhoff’s plate theory considering 5 ,E GPa=  
10 20,k h =  

/ 0.05d L =  and / 0.20.h L =  
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Further, the increase in the shear force (Figure 3.18b) for Timoshenko-Mindlin plate 

theory is also noted on comparing with Kirchhoff’s plate theory. The increase in the 

shear force for Timoshenko-Mindlin plate theory is around 40%. The shear force lies 

within ( )3 35.0 10 5.0 10W x−      for Kirchhoff’s plate theory. The rotary inertia and 

transverse shear deformation in Timoshenko-Mindlin plate theory show an increase in 

the shear force to be within ( )3 32.5 10 2.5 10 .W x−      Hence, the consideration of 

rotary inertia and transverse shear deformation is observed to show a substantial effect 

on the variation of bending moment and shear force along the floating elastic plates. 

3.4.3 Comparative study for finite and shallow water depth  

In Figure 3.19(a,b), the reflection and transmission coefficient  and r tK K  versus non-

dimensional wavenumber for the case of finite water depth is compared for shallow 

water approximations. The numerical computation is carried out considering non-

dimensional water depth / 0.1h L =  for different values of non-dimensional /d L .  
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Figure 3.19: Comparison of (a) reflection and (b) transmission coefficient versus non-

dimensional wavenumber for finite water depth and shallow water approximations 

varying / .d L  

The  and r tK K  at finite water depth shows varying behaviour as compared to shallow 

water approximations. At low non-dimensional wavenumber 
100.01 1.0,k h   similar 

patterns in the  and r tK K  are observed for finite and shallow water depths. However, 

at higher non-dimensional wavenumber 
10k h , a higher variation in the  and r tK K  is 

observed at both the water depths. The variation in  and r tK K  is mainly due to the 

consideration of evanescent wave modes in the finite water depth. The surge in plate 

thickness shows a reduction in the completely transmitted waves at both the water 
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depths. In the case of shallow water approximations, the surge in plate thickness shows 

a slight increase in reflected waves at lower non-dimensional wavenumber 

100.01 1.0,k h   and decreases at higher non-dimensional wavenumber. Further, the 

surge in plate thickness shows a reduction in reflected waves at all the wavenumber for 

finite water depth due to the surge in the rigidity of the plate as the values of /d L  are 

increased. 

3.5 CONCLUSIONS  

The influence of edge support conditions on the hydroelastic behaviour of floating 

elastic plate based on Timoshenko-Mindlin plate theory is analyzed. The study of 

normally incident wave on floating elastic plate is performed for finite and shallow 

water depths. The numerical study is performed based on the eigenfunction expansion 

method. The wave reflection and transmission coefficients are computed and observed 

to satisfy the energy balance relation for both the cases of water depths. The hydroelastic 

characteristics of floating elastic plate are compared for different support conditions. In 

addition, a brief comparison of the numerical results for simply supported edge 

condition and fixed edge condition for both Kirchhoff’s plate theory and Timoshenko-

Mindlin plate theory is discussed in detail. The results demonstrating the effects of wave 

directionality on the application of the present model will be presented in future work. 

The following conclusions drawn from the present study are as follows: 

• The high variations in reflection and transmission behavior are observed for higher 

values of non-dimensional wave numbers for different support conditions in the 

case of finite and shallow water depth. 

• The free-free edge support condition shows higher transmission of waves whereas, 

lower wave transmission for fixed edge support is observed at finite and shallow 

water depth.  

• The hydroelastic behavior is found to be higher for free-free edge support conditions 

and least for fixed edge due to restraints from the boundary conditions in the case 

of finite water depth. On the other hand, the bending moment and shear force 

resultants are found to be highest for fixed edge support and least for simply 

supported edge condition in the case of shallow water depth. 
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• The bending moment is observed to increase at the centre of the structure for the 

case of free-free edge support at finite water depth which may be due to the change 

in the phase of the incoming and outgoing wave propagating below the floating 

elastic plate. 

• The comparison of the floating elastic plate for different edge conditions using both 

Kirchhoff’s plate theory and Timoshenko-Mindlin plate theory suggests that the 

presence of rotary inertia and shear deformation is significant in the hydroelastic 

behaviour of the floating elastic plate. 

• At shallow water depth, the plate deflection is observed to be zero for the case of 

simply supported and fixed edge support conditions. Further, wave-induced strain 

is found to be zero for the free-free edge and simply supported edge condition.  

• The bending moment and shear force resultants are zero for free-free edge and 

simply supported edge due to the restraints at the edges in shallow water depth. 
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CHAPTER 4 

WAVE SCATTERING DUE TO ARTICULATED 

FLOATING ELASTIC PLATE 

 

4.1 GENERAL INTRODUCTION  

In the previous chapter, the hydroelastic analysis of large floating elastic plate is studied 

based on Timoshenko-Mindlin’s plate theory in finite water depth and shallow water 

approximations. The significance and importance of rotary inertia and shear 

deformation in the hydroelastic analysis of VLFS are presented. Further, the influence 

of support conditions on the hydroelastic behaviour of floating thick elastic plate is also 

presented.  

In this chapter, the wave interaction with articulated floating elastic plate is analyzed 

based on Timoshenko-Mindlin’s plate theory in finite water depth and shallow water 

approximations. The wave scattering from a single articulated floating elastic plate 

based on Timoshenko-Mindlin’s thick plate theory is analyzed. The eigenfunction 

expansion method along with orthogonal mode coupling relation is utilized in the 

formulation of the boundary value problem at finite water depth. Further, the wave 

scattering from a periodic array of multiple articulated floating elastic plates is analyzed 

based on Timoshenko-Mindlin’s equation in finite water depth and shallow water 

approximations. Two methods are used to analyze the multiple articulated floating 

elastic plates in finite water depth. Firstly, the direct method of solution used for the 

single articulated floating elastic plate based on the eigenfunction expansion method 

along with mode coupling relation is extended for multiple articulations in the floating 

elastic plate. In order to simplify the complexity of BVP with the increasing number of 

articulations, the wide spacing approximations method is used to analyze the periodic 

array of floating elastic plate with connecting joints based on the wave scattering 

behaviour of the single articulated floating elastic plate. On the other hand, for the case 

of shallow water approximations, the continuity of energy and mass flux along with 

boundary conditions are used to obtain the unknowns in the velocity potential. The 

connecting joints are modelled as a connector with linear spring and/or rotational spring 
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stiffness. The effect of the articulated joint is analyzed by varying the spring stiffness 

for different cases of articulated joints having hinged connection, semi-rigid 

connection, and rigid connection. The numerical computation is performed to analyze 

the wave reflection and transmission behaviour due to wave interaction with a single 

and multiple articulated floating elastic plate in finite water depth and shallow water 

approximations. The hydroelastic characteristics of single and multiple articulated 

floating thick elastic plate acted upon by ocean wave are studied by considering the 

vertical deflection, wave induced strain, bending moment and shear force for the plate. 

The significance of connectors with linear and/or rotational spring stiffness in analyzing 

the hydroelastic behaviour of articulated floating plates is also studied.  Further, the 

application of wide-spacing approximation method in the hydroelastic analysis of a 

periodic array of multiple articulated floating elastic plate is presented. 

4.2 MATHEMATICAL FORMULATION   

The wave scattering due to periodic arrays of multiple articulated floating thick elastic 

plate is formulated considering linearized wave theory. The monochromatic wave is 

assumed to be incident along the positive x − axis. A two-dimensional floating elastic 

plate is modelled with x − axis along the plate length and the y−axis across the 

vertically downward direction as shown in Figure 1. The fluid is considered to be 

extended infinitely along the horizontal plane x−     at the water depth 0 .y h 

A periodic array of multiple plates interconnected at N  articulated joints by vertical 

linear and flexural rotational springs occupy the region 2 1Na x a+−   −  and the free 

surface exists in the regions 
2Nx a +−   −  and 1 .a x−     The fluid domain is 

divided into ( )3N +  regions along the vertical interfaces having N articulations at the 

interconnected edge of the ( )1N +  floating elastic plate at , 0,jx a y= − =  

( )2,3,..., 1j N= +  as shown in the Figure 4.1(a). The fluid domain is divided into 

upstream open water region at ( )1 1I a x−     with 0 y h  , the multiple articulated 

plates covered region ( )1−−   −j j jI a x a  with 0 y h   for ( )2,3,..., 2j N= +  and 

downstream open water region  ( )3 2N NI x a+ +−   −   with 0 y h  . The plate edges 

at 
1x a= −  and 

2Nx a += −  satisfies the free edge support condition.  
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Figure 4.1(a): Schematic diagram of multiple articulations in floating elastic plate. 

The spatial velocity potential, ( ),  1,2,.... 3j j N = +  in the fluid domain, satisfies the 

Laplace’s equation given by 

                               ( )2 , 0j x y =    on  ,   0 .x y h−         (4.1) 

The linearized plate covered boundary condition on the free surface is obtained by 

combining the linearized kinematic condition and dynamic condition with 

Timoshenko-Mindlin equation for ( )2,3,..., 2j N= +  is of the form 

        
( ) ( )
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−  

    (4.2) 

where, 
3 212(1 )EI Ed = −  is the plate rigidity, E is the Young’s Modulus, 

( )2 1G E = +  is the shear modulus of the plate,   is the transverse shear coefficient,  

2 12I d=  is the rotary inertia and S EI Gd=  is the shear deformation.  

The typical values of physical constants and variables that are used for the wave 

scattering problem (Balmforth and Craster, 1999, Watanabe et al, 2004, Karmakar and 

Sahoo, 2005, Suzuki 2005) are listed in Table 4.1. In the fluid domain ( )1, 3j N= +  

the linearized free surface boundary condition is obtained as 

                    ( )2 0,y j jg   − =    ( )1 2for  and ,  1, 3 .Nx a x a j N+ −  − = +  (4.3) 
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Table 4.1: List of physical constants and variable values/range 

Physical Constants/ Variables Typical value/range 

E  5*109 Pa - 10*109 Pa 

  0.3 

w  1025 kg /m3 

p  922.5 kg /m3 

  0.1-10 rad/ sec 

h  10 m – 500 m 

d  0.5 – 200 m 

L  100 – 1500 m 

The continuity of pressure and velocity at the edges 
jx a= −  of the floating elastic plate 

is given by 

            ( ) ( )1 1
 and  at  ,  1,2,..., ( 2),  0 .j jx jj j x

x a j N y h   
+ +

= = = − = +    (4.4) 

The edges of the periodic arrays of the articulated floating thick elastic plate 

1 2, Nx a a += − −  are considered to be freely floating, so the bending moment and the shear 

force vanishes at the edges 
1x a= −   and

2Nx a += − , 0 y h   as follows 

 ( ) ( ) ( )3

3 4 2

1 2, 0 and  , ,  at   and ,  0,y j j xy j Nxy
x y x y x y x a x a y   + =  = = − = − =   (4.5) 

with 2( ) /m S I EI= + . The connecting joints along the multiple articulated floating 

elastic plate are considered to be connected with vertical linear and/or flexural 

rotational springs with stiffness 
33 55 and k k  respectively. The bending moment and 

shear force acting at the articulated edges 2,3,..., ( 1)j N= +  are formulated based on 

the nature of 33 55 and k k  given by the relation  

                           

 3 2 2

55 ( 1)( ,0) ( ,0) ( ,0) ,   + + = −  + − −y j xy j xy jEI x k x x  (4.6a) 

                         3 2 2

( 1) 55 ( 1)( ,0) ( ,0) ( ,0) ,y j xy j xy jEI x k x x  + + − = −  + − −  (4.6b) 

             3

4 2

33 ( 1)( ,0) ( ,0) ( ,0) ( ,0) ,j xy j y j y jxy
EI x x k x x    +

  + − + =  + − −
 

   (4.6c) 
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       3

4 2

( 1) ( 1) 33 ( 1)( ,0) ( ,0) ( ,0) ( ,0) .j xy j y j y jxy
EI x x k x x   + + +

  − − − =  + − −
 

   (4.6d) 

The values of 
33 55 and k k  tends to zero for the case of free edge condition, for hinged 

connector, either of the spring stiffness 
33 55 or k k  tends to zero and for rigid connection 

the stiffness values tend to infinity i.e. 
33 55 and k k→ →  as shown in Table 4.2.  

In Table 4.2, the nature of the articulation at the interconnected joints related to the 

stiffness of the vertical linear spring 
33k and flexural rotational spring 

55k is described. 

Table 4.2: Typical nature of 
33 55 and k k  

Nature of 33 55 and k k   Edge condition 

33 550 and 0k k= =   Free edge connection 

33 55 0 and k k= →   Roller/Slider connection 

33 55  and 0k k→ =   Hinged connection 

33 55 and k k  intermediate value Semi-rigid connection 

33 55  and k k→ →   Rigid connection 

The far-field radiation condition is given by  

                             

( )
( ) ( )

( )
( )( ) ( ) ( )

10 10

3 0

10 10

3 0 3 0

  as   ,

   as   ,N

ik x ik x

j ik x

N N

e R e f y x

x
T e f y x


+

−

−

+ +

 + →


= 
→ −



 (4.7) 

with ( )10 3 0
and 

N
R T

+
 are the wave amplitudes in the reflected and transmitted regions 

and 
0jk  for ( )1, 3j N= +  are the positive real root satisfying the free surface dispersion 

relation as follows 

                
2

0 0tanh 0.j jk k h g− =        (4.8) 

In the next section, a detailed solution approach for the multiple articulated floating 

elastic plate based on the Timoshenko-Mindlin plate theory acted upon by ocean waves 

in finite water depth is presented. 
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4.3 METHOD OF SOLUTION 

In this section, the solution procedure for the wave interaction with a single articulated 

floating elastic plate is presented for finite water depth and shallow water 

approximation. Further, the effect of multiple articulations in floating thick elastic plate 

is also analysed in finite water depth and shallow water approximation. The articulated 

floating elastic plate is considered to have ( )1+N  finite elastic plate connected with 

N  articulations. The analysis multiple articulated floating elastic plate is carried out 

using the eigenfunction expansion method along with the orthogonal mode-coupling 

relation and compared with wide-spacing approximation method in finite water depth.   

4.3.1 Direct Eigenfunction Expansion Method 

The periodic array of floating elastic plate interconnected at the articulated joint is 

analyzed using the eigenfunction expansion method along with orthogonal mode-

coupling relation (Karmakar et al., 2009) is described in detail in the next sub-section. 

4.3.1.1 Finite water depth 

The articulated floating elastic plate is considered to be having N articulation 

interconnected with ( )1N +  plates and the edges 
1x a= −  and 

2Nx a += −  is considered 

to be free edges. The velocity potentials ( ),j x y  in the fluid domain for the respective 

regions are expressed as  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

10 10 1

1 10 10 10 1 1 1

1

0, 1

, ,             for  ,

, , 

                                                            

n

jn jn jn jn

ik x ik x x

n n

n

II
ik x ik x x x

j jn jn jn jn jn jn

n I n

x y I e R e f y R e f y x a

x y A e B e f y A e B e f y



 






− −

=


− −

= =

= + + 

= + + +



 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )3 0 3

2 1

3 23 0 3 0 3 3
1

                            for ,

, ,  for ,N N n

N

ik x x

N NN N N n N n
n

a x a

x y T e f y T e f y x a


 + +

+


−

+ ++ + + +
=

−   −

= +  −

 (4.9) 

where ( )1 3
,  at 0,1,2...n N n

R T n
+

= ,  and  at 0, , ,1,2..., 2,3...., ( 2)jn jnA B n I II j N= = +  are 

the unknown coefficients to be determined. The eigenfunction ( )jnf y ’s in the 

respective fluid domains are given by 
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( )
( )

( )
( )cosh cos

 for 0, , and   for  1,2,...
cosh cos

jn jn

jn jn

jn jn

k h y k h y
f y n I II f y n

k h k h

− −
= = = =          

 (4.10)
 

where ( )0  for 1, 3jk j N= +  are the eigenvalues in the open water region obtained from 

the dispersion relation given by
 

                                        
2tanh 0.jn jnk k h g− =    (4.11) 

The eigenvalues 
0 ,  1, ( 3)jk j N= +  are the real root and  for  1,2...jn jnk i n= =  are the 

purely imaginary roots obtained from the free surface dispersion relation as in Equation 

(4.11). The term ( ) for 2,3,.... 2jnk j N= + , 0, ,n I II=  are the eigenvalues for the plate 

covered region satisfies the dispersion relation given by  

                              ( ) ( )2 4 2

0 1 2 0 1tanh 0,jn jn jn jn jnk k k k h k    − + − − =  (4.12) 

where 2

0 1 ,s

IS
m

EI
 

  
= −  

    ( )

2

1 2
,s

s

m I
S

g m




 

  
= − 

−  

 
( )2 2

,
s

EI

g m


 
=

−

( )

2
2

0 2
1 ,s

s

IS
m

EIg m


 

 

 
= − 

−  
 

( )

2

1 2
,

s

S

g m




 
= −

−
 

s pm d=  is the mass per unit 

area. The eigenvalues ( )0  for 2,3,.... 2jk j N= +  signify the real root and 

( ),  2,3,.... 2  for , , ,jnk j N n I II III IV= + =  are the four complex conjugate roots of the 

form i    obtained from the plate covered dispersion relation. The eigenfunctions

( )jnf y ’s in the fluid domains at ( )1,2,3,... 3j N= +  satisfy the orthogonality condition 

given by  

( )1, 3

0    for  ,
,

  for    ,
jm jn j N

n

m n
f f

C m n= +


= 

 =
 and 

( ) "'2,3,... 2

0    for  ,
, ,

  for    ,
jm jn j N

n

m n
f f

C m n= +


= 

=
                                                                        

 (4.13) 

where '

2

2 sinh 2

4 cosh

jn jn

n

jn jn

k h k h
C

k k h

+
=   and

( ) ( ) ( )
( )

2 4 2 4 2

0 1 2 0 1 2 1"'

2 2 4

0 1 2

2 3 5 sinh 2 4 cosh
,

4 cosh

jn jn jn jn jn jn jn jn

n

jn jn jn jn

k k k h k k k h k k h
C

k k h k k

      

  

− + + − + +
=

− +
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( )1, 3
0

, ( ) ( ) ,
= +

= 
h

jm jn jm jnj N
f f f y f y dy  (4.14) 

( )
 

( )
 

( )
( )

1

0

2 1

, ( ) ( ) (0) (0)

(0) (0) (0) (0) (0) (0), 2,3,..., 2 ,

h

jm jn jm jn jm jnj
jn

jm jn jm jn jm jn

jn jn

f f f y f y dy f f
Q k

f f f f f f j N
Q k P k



 

 = − +

   + + = +


 (4.15) 

where ( )2 4

0 1 2( )jn jn jnP k k k  = − +  and ( )2

0 1( )jn jnQ k k = − . 

The unknown coefficients are determined by applying the mode-coupling relation on 

the velocity potentials ( ),j x y  at the edges ,jx a= −  ( )2,3,..., 1j N= +  along with the 

respective eigenfunction ( )jnf y . The continuity of pressure and velocity is applied 

across the vertical boundary at ( ),  1,2,..., 2jx a j N= − = +  along with the free edge 

support condition and articulated condition at the plate interfaces to obtain a system of 

linear equations.  

The mode-coupling relation as in Equation (4.15) is applied on ( )2 1,a y − and 
2 ( )mf y

at 
1x a= −  to obtain 

   

( ) ( ) ( ) 

( ) ( )  ( )

1
2 1 2 2 1 2 2 1 2

20

2 1
2 1 2 2 1 2 2 1 2

2 2

, , ( ) , ( ) ,0 (0)
( )

,0 (0) ,0 (0) ,0 (0),
( ) ( )

h

m m y m

n

yyy m y m m

n n

a y f y a y f y dy a f
Q k

a f a f a f
Q k P k


  

 
  

− = − − −

 + − + − + −


    (4.16) 

for 0, , ,1,2...m I II=   

Further, the orthogonality condition as in Equation (4.13) is applied for the 

eigenfunction 
2 ( )mf y  and the expression of velocity potentials as in Equation (4.9) 

along with the continuity for pressure as in Equation (4.4) applied across the vertical 

boundary at 0,0x y h=    and the free edge condition considering bending moment 

( )3

2 1,0 0y a − =  as in Equation (4.5).  

The simplified expression with unknowns 1 , 0,1,2,...nR n = , 
2 2 and ,n nA B  

0, , ,1, 2,....n I II=   given by 
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10 1 1 1

2 1 2 1 2 1 2 1

2

10 10 2 1 1 2
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' '''2
2 2 2 2 2 2

0, 1 2

' '1 1
2 2 2 2

2 2

( ) ( ) ( ) ( )

( ) ( ) (0) (0)
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(0) (0) (0) (0)
( ) ( )
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n n n n

h hM
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m n n m
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R e f y f y dy R e f y f y dy
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f f f f
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

  

 

+
−

=

− −

= =
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 
+ + + + 
 

− +
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 

10 1

2 2 10 10 2

0

                                               , ( ) ( ) ,

h

ik a

mn n m mf f I e f y f y dy − = −
 

 (4.17) 

where  for  1,2,...jm jmk i m= = and 
1   for  ,

0  for  .  
mn

m n

m n


=
= 


 

Again, considering the mode-coupling relation as in Equation (4.15) on ( )2 1,x a y −  

along with the eigenfunction 
2 ( )mf y  the relation leads to 

 

( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

1
2 1 2 2 1 2 2 1 2

20

2 1
2 1 2 2 1 2 2 1 2

2 2

, , ( ) , ( ) ,0 (0)

,0 (0) ,0 (0) ,0 (0),

h

x m x m xy m

n

xyyy m xy m x m

n n

a y f y a y f y dy a f
Q k

a f a f a f
Q k P k


  

 
  

− = − − − +

 − + − + −


  (4.18) 

for 0, , ,1,2...m I II=  The orthogonality condition as in Equation (4.13) is applied for 

the eigenfunction 
2 ( )mf y  and the continuity equation for velocity is applied across the 

vertical boundary at 
1,  0x a y h= −    as in Equation (4.4) and the free edge condition 

( ) ( )3

4 2

2 1 2 1,0 ,0xyxy
a a  − = −  as in Equation (4.5) yields the simplified expression 

with unknowns 
1 , 0,1,2,....nR n =  

2 2 and , 0, , ,1,2,....n nA B n I II=  given by 
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

− −

 



( )
 

( ) ( )

10 1

' ' ' '''2
2 2 2 2

1 2

' '1 1
2 2 2 2 2 2

2 2

10 10 10 2

0

(0) (0) (0) (0)

(0) (0) (0) (0) ,

                                                                      ( ) ( )

M

n m n m

n

n m n m mn n m
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for  for  1,2,...jm jmk i m= =  Next, considering the mode-coupling relation as in 

Equation (4.15) on ( )1 ,j x y +  and ( ) ( )1+j m
f y  at ( ), 2,3,..., 1jx a j N= − = +  we have  

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

'1
1 11 1 1 1

0

' '''2

1 1 1 1

( , ), ( ) ( , ) ( ) ( ,0) (0)
( )

 ( ,0) (0) ( ,0) (0)
( )

                                                                    

h

j j j j jj m j m j y j m
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j jj yyy j m j y j m
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a y f y a y f y dy a f
Q k

a f a f
Q k


  


 

+ ++ + + +

+ + + +

− = − − −

+ − + −



( ) ( )
1

1 1
               ( ,0) (0).

