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Abstract

Healthcare analytics is a field that deals with the examination of underlying pat-

terns in healthcare data in order to determine ways in which clinical care can be

improved - in terms of patient care, hospital management and cost optimization.

Towards this end, health information technology systems such as Clinical Deci-

sion Support Systems (CDSSs) have received extensive research attention over the

years. A CDSS is designed to provide physicians and other health professionals

assistance with clinical decision-making tasks, based on automated analysis of pa-

tient data and other knowledge sources. Recent advancements in Big Data and

Healthcare Analytics have seen an emerging trend in the application of Artificial

Intelligence techniques to healthcare data for supporting essential applications

like disease prediction, mortality prediction, symptom analysis, epidemic predic-

tion etc. Despite such major advantages o↵ered by CDSSs, there are several issues

that need to be overcome to achieve their full potential. There is scope for sig-

nificant improvements in terms of patient data modeling strategies and prediction

models, especially with respect to clinical data of unstructured nature.

In this research thesis, various approaches for building decision support sys-

tems towards patient-centric and population-centric predictive analytics on large

healthcare data of both structured and unstructured nature are presented. For

structured data, an empirical study was performed to observe the e↵ect of fea-

ture modeling on mortality prediction performance, which revealed the need for

extensive study on the relative relevance of features contributing to mortality risk

prediction. Towards this, a Genetic Algorithm based wrapper feature selection

method was proposed, for determining the most relevant lab events that help in

e↵ective patient-specific mortality prediction.

Clinical data in the form of unstructured text, being rich in patient-specific

information sources has remained largely unexplored, and could be potentially

used to leverage e↵ective CDSS development. Towards this, an Extreme Learn-

ing Machine based patient-specific mortality prediction model built on ECG text

reports of cardiac patients was proposed. The approach, which involved word
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embedding based feature modeling and an unsupervised data cleansing technique

to filter out anomalous data, underscored the importance of e↵ective word em-

beddings. Therefore, our next objective was to study the word embedding models

and their role in feature modeling for building e↵ective CDSSs. A benchmarking

study on performance of word representation models for patient specific mortality

prediction using unstructured clinical notes was performed.

Our next objective involved analyzing and utilizing the unstructured clinical

notes for building e↵ective disease prediction models. An ontology-driven fea-

ture modeling approach was proposed, for designing a disease group prediction

model built on unstructured radiology reports. In order to solve the problems

of sparsity and high dimensionality of this approach, another feature modeling

approach based on Particle Swarm Optimization (PSO) and neural networks was

proposed to further enhance the performance of disease group prediction models

using unstructured radiology reports. With the objective of analyzing physician

notes, a hybrid feature modeling approach was proposed to leverage the latent in-

formation embedded in unstructured patient records for disease group prediction.

Towards addressing the incremental and redundant nature of unstructured clini-

cal notes, aggregation of nursing notes using TAGS and FarSight approaches were

also explored for e↵ective disease group prediction, which demonstrated significant

potential towards enabling early disease diagnosis.

For population health analysis (flu vaccine hesitancy, flu vaccine behaviour

and depression detection), a generic model called Multi-task Deep Social Health

Analyzer (MDSHA) was proposed which uses a PSO based topic modeling ap-

proach for e↵ective feature representation and predictive modeling. All proposed

approaches were compared to existing state-of-the-art approaches for respective

prediction tasks using standard datasets. The promising results achieved under-

score the superior performance of the approaches designed in this research, and

reveal much scope for adaptation in the healthcare field for improving quality of

healthcare.

KEYWORDS: Healthcare Informatics, Clinical Decision Support Systems,

Predictive Analytics, Machine Learning, Natural Language Processing, Evolution-

ary Computing
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Chapter 1

Introduction

The healthcare delivery process encompasses “the maintenance or improvement of

health via prevention, diagnosis, treatment, recovery or cure of disease, illness, in-

jury and other physical and mental impairments in people”. Quality of healthcare

is an important aspect in the promotion of health and well-being of people around

the world. As per World Health Organization (WHO) reports1, a well-functioning

healthcare system requires a financing mechanism, a well trained & adequately

paid workforce, reliable information to base decisions & policies and well main-

tained health facilities to deliver quality medicines and technologies. The United

States alone spent $3.5 Trillion in 2017 to maintain their healthcare systems, a

whopping 18% of their GDP (White, 2007), and their per capita spending on

healthcare stood at $10,348 according to 2016 reports, which exceeds the world

average by more than eight times2. The US healthcare system has extensively

invested in the use of Information Technology in healthcare services delivery.

India, the world’s second most populous country, has made vast strides towards

the implementation of nation-wide healthcare systems for its people. Infectious

diseases like Smallpox and Polio have been eradicated through successful large-

scale public awareness and education programs, doubling the life expectancy of

citizens (Reddy et al., 2011). However, the health outcomes remain inadequate

when India is compared with other countries that were at similar economic stages

of development at the time of independence; preventable disease burden remains

a significant challenge. The budget allocation for healthcare in India rose 16%

in 2019-2020 over the previous year budget, reserving an amount of | 61,398

crores, with an allocation of | 6,400 Crores for the exclusive healthcare initiative –

Ayushman Bharat Pradhan Mantri Jan Aroghya Yojana (AB-PMJAY) for making

1Health Systems Governance,
https://www.who.int/health-topics/health-systems-governance#tab=tab_1

2Global Health Expenditure Database, http://apps.who.int/nha/database

1

https://www.who.int/health-topics/health-systems-governance%23tab=tab_1
http://apps.who.int/nha/database


2 Chapter 1. Introduction

necessary interventions and additions in various government healthcare systems

across the country3. An e�cient and e↵ective healthcare system can significantly

contribute to a country’s economy, development and even industrialization.

Application of computers and information technology in healthcare, termed

as Health Information Technology, has proven to be e↵ective in the betterment of

healthcare management in various aspects. Health Information Technology is “the

application of information technology involving computer hardware and software

to deal with the storage, retrieval, sharing, and use of healthcare data, information

and knowledge for better communication and decision making”. Computerization

of medical records has been in practice in the healthcare industry over the past 2-3

decades in developed countries. Early research showed that paper based medical

records have limited impact (Pollak, 1983), while their usage covers day-to-day

requirements of recording clinical events, these records are not suitable for patients

with long-term illnesses or extensive medical history as future procedures depend

on the past diagnoses, procedures and medication that they were subjected to.

The availability of patients’ medical records creates a positive impact on pa-

tient management decisions, only when the records are in an organized, stan-

dardized and retrievable format (Stead and Hammond, 1983). In 1983, a medical

record system called The Medical Record (TMR) was designed by Stead and Ham-

mond (1983) who reported that using computerized medical records significantly

prevented accidental oversights by doctors, while it also improved the communi-

cation between doctors and patients. They also reported on the new possibilities

for data analysis and review made possible due to the organized nature of the

medical records and ways in which computerized medical records can be time-

oriented, displayed in a useful fashion for doctors, analyzed and put to use for

quality improvement and administrative purposes. McDonald and Tierney (1988)

demonstrated how computerized medical records can help in tasks such as, orga-

nization and retrieval of patient data, decision-making and diagnoses, retrieving

past or similar clinical cases/experiences for care, administration or even research

purposes. Investing in and using an electronic medical records system in primary

care units has been shown to result in positive returns for the healthcare provider

organization (Wang et al., 2003). They reported that the estimated net ben-

efit from using an electronic medical record for a 5-year period was $86,400 per

provider, which can be contributed to savings due to optimized drug management,

improved utilization of radiology tests, better capture of charges, and decreased

billing errors. In one-way sensitivity analyses, the model was most sensitive to

3Ayushman Bharat, https://www.pmjay.gov.in/

https://www.pmjay.gov.in/
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the proportion of patients whose care was long-term, as larger data is available for

designing decision-making tools. In view of this, several prominent hospitals and

healthcare organizations have actively invested in implementation of computer-

ized medical records, formatted as per the standards put forth by their respective

countries, in the form of Electronic Health Records (EHRs) or Electronic Medical

Records (EMRs).

1.1 Electronic Health Records

Gunter and Terry (2005) defined an Electronic Health Record (EHR) as “the sys-

tematized collection of patient or population health information, which are electron-

ically stored in a digital format”. Electronic Health Records (EHRs) are seen as an

significant step towards streamlining the storage, management and dissemination

of patient data in hospitals. EHRs are real-time, patient-centered records which

provide data in a standardized format so that the patient data can be accessed

securely by all authorized stakeholders - doctors, specialists, hospitals, insurance

providers, and others. EHRs contain vital patient-specific information like medi-

cal history, diagnoses, medications, treatment plans, immunization dates, allergies,

radiology images, and laboratory test results. They form the basis for the devel-

opment of knowledge-enabled healthcare IT systems that support evidence-based

clinical decision making, in addition to facilitating automating and streamlining

healthcare delivery workflows.

Herland et al. (2014) categorized healthcare data available for informatics into

four levels, where analytics research and application developments are underway.

1. Micro-level Data: Performed on genes, molecules, etc. to predict diseases

like cancer and other genetic disorders.

2. Tissue-level Data: Performed on tissues in plants and animals for purposes

of brain research and the other human-scale biological factors.

3. Patient-level Data: Performed on mostly EHRs (text and images) to make

predictions on general diseases or specific ones, ICU mortality, etc.

4. Population-level Data: Performed on data of a population in form of EHRs

or even open social media data to make epidemic predictions.

Patient-level data in terms of EHR can be structured or unstructured with

respect to the nature of the data itself.
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Structured patient data: Patient data stored in a consistent and an orga-

nized manner, mostly in the form of rows and columns, with keywords to identify

and analyze the data values. Such structured patient data can be easily validated

against allowed ranges of values and rules. These include numerical values such

as age, gender, height, weight, lab test values, etc. These data can be mostly

directly and easily used for various analysis and training ML based prediction

models as they are mostly numerical or categorical values. A very basic example

of structured patient data in the form of rows and columns is shown in Figure 1.1.

Patient ID | Heart Rate (bpm) | Blood Sugar (mg/dL) | ...
101 | 66 | 126 | ...
102 | 78 | 206 | ...
. . .
. . .

XXX | XX | XXX | ...

Figure 1.1: An example of structured patient data – A sample table indicating lab values

Unstructured patient data: Unstructured patient data as the name sug-

gests is the opposite of structured data – there is no organisation of the data.

The most common kinds of unstructured data available in hospital scenarios are

free text clinical notes narrated by doctors or nurses regarding the condition of

patients undergoing treatment and discharge summaries; medical images such as

X-rays or MRI scans; etc. More importantly, unstructured patient data requires

manual analysis and processing by health personnel, before it can be used for ML

applications. Unstructured data cannot be directly consumed for any automated

analysis and has to be therefore brought to some form of structured representation

for further processing for analysis. A sample nursing note shown in Figure 1.2 is

an apt example of unstructured patient data in the form free text.

Cancer (Malignant Neoplasm), Hepatic (Liver)
Assessment: Patient is more lethargic yesterday &
today than he was on Fri ([**2-10**] days ago).
Action: He was made DNR/CMO tonight, per agreement of family.
Assessment: Patient had acute SOB, midsternal chest pain,
feeling that he was going to die @ [**2016**] when he rolled
in bed onto bedpan & had BM. HR increased to low 70s SR.
BP increased to 149/systolic. Desatted to 85%.
Action: Given 100% high flow neb, 0.5 NTP & 0.25mg IV morph-
ine. EKG done during SOB.
Response: Pain & SOB relieved. No changes on EKG.
Plan: Now that patient is CMO, medicate w/morphine before
rolling patient in bed. Continue to medicate w/Lopressor to
prevent ACS as well as NTP or SL NTG, morphine & O2
during episodes.

Figure 1.2: An example of unstructured patient data – A note recorded by a nurse (Source:
MIMIC-III Dataset (Johnson et al., 2016))
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Given the wide variety and volume of healthcare data available, traditional

approaches to managing it will no longer su�ce. Also, such data is continuously

generated over time, at every patient contact episode, thus exhibiting Big data

characteristics. Hence, emerging computational technologies like Big Data Ana-

lytics and Machine Learning can be applied to large-scale patient-specific data, for

improving healthcare systems and managing e↵ective care delivery. Such applica-

tions encompass Predictive modeling, Preventive modeling, Intelligent Retrieval,

Automatic Information/Concept Extraction, Recommendations for Doctors and

Patients, etc, which have the potential for revolutionizing and creating a huge

positive impact on the way healthcare is provided.

1.2 Clinical Decision Support Systems

Big Data Analytics in Healthcare is an emerging field that has the potential for

significant improvement in areas of clinical operations, research & development,

public health policies, evidence based medicine, genomic analytics and patient pro-

file analytics. Predictive Analytics based applications built on EHRs that demon-

strate superior performance over traditional rule based systems helped caregivers

in a lot of aspects such as diagnosis and intervention decisions (Simpao et al.,

2014). Therefore, such systems came to be known as Clinical Decision Support

Systems (CDSSs). Wikipedia defines CDSS as “a health information technology

system that is designed to provide physicians and other health professionals with

Clinical Decision Support (CDS), that is, assistance with clinical decision-making

tasks.” Dr. Robert Hayward has provided a working definition for CDSS – “a link

between health observations and health-related knowledge that influences treatment

choices by clinicians improved healthcare.”

Perreault and Metzger (1999) defined four key functions for electronic CDSSs,

which are as follows:

1. Administrative: Supporting clinical coding and documentation, authoriza-

tion of procedures, and referrals.

2. Managing clinical complexity and details: Keeping patients on prescribed

protocols; tracking orders, referrals follow-up, and preventive care.

3. Cost control: Monitoring medication orders; avoiding duplicate or unneces-

sary tests.
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4. Decision support: Supporting clinical diagnosis and treatment plan pro-

cesses; and promoting use of best practices, condition-specific guidelines,

and population-based management.

Several studies have shown that computerized CDSSs can improve clinical per-

formance and patient outcomes (Kennebeck et al., 2012; Nachtigall et al., 2014;

Moja et al., 2014). CDSS systems, with their potential to minimize practice vari-

ation and improve patient care, have been adapted in practice by many healthcare

verticals and practitioners on large and small-scale (Trivedi et al., 2002; Dorr et al.,

2007). With the emergence of artificial intelligence, computational tools and ex-

pert systems designed to capture and encode the knowledge of subject experts,

CDSSs can be critical in revolutionizing clinical care. This is especially true in

the era of Big Data Analytics, where large-scale data and knowledge is available

for pattern analysis and knowledge discovery (Kawamoto et al., 2005; Black et al.,

2011). Analytics on various types of EHRs – Computer Vision and Machine Learn-

ing based analytics on medical images, Signal analytics on physiological signals

and Big Data and Machine Learning based analytics on Gene/Protein data; have

the potential to revolutionise healthcare industry and healthcare delivery (Belle

et al., 2015).

1.2.1 Knowledge-based vs. Non-knowledge based CDSSs

As per Berner (2007), CDSSs are classified into two – Knowledge-based CDSSs

and Non-knowledge based CDSSs. Knowledge-based CDSSs are rule-based sys-

tems that provide a means of interaction to the user (patient/caregivers), providing

important information that can assist a physician for decision making. It mostly

consists of three parts – a knowledge base, a reasoning/inference engine and fi-

nally, an interface to communicate with the user. The knowledge base consists of

rules defined by healthcare domain experts and the inference or reasoning engine

contains the formulas or logic methods to combine the rules in the knowledge

base and a real patient’s data. Generally, a knowledge-based CDSS accepts an

input as patient data mostly in electronic form and then performs the inference

or reasoning using the defined logic based on rules in the knowledge base. Finally,

the system provides physicians or other caregivers with an output in the form of

recommendation, alerts or even diagnosis probabilities that can help in his/her

decision-making in the clinical diagnosis. A generic model of a knowledge-based

CDSS is as depicted in Figure 1.3.

Non-knowledge based CDSSs are systems that incorporate Artificial Intelli-
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CDSS

IQfeUeQce EQgiQe

KQRZOedge BaVe

IQSXW OXWSXW

Figure 1.3: General Model of a Knowledge-based CDSS (Berner, 2007)

gence (AI) techniques like Machine Learning, that enable the systems to learn

from historic clinical data through pattern recognition (Berner, 2007). A critical

shortcoming of Knowledge-based CDSSs is that a human expert should always

put the knowledge into the system directly, which are explicit for various cases,

diagnoses and scenarios. This meant that development of CDSSs required a huge

number of rules to be entered into the knowledge base by a large number of domain

experts, leading to bulkiness and inconsistency. Hence, the requirement of systems

that can ‘learn’ to perform inference or reasoning for incoming patient data based

on experience or historic data led to application of Data Mining and AI based

techniques in the domain of healthcare. Machine Learning techniques and neural

network models, using supervised or unsupervised methods, are applied to data in

the form of EHRs or even unstructured clinical data to come up with predictions

that can aid in the decision making or timely interventions of physicians and other

caregivers. A generic model of a non-knowledge based CDSS that uses supervised

or unsupervised machine learning approaches is illustrated in Figure 1.4.

CDSS

HiVWRUic DaWa
ZiWh PaWieQW
OXWcRmeV

LeaUQiQg
S\VWem

IQSXW TUaiQiQg OXWSXW

Figure 1.4: A General Model of a Non-knowledge based CDSS (Berner, 2007)



8 Chapter 1. Introduction

A typical non-knowledge based CDSS pipeline, that makes use of Machine

Learning techniques to assist physicians, mainly involves three tasks – Data Prepa-

ration/Preprocessing, Feature Modeling/Engineering and Learning/Prediction Mod-

eling. The patient data used in the pipeline may be in the form of structured EHRs

or unstructured clinical data, which need adequate preprocessing, using various

techniques for making it standard and machine readable. The data is then mod-

eled as features by vectorization and similar extraction strategies to bring the

data to a form that can be fed into a machine learning based prediction model for

training. Finally, the features, along with the patient outcomes of historic data or

labels, are trained using machine learning techniques to predict the outcomes for

new incoming patient data. The overall workflow for a typical ML based CDSS is

as illustrated in Figure 1.5.

PUHSURcHVVLQJ / 
DaWa PUHSaUaWLRQ

PaWLHQW
DaWa

(IQSXW)

FHaWXUH MRdHOLQJ
MacKLQH

LHaUQLQJ MRdHO

COLQLcaO DHcLVLRQ
SXSSRUW
(OXWSXW)

Figure 1.5: A Typical Machine Learning based CDSS – Workflow

1.2.2 Learnable CDSS Models - Need vs. Impact

Over the past 30 decades, development of systems that o↵er clinical decision sup-

port with the objective of improving healthcare quality and enhance the medi-

cal decision making process have seen active research interest. Three important

factors that underscore the need for incorporating computer algorithms and IT

systems in CDSSs, as put forth by Musen et al. (2014), are listed below.

1. Information Needs and Data Management: Modern clinical decision making

is characterized and has evolved based on an ever-increasing knowledge base

and also depends on growing datasets that include patient characteristics

from phenotype to genotype. Due to exponential increase in patient vol-

ume, countries like the US have seen a steady decline in the average time

available for a typical physician-patient encounter, increasing physician fa-

tigue and often causing clinicians to miss out critical information regarding

the patients’ condition (Baron, 2010). In a study conducted on ambulatory

cases, it was observed that 81% of the time, clinicians missed at least four

items with respect to patients (Tang et al., 1996). It has also been observed

that clinicians and healthcare providers face challenges in acquiring detailed
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and relevant information regarding a patient’s condition or even a summary

of the patient’s history, which can be helpful in making decisions regarding

further tests or treatment procedures. Studies suggest that 18% of medical

errors may be caused due to unavailability of relevant or crucial patient in-

formation at the opportune time (Leape, 1994). Therefore, there is a rising

demand for improved decision support systems based on clinical information

of patients.

2. Personalized Medicine: An emerging era of genomics and biomedicine de-

mands the need for personalized medicine and the need to tailor healthcare

to individualized factors for improving healthcare delivery (Ginsburg and

Willard, 2009). Personalized medicine aims to facilitate customized deci-

sion making by taking into account various patient-specific factors (data)

like – family history, social and environmental factors along with health (ge-

nomics/physiological) data and even patient preferences of care, wherever

applicable. This requires clinical practitioners to master an additional-level

of knowledge that can add to their ever-increasing cognitive fatigue. As per-

sonalized medicine is well on its way to becoming a practical norm, clinicians

will be hugely benefited with the unintrusive assistance that computers and

information technology can provide, thus underscoring the need for intel-

ligent CDSSs. Such data-driven CDSSs not only help the clinical decision

support process to be personalized to tune in on patient needs, but also

help justify the decision by providing evidence-based explanations in terms

of various physiological variables or even genetic-level data.

3. Cost-Benefit Tradeo↵: Computer based learnable CDSSs have the poten-

tial to influence hospitals and clinicians to better optimize their resources in

terms of money and other aspects like lab machinery, ICU beds, ventilators,

etc. While the hospital can make use of intelligent CDSSs for various appli-

cations to deliver better healthcare to more number of patients in lesser time,

the patients can also save resources in terms of cost and time for only re-

quired treatment procedures and reduced waiting time for appointments and

medicines. In a country like India, where patients bear a considerable share

of healthcare costs, it is imperative to adopt practices that not only alleviate

the burden, but also significantly enhance the quality of care delivery.

In view of these three aspects, a fundamental change in the way hospitals and

clinicians create, store and manage patient-specific data is evidenced, to enable
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the use of intelligent CDSSs for applications like diagnosis support, severity/risk

prediction, procedure recommendation, patient history summary generation, ap-

pointment prioritizing, etc. Patients too are benefitted through better access to

their own health-related data, made possible by providing a secure profile through

which they can manage appointments, optimized appointment schedules and treat-

ment procedures, prescriptions, recommendations etc. Therefore, learnable CDSSs

with patient-centric personalization and better patient information management

capabilities that can also save resources are in demand and can be a boon to the

healthcare industry.

1.2.3 EHR Adoption and CDSS Development: Current

Scenario

The vast majority of hospitals in developed countries like USA, UK, Germany

and Australia are well on their way towards adopting standardised and struc-

tured EHRs. In some countries, almost 90% of hospital records are now digital

(Coorevits et al., 2013). If exploited in the right direction, EHR adoption for ana-

lytics is key to solving problems related to Clinical Decision Support, clinical care

quality and reliable information flow among individuals and organisations partic-

ipating in healthcare. This requires good regulations and standards proposed by

organisations, respective governments etc. for full scale adoption and realization

(Coorevits et al., 2013).

However, the fact remains that most developing countries are far from mov-

ing away from paper-based medical records. Many of these developing countries,

including India, face complex challenges in management of healthcare data and

delivery of healthcare services (Braa et al., 2004). The implementation of technol-

ogy based healthcare solutions such as CDSSs encounter challenges like inadequate

funding, lack of resources and weak infrastructures (Sood et al., 2008). Other kinds

of challenges identified by Sood and Tech (2004) include computer technology re-

lated illiteracy and inadequate numbers of trained caregivers that can utilize such

expert systems. These challenges have resulted in a low adoption rate of EHR sys-

tems in developing countries like India. However, over the past few years, through

the increased usage of computers, training of caregivers, infrastructure develop-

ment and stricter government regulations and laws, the number of hospitals and

clinics that use computer systems to store patient information are on the rise. But,

these computerized patient records are not in the form of structured EHRs and

are mostly in the form of plaintext records and medical images, which are stored
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in raw format and are used mostly for manual reference by doctors and nurses.

The unstructured nature of textual medical data and images, in such scenarios,

presents many challenges in exploiting their full potential.

Hospitals that have adopted standard EHR formats can provide structured

EHR data as a service through respective hospital warehouses. Few such exam-

ples are Mount Sinai Data Warehouse used by Miotto et al. (2016) and Sutter

Health hospital data used by Choi et al. (2016) in developing their respective

CDSSs. Other than that, there are open datasets as well that are made available

for coding challenges and research purposes such as i2b2 (Sun et al., 2013), MIMIC

II (Saeed et al., 2002) and MIMIC III (Johnson et al., 2016). Research studies are

being performed on many such datasets (both structured and unstructured) for

development of not only CDSSs like ICU mortality risk prediction models, disease

prediction models, etc., but also for other important tasks of the healthcare man-

agement workflows like hospital patient management, e↵ective hospital finance

management, designing insurance models for both clients as well as companies,

etc. Along with traditional techniques of Big Data Analytics, Data Mining and

Natural Language Processing, concepts of Artificial Intelligence, Machine Learn-

ing, Neural Networks and Deep Learning applied to the field of healthcare have

shown great potential in creation of predictive and analytical models with a very

good accuracy and precision. Moreover, the problem of developing and extracting

structured patient representation from raw unstructured data itself is an open re-

search problem. With the use of Text Mining, Natural Language Processing and

Machine Learning techniques on de-identified patient records, such challenges can

be addressed through automatic concept extraction, categorization and modelling

for development of e↵ective CDSSs. This highlights a major area of work, based

on under-utilized unstructured clinical text sources, which provides ample scope

for exploring avenues for impactful research towards development of CDSSs.

1.2.4 A Motivating Example

To highlight the prevalent situation in practical hospital scenarios, we consider

an example. This scenario will be treated as a running example throughout this

thesis, wherever real-world context to the research problems addressed are to be

provided. Let us consider three physicians, Dr. Alice, Dr. Bob and Dr. Charlie

working in hospitals A, B and C, respectively. The hospitals have incorporated

various levels of IT infrastructure and medical record management systems, as

highlighted in the list below. These three types of hospitals e↵ectively cover the
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various stages at which real-world hospital IT systems are at, and we aim to

describe how CDSSs fit into the mix, given the inherent challenges evoked by this

highly heterogeneous ecosystem.

1. Hospital A is a non-computerized hospital that still employs a paper-based

medical records system. Examples of such hospitals include primary care

centres and rural hospitals where computerization and other information

technology services are yet to be implemented.

2. Hospital B has a full-fledged implementation of a standardized EHR system

based on relational databases, forming a well-designed Hospital Information

Management System (HIMS). The EHR system of Hospital B consists of only

structured data, strictly adhering to defined EHR standards, and therefore,

data entry is undertaken mostly in the form of readings and values. Hospitals

in major cities of developed countries can be categorized into this group.

3. Hospital C has a ‘semi-EHR’ system, i.e., computerization of records is im-

plemented, however, they still do not have a sophisticated EHR system sim-

ilar to Hospital B. For each patient in Hospital C, various types of notes are

maintained, typically in text format, thus making their patient records semi-

structured. Examples include hospitals in tier-2 and tier-3 cities and towns

in developing countries where computerization is available, however, patient

records are still not stored in standardized EHR standards. The hospitals

in this category can be also mapped to those organizations which are in the

transition phase towards becoming a full-fledged EHR-based hospital.