( )
jj j m

jn

a f
P k




+ +
+ −

   

 (4.20) 

Applying the continuity of pressure ( ) ( )1, ,  +− = −j j j ja y a y
 

and articulation 

condition  3 2 255
1 ( 1)( ,0) ( ,0) ( ,0)y j j jxy j j xy j

k
a a a

EI
  + +

−
 − = − − −  along with the 

orthogonality condition, the simplified expression with the unknown coefficient 

 and ,jn jnA B  ( )2,3,..., 1 ,  0, , ,1,2,....j N n I II= + =  is obtained. Further, the mode 

coupling relation Equation (4.15) is applied to 
( ) ( )1

,jj x
a y

+
−  and ( ) ( )1+j m

f y  at 

( ),  2,3,..., 1= − = +jx a j N  we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

1 1 1 1
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1 1
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1 1 1 1
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+ ,0 (0) ,0 (0)
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+ + + +
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

( ) ( ) ( ) ( )
1

1 1
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a f
P k




+ +
+ −

 (4.21) 

Applying the continuity of velocity ( ) ( )( 1), ,jx j j x ja y a y  +− = −  and the edge condition

( ) ( )   ( ) ( )3

4 233
( 1)1 1

,0 ( ,0) ( ,0) ,0j jy j j y j xy jj jxy

k
a a a a

EI
   ++ +

 − = − − − + −  along with the 

orthogonality condition, the simplified expression with the unknown coefficient 

 and ,jn jnA B  ( )2,3,..., 1 ,  0, , ,1,2,....j N n I II= + =  is obtained. 
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Again, the mode coupling relation (4.15) is applied on ( )2 2 ,N Na y + +− and ( ) ( )2N m
f y

+
 

we have 
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    (4.22) 

for 0, , ,1,2...m I II=  

Applying continuity for pressure ( ) ( ) ( ) ( )2 22 3
, , + ++ +

− = −N NN N
a y a y

 
and edge condition

( ) ( )3

22
,0 0 ++

 − =y NN
a  along with orthogonal property, the simplified expression with 

the unknown coefficient 
1 ,  0,1,2,.... ,nT n =   and ,jn jnA B  ( )2,3,..., 1 ,j N= +  

0, , ,1, 2,....n I II=  is obtained. Again the mode coupling relation as in Equation (15) is 

applied to ( ) ( )22
,NN x

a y ++
−  and ( ) ( )2N m

f y
+

 we have 
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(4.23) 

for 0, , ,1,2...m I II=   

Applying the continuity equation for velocity ( ) ( ) ( ) ( )2 22 3
, ,N NN x N x

a y a y + ++ +
− = −  and 

the edge condition 
( ) ( ) ( ) ( )3

4 2

2 22 2
,0 ,0N xy NN Nxy

a a + ++ +
 − = −  along with orthogonality 

conditions, the simplified expression with the unknown coefficient 
1 ,  0,1,2,....nT n =  

 and ,jn jnA B ( )2,3,..., 1 ,  0, , ,1,2,....j N n I II= + =   is obtained.  
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On solving, an infinite series of the algebraic equations are obtained and the linear 

equations are truncated up to a finite number of ' 'M  terms to obtain a system of 

( )3 ( 2)N M+ +  equations for N  articulation. The unknown constants ( )1 3
, ,n N n

R T
+

0,1,2...n =  and , , 0, , ,1,2...,jn jnA B n I II=  ( )2,3,..., 2j N= +  are obtained by solving 

the above system of linear equations.  The wave reflection and transmission coefficient 

0 0 and R T   are obtained as follows 

                               
( )

( )

3 0

10 3 0

10

tanh
 and  .

tanh

N

r t N

k h
K R K T

k h

+

+
= =  (4.24) 

The reflection and transmission coefficients are observed to satisfy the energy balance 

relation as given by 
2 2 1.r tK K+ =

 

4.3.1.2 Shallow water approximation 

The wave scattering due to a periodic array of finite floating elastic plate interconnected 

with articulation joints is analyzed considering shallow water theory. The velocity 

potentials for the open water region and the fluid domain covered with freely floating 

multiple articulated plate are of the form 
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
  (4.25) 

where ( )10 3 0
 and  

N
R T

+
 are the unknown complex coefficient in the reflected and 

transmitted region with ( )0  for  1, 3jk j N= +  are the roots for open water dispersion 

relation at shallow water depth. The coefficients jnA  are the unknowns with

( ) for 2,3.., 2 ,  0, ,..,jnk j N n I IV= + =  are the roots for dispersion relation in the fluid 

domain covered with a periodic array of the articulated floating elastic plate. The 

continuity of energy and mass flux at the interface jx a= −  is given by 

                     ( ) ( ) ( )1 1
 and   at  ,  2,3,..., 2 .jx j jj x j

x a j N   
+ +

= = = − = +  (4.26) 



 
 

Chapter 4: Wave scattering due to articulated floating elastic plate 

 

107 
 

The elastic plate is assumed to be freely floating and hence the bending moment and 

the shear force equation vanishes at the edge 
1x a= −  and 

2Nx a += −  as given by  

            ( )4 5 3

1 20 and    at  , ,   for 2, 2 .x j x j x j Nx a a j N   + =  = = − − = +   (4.27) 

The bending moment and shear force at multiple articulated edges 

( ),  2,3,..., 1= − = +jx a j N  are given as  

                                   ( ) ( ) ( ) 4 3 3

55 1 ,x j x j x jEI x k x x   + + =  + − −   (428a) 

                                  ( ) ( ) ( ) 4 3 3

1 55 1 ,x j x j x jEI x k x x  + + − =  + − −  (4.28b) 

                 ( ) ( ) ( ) ( ) 5 3 2 2

33 1 ,x j x j x j x jEI x x k x x    +
  + − + = −  + − −    (4.28c) 

              ( ) ( ) ( ) ( ) 5 3 2 2

1 1 33 1 .x j x j x j x jEI x x k x x   + + +
  − − − = −  + − −   (4.28d) 

The unknown coefficients are determined considering the continuity of energy and 

mass flux along with the free edge condition at 
1 2, Nx a a += − −  and articulated edge 

conditions at ( ),  2,3,..., 2jx a j N= − = + as in Equation (4.26) and Equations (4.28a-d) 

to solve the set of ( )6 8N +  algebraic linear equations. Once the unknown constants 

( )10 3 0
 and  

N
R T

+
 are determined, the reflection and transmission coefficient are obtained 

as given by Equation (4.24). 

4.3.1.3 Wide-spacing approximation method  

The analysis of the periodic array of floating elastic plates interconnected with vertical 

and rotational spring stiffness using the wide spacing approximation (WSA) method is 

based on the distance between the consecutive plates. In order to reduce the complexity 

of the problem, it is assumed that the wavelength of the incident wave is less as 

compared to the distance between the consecutive multiple articulated floating elastic 

plate. The BVP is considered the same as defined in section 2 and the evanescent wave 

modes are considered to be negligible due to the presence of wide spacing between the 

plates. So, in the wide-spacing approximation only the progressive wave mode is 

considered in the formulation of the multiple articulated floating elastic plate 

(Karmakar et al., 2009) kept at periodic intervals. The incident wave interacting with 
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the multiple articulated elastic plates gets reflected and transmitted partially at the 

articulated joints, located at ( ),  2,3,..., 1 .jx a j N= − = +  Due to the absence of the 

evanescent wave mode, the local effects produced under the action of an incident wave 

on the connecting joints do not affect the subsequent interactions. Based on the 

assumptions of wide spacing between the articulated edges, the asymptotic form of the 

velocity potentials ( ), 1,2,..., 3j j N = +  away from the connecting joints for the 

respective fluid domains are given by 

      

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )
( )

( ) ( )

10 10

0 0

3 0

1 10 10 10 1

0 0 0 2 1

3 23 0 3 0

,         for  ,

,        for ,

2,3,..., 2 ,

,          for ,

j j

N

ik x ik x

ik x ik x

j j j j N

ik x

N NN N

x y I e R e f y x a

x y A e B e f y a x a

j N

x y T e f y x a





 +

−

−

+

−

+ ++ +

 +  −

 + −   −

= +

  −

  (4.29) 

where ( )10 3 0
  and  

N
R T

+
 are the unknown coefficient in the reflected and transmitted 

regions with ( )0  at   1, 3jk j N= +  are the roots for the dispersion relation in the open 

water region. The unknown coefficients  and jn jnA B  and ( )0 ,  2,3,..., 2jk j N= +  are the 

roots for dispersion relation in the fluid domain covered with an array of floating elastic 

plate with connecting joints. The wave scattering behaviour based on the wide-spacing 

approximation for the multiple articulated floating elastic plate involves components of 

the propagating waves travelling in the left and right direction at the articulated edges 

,jx a= − ( )2,3,..., 1j N= + . The amplitudes for the reflected and transmitted waves in 

the respective regions generate a set of 2( 2)N +  unknowns given by ( )10 3 0
, ,

N
R T

+

( )0 0,  ,  2,3,..., 2j jA B j N= + .  

    

Figure 4.1(b): Wave scattering patterns in wide-spacing approximation 
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The numerical computation using the wide-spacing approximation requires the wave 

scattering patterns from a single articulated floating elastic plate. The fluid domain with 

respective scattering behaviour based on wide-spacing approximation is illustrated in 

Figure 4.1(b). 

The plate covered region is an array of ( )1N +  multiple articulated plate along with N

articulation at ( ),  2,3,..., 1jx a j N= − = +  . The plate edges at 1 2  and  Nx a x a += − = −  

is assumed to satisfy the free edge support condition. The wave amplitudes in the 

reflected and transmitted region from a single articulated plate acted upon by ocean 

wave are calculated as ( ) and , 1,2,..., 2 .j jr t j N= +  In order to determine ( )2 2N +   

unknown complex coefficients, the matching conditions (Newman 1965, Karmakar et 

al. 2009) are applied at the articulated joint ( ),  2,3,.., 1jx a j N= − = +  and at the edge 

supports 1 2  and  Nx a x a += − = −  for the amplitudes of the reflected and transmitted 

waves in the respective regions. Further, applying matching conditions, we get a set of 

( )2 2N +  linear equations given by 

        
( )

( ) ( )

10 1 10 1 20 1

20 1 20 1 10 1

0 0 ( 1)0

( 1)0 ( 1)0 0

10 1 2 20

20 2 20 1

0 0 1 1 0

1 01 0 1 0

,

,

, 2,3,..., ( 1),

,              

j j j j j j

j j j j j j

ik a ik a ik a

ik a ik a ik a

ik a ik a ik a

j j j j j

ik a ik a ik a

j j jj j

R e re t B e

A e r B e t e

B e r A e t B e j N

A e r B e t A e j

+

+ +

− −

−

− −

+ +

−

++ +

= +

= +

= + = +

= +

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( 2)0 ( 2)02 2

( 2)03 0 2 2

22 0 2 0

23 0 2 0

2,3,..., ( 1),

,

.

N NN N

NN N N

ik a ik a

NN N

ik a ik a

NN N

N

B e r A e

T e t A e

+ ++ +

++ + +

−

++ +

++ +

= +

=

=

  (4.30) 

The above set of equations are solved to obtain the unknown ( )10 3 0
  and  

N
R T

+  which in 

turn gives the reflection and transmission coefficient for N  number of articulations. 

The reflection and transmission coefficient follows the energy balance relation 

2 2 1.r tK K+ =  Marchenko and Voliak (1996) presented a relation for the wave reflection 

and transmission coefficients  and N NR T  based on the coefficients of previous 

irregularities 1 1and N NR T− −  for the periodic array of the floating structure. A simplified 

equation was obtained based on the geometric progressions for N  number of plates 

having the same physical properties given by  
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( ) 0 0

0 0

2 2

1 1 1 1 1
1 2 2

1 1 1 1

 and ,
1 1

j j

j j

ik a ik a

N N
N N Nik a ik a

N N

T e R T T e R
R R T

R R e R R e

− −
−

− −

= + =
− −

 

 

(4.31) 

where, 
1 1 and R T  are the reflection and transmission coefficient for a single floating 

structure. Porter and Evans (2006) presented wide-spacing relation to calculate the 

reflection and transmission coefficient for a periodic array of N cracks of the form  

                          
( )

1 1

1

1 1 1 1

 and ,N
N N N

N N N N

R T
R T

T T



      −

− −

= =
− −

 

(4.32) 

where 
( ) 1 0

1

cos argsin( )
 and cos

sin

j

N

T k aN

T


 



+
= =  with 1 1 and R T   are the 

reflection and transmission coefficient for a single crack at 1x a= −  and for a wave 

incident from 0,  .jik a
x e= =  The numerical calculations performed based on the 

wide-spacing approximation method suggest that the pattern of the numerical results 

obtained by direct eigenfunction expansion method is similar to approximate formula 

as illustrated by Marchenko and Voliak (1996) and Porter and Evans (2006).  

4.4 NUMERICAL RESULTS AND DISCUSSIONS 

The scattering of waves due to the periodic arrays of multiple articulated floating elastic 

plate is analyzed for finite and shallow water depth using Timoshenko-Mindlin theory. 

The results obtained using the direct eigenfunction expansion method are compared 

with the wide-spacing approximation (WSA) method. The hydroelastic behaviour of 

plates in terms of reflection coefficient rK , transmission coefficient tK , deflection ,j

strain   on the plate along with bending moment ( )M x  and shear force ( )W x  are 

analyzed. The following variables are considered to be fixed unless otherwise 

mentioned 5GPa,E =  / 0.9,p  =  0.3 = and -29.8msg =  for the comparison of 

numerical results in the case of multiple articulations. In order to check the accuracy of 

the numerical results, the wave reflection and transmission coefficients are observed to 

satisfy the energy relation 
2 2 1r tK K+ = .  

The convergence of the evanescent mode for the determination of reflection and 

transmission coefficient in the case of single articulation considering / 0.05,d L =  
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/ 0.1,h L =  
10 -1 5

33 55=10  Nm , 10  Nm/radk k =  and 0 10k h =  is presented in Table 4.3. 

The convergence in the wave reflection and transmission is observed to achieve for the 

evanescent mode 20N  . The non-dimensional bending moment along plate length for 

the articulated finite floating elastic plate is validated with the results obtained by Gao 

et. al. (2011) in Figure (4.2) considering the plate length 300m,L =  plate thickness 

2 m,d = Young’s modulus 11.9GPa,E =  density of plate 
3256.25kg/mp =  and 

Poisson’s ratio 0.13. =  

Table 4.3: Convergence of evanescent modes. 

No of 

evanescent 

modes (N) 

Reflection 

Coefficient 

(Kr) 

Transmission 

Coefficient 

(Kt) 

Energy 

Relation 

1 0.9945 0.1015 0.9993 

5 0.9660 0.2540 0.9977 

10 0.9848 0.1645 0.9969 

15 0.9885 0.1405 0.9969 

20 0.9883 0.1411 0.9966 

25 0.9883 0.1409 0.9966 

30 0.9883 0.1409 0.9966 

35 0.9883 0.1409 0.9966 

40 0.9883 0.1409 0.9966 
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Figure 4.2: Non-dimensional bending moment along the plate length using 

Timoshenko-Mindlin plate theory, Euler- Bernoulli theory and Gao et. al. (2011). 
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The result obtained by Gao et al. (2011) for the articulated plate and the present 

approach using the orthogonal mode coupling relation based on Timoshenko Mindlin 

theory is observed to agree well. On the other hand, a significant variation in the non-

dimensional bending moment using Euler-Bernoulli theory and Timoshenko Mindlin 

theory is observed which suggest that the rotary inertia and transverse shear 

deformation plays a significant role in the design and analysis of the very large floating 

structures of finite length.  

4.4.1 Finite water depth  

The scattering of waves due to the freely floating array of multiple articulated plates is 

analysed considering Timoshenko-Mindlin plate theory in the water of finite depth. The 

analysis for the wave reflection and transmission coefficient, deflection, strain in the 

floating elastic plate along with bending moment and shear force is performed using 

both direct eigenfunction expansion method and WSA method for the periodic array of 

multiple floating elastic plates to understand the scattering behaviour at varying water 

depth, plate thickness along with vertical and rotational spring stiffness. 

4.4.1.1 Reflection and Transmission Coefficient 

The relation for the wave reflection and transmission coefficients for the periodic arrays 

of multiple articulated floating elastic plate is the same as presented in Equation (4.24) 

for the direct eigenfunction expansion method. The wavenumber in the transmitted 

region is the same as the wave number in the incident region, so the relation for the 

 and r tK K  reduces to 

                                           ( )10 3 0
 and  .r t N

K R K T
+

= =      (4.33) 

In Figure 4.3(a,b), the  and r tK K  are plotted varying 
10k h  using both direct 

eigenfunction expansion method and WSA method. The wave reflection and 

transmission behaviour using the direct eigenfunction expansion method are compared 

with the WSA and also with the relation given by Marchenko and Voliak (1996) for 

two articulated floating elastic plates. The pattern of the reflection coefficient (Figure 

4.3a) using direct method is observed to be similar with the WSA method. The variation 

of tK  versus the non-dimensional wave number as shown in Figure 4.3(b) is observed 
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to be of similar pattern for both the methods, implying the reliability of approximate 

methods for higher number of articulations in the periodic arrays of articulated floating 

plates. The slight variation in the wave reflection and transmission coefficient using the 

direct method and WSA method is observed, which is mainly due to neglecting the 

evanescent modes in the approximate methods. The reduction in wave transmission is 

observed for both the approximate methods as compared with the direct method, which 

is mainly due to the consideration of wide-spacing between the plates. The values of 

 and r tK K  are observed to be periodic in nature and the high wave transmission for 

certain higher values of the 
10k h  is noted, which is due to the high wave oscillation in 

the articulated region. The reduction in the values of 
rK  is observed for the direct 

method as compared to wide-spacing approximation. The reduction in reflected waves 

is due to interference of waves due to periodic nature of the articulated joints in the 

floating elastic plate. 
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Figure 4.3: (a) 
rK  and (b) 

tK  versus non-dimensional wavenumber using direct 

eigenfunction expansion method and WSA method for two articulated floating plates 

considering / 0.04h L =  and / 0.0047.d L =  

In Figure 4.4(a,b), the variation in the  and r tK K  versus 10k h  is plotted for different 

number of articulation in the floating elastic plate. The minima in the wave reflection 

coefficient (Figure 4.4a) is observed with the increase in the values of the non-

dimensional wavenumber 10 .k h  The minima in the reflection coefficient are higher for 

104 8k h   and with the increase in the values of 10k h  the minima in the reflection 

coefficient increased for certain values of 10 .k h  The study suggests that for lower values 

of the wavelength the minima in the values of 
rK is more as compared to longer 

h 

h 
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wavelengths. On the other hand, an opposite pattern is observed in the values of tK  as 

shown in Figure 4.4(b) and maxima in the transmission coefficient is higher for 

104 8.k h   The maxima in the transmission coefficient is termed as complete 

transmission of waves and the minima in the values of 
rK  indicates no-wave reflection. 

The complete reflection of waves is observed for lower values of 
10k h  may be due to 

more waves of smaller wavelength getting trapped within the articulated region and as 

a result a maxima in 
rK  is noted. Further, with the increase in the number of 

articulations, the backward shift in the values of 
rK  is observed in Figure 4.4(a, b).  
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Figure 4.4: (a) rK  and (b) tK  versus non-dimensional wavenumber for different 

number of articulations considering / 0.083,h L =  / 0.0083,d L =  
5 -1

33 10 Nmk =  and 

5

55 10 Nm/rad.k =   

In Figure 4.5(a,b), the variation in the  and r tK K  are plotted versus 
10k h  for different 

values of 
33 55 and k k . In the case of the semi-rigid connection, the vertical linear and 

flexural rotational stiffness values 5 -1

33 10 Nmk   and 5

55 10 Nm/rad,k   the variation in 

the   and r tK K  are observed to follow almost similar patterns and does not affect much 

on the wave transformation. On the other hand, the flexural rotational stiffness 
55k  is 

observed to be dominant as compared to vertical spring stiffness 
33k . The higher values 

of 
33k  illustrate higher wave reflection as compared to the values of 

55k  whereas, an 

increase in the number of transmitted waves is observed for higher values of 
33k . For 

very high values of both the spring stiffness 
33 55 and k k , the rigidity increases at the 

articulated joints and the array of multiple floating plates acts as a continuous plate. 
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Figure 4.5: (a) rK  and (b) tK  versus non-dimensional wavenumber 10k h  varying 

33 55 and k k  in the case of three articulation considering / 0.083h L =  and 

/ 0.0083.d L =  

(a)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

io
n
 C

o
ef

fi
ci

en
t,

 K
r

k
10

h

 d/L = 0.0125

 d/h = 0.01875

 d/h = 0.025

(b)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

 d/L = 0.0125

 d/L = 0.01875

 d/L = 0.025
T

ra
n
sm

is
si

o
n
 C

o
ef

fi
ci

en
t,

 K
t

k
10

h

 

Figure 4.6: (a) rK  and (b) tK  versus non-dimensional wavenumber 10k h  for varying 

plate thickness /d L  in the case of three articulations considering / 0.125,h L =   

5 -1

33 10 Nmk =  and 
5

55 10 Nm/rad.k =   

In Figure 4.6(a,b), the variation of  and r tK K  are plotted versus 
10k h  for different 

values of plate thickness /d L  considering three articulation. The minima in the rK  is 

higher within  
101 3k h   with the surge in the values of the plate thickness but with 

the increase in the values of 
10k h , the complete reflection of waves and zero wave 

transmission is noted. The wave transmission reduces with the increase in the values of 

10k h  as in Figure 4.6(b). The maxima in the transmission coefficient is higher for longer 

wavelength which may be due to the fact that more waves gets transmitted back for 

waves of longer wavelengths. Further, the wave reflection is observed to increase with 

the surge in plate thickness due to the surge in plate rigidity. The positive shift in the 

minima in rK and maxima in tK  for higher values of 
10k h  is noted with the surge in the 
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plate thickness which suggests that complete wave transmission for the articulated plate 

of higher thickness occurs for waves at shorter wavelengths.  
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Figure 4.7: (a) rK  and (b) tK  versus non-dimensional wavenumber 
10k h  for varying 

water depth /h L  in the case of three articulations considering / 0.0125,d L =   

5 -1

33 10 Nmk =  and 
5

55 10 Nm/rad.k =   

The  and r tK K are plotted versus 
10k h  for different water depth /h L   in Figure 4.7(a,b) 

in the case of three articulations. It is observed that with the surge in the water depth 

/h L  the minima in the rK  is observed towards higher values of 
10k h  which may be due 

to the increase in water depth /h L , more waves transmit for certain values of 
10k h  and 

as a result minima in reflection is noted. The number of complete transmission of waves 

is observed for water depth / 0.1h L =  which may be due to the decrease in the 

oscillation of the wave for / 0.1h L = . The wave reflection is observed to decrease with 

the surge in the water depth /h L  due to the surge in the oscillation of the waves as it 

propagates below the plate.  