Given this background, we now consider three use cases from a normal routine

work day in a hospital. Firstly, we consider the process from the perspective of the

out-patient who visits the hospital for consultation with doctors, typically on pre-

fixed appointments. Second, the case of an in-patient admitted to the Intensive

care unit (ICU) of the hospital, requiring significantly more medical attention is

discussed. Thirdly, we also consider the scenario from the point of view of the

Hospitals’ Medical Records Department, which plays a critical role in the daily

operations of a hospital.

1.2.4.1 Case 1: Out-patient visits.

Let us consider a scenario where an out-patient visits the respective hospitals. A

patient arriving at the reception of Hospital A to seek the medical services of Dr.
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Alice will have to provide a card or a patient ID (along with payment of fees)

so that the sta↵ can go to a particular rack in the MRD department to fetch the

record. The patient meanwhile waits at the front desk or outside the doctor’s room.

The patient may have to wait for a long time as the file has to reach the doctor’s

room from the MRD once the sta↵ finds the file. Based on the queuing system,

the patient awaits their turn and consults with Dr. Alice. During consultation,

Dr. Alice asks the patient’s problems, symptoms, family history, etc and reaches

a diagnosis decision and provides the patient with a prescription (while making

a copy for the hospital file as well). The patient then has to visit the pharmacy

for purchasing medicines, which creates another paper-based record, which may

or may not be mapped to the patient’s record.

Now, patients arriving at the reception of computerized Hospital B or Hospi-

tal C have the option of providing their hospital card (embedded with an unique

identifier in the form of barcode, QR code or RFID4) or even just their mobile

number, as the hospital is equipped with a full-fledged (or intermediate-level) EHR

based system. Preliminary collection of symptoms or problems faced by the pa-

tient may also be performed, which are fed into the EHR system, to update the

patient record. Dr. Bob/Dr. Charlie’s patient list on his desktop computer gets

updated dynamically with all details given by the patient during the preliminary

evaluation. Now, a CDSS consuming data from the patient records can process

the symptoms/problems reported by the patient and the order of consultation

gets dynamically updated based on his/her severity. During the consultation, Dr.

Bob/Dr. Charlie already has access to all necessary details of the patient gener-

ated by the hospital’s CDSS in time for the consultation, including a summary of

the patient’s medical history, and insights with reference to relevant details like

his/her allergy information. The doctor and patient during the consultation time

can spend on result-oriented discussion on personalizing the treatment plan, which

is once again mapped to the patient records. After the consultation, the prescrip-

tion will be automatically dispatched through the system to the pharmacy. By

the time the patient moves towards the pharmacy, his order will be ready and

he/she just has to collect it from the desk. At the end of the visit, the patient

will have to pay the overall amount and will have various payment options for the

same (cash, card or even automatically deducted from the wallet/bank account

attached to the hospital record).

The di↵erence between the circumstances faced by both patients and doctors

in the two categories of hospitals are predominantly noticeable and it is clear how

4Quick Response codes, Radio Frequency IDentification
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hospitals equipped with well-designed IT systems providing support to operate

CDSSs can enhance hospital-centric experience of patients significantly, while also

optimizing doctors’ time and hospital resources. The overall time and e↵orts spent

by a patient in Hospital B and Hospital C are significantly lesser than that spent

by a patient in Hospital A. Meanwhile, Dr. Bob and Dr. Charlie in Hospital B

and Hospital C respectively, can potentially treat more patients in a day than Dr.

Alice in Hospital A. Moreover, Dr. Bob and Dr. Charlie will be able to deliver

treatment to the patients with a personal touch as the decision support system

provides them with good insights of complete background data and medical history

of the patients. In contrast to this, Dr. Alice will have to spend a lot of time

reading the file of patients to arrive at a diagnosis, and may therefore choose to

adhere to a more generic treatment approach.

1.2.4.2 Case 2: In-patient hospital stay and treatment.

Next, we consider the case of a patient admitted to the ICU, which are special-

ized critical care units meant for patients su↵ering from life-threatening diseases.

When a patient is admitted to the ICU, critical care personnel are trained to per-

form standard routines to assess their vital signs and signs of deterioration. For

instance, periodic check-up by nurses, periodic visit by the on-duty ICU doctors

and also the visit by the doctor assigned to the patient are the norm in the ICU.

In Hospital A, the nurses are required to note down readings in a paper-based for-

mat provided by the hospital, which will be frequently monitored by the on-duty

doctors during their periodic visits (or during emergency visits, if any abnormal-

ities are reported by the nurses). The duty roster of the critical care personnel

keeps changing over the day and each of them have only this continually updated

sheet to refer to for taking care of the patient during their duty time. In case of

emergencies, the senior doctor who is in charge of the patient will be notified by

the on-duty doctors regarding the patient’s conditions. The diagnosis of patients

may change over time depending on the variation in the patient’s monitored signs.

Now, in case of Hospital B, the ICU patients’ vital signs are still governed

periodically, however, as per standard policy set up, the critical care personnel

have to enter these observations directly into the EHR system as readings. The

CDSS built on a robust IT infrastructure is designed to consume this streaming

data for generating actionable insights for the critical care personnel, and also alert

on-duty doctors and the doctor-in-charge when an abnormality is observed in the

patient’s condition. The CDSS may also provide them with diagnostic assistance
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providing statistics (mostly probabilistic) on prospective diagnosis of the patient

based on the variations recorded in the EHR of the patient. In case of Hospital

C, the system may be equipped to take such reading partially, while for the most

part, paper-based readings may be recorded, hence CDSSs built on this data, may

have very rudimentary capabilities. Hence, it is a critical requirement to build

CDSSs that are able to process text-based records directly to enable prediction

capabilities.

A detailed analysis from the stakeholders’ perspective in the above scenario,

in the context of Hospital A reveals the considerable e↵ort required on the part of

critical care personnel, in order to discharge their duties of e↵ectively monitoring

an ICU patient. It is also to be noted that the doctor-in-charge, who visits the

patient mostly once a day has to go through a lot of paperwork to understand

the patient’s condition. Moreover, during the other times, he/she is unaware of

his/her patient’s condition unless and until an on-duty doctor contacts him/her

with a situation. In contrast to this, the computerized Hospital B and Hospital C

will be able to provide information and even alerts to the on-duty doctors as well

as the doctor-in-charge as soon as the nurses feed in the readings/notes into the

system. In this way, the ICU patient is assured of prompt and timely intervention

in case of emergencies in addition to continuous observation by not only the nurses,

but the doctors as well.

1.2.4.3 Case 3: Medical Records Management.

Let us now consider the case of a significant stakeholder in the day-to-day opera-

tions of a hospital, that of the overworked and often under-sta↵ed Medical Records

Departments (MRDs). It is easy to imagine a scenario with reference to the MRD

of Hospital A, that of a room full of file cabinets storing patient records and other

hospital records in paper format. The responsibility of the MRD sta↵ is mainly

limited to search and retrieve patient records whenever required, and refile them

once the patient is treated/discharged. The MRD sta↵ will have huge responsi-

bilities of securing the paper based records and also will have to work relentlessly

fetching and replacing medical records of patients everyday, in order to ensure a

suitable categorization and cataloging system.

The MRD of Hospital B uses minimal paper records and the main job of the

MRD sta↵ is to deal with the extensive data entry required to continually update

the patient records (whenever the healthcare personnel themselves are not doing

this). The medical personnel such as doctors and nurses also are responsible to
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record event-generated patient data using suitable interfaces to the HIMS, either

as readings or as notes. The MRD sta↵ are trained to further process and code

the data into defined formats, and generate the EHR record as required for CDSS

consumption. This task is to be performed by highly trained medical coders,

with domain expertise and are equipped to handle challenges like extensive use of

medical jargon, acronyms, shorthand, notations etc. It is also a laborious process,

that is cost-prohibitive, time-consuming, & error-prone and has been reported

to be a significant burden on hospitals. It has been reported that the additional

costs incurred due to inaccurate coding and the financial outlay towards improving

diagnostic coding e�cacy is estimated to be approximately $25 billion per year,

in the United States alone (Lang, 2007; Farkas and Szarvas, 2008).

The MRD of Hospital C may have both paper-based records and EHR based

formats and therefore, the main jobs of MRD sta↵ will be to manage records and

also data entry. Their data entry jobs include only those cases, where the EHR

system has to be updated from old records or if notes for a patient are presented

to them in paper form. Further, if the CDSS system for the hospital is designed

to be able to directly process text-based clinical data, then, the MRD sta↵ are

relieved of the responsibility of performing the tedious task of manually coding

medical records into formats mandated by traditional CDSS built on structured

EHR data. Instead their e↵ort can be focused on digitizing older records (if any)

for use in CDSS and for improving the implementation of the EHR system.

The scenarios discussed in the context of the MRD and its sta↵ in each hos-

pital not only highlights the importance and need for CDSSs, but also stresses

that CDSS systems can be most helpful when patient data is easily processable

manually, if not automated processing mechanisms are incorporated. The need

for well-designed HIMS equipped with e↵ective CDSSs that can provide decision-

making assistance to medical personnel based on structured, unstructured and

semi-structured medical data is critical. In case of Hospital A, there is a criti-

cal requirement of an e↵ective HIMS as the hospital is not in a state to provide

any decision support to medical personnel due to its paper-based records manage-

ment. Several technical challenges exist, including the steep costs of implementing

a full-fledged HIMS equipped with CDSS capability for the hospital.

Hospital B and Hospital C are far ahead in terms of technology implemen-

tation, however require e↵ective CDSSs implementations to ensure their smooth

functioning. As CDSS systems in Hospital B can be built on structured EHR

data, due to their complete adoption of EHR systems, the implementation can be

quite straightforward. However, the significant costs and manual e↵ort required
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for generating structured data from unstructured clinical data can be a signifi-

cant burden, compounded by the scarcity of trained medical coders. In Hospital

C, some limited capability to support CDSSs is available, however, a significant

volume of their patient data is unstructured. Hence, specialized CDSSs that can

directly consume semi-structured and unstructured raw clinical data for facilitat-

ing actionable insights are seen as a crucial solution for Hospital C. However, there

are several challenges in developing such CDSSs, which are discussed in detail in

the next section.

1.3 Prevalent Challenges

With the application of computation techniques like Machine Learning and Big

Data Analytics, Healthcare Information Technology has evolved towards adaptable

CDSSs. Despite the vast strides in research in the area of CDSSs over the past

30 areas, numerous challenges still exist (Miotto et al., 2016). We discuss some of

these challenges, that are sees as significant roadblocks that need to be overcome

for designing next generation CDSSs.

1. Data Volume & Variety: In the field of biomedicine and healthcare, large

volumes of data gets generated in various modalities, such as – text, images,

signals, etc. In addition to this volume, the heterogeneous nature of the

health data is an additional aspect that compounds the issues. Moreover,

understanding diseases and their variability is another complicating aspect

that needs to be tackled. However, the availability of clinical/health data

in huge volumes can be often seen as an advantage from a data science

perspective as artificial intelligence and machine learning based systems as

built on the thumb rule “more the data, the better”.

2. Data Quality: In addition to being voluminous and heterogeneous, health-

care/biomedical data can be highly noisy, incomplete, ambiguous and un-

structured. Moreover, data can be sparse or redundant too. This means that

extensive preprocessing mechanisms need to be incorporated to prepare and

structure the data into a representation that can be utilized e↵ectively for

predictive analytics based applications and CDSSs.

3. Temporality: The temporal nature of clinical data might be one of the

hardest challenges as machine learning based models are not very well-versed

to deal with the time aspect. Disease progression and changes over time
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have always been non-deterministic and hence, it is critical that the data

be modeled and analyzed with appropriate techniques that can capture and

analyze the temporal nature of the data.

4. Domain Complexity: With respect to other domains, the problems in

healthcare and biomedicine can be much more complicated and critical. The

disease progression, their causes and changes are extremely di�cult to ana-

lyze and the domain knowledge pertaining to the same are limited. More-

over, for certain disease cases, the number of patients can be extremely rare,

resulting in unbalanced data, a classic case where most machine learning

models fail to perform well. This makes it even more di�cult to perform an-

alytics on the data, thus adding to the complexity for developing predictive

analytics based CDSSs.

5. Interpretability: Machine learning and deep learning based CDSSs are

considered black boxes and in domains like healthcare, it is often required

to provide information on how and why the system performs well. Addi-

tionally, this interpretability is also crucial in making the medical personnel

understand about the outputs of the predictive analytics based CDSSs.

1.4 Summary

In this chapter, issues and challenges pertaining to the healthcare domain and im-

proving healthcare delivery were discussed. The need and motivation for CDSSs

and the support o↵ered by the availability of standardized EHRs in the current

healthcare scenario were presented. The need for CDSSs has become a matter

of critical importance, to improve healthcare delivery and the advantages of the

same were highlighted with help of example scenarios from healthcare practice.

Enumerating the prevalent challenges a↵ecting the development of intelligent, non-

knowledge based CDSSs, a significant scope for designing predictive analytics and

machine learning based CDSSs is observed, for overcoming the challenges associ-

ated with the voluminosity & variety of the healthcare data, and to create value.

This value can be then used for generating actionable insights for healthcare per-

sonnel, ultimately improving the healthcare delivery process for patients and all

other stakeholders.
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1.5 Thesis Organization

The rest of this thesis is organized as follows.

• In chapter 2, an extensive literature review on CDSSs in healthcare and the

observed research gaps are elucidated.

• In chapter 3, based on outcomes and gaps learned from the existing lit-

erature, the research problem addressed is formally defined. The scope of

this research and a brief description of the proposed methodologies are also

provided in Chapter 3.

• In Chapter 4, proposed approaches for predictive analytics based patient-

specific CDSSs using structured patient data are discussed.

• Chapters 5 and 6 cover the details of the proposed approaches for predictive

analytics based patient-specific CDSSs using unstructured clinical notes.

• In chapter 7, aggregation based unstructured clinical text modeling strate-

gies to build patient-centric CDSSs are presented in detail.

• Chapter 8 discusses the proposed approach for population based predictive

analytics using social network data, is presented.

• Chapter 9 presents concluding remarks about the extensive research work

carried out and prospects of future research in the area.
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Literature Review

2.1 Background

Clinical health analytics and informatics research is an emerging field in the de-

velopment of intelligent systems for the medical field, for realizing personalised

healthcare and improved understanding into disease dynamics. The advent of

Electronic Health Records (EHRs) have paved the way to development of intelli-

gent decision-making systems and have made a significant impact in the domain

of healthcare analytics and informatics, due to the availability of health data in a

more usable structured format (Coorevits et al., 2013). This forms an area of active

research interest with real-world implications in the form of CDSSs for diagnosis

prediction (Choi et al., 2016; Miotto et al., 2016), ICU mortality prediction (Silva

et al., 2012) and patient risk prediction (Cheng et al., 2016). Other applications

include ICU patient care recommendation (Saeed et al., 2011), e�cient hospi-

tal management (Lovis, 2011), data quality measurement of EHR (Weiskopf and

Weng, 2013), patient feature representations derived from EHRs (Miotto et al.,

2016; Choi et al., 2016), automatic concept extraction (Xu et al., 2010), and many

more. EHRs also store temporal data which may be exceptionally helpful for

time-oriented representations and predictions of future events, diseases, etc (Wu

et al., 2010).

In view of these foreseeable benefits, healthcare analytics has generated much

interest among researchers and the healthcare community alike. However, the

critical challenges to be overcome include dealing with several issues ranging from

extensive availability of well-defined EHR data to generating actionable insights

from it, when available. In this section, we present a comprehensive review on the

wide-ranging spectrum of healthcare analytics applications leading to the devel-

opment of intelligent decision-making systems.

21
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2.2 Related Work

Existing research in the domain of Healthcare Analytics and Clinical Decision

Support Systems (CDSSs) can be broadly classified into four main categories based

on the methodologies employed by these systems. These are listed below. In the

subsequent sections, we discuss each of these categories and the ongoing research

in these areas in detail.

1. Information Retrieval (IR) based Systems

2. Natural Language Processing (NLP) based Systems

3. Data Mining and Learning based Systems

4. Population based Healthcare Systems

2.2.1 Information Retrieval based Systems

One of the first problems addressed by early works in clinical data management,

was to categorize and retrieve medical documents based on patients or conditions.

Later, the challenge was designing e↵ective ranking for the retrieved documents,

improving keyword based searches to retrieve medical data from the web, to sup-

port context-sensitive querying etc. Such methods used techniques like document

similarity, knowledge bases, ontologies and semantic web concepts in the latest

works.

In 1996, a system named Medical World Search, was developed and made op-

erational by Suarez et al. (1997). It was a medical search engine that performed

information retrieval based on the knowledge base Unified Medical Language Sys-

tem (UMLS) (Lindberg et al., 1993). It accepted queries from users and returned

ranked medical documents from the internet based on relevance of the query with

respect to the documents retrieved (Suarez et al., 1997). However, the method

lacked a strong term or concept matching algorithm with the UMLS knowledge

base and moreover, the work was performed on a very small database.

Malet et al. (1999) proposed an approach to enhance dynamic and online re-

trieval of medical documents. The approach used the MeSH vocabulary (Med-

ical Sub Headings) (Lowe and Barnett, 1994) standardized by the US National

Library of Medicine (NLM) and also MEDLINE (Greenhalgh, 1997) type descrip-

tions for the purpose of referencing during retrieval. They also extended Dublin

Core Metadata (Weibel et al., 1998) to form the Medical Core Metadata (Malet

et al., 1999). These together enable the medically represented documents (using
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Clinical Decision Support Systems
IR based

Ranked Retrieval (Suarez et al. (1997), Malet et al. (1999), Brown and Sönksen (2000))

Query Enhancement (Göbel et al. (2001), Leroy and Chen (2001)
Bayegan (2002), Jain and Huimin Zhao (2005))

Ontologies Used (UMLS Lindberg et al. (1993), MeSH Lowe and Barnett (1994))

NLP based
Reminder/Alerts (McDonald et al. (1999), Evans et al. (1998))

Decision Support (Fiszman et al. (2000), Haug et al. (2007))

Knowledge Base Related (Baud et al. (2001), Fontelo et al. (2005))

Data Mining and Learning based
Mortality/Severity Prediction

Parametric/Scoring based (Knaus et al. (1981, 1985, 1991), Zimmerman et al. (2006)
Gall et al. (1984, 1993), Moreno et al. (2005) Johnson et al. (2013)

Non Parametric based (Kim et al. (2011), Pirracchio et al. (2015)
Calvert et al. (2016a), Harutyunyan et al. (2017), Che et al. (2018))

Disease Prediction

Disease Specific (Himes et al. (2009), Michelson et al. (2014), Lipton et al. (2015))

Generic Disease

Disease Group/Conditions (Zhang et al. (2012), Miotto et al. (2016)
Choi et al. (2016), Cheng et al. (2016), Nguyen et al. (2017)
Che et al. (2018), Purushotham et al. (2018))

Disease Code (Perotte et al. (2011), Ferrao et al. (2013)
Dermouche et al. (2016), Wang et al. (2017), Baumel et al. (2018)
Li et al. (2018), Mullenbach et al. (2018), Xie and Xing (2018)
Huang et al. (2019), Zeng et al. (2019))

Others

Length of Stay (Gentimis et al. (2017), Zebin et al. (2019), Li et al. (2019))

Readmission Prediction (Campbell et al. (2008), Fialho et al. (2012))

Population based Healthcare Systems
Epidemic Prediction (Ginsberg et al. (2009), Signorini et al. (2011)
Aramaki et al. (2011), Achrekar et al. (2011)
Yuan et al. (2013), Santillana et al. (2015))

Adverse Drug Reactions/Events (Nikfarjam et al. (2015)
Sarker et al. (2015), Cocos et al. (2017))

Vaccine Sentiment (Huang et al. (2017), Joshi et al. (2018))

Depression Detection (McManus et al. (2015), Shen et al. (2017), Orabi et al. (2018))

Figure 2.1: Categorization of Clinical Decision Support Systems
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Medical Core Metadata) to serve as a base which is then used to support enhanced

medical information retrieval using keyword search and web crawlers. Brown and

Sönksen (2000) presented a method to evaluate Information Retrieval performance

in a computerized patient database using a semantic terminological model built

within Clinical Terms Version 3. However, the model remained incomplete and

worked well only for a small domain.

Several researchers focused on incorporating standard vocabularies and tax-

onomies to boost document-matching performance, given the diversity in health

data terminologies and parlance. Göbel et al. (2001) designed an intermediary

model for consumer health information systems that performed query enhance-

ment on queries input by the users (or patients). The system used the controlled

vocabulary of MeSH for the purpose of query enhancement (Jain and Huimin Zhao,

2005; Göbel et al., 2001). A similar approach was put forth by Leroy and Chen

(2001), in the form of a tool named Medical Concept Mapper, which eased access

to medical sources online by recommending users with appropriate search terms

for their input medical queries, using the UMLS vocabulary. Both these systems

were meant for those customers or patients who were not familiar with medical

terms. Although the above methods provided satisfactory results, they lacked the

ability to consider patient data and recommend queries accordingly.

In an evaluation study, Plovnick and Zeng (2004) reported that, query enhance-

ment or reformulation using the vocabulary of UMLS improved the precision of

clinical information retrieval. Liu and Chu (2005) developed a UMLS based sys-

tem that performed scenario-specific retrieval of medical free text, by expanding

queries. They also proved with results that domain specific retrieval performs bet-

ter than generic retrieval without any domain specification (Plovnick and Zeng,

2004). Although it accomplishes its objectives, it would have been better if this

was based on patient records or information as well. This was taken care of by

Bayegan and Tu (2002) and Bayegan (2002) proposed a knowledge based medical

record system that could perform problem oriented view of patients data. The

system was meant to be helpful for physicians and ranked the relevance of pa-

tient information in a particular context using the physicians’ work processes as

knowledge base. Jain and Huimin Zhao (2005) proposed a method to semantically

retrieve medical records related to patient symptoms. It was implemented using

various techniques in information retrieval, domain ontologies and a body of do-

main knowledge created by healthcare experts. The major drawback was that the

same domain knowledge base cannot be used as a generic one as it was manually

created by healthcare experts specifically for this objective.
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Table 2.1: Summary of Information Retrieval based CDSSs

Work Concept/Method Explanation/Remarks

Suarez et al.

(1997)

UMLS based Medical web search engine

with ranking

Malet et al.

(1999)

MeSH vocabulary &

MEDLINE type definitions

Enhance the online

retrieval of medical

documents

Brown and

Sönksen (2000)

Semantic terminological

model built within CTV 3

Evaluate IR performance in

a computerised patient

database

Göbel et al.

(2001)

Query enhancement using

MeSH vocabulary

Intermediary model for

consumer health

information systems

Leroy and Chen

(2001)

UMLS based Medical

Concept Mapper

Recommending users with

search terms for their input

medical queries

Bayegan (2002) Knowledge based medical

record system using

multiple ontologies

For physicians to rank

patient info

Liu and Chu

(2005)

UMLS based

scenario-specific retrieval of

medical free text using

VSM

Query expansion and

retrieval using similarity

measure

Jain and

Huimin Zhao

(2005)

Information retrieval,

domain ontologies and KB

by healthcare experts

Semantically retrieve

medical records related to

patient symptoms

2.2.2 Natural Language Processing based Systems

Generating actionable insights from clinical data is a complex and challenging task

due to the huge volume and variety of natural language textual data generated,

such as, narrations or notes by doctors and nurses, discharge summaries, pre-

scriptions given to patients, etc. Clinical Data Analytics is a field that leverages

Natural Language Processing (NLP) techniques for processing unstructured free
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text and for extracting latent knowledge like symptoms, diseases, patient history,

etc. Several existing works used basic NLP techniques like tokenization, stopping,

stemming and n-gram extraction, which are performed on the text data and then

used in association with systems like UMLS, MESH or ontologies like SNOMED-

CT (Donnelly, 2006) or machine/deep learning techniques for the development of

intelligent predictive analytics based healthcare applications.

In early 1972, McDonald et al. (1999) of the Regenstrief Institute at Indianapo-

lis, USA, developed the Regenstrief Medical Record System (RMRS) – a system

that provided a protocol-driven reminder service for physicians which reminded

them to perform certain clinical tests on their patients (Demner-Fushman et al.,

2009; Mamlin et al., 2007). Antibiotic Assistant was a system developed by Evans

et al. (1998) at LDS Hospital, Utah, USA, which could identify patients with po-

tential infections and then alert the physicians about anti-infection therapy, with

a suggestion regarding the dosage of antibiotic for the same. Although physicians

could save time using this, the system could never measure the quality of the

anti-infection treatment or even more importantly, failed to detect drug events

and reactions. Fiszman et al. (2000) developed an enhanced system that used

the Antibiotic Assistant but could detect acute bacterial pneumonia from chest

X-ray reports using NLP techniques. They proved that applying NLP techniques

is more suitable for prediction than simple keyword based techniques. Although

its accuracy was satisfactory, the time taken for prediction was quite long, thus

failing to generate fast actionable insights for early decision making.

Baud et al. (2001) proposed a light knowledge model for medical texts. The

medical documents or records were tokenized, disambiguated, parsed, performed

semantic tagging of words and finally, syntax-driven modeling in which semantic

relationships between two words are tagged, thus resulting in a light knowledge

model for medical texts. Fontelo et al. (2005) developed a system named askMED-

LINE, a free-text, natural language search tool for the medical literature system

MEDLINE1/PubMed2 without using any domain specific vocabularies. HELP

(Health Evaluation through Logical Processing) (Haug et al., 2007) was the first

hospital information system to integrate clinical data accumulation and clinical

decision support. The HELP system provided diagnostic decision support to help

diagnose Adverse Drug Events (ADE). It was basically a rule based system that

generated predictions based on chemical tests, drug tests, drug prescriptions and

orders, symptoms, etc. available in patients’ EHRs. The system would have per-

1https://www.nlm.nih.gov/bsd/medline.html
2https://www.ncbi.nlm.nih.gov/pubmed/

https://www.nlm.nih.gov/bsd/medline.html
https://www.ncbi.nlm.nih.gov/pubmed/
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formed better if better preprocessing and data mining techniques were applied on

the hospital EHR data.

Table 2.2: Summary of Natural Language Processing based Systems

Work Concept/Method Explanation/Remarks

McDonald et al.

(1999)

NLP and rule-based Protocol-driven reminder

system for physicians to

perform timely clinical

tests on patients

Evans et al.

(1998)

NLP on structured medical

text records & MEDLINE

type definitions

Antibiotic Assistant for

identifying patients with

potential infections and

alert physicians for

anti-infection therapy

Fiszman et al.

(2000)

NLP grammar and

keywords on chest X-ray

reports

System able to detect acute

bacterial pneumonia

Baud et al.

(2001)

NLP and term relationship

semantics

A light knowledge model

for medical texts

Fontelo et al.