4.4.1.2 Plate deflection and strain in the floating plate 

The deflection and wave-induced strain for an array of floating elastic plate with 

multiple articulation in the respective regions are given by 

                                 ( )  on   0,  2,3,..., 2 .j jy

i
y  j N 


= = = +            

 
 (4.34) 

                 ( )2

2 3 =    at   0,  2,3,..., 2 .
2 2

j x j jx y

d id
y j N  


=   = = +         

 
 (4.35) 

In Figure 4.8(a,b), the deflection for an array of multiple floating elastic plates 

connected with articulated joints are plotted for varying plate thickness /d L  and water 
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depth /h L  along the length of the floating elastic plate for a case of three articulations. 

The plate deflection is observed to reduce with the surge in plate thickness may be due 

to the surge in plate rigidity. A change in surface deflection is observed at the 

connecting joints due to the variation in the stiffness at the joints. The difference in 

surface deflection at the connecting joints are observed to increase with the surge in the 

values of plate thickness due to the higher stiffness in the corresponding plates. A surge 

in the values of plate deflection is also observed for the decrease in water depth, which 

is due to the increase in wave height for waves approaching shallower water depths. 
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Figure 4.8: Plate deflection along the length of the plate varying (a) non-dimensional 

plate thickness /d L  and (b) non-dimensional water depth /h L  in the case of three 

articulation considering 5 -1

33 10 Nm ,k =  5

55 10 Nm/radk =  and 
10 4.k h =  
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Figure 4.9: Strain along the length of the plate varying (a) non-dimensional plate 

thickness /d L and (b) non-dimensional water depth /h L  in the case of three articulation 

considering 5 -1

33 10 Nm ,k =  5

55 10 Nm/radk =  and 
10 4.k h =  

In Figure 4.9(a,b), the strain along the array of the floating plate with three articulated 

joints is analyzed for varying plate thickness and water depth. The wave-induced strain 

is observed to decrease with the surge in the plate thickness, which is mainly due to the 

increase in restraints of the floating elastic plate for higher plate thickness. The strain 
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is observed to be negligible at the edges of the plate due to the considerations of free 

edge support condition. The increase in the values of the strain is observed for 

decreasing values of water depth, which is due to the surge in wave height as the wave 

approaches shallower water depths. It may be noted that, the strain at the plate edges 

increases with the surge in the water depth due to the free edge conditions. The 

difference in the strain at the connecting joints are observed to increase with the surge 

in the values of plate thickness due to the higher stiffness in the corresponding plates. 

4.4.1.3 Bending moment and shear force 

The bending moment and shear force for the articulated floating elastic plate due to the 

interaction of wave are given by the relation  

                         ( )3( )    on   0,  2,3,..., 2 .y jM x EI y j N=  = = +          
 

 (4.36) 

                   ( )3

4 2( )     on   0,  2,3,..., 2 .j xy jxy
W x EI y j N =  − = = +            

 
 (4.37) 
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Figure 4.10: Bending moment along the length of the plate varying (a) non-dimensional 

plate thickness /d L  and (b) non-dimensional water depth /h L  in the case of three 

articulation for 5 -1

33 10 Nm ,k =  5

55 10 Nm/radk =  and 
10 4.k h =  

In Figure 4.10(a,b), the bending moment for an array of floating elastic plate with three 

articulations is plotted along the length of the plate for varying plate thickness and water 

depth. The bending moment resultants are observed to be lower towards the 

transmission region due to the existence of articulated joints along the plate length. The 

bending moment along the plate length is observed to be within 

( )5 58 10 Nm 4 10 NmM x−      and it is negligible at the plate edges due to free-free 

edge support condition. The bending moment resultants are observed to increase with 

the surge in plate thickness due to the surge in flexural rigidity. On the other hand, with 
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the decrease in the non-dimensional water depth, the bending moment along the floating 

elastic plate with articulated joints increases due to the increase in wave height in 

shallower water depth. The increase in bending moment of the floating plate at the 

connecting joints are due to the surge in the values of plate thickness due to the higher 

stiffness along the corresponding plates.  
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Figure 4.11: Shear force along the length of the plate varying (a) non-dimensional plate 

thickness /d L  and (b) non-dimensional water depth /h L  in the case of three articulation 

considering 5 -1

33 10 Nm ,k =  5

55 10 Nm/radk =  and 
10 4.k h =  

In Figure 4.11(a,b), the shear force for an array of an articulated floating elastic plate 

are plotted along the plate length with varying plate thickness and water depth for three 

articulations. An increase in the values of shear force resultants is observed with the 

surge in the plate thickness due to the surge in flexural rigidity. The shear force of the 

elastic plate is observed within ( )3 35 10 N 5 10 NW x−     . The shear force resultants 

reduce as the waves progress along the plate length towards the transmitted region in 

the presence of the articulated joints along the plate. Further, the shear force for the 

array of floating elastic plate connected with spring stiffness decreases with the surge 

in the values of water depth due to the surge in wave height in shallower water depth. 

An increase in shear force at the connecting joints are observed with the surge in plate 

thickness due to the higher stiffness in the corresponding plates. 

4.4.2 Shallow water approximation 

In this subsection, the wave scattering due to the array of floating elastic plate with 

articulated joints is analyzed considering shallow water approximation. The 

hydroelastic behaviour is analyzed for different number of connecting joints to 

understand the effect of increase in the articulations in the floating elastic plate.  
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4.4.2.1 Reflection and transmission coefficient 

The relation for the wave reflection and transmission coefficients for an array of 

floating elastic plate with connecting joints based on shallow water approximation are 

same as given by Equation (4.33). In Figure 4.12(a,b), the  and r tK K  are plotted 

varying 
10k h  for different number of articulations of the floating elastic plate. The 

increase in the wave reflection is observed with the surge in number of articulations 

which is mainly due to the increase in the restraint from the connecting joints as shown 

in Figure 4.12(a). A regular pattern in the behaviour of reflected and transmitted waves 

are observed to increase indicating the complete transmission of waves with the 

increase in number of articulations. A sudden surge in wave transmission is observed 

at regular intervals, and the resonating patterns are observed to increase with the 

decrease in number of articulations. The transmission coefficient 
tK  with unity 

signifies complete wave transmission which is observed to reduce with the increase in 

the number of articulations as shown in Figure 4.12(b).  
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Figure 4.12: (a) Reflection and (b) transmission coefficient versus non-dimensional 

wavenumber for different number of articulations considering / 0.083,h L =   

/ 0.083,d L =  5 -1

33 10 Nmk = and 5

55 10 Nm/rad.k =
 

4.4.2.2 Plate deflection and wave-induced strain  

The plate deflection and wave-induced strain for an array of floating elastic plate with 

connecting joints in shallow water depth are given by the relation 

                             ( )2   for 2,3,..., 2 .j x j

ih
 j N 


=  = +                                                    (4.38) 

                      ( )2 4 = ,  for 2,3,..., 2 .
2 2

j x j x j

d idh
j N  


=   = +   

                                      
(4.39) 



 
 

Chapter 4: Wave scattering due to articulated floating elastic plate 

 

121 
 

The plate deflection and strain along the plate length are plotted for different number 

of articulations in shallow water depth as shown in Figure 4.13 (a,b). In Figure 4.13(a), 

the plate deflection for an array of floating elastic plate with articulated joints is plotted 

along the plate length. The plate deflection is observed to reduce with the surge in 

number of articulations due to the presence of additional connecting joints. A slight 

discontinuity is observed at the connecting joints due to lower stiffness as compared 

with the corresponding plates.  It is also observed that the deflection is reduced as the 

wave progress towards the transmitted region, due to the restraints at the connecting 

joints. The surface deflection is high at the plate edge due to the consideration of free -

free support condition. The plate deflection is observed within ( )0.015 0.07j x−    

and the plate deflection gets reduced at the plate edges with the surge in the number of 

articulations.  
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Figure 4.13: (a) Plate deflection and (b) strain along the plate length for different 

number of articulations considering 
10 5,k h =  / 0.167,h L =  / 0.0167,d L =   

5 -1

33 10 Nmk =  and 5

55 10 Nm/rad.k =    

In Figure 4.13(b), the strain-induced for an array of the floating plate with multiple 

articulations are analysed for different number of articulations. The wave-induced 

strain is observed to decrease with the surge in the number of articulations mainly due 

to the increase in restraints. The strain is observed to decrease as the wave progress 

along the plate length towards the transmitted region due to the restraints caused by the 

connecting joints. The strain is observed to be negligible at the connecting joints due to 

lower stiffness as compared with the corresponding plates. The strain is noted to be 

within 5 53 10 3 10− −−      and is negligible at the edges due to the consideration of 

free-edge condition.  
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4.4.2.3 Bending moment and shear force  

The bending moment and shear force of the articulated floating elastic plates are given 

by  

                                        ( )4( ) ,  2,3,..., 2 .j x jM x EI j N=  = +     
 

 (4.40) 

                              ( )5 3( ) ,  2,3,..., 2 .j x j x jW x EI j N =  − = +           
 

 (4.41) 

In Figure 4.14(a), the bending moment for an array of floating elastic plate connected 

by multiple articulations is plotted along the plate length for different articulations. The 

bending moment resultants are observed to reduce with the surge in number of 

articulations which may be due to the increase in number of restraints along the plate 

length. The bending moment is observed to approach closer to zero at the connecting 

joints due to lower stiffness as compared with the corresponding plates. The bending 

moment of the elastic plate observed to be within ( )4 48 10 Nm 8 10 NmM x−      and 

it is negligible at the plate edge due to free-free support condition. The bending moment 

resultants are observed to reduce with the progress of wave along the length towards 

the transmission end of the plate which may be due to the restraints at the connecting 

joints.     
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Figure 4.14: (a) Bending moment and (b) shear force resultants along the plate length 

for different number of articulations in the floating elastic plate at 
10 5,k h =  

/ 0.167,h L =  / 0.0167,d L =   5 -1

33 10 Nmk =  and 5

55 10 Nm/rad.k =    

The shear force resultant is plotted along the plate as in Figure 4.14(b) for different 

articulations. The shear force resultants are observed to reduce with the surge in number 

of articulations due to the increase in the number of restraints along the plate length. 

The shear force approaches high values at the connecting joints due to lower stiffness 
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as compared with the corresponding plates. The shear force for an array of floating 

elastic plate is within ( )3 33 10 N 3 10 NW x−       and it is negligible at the plate edge 

due to free-free support condition. The shear force resultants are observed to reduce 

with the progress of wave along the plate length towards the transmission region may 

be due to the presence of restraints at the connecting joints. 

4.5 CONCLUSIONS 

In this present study, the wave scattering from an array of multiple articulations in 

floating elastic plate considering Timoshenko-Mindlin’s plate theory is analyzed in 

finite and shallow water depths. The hydroelastic behaviour of articulated floating 

elastic plates due to the action ocean waves is analyzed for different vertical linear and 

flexural rotational spring stiffness. The mathematical model for the floating thick elastic 

plate with articulated edge condition is presented and analyzed using the eigenfunction 

expansion approach and orthogonal mode-coupling relation. The direct method as used 

for the wave scattering due to the single articulated floating elastic plate is extended for 

multiple articulations in floating elastic plate and compared with the wide spacing 

approximation method. The following conclusions are drawn from the present study:  

• The reflection coefficient does not show any significant variations using both direct 

eigenfunction expansion method and WSA method, whereas slight variations are 

observed for the case of transmission coefficient due to considerations of wide-

spacing in between the plates and also neglecting the effect of evanescent wave 

modes in the approximate methods. 

• The backward shift in the pattern of wave reflection and transmission coefficient is 

observed with the surge in the number of articulations. As the stiffness increases to 

a certain limit, the array of periodic multiple plates behaves as a continuous plate 

showing complete transmission of waves. 

• The change in the hydroelastic behavior is observed at the connecting joints, which 

is found to increase with the surge in the values of plate thickness due to the higher 

stiffness in the corresponding plates at finite water depth. 

• The shallow water depth showed an increase in the wave reflection with the increase 

in the number of articulations for the change in stiffness at the connecting joints.   
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• A sudden surge in wave transmission is noted at regular intervals, which increases 

with the decrease in number of articulations. 

• The complete transmission of waves is observed to reduce with the increase in the 

number of articulations because the waves get trapped at the articulated joints.  

• The hydroelastic behaviours in the form of plate deflection, strain, bending moment 

and shear force gets reduced with the increase in number of articulations along the 

length of the plate in shallow water depth. 

• The hydroelastic behaviour is also observed to decrease along the plate length 

towards the transmitted region due to the interaction with the connecting joints, 

which restrain the propagation of waves.  

• The wave reflection is observed to increase with the reduction of transmitted wave 

due to the existence of articulations in the floating plate, which has to be carefully 

studied for the design of floating structures and placement of spring stiffness along 

the plate.  

• The plate thickness and plate rigidity constitute an important role in the mitigation 

of hydroelastic behaviour of the floating elastic plate. 



CHAPTER 5 

WAVE TRANSFORMATION DUE TO CHANGES IN 

BOTTOM TOPOGRAPHY 

 

5.1 GENERAL INTRODUCTION  

In the previous chapter, the wave scattering due to the array of multiple articulations in 

floating elastic plate is analysed based on Timoshenko-Mindlin’s plate theory in finite 

water depth and shallow water approximations. The significance of connectors with 

linear and/or rotational spring stiffness in analysing the hydroelastic behaviour of 

articulated floating plates is also studied. Further, the application of wide-spacing 

approximation method in the hydroelastic analysis of periodic array of multiple 

articulated floating elastic plate is presented. 

In this chapter, the wave transformation due to floating elastic plate over a varying sea 

bottom profile is studied based on Timoshenko-Mindlin plate theory. The analysis is 

carried out for different types of bottom topography below a floating elastic plate acted 

upon by ocean waves. The mathematical model is developed based on the eigenfunction 

expansion method to analyse the hydroelastic behaviour of a thick floating elastic plate 

varying water depths, step thickness and plate sizes acted upon by waves along the 

plate. The numerical computation is performed and the hydroelastic characteristics of 

the floating elastic plate is analysed in terms of plate deflection, wave induced strain, 

bending moment and shear force acted upon by ocean waves. Further, a detail 

comparison of the numerical results is performed for different types of bottom 

topography in the hydroelastic analysis of floating elastic plates. The present study will 

provide an insight into the effect of seabed profile for the waves interacting with large 

floating elastic plate in finite water depth. 

5.2 MATHEMATICAL FORMULATION   

The propagation of wave along the floating elastic platform based on Timoshenko-

Mindlin theory over the varying sea bed profile is formulated considering linearized 

wave theory. A 2D plate along the x-y plane is modelled with the y-axis positive 

downward represents the water depth from the free surface and x-axis representing the 
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direction of the incident wave as illustrated in Figure 5.1. The fluid domain consists of 

finite floating elastic platform in the region ( )1j j jI a x a −−   −  at 0 jy h   for 

2,3....,j N=  with an upstream incident wave region of the fluid domain consisting of 

an open water region ( )1 1I a x−      at 10 y h  , and the downstream transmission 

region of an open water region ( )1N NI x a+ −   −   at 10 .Ny h +   The floating 

elastic platform is considered to be freely floating having the free edge support 

condition at the plate edges 
1x a= −  and 

Nx a= − . The floating elastic platform is 

assumed to have significant thickness and modelled under the assumption of 

Timoshenko-Mindlin plate theory.  

    

Figure 5.1: Schematic diagram for floating elastic platform over varying bottom 

topography. 

The wave propagating over the ocean surface is assumed to be inviscid, incompressible 

and the motion is irrotational and simple harmonic in time with angular frequency. So, 

the assumption ensures that the velocity potential ( ), ,j x y t  and the surface deflection 

( ),j x t  are of the form ( ) ( ) , , Re ,
i t

j j
x y t x y e




−
 =  and ( ) ( ) , Re

i t

j j
x t x e


  −

=  

where Re  denotes the real part. Thus, the spatial velocity potential ( , )j x y  satisfy the 

governing equation given by 

                        
2 ( , ) 0j x y =     at  ,  0 ,  1,2,..., 1.jx y h j N−     = +     (5.1) 

The linearized free surface boundary condition in the open water region is of the form 

                 ( ) ( ), , 0,jy jx y x y − =     1, 1,j N= +      1for  and .Nx a x a −  −   (5.2) 

where 
2 / .g =   
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Combining the kinematic and dynamic free surface boundary condition along with the 

Timoshenko-Mindlin equation for thick plate, the plate covered boundary condition for 

1Na x a−   −  is obtained as  

        
( ) ( )

( )

2 2
4 2

2 2

22
2

2

1
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s s
x x y j

s s

s
x j

s
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EIg m g m

m IS
S j N

EIg m
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
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


 

     
  + −  + −    − −     

 
+ − −  = = 

−  

    (5.4) 

where 
3 212(1 )EI Ed = −  is the plate rigidity, / 2(1 )G E = + is the shear modulus of 

the plate. 2 12I d=  is the rotary inertia, and  /S EI Gd=   is the shear deformation. 

The bottom boundary condition for the change in the bottom topography is given by 

                                                           0,
n


=


  (5.4) 

where n  is the outward drawn normal at the bottom surface. The continuity equations 

for the velocity and pressure at the step edges and the free edge ,jx a= − 10 jy h +   for 

1, 2,3...j N=  is given by 

              ( ) ( ) 11 1
 and   at   ,  0   for  1,2,..., .jx j j jj x j

x a y h j N    ++ +
= = = −   =        (5.5) 

In the case of a freely floating elastic plate, the bending moment and shear force at the 

edges 1  and Nx a a= − −  vanishes and are given by 

              ( ) ( ) ( )3

3 4 2, 0 and  , , , 2,   at  0.y j j xy jxy
x y x y x y j N y   =  = = =  (5.6) 

with 2( ) / .m S I EI= +  In addition, due to the presence of the step bottom 

topography, the continuity of deflection, slope, bending moment and shear force at the 

step interfaces 1,0j jx a y h += −    for 2,3..., 1j N= −  (as in Karmakar et al., 2010) is 

of the form 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3

2 2

1 1

3 3 4 2 4 2

1 1

, , , , , ,    

, , , , = , .

y j y xy j xyj j

y j y xy j xyj jxy xy

x y x y x y x y

x y x y x y x y

   

   

+ +

+ +

 =   = 

 =   −  −
 (5.7) 

Finally, the far-field radiation condition is given by  
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                            ( )
( ) ( )

( )
( )

( ) ( )

10 10

1 0

10 10

1 0 1 0

  as   ,

   as   ,N

ik x ik x

j ik x

N N

e R e f y x
x

T e f y x


+

−

−

+ +

 + →
= 

→−

   (5.8) 

with 10R  and 
( )1 0N

T
+

 are the complex wave amplitudes in the reflected and transmitted 

regions. The eigenfunctions ( )0jf y ’s for 1, 1j N= +  are of the form 

( ) ( )0 0 0cosh coshj j jf y k h y k h= −   and 
0jk  for 1, 1j N= +  are the positive real roots 

satisfies the dispersion relation in the case of finite water depth given by  

                                              2

0 0tanh 0.j j jk k h g− =   (5.9) 

The constant 
0jk  for 1, 1j N= +  are the component of the wave numbers along the x-

axis associated with the incident and transmitted waves. In the next subsection, the 

different types sea-bed bottom profile is discussed in detail to understand the behavior 

of the gravity wave transformation due to the floating thick elastic plate.   

5.2.1 Different types of sea bottom profile 

The wave transformation due to the waves interaction with the finite floating elastic 

thick platform over bottom topography with different sea bottom profiles are studied in 

detail. The multiple stepped type seabed profile is considered as the generalisation of 

the varying sea bottom profiles. In the present study, four different types of multiple 

step sea bottom profiles such as (a) single step-type, (b) sloping, (c) hump and (d) 

double hump is considered as shown in Figure 5.2(a-d).  

(a)  (b)  

(c) (d)  

Figure 5.2. Schematic diagram for different types of sea bottom profile (a) Step-type, 

(b) Sloping, (c) Hump and (d) Double hump. 
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In the next section, the detail solution procedure for the wave scattering due to finite 

floating elastic platform over varying seabed profile is presented and discussed in detail. 

5.3 METHOD OF SOLUTION 

In this section, the solution procedure for the wave scattering due to varying seabed 

profile along the floating elastic plate acted upon by ocean waves are presented in the 

case of finite water depth. The bottom topography is divided into multiple steps to 

simplify the bottom profile. In the first case, the solution procedure for wave scattering 

due to single step bottom profile along the floating elastic plate is discussed and 

afterwards, the solution procedure is extended directly to multiple steps varying sea 

bottom profile. Finally, different patterns of multiple steps are analysed to understand 

different types of sea bottom profile.  