(2005)

NLP and keyword search askMEDLINE: NL search

tool for

MEDLINE/PubMed

Haug et al.

(2007)

HELP, NLP, Rule-based

(using EHRs)

Diagnostic decision support

to diagnose Adverse Drug

Events

2.2.3 Data Mining and Learning based Systems

The amount of data generated in the field of healthcare is very high in volume and

also is highly complex to be processed and analyzed by traditional methods (Koh

et al., 2011). Over the years, Data mining techniques like pattern analysis, clus-

tering etc., have been used by many researchers to transform these huge amounts

of data into useful information for decision making and predictive modeling. With

the massive explosion of multimodal data availability in the field of Healthcare, the

role of data analytics in making meaningful use of it has grown more vital (Rav̀ı
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et al., 2017). This has resulted in a new generation of analytical, data-driven and

predictive models based on Artificial Intelligence through Machine Learning and

Deep Learning techniques. As this is the primary area of focus and is an exten-

sive area of research, we have classified the works further based on the common

prediction tasks performed by these CDSSs.

2.2.3.1 Mortality/Severity Prediction

In critical care applications, the process of taking practical decisions on managing

the care of intensive care patients can help augment the e�ciency of caregivers,

through the use of predictive data analysis on the large amounts of data generated

while monitoring these patients. The most important aspect of a CDSS in the

ICU is undoubtedly, its ability to accurately predict in advance the mortality or

severity risk of a patient, so that doctors and other healthcare personnel can be

prepared to intervene in time, with the resources available in ICU. Apart from

measuring the severity of illness, mortality prediction can also play a crucial role

in the assessment of treatment and critical care policies of a hospital. Hence, ICU

mortality prediction has remained a well-researched problem over the years.

Before delving into the ML based mortality prediction CDSSs, we discuss a few

important traditional parametric severity scoring based Mortality Prediction Mod-

els (MPMs). Parametric scoring based MPMs typically use the perceived relevance

of the clinical measurements of an ICU patient, to calculate a score in a particular

range, as per a model derived by clinical experts. Knaus et al. (1981) proposed

a physiological scoring system APACHE (Acute Physiology And Chronic Health

Evaluation) that measures severity of illness using 34 physiological variables in pa-

tients from critical conditions in ICUs. Gall et al. (1984) proposed another scoring

system Simplified Acute Physiological Score (SAPS), which used measurements of

14 physiological variables to group patients in various probabilities of death risk.

SAPS claimed to be simpler and less time-consuming that APACHE in calculation

of score. Knaus et al. (1985) put forth a revision of APACHE, APACHE-II, that

used 12 physiological variables and two additional diagnosis related variables to

calculate severity of illness and risk of death in ICU patients.

To improve the accuracy of determining mortality risk, APACHE-III was intro-

duced later by Knaus et al. (1991), which required measurement of eight additional

physiological variables along with those used in APACHE-II. The next version of

SAPS, SAPS-II which was proposed by Gall et al. (1993), was reported to have

performed better in comparison to APACHE-II. It included easy-to-measure 12
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Table 2.3: Summary of Traditional Mortality/Severity Scores

Work Concept/Method Explanation/Remarks

APACHE (Knaus
et al., 1981, 1985,
1991; Zimmerman
et al., 2006)

Parametric method
based on clinical
variables

Acute Physiology And
Chronic Health
Evaluation

SAPS (Gall et al.,
1984, 1993; Moreno
et al., 2005)

Parametric method
based on clinical
variables

Simplified Acute
Physiological Score

SOFA Vincent et al.
(1996)

Parametric method
based on clinical
variables

Sepsis-related Organ
Failure Assessment

OASIS (Johnson
et al., 2013)

Parametric method
based on clinical
variables

OASIS (Oxford Acute
Severity of Illness Score)

physiological variables to calculate severity of illness and mortality risk of ICU

patients. Another score, SOFA (Sequential Organ Failure Assessment) (Vincent

et al., 1996), determines severity and mortality risk of ICU patients and was

considered advantageous for its simplicity of measuring only six variables (re-

lated to Respiration, Central Nervous System, Cardiovascular, Renal, Coagulation

and Comorbidity) to calculate the score. SAPS-III, introduced by Moreno et al.

(2005), was meant to supplement the SAPS-II scoring system for better determin-

ing mortality and severity risk in ICU patients. The fourth version of APACHE,

APACHE-IV Zimmerman et al. (2006) used multivariate logistic regression for

measuring severity of illness and mortality risk in ICU patients. OASIS (Oxford

Acute Severity of Illness Score), a recent scoring system proposed by Johnson

et al. (2013), uses a subset of APACHE-IV variables along with others like age,

length-of-stay and elective surgery prior to ICU admission, to predict mortality

of ICU patients. According to the authors, its performance is at par with that

of APACHE-IV and is considered superior to APACHE-IV as it requires lesser

features. Despite this, validation studies carried out by various researchers have

shown that these scores can be further fine-tuned for better performance (Pirrac-

chio et al., 2015; Awad et al., 2017). Any such fine-tuning can help in reducing

the time taken in collecting patient data, thus enabling earlier predictions with

better accuracy than that achieved by traditional scoring systems.

In recent years, researchers have focused on designing non-parametric CDSSs
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built using data mining and machine learning techniques to enable higher ac-

curacy for applications like ICU mortality prediction, length-of-stay prediction,

readmission prediction etc. Dybowski et al. (1996) proposed the use of an Artifi-

cial Neural Network (ANN) optimized by Genetic Algorithm (GA) to e↵ectively

predict mortality risk in ICU patients. They compared the performances of their

approach against Logistic Regression based MPM. Wong and Young (1998) com-

pared the performances of an APACHE-II model and an ANN based mortality

prediction model for ICU patients and reported that ANN based MPM outper-

formed the APACHE-II score, underscoring the significant potential of learnability

in e↵ective prediction of mortality risk. Clermont et al. (2001) reported similar

performances of Logistic Regression based MPMs and ANN based MPMs with

adequate samples of data.

Nimgaonkar et al. (2004) compared the performance of APACHE-II based

MPMs and ANN based MPMs on Indian ICU data and reported that ANN based

MPMs outperformed APACHE-II based MPMs. Kim et al. (2011) compared the

predictive accuracy of MPMs based on ANN, Support Vector Machine (SVM) and

decision trees with APACHE-III scoring system based MPM using ICU patient

data collected at University of Kentucky Hospital, where, the C5.0 decision tree

algorithm outperformed APACHE-III and ANN based MPMs. Celi et al. (2012)

developed customized ML based MPMs for various categories of ICU patients, like,

patients su↵ering from acute kidney injury (for which ANN performed better than

SAPS), patients su↵ering from subarchanoid hemorrhage (for which Bayesian Net-

works outperformed SAPS) and elderly patients who had undergone open heart

surgery (for which ANN performed better compared to SAPS). Their work under-

scores the very generic nature of standard and traditional severity scoring systems

due to which they often fail to predict well for locally customized models (Awad

et al., 2017).

Pirracchio et al. (2015) developed the Super ICU Learner Algorithm (SIC-

ULA), a MPM which uses a ML cascade trained on the MIMIC-II critical care

database, and its performance significantly outperformed that of SAPS-II and

SOFA based MPMs. Calvert et al. (2016a) proposed a MPM that uses Logistic

Regression and binning to predict mortality risk using 12 hours of patient data

after admission into the ICU, outperformed performances of SAPS-II and SOFA

based MPMs. Calvert et al. (2016b) showed the applicability of similar method-

ology in developing a MPM specifically for critically ill patients su↵ering from

alcohol disorder patients. Harutyunyan et al. (2017) proposed and benchmarked

multitask Long Short Term Memory (LSTM) neural network based learning mod-
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els that perform prediction tasks to enable better clinical decision support, out

of which one task is in-hospital mortality. Che et al. (2018) proposed and bench-

marked a modified Gated Recurrent Unit (GRU) neural network based CDSS

models including a MPM that included novel preprocessing strategies for missing

values in patient data. Purushotham et al. (2018) benchmarked performances of

deep learning models and proposed a Multi-modal Deep Learning (MMDL) based

prediction model, an ensemble of Feed Forward Neural Network (FFNN) and

LSTM, for various tasks, one of them being mortality prediction of ICU patients.

Table 2.4: Summary of Works on ML based Mortality/Severity Prediction Models

Work Concept/Method Explanation/Remarks

Dybowski et al.
(1996)

ANN with GA
optimization

Compared with Logistic
Regression based MPM

Wong and Young
(1998)

ANN based MPM Comparison with
APACHE-II

Clermont et al. (2001) Logistic Regression and
ANN based MPMs

Compared performances
of LR and ANN based
MPMs

Kim et al. (2011) Various ML classifiers -
comparison study

ICU Mortality
prediction using private
hospital dataset

Celi et al. (2012) ANN and Bayesian
Network based MPMs

customized MPMs for
various conditions

Pirracchio et al.
(2015)

Logistic Regression ICU mortality prediction
using MIMIC-II dataset

Grnarova et al. (2016) Neural document
embeddings

ICU Mortality
prediction

Calvert et al. (2016a) Logistic Regression with
binning feature modeling

ICU mortality prediction
using MIMIC-III dataset

Calvert et al. (2016b) Logistic Regression with
binning feature modeling

Mortality prediction in
alcoholic patients

Harutyunyan et al.
(2017)

Time series analysis Benchmarking CDSS
predictions - ICU
Mortality, readmission,
length of stay

Che et al. (2018) Recurrent Neural
Networks & multivariate
time series

Mortality prediction
with missing values
handling
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2.2.3.2 Disease Prediction

Disease prediction models can be categorized into three types – (i) disease specific

models for predicting risks of developing a particular disease (such as diabetes

prediction, heart disease prediction, etc.), (ii) Generic disease categories and group

prediction models and (iii) Generic disease coding models. We discuss various

works in each of these categories in the next section.

Disease-specific Prediction Models. Himes et al. (2009) proposed a predic-

tion model to predict Chronic Obstructive Pulmonary Disease (COPD) in asthma

patients using data extracted from EMRs. Their system used a Bayesian Net-

work classifier (Friedman et al., 1997) and K2 algorithm (Cooper and Herskovits,

1992) for the purpose of prediction. However, their model lacked good preprocess-

ing and feature modeling techniques due to which the Bayesian Classifier did not

have enough or quality features to learn. Lipton et al. (2015) demonstrated the

e↵ectiveness of gradient based learning algorithms like Recurrent Neural Networks

(RNN) (Williams and Zipser, 1989) in making diagnosis using EHRs. The system

is intended for multi-label classification for patient phenotyping and predicting

diagnoses. While the proposed system performed well, the evauation experiments

were performed on a small set of data from a hospital, which was found to be in-

adequate for training a deep learning model and for optimal learning. Moreover, it

lacked e↵ective preprocessing and patient representations, which further degraded

the system’s performance. Michelson et al. (2014) proposed a system that can de-

tect surgical site infections, using text mining and NLP for the purpose of retrieval

and extraction of information from structured, semi structured and unstructured

medical text. The system lacked good preprocessing techniques, especially in the

context of unstructured clinical text, and thus was not very e↵ective.

Generic Disease Prediction Models. This category includes models built on

patient data for predicting the existence of specific diseases such as heart diseases,

lung diseases, sepsis, kidney diseases, etc. Zhang et al. (2012) developed a system

that used historical datasets along with streaming data for predicting diagnosis

in real-time, based on the concept of data stream mining (Domingos and Hulten,

2000) and classification using Very Fast Decision Trees (Li et al., 2009). Miotto

et al. (2016) designed a system named Deep Patient, a model for disease predic-

tion for clinical decision making. It used an unsupervised feature learning method

over EHRs using autoencoders to generate e↵ective patient representations. They

used a random forest classifier (Rodriguez et al., 2006) to train and predict the
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probability of occurrence of all the diseases in the vocabulary. Even though the

system achieves pretty good results, the supervised random forest classifier at

the end layer could have been another deep learning architecture which would

have refined the results to a better extent. The system proposed by Choi et al.

(2016), named Doctor AI, is a generic predictive model that considers medical

conditions that were previously observed in patients. Doctor AI uses a temporal

model implemented using RNNs which was then applied over longitudinal times-

tamped EHRs to make multi-label predictions (for diagnosis, medication and time

of patient’s next visit). The advantages of a derived patient representation and

unsupervised multi-label classification are significant. However, the generated pa-

tient representations need improvement, as very rudimentary feature engineering

has been utilized. Moreover, both DeepPatient and DoctorAI are designed to con-

sume structured EHR data and are custom made for their own hospital EHRs,

thus have not been benchmarked on standard open datasets. Also, they do not

consider the case of unstructured text data, which forms a substantial percentage

of clinical data volume generated by hospitals.

Deepr is a system proposed by Nguyen et al. (2017) which uses a deep learning

approach that performs risk prediction for patients. It is an end-to-end system

that takes EHRs as input, learns to extract features from them and predicts risk

of patients in an automated way. It uses a Convolution Neural Network (CNN)

(LeCun et al., 1998) for understanding clinical patterns to predict risk of patients.

Another system put forward by Cheng et al. (2016) is also a deep learning approach

for risk prediction of patients, that uses a four layer CNN model – EHR Matrices,

a phenotyping layer, a max pooling layer to remove insignificant features and

finally, a softmax classification layer. The authors stress that feature engineering

is a major bottleneck in predictive systems based on EHRs, and deep learning

models which achieve better feature learning are critical for optimal performance

(Nguyen et al., 2017). Moreover, these prediction models could have performed

with a better performance with the use of derived patient representations from

EHRs.

Che et al. (2018) proposed and benchmarked GRU based models for mortality

and disease prediction of ICU patients. Purushotham et al. (2018) benchmarked

performances of deep learning models and proposed a Multi-modal Deep Learning

(MMDL) based prediction model, an ensemble of FFNN and LSTM, for various

tasks. Both these works (Che et al., 2018; Purushotham et al., 2018) proposed

models that perform ICD9 disease group prediction, utilizing structured patient

data and deep learning architectures. While both report promising results, they
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failed to e↵ectively generate and utilize derived patient data representations for

the prediction modeling, which is a significant limitation.

Generic Disease Code Prediction Models. In hospitals, the ICD93 coding

taxonomy is widely employed to describe patient conditions and the associated

diagnoses. ICD9 is essentially a hierarchical classification, with unique codes for

patient conditions, diseases, infections, symptoms, causes of injury, and others,

maintained by the World Health Organization. These unique diagnostic codes are

assigned to patient records to facilitate the clinical and financial decisions made

by the hospital management for billing, insurance claims, and reimbursements

(Jensen et al., 2012; Li et al., 2018). Based on clinicians’ free-text notes and

other patient records such as discharge summaries, trained professional medical

coders employed by the Hospitals’ MRD transcribe the patient records into a set

of appropriate medical diagnostic codes (from a potentially large set of codes –

around 13,000 codes in case of ICD9). These medical coders utilize their expertise

in the field of medicine, coding rules, and terminologies, to facilitate the note-to-

code mapping, thereby making such manual coding process expensive, inexact,

time consuming, and error-prone (Chen et al., 2017; Zeng et al., 2019). It is

riveting to note that the additional cost incurred as a result of incorrect coding

and the financial investment spent in improving the e�cacy of coding, estimates

to approximately $25 billion per year (in the United States alone) (Lang, 2007;

Farkas and Szarvas, 2008). This emphasizes the crucial need for an automated

computational system for ICD9 coding of patient records.

ICD9 coding can be considered as a multi-label classification task (binary clas-

sification of multiple labels), where each label pertains to a patient diagnosis or

condition and each label has a binary value of zero or one, indicating absence or

presence of the condition. Using the concept of multi-label classification, several

Machine Learning (ML) approaches for automated ICD9 coding have been pro-

posed over the years. Pakhomov et al. (2006) proposed the use of a Bag-of-Words

model and a Naive Bayes classifier for automated assignment of diagnosis codes

to patient encounters. Medori and Fairon (2010) proposed a Naive Bayes classi-

fier based semi-automatic method to assign ICD9 codes for patient records and

the paper also identified some important attributes such as diseases, symptoms,

factors, procedures, etc. through the process of feature selection. Perotte et al.

(2011) proposed a Hierarchically Supervised Latent Dirichlet Allocation (HSLDA)

3International Classification of Diseases, 9th revision. Online: https://www.cdc.gov/nchs/
icd/icd9.htm

https://www.cdc.gov/nchs/icd/icd9.htm
https://www.cdc.gov/nchs/icd/icd9.htm
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as an improved version of Latent Dirichlet Allocation (LDA) topic modeling tech-

nique. The authors validated the e�cacy of the proposed topic modeling method

on various tasks, one of them being ICD9 coding of free text clinical records. Fer-

rao et al. (2013) used SVM classifiers for assignment of ICD9 codes to admission

episodes using structured patient data. Dermouche et al. (2016) used LDA for

feature modeling and used SVM as a classifier for assigning ICD9 codes to patient

records. Wang et al. (2017) proposed an automatic ICD9 coding model that uses

an ensemble of linear classifiers with the help of disease correlation information at

local level of patient data for improved prediction of disease codes.

Recent ML based approaches such as (Baumel et al., 2018; Li et al., 2018; Xie

and Xing, 2018; Mullenbach et al., 2018; Huang et al., 2019; Zeng et al., 2019)

have been put forward to automate ICD9 coding using unstructured clinical text

through machine learning. These used the standard and openly available MIMIC-

III (Johnson et al., 2016) dataset for benchmarking their works. Baumel et al.

(2018) proposed a hierarchical attention model to identify relevant sentences for

ICD9 labels and used Gated Recurrent Unit (GRU) for the ICD9 coding. Li

et al. (2018) proposed an approach called ‘DeepLabeler’ to assign ICD9 codes

to discharge summaries. They used Doc2Vec and Convolutional Neural Networks

(CNNs) for ICD9 coding. Mullenbach et al. (2018) proposed Convolutional Atten-

tion for Multi-Label classification(CAML) approach for coding of patient records

and benchmarked the results for 8921 unique ICD9 codes that includes 6,918 diag-

nosis codes and 2,003 procedure codes. Xie and Xing (2018) proposed an approach

in which the ‘Diagnosis Description’ section of the discharge summary documents

was taken as the input. They used LSTM to encode hierarchy of ICD9 codes

and also used attention models to perform the coding of the discharge summaries.

Huang et al. (2019) evaluate and benchmark the performance of state-of-the-art

deep learning models like RNNs (LSTM and GRU), feed forward neural networks

and CNNs for ICD9 coding of discharge summaries. They also compare the per-

formances of deep learning models with that of machine learning classifiers such

as Logistic Regression and Random Forest. Zeng et al. (2019) used the concept

of transfer learning from the task of Medical SubHeadings (MeSH) indexing for

ICD9 coding as both are binary classification of multiple labels. They used CNN

for their prediction model and they compared their performances against SVM

and flat-SVM models.
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Table 2.5: Summary of Existing works in the area of Disease Prediction Systems

Work Concept/Method Explanation/Remarks

Pakhomov et al.

(2006)

BoW model & Naive

Bayes classifier

Automatic assignment of

diagnosis codes to patient

encounters

Medori and

Fairon (2010)

Naive Bayes classifier Identification of important

attributes for semi-automatic

method to assign ICD9 codes for

patient records

Himes et al.

(2009)

Bayesian Network

classifier & K2

algorithm

Prediction of COPD in asthma

patients

Perotte et al.

(2011)

Hierarchically

Supervised LDA

ICD9 coding of free text clinical

records

Zhang et al.

(2012)

Very Fast Decision

Trees

Real time diagnosis prediction

Ferrao et al.

(2013)

SVM Assignment of ICD9 codes to

admission episodes using

structured patient data

Michelson et al.

(2014)

Text Mining and

NLP techniques

Surgical site infections detection

using structured, semi structured

and unstructured medical text

Lipton et al.

(2015)

RNN predicting diagnosis with the

usage of EHRs

Miotto et al.

(2016)

Autoencoders and

Random Forest

predict the probability of

occurrence of diseases using

patient data warehouse

Choi et al.

(2016)

RNN Predict diagnosis using

longitudinal timestamped EHRs

Cheng et al.

(2016)

CNN Predict risks of patient

conditions

Nguyen et al.

(2017)

CNN Predict risks of patient

conditions
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Table 2.5: Summary of Existing works in the area of Disease Prediction Systems

Work Concept/Method Explanation/Remarks

Baumel et al.

(2018)

GRU & attention

model

Automated ICD9 coding

Li et al. (2018) Doc2Vec and CNN Automated ICD9 coding

Mullenbach

et al. (2018)

CAML (CNN and

attention model)

Automated ICD9 coding –

diagnosis and procedures

Xie and Xing

(2018)

LSTM & attention

model using Diagnosis

Descriptions

Automated ICD9 coding

Che et al.

(2018)

GRU-D (GRU) Disease group prediction

Purushotham

et al. (2018)

MMDL (FFNN and

GRU)

Disease group prediction with

benchmarks performances of

other models

Huang et al.

(2019)

RNN, CNN, FFNN Automated ICD9 coding with

benchmarks performances of

other models

Zeng et al.

(2019)

Transfer Learning

from MeSH indexing

task

Automated ICD9 coding

2.2.3.3 Other CDSSs

E↵orts for automatically predicting the outcomes of several other clinical tasks

have been attempted over the past decade. Campbell et al. (2008) proposed

a system that predicted probability of death/readmission of ICU patients using

their discharge summaries and other patients’ historical clinical records, built on

multivariate logistic regression. Their system used a small collection of manually

collected data, that failed to intuitively model disease severity and incremental risk

of the patient. A similar system for ICU readmission prediction was put forward

by Fialho et al. (2012), that used data mining and fuzzy modelling on MIMIC-II

database (Saeed et al., 2002) to make the predictions.
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Bennett and Doub (2010) proposed a predictive and ‘adaptive’ model for CDS,

that helps medical personnel select the optimal clinical treatment for a patient by

modeling the outcomes of all treatment options, based on the patient’s EHR data.

The system was implemented by performing frequent pattern mining and predic-

tive analysis on EHRs. Liang et al. (2014) proposed a system that applies Deep

Belief Networks (DBN) (Hinton et al., 2006) on EHRs for supporting clinical de-

cision making. The system also used a Restricted Boltzmann Machine (RBM)

(Salakhutdinov and Hinton, 2009) for implementing layer-wise training for the

implemented DBN, and was tested for generic disease diagnosis assistance as well

as hypertension prediction. The system had an advantage of designing an im-

proved patient representation format by incorporating e�cient preprocessing and

unsupervised feature extraction techniques.

Gentimis et al. (2017) proposed an approach that used neural networks to

predict the number of days a patient could remain admitted in the ICU (length

of stay). This was a multilayer perceptron based classification approach that

categorized the length of stay of ICU patients in the MIMIC-III dataset into long

(more than 5 days) and short (5 or lesser days). Zebin et al. (2019) proposed an

autoencoder based deep neural network approach to determine the length of stay

of ICU patients and benchmarked their system on the MIMIC-III dataset. They

too used a deep neural network to classify the length of stay into long (more than

7 days) and short (7 or lesser days). Li et al. (2019) proposed an approach based

on exploratory data analysis and Least Absolute Shrinkage & Selection Operator

(LASSO) regression technique to predict length of stay of ICU patients in the

MIMIC-III dataset and expressed the results in terms of Root Mean Squared

Error (RMSE). Table 2.6 presents a summary of CDSSs for varied clinical tasks.

2.2.4 Population Analytics based Healthcare Systems

Automating population health surveillance based on the confluence of technologies

like Big Data Analytics, Data Mining and Machine Learning (ML) has emerged

as a significant solution for extracting latent patterns and gaining potentially

actionable insights to help govern the health of a population and also drive public

health policies (Darcy et al., 2016; Krumholz, 2014). Patient level data available

in hospitals can provide government agencies with systematic data on instances of

disease or virus outbreak, which can help put e↵ective prevention and quarantine

procedures in place, also provide long-term data for future prediction of similar

outbreaks even before the symptoms manifest themselves. Statuses and posts on
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Table 2.6: Summary of Other CDSS Models

Work Concept/Method Explanation/Remarks

Campbell et al.
(2008)

Logistic Regression ICU mortality and
readmission prediction

Bennett and
Doub (2010)

Frequent Pattern Mining Optimal treatment
selection through patient
outcome prediction

Fialho et al.
(2012)

Data Mining and Fuzzy
Modelling

ICU readmission prediction

Liang et al.
(2014)

DBN and RBM Generic Healthcare
decision making

Gentimis et al.
(2017)

Multilayer Perceptron ICU length-of-stay
categorization

Zebin et al.
(2019)

Autoencoder and DNN ICU length-of-stay
categorization

Li et al. (2019) LASSO regression ICU length-of-stay
prediction

Online Social Network (OSN) sites such as Twitter, Facebook, etc. have proven to

be an abundant source of useful information for such population based analytics

and several research works that use Big Data Analytics and Machine Learning

have been proposed over the years that prove the same.

Computational techniques like NLP and ML are extensively employed for per-

forming predictive analytics on social media data. Several works in the areas of

influenza or flu monitoring/detection (Alshammari and Nielsen, 2018; Aramaki

et al., 2011; Byrd et al., 2016; Santillana et al., 2015; Wakamiya et al., 2018),

adverse drug event detection (Cocos et al., 2017; Sarker et al., 2015), vaccine

sentiment (Huang et al., 2017), vaccine behaviour/vaccine shot status (whether

vaccine shot was received or not) (Huang et al., 2017; Joshi et al., 2018), and

vaccine hesitancy/vaccine intent (whether vaccine is intended to be taken or not)

(Huang et al., 2017) have been proposed over the past decade. Computational

models for depression detection (whether a person is su↵ering from or prone to

mental illness or depression problems) (McManus et al., 2015; Orabi et al., 2018;

Shen et al., 2017) have also been attempted through e↵ective social media analysis.

Basak et al. (2007) used a supervised learning cum regression method based

on Support Vector Regression (SVR) (Suykens and Vandewalle, 1999), to classify

and measure the contribution of each influenza related term (feature) in Twitter
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data. Ginsberg et al. (2009) proposed a system that detects influenza epidemic

with the help of search engine query data. The system uses data mining to analyze

the data, linear regression for automatic query selection and univariate models to

make predictions (Ginsberg et al., 2009). Signorini et al. (2011) designed a Twitter

data based system for tracking and measuring the disease activity of Influenza A

H1N1 (or commonly referred to as Swine flu) using SVM. Aramaki et al. (2011)

proposed an approach named TWEET-SVM, that uses NLP techniques to mine

Twitter data and use it for detecting influenza epidemics using SVM classifier,

which performed better than Google Flu Trends based detection. Achrekar et al.

(2011) proposed a system named Social Network Enabled Flu Trends (SNEFT),

which used data from US Centres of Disease Control and Prevention (CDC), as well

as Twitter data to analyze flu trends. The system used mining and correlation

techniques for analysis and prediction of influenza epidemics which also proved

that including Twitter data along with CDC data improves accuracy of prediction

(Achrekar et al., 2011).

Yuan et al. (2013) designed a system to analyze, monitor and predict influenza

epidemic in China, using the internet search query data from Baidu 4. Using

text mining, keywords or terms related to influenza are retained and the rest are

ignored. The terms were weighted in terms of importance/relevance and then, a

time series model and a regression process was used to make the prediction. Santil-

lana et al. (2015) proposed an approach called ‘Nowcast’ that used Stacked linear

regression, Adaboost regression with decision trees and SVR based on combined

data from various sources such as Google searches, Twitter microblogs, nearly

real-time hospital visit records and data from a participatory surveillance system

to forecast estimates of multiple Influenza like Illness (ILI) diseases in the US.

Byrd et al. (2016) proposed an approach that showed that Twitter data can not

only be used for influenza epidemics detection, but also to predict the spread of

the disease and monitor it in real-time. The approach involved usage of Twitter

data and all its attributes including geolocation codes, along with a sentiment

analysis module using NLP techniques and Naive Bayes classifier for enabling the

detection and surveillance of influenza epidemic.

Huang et al. (2017) presented a study that uses NLP and several machine

learning classifiers to analyze Twitter users’ behaviour towards influenza vaccina-

tion, out of which Logistic Regression performed best. They performed predic-

tion tasks such as vaccine relevance, vaccine shot detection, vaccine intent detec-

tion and vaccine sentiment. Joshi et al. (2018) designed and benchmarked NLP

4Chinese Web Search Engine - https://www.baidu.com/

https://www.baidu.com/
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based approaches (rule based, statistical based and deep learning based) for de-

tecting whether a Twitter user received a flu vaccination shot or not, built on

a LSTM based language model. Alshammari and Nielsen (2018) used NLP and

machine learning techniques (SVM and Random Forest classifiers) for detecting

self-reported flu cases using Twitter data. The authors reported that a tweet con-

sisting of 280 characters, along with other aspects of the user such as followers,

retweet, likes, replies, etc, is indeed a valuable source of information that supports

accurate detection of self-reported flu cases. Wakamiya et al. (2018) proposed an

approach based on NLP for influenza detection using direct and indirect informa-

tion in Twitter data, for both urban and rural areas. The approach proved that

influenza detection can be performed using tweets with not just direct information

like announcements or reported cases, but also using tweets that indirectly points

to the flu (maybe as a reason for some event cancellation).

Nikfarjam et al. (2015) proposed ADRMine, a machine learning based concept

extraction system, based on NLP techniques and clustering, to detect and extract

Adverse Drug Reactions (ADRs) from Twitter and DailyStrength5 data. Sarker

and Gonzalez (2015) presented a dynamic approach for ADR detection based on

multiple corpus data – Twitter, DailyStrength and an openly available Adverse

Drug Events (ADE) corpus using NLP techniques and SVM classifier. Cocos et al.

(2017) proposed a deep learning based approach that used RNNs and tweet word

embeddings to detect ADR in Twitter data. The authors also presented an RNN

based model learned from minimal examples to label the words in the data with

ADR membership tags, therefore minimizing manual labeling e↵ort and making

the model a bit scalable.

McManus et al. (2015) proposed an approach to detect Schizophrenia (a men-

tal disorder) in Twitter users using NLP techniques and a SVM classifier. Shen

et al. (2017) constructed a well-labelled depression and non-depression dataset

consisting of twitter users and also presented and benchmarked various classifiers

for depression detection. The authors proposed a multi-modal depressive dictio-

nary learning model (MDL) based on dictionary learning and a custom gradient

descent based binary classifier for detecting depression related characteristics in

social media users. Orabi et al. (2018) proposed an approach based on word em-

beddings and deep learning (CNN model) for depression detection based on tweets

by users. The authors came up with an approach to optimize the weights of word

embeddings and benchmarked performance of several deep learning models on

Twitter data. A summary of the works discussed in this section is presented in

5Health based Social network, https://www.dailystrength.org/

https://www.dailystrength.org/
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Table 2.7.

Table 2.7: Summary of Population Analytics based Healthcare Systems

Work Concept/Method Explanation/Remarks

Basak et al. (2007) SVR Classify and measure

contribution of influenza related

terms

Ginsberg et al.

(2009)

Linear Regression Influenza epidemic detection

using search queries

Signorini et al.

(2011)

SVM & NLP Influenza H1N1 detection OSN

data

Aramaki et al.

(2011)

SVM & NLP Influenza epidemics detection

using OSN data

Achrekar et al.

(2011)

Mining &

Correlation

Influenza epidemics detection

using OSN and CDC data

Yuan et al. (2013) Time series and

Regression

Influenza detection &

surveillance using Baidu data

Santillana et al.

(2015)

Regression

techniques

Influenza surveillance based on

combined data from various

sources

Nikfarjam et al.

(2015)

ADRMine - based

on NLP and

clustering

ADR extraction using OSN data

Sarker and

Gonzalez (2015)

SVM & NLP ADR detection using multiple

data sources

McManus et al.

(2015)

SVM & NLP Depression detection

(Schizophrenia) using OSN data

Byrd et al. (2016) Naive Bayes &

NLP

Real time influenza detection

and monitoring

Cocos et al. (2017) RNN & NLP scalable ADR detection using

OSN data

Huang et al. (2017) Logistic Regression

& NLP

Flu vaccine intend recognition,

sentiment recognition using OSN

data



Chapter 2. Literature Review 43

Table 2.7: Summary of Population Analytics based Healthcare Systems

Work Concept/Method Explanation/Remarks

Shen et al. (2017) Dictionary

Learning & binary

classification

Depression detection using OSN

data

Joshi et al. (2018) LSTM & NLP Flu vaccine shot detection using

OSN data

Alshammari and

Nielsen (2018)

Random Forest &

NLP

Self-reported flu cases detection

using OSN data

Wakamiya et al.

(2018)

TRAP & NLP Influenza detection using indirect

information in OSN data

Orabi et al. (2018) CNN & NLP Depression detection using OSN

data

2.3 Outcome of Literature Review

After an extensive survey of existing literature, several research gaps were iden-

tified, specifically in the area of CDSSs using predictive models trained on text

based clinical data. An important limitation of most works discussed earlier is that

they focus on structured patient data and processed EHRs which are mostly stan-

dardized and in extensive use in western countries. However, currently in India

(and other developing countries), structured and processed EHR adoption rate is

very low. On the other hand, most hospitals and healthcare centres are equipped

with computer systems to store patient data in an unstructured/semi-structured

form for purposes like billing, pharmacy, lab reports etc. Designing techniques

to consume this clinical data for enabling intelligent CDS to doctors and hospital

personnel can be a huge contribution, given the prevalent conditions in the In-

dian healthcare ecosystem. Based on this observation, we focus on this problem

with an intent to explore individual-centric healthcare dynamics and additionally,

population-centric health analytics as well.

Another observation gleaned from our review was concerning the techniques

adopted for preprocessing and feature modeling of the clinical data for usage in the

prediction models based CDSSs. We observed that this is given minimal impor-

tance in most works, limiting to just the standard techniques. With unstructured
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clinical data, few basic NLP and vectorization techniques are usually applied and

then fed on to a training algorithm, without an e↵ective feature modeling strategy

to derive e↵ective patient data representations. In case of structured patient data

and processed EHRs, most existing works have not employed e↵ective prepro-

cessing techniques to derive e↵ective patient representations. Some recent works

like DeepPatient (Miotto et al., 2016) and DoctorAI (Choi et al., 2016) tried to

address this problem to an extent, by using extensive preprocessing and feature

modeling approaches in generating better patient data representations for better

training of the learning algorithms. Other works (Cheng et al., 2016; Nguyen

et al., 2017) discussed their intent towards developing innovative methodologies

to develop well-rounded patient data representations. In summary, more e↵ective

the patient representation, better the prediction model will be. In this context, we

intend to focus on designing better and more e↵ective techniques for capturing use-

ful representative knowledge from raw clinical data, beyond the capabilities of the

basic text/data processing pipeline to come up with patient data representations

that can ultimately give rise to better CDSSs.

CDSSs have been an area of active research interest over the past two decades,

and the methodologies used have been evolving over time. Machine Learning

and Deep Learning models have proved to be the most accurate and e↵ective

ones so far. CDSSs that perform personalized prediction for a patient are most

necessary in the field of clinical healthcare. These prediction systems not only

help the patient with predictions of diagnoses and reminders, but also ensures

that healthcare personnel, especially doctors are able to get a comprehensive view

of the patients’ medical history at a glance and can utilize the trained system’s

suggestions regarding the diagnoses and medical tests that ought to be performed,

to make better treatment decisions. Recent works by (Miotto et al., 2016; Choi

et al., 2016; Nguyen et al., 2017; Purushotham et al., 2018) have put forward deep

learning based methodologies to provide CDS by predicting diseases and risks

for a patient. Although some of these methods (Miotto et al., 2016; Choi et al.,

2016; Purushotham et al., 2018) reported good results, there is definite scope for

further improvement in terms of both patient data representations and neural

network architectures. Hence, better systems that provide e↵ective personalised

individual-centric predictions for clinical decision over historic patient data is an

avenue we wish to explore further.

Population health management is an extremely important responsibility for a

country’s government. To analyze a target population’s health statistics is a chal-

lenging process due to scale of the data and also due to its continuously streaming
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nature. An intelligent system for automated population health analytics will be

extremely useful for organizations such as health departments or ministries, with

functionalities like periodic trend analysis and timely reports on the population’s

health dynamics. In case of any unanticipated events such as disease outbreaks

and adverse reactions to newly introduced medications, such organizations can be

better prepared to e�ciently handle such situations or to take positive action to

avert them. Some existing works like (Achrekar et al., 2011; Yuan et al., 2013;

Wakamiya et al., 2018) proposed methodologies to model epidemics and tried to

predict them based on various factors. It is also important to know the opinions of

public regarding vaccine policies, adverse drug events among new drugs, how much

of the population actually received a vaccine shot and may be even detect signs

of bio-war through such information. Some of the existing works (Dredze et al.,

2016; Huang et al., 2017; Joshi et al., 2018) proposed approaches for understand-

ing population intent towards flu vaccines and vaccine shot detection. Detecting

signs of suicidal behavior and depression-related illness among people are also an

important task for health based organizations. Some recent works (Shen et al.,

2017; Orabi et al., 2018) proposed approaches for depression detection in social

media users. The performance of the existing approaches that use OSN data

for population analytics can be enhanced further by designing improved textual

feature modeling techniques and prediction model architectures. For an e↵ective

healthcare system (for a city, state or country), population health analytics appli-

cations are critical and hence, this also is one of the issues we plan to address in

our work.

2.4 Summary

In this chapter, the various approaches and models that have been proposed as

part of CDS research were discussed. The existing approaches of building CDSSs

were grouped into four categories – IR based Systems, NLP based Systems, Data

Mining and Learning based Systems and Population based Healthcare Systems.

The extensive review of the existing literature revealed that there is definite re-

quirement for approaches in developing CDSSs, for both individual as well as

population-centric predictive health analytics, based on structured clinical data,

along with ample scope for introducing better preprocessing and feature modeling

strategies for the unstructured data.

In Chapter 3, we formally define the research problem addressed in this thesis,

based on the identified research gaps in the existing literature. We also briefly
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discuss the proposed methodologies designed to address the observed research

gaps, the details of which are presented in subsequent chapters of this thesis. We

believe that, the domain of healthcare analytics being a critical emerging field

in the healthcare domain, the work presented in this thesis will make significant

positive contributions to the ongoing research in this area.



Chapter 3

Problem Description

3.1 Background

In the previous chapter, an extensive review of existing approaches focusing on de-

signing CDSS applications for augmenting healthcare delivery was presented. The

prevalent issues and requirements for enabling improved CDSSs were also sum-

marized. In this chapter, the identified research gaps are formally presented and

defined as a problem statement. In addition, the scope of the proposed research

work presented in this thesis and a brief overview of the approaches designed for

solving the formally defined problems are also discussed.

3.2 Scope of the Work

An extensive review of the existing research in the domain of healthcare informatics

and CDSSs was presented in Chapter 2. The research issues or gaps identified are

summarized in the previous chapter. From the review of existing approaches

for building CDSSs, it is clear that non-knowledge based CDSSs that involve

techniques such as Data Analytics and Machine Learning techniques are the most

e↵ective till date. It was also gleaned that e↵ectiveness of developed CDSSs depend

heavily on how the clinical data are modeled and represented, as this forms the

basis for prediction models. With this objective and with an aim of bridging the

observed gaps, the research work presented in this thesis has contributions in five

major aspects, as listed below:

1. Design and develop approaches for optimal feature modeling of structured

EHR data for enabling CDSS development.

2. Designing patient-centric CDSS based on machine learning models built on

structured EHRs, for improved prediction accuracy in end-user applications.

47
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3. Designing approaches for handling unstructured and semi-structured clinical

data and extracting latent knowledge for generating patient-specific repre-

sentations.

4. Developing e↵ective patient-centric predictive analytics based CDSS appli-

cations built on unstructured or semi-structured clinical data with learning-

based models trained on generated patient data representations.

5. Development of population analytics based predictive analytics CDSSs using

OSN data, using intelligent approaches for deriving data representations and

machine learning models.

3.2.1 Problem Statement

Based on the understanding of the gaps identified from the review of existing liter-

ature in the domain of healthcare analytics and informatics, the research problem

addressed by the work presented in this thesis is defined as below.

“To design and develop approaches for individual-centric and population-

centric predictive healthcare analytics applications using unstructured

and structured clinical data.”

3.2.2 Research Objectives

Based on identified gaps and the defined problem statement, three research objec-

tives have been defined that are addressed in the research work presented in this

thesis:

1. To design and develop e↵ective preprocessing, feature modeling and repre-

sentation techniques for structured clinical data for individual-centric pre-

dictive analytics.

2. To design and develop e↵ective preprocessing, feature modeling and rep-

resentation techniques for unstructured clinical data for individual-centric

predictive analytics.

3. To design and develop a system for population-centric predictive analytics

performed over population data.
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3.3 Brief Overview of Proposed Methodology

The overall system architecture of the proposed Integrated Predictive Analytics

based Framework for Intelligent Healthcare Applications is depicted in Fig. 3.1.

The various contributions made towards the defined research objectives are indi-

cated with respect to the individual thesis chapters in which they are presented

in more detail. Here, a brief outline of the overall research work presented in this

thesis is discussed.

3.3.1 Individual-centric Predictive Analytics for Structured

Clinical Data

Hospitals in developed countries record data in the form of structured patient data

which mostly consists of readings of labevents and other test reports that can be

put to use directly for building CDSS applications. However, review of existing lit-

erature showed that there is huge scope for designing non-knowledge based CDSS

for overcoming the deficiencies of traditional scoring systems. We address this

by proposing e�cient feature modeling and patient data representation strategies,

which can be generalized better by classification models. A generic workflow for a

patient centric CDSS application that make use of structured data is as depicted

in Figure 3.2. The research contributions towards feature modeling and deriving

patient data representation, along with how they are put to use for mortality risk

prediction systems of ICU patients using machine learning, are explained in detail

in Chapter 4.

SWUXcWXUed
PaWieQW DaWa

DaWa PUeSaUaWiRQ &
PUeSURceVViQg

FeaWXUe MRdeliQg &
PaWieQW DaWa

ReSUeVeQWaWiRQ
PUedicWiRQ MRdel CliQical DeciViRQ

SXSSRUW

Figure 3.2: Individual-centric Predictive Analytics for Structured Data

3.3.2 Individual-centric Predictive Analytics for Unstruc-

tured Patient Data

The EHR adoption rate in most hospitals in developing countries is very low,

and they mainly make use of clinical notes which are in the form of unstructured

text. From existing literature, a huge scope for developing CDSS applications

that are capable of consuming unstructured clinical notes directly for predictive
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applications was observed. To address this, we incorporate e↵ective textual feature

modeling strategies, extracting e↵ective patient data representation which can be

used for e↵ective training and prediction using machine learning and deep learning

architectures.

Figure 3.3 depicts a generic workflow of a patient centric CDSS application

that makes use of unstructured clinical notes. The various textual feature modeling

strategies proposed for deriving patient data representations, along with details on

how they are put to use for mortality risk prediction systems and disease prediction

systems of ICU patients using various machine learning models are presented in

Chapters 5 and 6 respectively. We also explored the possibilities of building disease

prediction systems through aggregation strategies of multiple clinical records that

pertain to a patient’s admission and these are discussed in detail in Chapter 7.

UQVWUXcWXUHG
DaWa (COLQLcaO

NRWHV)

DaWa PUHSaUaWLRQ
& NLP PUHSURcHVVLQJ

TH[WXaO FHaWXUH
MRGHOLQJ & PaWLHQW

DaWa RHSUHVHQWaWLRQ
PUHGLcWLRQ MRGHO

Figure 3.3: Individual-centric Predictive Analytics for Unstructured Data

3.3.3 Population-centric Predictive Analytics

Gaining actionable insights into a population’s health, their intent towards vaccine

policies, their mental health analysis is an important task for a country’s health

organizations and for framing e↵ective public health policies. Social media is a rich

platform where users share information on their views towards these aspects. This

can be used largely by the health organizations to make numerous decisions and

hence, used as a source for designing populations analytics based decision support

systems. Towards this, our contributions are in the form of designing e↵ective

textual feature modeling strategies for deriving rich data representation that can

be used to develop e↵ective prediction models. A generic workflow of a population-

centric predictive analytics based decision support system is as depicted in Fig.

3.4. The research contribution towards designing a prediction model, that achieves

multiple prediction tasks using novel feature modeling and data representation

derivation strategies, is presented in Chapter 8.
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Data Preparation &
Preprocessing

Population Anal\sis
for Decision Making

Te[tual Feature
Modeling & Data
Representation

Prediction ModelPopulation Data
Sources (Social

NetZork /
GoYernment Stats)

Figure 3.4: Population-centric Predictive Analytics

3.4 Research Contributions

In this research thesis, a framework for enabling the design and development of

evidence based CDSSs built on both structured and unstructured patient data

is presented. The objectives are to design patient-centric and population-centric

healthcare analytics methodologies and systems, to provide insights into the pa-

tients’ health outcomes, thus a↵ording intelligent decision-making capabilities to

medical/health personnel. With regards to the outcomes gleaned from the lit-

erature review and the scope of work presented, the major contributions of our

research work presented in the subsequent chapters of this thesis are as follows:

• An empirical study to understand the e↵ect of feature modeling and selection

on patient-specific mortality prediction performance using structured clinical

data.

• A feature modeling approach using Genetic Algorithm (GA) and Extreme

Learning Machine (ELM) for determining most relevant lab events for e↵ec-

tive patient-specific mortality prediction using large-scale structured patient

data.

• ELM based patient-specific mortality prediction for cardiac patients using

unstructured clinical notes.

• Benchmarking study of word representation models for patient-specific mor-

tality prediction using unstructured clinical notes.

• Ontology-driven feature modeling approach for ICD9 disease group predic-

tion using unstructured clinical notes.

• Two-stage feature modeling approach using Particle Swarm Optimization

(PSO) and neural networks for ICD9 disease group prediction using un-

structured clinical notes.

• Hybrid feature modeling approach for e↵ective ICD9 disease group predic-

tion using unstructured clinical text records.
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• Aggregation strategies for multiple clinical text records pertaining to a pa-

tient’s hospital admission – TAGS and FarSight, for e↵ective ICD9 disease

group prediction and early prediction of disease onset.

• A Multi-task Deep Social Health Analyzer for performing population based

predictive analytics on OSN data for e↵ective monitoring of population

health and intent towards policy-making.

3.5 Summary

In this chapter, the scope of the research work and the identified research gaps that

are addressed in this thesis are presented, based on which the research problem for

this research thesis was formally defined. We also discussed briefly the proposed

approaches towards solving the defined problem, which are explained in detail in

subsequent chapters.
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Clinical Data





Chapter 4

Individual-Centric Predictive Analytics

for Structured Data

4.1 Introduction

In most developed countries, hospitals are typically equipped with advanced hos-

pital information management systems (HIMS), that store patient data in struc-

tured formats like relational databases or spreadsheets. The objective is to impose

a strict scheme on the patient data, such that it can be maintained as name-value

pairs with reference to each patient, i.e., the attributes and values corresponding

to various patient-specific data like demographic details like age, gender, lab test

results, medication, allergies etc. This structured patient data is manually gener-

ated by collating various unstructured data sources, through manual conversion

processes, after which they are stored.

A variety of applications are built on the availability of such structured data,

the most important being consumption of such data for facilitating analytics and

inference engines. These structured data sources are amenable for building ma-

chine learning models that are designed to identify underlying patterns, with ap-

propriate feature modeling as per the requirements of the end-user application.

Hospitals with advanced health information technology systems use large number

of trained personnel in the Medical Records Department (MRD) for converting

unstructured patient data sources like demographic data collection forms, physi-

cians notes, nurses notes, discharge summaries, lab reports etc to structured form,

for making them suitable for use as training data in prediction models. In this

chapter, we aim to explore avenues of leveraging such structured patient data

sources for the development of CDSSs. We present experimental studies on the

role of structured data in an important CDSS system extensively in use in modern

hospitals - ICU mortality risk prediction. We explore the suitability of structured

57
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patient data for enabling individual-centric, i.e., patient-specific prediction in es-

timating risk of death given multi-dimensional feature spaces, and leveraging it

for fast and accurate estimation and prediction of patient’s risk profile.

4.1.1 Problem Definition

While most parametric scoring systems like APACHE-II, SAPS-II and SOFA are

now considered standard for ICU mortality measurement in practice, the accuracy

achieved by them is low in comparison to non-parametric methods. Moreover,

the patient-specific data points (examples include - results of specific lab test,

blood sugar, urine output etc) considered as features by each scoring system is

di↵erent and often, significantly large in number. Due to this, all such score-

specific features, i.e. the required lab tests have to be performed for each ICU

patient before a mortality risk can be assessed. This contributes to an additional

delay in making time-critical mortality decisions, while also adversely a↵ecting

cost and resource usage. It is therefore important to optimize the number of such

features required for predicting mortality risk at the earliest possible time, with

high precision and accuracy, thereby reducing the number of clinical variables or

lab events (features) that need to be collected. To the best of our knowledge,

such an investigation into mortality risk prediction has not been conducted on

large-scale patient data, with an exclusive focus on the contribution of individual

or group of lab event features.

The problem to be addressed here is defined as follows:

Given the known issues arising due to the large number of lab events

considered by traditional mortality risk assessment scores, design and

develop approaches for optimal feature modeling of multi-dimensional

patient data for e↵ective ICU mortality risk prediction, based on struc-

tured clinical data.

4.1.2 Motivating Example

We again take up the example scenario introduced in Chapter 1, Section 1.2.4, for

underscoring the challenges faced in real-world hospitals. As mentioned earlier,

Dr. Bob works in Hospital B, which has adopted structured data standards, and

employs CDSSs built on structured EHRs. When a patient is admitted to the

ICU, Dr. Bob orders the required X lab tests and readings to be performed as

per requirements of one of the traditional severity scoring based systems (such as
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APACHE-II, SAPS-II, etc.), in order to measure the severity/mortality risk of the

patient. Naturally, this requires some time to be completed, say, T time units,

after which the results of the prescribed lab tests are available for scrutiny. Only

after the elapsed time T , the CDSS can leverage the X lab test values as features

for assessing the mortality risk of the patient, which is then provided to Dr. Bob

and his team, to enable them to make informed decisions about the next course

of action with reference to the patient’s treatment.

In this scenario, let us consider that the same prediction could be potentially

determined faster and more economically based on a newer risk prediction model,

without compromising on prediction performance, with x lab test values/readings

that take t time units for completion and result generation, where x < X and t <

T . That would be highly advantageous to all direct stakeholders like Dr. Bob and

his team, and the concerned patient, and also the hospital, due to the significant

savings in medical and human resources alike. The doctor can make decisions

faster, and the patient would receive the required medical intervention faster,

lessening the chances of deterioration in his condition. Due to these advantages,

optimization in prescribed tests and associated data required to build mortality

risk prediction CDSSs commonly used in ICUs are of critical importance.

In this chapter, we address this challenge in a two-fold manner. Firstly, we

present extensive empirical studies on the nature of feature variables used by

traditional severity scoring based Mortality Risk Prediction Models (MPMs) used

in practice. Based on the insights obtained, we employ this for training Machine

learning classifiers for designing ML based MPMs. Secondly, we focus on designing

a novel learning based model that facilitates time-sensitive ICU mortality risk

prediction with improved accuracy. The proposed model uses Genetic Algorithm

(GA) based optimization and Extreme Learning Machine (ELM) neural models

for deriving optimal subset of lab events, that achieves significant performance

improvement and cost/time savings.

4.2 Traditional Mortality Risk Scoring Models -

An Empirical Study

In this study, an investigation into the working of traditional severity scoring based

MPMs and their constituent feature variables was undertaken. As discussed in

Chapter 2 (In Section 2.2.3.1 and Table 2.4), some popular MPMs being used

in practice in hospitals include APACHE (version I to IV), SAPS (version I to
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III), SOFA, OASIS etc. Most such scores use the values from tests performed

on patients for computing their mortality scores. Several such tests are often

required to predict mortality risks, in most traditional scoring systems. SAPS-II

requires 17 test values for mortality prediction while SOFA uses just 6 and OASIS

is dependent on 10 physiological variables. The main objectives of our study are

three-fold.

1. To assess the e↵ect of features used by traditional ICU mortality scores.

2. To observe how Machine Learning (ML) based MPMs work in comparison

to the traditional severity scoring based MPMs.

3. To examine the e↵ects of feature modeling on mortality prediction perfor-

mance and compare its performance against the conventional severity scoring

based MPMs.

The overall methodology adopted for the empirical study is shown in Figure

4.1. The di↵erent processes defined as part of this empirical study are described

in detail next.

MIMIC-III
ICU Data

Combined
Feature Set

SAPS-II
Features

SOFA
Features

OASIS
Features

Feature
Selection

Enhanced
Feature Set

Machine
Learning
Module

Mortalit\
Predictions

for
Each Patient

Feature Extraction and Selection

Figure 4.1: Proposed Approach for the Empirical Study

4.2.1 Patient Cohort Selection and Preprocessing

For the proposed empirical study, the MIMIC-III1 dataset (Johnson et al., 2016)

was used, which contains de-identified clinical data of 46,520 critical care patients.

The data is quite extensive and we designed certain criteria for selecting specific

data. Using these criteria, a subset of 32,622 patient records were selected for

training and validation of the proposed approach. We list the patient cohort

selection criteria below.