5.3.1 Single step bottom topography 

In this sub-section, the wave coefficient in the reflected and transmitted regions are 

calculated for the wave interaction with floating thick elastic platform over single step 

bottom profile in finite water depth. The boundary value problem (BVP) for the wave 

scattering due to finite floating elastic platform over single step bottom profile with free 

edge support condition is formulated. The velocity potentials ( ),j x y  for 1, 2,3j =  

satisfies the governing Equation (5.1) along with the boundary condition (5.2), (5.3), 

(5.4) and (5.8) as defined in section 2. The velocity potentials ( ),j x y  for 1, 2,3j =  at 

the free surface and the plate covered regions are of the form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

10 10 1

2 2 2 2

30 3

1 10 10 10 1 1 1 1

1

2 2 2 2 2 2 2

0, 1

2 1 2

3 30 30 3 3

1

,  for  ,0 ,

,   

  for ,0 ,

,     

n

n n n n

n

ik x ik x x

n n

n

II
ik x ik x x x

n n n n n n

n I n

ik x x

n n

n

x y I e R e f y R e f y x a y h

x y A e B e f y A e B e f y

a x a y h

x y T e f y T e f y



 










− −

=


− −

= =


−

=

= + +  −  

= + + +

−   −  

= +



 

 2 3     for ,0 .x a y h −  

 (5.10) 

where 1 2 2, 0,1,2...., , , 0, , ,1,2....n n nR n A B n I II= =   and 3 , 0,1,2....nT n =  are the unknown 

amplitudes in the respective regions to be determined.  
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The eigenfunction ( )jnf y ’s as in Equation (5.10) is of the form 

( )
( )cosh

 for 0, ,
cosh

jn j

jn

jn j

k h y
f y n I II

k h

−
= =  and ( )

( )cos
for 1,2,..

cos

jn j

jn

jn j

k h y
f y n

k h

−
= =   

 (5.11) 

where  for 1,3 and 0jnk j n= =  are the eigenvalues obtained based on the open water 

dispersion relation given by 

                                                2tanh 0,jn jn jk k h g− =   (5.12) 

with  for  1,3,  1,2...jn jnk i j n= = = . Solving the relation as in Equation (5.12), we 

obtain one real root 
0jk  and an infinite number of purely imaginary roots

 for  1,2...jn n = . In the case of plate covered region the eigenvalues  at  2jnk j =  are 

based on the plate covered dispersion relation given by  

                             ( ) ( )2 4 2

0 1 2 0 1tanh 0,jn jn jn jn j jnk k k k h k    − + − − =  (5.13) 

where 
2

0 1 ,s

IS
m

EI
 

  
= −  

  
 

 ( )

2

1 2
,s

s

m I
S

g m




 

  
= − 

−  

  
( )2 2

,
s

EI

g m


 
=

−
 

( )

2
2

0 2
1 ,s

s

IS
m

EIg m


 

 

 
= − 

−  
 

( )

2

1 2
,

s

S

g m




 
= −

−
 

s pm d=  is the mass per unit 

area. On solving the relation as in Equation (5.13), we obtain one real root 
0jk  and four 

complex roots  for , , ,jnk n I II III IV=  of the form i    along with an infinite 

numbers of purely imaginary roots  for  1,2....jn jnk i n= = The eigenfunctions ( )jnf y  

satisfy the orthogonal mode-coupling relation in the open water and plate covered 

region given by 

        
1,3

0    for  ,
,

  for    ,
jm jn j

n

m n
f f

C m n=


= 

 =
  and   

2

0    for  ,
,

  for    ,
jm jn j

n

m n
f f

C m n=


= 

 =
  (5.14) 

where 
2

2 sinh 2
, 1,3.

4 cosh

jn j jn j

n

jn jn j

k h k h
C j

k k h

+
 = =  

2 4 2 4 2

0 1 2 2 2 2 2 0 1 2 2 2 2 2 1 2 2 2

2 2 4

2 2 2 0 1 2 2 2

( )2 ( 3 5 )sinh 2 (4 cosh )
,

(4 cosh )( )

n n n n n n n n
n

n n n n

k k k h k k k h k k h
C

k k h k k

      

  

− + + − + +
 =

− +
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which satisfies 

                                     
1,3

0

, ( ) ( ) ,

jh

jm jn jm jnj
f f f y f y dy

=
=   (5.15) 

  
( )

 

( )
 

( )

2

1
2 2 2 2 2 2

20

2 1
2 2 2 2 2 2

2 2

, ( ) ( ) (0) (0)

                        (0) (0) (0) (0) (0) (0),

h

m n m n m n

n

m n m n m n

n n

f f f y f y dy f f
Q k

f f f f f f
Q k P k



 

 = −

   + + +


 (5.16) 

( ) ( )2 4

2 0 1 2 2 2n n nP k k k  = − +  and ( ) ( )2

2 0 1 2n nQ k k = − . The constant term ,nC ,nC

( )2nP k  and ( )2nQ k  for 1,2,...n =  are determined by replacing  for  1,2,3.jn jnk i j= =  

In order to determine the unknown constants, the mode-coupling relation as in Equation 

(5.16) is applied on the velocity potential ( )2 1,  at x y x a = −  and the eigenfunction

2 ( )mf y  given by 

( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

2

1
2 1 2 2 1 2 2 1 2

20

2 1
2 1 2 2 1 2 2 1 2

2 2

, , ( ) , ( ) , (0)

, (0) , (0) , (0).

h

m m m

n

m m m

n n

a y f y a y f y dy a y f
Q k

a y f a y f a y f
Q k P k


  

 
  

 − = − − −

   + − + − + −


 (5.17) 

The orthogonal property of the eigenfunction 2 ( )mf y  as in Equation (5.16) is used 

along with the expressions for velocity potentials as in Equation (5.10) and further 

applying the continuity equation for pressure as in Equation (5.5) across the interface 

1,x a= −  20 y h    along with the edge condition as in Equation (5.6) to obtain  

( ) ( ) ( ) ( )

( )
( )

( ) 
( )

( ) 

( )
( )

2 2

10 1 1 1 2 1 2 1

2 1 2 1
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0 (0) 0 (0)
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
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=


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 (5.18) 

for 0, , ,1, 2,....m I II=   
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Again the mode coupling relation (5.16) is applied on ( )2 1,  at x x y x a = −  along with 

the eigenfunction 
2 ( )mf y  is given by 

  

( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

2

1
2 1 2 2 1 2 2 1 2

20
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2 1 2 2 1 2 2 1 2

2 2

, , ( ) , ( ) , (0)

, (0) , (0) , (0).

h

x m x m x m
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n n

a y f y a y f y dy a y f
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
  

 
  

 − = − − −

   + − + − + −


  (5.19) 

The orthogonal property of the eigenfunction 
2 ( )mf y  as in Equation (5.16) is used 

along with the expression for velocity potential as in Equation (5.10) and further 

applying the continuity of velocity across the interface 1,x a= −  
20 y h   as in 

Equation (5.5) along with the edge condition as in Equation (5.6) to obtain 
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

  (5.20) 

for 0, , ,1, 2,....m I II=   

Further, on applying the mode-coupling relation (5.16) for the velocity potential 

( )2 2,  at x y x a = −  along with the eigenfunction 2 ( )mf y  given by 

     

( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

2

1
2 2 2 2 2 2 2 2 2

20

2 1
2 2 2 2 2 2 2 2 2

2 2

, , ( ) , ( ) , (0)

, (0) , (0) , (0),

h

m m m

n

m m m

n n

a y f y a y f y dy a y f
Q k

a y f a y f a y f
Q k P k


  

 
  

 − = − − −

   + − + − + −


 (5.21) 

The orthogonal property of the eigenfunction 2 ( )mf y as in Equation (5.16) is used along 

with the expressions for velocity potentials as in Equation (5.10) and further applying 

the continuity equation for pressure as in Equation (5.5) across the interface 2 ,x a= −  

20 y h   along with the edge condition as in Equation (5.6) to obtain  
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  (5.22) 

for 0, , ,1, 2,....m I II=  Finally, the mode coupling relation (5.16) is applied on 

( )2 2,  at x x y x a = −  along with the eigenfunction 2 ( )mf y  given by 
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  (5.23) 

The orthogonal property of the eigenfunction 2 ( )mf y  as in Equation (5.16) is used 

along with the expression for velocity potential as in Equation (5.10) and further 

applying the continuity of velocity across the interface 2 ,x a= − 20 y h   as in 

Equation (5.5) along with the edge condition as in Equation (5.6) to obtain 
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 (5.24) 

for 0, , ,1, 2,....m I II=   and 
1   for  ,

0  for  . 
mn

m n

m n


=
= 


.  

From the above solution procedure, an infinite series of sum of the algebraic 

expressions as in (5.18), (5.20), (5.22) and (5.24) are obtained. These linear equations 

are limited up to a finite number of M  terms to solve a set of ( )4 12M +  algebraic 

equations.  
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The ( )4 12M +  unknown coefficients such as 1 3, ,n nR T  0,1,2,... , 1, 2,n M M M= + +  

2 2, , 0, , ,1,2,...,n nA B n I II M=  in the set of ( )4 12M +  algebraic equation are solved to 

obtain the complex amplitudes in the respective regions. The amplitudes of the 

reflection and transmission coefficient are obtained as  

                                            30 30 3
0 0

10 10 1

tanh
and .

tanh
r t

k k h
K R K T

k k h
= =   (5.25) 

The wave coefficients in the reflected and transmitted region are observed to satisfy the 

energy balance relation 2 2 1.r tK K+ =   

where
2
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2
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k k k h k h k h

k k k h k h k h


 +
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+ 
  (5.26) 

5.3.2 Multiple step bottom topography 

In this subsection, the wave scattering due to the finite floating thick elastic plate in the 

presence of multiple step bottom topography is analysed considering Timoshenko-

Mindlin plate theory. The BVP is formulated considering free edge support condition. 

The velocity potentials ( ),j x y , 1, 2..., 1j N= +  satisfies Equation (5.1) in the fluid 

domain and boundary condition (5.2), (5.3), (5.4) and (5.8) as explained in the previous 

section. The velocity potentials ( ), ,j x y  1,2,3,..., 1,j N= +  in the respective regions 

are given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

10 10 1

1 10 10 10 1 1 1 1

1

0, 1

1

,  for  ,0 ,

,  , 

                                             for  ,0

n

jn jn jn jn

ik x ik x x

n n

n

II
ik x ik x x x

j jn jn jn jn jn jn

n I n

N

x y I e R e f y R e f y x a y h

x y A e B e f y A e B e f y

a x a y



 






− −

=


− −

= =

= + +  −  

= + + +

−   − 



 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )1 0 1

1 1 0 1 0 1 1
1

1

, 2,3,..., ,

,    

for ,0 .

N N n

j

ik x x

N N N N n N n
n

N N

h j N

x y T e f y T e f y

x a y h


 + +


−

+ + + + +
=

+

 =

= +

 −  



  (5.27) 

The eigenfunctions ( )jnf y ’s are same as defined in Equation (5.11), where 

0  for 1, 1jk j N= +  are the eigenvalues in the open water region. The eigenvalues 

correspond to the roots for the open water dispersion relation as given by Equation 
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(5.12) with  for  1,2...jn jnk i n= = . The coefficients ( )1 1
,  at 0,1,2...n N n

R T n
+

= ,

 and ,jn jnA B 2,3,...,j N=  for   0, , ,1,2...n I II=  are the unknown wave constants to be 

determined. The eigenvalues  for  2,3,..jnk j N=  are the roots for the plate covered 

dispersion relation as defined in Equation (5.13). The eigenfunction ( )jnf y ’s in the 

open water and plate covered region satisfy the orthogonality relation as defined by  
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for 2,3,..., .j N=  The constant term ,nC ,nC ( )jnP k  and ( )jnQ k , 2,3...j N=  for 

1,2,...n =  are determined on replacing  for  1,2,... 1.jn jnk i j N= = +  

Applying the mode coupling relation to ( )2 1,a y −  along with the eigenfunction

2 ( )mf y  at 20 y h   we have 
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The orthogonality relation of the eigenfunction 2 ( )mf y as in Equation (5.30) is used 

along with the expression for velocity potentials as in Equation (5.27) and further 

continuity of pressure as in Equation (5.5) across the interface 
1, ,Nx a a= − − 0 jy h   

along with the edge condition as in Equation (5.6) to obtain  
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for 0, , ,1,2...m I II=  Again, the mode coupling relation is applied on ( )2 1,x a y −  along 

with the eigenfunction 2 ( )mf y  at 20 y h  we have 
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 (5.33) 

The orthogonal relation for the eigenfunction 2 ( )mf y as in Equation (5.30) is used along 

with the expressions of velocity potentials as in Equation (5.27) and the continuity of 

velocity across the interface 
1,x a= − 20 y h   as in Equation (5.5) along with the edge 

condition as in Equation (5.6) to obtain 
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 (5.34) 

for 0, , ,1,2...m I II=    
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Again, the mode coupling relation is applied to ( ),j ja y −  along with the 

eigenfunctions ( ),jmf y 0 jy h  2,3,..., ( 1)j N= −  we have 
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where jh  is the water depth in the regions based on the bottom topography. The 

orthogonal relation for the eigenfunction ( )jmf y  as in Equation (5.30) is used along 

with the expression of velocity potentials as in Equation (5.27) and further the 

continuity equation of pressure as in Equation (5.5) across the interface 

,0j jx a y h= −    along with the continuity equations for bending moment 

( ) ( )3 3

( 1),0 ,0y j j y j ja a  + − =  −  and deflection ( ) ( )( 1),0 ,0y j j y j ja a  + − =  − as in 

Equation (5.7) to obtain 
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 (5.36) 

for 0, , ,1,2...m I II=  , 2,3,..., ( 1).j N= −  Again, the mode coupling relation is applied 

to ( ),jx ja y − along with the eigenfunctions ( ),jmf y 0 jy h  2,3,..., ( 1)j N= − we 

have 
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Using the orthogonal property of the eigenfunction ( )jmf y as in Equation (5.30) and the 

expressions of velocity potentials as in Equation (5.27) along with the continuity of 

velocity as in Equation (5.5) across the interface ,0 ,  2,3,..., ( 1)j jx a y h j N= −   = −  

and applying the continuity of slope of the deflection and shear force we have 
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 (5.38) 

for 0, , ,1,2...m I II= , 2,3,..., ( 1).j N= −  Applying the mode coupling relation to 

( ),N Na y −  along with the eigenfunction ( )Nmf y  at 0 Ny h   we have 
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The orthogonality relation of the eigenfunction ( )1
( )

N m
f y

− as in Equation (5.30) is used 

along with the expression for velocity potentials as in Equation (5.27) and further 

continuity of pressure as in Equation (5.5) across the interface ,Nx a= − 0 Ny h   

along with the edge condition as in Equation (5.6) to obtain  
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for 0, , ,1,2...m I II=  Again, the mode coupling relation is applied on ( ),Nx Na y −  

along with the eigenfunction ( )Nmf y  at 0 Ny h   we have 
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The orthogonal relation for eigenfunction ( )Nmf y as in Equation (5.30) is used along 

with the expressions of velocity potentials as in Equation (5.27) and further the 

continuity of velocity across the interface ,Nx a= − 0 Ny h   as in Equation (5.5) 

along with the edge condition as in Equation (5.6) to obtain 
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 (5.42) 

The algebraic sum of linear equations is obtained by using the continuity equations 

across the vertical interface and the edge support conditions. The infinite series of a 

sum of the numerical equations is truncated  upto a finite number of M  terms to obtain 

2 ( 3)N M +  equations for N  number of multiple stepped bottom topography. Solving 

the above equations, the unknown constants ( )1 1
, , 0,1,2,..., , 1, 2n N n

R T n M M M
+

= + +   

and , ,jn jnA B  0, , ,1, 2,..., ,n I II M= 2,3,...,j N=  are obtained and the reflection and 

transmission coefficient satisfying the energy balance relation 2 2 1r tK K+ =  are 

obtained as 
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where ( )
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5.4 NUMERICAL RESULTS AND DISCUSSIONS 

The hydroelastic characteristics of floating elastic platform over a varying sea bed 

profile is studied considering Timoshenko-Mindlin theory. The plate deflection 
0/ ,j I  

the wave induced strain on the plate  , bending moment ( )M x  and shear force ( )W x  

along plate length with varying sea bottom profile are analysed. In the present study, 

the numerical values of the parameters 5GPa,E =  0.3, =  / 0.9p w  =  and 

-29.81msg =  are fixed. In the numerical computation water depth in the incident and 

transmitted region is denoted as rh  and th  whereas the water depths below the floating 

elastic plate is denoted as ,  1,2,....jh j =  The parameters that are kept fixed throughout 

the computation are / 0.1rd h =  and / 10rL h = . A comparative study is carried out for 

varying number of steps to understand the significance of slope and number of step 

interfaces. The numerical results are checked to satisfy the energy balance relation 

given by 2 2 1.r tK K+ =  

5.4.1 Single step bottom topography 

The wave interaction with thick floating elastic platform over sloping sea bottom, 

hump-type sea bottom topography is analysed to understand the hydroelastic 

characteristics for the two cases of sea bottom profile. The different types of seabed 

configurations are examined using the step approximation. The wave characteristics 

due to the effect of hump type and sloping type sea bottom profiles are illustrated and 

the hydroelastic performance of a floating elastic platform are also discussed. 

5.4.1.1 Reflection and transmission coefficient 

In Figure 5.3(a,b) the rK  and tK  are plotted versus non-dimensional wave number 

10 rk h  for the ocean waves interacting with a floating elastic platform over a single step 

hump type sea bottom profile for different water depth 1 / rh h  along the plate covered 

region. The minimum values of rK  (Figure 5.3a) indicate higher wave transmission 
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through the plate. In the case of lower values of 10 1.5rk h  , higher wave reflection is 

observed due to the obstruction caused by the step height at the interfaces. The 

resonating pattern in the rK  is observed for higher values of  
10 rk h which shows that 

for the waves with shorter wavelength, the complete wave transmission reduces. A 

sudden increase in the wave transmission is visualized at particular points, where there 

is a resonating trough occurs in the rK  which may be due to wave interference 

overcoming the step height hindrance along with the reducing wavelength. Further, the 

wave transmission (Figure 5.3b) reduces due to the combined effect of sea bottom 

profile and floating plate. In the case of 10 6.5rk h  , the reflection of waves is observed 

to increase with the surge in the step height due to the trapping of waves at the step 

interface. Further, for higher value of 10 6.5rk h  , the wave transmission is noticed to 

increase with the reduction in the step height due to the reduction of wavelength.  

(a)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

io
n
 C

o
ef

fi
ci

en
t,

 K
r

k
10

h
r

 h
1
/h

r
=0.75

 h
1
/h

r
=0.83

 h
1
/h

r
=0.92

(b)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

k
10

h
r

 h/h
2
=0.75

 h/h
2
=0.83

 h/h
2
=0.92

T
ra

n
sm

is
si

o
n
 C

o
ef

fi
ci

en
t,

 K
t

 

Figure 5.3: (a) rK  and (b) 
tK  versus 

10 rk h  for varying water depth 
1 / rh h  in the case 

of single step bottom profile considering / 1.0.t rh h =  
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Figure 5.4: (a) rK  and (b) tK  versus 
10 rk h  for varying water depth 1 / rh h  and /t rh h  in 

the case of stepped sloping bottom profile.  
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In Figure 5.4(a,b) the rK  and tK  are plotted versus 10 rk h  due to the floating elastic 

platform over a two stepped sloping type sea bottom profile for different water depth 

1 / rh h  and /t rh h . In the case of lower values of 10 rk h , almost uniform estimation in the 

rK  and tK  are observed due to varying step heights. The increase in the slope of step 

height reduces the number of completely transmitted waves mainly due to the 

interaction of waves with the increased step height. A forward shift in the wave 

reflection coefficient (Figure 5.4a) and transmission coefficient (Figure 5.4b) is noticed 

with the increasing slope of step height due to the increment in wavenumber for the 

interaction of waves at the step interface. The zeros in the wave reflection for lower 

values of 10 rk h  is not observed for the case of two-stepped sloping type sea bottom 

profile. The wave transmission tK  increases with the increase in the values of 10 rk h  

which suggest more waves gets transmitted for shorter wavelength. It is also observed 

that the waves get trapped at the step in the bottom profile along the plate covered 

region reducing the transmission of waves. 

5.4.1.2 Deflection and strain in the floating elastic plate 

The response of the floating elastic plate in terms of 0/j I  and   is noticed to reduce 

with the increase in step height as illustrated in Figure 5.5(a,b) due to the trapping of 

waves below the floating elastic plate with the increase in the step height. The plate 

deflection 0/j I  is noticed to reduce immensely at the incident end following a slight 

reduction as the waves progressed towards the transmitted region as in Figure 5.5(a) 

due to the wave trapping at the step interface. The reduction in the plate deflection with 

the increase in the step height 1 / rh h  is found to be within 
4 4

02 10 / 1.5 10j I− −−      

but for higher step height 1 / rh h  the plate deflection 
0/j I  is within 

5 5

05 10 / 5 10 .j I− −−      On the other hand, the values of   in Figure 5.5(b) is 

noticed to surge slightly and is observed to be within 
7 71.5 10 1.5 10− −−      which 

may be due to the increase in stress at the step interfaces as the waves progressed 

towards the transmitted region. The oscillating peaks and troughs are noticed in periodic 

intervals, however, around 71.5% and 79% reduction in the plate deflection is observed 

for 1 / 0.75rh h =  and 1 / 0.83rh h =  as compared with 1 / 0.92rh h =  with the 
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enhancement in the wave reflection due to change in rigid step height which causes the 

significant change in the wave transformation. A gradual change in the wave induced 

strain   (Figure 5.5b) is noticed for 1 / 0.92rh h =  at each of the oscillating peak and 

variation in the trend in strain   with variation in the step height is almost similar as in 

Figure 5.5(a). 
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Figure 5.5: (a) Deflection 
0/j I  and (b) stain   along the plate length x L  for varying 

water depth 1 / rh h   in the case of single step bottom profile considering 10 3rk h =  and 

/ 1.0.t rh h =  

The deflection 
0/j I  and stain   along the plate length x L  over a two stepped 

sloping type sea bottom profile for different water depth 1 / rh h  and /t rh h  is presented 

in Figure 5.6(a,b). The response in terms of 0/j I  and   is noticed to reduce with the 

increase in the step height as illustrated in Figure 6(a, b) due to the trapping of waves 

with the increase in the step height. The plate deflection 0/j I  is noticed to reduce 

gradually as the wave progress towards the transmitted region as in Figure 5.6(a) which 

may be due to the wave trapping at the step interfaces for a sloping type step bottom 

profile. The plate deflection 
0/j I  is noticed to be within 

5 5

04 10 / 4 10j I− −−      

and with the reduction in the step height the plate deflection further reduces and is 

observed to be within 
5 5

01 10 / 1 10 .j I− −−      However, the variation in the plate 

deflection 0/j I  (Figure 6a) and stain   (Figure 5.6b) is observed to be oscillatory 

nature with variation in the plate length x L . Around 65% for 
1 / 0.75rh h =  and 77%  

for 
1 / 0.83rh h =  reduction in the deflection 0/j I  is observed as compared with the 

1 / 0.92rh h =  at each of the local minima and local maxima. As a comparison between 
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the single step and double step bottom, the plate deflection is observed minimum for 

the case of two stepped sloping type sea bottom profile as compared with single step 

bottom profile. The reduction in the plate deflection in the case of two stepped sloping 

type sea bottom profile may be due to the change in the phase of the incident and 

transmitted wave. Further, the values of   in Figure 5.6(b) is noticed to reduce with the 

increase in the step height and is observed to be within 
8 83 10 4 10 .− −−      The 

strain  in the floating elastic plate for the case of sloping type step bottom profile is 

less as compared with single step bottom profile,  which may be due to the increase in 

the stress at the step interfaces for a sloping type stepped bottom topography as the 

wave progress towards the transmitted region.  
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Figure 5.6: (a) Deflection 0/j I  and (b) stain   along the plate length x L  for varying 

water depth 1 / rh h  and /t rh h  in the case of stepped sloping bottom profile considering 

10 3.rk h =  

5.4.1.3 Bending moment and shear force 

The hydroelastic response in terms of bending moment and shear force resultants along 

the plate length x L  due to the interaction of ocean waves with floating elastic plate 

over a single hump type sea bottom profile for different water depth 1 / rh h  is presented 

in Figure 5.7(a,b). The bending moment ( )M x  (Figure 5.7a) and shear force ( )W x  

(Figure 5.7b) is noticed to reduce with the increase in step height due to the 

enhancement in the wave reflection due to the presence of the rigid step.  The bending 

moment ( )M x  and shear force ( )W x  are noticed to be minimum due to the 

consideration of free edge support condition for the floating elastic plate. The bending 

moment ( )M x  is also observed to reduce towards the supporting edges with higher 
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reduction at the incident end as in Figure 5.7(a) due to the combined effect of support 

condition and wave trapping at the step interface. The bending moment ( )M x  of the 

floating elastic plate is observed to be within ( )5 51.5 10 Nm 1.5 10 NmM x−      and 

the values of ( )M x  reduces with the increase in the step height and is observed to be 

within ( )4 45 10 Nm 5 10 Nm.M x−      Further, the shear force ( )W x  as in Figure 

5.7(b) is noticed to increase throughout the length of the plate and is observed to be 

within ( )3 32 10 N 1.5 10 NW x−     , which may be due to the increase in the stress at 

the step interfaces. However, the local minima and local maxima in the bending 

moment ( )M x  and shear force ( )W x  is observed for variable plate length x L  and, 

around 78% and 85% reduction in the bending moment ( )M x  is observed for 

1 / 0.75,rh h = 1 / 0.83rh h =  as compared with the 
1 / 0.92rh h =  at each of the oscillating 

crests and troughs. 
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Figure 5.7: (a) Bending moment and (b) shear force along the plate length x L  for 

varying water depth 1 / rh h  in the case of single step bottom profile considering 

10 3rk h =  and / 1.0.t rh h =   

The bending moment and shear force resultants along the plate length x L  over a two 

stepped sloping type sea bottom profile for different water depth 1 / rh h  and /t rh h  is 

presented in Figure 5.8(a,b). The bending moment ( )M x  (Figure 5.8a) and shear force 

( )W x  (Figure 5.8b) resultants are noticed to reduce with the increase in step height, 

which may be due to the change in the wave reflection due to the presence of sloping 

bottom (approximated into multiple rigid steps). The bending moment ( )M x  and shear 
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force ( )W x  are noticed to be minimal at the plate edges due to the consideration of 

free edge support condition for the floating elastic platform. The ( )M x  is noticed to 

reduce towards the supporting edges and high reduction at the incident end as in Figure 

5.8(a) due to the combined effect of support condition and wave trapping at the sloping 

type step interface. The bending moment for the case of the sloping type sea bottom is 

less as compared to the single step bottom profile and is observed to be within 

( )4 46.5 10 Nm 6.5 10 Nm.M x−      On the other hand, shear force  ( )W x  resultant 

as in Figure 5.8(b) is noticed to increase throughout the length of the plate, with the 

increase in the water depth below the plate and reduction in the step height. The shear 

force ( )W x  for the case of double-step seabed profile is observed to be within 

( )3 31.5 10 N 1 10 NW x−      and minimal variation is observed as compared to the 

single step bottom profile. The reduction in the shear force ( )W x  with the increase in 

the step height may be due to the increase in the stress at the step interfaces along the 

sloping type stepped sea bottom profile. 
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Figure 5.8: (a) Bending moment and (b) shear force along the plate length /x L  for 

varying water depth 1 / rh h  and /t rh h  in the case of stepped sloping bottom profile 

considering 
10 3.rk h =  

5.4.2 Two-step bottom topography 

The wave propagation over two step bottom topography is analysed to understand the 

hydroelastic characteristics for the two cases of sea bottom profile. The two profiles 

considered for bottom topography are a two-step hump type and three step sloping type. 

The wave characteristics due to the effect of hump type and sloping type sea bottom 
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profiles are illustrated and the hydroelastic performance of a floating elastic plate are 

discussed in detail. 

5.4.2.1 Reflection and transmission coefficient 

In Figure 5.9(a,b) the 
rK  and 

tK  are plotted versus 
10 rk h  for the wave interaction with 

a floating elastic platform over a two-step hump type sea bottom profile for different 

water depth 
1 / rh h   and 

2 / .rh h  The minimum values in the 
rK  indicate high wave 

transmission through the plate but at lower values of 
10 1rk h  , higher reflection of wave 

is observed due to the obstruction caused by the step height at the interfaces.  
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Figure 5.9: (a) rK and (b) tK versus 10 rk h  varying water depth 
1 / rh h   and 

2 / rh h  in the 

case of two-stepped hump type bottom profile considering / 1.0.t rh h =  

The wave reflection is observed higher within 102.5 6rk h   and minimum tK  is noted 

due to the trapping of the waves with the increase in the step height. The forward shift 

in the rK  for higher values of 10 rk h  is observed with the increase in the step height. A 

sudden increase in the wave transmission (Figure 5.9b) is visualized at 101.5 2.5rk h   

due to the wave interference at the step height along with the reducing wavelength. 

Further, the transmission of waves reduces and forward shift in tK  for higher values of 

10 rk h  is noted due to the combined effect of sea bottom profile and floating plate. 

However, the resonating peaks and troughs are observed high in the rK  and tK  due to 

the sea bottom discontinuity which causes multiple interaction with the incident wave. 

The transmission of wave tK  is observed to increase with the surge in the slope of the 

step height and the wave height increases at the shallow water depth. The forward shift 

in the wave reflection and transmission coefficients with the increasing slope of step 
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height may be due to the increment in the wavenumber at the step interface. The wave 

transmission is noticed to increase with the surge in the value of the step height due to 

the surge in wave height at shallower water depth. The comparative study with the 

single step topography as in Figure 5.4(a,b) shows that the wave transmission is higher 

with the increase in the number of steps and the resonating pattern in the rK  and tK

also increases due to the change in step height.  

In Figure 5.10(a,b) the rK  and tK  are plotted versus 10 rk h  over a three stepped sloping 

type sea bottom profile for different water depth 1 / ,rh h  2 / rh h  and /t rh h . The variation 

in the rigid step height shows the minimal impact on the wave transformation in the 

form of the resonating minor troughs in rK  (Figure5.10a)  and resonating minor crests 

in tK  (Figure 5.10b) at similar intervals within 
104 8rk h   due to the higher incident 

wave amplitude. The number of completely transmitted waves gets reduced with the 

increase in water depth due to the propagation of waves at shallow water depths. A 

forward shift in the wave reflection and transmission coefficients is noticed with the 

increasing slope of step height within 
104 8rk h   due to the increment in wavenumber 

for the interacting waves at the step interface. It is also observed that the waves get 

trapped at the step interface along the bottom profile below the plate covered region 

reducing the transmission of waves. The comparative study between the three stepped 

sloping bottom profile and two-stepped hump type bottom profile suggest that the wave 

transmission is less for the three stepped sloping bottom profile causing formation of 

standing waves due to the abrupt changes in the water depth. 
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Figure 5.10: (a) rK and (b) tK versus 10 rk h  varying water depth 1 / ,rh h   2 / rh h  and 

/t rh h   in the case of stepped sloping bottom profile.  
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5.4.2.2 Deflection and strain of the floating elastic plate 

In Figure 5.11(a,b), the plate deflection 
0/j I  and stain   are plotted along the plate 

length /x L  over two step hump type sea bottom profile for varying water depth 1 / rh h

and 2 / rh h . The response in terms of 
0/j I  and   are observed to reduce with the 

surge in step height as illustrated in Figure 5.11(a,b) due to the trapping of waves with 

the increasing step height. The plate deflection 
0/j I  and strain   in the floating 

elastic plate is noticed to reduce as the wave progress towards the transmitted region as 

in Figure 5.11(a) due to the trapping of waves and increase in the stress at the step 

interface. The higher hydroelastic response is noticed along the initial step, which is 

mainly due to the wave interference caused by the reflected wave with incident wave 

at the step interface.  
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Figure 5.11: (a) Deflection 
0/j I  and (b) stain   along the plate length /x L  for 

varying water depth 1 / rh h  and 2 / rh h  in the case of two step bottom profile considering 

10 3rk h =  and / 1.0.t rh h =   

The plate deflection is observed to be within 
5 5

08 10 / 4 10j I− −−      but a sharp 

change in the hydroelastic response is observed due to the interference of wave with 

the increase in the step height. Further, the strain   (Figure 5.11b) in the floating elastic 

plate at the edges of the incident plate edge is less as compared to the transmitted plate 

edge and is observed to be within 
8 84.5 10 3 10− −−     . The variations in the 

hydroelastic behaviour at regular intervals of step length are observed due to the 

obstruction caused at the step edge. However, the local minima and local maxima is 

observed at particular intervals and, around 40% and 83% reduction in the plate 

deflection 
0/j I  for 

2 / 0.83rh h =  and 
2 / 0.67rh h =  is observed at each of the 

hr ht 
h2 h1 hr ht 

h2 h1 
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oscillating peak due to the change in the step height. Similarly, 44% and 83% reduction 

in the strain for 
2 / 0.83rh h =  and 

2 / 0.67rh h =  at / 0.95x L =  is achieved at the point 

where the oscillating peak is developed. 

The hydroelastic response of floating elastic platform due to the interaction of ocean 

wave in terms of deflection 
0/j I  and stain   along the plate length /x L  over a three 

steeped slope bottom profile for varying water depth 1 / ,rh h  2 / rh h  and /t rh h  is 

presented in Figure 5.12(a,b). The response in terms of  plate deflection 
0/j I  (Figure 

5.12a) and strain   (Figure 5.12b)  is noticed to reduce with the surge in step height 

due to the considerable variation in the wave reflection by each of the rigid step.   The 

plate deflection 
0/j I  is noticed to reduce gradually throughout the elastic plate as the 

wave progress towards the transmitted region as shown in Figure 5.12(a), which may 

be due to the wave trapping and increase in the stress at the step interface for a sloping 

type step bottom profile. The higher hydroelastic response is noticed along the initial 

step, which is mainly due to the wave interference caused by reflected wave with 

incident wave at the step interface. The variations in the hydroelastic behaviour at 

regular intervals of step length are observed due to the obstruction caused at the step 

edge. The significant reduction in the plate deflection 
0/j I  and the strain   in the 

floating elastic plate is observed for the stepped slope bottom profile towards the 

transmitted end as compared to the two stepped hump bottom profile as in Figure 

5.11(a,b).  

(a)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-2.40x10
-5

-1.20x10
-5

0.00

1.20x10
-5

2.40x10
-5

 h
1
/h

r
=0.83, h

2
/h

r
=0.67, h

t
/h

r
=0.50

 h
1
/h

r
=0.92, h

2
/h

r
=0.83, h

t
/h

r
=0.75

 h
1
/h

r
=0.96, h

2
/h

r
=0.92, h

t
/h

r
=0.88

Distance, x/L

D
ef

le
ct

io
n
, 


/I

0

(b)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-2.0x10
-8

-1.0x10
-8

0.0

1.0x10
-8

2.0x10
-8

 h
1
/h

r
=0.83, h

2
/h

r
=0.67, h

t
/h

r
=0.50

 h
1
/h

r
=0.92, h

2
/h

r
=0.83, h

t
/h

r
=0.75

 h
1
/h

r
=0.96, h

2
/h

r
=0.92, h

t
/h

r
=0.88

Distance, x/L

S
tr

ai
n
, 


 

Figure 5.12: Deflection 
0/j I  and (b) stain  along the plate length /x L  for varying 

water depth 1 / ,rh h  2 / rh h  and /t rh h  in the case of three stepped bottom profile 

considering 
10 3.rk h =  

hr 
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As a comparison with two-step bottom as in Figure 5.11(a,b), the 29% for 2 / 0.92,rh h =   

36% for 2 / 0.83rh h =  and 70% for 2 / 0.67rh h =  reduction in the plate deflection 

0/j I  at primary oscillating peak / 0.325x L = −  along with the 66% for 2 / 0.92,rh h =  

60% for 2 / 0.83rh h =  and 50% for 2 / 0.67rh h =  reduction in the plate deflection 

0/j I  at secondary oscillating peak / 0.775x L = −  is achieved due to the presence of 

the third step in the leeward free water region as compared with double-step bottom. 

On the other hand, the 26% for 2 / 0.92,rh h =  31% for 2 / 0.83rh h =  and 73% for 

2 / 0.67rh h =  decrease in the strain   is achieved due to the presence of three-step 

sloping bottom as compared with double step sloping bottom. As study stated, the 

variation in the wave transformation and wave trapping due to the presence of the 

multiple rigid steps plays a major role in reducing the hydroelastic response. 

5.4.3 Three step bottom topography 

The wave interaction on a thick floating elastic platform over three step bottom 

topography is analysed to understand the hydroelastic characteristics for the two cases 

of sea bottom profile.  The two profiles considered for bottom topography are a three-

step hump and sloping type sea bottom profile. The wave characteristics due to the 

effect of hump type and sloping type sea bottom profiles are illustrated and the 

hydroelastic performance of a floating elastic plate are discussed in detail. 

5.4.3.1 Reflection and transmission coefficient 

In Figure 5.13(a,b) the rK and tK  are plotted versus 10 rk h  for the wave interacting with 

the floating elastic platform over a three-step hump type sea bottom profile for different 

water depth 1 / ,rh h  2 / rh h  and 3 / rh h . The occurrence of maxima in the values of rK  

(Figure 5.13a) or minima in the wave transmission through the plate is observed for 

lower values of 10 1.5.rk h   The  higher reflection of wave is observed due to the 

obstruction caused by the step height at the interfaces in the case of longer wavelengths. 

A sudden increase in wave transmission and decrease in wave reflection is visualized 

at 101.5 4rk h   due to the reduction in wavelength. In the case of higher values of 

10 6rk h   the forward shift in the rK and tK  is noted for higher values of water depth 
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ratios which suggest that as the step height reduces more shorter wave gets trapped 

below the plate. Further, similar pattern in the transmission of waves is observed due 

to the combined effect of sea bottom profile and floating plate. At higher values of 10 rk h

, the reflection of waves is observed to increase with the surge in the step height due to 

the presence of zero velocity near the rigid step, which enhances the wave reflection at 

the step interface. The comparative study with the single and two step-type hump 

profile as in Figure 5.3(a,b) and 5.9(a,b) shows that the resonating pattern or the 

increase in the transmission coefficient for certain values of 10 rk h  increases as the 

number of steps increases. However, the resonating troughs in the rK  (Figure 5.13a) 

and resonating crests in the tK  (Figure 5.13b) influences the design and placement of 

the VLFS in the presence of abrupt changes in the seabed for better performance and 

life period. 
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Figure 5.13: (a) rK and (b) tK versus 10 rk h  for varying water depth 1 / ,rh h  2 / rh h   and 

3 / rh h  in the case of three step hump type bottom profile considering / 1.0.t rh h =   

In Figure 5.14(a,b), the rK and tK  are plotted versus 10 rk h  for the waves interacting 

with the floating elastic platform over a three stepped sloping seabed profile for 

different water depth 1 / ,rh h  2 / rh h   and 3 / rh h . The occurrence of the higher values of 

the wave transmission for certain values of 10 rk h is noted for 
100 4rk h  , which 

suggests that for the waves with longer wavelengths, the wave transmission is higher. 

Further with the increase in the water depth ratio the forward shift in the rK and tK  is 

noted. The increment in the slope of step height reduces the number of completely 

transmitted waves mainly due to the waves interacting with increased step height as in 

Figure 5.14(b). The transmission of wave is observed to increase with the surge in the 

hr ht h1 h3 h2 

hr ht h1 h3 h2 



 
 

Chapter 5: Wave transformation due to change in bottom topography 

 

153 
 

slope of the step height and hence increasing the wave height at the shallower water 

depth. It is noticed that the waves get trapped at the step interface along the seabed 

profile in the plate covered region reducing the transmission of waves. 
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Figure 5.14: (a) rK  and (b) tK  versus 10 rk h  for varying water depth 1 / ,rh h  2 / rh h   and 

3 / rh h  in the case of three stepped sloping type bottom profile considering / 1.0.t rh h =   

5.4.3.2 Deflection and strain of the floating elastic plate 

In Figure 5.15(a,b), the deflection 0/j I  and stain   along the plate length /x L  over 

a varying three hump type step bottom profile for different water depth 1 / ,rh h  2 / rh h   

and 3 / rh h  is presented. The response in terms of 0/j I  and   is noticed to reduce as 

the wave progress towards the transmitted region as in Figure 5.15(a,b) due to the 

trapping of waves and increase in stress at the step interface. The higher deflection 

0/j I  (Figure 5.15a) is noticed along the initial step mainly due to the wave 

interference caused by reflected wave with incident wave at the step interface. The 

variations in the hydroelastic behaviour at regular intervals of step length are observed 

due to the obstruction caused at the step edge. The strain  in the floating elastic plate 

near to the change in step height shows a sharp discontinuity due to the interference of 

the waves with the change in the step height. The strain in the floating plate is observed 

to be within 
7 72 10 1.5 10− −−      and is higher as compared with the two-step hump 

bottom profile as in Figure 5.11(b). It is also noted that the oscillatory peaks show a 

significant variation in the strain   (Figure 5.15b) for variable step height. Around 45% 

reduction in the secondary resonating peak at / =-0.55x L  and 30% reduction in the 

third resonating peak at / =-0.975x L  as compared with the primary resonating peak at 

/ =-0.125x L  for 3 / 0.96,rh h = which suggest that the increase in the step heights shows 
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the significant impact on the hydroelastic response and maximum impact on the wave 

transformation. However, the sharp rise and fall in the hydroelastic response is evident 

in the design of VLFS placed on the three-step hump type seabed for better outcomes. 
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Figure 5.15: (a) Deflection 
0/j I  and (b) stain   along the plate length /x L  for 

varying water depth 1 / ,rh h  2 / rh h   and 3 / rh h  in the case of three step hump type sea 

bottom profile considering 10 3rk h =  and / 1.0.t rh h =   

In Figure 5.16(a,b), the deflection 0/j I  and stain  along the plate length /x L  over 

a varying three stepped sloping type bottom profile for different water depth 3 / rh h  is 

presented. The response in terms of 0/j I  and   is noticed to reduce gradually 

throughout the elastic plate as the waves progress towards the transmission region as 

shown in Figure 5.16(a), which may be due to the fact that the incident wave interacts 

with multiple rigid steps and reflected back towards the seaside open water region or 

trapped under the plate covered region.   
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Figure 5.16: (a) Deflection 0/j I  and (b) stain   along the plate length /x L  for 

varying water depth 1 / ,rh h  2 / rh h   and 3 / rh h  in the case of three stepped sloping sea 

bottom profile considering 10 3rk h =   and / 1.0.t rh h =  

hr ht h1 
h3 h2 hr ht h1 
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It is also noted that, the reduction in the deflection 
0/j I  and stain   in the floating 

elastic plate is observed as the wave progressed towards the transmitted region. The 

plate deflection is observed to be within 
5 5

08 10 / 4 10j I− −−       and the strain in 

the floating plate is within 
7 81.6 10 8 10− −−       as in Figure 5.16(a,b). The 

variations in the hydroelastic behaviour at regular intervals of step length are observed 

due to the obstruction caused at the step edge. However, around 15% reduction in the 

secondary resonating peak at / =-0.55x L  and 60% reduction in the third resonating 

peak at / =-0.925x L  is noted as compared with the primary resonating peak at 

/ =-0.125x L  for 3 / 0.75.rh h =  The study suggest that the increase in the third step 

height 3 / rh h  shows an immense variation in the stain   (Figure 5.16b) and successful 

in reducing the oscillatory peaks and troughs. As a comparison with the three step hump 

sea bed profile (Figure 5.15b), the third step height 3 / rh h  shows the critical role in 

reducing the oscillating peak and it is proved that, if the third step height is lower as 

compared with the second step height, the local maxima reaches to the higher 

estimation. Similarly, if the third step height is higher as compared with the primary 

and secondary step heights, there exists a significant reduction in the local maxima as 

compared with the other oscillating peaks due to the enhancement in the wave reflection 

by each of the rigid step which causes minimum impact on the floating plate. 

5.4.4 Comparative study for different number of steps  

The wave interaction with thick floating elastic platform over varying bottom 

topography using step approximation (single and multi-step seabed) is analysed in the 

case of finite water depth considering / 0.83t rh h = . The slope of the steps are varied to 

incorporate the varying number of steps along the seabed profile. The wave 

characteristics due to varying number of steps in sloping type bottom profile is 

compared and the hydroelastic performance of a floating elastic platform are also 

compared and discussed. 

5.4.4.1 Reflection and transmission coefficient 

In Figure 5.17(a,b) the rK  and tK  are plotted versus 10 rk h  for waves interacting with 

floating elastic platform over a varying number of steps in sloping type bottom profile 

at finite water depth / 0.83t rh h = . Significant variation in the rK  (Figure 5.17a) is 
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observed between the one, two and three-step impermeable sea bottom at primary 

resonating troughs within
101 3rk h  . Thereafter, the secondary resonating troughs are 

obtained within 
106 8rk h  due to the presence of one, two and three impermeable 

steps. However, the higher estimation and minimum oscillation is obtained in the rK  

for three-step bottom at secondary resonating trough. The 36% (two-step bottom) and 

53% (single-step bottom) reduction in the 
rK  is achieved as compared with the three-

step seabed at each of the secondary resonating troughs within 
106 8rk h   due to the 

addition of the reflection by third impermeable step. Similarly, the number of 

transmitted wave is observed increasing and tend to shift towards lower values of 10 rk h  

with the increasing number of steps along the plate covered region due to the reduction 

in the slope for the step height. On the other hand, the transmission of wave is noticed 

to reduce with the increasing number of steps mainly due to the interaction of waves at 

the interfaces and subsequently gets reflected as the steps increased. The higher 

resonating peak is observed for single-step impermeable bottom and there is an 

effective reduction in the 
tK  (Figure 5.17b) with increase in the steps at each of the 

secondary resonating peaks within 
106 8.rk h   As a comparison with single-step 

seabed, the 35% and 69% reduction in the tK  is obtained for two-step seabed and tree-

step seabed at each of the resonating crests. The changes caused in the wave 

transmission is due to the enhancement in the wave reflection by the three-step seabed. 

However, the sloping bottom (approximated into three-steps) shows a significant role 

in balancing the rK  and tK  due to the wave trapping. A significant increase in the 

transmission of waves is observed for the case of no step in the bottom topography. 