1. Only the records of adult patients were considered (age � 15), as pediatric

patients are treated with infants and adolescent-specific procedures.
1Medical Information Mart for Intensive Care – https://mimic.physionet.org/

https://mimic.physionet.org/
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2. To ensure that the prediction model had enough data to make predictions

on, only those patient records, where the patient admitted in the ICU stayed

there for at least one day (length of stay - los � 1), were selected.

Missing Data Handling. A major issue that we had to deal with at this stage

was the large number of missing values for clinical features in MIMIC-III. Directly

ignoring records with missing values adversely a↵ected the number of patients

selected for the study, hence we used a specific way for handling missing data.

For the 32,622 patient records, those records with missing values were filled with

the statistical median values of respective columns. Filling with median values

ensures that the statistics of the model does not deviate from or be biased towards

a particular clinical feature.

4.2.2 Clinical Variable Extraction and Feature Selection

During this phase, we experimented with the di↵erent features used by traditional

mortality risk assessment methods. For this, popular scores - SOFA, SAPS-II and

OASIS scoring systems were implemented for each patient in the selected patient

cohort, using which a combined feature set was generated. Furthermore, we also

considered some additional features like patient demographics (gender) and first

care unit (type of ICU to which patient was first admitted to, e.g. surgical,

medical, trauma, cardiac care etc). We also considered the ICD9 code of the first

disease diagnosis for each patient. These two additional features, i.e., first care

unit and ICD9 code, were considered on the basis that they can help determine the

severity of the patient condition, which may contribute to the correct prediction

of mortality risk. With the inclusion of the standard severity score features and

those we considered additionally, the final number of features obtained was 45.

To derive the most relevant features from this set, we used a feature selection

technique called Recursive Feature Elimination (RFE) (Guyon et al., 2002). RFE

is a wrapper feature selection technique, which uses an estimator to repeatedly

create a model based on a feature subset, and then prune features with low im-

portance based on the accuracy of the estimation. The RFE algorithm is a 3-step

process which is performed iteratively. Firstly, the estimator is trained on the

features by optimizing feature weights, next, the features are ranked based on a

cost function, based on which finally, the features with the least rank are removed

during each iteration. These steps are performed for a number of iterations till an

optimal features set with the required number of features remain. We used the
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RFE algorithm with Logistic Regression as the estimator with its performance

as the cost function, which uses the categorical variable (mortality prediction in

this case) as the dependent variable. Logistic Regression is a statistical model

that uses a logistic function to model a dependent variable, which has a certain

probability of belonging to a specific class. Logistic Regression being a statistical

probabilistic prediction model based on features, works well for binary classifi-

cation and hence is well-suited for selecting features that contribute most to the

mortality prediction. Algorithm 1 depicts the process in detail.

Algorithm 1 Optimal Feature Subset Selection using RFE
Input : The whole set of features and mortality labels and n, the required number
of features to be selected.
Output : Optimal subset of n features.

1: Set the whole set of features as the current feature set
2: while current feature set size > n, do
3: Train Logistic Regression model with the set of features and corresponding

labels, thereby tuning feature weights
4: Calculate cross-entropy loss function values
5: Rank the set of features based on cross-entropy loss values
6: Remove feature with the least rank from the current set
7: Generated optimal subset of n features (Training dataset)

After the feature selection process, only 8 features were selected as the most

relevant out of the original feature set of 45. These included scores that capture

the correct functioning of the liver, renal output, cardiovascular activity, age score,

blood urea nitrogen (BUN) score, sodium score, comorbidity score and first care

unit. Interestingly, features were selected only from SAPS-II and SOFA and the

additional variable, first care unit. Intuitively, this makes very good sense, as

the first care unit in which the patient was admitted to does play an important

role in determining the severity or mortality risk of the patients newly admitted.

The score mostly says how critical the patient is, and hence contributes a lot of

information towards predicting mortality. For predicting the mortality, a label

called expire flag is used, which is binary in nature (i.e., 0 for alive and 1 for

expired). The final set of optimal features along with the labels are then fed into

the ML module for obtaining patient-specific ICU mortality prediction.

4.2.3 Supervised Learning Process

The optimal feature set can now be used as a representation of patient-specific

clinical data, based on which their personalized profile can be modeled. The op-
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timal feature set along with the associated mortality labels in MIMIC-III data

were used for training a suite of machine learning classifiers (the ML module), for

mortality risk predictions namely, Naive Bayes (NB) (Gaussian, Multinomial and

Bernoulli), Support Vector Machine (SVM-linear kernel), Decision Tree (CART

- Classification and Regression Trees) and Random Forest classifiers. NB Classi-

fiers are probability based classifiers which work based on application of Bayes’

Theorem with an assumption that features are independent. SVM classifies data

points into potential classes (alive and expired patients in this case) by repre-

senting them in vector space. The SVM algorithm constructs a hyperplane or a

set of hyperplanes that divide the space so that data is classified into potential

classes. The decision trees classifier employs a tree-like structure where the in-

ternal nodes represent the features and the leaf nodes represent the labels (the

mortality labels - alive(0) or expired(1) in this case). Various branches represent

various feature values leading to corresponding mortality labels, which are used to

perform classification. Finally, the random forest classifier is an ensemble classifier

which works by generating numerous decision trees the votes of which are used to

predict the label. The mortality class which is voted or predicted by most decision

trees decides the prediction of the random forest classifier.

The patient representations modeled as per the proposed feature extraction

and selection approach are used as training data and are fed into the various

classifiers for observing mortality prediction performance. We used 10-fold cross

validation on the data for training and testing. We used standard metrics like

average accuracy, average precision, average F-score and average Area Under Re-

ceiver Operating Characteristic Curve (AUROC) for evaluating the performance

of the trained model.

4.2.4 Experimental Results and Discussion

The experiments were performed on a workstation running Ubuntu 17.04 with 3.5

GHz Intel Core i7 Processor, 16GB RAM and 2TB Hard Drive. The proposed

prediction model was developed in Python and packages like pandas2, Scikit-Learn

(sklearn3), and matplotlib4 were used for performing dataset operations, Machine

Learning algorithms and plotting ROC curves. For validating the proposed ap-

proach, both the proposed model and the standard traditional severity score based

MPMs (SAPS-II, SOFA and OASIS) were applied to the MIMIC-III subset of

2https://pandas.pydata.org/
3https://scikit-learn.org/stable/
4https://matplotlib.org/

https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://matplotlib.org/


64 Chapter 4. Individual-Centric Predictive Analytics for Structured Data

32,622 patients. For each patient in the selected cohort, we implemented each tra-

ditional severity score based MPM and based on generated scores, the mortality

prediction results were obtained. For SAPS-II, the probability of mortality for

each patient was calculated as per Eq. 4.1 (Pirracchio et al., 2015; Gall et al.,

1993).

log(Pm/1� Pm) = �7.7631 + 0.0737 ⇤ S + 0.09971 ⇤ log(1 + S) (4.1)

where, Pm is the required mortality probability of a patient and S is the SAPS-II

score of the patient. The threshold of classification for SAPS-II based mortality

probability was taken as 0.5 as done by Patel and Grant (1999).

In the case of SOFA, the mortality prediction of each patient was obtained by

regressing the mortality on the SOFA score using a main-term logistic regression

model as per Pirracchio et al. (2015).

The probability of mortality for each patient as per OASIS scoring system is

given by the in-hospital mortality score calculation, given by Eq. 4.2 (Johnson

et al., 2013).

log(Pm/1� Pm) = �6.1746 + 0.1275 ⇤OASIS (4.2)

where, Pm is the required mortality probability of a patient and OASIS is the OA-

SIS score of the patient. The threshold of classification for OASIS based mortality

probabilities were also considered to be 0.5.

Our observations on the performance of the various ML models and the stan-

dard severity scores (SAPS-II, SOFA and OASIS) based MPMs on the MIMIC-III

dataset are tabulated in Table 4.1. From the values of the various metrics, it can

be seen that the Random Forest classifier performed best at an average accuracy

of 0.71, average AUROC of 0.77, average precision of 0.71 and average F-score

of 0.71, while SVM and Decision Tree classifiers were a close second. Random

Forests being an ensemble classifier, predicts a label based on the voting of mul-

tiple decision trees, hence performed the best. It can be observed that, among

the standard severity scoring systems, SAPS-II outperformed SOFA and OASIS.

However, the proposed ML based model with Random Forests classifier achieved

significant improvement over SAPS-II in all metrics. A plot of the Receiver Op-

erating Characteristic (ROC) curve is shown in Fig. 4.2, which highlights the

superior performance of the proposed (random forest based) MPM over existing

severity score based MPMs for MIMIC-III data.

From Table 4.1, it can be observed that among the classifiers used, Random

Forest achieved the best accuracy of 0.71 and an average AUROC of 0.77. Its
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Table 4.1: Benchmarking ML approaches against Traditional severity scores
(SAPS-II, SOFA and OASIS)

Classifier Accuracy AUROC Precision F-Score

Gaussian NB 0.69 0.75 0.68 0.68

Multinomial NB 0.69 0.68 0.68 0.67

Bernoulli NB 0.68 0.71 0.69 0.68

Decision Tree 0.70 0.73 0.70 0.69

SVM 0.70 0.76 0.70 0.69

Random Forest 0.71 0.77 0.71 0.71

SAPS-II 0.63 0.72 0.65 0.57

SOFA 0.62 0.61 0.60 0.57

OASIS 0.61 0.64 0.67 0.50

Figure 4.2: Area under ROC Curve for various models (The best performing
model, Random Forest, was considered the Proposed Model)

performance when compared to that of SAPS-II, SOFA and OASIS, was signifi-

cantly higher by a factor of 12–16% in terms of prediction accuracy. It can also be

inferred that ML based models can e↵ectively predict patient-specific mortality

using lesser number of feature variables than traditional severity scoring based

MPMs SAPS-II and OASIS. Even though SOFA uses a lower number of feature

variables, the Random Forest based MPM performs far better in terms of all

metrics even though it considers just two additional feature variables. This indi-
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cates an ample scope for development of CDSSs that dynamically determine the

most important feature variables and predict patient-specific mortality e↵ectively,

thereby reducing time and hospital sources.

4.3 Predicting ICU Mortality using Large-scale

Lab Events Data

From the previous work, a significant scope for e↵ective approaches that can de-

termine the most important lab events or physiological tests that contribute most

towards mortality risk and using them for mortality prediction applications for

ICU patients was inferred. Existing non-parametric based models use a multitude

of features as input data to train machine learning models to predict mortality risk

of ICU patients. It was also understood from discussion with experts and doctors

that, reducing unimportant lab tests not only saves time, but also optimizes cost

for patients and resource allocation in hospitals. Moreover, in practice, hospitals

often follow their own customized versions of MPMs, where a significant number

of lab events are to be performed for each patient. Hence, there is a requirement

for approaches that can determine the most important lab events to be performed

so that mortality risk prediction can be as accurate as possible with fewer lab

events. The processes defined as part of the proposed approach for ICU mortality

prediction based on a patient cohort’s clinical data is depicted in Fig. 4.3. Each

of these processes are discussed in further detail in this section.

E[WUeme LeaUning Machine

FeaWXUe Modeling

Patient Cohort
Selection

(MIMC-III Data)

Data Preprocessing
and Lab EYents

Selection
GAWFS Enhanced Patient

Representation

ClassiÀcationPatient-SpeciÀc
Mortalit\ Prediction

Figure 4.3: Workflow of the proposed GA-ELM Model
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4.3.1 Patient Cohort Selection and Data Preprocessing

For validating the proposed methodology, we used the openly available standard

dataset, MIMIC-III (v1.4) (Johnson et al., 2016) for our experiments., as similar

to the previous work. From this data, a patient cohort was selected based on the

following criteria:

1. Clinical data of only adult patients (age>15) was selected for the cohort, in

accordance with previous studies. This is important as the procedures used

for pediatric patients are highly specific in nature (Pirracchio et al., 2015).

2. Only the first ICU admission of each patient, in cases where a patient was

admitted to ICU multiple times, was considered for the study. This helps

ensure the CDSS nature of a mortality prediction model which helps in

predicting mortality risk with respect to earliest available data on a patient’s

condition.

Accordingly, a subset of 31,691 eligible patients was chosen as the patient co-

hort. For these patients, the results of a total of 573 lab tests performed are

available in a MIMIC-III table called ‘labevents’. These lab test values are ex-

tracted and modeled into a representation, where each row represents a patient

and each column represents a lab test. However, there are several missing values

in some rows, as not all tests are necessarily performed on all patients. If the rows

(patients) with such missing column values are directly removed from the cohort,

then a large number of patients will need to be excluded from the cohort. To over-

come this, we separately calculated the statistical median values of each column

for all alive and expired patients in the selected cohort and filled these median

values in place of any missing values in that particular column. Along with these

573 features, other demographic features like age and gender were also added to

the feature set. Additionally, the ICD9 disease code of a patient’s first diagnosis,

length of stay and also the first careunit (type of ICU to which the patient was

first admitted to) of the patients were also considered as features. After the pre-

processing tasks are applied, the final patient cohort consisted of 31,691 patients

(rows) and the 578 features (columns) representing them. The outcome labels are

the ‘expire flag ’ of each patient (0 for alive and 1 for expired). The statistics of

the selected cohort is tabulated in Table 4.2.

4.3.2 Optimally Modeling Lab Events

Laboratory tests or events help medical personnel in continuously monitoring a

patient’s condition. Often, medical personnel are prone to order various lab eval-
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Table 4.2: Number of Expired/Alive Patients in Initial and Selected Cohorts

Cohort Alive Expired Total

MIMIC-III data 30,761 15,759 46,520

Selected Cohort 19,225 12,466 31,691

uation procedures for patients, some of which may be unnecessary or redundant

in actually understanding the patient’s condition. Eliminating such unnecessary

and wasteful lab evaluations is of significant importance, given the rapidly esca-

lating healthcare and insurance costs as well as excessive overuse of laboratories

and equipment (Chaudhry et al., 2006). Moreover, the extra time taken to per-

form the unnecessary tests might worsen the patient’s condition. For the problem

of mortality prediction for ICU patients, it is critical to predict mortality risk

at the earliest possible patient condition and hence, reducing the number of lab

events required to predict mortality e↵ectively, is a matter of significant impor-

tance. Therefore, we attempt to model patient-specific lab event requirements for

the two-fold objective of reducing prediction time as well as improving prediction

accuracy.

To determine the optimal representation for each patient in the chosen cohort,

a Genetic Algorithm based Wrapper Feature Selection (GAWFS) technique is

proposed. GAWFS is used to find the most-optimal subset of feature variables

of a patient (i.e. lab events) to predict mortality risk of ICU patients. This

optimal feature set is used for training a learning based risk prediction model.

While feature selection techniques have been extensively used for deriving the

optimal feature set, feature extraction can also be used to reduce dimensionality

and increase the e�cacy of the model. However, feature extraction techniques use

a statistical combination of feature values to generate new features which makes

it impossible to track which features (in our case, lab events are features) were

contributed in the prediction. As the purpose of our work is also to identify the

most crucial lab events, we used feature selection and not feature extraction.

4.3.3 Feature Selection

Feature selection (FS) is the “process of selecting an optimal subset of features as

per certain predefined criteria”. Essentially, FS methods can help in reducing the

dimensionality of the dataset by ignoring the unimportant or noisy features, so the

prediction process can be more accurate and computationally e�cient (Sánchez-



Chapter 4. Individual-Centric Predictive Analytics for Structured Data 69

Maroño et al., 2007). In this case, if a real world CDSS application is able to

make accurate predictions based on a lower number of features (e.g. lab event

measurements), then it can potentially save lives, time and cost, and consequently,

is more e↵ective and valuable.

FS techniques can be mainly sub-categorized into filter and wrapper methods.

Filter methods are suitable for quick feature selection based on the threshold of

general characteristics of the data, such as statistical dependencies, without the

need for any induction or classification algorithms (Sánchez-Maroño et al., 2007;

Hira and Gillies, 2015). Some popular examples are ANOVA F-test (Analysis

of Variance) and Mutual Information (MI) test. Wrapper methods generate an

optimal feature subset by evaluating the quality of each feature subset, based

on some classification or induction algorithm, regardless of the chosen learning

method (Kohavi and John, 1997). Recursive Feature Elimination (RFE) and Se-

quential Feature Selection (SFS) are popular examples of wrapper based methods.

Although wrapper methods are computationally more expensive in comparison to

filter methods, the quality of the derived feature subset is better ensured as per-

formance evaluation is performed with respect to a classifier model during the

feature selection process.

To determine the optimal set of features, i.e. the reduced set of lab events con-

tributing the most towards mortality risk prediction, a Genetic Algorithm based

Wrapper Feature Selection (GAWFS) technique is proposed. Genetic Algorithm

(GA) (Yang and Honavar, 1998) is an evolutionary meta-heuristic algorithm in-

spired by the biological process of natural selection and the idea of “survival of the

fittest”. GA is known to o↵er high quality solutions to optimization and search

problems by using the operations – Selection, Crossover and Mutation as in the

process of natural selection and hence, GA is appropriate for the feature selection

process for removing redundant lab events for improved mortality prediction.

The GAWFS process is depicted in Fig. 4.4. We make use of concepts of GA

for calculation of fitness of a population (a set of individuals and chromosomes,

i.e. a subset of features or lab events) and based on the fitness, a particular feature

is selected if it is fit. From the original feature set consisting of 578 features, the

initial population was selected as a random subset of lab events for all patients

(analogous to ‘individuals’ in the ‘population’). For the selected patient cohort,

the feature subset and the associated patient-specific mortality labels are fed into

an estimator/classifier, whose classification performance is then measured.

Algorithm 2 illustrates the process of deriving the optimized lab event subset

using GAWFS. We use an Extreme Learning Machine (ELM) based neural network
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Figure 4.4: Genetic Algorithm based Wrapper Feature Selection process

Algorithm 2 Optimal Lab Events Subset Selection using GAWFS
Input : Set of all lab events & patient-specific mortality labels
Output : Optimal lab events subset of, say, n features (Best solution)

1: while iterations  100 do . No.of generations=100
2: Generate randomly a feature set (lab events) for all patients .

Each feature set represents an individual chromosome, and patients represent
the initial population

3: Select parents and perform genetic operations . Single point crossover
and mutation with probabilities of 0.5 and 0.2 respectively are used

4: Create new generation
5: Calculate fitness of new generation . AUROC performance of ELM
6: if new-fitness > old-fitness then . New generation’s fitness is better than

that achieved with previous subset of features
7: Replace current generation with new generation
8: else
9: Retain the current generation
10: end if
11: end while

based architecture as a classifier or estimator model for the GA technique, thereby

making GAWFS a wrapper based feature selection technique. ELM is a training

method for a single hidden layer neural network based classifier, for which only

the weights between hidden and output layer need to be learned. The ELM

model is described in detail in Section 4.3.4. As the fitness function, the metric

Area Under the Receiver Operating Characteristic Curve (AUROC), as shown in

Eq. 4.3, was used in GAWFS for calculating the fitness value associated with a

particular feature subset. AUROC measures the overall quality of a classifier by

varying the threshold parameter (say i), which biases the classes and returns a

value between 0 and 1 (where a value of 1 indicates best classification performance

possible). The number of thresholds varied is determined by the unique number



Chapter 4. Individual-Centric Predictive Analytics for Structured Data 71

of predicted probabilities of the ELM classifier. As AUROC measures how well a

classifier has learned to classify between the majority and minority classes in the

presence of class imbalance, it is apt for our problem of mortality prediction, and

therefore, it was chosen as the fitness function in GAWFS and is calculated as per

Eq.(1).

Fitness, f(x) =
N�1X

1

(TPRi+1 � TPRi)(FPRi+1 � FPRi) (4.3)

where FPR is the False Positive Rate, TPR is the True Positive Rate and i refers

to the varying threshold parameter for which at each point FPR and TPR are

determined and N is the number of thresholds which was found to be 1062 in our

experiment. Eq. 4.3 sums all the area of all the small rectangles in the ROC curve

between two FPR and TPR points for adjacent thresholds.

During the FS process using GAWFS, the GA operations of single point

crossover and mutation were performed using empirically determined probabil-

ity values of 0.5 and 0.2 respectively. During this iteration, a new generation gets

generated, where, least-fit individuals in the population will be replaced, if their

fitness is not better compared to the ones in the population. In order to enable

comparative benchmarking of the proposed GAWFS model with state-of-the-art

FS techniques, GAWFS was configured to select the most important 10 lab events

or features, similar to the other works.

4.3.4 Building the prediction model

The design of the proposed prediction model is driven by the two principal re-

quirements of a mortality prediction CDSS. Firstly, to eliminate false negative

mortality predictions, i.e., a wrong low mortality risk prediction for a patient who

is actually at high mortality risk should never occur, and, secondly, to ensure

learnability after deployment as a real-world CDSS. To address these two major

aspects, we propose an architecture built on an Extreme Learning Machine (ELM)

neural network, with Rectified Linear Unit (ReLU) as the hidden layer activation

function.

ELM is a learning technique for training Single hidden Layer Feedforward Neu-

ral Networks (SLFNN) (Huang et al., 2015) that are trained in finite training sets.

Initially, the hidden nodes in ELM are randomly fired with random weights and

learning is carried out without iterative tuning. By design, only one parameter

needs to be learned in ELM, i.e., the set of weights between the hidden layer
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and output layer. Thus ELMs are extremely fast when compared to traditional

SLFNNs and also very well-suited for further re-training for future learning (Huang

et al., 2004). Moreover, ELMs can be trained to converge to the smallest possible

error with minimal magnitude of weights, due to which the generalization perfor-

mance of ELMs far exceeds that of traditional feedforward neural networks (as

per Bartlett’s theory). Another advantage of ELM is its ability to reach solutions

in a straightforward manner avoiding problems like local minima, overfitting and

improper learning rate (Huang et al., 2004). Based on these observations, we ex-

perimented with ELM as an estimator in the proposed mortality prediction model,

for exploiting its advantages for the development of real-world CDSSs. After the

FS process, the feature subset with the best fitness value along with the class la-

bels, is used for training the ELM model, for predicting patient-specific mortality

risk.

Figure 4.5: Architecture of the ELM Model

Fig. 4.5 illustrates the ELM architecture used in the proposed model. It is

primarily a SLFNN architecture, where the number of input nodes is governed by

the number of features used for training (as described in 4.3.3). The hidden layer

consists of 50 nodes and one nod at the output layer, which predicts the mortality

risk. We used ReLU as the hidden layer activation function in the proposed ELM

architecture. ReLU, being a ramp function given by f(x) = max(0, x), can trigger

for any non-zero input and therefore, helps the ELM classifier to predict even the

slightest chance of mortality, thereby completely eliminating as many cases of false

negative predictions. The output layer uses a sigmoid activation function as it is

a binary classification.
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Algorithm 3 Process of training the ELM as an estimator for proposed GAWFS
Input : A training set with N samples (from GAWFS) consisting of lab event fea-
tures and mortality labels (xi, yi)|xi, yi 2 R, i = 1, 2, ...N Activation function
f(x) (ReLU) Output : ICU Mortality Risk

1: Randomly assign weights wi and bias bi, i = 1, 2...N for N training samples
2: Compute output matrix based on the input lab event feature set, say H
3: Compute output weights using input mortality labels & output matrix �
4: Train the ELM network using the Least Square Solution �0 to the linear system

H� = T
5: Analytically tune output weights
6: Perform prediction for test set and observe prediction performance

Algorithm 3 depicts the process of training the ELM network as an estimator

for the proposed feature selection model, which also works as the final prediction

model. The various feature sets generated by the GAWFS technique and the final

optimal feature set obtained after the GAWFS process with the associated patient-

specific mortality labels, are used for training the ELM model. The parameters

and weights are initialized randomly and the output matrix is calculated based on

the given lab events or features set and patient-specific mortality labels. During

training, the weights between the hidden and output layer are iteratively optimized

and finally, patient-specific mortality prediction performance is observed. The

details of the experimental validation are reported in Section 4.3.5.

4.3.5 Experimental Results and Discussion

The proposed mortality prediction approach was evaluated by a series of exper-

iments designed to benchmark it against both traditional scoring methods and

state-of-the-art learning based approaches. The experiments were performed on a

setup consisting of a high-end server running Ubuntu Server OS with 56 cores of

Intel Xeon processors, 128GB RAM, 3TB Hard Drive and two NVIDIA Tesla M40

GPUs. For all experiments involving training and testing, 10-fold cross validation

was performed. We used Python libraries – sklearn and matplotlib libraries as part

of execution. The proposed GAWFS technique was configured to select the top-10

lab events that most contributed to mortality risk prediction, from the original

578 lab events (raw features). For the selected cohort of 31,691 patients, the lab

events (features) that were found to be of high importance by proposed GAWFS

technique were – Platelet Count, Red Blood Cells, Hematocrit, Sodium, Chloride,

Bicarbonate, Base Excess, Urea Nitrogen, Anion Gap, and Partial Thromboplastin

Time (PTT). These features, along with the corresponding patient-specific mor-

tality labels for the selected cohort were then used for training and validation of
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the designed prediction model.

4.3.5.1 Evaluation of the Proposed Feature Selection Model

In this phase, two di↵erent experiments were conducted. The first experiment was

designed for observing the performance of the proposed GAWFS+ELM model,

against that of conventional filter and wrapper based methods. Two conventional

filter FS methods, ANOVA F-test and MI, and two wrapper FS techniques (RFE

and SFS) were selected for the comparison, and were applied to raw features (578

in total) for deriving the respective optimal feature sets. The ELM model was

used as an estimator/classifier model for each FS method. After the top-10 lab

events were generated by each FS technique, the respective feature sets generated

by each technique were used for training a base ELM model. The performance of

each of these models were compared against the proposed GAWFS+ELM model.

Standard metrics like accuracy, precision, recall, F-score and AUROC were used

for comparative evaluation of performance. The validated results for the ELM

model trained with feature sets generated by GAWFS, ANOVA, MI, RFE and

SFS feature selection techniques are shown in Table 4.3.

Next, in the second experiment, our objective was to observe the performance

of the proposed model when no feature selection is used. Towards this, an ELM

architecture was trained on the original feature set (578 raw features) without

using any FS technique. The prediction performance was compared with that of

the proposed GAWFS+ELM model. The results of this experiment are tabulated

in Table 4.4.