(a)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

R
e
fl
e
c
ti
o
n
 C

o
e
ff
ic

ie
n
t,
 K

r

k
10

h
r

 No bottom change, h
1
/h

r
= 1.0

 One Step, h
1
/h

r
= 0.92 

 Two Step, h
1
/h

r
= 0.94, h

2
/h

r
= 0.89 

 Three Step, h
1
/h

r
= 0.96, h

2
/h

r
= 0.92, h

3
/h

r
= 0.88

(b)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
s
m

is
s
io

n
 C

o
e
ff
ic

ie
n
t,
 K

t

k
10

h
r

 No bottom change, h
1
/h

r
= 1.0

 One Step, h
1
/h

r
= 0.92 

 Two Step, h
1
/h

r
= 0.94, h

2
/h

r
= 0.89 

 Three Step, h
1
/h

r
= 0.96, h

2
/h

r
= 0.92, h

3
/h

r
= 0.88

 

Figure 5.17: (a) rK  and (b) tK versus 10 rk h  for varying number of steps along the plate 

covered region.  
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5.4.4.2 Deflection and strain of the floating elastic plate 

In Figure 5.18(a,b), the plate deflection 0/j I  and stain   along the plate length /x L  

over a stepped type sloping seabed profile is presented for varying number of steps. The 

plate deflection 0/j I  and stain   along the floating plate is observed to be varying 

with the change in the number of steps.   
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Figure 5.18: (a) Deflection 0/j I  and (b) stain   along the plate length /x L   for 

varying number of steps considering 
10 3.rk h =  

The oscillating peaks reaches to the maximum values for single step and gradually 

deceasing with increase in the number of steps. The response is noticed to decrease 

significantly due to the presence of steps along the plate covered region, which is 

mainly due to the wave trapping along the step interfaces. Further, the increase in 

number of steps along the plate covered region are noticed to increase the responses 

due to the reduction in the slope of step heights. The responses are also noticed to reduce 

along the length of the plate due to the wave trapping at step interfaces. The 

discontinuity in the hydroelastic response at regular intervals of step length are noticed 

due to the sudden change in the step height caused at the step interfaces.  

5.5 CONCLUSIONS 

The wave scattering due to the floating elastic platform over a varying seabed profile 

is analysed based on Timoshenko-Mindlin plate theory in water of finite depth. The 

mathematical model is based on eigenfunction expansion method along with orthogonal 

mode coupling relation. The seabed profile is modelled considering multiple steps to 

signify a generalized sea bottom profile. The edges of the floating elastic plate are 

considered to satisfy free edge support conditions along with continuity conditions at 
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the step interfaces. The wave characteristics are analysed and are observed to follow 

the energy balance relation. The hydroelastic characteristics of floating elastic plate are 

compared over varying bottom topography acted upon by ocean waves. In addition, a 

brief comparison of the numerical results is carried out for varying number of steps 

along the plate covered region. The following conclusions drawn from the present study 

are as follows: 

• The wave transmission is noticed to increase with the reduction in the step height 

due to the reduction of wavelength for both the case of single step seabed profile. 

An initial increase in transmission coefficient with increase in slope of step height 

is noticed for a hump type single stepped sea bed profile as compared to sloping 

type stepped seabed profile, which remained similar at higher wavenumbers.  

• The hydroelastic response is noticed to reduce with the increase in step height due 

to the trapping of waves. The plate deflection for both the cases of single stepped 

seabed profile is noticed to reduce at the incident end following a reduction 

thereafter as the waves progressed towards the transmission region due to the wave 

trapping at the step interface.  

• The hydroelastic response in terms of strain, bending moment and shear force for 

both the cases of single stepped seabed profile is noticed to slightly surge, which 

may be due to the increase in stress at the step interfaces as the waves progressed 

towards the transmitted region. 

• The hydroelastic response is noticed to reduce gradually throughout the elastic plate 

along with discontinuity at the step interfaces as the wave progress towards the 

transmitted region may be due to the wave trapping at the step interfaces for varying 

number of steps below floating elastic platform. 

• A sudden increase in wave transmission is visualized at lower values of wave 

numbers due to the interference of waves at the step height along with the reduction 

of wavelength for varying number of multiple steps below floating elastic platform. 

• The higher transmission of wave is noticed at lower values of wavenumbers with 

the increase in slope of step height for a hump type stepped sea bed profile as 

compared to sloping type stepped seabed profile, which remained similar at higher 

wavenumbers.  
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• At higher values of wavenumber, the reflection of waves is observed to increase 

with the surge in the step height due to trapping of waves at the step interface for 

multiple stepped seabed profile below a floating elastic platform. 

• The wave transmission is noticed to reduce with the increasing number of steps 

mainly due to the interaction of waves at the step interfaces. The 35% and 69% 

reduction in the tK  is obtained for two-step seabed and tree-step seabed as 

compared with the single-step seabed at each of the resonating crests. 

• The increment in number of steps along the plate covered region are noticed to 

increase the responses due to the reduction in slope of step heights as compared to 

very high response for single-step. The variations in the hydroelastic response at 

regular interval of step length are observed due to the obstruction caused at the step 

interfaces. 
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CHAPTER 6 

WAVE ATTENUATION DUE TO THE PRESENCE OF 

SUBMERGED STRUCTURES 

 

6.1 GENERAL INTRODUCTION  

In the previous chapter, the wave transformation due to floating elastic plate based on 

Timoshenko-Mindlin’s plate theory over varying sea bottom profile is discussed and 

provided an insight into the effect of seabed profile over waves interacting with large 

floating elastic plate in finite water depth. Further, a detail comparison of the numerical 

results was performed for different step type bottom topography in the hydroelastic 

analysis of floating elastic plates. 

In this chapter, the wave attenuation due the interaction with vertical barriers in front of 

the large floating structures is analysed based on Timoshenko-Mindlin plate theory in 

finite water depth. In addition, the mitigation in hydroelastic response due to the wave 

interaction with articulated floating elastic plate in combination with either a bottom 

standing or surface piercing vertical barrier is performed. The eigenfunction expansion 

method along with the orthogonal mode coupling relation is used in the mathematical 

formulation and solution of the problem for the case of finite water depth. The influence 

of different edge support conditions in mitigating the hydroelastic behaviour of 

articulated floating elastic plate in the presence of vertical barrier is also studied. The 

numerical study is performed to analyse the wave reflection, transmission and 

dissipation characteristics from the floating plate due to the presence of vertical porous 

barriers. The wave energy dissipation is evaluated by calculating the values of wave 

dissipation coefficients and checked to satisfy the energy balance relation.  

6.2 MATHEMATICAL FORMULATION   

The wave interaction with the very large floating structures for different support 

conditions in the presence of bottom standing, surface piercing and fully extended, 

vertical barriers is formulated based on the linearized wave theory. The boundary value 

problem (BVP) is modelled as a two-dimensional coordinate system for the wave 

interaction with floating plate as shown in Figure 6.1(a,b). The monochromatic wave is 
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incident along the positive x-axis horizontally and the y-axis is considered positive 

vertically downward. The floating elastic plate is considered to be articulated and 

floating at the free surface of the fluid 3 1, 0a x a y−   − =  and termed as plate covered 

region due to the presence of articulation at 2x a= − . The free surface in the upstream 

open water domain 1 ,0a x y h−       is divided into two regions due to the presence 

of the vertical barriers at 0.x =  The downstream open water domain 3,x a   −−

0 y h   is termed as transmitted region. The two edges of the floating thick elastic 

plate at 1x a= −  and 3x a= −  are considered to satisfy the applicable edge support 

boundary conditions.  

 

Figure 6.1(a): Schematic diagram for articulated floating elastic plate with bottom 

standing barrier. 

The velocity potential ,  1,2,..,5j j =  in the fluid domain satisfies the Laplace equation 

given by 

                                         
2 0j =  at  ,0 .x y h−         (6.1) 

The linearized plate covered boundary condition on the free surface is obtained by 

combining the linearized kinematic and dynamic boundary condition with the 

Timoshenko-Mindlin equation of the form     
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   (6.2) 

where, d  is the plate thickness, p  is the plate density, 
3 212(1 )EI Ed = −  is the plate 

rigidity, E  is the Young’s Modulus,  is the Poisson’s ratio, ( )2 1G E = + is the shear 
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modulus of the plate, and 2 12 =  is the transverse shear coefficient of the plate, 

is the density of water, g is the acceleration due to gravity, s pm d=  is the mass of the 

plate, 2 12I d=  is the rotary inertia, and S EI Gd=  is the shear deformation. In the 

fluid domain 1, 2,5j =  the linearized free surface boundary condition is given by 

                                       

2

1 30,    for      and .
j

j x a x a
y g

 



− =  −  −


   (6.3) 

The continuity of velocity and pressure at the interface 1 2 30, ,  and x a a a= − − − , 

0 y h   is given by 

               ( ) ( ) ( ) ( ) ( ) ( )1 1
, ,  and , ,   for  1, 2,3, 4.jx jj x j

x y x y x y x y j   
+ +

= = =  (6.4) 

The two plates are assumed to be connected at 2x a= − by a vertical linear spring with 

stiffness 33k  and flexural rotational spring with stiffness 55k . The shear force and the 

bending moment at the articulated edge as in Praveen et al. (2018, 2019) in terms of 

velocity potential for 3j =  satisfy the condition  

                           3 2 2

55 1( , ) ( , ) ( , ) ,yyy j xy j xy jEI x y k x y x y   +−  =  −   (6.5a) 

                          3 2 2

1 55 1( , ) ( , ) ( , ) ,yyy j xy j xy jEI x y k x y x y  + +−  =  −  (6.5b) 

             4

33 1( , ) ( , ) ( , ) ( , ) ,xyyy j x j y j y jEI x y x y k x y x y    +
  − =  −   (6.5c) 

            4

1 1 33 1( , ) ( , ) ( , ) ( , ) .xyyy j x j y j y jEI x y x y k x y x y   + + +
  − =  −   (6.5d) 

Depending upon the nature of the vertical linear spring stiffness and/or a flexural 

rotational spring stiffness, the articulated joints are described. The articulated joints are 

termed as free-free edge, if both the vertical linear spring stiffness and flexural 

rotational spring stiffness are absent, i.e. 33 550 and 0.k k= =  The interconnected floating 

elastic plate is termed as hinged connection, if either of the vertical linear spring 

stiffness and flexural rotational spring stiffness is having higher values, i.e. 

33 55 0 and k k= →or 33 55  and 0.k k→ =  Further, the articulated edge is termed as 

rigid connection, if both the vertical linear spring stiffness and flexural rotational spring 

stiffness is having higher values, i.e. 33 55  and .k k→ →  The interconnected edge 
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is termed as semi-rigid connection if both the vertical linear spring stiffness and flexural 

rotational spring stiffness is having intermediate values, i.e. 33 55 and k k intermediate 

value.  

 

Figure 6.1(b): Schematic diagram for articulated floating elastic plate with surface 

piercing barrier. 

Due to the presence of vertical porous barrier with height bh  at 0x =  in front of the 

floating elastic plate, the boundary condition considering Darcy's law is given by 

                                         10 0 2 1( ), 1,2,jx ik G j   = − − =   (6.6) 

where 0 r iG G iG= +  is the complex porous effect parameter with the real part rG  

represents the resistance effect of the porous material against the seepage flow while 

the imaginary part iG  denotes the inertia effect of the fluid inside the porous material. 

The complex porous effect parameter is defined by Yu and Chwang (1994) as given by 

                                               
( )

( )0 2 2

10

,
i

i

f iS
G

k d f S

 +
=

+
 (6.7) 

where    is the porosity constant, f is the resistance force coefficient, iS  is the inertial 

force coefficient, d is the thickness of the porous medium and 10k is the wavenumber of 

the incident wave. On combining the boundary condition at the vertical porous barrier 

as in Equation (6.6) and the equation of continuity at the 0x = , the boundary condition 

for the porous vertical barrier and the open gap for 1, 2j =  is given by 

                                  10 0 2 1

0, for open gap,

( )
, for vertical barrier.

j
ik G

x

  




− − = 

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  (6.8) 
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Further, the floating elastic plate is considered to satisfy one of the following edge 

support conditions as defined in Timoshenko and Krieger (1959), Rao (2007). The free 

edge support conditions for floating elastic plate represents zero bending moment and 

zero shear force at the plate edge. In the case of finite water depth, the shear force and 

bending moment at the plate edge 1 3 and x a x a= − = −  for 3, 4j =  satisfies the relation 

given by 

        ( ) ( ) ( )3

3 4 2

1 3, 0 and  , ,   for  ,  at  0.y j j xy jxy
x y x y x y x a a y   =  = = − − =  (6.9a) 

where 
2( ) .m S I EI= +  In the case of simply supported edge, the edge condition 

represents the bending moment and deflection to vanish at the support. The 

deflection/displacement and bending moment at the plate edge 1 3 and x a x a= − = −  for 

3, 4j =  satisfies the relation given by 

                     ( ) ( )3

3, 0 and , 0  for  0,   at  0.y j y jx y x y x a y  =  = = − =   (6.9b) 

In the case of fixed edge condition, the deflection and slope vanish at the edge. The 

slope and deflection/displacement at the plate edge 1 3 and x a x a= − = −  for 3, 4j =  

satisfies the relation given by 

                   ( ) ( )2

3, 0 and , 0  for  0,   at  0.y j xy jx y x y x a y  =  = = − =              (6.9c) 

The far-field radiation condition is given by  

                               ( )
( ) ( )

( ) ( )

10 10

50

10 10

50 50

  as   ,

             as   ,

ik x ik x

j
ik x

e R e f y x
x

T e f y x


−

−

 + →
= 

→ −

  (6.10) 

with 10R  and 50T  are the complex wave amplitudes in reflection and transmission. The 

eigenfunction ( )0jf y ’s for 1,5j =  are of the form ( ) ( )0 0 0cosh coshj j jf y k h y k h= −  

with 0jk  for 1,5j =  are the positive real roots satisfying the open water dispersion 

relation at finite water depth given by                                                     

                                                 2

0 0tanh 0.j jk k h g− =  (6.11) 

In the subsequent section, the solution procedure for the wave attenuation in the 

presence of vertical porous barrier is presented and discussed in detail. 
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6.3 METHOD OF SOLUTION 

In this section, the solution procedure for the wave attenuation due to the presence of 

vertical barriers in front of an articulated large floating structures based on Timoshenko-

Mindlin plate theory is presented. The boundary value problem for the wave scattering 

from a finite articulated floating elastic plate along with vertical barriers is formulated 

in finite water depth. The velocity potentials ( ),j x y  for 1, 2,..5j =  satisfying the 

governing Equation (6.1) along with the boundary condition (6.4), (6.6), (6.7) and (6.9) 

are of the form 
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 (6.12) 

where 1 5, , , ,  2 and 0,1,2...n jn jn nR A B T j n= =  and , ,  3,4,  0, , ,1,2....jn jnA B j n I II= =  are 

the unknown constants to be determined. The eigenfunctions ( )jnf y ’s are given by 

( )
( )cosh

 for 0, ,
cosh

jn

jn

jn

k h y
f y n I II

k h

−
= =  and ( )

( )cos
 for 1,2,....

cos
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h y
f y n

h





−
= =

                   

(6.13) 

where  for 1,2,3,4,5jnk j = are the eigenvalues. 

These eigenvalues satisfy the dispersion relation in the open water region for 1, 2,5j =  

is given by  

                                               
2

0 0tanh 0.j jk k h g− =   (6.14) 
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with  for  1,2....jn jnk i n= =  and the dispersion relation has one real root 0jk  and an 

infinite number of purely imaginary roots  for  1,2...jn n =  In the plate covered region, 

the  for  3,4jnk j =  satisfies the dispersion relation given by  

                                ( ) ( )2 4 2

0 1 2 0 1tanh 0.jn jn jn jn jnk k k k h k    − + − − =  (6.15) 
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 The dispersion relation as in 

Equation (6.15) has two real root 0jk  and four complex roots  for , , ,jnk n I II III IV=  

of the form .i    In addition, there is infinite numbers of purely imaginary roots 

 for  1,2....jn jnk i n= =  It may be noted that the eigenfunctions ( )jnf y ’s in the open 

water and plate covered region satisfy the orthogonality relation as given by 
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  (6.16) 

with respect to the orthogonal mode-coupling relation defined by 
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2 0 1n jnQ k k = − . 
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The constant term ,nC  ,nC  ( )jnP k  and ( )jnQ k  for 1,2,...n =  are obtained by 

substituting  for 1,2,3,4,5.jn jnk i j= =  In order to determine the unknown coefficients, 

the mode-coupling relation is applied on the velocity potential along with the respective 

eigenfunction and the edge conditions to obtain the system of linear equation. The 

mode-coupling relation as in Equation (6.18) is applied on the velocity potential 

( )1 ,x y   along with the eigenfunction 1 ( )mf y  at 0x =  to obtain the equations given by  

                   

( ) ( ) ( )
1

1

1 1 1 1 1 1

0

0, , ( ) 0, ( ) 0, ( ) .

h h

m m m

h

y f y y f y dy y f y dy  = +   

 

(6.19) 

Further the orthogonality condition as in Equation (6.17) is applied for the 

eigenfunction 1 ( )mf y  and the expression of velocity potentials as in Equation (6.12) 

along with the boundary condition of the vertical porous barrier as in Equation (6.8) 

applied across the vertical boundary at 0,0x y h=    yields the simplified expression 

of unknowns 1 2 2, 0,1,2,... , , 0, , ,1,2,...n n nR n A B n I II= =  for the cases of surface piercing 

and bottom standing barrier given by 

( ) ( )

( ) ( )
1

10 1 1 1 20 20 2 2 2 1

1 1 0

20 20 20 2 2 2 2 1 10 1 1

110 0

, ( ) ( )

1
( ) ( ) , ,

h

n mn n m n n n m

n n

h

n n n n m mn n m

n

R R f f A B A B f y f y dy

ik A B A B f y f y dy I f f
ik G



 

 

= =



=

   
− + + + + +   
   

  
− − − − =  

  

  

 

 (6.20a) 

and in the case of bottom standing barrier for 0,1, 2,....m =  

( ) ( )

( ) ( )
1

10 1 1 1 20 20 2 2 2 1

1 1 0

20 20 20 2 2 2 2 1 10 1 1

110

, ( ) ( )

1
( ) ( ) , .

h

n mn n m n n n m

n n

h

n n n n m mn n m

n h

R R f f A B A B f y f y dy

ik A B A B f y f y dy I f f
ik G



 

 

= =



=

   
− + + + + +   
   

  
− − − − =  

  

  

 

 (6.20b) 

The mode-coupling relation as in Equation (6.18) is applied on the velocity potential 

( )1 ,x x y  along with the eigenfunction 1 ( )mf y  at 0x =  to obtain the equations given by 

                 

( ) ( ) ( )
1

1

1 1 1 1 1 1

0

0, , ( ) 0, ( ) 0, ( ) .

h h

x m x m x m

h

y f y y f y dy y f y dy  = + 

 

(6.21) 
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The orthogonality condition as in Equation (6.17) is applied for the eigenfunction 

1 ( )mf y  and the expression of velocity potentials as in Equation (6.12) along with the 

boundary condition of the vertical porous barrier as in Equation (6.8) applied across the 

vertical boundary at 0,0x y h=    yields the simplified expression of unknowns 

1 2 2, 0,1,2,... , , 0, , ,1,2,...n n nR n A B n I II= =  for the cases of surface piercing and bottom 

standing barrier given by 

             

( ) ( ) ( )20 20 20 2 2 2 2 1

1 0

20 10 2 1 1 1 10 10 1 1

1

( )

                , , ,

h

n n n n m

n

n n n m mn n m

n

ik A B A B f y f y dy

ik R R f f ik I f f



 



=



=

 
− − − 

 

 
+ − = 
 

 



  (6.22) 

for 0,1, 2,....m =  

Applying the mode-coupling relation as in Equation (6.18) on the velocity potential 

( )3 ,x y  at , 1,2jx a j= − =  along with the eigenfunction 3 ( )mf y  to obtain the equations 

given by  

( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

1
3 3 3 3 3 3

0

2 1
3 3 3 3 3 3

, , ( ) , ( ) , (0)

       , (0) , (0) , (0).

h

j m j m j m

n

j m j m j m

n n

a y f y a y f y dy a y f
Q k

a y f a y f a y f
Q k P k


  

 
  

 − = − − −

   + − + − + −



 

(6.23) 

The orthogonality condition as in Equation (6.18) is applied for the eigenfunction 

1 ( )mf y  and the expression of velocity potentials as in Equation (6.12) along with the 

edge boundary condition of floating elastic plate as in Equation (6.9a-c) applied across 

the vertical boundary at 0,0x y h=    yields the simplified expression of unknowns 

, , 2,3, 0, , ,1,2,...jn jnA B j n I II= =  given by 

( ) ( ) ( )

( ) ( )
( )

 

( )
 

( )

20 1 20 1 2 1 2 1

3 1 3 1 3 1 3 1
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(0) (0)
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h
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n
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A e B e A e B e f y f y dy

A e B e A e B e f f
Q k

f f f
Q k P k

 
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
− −

=


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 
+ + + 

 
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− =
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 (6.24) 
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The orthogonality condition as in Equation (6.18) is applied for the eigenfunction 

4 ( )mf y  and the expression of velocity potentials as in Equation (6.12) along with the 

articulated boundary condition of floating elastic plate as in Equation (6.5a-d) applied 

across the vertical boundary at 0,0x y h=    yields the simplified expression of 

unknowns , , 3,4, 0, , ,1,2,...jn jnA B j n I II= =  

( ) ( ) ( )

( ) ( )
( )

 

( )
 

( )

4 2 4 2 4 2 4 2

3 2 3 2 3 2 3 2

4 4 4 4 4 3
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3 3
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 (6.25)                     

for 0, , ,1, 2,....m I II=  

Applying the mode-coupling relation as in Equation (6.18) on the velocity potential 

( )3 ,x x y at , 1,2jx a j= − =  along with the eigenfunction 3 ( )mf y  to obtain the equations 

given by  

( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

1
3 3 3 3 3 3

0

2 1
3 3 3 3 3 3

, , ( ) , ( ) , (0)

, (0) , (0) , (0).

h
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n
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Q k

a y f a y f a y f
Q k P k


  

 
  

 − = − − −

   + − + − + −


 (6.26) 

The orthogonality condition as in Equation (6.18) is applied for the eigenfunction 

1 ( )mf y  and the expression of velocity potentials as in Equation (6.12) along with the 

edge boundary condition of floating elastic plate as in Equation (6.9a-c) applied across 

the vertical boundary at  0,0x y h=    yields the simplified expression of unknowns 

, , 2,3, 0, , ,1,2,...jn jnA B j n I II= =  given by 
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( ) ( ) ( )

( ) ( )
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 (6.27) 

The orthogonality condition as in Equation (6.18) is applied for the eigenfunction 

4 ( )mf y  and the expression of velocity potentials as in Equation (6.12) along with the 

articulated boundary condition of floating elastic plate as in Equation (6.5a-d) applied 

across the vertical boundary at 0,0x y h=    yields the simplified expression of 

unknowns , , 3,4, 0, , ,1,2,...jn jnA B j n I II= =  

( ) ( )