Table 4.3: Comparison of ICU mortality prediction performance of the proposed
GAWFS model and other Traditional FS techniques, using ELM as the estimator

Metric ANOVA MI RFE SFS GAWFS

Accuracy 0.70 0.70 0.72 0.71 0.75

Precision 0.74 0.73 0.74 0.74 0.81

Recall 0.70 0.70 0.71 0.71 0.74

F-Score 0.71 0.71 0.72 0.72 0.76

AUROC 0.75 0.74 0.76 0.76 0.80

From Tables 4.3 and 4.4, it is clear that the feature selection using the pro-

posed GAWFS technique was most e↵ective for prediction and achieved the best

performance with respect to all metrics in contrast to other FS techniques as well
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Table 4.4: Comparison of ICU Mortality Prediction Performance - Base
ELM+original feature set vs. GAWFS+ELM

Metric Base ELM+OriginalFS GAWFS+ELM

Accuracy 0.71 0.75

Precision 0.70 0.81

Recall 0.71 0.74

F-Score 0.70 0.76

AUROC 0.74 0.80

as over the model that used only raw features for prediction. Hence, we con-

clude that the reduced feature set selected by the proposed GAWFS technique

consists of very relevant features or lab events that contribute the most significant

patient-specific information, due to which a mortality prediction model trained

on it can be e↵ective in real world scenarios too. More importantly, in the case

of a real-world CDSS application, a major advantage is foreseen as only 10 fea-

tures (lab tests/events) need to be measured for each patient thus eliminating

wasteful or insignificant lab tests. This can result in significant reduction in costs

and unnecessary hospital resource consumption, in addition to making predictions

comparatively faster, with better accuracy.

4.3.5.2 Benchmarking against Traditional Mortality Scoring Systems

Several traditional scoring methods are already in use in real-world ICUs, which

are primarily parametric mortality scores. To evaluate the e↵ectiveness of the

proposed GAWFS+ELMmodel, we benchmarked the performance of the proposed

model against that of four traditional scoring systems, SAPS-II, SOFA, APS-

III and OASIS. For each patient in the selected cohort, we implemented each

traditional score based MPM using scores generated based on the lab event data

from the MIMIC dataset (Johnson et al., 2016) and the mortality risk prediction

results were obtained.

For SAPS-II, SOFA and OASIS scores, we calculated the mortality risk or

the probabilities of mortality as explained in the previous work, in Section 4.2.4.

For SAPS-II and OASIS, the probabilities of mortality were calculated as per Eq.

4.1 and 4.2 respectively, and for SOFA, it was done as per method explained by

Pirracchio et al. (2015) (see Section 4.2.4).

The threshold of classification for APS-III based mortality probabilities (as
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similar to others) was considered to be 0.5. Similarly, for APACHE-III (APS III),

the mortality probability for each patient is calculated as per Eq. 4.4 (Knaus et al.,

1991), where, Pm is the required mortality probability of a patient and APS is

the APS-III score of the patient.

log(Pm/1� Pm) = �4.4360 + 0.04726 ⇤ APS (4.4)

The results of this experiment are summarized in Table 4.5. It can be observed

that the proposed GAWFS+ELM model outperformed all the traditional scoring

systems considered for the comparison – SAPS-II, SOFA, OASIS and APS-III, by

15-20% in terms of accuracy, while the observed AUROC improvement was about

11-29%. The superiority of the proposed prediction models trained on a highly

relevant feature set is evident from the tabulated results in terms of all other

metrics considered. A plot of ROC curves for the proposed model and also the

standard scoring systems is shown in Fig.4.6. It can be observed in the plot that

the area under Receiver Operating Characteristic (ROC) curve for the proposed

GAWFS+ELM model is significantly higher than the standard scoring models.

Table 4.5: Comparison of ICU mortality prediction performance of the proposed
GAWFS+ELM model with traditional severity scores – SAPS-II, SOFA, OASIS
and APS-III

Metric GAWFS+ELM SAPS-II SOFA OASIS APS-III

Accuracy 0.75 0.65 0.63 0.62 0.62

Precision 0.81 0.66 0.62 0.67 0.67

Recall 0.74 0.65 0.63 0.62 0.61

F-Score 0.76 0.59 0.57 0.51 0.49

AUROC 0.80 0.72 0.62 0.64 0.67

4.3.5.3 Comparison with State-of-the-art ML based MPMs

We conducted other experiments to benchmark the performance of the proposed

GAWFS+ELM model against the current state-of-the-art works in this domain,

like the models proposed by Calvert et al. (2016b), Calvert et al. (2016a), Grnarova

et al. (2016), Harutyunyan et al. (2017) and Che et al. (2018). These state-of-the-

art ML based models were developed and benchmarked on the MIMIC-III dataset.

For each of these models, we re-generated the cohorts as depicted in the respective
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Figure 4.6: Observed AUROC performance of proposed GAWFS+ELM model
and traditional severity scores – SAPS-II, SOFA, OASIS and APS-III

models to the highest precision possible. Cohort generation and comparison was

carried out in a manner similar to that of Johnson et al. (2018). The proposed

GAWFS+ELM model was then applied to the patient cohorts used by each of

these works. The metrics, prediction accuracy and AUROC were considered for

experimental evaluation, the results of which are tabulated in Table 4.6.

It can be observed that the proposed GAWFS+ELM model outperformed all

the state-of-the-art models in terms of both prediction accuracy and AUROC. It

is to be noted that, some of the state-of-the-art models – Grnarova et al. (2016);

Harutyunyan et al. (2017) and Che et al. (2018) did not report their model’s

prediction accuracy values, due to which we are unable to provide these values

in Table 4.6. We conclude that the proposed model was e↵ective in identifying

the most optimal set of lab events to be performed for each patient, in order to

achieve cost, time and performance improvements over state-of-the-art models.

4.3.5.4 Statistical Significance Testing of the Proposed Model

To further validate the proposed model’s improved performance in comparison to

both traditional scoring systems and the state-of-the-art machine learning models,

the GAWFS+ELM model was subjected to statistical significance testing. Each

model under evaluation, including the proposed as well as the state-of-the-art,
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Table 4.6: Comparison of ICU mortality prediction performance of proposed
GAWFS+ELM model with state-of-the-art ML based models

Study Cohort Study Ac-
curacy

GAWFS+ELM

Accuracy

Study
AUROC

GAWFS+ELM

AUROC

Calvert et al.
(2016a)

0.80 0.90 0.88 0.90

Calvert et al.
(2016b)

0.81 0.92 0.93 0.94

Grnarova et al.
(2016)

–⇤ 0.96 0.96 0.97

Harutyunyan
et al. (2017)

–⇤ 0.92 0.86 0.90

Che et al. (2018) –⇤ 0.98 0.84 0.96
⇤
Note: The authors of this study reported only AUROC performance in their paper, due to

which we are unable to provide prediction accuracy values in Table 4.6.

was executed for a predefined number of rounds (10 rounds), and a standard-size

sample of each model’s results during each round, with reference to all evaluation

metrics used was collected. Interestingly, it was observed that the result samples

were also normally distributed. Therefore, to check if there is a statistically sig-

nificant di↵erence between the proposed model and the models under comparison,

we performed the Student’s t-test (Efron, 1969).

The Student’s t-test is a statistical hypothesis testing technique that can be

used when the samples taken for a normally distributed dataset are small and its

standard deviation is not known. To start with, a null hypothesis H0 was consid-

ered, which indicates that there is no statistically significant di↵erence between

the result samples of the proposed and existing models. The Student’s t-test was

performed for the proposed model against each of the existing standard scoring

systems, with a significance level of 5% and it was found that the p-value was lesser

than 0.04 for all the metrics. Due to this, the null hypothesis H0, was rejected

for all the cases, which means that, there is a statistically significant di↵erence

between the performance metrics of the proposed model and that of the existing

models. It is also to be noted that the significance level is 5%, i.e., for 95% of

the times, the performance of the proposed model is significantly di↵erent from

that of the existing models. The results of the test of the proposed model against

traditional severity scoring models are tabulated in Table 4.7 and that against

state-of-the-art machine learning based models in Table 4.8.
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Table 4.7: Student’s t-test results for Statistical Significant Di↵erence measure-
ment between metric samples of proposed GAWFS+ELM model and traditional
severity score based mortality prediction systems - SAPS-II, SOFA, OASIS and
APS-III

Metrics ! Accuracy, Precision, Recall, F-score, AUROC
Method ! SAPS-II SOFA OASIS APS-III

GAWFS
+ ELM

P Value <.00001 <.00001 <.00001 <.00001
Decision* Reject Reject Reject Reject
Significant

Di↵
Yes Yes Yes Yes

*Significance level = 0.05

Table 4.8: Student’s t-test Results for Statistical Significant Di↵erence measure-
ment for Accuracy and AUROC metrics of proposed GAWFS+ELM model and
di↵erent state-of-the-art ML based Models

Metrics ! Accuracy, AUROC
Method ! Calvert

et al.
(2016a)

Calvert
et al.
(2016b)

Che
et al.
(2018)

Grnarova
et al.
(2016)

Harutyunyan
et al. (2017)

GAWFS
+ ELM

P Value <.02 <.04 <.04 <.01 <.01
Decision* Reject Reject Reject Reject Reject
Significant

Di↵
Yes Yes Yes Yes Yes

*Significance level = 0.05

4.3.5.5 Discussion

Based on the results of the validation experiments, several interesting observa-

tions can be made. Firstly, the proposed approach ensures that only a reduced

set of features or lab events, selected by the proposed GAWFS technique, need

to be measured for e↵ectively predicting the mortality risk of a patient. For sup-

porting this claim, we consider the patient with SUBJECT ID: 22 in the MIMIC

III dataset. The patient has spent only a single day in ICU, but the number of

labevents measured amounts to 80. Although this includes several labevents per-

taining to the condition he or she is su↵ering from, the mortality risk estimation,

being one of the first tasks performed for a patient in ICU will get delayed due

to the wait time associated with other lab tests. Most existing ML based CDSS

systems require a large number of features or labevents to be available to make

predictions with reasonable accuracy. However, in our proposed approach, only
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the labevents selected by the GAWFS (10 in this case) need to be measured and

input to the CDSS for mortality prediction, while still ensuring a good prediction

performance (AUROC of 0.80).

Secondly, from Table 4.2, it is evident that the chosen patient cohort exhibits

significant class imbalance. Due to the availability of lower number of samples

with positive mortality labels (expire flag = 1 ), the F-score and AUROC metrics

are of crucial relevance as they actively measure the model’s precision in true pos-

itive mortality prediction, i.e., patients at high mortality risk actually, predicted

correctly as having high mortality risk. The high values of F-score and AUROC of

the proposed model in comparison to that of traditional severity scores currently

in popular use (SAPS-II, SOFA, APS-III & OASIS), means that our model can

e↵ectively capture latent relationships of features and lab events to predict mortal-

ity even in case of class imbalance exhibited by the data. Our model outperformed

state-of-the-art machine learning models (Calvert et al., 2016a,b; Grnarova et al.,

2016; Harutyunyan et al., 2017; Che et al., 2018) by a significant margin, thus

underscoring its superior performance in making precise predictions for patients

at higher mortality risk. Based on observed experimental results (Tables 4.5 &

4.6) and the statistical significance test results (Tables 4.7 & 4.8), it can be thus

be conclusively stated that the proposed mortality prediction model can be very

e↵ective as a real-world CDSS, and can also help in e↵ective decision towards

reduced lab events. Thus, it can contribute positively to patient care and aid in

making intelligent decisions in a more e↵ective and productive way. In summary,

the experimental and statistical significance test results highlight the suitability of

the proposed model for use in real-world ICU mortality prediction CDSSs due to

its ability to reduce lab events or features to be considered for early mortality risk

prediction. Also of significant importance is the e�cacy of the ELM neural net-

work architecture that enables higher prediction accuracy while lowering medical

resource consumption footprint.

4.4 Summary

In this chapter, as part of solving the defined problem, i.e., to derive an optimal

subset of features for e↵ective ICU mortality risk prediction, two studies were per-

formed. The first one was an empirical study on the e↵ect of feature modeling on

features of traditional parametric severity scoring based MPMs on ICU mortality

risk prediction performance. The proposed model was built on the Recursive Fea-

ture Elimination technique (RFE) for deriving optimal clinical variables/features
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and Random Forest classifier (best performing) was used to predict mortality of

ICU patients. The proposed model was benchmarked against traditional severity

scoring based MPMs and it outperformed them by a margin of 12-16% in terms

of prediction accuracy. In the second study, a novel GA-ELM feature modeling

approach was proposed for capturing the most representative lab events for each

individual patient, so that the performance of patient-specific mortality risk pre-

diction can be improved. An ELM based SLFNN architecture was designed to

build the prediction model. The proposed GAWFS+ELM model outperformed

traditional severity scoring based models as well as state-of-the-art ML based

models by a margin of 11-29% and upto 14% in terms of AUROC performance,

thereby proving that the modeled patient feature representation was e↵ective in

capturing patient-specific nuances. The results of the studies show that it has

the capability of improving patient care in ICUs by helping the medical personnel

more by providing quicker insights, help the hospitals in judicious use of resources

and infrastructure and also help the patients in reducing their hospital costs.
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Chapter 5

Individual-centric Mortality Prediction

Models for Unstructured Clinical Data

5.1 Introduction

With the rise of EHR adoption rates in developed countries, the availability of

structured patient data in the form of EHRs has become abundant. Hence, most

existing CDSSs assume EHR availability and are built on EHR data. However,

in developing countries like India, clinical experts and caregivers still rely on clin-

ical text notes for decision making. Such clinical notes (e.g. physician notes,

nursing notes, discharge summaries, etc.) are primarily unstructured, but contain

abundant information on patients’ health conditions like status, physiological val-

ues, diagnoses and treatments. This forms a significant pool of patient-specific

data, which has been explored to a very limited extent for enabling predictive

analytics applications like mortality risk prediction and disease prediction. So far,

unstructured clinical data which represents a significant volume of clinical data has

remained largely unexploited for building predictive analysis models. Big data an-

alytics, NLP and ML can help in developing better CDSSs with these rich clinical

information sources leading to significant man-hour and medical resource savings

(Belle et al., 2015). In this chapter, two research contributions towards developing

mortality prediction based CDSSs that make use of unstructured clinical notes are

presented.

5.1.1 Problem Definition

As highlighted in Chapter 4, most parametric scoring systems used in practice, like

APACHE-II, SAPS-II, SOFA, OASIS, etc. are considered standard for ICU mor-

tality risk measurement, however, their accuracy is quite low when compared to

that achieved by non-parametric methods employing machine learning and other

85
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approaches. Although existing non-parametric based approaches like ML based

CDSSs have been proven to be better than these traditional systems, the perfor-

mances of ML based MPMs can be improved to a greater extent by incorporating

the ability to process and use clinical data directly. Unstructured clinical data

has been shown to contain abundant patient-specific information, which requires

e↵ective techniques for extracting such latent information and for leveraging it for

the development of CDSSs. Thus, the problem to be addressed here is defined as

follows:

“Given the low rate adoption of structured EHR in most developing

countries, and the availability of abundant unstructured clinical data,

design and develop e↵ective preprocessing, feature modeling and pre-

diction modeling approaches for ICU mortality risk prediction based on

unstructured clinical notes.”

5.1.2 Motivating Example

Let us consider the example scenario introduced in Chapter 1, Section 1.2.4 once

again. As mentioned there, Hospital B has a full-fledged EHR system, while

Hospital C follows a ‘semi-EHR’ system. During a normal work day, nurses and

doctors of both hospitals feed in clinical notes to the hospital information man-

agement system. MRD Sta↵ of Hospital B manually read, extract and transcribe

the relevant patient data like readings, lab test values, vital signs etc into a well-

defined structure, which is a highly time and labour-intensive process. The coded

data is then stored and is consumed for supporting intelligent applications like

mortality risk prediction CDSS implemented in the hospital. Thus, there exists

a significant delay in the process of mortality risk prediction, during which the

patient condition may also worsen.

In view of this, if clinical data could be processed primarily in its unstructured

form, as it is generated, this delay could be avoided, in addition to enormous

reduction in cost and labour involved in manual structured EHR conversion pro-

cesses that would be mandatorily followed in organizations like Hospital B. Thus,

in Hospital C, the raw clinical notes fed in by the medical personnel in the form

of unstructured text could be processed by CDSSs equipped with NLP and tex-

tual processing capabilities, and valuable patient-specific insights extracted can be

consumed to support predictive analytics applications. Furthermore, the manual

process of converting the clinical notes into structured form could be potentially

eliminated, resulting in substantial savings for hospital management. Hence, there
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is a critical need for such intelligent CDSSs that can take raw unstructured clinical

data as input for enabling fast and accurate decision-making.

In this chapter, our work towards designing two CDSS approaches that focus

on utilizing the rich source of information available in latent form in unstruc-

tured clinical notes for e↵ective ICU mortality risk prediction is presented. The

first approach makes use of Electrocardiogram (ECG) text reports for predicting

mortality risk of cardiac patients and its performance was compared to that of

traditional parametric severity scoring based MPMs. The second approach is a

study on the performance of various word embedding models that can be used for

feature modeling, for building MPMs based on clinical text.

5.2 Mortality Risk Prediction using Unstructured

Electrocardiogram Text Reports

In this section, an ICU Mortality risk prediction model that utilizes patients’

unstructured ECG text reports is presented. The methodology adopted for the

design of the proposed MPM is composed of several processes, which are depicted

in Figure 5.1.

MIMIC-III 
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Table) 
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foU each 
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Tokeni]aWion SWoSSing SWemming
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Te[W MRdelingE[WUeme LeaUning Machine

Figure 5.1: Proposed methodology for ICU Mortality Prediction using Unstruc-
tured Clinical Notes

5.2.1 Dataset & Cohort Selection

For validating the proposed model, unstructured text data from the open and

standard dataset MIMIC-III (Johnson et al. (2016)) was used. As stated earlier,

MIMIC-III consists of de-identified health data of 46,520 critical care patients.

The unstructured clinical text records of these patients are extracted from the
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‘noteevents’ table in the MIMIC-III dataset, from which only the ECG text reports

are selected. We have considered only the first ECG report of each patient, based

on the requirement that a CDSS must predict risk with the earliest detected

condition, enabling fast diagnosis and intervention. The dataset containing the

first ECG text reports of 34,159 patients and the corresponding mortality labels,

was then subjected to preprocessing using NLP techniques (Details of ECG text

corpus summarized in Table 5.1a).

Table 5.1: Dataset Statistics

(a) ECG Text Corpus Statistics

Feature Total

ECG Reports 34,159

Sentences 108,417

Total Words 802,902

Unique Words 33,748

(b) Statistics of the selected patient cohorts

Data Total Alive Expired

Full ECG Text corpus 34,159 30,464 3,695

Cluster C1 22,974 20,372 2,602

Cluster C2 11,185 10,092 1,093

Final Cohort 21,465 20,372 1,093

Training & Test sets 10,155 8,068 2,087

Validation set 2,539 2,024 515

5.2.2 Preliminary Preprocessing

In the next phase, the ECG text corpus is subjected to processing via a NLP

pipeline consisting of tokenization, stopping and stemming. During tokenization,

the clinical natural language text is split into smaller units called tokens. Gen-

erated tokens are filtered to remove unimportant terms (stop words) and finally,

stemming is performed on the remaining tokens for su�x stripping. After the ini-

tial preprocessing, the tokens are next processed for modeling any latent clinical

concepts e↵ectively, during the Text Modeling phase.

5.2.3 Text Modeling

The Text Modeling phase consists of two additional levels of processing - Vector-

ization and Unsupervised Data Cleansing, which are discussed in detail next.

Vectorization. NLP techniques are critically important in a prediction system

based on unstructured data, for generating machine processable representations of

the underlying text corpus. Traditional rule and dictionary based NLP techniques,

though perform well for certain applications, are not automated and require sig-

nificant manual e↵ort in tailoring them for various domains. Recent trends in
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ML and Deep Learning models and their usage in addition to traditional NLP

techniques provide a good avenue for exploiting their performance for improved

prediction. However, the e↵ectiveness and performance of such models depend

heavily on the optimized vector representations of the underlying text corpus.

Several approaches have been developed for creating meaningful vector repre-

sentations from text corpus, the prominent ones being Document Term Frequency

vectorization and Term frequency-Inverse document frequency (Tf-Idf) Vectoriza-

tion (Salton and Buckley, 1988). Mikolov et al. (2013)’s Word2Vec model is based

on two shallow neural network models that are trained on large text corpora, with

the objective of mapping each word to a particular dimension in vector space

based on its semantic and context similarity, thus, resulting in word vectors of

several hundred dimensions. Word2Vec models comprise two distinct approaches

– Skipgram and Continuous Bag-of-Words (CBOW). The CBOW model predicts

a word from a given window of words (or rather, a context) while the Skipgram

model tries to predict the context words, given a target word.

For modeling such latent concepts in the ECG text report corpus, we employed

Word2Vec to generate a word embeddings matrix, which consists of the syntac-

tic and semantic textual features obtained from the unstructured ECG corpus.

The skip-gram model of Word2Vec was chosen over Continuous Bag-Of-Words

(CBOW), due to its e↵ectiveness with infrequent words and also as the order of

words is important in the case of clinical reports (Mikolov et al., 2013). We used

a standard dimension size of 100, i.e., each ECG report is represented using a 1

x 100 vector, thus resulting in a final matrix of dimension 34159 x 100, each row

representing the latent concepts in the ECG report of a specific patient.

Unsupervised Data Cleansing. The vectorized ECG text corpus data is next

subjected to an additional process of data cleansing, for identifying special case

data points and conflicting records. For this, K-Means Clustering was applied on

the vectorized data to cluster the data into two clusters (k=2, as the proposed

prediction model is a two-class prediction, ‘alive’ and ‘expired ’ patients) after

which a significant overlap was observed in the two clusters. Cluster C1 contained

records of 20,372 alive and 2,602 expired patients while cluster C2 had 10,092 alive

and 1,093 expired patients. As a significant number of the data points representing

‘alive’ patients were in cluster C1, we derived a reduced patient cohort that consists

of all ‘alive’ patients from cluster C1 and all ‘expired ’ patients from cluster C2,

which were then considered for building the prediction model. The remaining

patient data points exhibited anomalies due to the existence of patients who might
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have expired due to causes not related to heart. After this processing, the final

patient cohort now consisted of 20,372 alive and 1,093 expired patients (tabulated

in Table 5.1b).

5.2.4 Language Modeling based Mortality Risk Prediction

The patient cohort obtained after the data cleansing process is now considered for

building the prediction model. Towards this, we designed a neural network model

that is built on a fast learning architecture Extreme Learning Machine (ELM)

(Huang et al., 2015), as explained in the previous chapter (see Section 4.3.4).

ELM is a single hidden layer Feedforward Neural Networks (SLFNN), where the

parameters that fire the hidden layer neurons don’t require tuning (Huang et al.,

2015). The hidden nodes used in ELM fire randomly and learning can be carried

out without any iterative tuning. Essentially, the weight between the hidden and

output layers of the neural network is the only entity that needs to be learned,

thus resulting in an extremely fast learning model. Di↵erent implementations of

ELMs have been used for tasks like supervised and unsupervised learning, feature

learning etc, but to the best of our knowledge, ELMs have not been applied to

unstructured clinical text based prediction models. In this SLFNN architecture,

we set the number of nodes in the input layer to 100 as the feature vectors obtained

after Word2Vec modeling are of similar dimensions. The hidden layer consists of

50 nodes and a single node is used at the output layer, to generate the predicted

mortality risk of a patient. The Rectified Linear Unit (ReLU) activation function

was used in the layers of the proposed ELM architecture as it is a step function

and predicts the slightest chance of mortality. The architecture of ELM, being

similar to as described in the previous chapter, is illustrated in Fig. 4.5. During

training, the weights between the hidden and output layers are iteratively learned

and optimized. Finally, the patient-specific mortality prediction is obtained at the

output layer.

5.2.5 Experimental Results and Discussion

For validating the proposed prediction model, an extensive benchmarking exercise

was carried out. The experiments were performed using a server running Ubuntu

Server OS with 56 cores of Intel Xeon processors, 128 GB RAM, 3 TB Hard Drive

and two NVIDIA Tesla M40 GPUs. All implementations were done using Python

using packages such as sklearn, gensim1 (for Word2Vec implementation), Natural

1https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/
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Language Toolkit (NLTK2) and matplotlib. The patient cohort was split into

training, test and validation sets (as shown in Table 5.1b). The vectorized feature

vectors and the respective mortality labels in the training dataset were used for

training the ELM model. We used 10-fold cross validation for all experiments

and standard metrics like Accuracy, Precision, Recall, F-score and AUROC (Area

under Receiver Operating Characteristic) were used for performance evaluation of

the proposed model. Additionally, Matthews Correlation Coe�cient (MCC) was

also used as a metric, as it takes into account true positives, false positives and

false negatives, therefore, regarded as a balanced measure even in presence of class

imbalance (Boughorbel et al., 2017).

We also benchmarked the performance of the proposed prediction model against

well established, traditional parametric severity scoring methods. The four pop-

ular scoring systems used for the study used in Chapter 4 – SAPS-II, SOFA,

APS-III and OASIS, were again chosen for this comparison. We implemented and

generated the respective scores for each patient in the validation set. For SAPS-

II, the mortality probability was calculated as per the process proposed by Gall

et al. (1993) and Eq. 4.1. For SOFA, the mortality prediction of each patient

was obtained by regressing the mortality on the SOFA score using a main-term

logistic regression model similar to Pirracchio et al. (2015), whereas for APACHE-

III (APS III), it was calculated for each patient as per the Knaus et al. (1991)’s

method based on Eq. 4.4. The mortality probability for each patient as per OASIS

scoring system was calculated using the in-hospital mortality score calculation as

per Eq. 4.2 defined by Johnson et al. (2013). A classification threshold of 0.5 was

considered for SAPS-II, APS-III and OASIS.

The validation patient data is fed to the trained model for prediction and its

performance was compared to that of traditional scoring methods. The results

are tabulated in Table 5.2, from where, it is apparent that the proposed model

achieved a significant improvement in performance over all four traditional scores.

The proposed model predicted high mortality risk (label 1) correctly for most pa-

tients belonging to ‘expired ’ class, which is a desirable outcome expected out of

this CDSS, which is also evident in the high precision values achieved. AUROC,

F-Score and MCC are very relevant metrics for this experiment as the data ex-

hibits class imbalance (number of patients in ‘alive’ class much greater those in

‘expired ’ class; see Table 5.1b). MCC, which measures the correlation between the

actual and predicted binary classifications, ranges between -1 and +1, where +1

represents perfect prediction, 0 indicates random prediction and -1 indicates total

2http://www.nltk.org/

http://www.nltk.org/
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disagreement between actual and predicted values. The high values of F-Score and

MCC for the proposed model in contrast to the others, indicates that, regardless

of class imbalance in the data, the proposed model was able to achieve a good

quality classification for both alive (0) and expired (1) labels.