( ) ( )
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 (6.28) 

for 0, , ,1, 2,....m I II=  The mode-coupling relation as in Equation (6.18) is applied on 

the velocity potential ( )4 ,x y  at 3x a= −  along with the eigenfunction 4 ( )mf y  to obtain 

the equations given by 

  ( ) ( )
( )

( ) 

( )
( ) ( ) 

( )
( )

1
4 3 4 4 3 4 4 3 4

0

2 1
4 3 4 4 3 4 4 3 4

, , ( ) , ( ) , (0)

      , (0) , (0) , (0).

h

m m m

n

m m m

n n

a y f y a y f y dy a y f
Q k

a y f a y f a y f
Q k P k


  

 
  

 − = − − −

   + − + − + −


 

 

(6.29) 
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Further, the orthogonality condition as in Equation (6.18) is applied for the 

eigenfunction 4 ( )mf y   in Equation (6.27-6.28) and the expression of velocity potentials 

as in Equation (6.12) along with the edge boundary conditions of floating elastic plate 

as in Equation (6.9a-c) applied across the vertical boundary at 0,0x y h=    yields 

the simplified expression of unknowns 4 4 5, , 0, , ,1,2,..., , 0,1,2,....n n nA B n I II T n= =  of 

the form 

( ) ( )

( ) ( ) ( )
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 (6.30) 

for 0, , ,1, 2,....m I II=  The mode-coupling relation as in Equation (6.18) is applied on 

the velocity potential ( )4 ,x x y  at 3x a= −  along with the eigenfunction 4 ( )mf y  to 

obtain the equations given by 

( ) ( )
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(6.31) 

Further, the orthogonality condition as in Equation (6.18) is applied for the 

eigenfunction 4 ( )mf y   in Equation (6.27-6.28) and the expression of velocity potentials 

as in Equation (6.12) along with the edge boundary conditions of floating elastic plate 

as in Equation (6.9a-c) applied across the vertical boundary at  0,0x y h=     yields 

the simplified expression of unknowns 4 4 5, , 0, , ,1,2,..., , 0,1,2,....n n nA B n I II T n= =  of 

the form 
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for 0, , ,1, 2,....m I II=  On solving the infinite series sum of algebraic equations 

truncated up to a finite number of M  terms in order to solve the system of (8 20)M +  

linear equations having the unknown coefficients such as 1 5, , , ,  2,n jn jn nR A B T j =

0,1,2...,n M=  and , ,  3,4,  0, , ,1,2...., .jn jnA B j n I II M= =  The wave reflection and 

transmission coefficients are obtained as 

                                   50 50
0 0

10 10

tanh
 and .

tanh
r t

k k h
K R K T

k k h
= =       (6.33) 

Due to the presence of vertical porous barriers a part of wave energy is dissipated, so 

the energy dissipation coefficient dK  (Chwang and Chan, 1998) is obtained as  

                                          2 21 .d r tK K K= − +   (6.34) 

6.4 NUMERICAL RESULTS AND DISCUSSIONS 

The hydroelastic behaviour of the floating elastic plate in the presence of vertical bottom 

standing and surface piercing barriers for different support conditions under the action 

of the incident wave is analysed based on Timoshenko-Mindlin theory in finite water 

depth. The study is performed to analyze the reflection coefficient rK , transmission 

coefficient tK , dissipation coefficient dK , plate deflection 0/j I , bending moment

( )M x , shear force ( )W x  and strain on the plate  . The analysis is carried out for 

varying values of porosity, barrier heights and spacing between the barrier and floating 

elastic plate. The study also considers the various articulation conditions in the floating 

elastic plate. Three different cases of edge support condition i.e. free-free edge, simply 

supported edge and fixed edge conditions are considered and compared in detail. The 

evanescent wave mode is truncated upto 20M =  throughout the numerical computation 

and the convergence in the numerical result is achieved for 15.M   The numerical 

computations are carried out considering Young’s Modulus 5GPa,E =  / 0.9,p w  =  

0.3, =  
-29.8ms ,g =  complex porous effect parameter 0 0.5 0.5 ,G i= +  barrier height 

1 / 0.5,h h =  spacing between the barrier and plate edge 
1 / 0.1,L L =  vertical linear 

spring stiffness 5 -1

33 10 Nmk =  and flexural rotational spring stiffness 5

55 10 Nm/radk =  

unless otherwise mentioned. The accuracy of the computed numerical results is checked 

with the energy balance relation as in Equation (6.34). 
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6.4.1 Bottom standing vertical porous barrier  

The mitigation of hydroelastic behaviour due to the wave interaction with bottom 

standing vertical barrier in front of an articulated floating thick elastic plate is analysed 

in finite water depth for varying porosity, barrier height and spacing between a barrier 

and floating elastic plate.  

6.4.1.1 Wave reflection, transmission and dissipation coefficients 

The wave reflection, transmission and dissipation coefficients are plotted versus non-

dimensional wavenumber 10k h   for varying porous effect parameter, depth of the barrier 

and spacing between the articulated floating plate and bottom standing vertical barrier. 

The resonating phenomenon is observed for various combinations of porous effect 

parameter 0G  within 100.1 6k h   in the wave reflection coefficient (Figure 6.2a), 

transmission coefficient (Figure 6.2b) and wave dissipation coefficient (Figure 6.2c). 

The increase in the 10k h  shows the higher estimation in the wave reflection coefficient 

(Figure 2a), minor values in the wave transmission coefficient (Figure 6.2b) and an 

opposite trend is observed in the wave dissipation coefficient (Figure 6.2c) as compared 

with the wave reflection coefficient. It is also noted that the energy dissipation is 

increasing with reduction in the porous effect parameter 0G  within 100.1 6k h  , 

mainly due to the increasing porosity of the vertical bottom standing porous barrier. In 

general, the higher 0G  indicates that the higher friction factor and porosity of the 

vertical barrier. The increase in the porosity shows significant enhancement in the wave 

damping but the higher values in the friction factor shows the considerable impact on 

wave reflection coefficient. A moderate friction factor shows the applicable estimation 

in the wave reflection and energy damping. In the case of 10 6k h  , it is observed that 

there is no significant variation in wave reflection, transmission and dissipation 

coefficients for varying values of porous effect parameter 0G , due to reduction in 

wavelength of the incident waves. The variation in tK  for varying values of 0G  is not 

significant, which implies that the dissipated energy is mainly contributed by the 

dispersion of reflected waves and the present study shows that 0 0.5 0.5G i= +  is suitable 

to achieve high energy damping in the case of bottom standing barrier away from the 

articulated floating elastic plate. 
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Figure 6.2: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying porosity effect parameter 0G  considering 

1 / 0.5h h =  and 1 / 0.1L L = . 

In the Figure 6.3(a-c), the wave reflection coefficient (Figure 6.3a), transmission 

coefficient (Figure 3b) and dissipation coefficient (Figure 6.3c) is presented for variable 

barrier height. In the case of bottom standing barrier, 1 0h h = implies the barrier height 

reaches to the free surface and 1 1h h =  shows the vertical barrier is absent. The rapid 

rise and fall in the rK  is obtained with increase in the 10k h  and the change in barrier 

height shows the significant impact on reducing the resonating troughs at particular 

intervals. However, the resonating pattern in the wave transformation is due to the wave 

transmission in the presence of barrier and wave reflection by the articulated plate. The 

wave transmission (Figure 3b) reaches to minor values for all the combinations of 

barrier height due to the trapping of the incident waves in the spacing existing between 

the vertical barrier and articulated plate. The energy dissipation (Figure 6.3c) reduces 

with surge in the values of the height of the barrier 1h h , which is mainly due to the 

decrease in the height of bottom standing porous barrier. However, if the barrier height 

reaches to the free surface, the energy damping reaches to the maximum values 1dK =   

for particular intervals and the reduction in the barrier height shows the minor 
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oscillations in the dK  and wave dissipation approaches to zero. At  10 4.0k h = , there is 

a 56%, 93% and 98% reduction in the dK  as observed for 1 0.25,h h =  1 0.5,h h =  and 

1 0.75h h =  respectively as compared with  1 0h h = .  The reduction in the dK  suggests 

that, the performance of the bottom standing barrier solely depends upon the barrier 

height and better energy damping is possible in the presence of fully extended barrier. 
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Figure 6.3: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying barrier heights considering 0 0.5 0.5G i= +  and

1 / 0.1L L = . 

The spacing between the barrier and articulated plate is one of the influencing 

phenomena in trapping of the incident waves. In the Figure 6.4(a-c), the rK (Figure 

6.4a), tK  (Figure 6.4b) and dK  (Figure 6.4c) is presented for various combinations of 

spacing within 10.05 0.2.L L   It is observed that with the increase in the  1L L , the 

oscillations in the wave reflection gets broadens and influences the energy damping and 

the dK  is observed increasing with reduction in the values of 1L L  mainly due to the 

change in the spacing between the barrier and floating elastic plate. In the case of non-

dimensional wavenumber 10 6k h  , it is observed that there is no significant variation 

in transmission coefficient for varying spacing between the barrier and floating plate, 
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due to the reduction in wavelength, which implies the dissipated energy is mainly 

contributed by the dispersion of reflected waves. However, the enhance in the energy 

damping dK  is possible for high spacing within 100.1 1k h    and dK  reduces with 

increase in the 10k h  within 101 4.k h   Thereafter, the uniform values of energy 

damping is obtained within 104 10k h   for all the combinations of  1L L  due to the 

porous barrier by achieving the full reflection and zero transmission coefficients. 
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Figure 6.4: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying spacing between the barrier considering 

0 0.5 0.5G i= +  and 1 / 0.5h h = . 

6.4.1.2 Hydroelastic responses of the articulated floating plate 

The hydroelastic response of articulated floating elastic plate under the action of ocean 

waves in terms of plate deflection 0j I , stain in the floating plate  , bending moment 

( )M x  and shear force ( )W x  resultants along the plate length /x L  for varying porous 

effect parameter, barrier height and spacing between the bottom standing barrier and  

the articulated floating elastic plate is presented. The hydroelastic responses are noticed 

to reduce due to the presence of articulated joint in the floating elastic plate as illustrated 

in Figure 6.5(a-d).  
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Figure 6.5: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L  for different porosity of the bottom 

standing barrier considering 10 2.0,k h =   1 / 0.5h h =   and 1 / 0.1.L L =  

The 58% (Figure 6.5a), 81% (Figure 6.5b), 84% (Figure 6.5c) and 92 % (Figure 6.5d) 

reduction in the plate deflection 0j I , stain of the floating plate , bending moment 

( )M x  and shear force ( )W x  is obtained due to the presence of the articulation at the 

oscillatory peak for 0 5 5G i= +  and similar trend is noticed for various combinations of 

porous effect parameter 0G  in the form of oscillatory peaks and troughs. The difference 

in the plate deflection and strain is also observed at the articulated joint due to change 

in rigidity at the connecting joints. The responses are observed to increase with the surge 

in porous effect parameter 0G , due to increase in energy dissipation along with the 

reduction in the barrier porosity. The pattern of responses is observed to remain similar 

for varying porous effect parameter. However, 30%, 11% and 4% increase in the 0j I  

is obtained for 0.5 0.5 5 5i G i+   +  as compared with the 0 0 0G i= +  due to the 

increase in the permeability of the barrier at oscillatory peak, but an opposite trend is 

obtained in the strain   (Figure 5b) with increase in the porous effect parameter 0G . 
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Similar trend in bending moment ( )M x  and shear force ( )W x  in the articulated 

floating elastic plate is observed for the case of varying porous effect parameter in the 

presence of bottom standing barrier. 
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Figure 6.6: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L  for varying barrier heights considering 

10 2.0,k h =  0 0.5 0.5G i= +  and 1 / 0.1.L L =  

The hydroelastic responses are noticed to increase with the surge in the values of 1h h  

due to the reduction in the barrier height, signifying lesser energy dissipation as 

illustrated in Figure 6.6(a-d). The presence of the articulated joint in the floating elastic 

plate shows difference in response and further reduction in the hydroelastic response 

due to the change in the rigidity at the connecting joints. The pattern of the hydroelastic 

responses is observed to remain same for varying porous effect parameter. The 57% 

(Figure 6.6a), 83% (Figure 6.6b), 85% (Figure 6.6c) and 91 % (Figure 6.6d) reduction 

in the plate deflection 0j I , stain   , bending moment ( )M x  and shear force ( )W x  

is noted due to the presence of the articulation at each of the peak point for 1 / 1.h h =  A 

similar reduction in the hydroelastic response in achieved for all the combinations of 

height of the porous barrier 1 / .h h  
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Figure 6.7: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L  for finite spacing 1L L  considering 

10 2.0,k h =  0 0.5 0.5G i= +  and 1 / 0.5.h h =  

6.4.2 Surface piercing vertical porous barrier  

The significance of surface piercing barrier away from the articulated floating elastic 

plate on the wave scattering is analysed for finite water depth varying porosity, barrier 

height and spacing between a barrier and floating elastic plate.  

6.4.2.1 Wave reflection and transmission coefficients 

The reflection, transmission and dissipation coefficients are plotted versus non-

dimensional wavenumber 10k h  for the surface piercing vertical barrier in front of the 

articulated floating elastic plate. The wave reflection coefficient (Figure 6.8a), 

transmission coefficient (Figure 6.88b) and dissipation coefficient (Figure 6.8c) are 

examined for various values of the porous effect parameter 0G . The increase in the 0G  

means increase in the porosity, friction factor and inertia effect. The increase in the 

friction factor enhances the wave reflection and the increase in the porosity enhances 

the energy damping. However, the barrier is thin and porosity of the barrier performs 

minor role as compared with the friction factor offered by the vertical barrier. In the 
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present case the variation in the 0G  shows the resonating peaks and troughs in the rK  

for various combinations of 0G  and the resonating troughs are obtained, which may be 

due to the formation of standing waves. However, the resonating crests and troughs 

broaden with increase in the 10k h  and influence the wave scattering. The wave 

transmission tK  (Figure 6.8b) is observed to reduce with the decrease in the values of 

0G  mainly due to the dissipation of waves from barriers. The energy dissipation (Figure 

6.8c) is observed increasing with the reduction in the values of 0G , which is mainly due 

to the increase in the porosity and friction factor offered by the vertical porous barrier. 

On the other hand, at very low values of 0G , high reflection and dissipation of wave is 

observed which is mainly due to the blocking of waves by the barrier. The energy 

damping due to the presence of surface piercing barrier is observed high as compared 

with the bottom standing barrier due to the fact that the wave energy is concentrated on 

the free surface.    
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Figure 6.8: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying porosity of vertical barrier considering   

1 / 0.1L L =  and 1 / 0.5h h = . 

In the Figure 6.9(a-c), the wave reflection (Figure 6.9a), transmission (Figure 6.9b) and 

wave energy dissipation (Figure 6.9c) are presented varying the barrier depth 1h h  
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within 10 1.h h   In the case of surface piercing barrier, the value 1 0h h =  

corresponds to the no barrier case suggesting direct incident of wave on to the 

articulated floating elastic plate, signifying zero energy dissipation and higher 

transmission of incident waves and 1 1h h =  corresponds to the fully extended barrier. 

In the absence of the barrier 1 0,h h =  the wave reflection reaches to the unity and wave 

transmission shows the minimum value. On the other hand, for 10.25 1h h   shows 

almost uniform estimation in the wave transformation, and resonating peaks and troughs 

are evident in the design of the surface piercing barrier. The variation in the rK  and dK  

is minimum for dimensionless wave number within 101.8 10k h   for various 

combinations of 10.25 1h h   and it is mainly due to the barrier position. In the 

present case, the barrier is placed near to the free surface and depth of the barrier is 

increased. In general, the wave energy potential is concentrated on the free surface and 

it is trapped by the spacing available between the barrier and articulated plate. However, 

the depth of the barrier shows minor role in enhancing the wave damping in the case of 

the surface piercing barrier and the height of the bottom standing barrier shows a 

significant role in enhancing the energy damping. 
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Figure 6.9: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying barrier heights considering 0 0.5 0.5 ,G i= +  and 

1 / 0.1L L =  
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In Figure 6.10(a-c), the wave reflection (Figure 6.10a) is observed varying in the 

oscillatory manner and broadens with increase in the 1 .L L  The resonating peaks and 

troughs influences the wave reflection in the periodic intervals and it is evident that the 

resonating peaks and troughs may be due to the constructive and destructive 

interferences. The wave transmission (Figure 6.10b) reaches to the minor values for all 

the combinations of  1L L  with increases in the 10 .k h  It is also observed that the energy 

dissipation peaks are increasing with increasing values of 1L L , which is mainly due 

to the increase in the spacing between the barrier and floating elastic plate further 

causing resonance in that region. Slight surge in the values of tK  is observed for 

increasing spacing between the barrier and floating elastic plate, which implies the 

dissipated energy is mainly contributed from the dispersion of reflected waves. 

However, the resonating troughs in the rK  and dissipating peaks in the dK  are helpful 

in the actual design of the spacing between the vertical barrier away from the articulated 

floating plate.  
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Figure 6.10: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying spacing between the barrier and floating elastic 

plate considering 0 0.5 0.5G i= +   and 1 / 0.5h h = . 
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6.4.2.2 Hydroelastic responses of floating plate 

The hydroelastic responses of articulated floating elastic plate under the action of ocean 

waves along the plate length /x L  for varying the parameters of surface piercing 

vertical barrier in front of the articulated floating elastic plate is presented. The 

hydroelastic responses are noticed to reduce due to the presence of articulated joint in 

the floating elastic plate as illustrated in Figure 6.11(a-d). The difference in the response 

is also observed at the articulated joint due to change in rigidity at the connecting joints.  
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Figure 6.11: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L  for varying porosity considering 

10 2,k h =  1 / 0.1L L =  and 1 / 0.5h h = . 

The responses are observed to increase with the surge in porous effect parameter 0G , 

due to increase in energy dissipation along with the reduction in the barrier porosity. 

The pattern of responses is observed to remain similar for varying values of porous 

effect parameter. The increase in the porous effect parameter 0G  shows significant 

changes in the hydroelastic response and each of the oscillatory peak and trough attains 

maximum value due to the high porosity and friction factor, which allows more incident 

waves through the barrier for higher values of 0G . The comparative study is performed 
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to show the articulation impact on the hydroelastic response. The 55% (Figure 6.11a), 

82% (Figure 6.11b), 87% (Figure 6.11c) and 89 % (Figure 6.11d) decrease in the plate 

deflection 0j I , wave induced stain  , bending moment ( )M x  and shear force 

( )W x  is noted at each of the peak point due to the presence of the articulation for porous 

effect parameter 0 5 5 .G i= +  Thereafter, a gradual reduction in the hydroelastic 

responses is achieved with the reduction in the 0G  and the variation is evident at the 

point where oscillatory peaks and troughs are dominant. 
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Figure 6.12: (a) plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L  for varying heights of the surface 

piercing barrier considering 10 2,k h =  0 0.5 0.5 ,G i= +  and 1 / 0.1L L = . 

In Figure 6.12(a-d), the hydroelastic responses are noticed to decrease with the surge in 

the values of 1h h  due to increase in the barrier height which signifies higher energy 

dissipation. The presence of articulated joint in the floating elastic plate shows 

difference in response and further reduction in the hydroelastic response due to the 

change in rigidity at the connecting joints. However, the increase in the barrier depth 

shows the significant changes in the hydroelastic response at the each of the peaks and 

troughs. The 59% (Figure 6.12a), 79% (Figure 6.12b), 85% (Figure 6.12c) and 90% 
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(Figure 6.12d) decrease in the plate deflection 0j I , wave induced stain  , bending 

moment ( )M x  and shear force ( )W x  is achieved due to the presence of the articulation 

for no barrier condition 1 0.h h =  Thereafter, a gradual reduction in the hydroelastic 

responses is observed due to the change in the barrier depth and it shows very little 

variation in the hydroelastic response due to the barrier position which is placed near to 

the free surface. On comparing in the case of the bottom standing barrier as in Figure 

6.6(a-d), the barrier height shows significant impact on the wave transformation and 

hydroelastic response as compared with the barrier placed near to the surface. However, 

the surface piercing barrier shows significant impact on the hydroelastic response for 

minimum depth of the barrier 1 0.25.h h =  
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Figure 6.13: (a) Plate deflection (b) wave induced strain (a) bending moment and (b) 

shear force resultants along the plate length /x L  for finite spacing 
1L L  considering 

10 2,k h =  0 0.5 0.5 ,G i= +  and 1 / 0.5h h = . 

In Figure 6.13(a-d), the hydroelastic response are noticed to shift backwards due to the 

reduction in the spacing between the barrier and the floating elastic plate 1L L . The 

oscillatory peaks and troughs are noticed to vary with the change in the spacing between 
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the barrier and the floating elastic plate 
1L L  and the oscillating peaks may be due to the 

high penetration of waves by the barrier and oscillating troughs are observed may be 

due to the standing wave formation which is evident in the design of the spacing  1 .L L  

However, the presence of articulated joint in the floating elastic plate shows difference 

in response and further reduction in the hydroelastic response due to the change in 

rigidity at the connecting joints. 

6.4.3 Effect of articulation on floating plate 

The mitigation of hydroelastic behaviour due to the wave interaction with vertical 

barriers in front of the articulated floating elastic thick plate is analysed in finite water 

depth for varying vertical linear spring stiffness and flexural rotational spring stiffness 

to understand the effect of articulation in the presence of vertical barriers. 

6.4.3.1 Wave reflection and transmission coefficients 

In Figure 6.14(a-c), the reflection coefficient (Figure 6.14a), transmission coefficient 

(Figure 6.14b) and dissipation coefficient (Figure 6.14c) are plotted versus non-

dimensional wave number for different vertical linear spring stiffness and flexural 

rotational spring stiffness 33k and 55k  at the connecting joints along the floating elastic 

plate with bottom standing vertical barrier. Minimal variation in the wave reflection 

coefficient is observed for the spring stiffness 5 -1

33 10 Nmk  and 5

55 10 N/radk  . The 

wave transmission is observed to shift towards lower values of non-dimensional wave 

number for lower values of spring stiffness. However, the resonating peaks and troughs 

are widely developed in the case of wave transmission for various values of 33k and 55.k  

On the other hand, the vertical linear spring stiffness is observed to be dominant as 

compared to flexural rotational spring stiffness, signifying lower transmission of waves. 

The variation between the outcomes in the dK  is observed to be very minimum within 

100.1 2.5k h   thereafter, an oscillating phenomenon is noted with increase in the 10k h  

Minimum values of 33k and 55k  shows the higher estimation in the energy damping and 

increase in the 33k and 55k  presents the reduction in the oscillations along with energy 

damping. The presence of bottom standing vertical barrier in combination with varying 

articulation contributes in dissipation of wave energy from reflected waves. 
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Figure 6.14: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying 
33k  and 55k  considering 0 0.5 0.5 ,G i= +  

1 / 0.1L L =  and 1 / 0.5h h =  in the case of bottom standing porous barrier. 