Table 5.2: Benchmarking proposed ELM model against Traditional severity meth-
ods SAPS-II, SOFA, APS-III and OASIS

Models Accuracy Precision Recall F-Score AUROC MCC

Proposed 0.98 0.98 0.98 0.98 0.99 0.84

SAPS-II 0.86 0.87 0.86 0.86 0.80 0.34

SOFA 0.88 0.86 0.88 0.85 0.73 0.22

APS-III 0.89 0.86 0.89 0.86 0.79 0.26

OASIS 0.88 0.86 0.89 0.86 0.77 0.26

Figure 5.2: Comparison of AUROC performance of the various models

The plot of Receiver Operating Characteristic (ROC) curves generated for all

models considered for comparison is shown in Fig. 5.2. The proposed model

showed a substantial improvement of nearly 19% in AUROC in comparison to the

best performing traditional model, SAPS-II. This indicates that the Word2Vec

feature modeling generated quality features and the proposed unsupervised data
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cleansing approach was successful in filtering out special and anomalous data

from the patient data representation, making the features more discriminating

and thereby enabling the ELM classifier to generalize and predict the ‘alive’ and

‘expired ’ classes e↵ectively.

5.3 Benchmarking Word Embedding Models for

Unstructured Clinical Text based ICU Mor-

tality Risk Prediction

Word Embeddings are typically employed during preliminary NLP processing, for

mapping words in a text corpus to a real number in n-dimensional vector space.

Word embedding models are built on neural network architectures and have been

proven to outperform traditional n-gram based models. Most state-of-the-art word

embedding models are inspired by the idea that “a word is characterized by the

company it keeps” (Firth, 1957). In a nutshell, words are modeled such that,

semantically and contextually similar words are mapped closer to each other in

the vector space.

Word2Vec (Mikolov et al., 2013), a word embedding model as explained in

Section 5.2.3, is an e↵ective approach for generating semantic word embeddings

(features) from unstructured text corpus. The generated vectors may be of several

hundred dimensions, where unique terms in the text corpus are represented as a

vector in the feature space such that corpus terms of similar context are closer to

each other (Mikolov et al., 2013). As explained before, Word2Vec models com-

prise two distinct approaches – Skipgram and Continuous Bag-of-Words (CBOW).

The CBOW model predicts a word from a given window of words (or rather, a

context) while the Skipgram model tries to predict the context words, given a

target word. Pennington et al. (2014)’s approach for generating vector represen-

tation of words, called Global Vectors (GloVe), uses an unsupervised algorithm

trained over word to word co-occurrence statistics of a large text corpus. The

model achieved better performance over several other word embedding models for

specific corpus data in terms of word analogy, word similarity and named entity

recognition tasks (Pennington et al., 2014). Joulin et al. (2016) developed an ap-

proach called FastText, which uses its own word representation model similar to

Word2Vec, with additional rank constraint and fast loss approximation ensuring

its faster training capacity for large text corpora. The FastText model claims

better quality representation over several state-of-the-art approaches for specific
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tasks like tag prediction and sentiment analysis (Joulin et al., 2016). Similar to

Word2Vec, FastText also provides the Skipgram and CBOW models.

With reference to the document information captured by word embeddings, our

aim is to evaluate the applicability of various word embedding models for building

e↵ective CDSS applications, when unstructured clinical text notes are available for

use. In this section, a study for evaluating quality of word representation models

for ICU mortality prediction based on unstructured nursing notes is presented.

The workflow adopted for the study is as depicted in Fig. 5.3.

Basic
Preprocessing

MIMIC-III 
NoWeeYenWs

Table

NXrsing
NoWes (based

on criWeria) 

Word
Embedding

Models Training

Word
Embedding

FeaWXres

Random ForesW
ClassiÀer

Benchmark
ResXlWs

Labels

Figure 5.3: Overall Workflow of Benchmarking Experiment

From the ‘noteevents’ table of MIMIC-III dataset, the nursing reports of all

patients were extracted. The patient cohort for this study was selected based

on some predefined criteria, similar to the process adopted by existing literature

(Pirracchio et al., 2015) (listed below).

1. Only the patients aged above 15 years were selected as paediatrics consists

of specific treatment methods.

2. To ensure su�cient data for the system to learn, we included only those

patients who spent more than 1 day in the hospital (length of stay > 1).

3. Finally, in case of multiple admissions for a patient, only the first admission

of those patients was considered as the system is expected to learn and

predict using the patients’ earliest condition possible.

As per the defined criteria, 223,556 text reports pertaining to 5,376 (3,593 alive

and 1,783 expired) patients were selected for the study. The characteristics of the

nursing notes text corpus of the selected patient cohort are tabulated in Table 5.3.

Next, the clinical reports of the selected cohort are preprocessed using various

NLP techniques like tokenization, by which the text corpus is broken down into

smallest constituent units, i.e., tokens. All special characters except spaces and

single quote (’) are ignored (the same process described in Section 5.2.2 is adopted).
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After the basic preprocessing, the resultant tokens are fed into corresponding word

embedding models for generating a patient representation, which is in turn used to

train a classifier to enable patient-specific mortality predictions. Word Embedding

models ensure dense representation of the corpus with semantics captured as well,

so that words in similar context are mapped and placed in vector space in close

proximity. Thus, the final representation of the text corpus can be used as features,

for training machine learning classifiers.

Table 5.3: Nursing Notes Text Corpus - Characteristics

Characteristic Number

Nursing Reports 223,556

Sentences 4,774,147

Total Words 80,211,620

Unique Words 434,797

The preprocessed tokens are input to the di↵erent word embedding models

for training and for semantically mapping words to vector space. Parameters like

vector dimension size, initial learning rate, word window size, minimum word count

and number of thread workers are most important which are input to the word

embedding models. Prediction models built on di↵erent popular word embedding

models – Word2Vec (Mikolov et al., 2013), FastText (Joulin et al., 2017) and

GloVe (Pennington et al., 2014). For Word2Vec and FastText, both Skipgram

and CBOW models were trained separately.

Various experiments were performed for observing the e↵ects of variations in

dimension size and learning rates on the prediction models and their performance

was measured in terms of accuracy. Also, the training time required for various di-

mension sizes was noted. In the first experiment, for each word embedding model,

the training was performed with various dimension sizes – 10, 25, 50, 100, 200,

300, 400, 500, 600, 700, 800, 900, 1000. The textual features were generated using

each embedding model, and then used to train the classifier. Next, for the same

training configuration, the variations in training time with reference to dimen-

sion sizes were observed. Based on these two experiments, an optimal dimension

size was determined and used in the final experiment. Here, the performance of

Random Forest classifier for various initial learning rates of the word embedding

models – 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2 was monitored, to

determine the best initial learning rates of the respective models. This initial rate
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is configured to later linearly converge to a minimal learning rate of 0.0001 as

training progresses.

The mortality prediction model was built on Random Forest classifier (ex-

plained in Section 4.2.3), where a standard number of 100 decision trees was used

to perform the training for each set of features. Each set of textual features and

respective mortality labels were fed into a Random Forest classifier for training.

We applied 5-fold cross validation for each model and each model’s e↵ectiveness

in predicting mortality were measured in terms of standard metrics like – Accu-

racy, Precision, Recall, F-score and Angle Under Receiver Operating Character-

istic (AUROC). Finally, the model which performed the best was identified and

benchmarked against four popular traditional severity scores commonly used in

hospitals currently – SAPS-II, SOFA, APS-III and OASIS.

5.3.1 Experimental Results and Discussion

As part of experimental validation, the prediction models built on di↵erent types of

word embeddings were compared, using standard metrics like accuracy, dimension

size, learning rate and training time. Each of these studies are described in detail

next. The objective was to determine the optimal dimension and learning rate

for highest prediction accuracy, so that the best-performing model can be bench-

marked against traditional mortality scores. The experiments were performed on

a server running Ubuntu 16.04 LTS with 56 cores of Intel Xeon Processors, 128

GB RAM, 3 TB HDD memory and 2 Tesla M40 GPUs. All implementations were

carried out using Python and the Gensim implementations of Word2Vec3 and Fast-

Text4 models were used. A Python implementation of Glove called glove-python5

was used for its implementation for the experiments.

5.3.1.1 Determining Optimal Dimension & Learning Rate

Di↵erent experiments were performed for analyzing the quality of each word em-

bedding model, as discussed below -

1. Accuracy vs Dimension. To study the e↵ect of dimension on performance,

the vector dimension size was varied, while training the word embedding

models to generate word embedding vectors of the corpus. The training was

performed with di↵erent dimension sizes – 10, 25, 50, 100, 200, 300, 400,

3Gensim Word2Vec – https://radimrehurek.com/gensim/models/word2vec.html
4Gensim FastText – https://radimrehurek.com/gensim/models/fasttext.html
5GloVe-Python – https://github.com/maciejkula/glove-python

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/fasttext.html
https://github.com/maciejkula/glove-python
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500, 600, 700, 800, 900, 1000; with an initial learning rate of 0.025 and the

number of epochs fixed at 5. Next, each set of vectors generated were used

as features for training a Random Forest Classifier and the performance of

each classification model was observed.

2. Training Time vs Dimension. We also performed an analysis on how

the training time varies for each word embedding model with variation in

dimension sizes. The training was performed with the same conditions as in

Experiment 1. It is also to be noted that a default fixed number of 3 worker

threads were used for training the respective word embedding models.

3. Accuracy vs Learning Rate. After the optimal dimension size was deter-

mined (in Experiment 1 & 2), the initial learning rate used for training the

word embedding models was varied, while keeping the dimension constant.

The training was performed at learning rates – 0.01, 0.025, 0.05, 0.075, 0.1,

0.125, 0.15, 0.175, 0.2; for each, at a fixed epoch of 5. Then, word embed-

ding vectors generated for the corpus were used to train one Random Forest

Classifier respectively and the performance was observed.

The results of the experiments conducted for the Word2Vec (Skipgram and

CBOW), FastText (Skipgram and CBOW) and GloVe word embedding models are

illustrated in Fig. 5.4, 5.5, 5.6, 5.7 and 5.8 respectively. It can be observed that the

Word2Vec Skipgram model performed the best at three dimensional sizes – 300,

500 and 800 with a di↵erence of less than 0.01 in terms of accuracy. Moreover,

from dimension size 200 to 1000, the change in training time is almost nearly

linear. Hence, considering time and dimension, we chose the optimal dimension to

be 300. Next, for this chosen dimension size of 300, we varied the initial learning

rates and identified the best initial learning rate as 0.05. The performance at

this point (size = 300, initial learning rate = 0.05) was chosen to be the best

performance of Word2Vec Skipgram model.

Similarly, for Word2Vec CBOW, the model initially performed best at sizes –

500, 800 and 1000 with negligible performance di↵erences and so, 500 was chosen

to be the optimal dimension size, taking training time also into account. For

dimension size of 500, the optimal learning rate for the same model was 0.025.

The accuracy at this point (size=500, initial learning rate = 0.025) was observed

to be the highest for Word2Vec CBOW model. In case of FastText Skipgram

and CBOW models, the optimal dimension size was 400 (amongst 400, 600 and

800) and optimal learning rate at size 400, was 0.025 and 0.05 respectively. For
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Table 5.4: Experimental results for various Word Embedding Models considered
for the evaluation study using Random Forest Classifier

Model Accuracy AUROC TT DS LR

W2V Skipgram (W2V Skip RF ) 0.864 0.872 1220 300 0.05

W2V CBOW (W2V Cbow RF ) 0.853 0.861 443 500 0.025

FT Skipgram (FT Skip RF ) 0.865 0.873 3309 400 0.025

FT CBOW (FT Cbow RF ) 0.843 0.856 2241 400 0.05

GloVe (Glove RF ) 0.851 0.860 659 800 0.125

TT: Training Time (in seconds)

DS: Vector Dimension Size

LR: Learning Rate

GloVe, the optimal dimension size was 800 (amongst 800 and 1000) and optimal

learning rate at size 800, was found to be 0.125. Thus, their accuracy at these

points were chosen to be the best for FastText and GloVe models respectively. The

optimal performances of each word embedding model are tabulated in Table 5.4.

Both Word2Vec Skipgram and FastText Skipgram performed equally well, with a

negligible di↵erence of 0.1%. As CDSS and other predictive applications generally

require retraining as new patient data is available continuously, the Word2Vec

Skipgram model was chosen as the best model, due to its lower training time and

dimension size.

5.3.1.2 Benchmarking against Traditional Mortality Scores

As can be observed from the experimental results tabulated in Table 5.4, the best

performing mortality prediction model was the one built on Word2Vec Skipgram

word embeddings and trained using Random Forest classifier, i.e., W2V Skip RF.

The final objective of our work is to benchmark its prediction performance against

the four popular traditional mortality scores considered in the previous chapters,

SAPS-II, SOFA, APS-III and OASIS. The scores for SOFA, SAPS-II, APS-III and

OASIS are calculated for all the 5376 patients using the methods and formulae

provided by Gall et al. (1993), Knaus et al. (1991) and Johnson et al. (2013)

respectively. The observations of the comparative evaluation are tabulated in

Table 5.5.

From Table 5.5, it can be seen that the W2V Skip RF mortality prediction

model built utilizing unstructured nursing notes for capturing patient specifics,
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Table 5.5: Comparison of W2V Skip RF with Traditional Mortality Scores

Model Accuracy Precision Recall F-Score AUROC

W2V Skip RF 0.864 0.874 0.863 0.865 0.872

SAPS-II 0.608 0.618 0.608 0.569 0.691

SOFA 0.60 0.598 0.60 0.577 0.629

APS-III 0.565 0.603 0.565 0.448 0.672

OASIS 0.581 0.626 0.581 0.486 0.639

W2V Skip RF : Word2Vec Skipgram based Random Forest Classifier

performs significantly better than traditional formulae based severity scores. This

emphasises the W2V Skip RF model’s ability to capture the nuances of the var-

ied patient-specific information available in unstructured nursing text notes. The

Word2Vec Skipgram model was able to e↵ectively capture these as discriminating

features so that the classifier could be trained with high quality training data.

Moreover, this shows that leveraging unstructured clinical text notes in the de-

velopment of CDSS is possible and viable in real-life hospital scenarios and also

ensure that conversion to a structured EHR format is not required, thereby saving

time, man hours and scarce medical resources.

Various experiments on studying the e↵ect of vector dimension size, training

time and initial learning rate on prediction accuracy were performed. The best

model identified from Tables 5.4 and 5.5, the Word2Vec Skipgram model based

Random Forest Classifier (W2V Skip RF ) when benchmarked against four tra-

ditional severity scores currently in use in hospitals, outperformed them by over

43-52% in terms of prediction accuracy. This significant margin highlights the

fact that the nuances of patient-specific information present in the unstructured

nursing notes was best captured by the Word2Vec Skipgram model, making it

suitable for development of better CDSS applications.

5.4 Summary

In this chapter, two CDSS approaches for ICU mortality risk prediction, that

are modeled using the latent patient-specific information automatically extracted

from unstructured clinical notes, were discussed. In the first approach, ECG text

reports available in a standard open dataset were processed and modeled for as-

sessing and predicting risk of mortality of cardiac patients admitted to cardiac

ICUs. The second approach was a benchmark study to understand the contri-
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bution of various word embedding models for e↵ectively modeling information

present in the natural language used in the clinical notes and experimenting with

feature modeling strategies for building MPMs based on clinical text. The per-

formances of proposed MPMs were compared against that of traditional severity

scoring based MPMs and it was observed the unstructured text based MPMs

significantly outperformed traditional mortality scores by a large margin.
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Chapter 6

Individual-Centric Disease Prediction

Models for Unstructured Clinical Data

6.1 Introduction

Based on our previous work on designing MPMs using unstructured patient records

(presented in Chapter 5), it was observed that there is a huge potential for reduc-

ing dependency of hospitals on structured/processed patient records. Additionally,

the richness of the patient data that lies latent in unstructured clinical notes is

eminently suitable for use towards the development of CDSSs, resulting in signifi-

cant improvement in accuracy, along with time and cost savings. We explored this

avenue further and our next focus is to design generic Disease Prediction Models

(DPMs) built on unstructured clinical notes/text.

Disease diagnoses depend on various tests on patients such as labevents, read-

ings from frequent monitoring, patient’s history of illness, etc. Most existing

disease prediction approaches assume the availability of structured EHRs/patient

data. The downside of this is that, in a real-world scenario, the dependency on

first having to measure all values of labevents/readings, manually code them to a

structured form, only after which prediction is performed, introduces an inevitable

delay, which might result in deterioration in the patient’s condition. Thus, au-

tomated disease prediction models with low latency that can predict with high

accuracy even with minimal patient data and no dependency on structured data

availability are the need of the hour.

6.1.1 Problem Definition

ICD9 disease coding is an important task in a hospital, as part of which a trained

medical coder with the required domain knowledge assigns disease-specific, stan-

107
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dardized ICD9 codes to a patient’s admission record. As hospital billing and

insurance claims are based on the assigned ICD9 codes, the coding task requires

high precision but is often prone to human error. This has manifested in an annual

spending of more than $25 billion in the US towards e↵orts to improve coding ef-

ficacy (Xie and Xing, 2018; Farkas and Szarvas, 2008). Hence, automated disease

coding approaches are seen as a notable solution to this problem. Currently, this

is an area of active research, but the performance that has been recorded so far

is below par, underscoring a huge scope for improvement and making automated

ICD9 coding an open research problem.

For ICD9 disease coding to be e↵ective, the correct determination of generic

disease categories or groups prior to specific coding is very crucial as information

regarding generic disease groups is prerequisite knowledge for disease-specific ICD9

coding. Furthermore, existing ICD9 coding methods utilize discharge summaries

for coding, just like the human medical coders do. However, as the records are

digitized, other clinical notes recorded by the caregivers during the same admis-

sion can potentially provide additional patient-specific insights pertaining to the

diagnosed diseases. Hence, prediction of ICD9 disease groups not only acts as an

additional data source for automated ICD9 coding, but can also be a disease risk

estimation model that can provide further insights into the comorbidity aspects

and even mortality risk prediction. Hence, the problem to be addressed is defined

as follows:

“Given the rich latent patient-specific information available in un-

structured clinical notes, to design and develop e↵ective preprocessing,

feature modeling and prediction approaches for e↵ective ICD9 disease

group prediction, to enable disease prediction CDSSs”.

6.1.2 Motivating Example

To describe the prevailing conditions that emphasize the need for disease predic-

tion CDSS based on unstructured clinical notes, we consider scenarios from the

running example introduced in Chapter 1, Section 1.2.4. Recall that Hospital B

has a full-fledged EHR system, while Hospital C follows a ‘semi-EHR’ system. In

Hospital B, the labevents and reading values are recorded by doctors and nurses

as notes. The MRD sta↵ perform the conversion from the unstructured to the

structured form as required by the disease prediction CDSS implemented in the

hospital, after which provides with probability risks of diseases for a particular

patient. This delay in processing the data and generating the predictions can be
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critical as the patient’s condition may worsen and can be avoided if the predic-

tions can be directly generated using the clinical notes. The disease prediction

CDSS implemented in Hospital C can directly process the unstructured clinical

notes recorded by the doctors and nurses, and provide them with instantaneous

disease risk predictions for a particular patient. In this way, the MRD sta↵ need

not perform conversion to any predefined structure and hence, Hospital C has the

advantage of significant savings in person-hours and scarce medical resources, not

to mention precious lives.

In this chapter, various approaches towards developing e↵ective individual-

centric disease group prediction models for ICU patients built on unstructured

clinical notes are presented. Our contributions towards the defined problem are

in the context of designing processes that can automatically process a variety of

unstructured clinical text like physicians’ notes, nurses notes, radiology notes etc,

with their di↵erence in notation, usage of extensive medical jargon, acronyms etc,

and still be able to extract relevant disease-specific features, which can be leveraged

for the purpose of automatic ICD9 code group prediction. The performance of the

proposed DPMs are compared to that of state-of-the-art DPMs built on structured

patient data.

6.2 Ontology-driven Feature Modeling for Dis-

ease Prediction

In this section, a generic disease group prediction model is presented that uses

ontology-driven text feature modeling and neural networks for prediction. The

overall workflow of the proposed model is as depicted in Fig. 6.1. Radiology re-

ports in unstructured text format from the open and standard MIMIC-III (John-

son et al., 2016) dataset were used for this study. From the ‘noteevents’ table, only

the Radiology notes were extracted for this study. Overall, 194,744 radiology text

reports generated during 45,512 admissions of 36,447 patients were included for

the study. Often, a patient may be diagnosed with multiple diseases in the same

admission, hence, it is necessary for the prediction to be a multi-label prediction

task. Therefore, for each radiology report, all disease groups were considered as

labels and given binary values - 0 (if the disease was not present) and 1 (if the

disease was present).
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Figure 6.1: Proposed Approach

Table 6.1: Charateristics of the Cohort used for Ontology based Clinical Text
Modeling

Feature Total Records

Patients 36,447

Admissions 45,512

Radiology Reports 194,744

Sentences 539,466

Words 45,755,992

Average word Length of Report 235

Unique Diseases 2,593

Disease Groups 21

6.2.1 Preprocessing & Textual Feature Modeling

The radiology reports text corpus were first subjected to a basic NLP pipeline con-

sisting of tokenization and stopping as similar to works in the previous chapter.

The tokenization process breaks down the clinical text corpus into tokens and the

stopping process filters out unimportant words (stop words) from the corpus. The

preprocessed tokens corpus is then fed into a SNOMED-CT ontology based anno-

tator to annotate and extract clinical and biological terms. SNOMED-CT ontology

(Snomed, 2011) is an ontology that provides a vocabulary of clinical/biomedical

terms and helps extract associated concepts from the preprocessed radiology re-

port corpus. We used the Open BioMedical Annotator (Jonquet et al., 2009) for

this purpose, after which 4,366 unique clinical/biological terms were obtained.

The presence or absence of each extracted clinical/biomedical term, represented

as binary values, is considered as a textual feature representation.
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The preprocessed corpus is also used to train a Word2Vec (Mikolov et al., 2013)

word embedding model (explained in Section 5.2.3) to extract the word embedding

features from the corpus. The Skipgram model of Word2Vec was used for training

the corpus as this model takes word ordering into consideration and is e↵ective

with infrequent words as well. The Word2Vec Skipgram model is trained with

a dimension size of 500 and initial learning rate of 0.01. The word embeddings

were extracted such that each report is represented as 1 x 500 vector. The word

embedding features were further concatenated with the extracted clinical and bio-

logical term features with binary values for each report indicating its presence (1)

or absence (0) in the respective reports and the feature matrix was then standard-

ized to values between -1 and 1. These features are used for training the neural

network model for disease prediction.

6.2.2 ICD9 Disease Code Grouping

The ICD9 disease codes of patients’ diagnoses were retrieved from the ‘DIAG-

NOSES ICD’ table of MIMIC-III dataset and the labels were grouped as per avail-

able standards1 and as previously followed by state-of-the-art work (Purushotham

et al. (2018)). A total of 2,593 unique ICD9 disease codes were accordingly grouped

into 21 ICD9 disease groups (as shown in Table 6.2). As a patient can su↵er from

multiple diseases, we consider the ICD9 group prediction task as a binary clas-

sification of multiple labels. Therefore, 21 di↵erent labels (disease groups) were

considered with possible binary values: 0 (for absence of the disease) and 1 (for

presence of the disease). The 194744 x 4966 feature matrix, 21 ICD9 disease groups

were considered as labels to train the neural network model, which is described in

the next sub section.

6.2.3 Disease Prediction Model

The feature matrix with both word embedding features and ontologically extracted

term-presence features, along with ICD9 group labels are next used for training a

Neural network based prediction model. A Feed Forward Neural Network (FFNN)

architecture was used to build the prediction model, which is depicted in Figure

6.2. The input layer consists of 2048 neurons with input dimension as 4966 (num-

ber of input features); 4 hidden layers with 1024, 512, 256 and 128 neurons re-

spectively and finally an output layer with 21 neurons, each representing an ICD9

1Available online http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.
aspx

http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
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Table 6.2: Grouping of ICD9 Codes and Statistics of ICD9 Disease Groups in the
MIMIC-III Radiology Corpus Subset

ICD9
Group
(Label)

ICD9
Code
Range

Description Occurrences
in Study
Corpus

Occurrence
Percentage

(%)

1 001 - 139 Infectious & Parasitic Diseases 68,734 35.29

2 140 - 239 Neoplasms 34,668 17.80

3 240 - 279 Endocrine, Nutritional,
Metabolic, Immunity

128,357 65.90

4 280 - 289 Blood & Blood-Forming
Organs

80,337 41.25

5 290 - 319 Mental Disorders 62,963 32.33

6 320 - 389 Nervous System & Sense
Organs

65,149 33.45

7 390 - 459 Circulatory System 152,159 78.13

8 460 - 519 Respiratory System 107,656 55.28

9 520 - 579 Digestive System 84,346 43.31

10 580 - 629 Genitourinary System 89,305 45.85

11 630 - 677 Pregnancy, Childbirth, &
Puerperium

601 0.31

12 680 - 709 Skin & Subcutaneous Tissue 29,046 14.91

13 710 - 739 Musculoskeletal System &
Connective Tissue

39,703 20.39

14 740 - 759 Congenital Anomalies 10,115 5.19

15 760 - 779 Conditions Originating in
Perinatal Period

7,289 3.74

16 780 - 789 Symptoms 71,784 36.86

17 790 - 796 Nonspecific Abnormal
Findings

20,803 10.68

18 797 - 799 Ill-defined/Unknown Causes of
Morbidity & Mortality

6,664 3.42

19 800 - 999 Injury & Poisoning 108,867 55.90

20 V Codes Supplementary Factors 100,310 51.50

21 E Codes External Causes of Injury 79,138 40.63

disease group. To prevent overfitting, two dropout layers, with a dropout rate

of 20% was also added to the FFNN model (see Figure 6.2). As this is a binary

classification for multiple labels, the loss function used for the FFNN was binary
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cross entropy, and Stochastic Gradient Descent (SGD) was used as the optimizer

and a learning rate of 0.01 was used. The tanh activation function was used as the

input and hidden layer activation functions as the feature matrix values are stan-

dardized to the range -1 and 1. The major hyperparameters for the FFNN model

– the optimizer, learning rate of the optimizer and the activation function, were

tuned empirically over several experiments using the GridSearchCV function in

Python sklearn library. Finally, the output layer activation function was a sigmoid

function, again as the classification was binary for each of the 21 labels. Training

was performed for 50 epochs and then the model was applied to the validation set

to predict disease groups after which the results were observed and analyzed.

dense_1: Dense
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Figure 6.2: Feed Forward Neural Network Model for ICD9 Group Prediction

6.2.4 Experimental Results and Discussion

All experiments were performed on a server running Ubuntu 16.04 LTS with 56

cores of Intel Xeon Processors, 128 GB RAM, 3 TB HDD memory and 2 Tesla M40
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GPUs. All implementations were carried out using Python packages – Tensorflow2,

Keras3 and sklearn. To evaluate the performance of the proposed model, standard

metrics to measure machine learning models were considered – accuracy, precision,

recall, F-score, Area Under Receiver Operating Characteristic curve (AUROC),

Area Under Precision Recall Curve (AUPRC) and Matthew’s Correlation Coef-

ficient (MCC). We performed the evaluation of these metrics on a sample-wise

basis, i.e., the predicted and actual ICD9 disease groups were compared and an-

alyzed for each radiology report. It can be observed from the Table 6.3 that the

proposed model achieved promising results: AUPRC of 0.74 and AUROC of 0.84.