In the Figure 6.15(a-c), the wave reflection coefficient (Figure 6.15a), transmission 

coefficient (Figure 6.15b) and dissipation coefficient (Figure 6.15c) are plotted versus 

non dimensional wave number 10k h  for different vertical linear spring stiffness 33k  and 

flexural rotational spring stiffness 55k  at the connecting joints along the floating elastic 

plate with surface piercing vertical barrier. Almost uniform estimation is obtained in 

the wave reflection coefficient in the behaviour of waves for the spring stiffness 

5 -1

33 10 Nmk   and 5

55 10 N/radk  as observed similar in the case of bottom standing 

barrier as in Figure 14a. A continuous pattern of peaks in wave refection and dissipation 

is observed due to the resonance caused in between the barrier and floating elastic plate. 

However, for all the combinations of 33k and 55k  an oscillating pattern is obtained in the 

wave reflection coefficient and almost negligible transmission coefficient along with 

resonating pattern in the energy damping is achieved. It is also observed that, the 

optimum points in the wave reflection coefficient is significant to achieve the resonating 

crests in the energy damping. However, 33k  and 55k  influences the wave scattering for 

particular intervals but high energy damping can be achieved due to the presence of 
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surface piercing barrier. As a comparison with the bottom standing barrier, the surface 

piercing barrier shows the significant role in reducing the wave transmission coefficient 

and enhances the energy damping, which also influences the design of surface piercing 

barrier in order to reduce the wave impact on the articulated floating structure. However, 

the resonating crests in the energy damping is evident in order to reduce the wave impact 

on the articulated floating plate for better life period.  
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Figure 6.15: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for varying 33k  and 
55k  considering 0 0.5 0.5 ,G i= +  

1 / 0.1L L =  and 1 / 0.5h h =  in the case of surface piercing porous barrier. 

6.4.3.2 Hydroelastic responses of floating plate 

The hydroelastic response of the floating elastic plate are presented for varying spring 

stiffness at the connecting joint of articulated floating elastic plate along with a bottom 

standing vertical barrier as illustrated in Figure 6.16(a-d). The difference in the response 

is observed at the articulated joint due to change in rigidity at the connecting joints. The 

responses are observed to reduce with the surge in the values of spring stiffness 33k and

55k  at the connecting joints due to increase in rigidity. The oscillating crests and troughs 

are observed in the hydroelastic response of the floating plate with increase in the 33k  

and 55k which is similar as in the previous sections. Particularly, rigid connection shows 
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higher estimation in the hydroelastic response as compared with the other type of 

articulations. A comparative study is performed for rigid connection between the crest 

values before and after articulation. The 46% (Figure 6.16a), 24% (Figure 6.16b), 80% 

(Figure 6.16c) and 86% (Figure 6.16d) decrease in the plate deflection 0j I  at 

oscillating crest, wave induced stain   at oscillating trough, bending moment ( )M x  

and shear force ( )W x  at oscillating crests is achieved due to the presence of the 

articulated floating elastic plate combined with bottom standing barrier. 
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Figure 6.16: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L for varying 33k  and 55k  considering 

10 2,k h =  0 0.5 0.5 ,G i= +  1 / 0.1L L =  and 1 / 0.5h h =  in the case of bottom standing 

barrier.  

In Figure 6.17(a-d), the plate deflection 0j I , wave induced stain  , bending moment 

( )M x  and shear force ( )W x  are plotted varying spring stiffness at a connecting joint 

in an articulated floating elastic plate along with surface piercing vertical barrier. The 

responses in the presence of surface piercing vertical barrier are observed to reduce as 
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compared with bottom standing vertical barrier due to higher values of wave 

dissipation. The 47% (Figure 6.17a) increase in the in the plate deflection 0j I  at 

oscillating crest, 22% (Figure 6.17b) decrease in the stain   at oscillating trough, 79% 

(Figure 6.17c) and 85% (Figure 6.17d) reduction in the bending moment ( )M x  and 

shear force ( )W x  at oscillating crest is observed due to the presence of the rigid 

articulation. A gradual variation in plate deflection 0j I , wave induced stain  , 

bending moment ( )M x  and shear force ( )W x  is noted at each of the oscillating crest 

and trough with variation in the 33k  and 55.k  However, an almost uniform estimation or 

minor variation in the hydroelastic responses is noticed for 5 -1

33 10 Nmk =  and

10

55 10 Nm/radk = . 
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Figure 6.17: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the plate length /x L for varying 33k  and 55k  considering 

10 2,k h =  0 0.5 0.5 ,G i= +  1 / 0.1L L =  and 1 / 0.5h h =  in the case of surface piercing 

barrier. 
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6.4.4 Effect of different support conditions 

The mitigation of hydroelastic behaviour due to the wave interaction with vertical 

barriers in front of the articulated floating elastic thick plate is analysed in finite water 

depth for different edge support conditions of floating elastic plate. 

6.4.4.1 Wave reflection, transmission and dissipation coefficients 

The wave reflection coefficient (Figure 18a), transmission coefficient (Figure 18b) and 

dissipation coefficient (Figure 18c) are plotted versus non-dimensional wave number 

for different support condition along the edges of articulated floating elastic plate with 

bottom standing vertical barrier.  
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Figure 6.18: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for different support condition considering 0 0.5 0.5 ,G i= +  

1 / 0.1L L =  and 1 / 0.5h h =  in the case of bottom standing barrier. 

From Figure 6.18: (a,b), the resonating peaks and troughs are obtained in the wave 

transformation for particular 10k h  values for free-free edge, simply-supported edge and 

fixed edge conditions. A higher wave dissipation is observed for wavenumber within 

100 2,k h   which is mainly contributed by wave reflection from the vertical barrier for 



 
  

Chapter 6: Wave attenuation due to the presence of submerged structure 

 

193 
 

all the support conditions. The maximum estimation in the rK  and minimum estimation 

in the tK  is obtained for simply supported edge condition as compared with the free-

free edge and fixed edge conditions. The fixed edge support shows significantly low 

wave reflection coefficient as compared with free-free edge and simply supported edge 

condition, which is mainly due to the zero bending moment at the edges. The number 

of completely transmitted wave is minimal for fixed edge condition of floating elastic 

plate, due to zero slope at the edges. 
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Figure 6.19: (a) Reflection, (b) transmission and (c) dissipation coefficient versus non-

dimensional wavenumber for different support conditions considering 0 0.5 0.5 ,G i= +  

1 / 0.1L L =  and 1 / 0.5h h =  in the case of surface piercing barrier. 

In the Figure 6.19(a-c), the wave reflection coefficient (Figure 6.19a), transmission 

coefficient (Figure 6.19b) and energy damping coefficient (Figure 6.19c) are plotted 

versus non-dimensional wave number for different support conditions along the edges 

of articulated floating elastic plate with surface piercing vertical barrier. A higher wave 

dissipation is observed in the resonating phenomenon which is mainly contributed by 

wave reflection from the vertical barrier for all the support conditions. A regular pattern 

in the energy dissipation is observed in the case of surface piercing barrier as compared 

to bottom standing barrier. Further, the transmission of wave is observed to be low as 
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compared to bottom standing vertical barrier, mainly due to the interaction of wave with 

the surface piercing vertical barrier. In order to achieve the high energy damping the 

resonating peaks in the dK  is evident to achieve the minimum wave impact on the 

floating elastic plate and it is helpful in the design and construction of articulated 

floating plate with surface piercing barrier.   

6.4.4.2 Hydroelastic response of floating plate 

In Figure 20(a-d), the hydroelastic response of the floating elastic plate is plotted for 

different support condition along the edges of articulated floating elastic plate with 

bottom standing vertical barrier. The difference in the response is observed at the 

articulated joint due to change in rigidity at the connecting joints. The oscillating peaks 

and troughs are observed in each of the free-free edge, simply supported edge and fixed 

edge conditions.  
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Figure 6.20: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the articulated plate length /x L for different edge support 

conditions considering 10 2,k h =  0 0.5 0.5 ,G i= +  1 / 0.1L L =  and 1 / 0.5h h =  in the case 

of bottom standing barrier. 
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In all the combinations the fixed edge condition shows the high peak value and trough 

value in the plate deflection (Figure 20a), strain (Figure 6.20b), bending moment 

(Figure 6.20c) and shear force (Figure 6.20d). Thereafter, simply supported edge 

conditions shows the minor variation in the hydroelastic behaviour as compared with 

the free-free edge and fixed edge conditions mainly due to the combination of zero 

deflection and bending moment at the edges. Around 9% reduction in the plate 

deflection (Figure 6.20a) at peak point, 47% reduction in the strain (Figure 20b) at 

oscillatory trough, 90% and 95% reduction in the bending moment (Figure 20c) and 

shear force (Figure 20d) are obtained for the fixed edge condition.  
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Figure 6.21: (a) Plate deflection (b) wave induced strain (c) bending moment and (d) 

shear force resultants along the articulated plate length /x L for different edge support 

conditions considering 10 2,k h =  0 0.5 0.5 ,G i= +  1 / 0.1L L =  and 1 / 0.5h h =  in the case 

of surface piercing barrier.  

The hydroelastic responses for different support condition along the edges of articulated 

floating elastic plate with surface piercing vertical barrier is illustrated in Figure 6.21(a-

d). The pattern in the plate deflection 0j I , wave induced stain  , bending moment 

( )M x  and shear force ( )W x  is observes similar as in Figure 6.20 (a-d). The responses 
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are observed to be low for surface piercing barrier as compared to the bottom standing 

vertical barriers due to the wave damping by surface piercing vertical barrier. A 

comparative study is performed for the hydroelastic response due to the presence of 

articulated plate away from the bottom standing barrier (Figure 6.20a-d) and surface 

piercing barrier Figure (6.21a-d) for fixed edge condition. A 31% reduction in the plate 

deflection, 35% reduction in the wave induced strain, 33% reduction in the bending 

moment and 35% reduction in the shear force is achieved at each of the peak point due 

to the surface piercing barrier as compared with the bottom standing barrier.  

6.5 CONCLUSIONS 

The wave attenuation due to the interaction of vertical porous barrier in front of the 

articulated floating plate is analysed based on Timoshenko-Mindlin plate theory in 

finite water depth. The mathematical model is developed based on eigenfunction 

expansion method along with orthogonal mode-coupling relation for linearized wave 

theory. The numerical computations are performed to analyse the wave reflection 

coefficient, wave transmission coefficient, dissipation coefficient and hydroelastic 

behaviour of the elastic plate under the action of an incident wave. The wave energy 

dissipation due to the presence of vertical barrier either bottom standing or surface 

piercing is computed and checked to satisfy the energy balance relation. In addition, a 

brief comparison of the numerical results for different types of support conditions is 

discussed in detail. The conclusions drawn from the present study are as follows: 

• The increase in the porosity, height of the barrier and change in the spacing between 

the vertical barrier and articulated floating elastic plate has suggested an increase in 

the wave energy dissipation for both the bottom standing and surface piercing 

vertical barrier.  

• A regular pattern in wave reflection and dissipation is observed for barriers up to 

free surface due to the resonance phenomena. The surface piercing vertical barrier 

shows higher reduction in wave transmission and significant increase in the wave 

energy damping as compared to bottom standing vertical barrier.  

• The hydroelastic responses are observed to increase with the reduction in the barrier 

porosity and barrier height due to the increase in wave energy dissipation. On the 
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other hand, the backward shift in the responses are observed due to the reduction in 

the spacing between the barrier and floating elastic plate. 

• Higher hydroelastic response is observed for a bottom standing barrier in 

comparison with surface piercing vertical barriers in front of large floating elastic 

plate due to higher wave energy dissipation from a surface piercing vertical barrier. 

• The variation in articulation condition contributes in the wave energy dissipation in 

combination with vertical barrier which allows the designers to design the structure 

as per the required functionality and safety. 

• The responses are observed to reduce with the surge in the values of spring stiffness 

33k  and 
55k  at the connecting joints due to increase in rigidity. 

• The fixed edge support shows significantly low wave reflection as compared to free-

free edge and simply supported edge condition, which is mainly due to the zero 

bending moment at the edges. 

• The simply supported edges show lower responses as compared to other edge 

conditions, which is mainly due to the combination of zero deflection and bending 

moment at the edges. 

• The comparative study between the bottom standing and surface piercing barriers 

with floating elastic plate suggests that the 31% reduction in the plate deflection, 

35% reduction in the wave induced strain, 33% reduction in the bending moment 

and 35% reduction in the shear force is achieved at each of the peak point.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1 SUMMARY OF RESEARCH WORK  

The study focused on the hydroelastic behaviour of large floating flexible structures 

based on Timoshenko-Mindlin plate theory. The significance and importance of rotary 

inertia and shear deformation in analysing the hydroelastic behaviour large floating 

structures are studied. The eigenfunction expansion method along with mode coupling 

relation is applied to analyse the hydroelastic behaviour of the large floating elastic 

plate in finite water depth. The work also aimed at studying the influence of different 

types of edge support conditions on the hydroelastic behaviour of the large floating 

elastic plate. The study involved the effect of articulation with varying stiffness in the 

hydroelastic behaviour of articulated large floating structures in finite and shallow 

water depth. Further, the wide spacing approximation is applied to reduce the 

complexity due to the periodic array of multiple articulated floating elastic plate. The 

wave attenuation due to the interaction with submerged vertical porous barriers in front 

of the large floating structures is studied to understand the significance of wave trapping 

due to varying bottom topography for the waves interacting with floating elastic plate. 

The primary purpose of the study is to reduce the hydroelastic response of large floating 

flexible structures under the action of ocean waves. The use of articulated joints, 

varying bottom topography and submerged structures are observed in the wave 

attenuation and reduction of the hydroelastic response of VLFS. The study forms a basis 

for scientists and engineers in the detail design and analysis of the VLFS for future 

megastructures. A brief summary of research work pursed are as follows:  

• A boundary value problem was developed based on linearized boundary condition 

in open and plate covered regions along with required edge boundary for the case 

of finite and shallow water depth. The plate covered boundary condition is based 

on Timoshenko-Mindlin plate theory (Fox and Squire, 1991) which includes the 

effect of rotary inertia and transverse shear deformation.  
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• The generalized eigenfunction expansion method along with the orthogonal mode 

coupling relation is applied to solve the higher-order boundary value problem for 

the case of finite water depth. Further, the continuity of energy and mass flux was 

applied in the solution method at shallow water depth. The far-field boundary 

condition is applied along the open water regions.  

• The contour plot for the roots of plate covered dispersion relation is plotted to show 

the distribution and complexity in the higher-order boundary value problem.  

• The set of algebraic equations are solved up to a finite number of evanescent modes 

to obtain the unknown wave amplitudes. Using the wave amplitudes along the open 

water region, the wave reflection and transmission coefficients were computed and 

observed to satisfy the energy balance relation for both the cases of water depths. 

• The computed wave amplitudes along the plate covered region are utilized to obtain 

the hydroelastic behaviour along the floating elastic plate based on Timoshenko-

Mindlin plate theory. The variation in hydroelastic behaviour of floating elastic 

plate for different plate properties and water depth are studied in detail. 

• The numerical computation is carried out to analyse the hydroelastic behaviour of 

floating elastic plate at different cases of edge support conditions. Further, a 

comparative study for the case of free-free edge, simply supported edge and fixed 

edge condition was done to analyse the hydroelastic behaviour of the floating elastic 

plate.  

• The mathematical model and the hydroelastic analysis are carried out for the 

articulated floating elastic plate along with edge boundary conditions and varying 

spring stiffness along the articulated joints for the case of finite and shallow water 

depth.  

• The hydroelastic analysis of articulated floating elastic plate is analysed and 

compared for three cases of articulated joints i.e. open gap, hinged connection and 

continuous plate.  

• The direct eigenfunction expansion method is used in the hydroelastic analysis of 

single and multiple articulated floating elastic plate. The complexity with an 

increasing number of periodic arrays of multiple articulations along the floating 

elastic plate is simplified with the application of wide spacing approximation.  



 
 

Chapter 7: Conclusions and Future work 

 
 

201 
 

• The hydroelastic analysis is carried out for the floating elastic plate acted upon by 

ocean waves over varying bottom topography. The orthogonal mode-coupling 

relation is employed along with the continuity equations for pressure, velocity, 

deflection, bending moment, slope and shear force for waves over variable bottom 

topography. 

• The wave trapping and transformation due to single and multiple stepped bottom 

topography are analysed. Detail comparison of the wave scattering and hydroelastic 

behaviour of the floating elastic plate is performed for different types of step bottom 

topography.  

• The mathematical model is developed to analyse the wave attenuation due to the 

presence of submerged vertical porous barriers in front of the articulated floating 

elastic plate. The boundary condition for the vertical porous barrier is defined based 

on Darcy's law. 

• The wave attenuation due to the presence of submerged vertical barriers in front of 

the articulated floating elastic plate is demonstrated for bottom standing and surface 

piercing vertical barriers. 

• The mitigation in hydroelastic response along the floating elastic plate due to the 

combination of different support conditions and the articulated joint is also studied. 

The wave energy dissipation due to the presence of vertical barrier either bottom 

standing, or surface piercing is computed and checked to satisfy the energy balance 

relation. 

7.2 SIGNIFICANT CONTRIBUTION OF THE THESIS 

The work presented in this thesis has been aimed towards developing analytical tools 

for wave structure interaction problems and to analyse physical problems which are of 

recent interest in Ocean Engineering and Offshore Structures. The main contributions 

from the work done in the thesis are as follows: 

• The expansion formulae modified based on Timoshenko Mindlin plate theory 

associated with the governing equation satisfy higher-order boundary condition to 

obtain the solution for the wave interaction with the finite floating elastic plate.  
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• The rotary inertia and transverse shear deformation are observed to play an 

important role in the hydroelastic analysis of the floating flexible structures and 

hence the consideration of Timoshenko Mindlin plate theory are significant in the 

analysis. The contour plots for the roots in the plate covered dispersion relation are 

presented to illustrate the distribution and complexity in the roots for the plate 

covered dispersion relation.   

• The shallow water approximations showed higher unity in the wave reflection as 

compared to the finite water depth which is due to the high wavelength for the 

incident waves. In shallower water depths, the wave transmission is observed to 

increase due to the increase in wave heights. The increase in the plate rigidity 

significantly reduces the wave transmission and at certain wavenumbers, complete 

transmission or wave reflection is observed due to the resonance phenomenon in all 

water depths.  The free-free edge support condition shows higher transmission of 

waves whereas, lower wave transmission for fixed edge support is observed at finite 

and shallow water depth. 

• The plate thickness and plate rigidity are significant in the reduction of the 

hydroelastic response of the floating elastic plate, which is explained in detail for 

varying plate properties. The influence of the different type of edge support 

conditions on the hydroelastic behaviour of the floating elastic plate is also studied. 

The hydroelastic behaviour is found to be higher for free-free edge support 

conditions and least for fixed edge due to restraints from the boundary conditions 

in the case of finite water depth. On the other hand, the bending moment and shear 

force resultants are found to be highest for fixed edge support and least for simply 

supported edge condition in the case of shallow water depth. 

• The complete transmission of waves is observed to reduce with the increase in the 

number of articulations because the waves get trapped at the articulated joints. The 

wave reflection increased with the reduction of the transmitted wave due to the 

existence of articulations in the floating plate, must be carefully studied for the 

design of floating structures and placement of spring stiffness along the plate.  

• A significant reduction in hydroelastic behaviour of floating elastic thick plate is 

achieved due to the presence of articulation with varying vertical linear and flexural 

rotational spring stiffness. In the case of finite water depth, the reduction in the plate 
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deflection and strain for the articulated floating elastic plate is achieved with the 

application of rotational spring stiffness in the hinged connection. Whereas, a 

considerable reduction in bending moment and shear force is observed with the 

application of hinge connection having either of the spring stiffness at the 

connecting joint. The hydroelastic behaviour is also observed to decrease along the 

plate length towards the transmitted region due to the interaction with the 

connecting joints, which restrained the propagation of waves.  

• For an array of multiple articulations in floating elastic plate, the reflection 

coefficient does not show any significant variations using both direct method and 

wide spacing approximations method, whereas slight variations are observed for the 

case of transmission coefficient due to the considerations of wide-spacing in 

between the plates and also neglecting the effect of evanescent wave modes in the 

approximate methods. 

• The wave transmission is noticed to increase with the reduction in the step height 

due to the reduction of wavelength for both the case of single-step seabed profile 

along the plate covered region. The wave transmission is noticed to reduce with the 

increasing number of steps mainly due to the interaction of waves at the step 

interfaces. 

• The increase in the step height has contributed to the reduction of the hydroelastic 

response of floating elastic plate due to the wave trapping by the increasing step 

height. The hydroelastic response is noticed to reduce gradually throughout the 

elastic plate along with discontinuity at the step interfaces as the waves progressed 

towards the transmission region may be due to the wave trapping at the step 

interfaces for the varying number of steps below floating elastic platform. Further, 

the increment in the number of steps along the plate covered region is noticed to 

increase the responses due to the reduction in the slope of step heights as compared 

to very high response for single step along the region. 

• A regular pattern in wave reflection and dissipation is observed for barriers up to 

water surface due to the resonance phenomena. The surface piercing vertical barrier 

shows a higher reduction in wave transmission as compared to bottom standing 

vertical barriers.  
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• The hydroelastic responses are observed to increase with the reduction in the barrier 

porosity and height due to the increase in wave energy dissipation. In comparison, 

a higher hydroelastic response is observed for a bottom standing than with surface 

piercing vertical barriers in front of the large floating elastic plate due to higher 

wave energy dissipation from a surface piercing vertical barrier. 

• The increase in porosity, height and decrease in between the vertical barrier and 

articulated floating elastic plate has suggested an increase in the wave energy 

dissipation for both the bottom standing and surface piercing vertical barrier.  

7.3 FUTURE SCOPE OF RESEARCH 

In this section the possible extensions of the present investigation are presented below: 

• The present study can be extended for the wave interaction with floating structures 

considering porous bottom boundary condition in both single and two-layer fluid. 

• The efforts will be made to study the wave interaction with finite floating 

rectangular plates in three dimensions. 

• The study will be extended to analyse the wave transformation due to the floating 

elastic plate of different material properties. 

• The findings on the variations in bottom topography can be extended from stepped 

type to any shape of seabed profile using mild slope approximations. 

• The study on the wave interaction with the floating structure in time domain using 

spectral method can be performed. 

• The condition of articulation can be extended for both the longitudinal and lateral 

direction along the floating elastic plate to contribute to the development of VLFS.  

• The variation in the shape of VLFS can be studied as per the requirement and 

purpose of the structure. 

• The attempt will be made to extend the study for non-linear wave structure 

interaction. 
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