The accuracy of 0.77 and precision of 0.80 also indicate an e↵ective prediction

performance of the proposed approach.

We also compared the performance of the proposed approach against the cur-

rent state-of-the-art ICD9 disease group prediction model (Purushotham et al.,

2018). As the number of records and features under consideration for both the

studies are di↵erent, it is to be noted that the number of patients in both the works

fall in the same range, ensuring a fair comparison. During validation experiments,

it was observed that the proposed approach significantly outperformed against the

state-of-the-art method by 23% considering the AUPRC metric and 9% in terms of

AUROC. To encourage other comparative studies, certain additional experiments

were made. We also provide the Recall & F-Score performance as well as the MCC

values of the proposed model over our easily reproducible patient cohort dataset.

The model showed good results in these experiments, achieving a recall of 0.77,

F-score of 0.77 and MCC value of 0.50. It is to be noted that our method per-

formed better than the state-of-the-art (Purushotham et al., 2018), despite being

built on a significantly larger number of patient admission data than the state-of-

the-art approach (see Table 6.3). Further, we achieve this performance using only

textual features and we did not make use of structured patient data or processed

information from any kind of structured data to model the radiology reports of

patients. Thus, there is an added advantage that the conversion from unstruc-

tured text data to a structured representation can be ignored, thereby achieving

huge savings in man hours, cost and other resources.

6.2.4.1 Discussion

From our experiments, we observed a huge requirement and potential for develop-

ing prediction based CDSS using unstructured text reports rather than the usage

2https://www.tensorflow.org/
3https://keras.io/

https://www.tensorflow.org/
https://keras.io/
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Table 6.3: Experimental Results

Parameter Proposed Approach Purushotham et al. (2018)

Type of Data Unstructured Text Structured data

AUROC 0.84 ± 0.01 0.77 ± 0.01

AUPRC 0.74 ± 0.01 0.60 ± 0.02

Accuracy 0.77 *

Precision 0.80 *

Recall 0.77 *

F-Score 0.77 *

MCC 0.50 *

* Metric not reported in the study

of structured patient data and EHRs. The proposed text feature modeling was

e↵ectively able to capture the rich and latent clinical information available in un-

structured radiology reports, and the neural network model used these features to

e↵ectively learn disease characteristics for prediction. The Word2Vec model gener-

ated word embedding features and the extracted terms using the Open Biomedical

Annotator and SNOMED-CT ontology further enhanced the semantics of the tex-

tual features. This enabled the FFNN to generalize better and learn the feature

representation, e↵ectively resulting in prediction performance on par (in terms

of AUROC) with state-of-the-art approaches built on structured data. The high

values of metrics AUPRC of 0.74 and AUROC of 0.84 in comparison to the state-of-

the-art AUPRC of 0.60 and AUROC of 0.77 respectively, is an indication that the

unstructured text clinical notes (radiology in this case) contain abundant patient-

specific information that can be used for predictive analytics applications and that

the conversion process from unstructured patient text reports to structured data

can be eliminated thereby saving huge man hours, cost and other resources. More-

over, the proposed approach also eliminates any dependency on structured EHRs,

thus making it suitable for deployment in developing countries.

6.3 PSO-NN based Two-stage Feature Modeling

for Disease Group Prediction

The approach presented in Section 6.2, i.e., the ontology driven feature model-

ing based disease group prediction approach, though e↵ective, su↵ers from some
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limitations. This is due to the high dimensional nature and the sparse nature of

the textual feature representation, both due to the presence of a large number

of unique biomedical terms considered as features. This may adversely a↵ect the

prediction performance in certain cases. To overcome these issues, we present an-

other disease group prediction model based on radiology notes, with a focus on

improving the prediction performance by modeling the textual features in a more

intuitive and context-sensitive manner.

In this section, a deep neural network model that predicts ICD9 disease groups

using unstructured radiology notes based on a PSO-NN two stage feature modeling

technique is presented. The workflow and processes defined as part of the proposed

disease group prediction system are depicted in Figure 6.3. The same radiology

reports in unstructured text format from MIMIC-III dataset used for the previous

study were used for this study as well. Overall, 194,744 radiology text reports

generated during 45,512 admissions of 36,447 patients were included for the study.

As explained earlier, a patient may be diagnosed with multiple diseases in the

same admission, and hence, it is necessary for the prediction to be a multi-label

prediction task. Therefore, for each radiology report, all disease groups were

considered as labels and given binary values - 0 (if the disease was not present)

and 1 (if the disease was present). Table 6.1 of the previous section shows the

frequency characteristics of the radiology corpus subset that is extracted from the

MIMIC-III dataset.
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Figure 6.3: Two-stage Feature Modeling based ICD9 Disease Group Prediction

6.3.1 Data Preparation

Preprocessing. The radiology reports text corpus was first subjected to a basic

NLP preprocessing pipeline consisting of tokenization and stopping as similar to
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previous work. The tokenization process breaks down the clinical text corpus into

tokens, and the stopping process filters out unimportant words (stop words) from

the corpus.

ICD9 Disease Code Grouping. The ICD9 disease grouping strategy was performed

in the same way as previous study as explained in Section 6.2.2. A total of 2,593

unique ICD9 disease codes were accordingly grouped into 21 ICD9 disease groups

(statistics as shown in Table 6.2 of the previous section). As a patient can su↵er

from multiple diseases, we consider the ICD9 group prediction task as a binary

classification of multiple labels. Therefore, 21 di↵erent labels (disease groups)

were considered with possible binary values: 0 (for the absence of the disease) and

1 (for the presence of the disease).

6.3.2 Two-stage Feature Modeling

To extract features and enhance the quality of the feature representation of un-

structured radiology text reports, a two-stage feature modeling process is designed.

The two-stage feature modeling can be considered as an ensemble pipeline of two

processes - feature extraction and feature selection. In the first stage, word em-

beddings are extracted using a word representation model trained on the clinical

text corpus along with those generated by a pre-trained word embedding model

trained on biomedical terms and concepts. The two sets of word embeddings are

separately fed into a PSO-NN wrapper for deriving those feature subsets that most

contribute to ICD9 disease group prediction of a patient. Thus, the model not

only extracts and generates relevant and discriminating features but also filters

out redundant and irrelevant features, thus improving the quality of features and

enhancing the performance of classification.

6.3.2.1 Word Embedding Generation

Firstly, the word embeddings for the corpus are generated using two word repre-

sentation models. Initially, an openly available pre-trained word embedding model

(Nédellec et al., 2013) is applied to the preprocessed tokens to generate a set of tex-

tual features. This embedding model is trained on a large number of biomedical

articles available in PubMed and PubMed Central (PMC), and texts extracted

from English Wikipedia dump (Nédellec et al., 2013). Thus, these embeddings

provide rich domain knowledge, that helps generate e↵ective feature representa-

tions for our input medical corpus. This process generates word embedding vectors
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of size 1x200 for each clinical index term, which are averaged to create a repre-

sentation such that each preprocessed radiology report is represented as a 1x200

vector.

The preprocessed corpus is next used to train three popular neural network

based word representation models – Word2Vec (Mikolov et al., 2013), FastText

(Joulin et al., 2017) and GloVe (Pennington et al., 2014) (explained in Chapter

5, Section 5.3). The generated embedding features and the ICD9 disease group

labels are fed into a Random Forest classifier (explained in Section 4.2.3), and the

quality of features with respect to classification performance is measured in terms

of various metrics. Based on this, the best performing word embedding model

was chosen and used for generating word embedding features to be fed into the

PSO-NN wrapper.

6.3.2.2 PSO-NN Wrapper for Feature Selection

As the disease group prediction is a binary classification of multiple labels, per-

forming multi-label feature selection is a challenging task, and there can be mul-

titude of optimal feature subsets making the solution space huge. Moreover, the

textual features, i.e., the word embeddings from the best word representation

model and the pre-trained Word2Vec model may contain redundant and irrele-

vant features. With this in mind, a Particle Swarm Optimization - Feed Forward

Neural Network (PSO-NN) wrapper was designed for selecting the most relevant

features for e↵ective classification of ICD9 disease groups. The process is depicted

in Fig. 6.4.
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Figure 6.4: PSO-NN Wrapper based Two-stage Feature Modeling

Particle Swarm Optimization (Kennedy and Eberhart, 1995) is a bio-inspired,

evolutionary computation algorithm modeled on the behavior of bird flocks that

aims to find optimal solutions by searching a subspace of possible solutions. The
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position of each particle or bird in a swarm/flock represents a solution, and the

updation of position based on current position and velocity of the particle is used

by the algorithm to analyze possible solutions. The best position is determined

by a fitness function, based on the current position of the flock or swarm. In-

formation like local best (best position of a particle/bird) and global best (best

position among the entire swarm/flock) is shared across all the particles/birds,

which enables them to move/fly across the solution subspace converging towards

the optimal solution.

For performing PSO based textual feature selection, we generate a swarm of

20 particles/birds, where each particle/bird corresponds to a subset of textual

features. Each particle’s position, say xi, is initialized as a random binary vector

of size n, where n is the number of features extracted, and each particle/bird travels

with a velocity, say vi, which is initialized as a zero vector of size n. Each particle’s

position vector, xi = [0, 1, 0, 1, 1....1] (say) of size 1⇤n, represents a feature subset,

where, each element indicates if that feature is selected or not (0: not selected,

1: selected). These feature subsets, along with the respectively assigned ICD9

disease group labels, are used to train a Feed-forward Neural Network (FFNN)

and testing is performed using 5-fold cross-validation. The FFNN had 4 hidden

layers with 1024, 512, 256 and 128 neurons respectively, with ReLU as hidden

layer activation functions and sigmoid as the output activation function. Binary

cross-entropy was used as the loss function and stochastic gradient descent was

used as the learning optimizer. A dropout layer with a dropout value of 20% was

also used after the second layer.

The fitness function for the proposed PSO-NN wrapper is modeled on the

performance of the FFNN in terms of average Matthews Correlation Coe�cient

(MCC). MCC is a performance measure for binary classifications introduced by

Matthews (1975). Our task being development of an e↵ective disease prediction

model, the objective is not only to improve the number of true positives and true

negatives (true diagnoses), but also to reduce false positives and false negatives

(false alarms and wrong diagnoses). MCC takes into account not only true posi-

tives and true negatives, but also, false positives and false negatives, and returns

a value between -1 and +1 (where +1 signifies perfect prediction, -1 signifies worst

prediction and 0 signifies random prediction). Hence, MCC, one of the best binary

classification performance measures when class imbalance is prevalent, is an apt

choice as a fitness function for the proposed PSO-NN wrapper. The performance is

measured sample-wise, i.e., for each patient note, the predicted and actual diseases

are compared for measuring the performance, and hence, the average performance
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Algorithm 4 Optimizing Textual Feature Representation using PSO-NN
Input : Word embedding feature set (n features) of the radiology text corpus &
ICD9 disease code groups
Output : Optimized Textual Feature Representation (m features)

1: Generate 20 particles with their position vectors . Set to random binary
vectors of size 1⇥ n
Initialize each particle’s position
xi = [0, 1, 0, 1, 1....1] of size n
Velocity of each particle, vi = [0, 0, 0, 0....0]
local besti = xi

global best = [0, 0, 0, 0....0] of size n . 0: feature not selected, 1: feature
selected

2: while iterations  50 do
3: for each particle do
4: Calculate fitness of current particle (feature set)
5: if fitness > local besti then
6: Set local besti = current particle position, xi

7: end if
8: if fitness > global best then
9: Set global best = current particle position, xi

10: end if
11: end for
12: Update velocities and positions of particles
13: end while
14: Return global best . Optimal feature representation

(MCC value, in this case), is taken as the fitness value (computed as per Eq (6.1)

and Eq (6.2)).

MCC =
(TP ⇤ TN)� (FP ⇤ FN)p

(TP + FP )(TN + FP )(TP + FN)(TN + FN)
(6.1)

where, TP is the number of True Positives, TN is True Negatives, FP is False

Positives and FN is False Negatives in the FFNN classification. MCC gives the

performance for each patient report and hence, the fitness value, i.e., the average

MCC value of the entire test set, is computed using Eq. 6.2, where, n is the

number of patients in the FFNN classification testset.

Fitness f =
nX

j=1

MCCj

n
(6.2)

Based on the fitness values, the best position for each particle at a position, say

i (local besti) and the best position among the entire swarm/flock (global best)

are updated accordingly. Then, as per the theory of PSO, the new velocity, vi+1,
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is calculated as per Eq. 6.3 and the new position of the particle, xi+1, is calculated

using Eq. 6.4.

vi+1 = (w ⇤ vi) + c1 ⇤ r1 ⇤ (local besti � xi) + c2 ⇤ r2 ⇤ (global best� xi) (6.3)

xi+1 = xi + vi+1 (6.4)

The new position of each particle, xi+1, determines the new set of feature sub-

sets for which the fitness has to be found again. The entire process is repeated for

50 iterations, and the best position among the entire swarm, global best, represents

the feature subset that o↵ered the best classification performance using the FFNN

in the wrapper w.r.t MCC metric. The steps involved in the working of PSO-NN

wrapper are depicted in Algorithm 4. The PSO-NN wrapper is applied to both the

word embedding feature sets – word embeddings from the best-performing word

representation model trained on the radiology text corpus and the embeddings of

the same from the pre-trained Word2Vec model on PubMed and PMC articles and

biomedical concepts. The optimal feature subsets from both the feature sets are

determined, concatenated and then fed into the modified TextCNN based neural

network architecture for the final training and prediction of ICD9 disease code

groups.

6.3.3 mTextCNN: Neural Network Model for Disease Pre-

diction

For the prediction task, a neural network architecture called the modified TextCNN

(mTextCNN), an adaptation of the model TextCNN (Kim, 2014) is employed.

The TextCNN model consists of an embedding layer that maps input text to

a matrix representation, three convolution layers with multiple filter sizes and

ReLU activation functions, a max pooling layer for each of the convolution layer,

a dropout layer and finally a dense fully connected layer for the output. We

adapted the TextCNN architecture for our problem by modeling it as an ensemble

with the proposed PSO-NN wrapper. The embedding layer is eliminated as the

data preparation and feature extraction pipeline already generates the word em-

beddings during the two-stage feature modeling phase (discussed in Section 6.3.2),

and an enhanced representation of embeddings is generated using the PSO–NN

wrapper.
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The proposed mTextCNN architecture is depicted in Figure 6.5. The number of

nodes in the input layer of the mTextCNNmodel pertains to the number of features

generated by the proposed two-stage feature modeling approach. It consists of five

convolution layers with ReLU activation functions, one maxpooling layer for each

convolution layer, a dropout layer and finally, a dense fully-connected network

with 2 hidden dense layers with 256 and 128 neurons respectively with ReLU

activation functions and an output layer (21 nodes) with a sigmoid activation

function. We used 1024 filters on each convolution layer with filter sizes 2, 3,

4, 5 and 6 respectively. Hyperparameters like optimizer, activation function and

learning rate of the optimizer were tuned empirically over several experiments

using GridsearchCV function in the python sklearn library. The output layer

activation function was chosen to be sigmoid and binary cross entropy was used

as the loss function, as the ICD9 disease group prediction is a binary classification

across multiple labels. The major hyperparameters and configurations used in

TextCNN (Kim, 2014) and the proposed mTextCNN architectures are shown in

Table 6.4. The e↵ective textual representation generated by the proposed PSO-

NN wrapper from the initial sets of features are now concatenated, along with

the respective ICD9 disease group labels, are fed to the mTextCNN model. The

training is performed for 50 epochs and the best weights are stored and used

for performance analysis. The experimental validation of the proposed model is

presented in Section 6.3.4.

Table 6.4: Hyperparameters of TextCNN and mTextCNN

Parameter TextCNN mTextCNN

No. of convolution layers 3 5

No. of maxpooling layers 3 5

No. of filters (per filtersize) 300 1024

Filter sizes 3, 4, 5 2, 3, 4, 5, 6

Activation in Conv layers ReLU ReLU

Optimizer Adam Adam

Learning rate (lr) 0.001 0.01

No. of dense layers (fully connected layers) 1 3
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Figure 6.5: Proposed mTextCNN Model for ICD9 Code Group Prediction

6.3.4 Experimental Results and Discussion

For experimental validation of the proposed disease group prediction neural model,

we performed several experiments to analyze the various aspects of the modeling

pipeline and process. All such experiments were performed on an Ubuntu based

High-end Server with a 56-core Intel Xeon processor, 128GB RAM, two Nvidia

Tesla M40 GPUs (24GB each) and 3TB hard drive. All implementations were done

in Python using packages sklearn, keras, tensorflow, gensim and matplotlib. We

performed several experiments, to validate the e�cacy of the proposed approach,

which are discussed in detail in the following sections.

6.3.4.1 Benchmarking Word Representation Models

To understand the relative performance of the individual word representation mod-

els used in the proposed work, we conducted several experiments by applying each

of them to the unstructured radiology text corpus. The word embedding vec-

tors from three popular word representation models – Word2Vec, FastText, and

GloVe were considered as features for the ICD9 disease group prediction task. For

Word2Vec and FastText, both Skipgram and Continuous Bag-of-Words (CBOW)

models were considered for the experiment. The features were fed into a Random
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Forest classifier with 100 decision trees and 5-fold cross validation was performed

for the experiments. The performance of classification based on these features

was measured to determine the best-performing model in terms of accuracy w.r.t

major training parameters such as dimension size and learning rate, which are

described below.

Accuracy vs. Dimension. To observe the e↵ect of vector dimension size of

word embedding features on the classification performance, the size was varied

while training the word representation models to generate word embedding fea-

tures for each size. The models were trained with sizes – 100, 200, 300, 400, 500,

600, 700, 800, 900, 1000 for a fixed number of 5 epochs, for each dimension size, at

an initial learning rate of 0.025. After that, the embedding vectors of the prepro-

cessed radiology text corpus were generated for each dimension size which were

used as features for training a Random Forest classifier for ICD9 disease group

prediction.

Accuracy vs. Learning Rate. From our observations during experiment

1, optimal dimension size was determined. Now, we varied the initial learning

rate used for training each word representation model to observe the e↵ect on

classification accuracy, while keeping the dimension size constant. The initial

learning rates – 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, were used for

training the radiology text corpus on the word representation models for a fixed

number of 5 epochs. Similar to previous experiments, for each learning rate, word

embedding vectors of the corpus were generated to train a Random Forest classifier

to predict the ICD9 disease group and the performance of each classification model

was observed and analyzed.

The performance of the word representation models – Word2Vec skipgram,

Word2Vec CBOW, FastText skipgram, FastText CBOW and GloVe with respect

to the above experiments are illustrated in Figures 6.6, 6.7 and 6.8 respectively.
From Fig. 6.6a, it can be observed that the Word2Vec skipgram model per-

forms better at dimension sizes – 200, 500, 700, 800 and 1000. As lower dimen-

sionality of feature representation is desirable, we chose the optimal size to be 200.

Keeping size constant at 200, the initial learning rate was varied and the classifi-

cation performance was observed. With this, the model performs best when the

initial learning rate is 0.025 (Figure 6.6b). Hence, this configuration, i.e., dimen-

sion size of 200 and initial learning rate of 0.025, was chosen as the best model

among Word2Vec skipgram models and is referred to as W2V skip RF. Similarly,

dimension size/initial learning rate of 600, 0.025 were identified as the best config-
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(a) Accuracy vs Dimension Size (b) Accuracy vs Learning Rate

Figure 6.6: Performance of Word2Vec Skipgram & CBOW Embedding Models

(a) Accuracy vs Dimension Size (b) Accuracy vs Learning Rate

Figure 6.7: Performance of FastText Skipgram & CBOW Embedding Models

uration for Word2Vec CBOW model (W2V cbow RF )(Figure 6.6) and FastText

skipgram model (FT skip RF ) (Figure 6.7); while dimension size/initial learn-

ing rate of 900, 0.025 was best for FastText CBOW model (FT cbow RF )(Figure

6.7). Finally, for the GloVe model, dimension size of 700 and initial learning rate

of 0.05 (Glove RF ) was found to be optimal (Figure 6.8). The performances of

these optimal models are summarized in Table 6.5.

From Table 6.5, it is evident that all models performed consistently well with a

variation of less than 0.01%. Even then, the Word2Vec skipgram model (dimension

size 200 & learning rate 0.025) was judged to be the best, due to its optimal

dimensionality. The hybrid combination of word embedding features generated
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(a) Accuracy vs Dimension Size (b) Accuracy vs Learning Rate

Figure 6.8: Performance of GloVe Word Embedding Model

Table 6.5: Benchmarking various Word Embedding Models - Summary

Model Accuracy Optimal Size Learning Rate

W2V skip RF 0.7787 200 0.025

W2V cbow RF 0.7784 600 0.025

FastText skip RF 0.7786 600 0.025

FastText cbow RF 0.775 900 0.025

Glove RF 0.7781 700 0.05

by this model and the pre-trained word embedding model were then fed into the

PSO-NN wrappers for improving the quality of textual feature representation and

further optimize the dimensionality.

6.3.4.2 Experimental Evaluation of Two-stage Feature Modeling using

PSO-NN Wrapper

From our previous experiments, the Word2Vec skipgram model (dimension size 200

& learning rate 0.025) exhibited optimal dimensionality and the features generated

by this model were used to generate word embedding features of the preprocessed

radiology text corpus. Along with these, word embedding features of the same

corpus from the pre-trained Word2Vec model trained on PubMed and PMC arti-

cles (of dimension size 200) were also generated. The ICD9 disease group labels

and both the set of word embeddings for the clinical text corpus were fed into the

two PSO-NN wrappers. The output is an optimal feature representation for the

problem of ICD9 disease group prediction. The details of the optimal feature sets
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(a) Validation Loss vs Epochs (b) Validation MSE vs Epochs

Figure 6.9: Performance of the proposed PSO-NN+mTextCNN model, when com-
pared to mTextCNN model

and their performances in the PSO-NN wrappers are tabulated in Table 6.6. It is

evident that the feature set derived by the proposed PSO-NN wrapper contained

an optimal subset of features that e↵ectively predicted ICD9 disease groups with-

out performance degradation (from results reported in Table 6.5). Therefore, it

can be inferred that the proposed PSO-NN wrapper was e↵ective in deriving an

e↵ective textual feature representation that can help classifiers generalize better

when used for ICD9 disease group prediction. The selected feature subsets 1 &

2 are concatenated, i.e., 209 features and respective disease group labels are fed

into the proposed mTextCNN model for the final training and prediction. The

performance analysis of the mTextCNN model is presented in the subsequent sub

section.

6.3.4.3 Performance Analysis of mTextCNN Prediction Model

The enhanced feature representation generated by the PSO-NN wrapper along

with the respective labels is fed into the mTextCNN model. To evaluate the

performance, standard metrics like accuracy, precision, recall, F-score, Area under

Receiver Operating Characteristic curve (AUROC), Area under Precision Recall

Curve (AUPRC) and Matthew’s Correlation Coe�cient (MCC) were used, with

5-fold cross-validation. We measured these metrics on a sample-wise basis, i.e., for

each report, the predicted and actual disease groups were compared and analyzed.

Table 6.7 summarizes the results of this experiment (PSO-NN+mTextCNN ).
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Table 6.6: Performance of PSO-NN Wrapper for Feature Sets 1 & 2

Metric Feature set 1⇤ Feature set 2+

Total number of features 200 200

Number of features selected 107 102

Global Best (MCC) 0.49 0.47

Accuracy 0.78 0.77

⇤
Feature Set 1: Embeddings from Word2Vec trained on clinical text corpus

+
Feature Set 2: Embeddings from Word2Vec trained on PubMed and PMC

articles (biomedical domain)

To validate whether the proposed PSO-NN wrapper is e↵ective as an ensem-

ble to the proposed mTextCNN model, we performed an experiment using all

400 raw text embedding features (200 from both feature sets) on mTextCNN di-

rectly without the feature selection process by PSO-NN wrapper and compared it

with the performance of mTextCNN used with PSO-NN (PSO-NN+mTextCNN ).

The results are tabulated in Table 6.7. The plot of validation loss function

and Mean Squared Error (MSE) across epochs for both mTextCNN and PSO-

NN+mTextCNN are given in Figure 6.9. Interestingly, from Table 6.7 and Fig-

ure 6.9, it can be observed that, even with significant dimensionality reduction,

the (PSO-NN+mTextCNN) model still outperformed the base mTextCNN model

(without PSO-NN). Therefore, it can be inferred that the proposed PSO-NN

wrapper selects relevant and discriminating textual features, using which the

mTextCNN model generalized e↵ectively to classify ICD9 disease groups.

Table 6.7: Evaluation of Base mTextCNN model (on raw embedding features
without feature selection) and PSO-NN+mTextCNN model

Metric mTextCNN PSO-NN+mTextCNN

Number of features 400 209

Accuracy 0.78 0.79

Precision 0.80 0.81

Recall 0.78 0.78

F-Score 0.77 0.78

MCC 0.48 0.51

AUROC 0.85 0.86

AUPRC 0.75 0.77



Chapter 6. Disease Prediction Models for Unstructured Clinical Data 129

6.3.5 Benchmarking against State-of-the-art Structured Data

Models

The proposed PSO-NN+mTextCNN model, on the entire corpus of radiology notes

of 45,512 patient admissions, reported an AUPRC of 0.77, AUROC of 0.86 and

accuracy, precision and F-score of 0.79, 0.81 and 0.78 respectively indicating good

and promising performance (Table 6.7). Comparative benchmarking of the pro-

posed approach against an existing ICD9 group prediction model (Purushotham

et al., 2018) (based on structured data) was considered next. We regenerated the

same set of patient admissions employed by Purushotham et al. (2018) using the

patient cohort criteria mentioned in their paper and their shared code in GitHub

repository4, which resulted in 35,849 patient admissions. The proposed PSO-

NN+mTextCNN model was applied to the 140,710 radiology reports recorded

during these patient admissions and the observed performance after performing

5-fold cross validation (as similar to experiments by Purushotham et al. (2018)) is

tabulated in Table 6.8. The PSO-NN wrapper selected 214 textual features from

the total of 400 and these features along with disease group labels were used to

train the mTextCNN model.

Purushotham et al. (2018) benchmarked the performances of Super Learner

models, Gated Recurrent Unit (GRU), Feedforward Neural Network (FFNN) and

finally, proposed a Multimodal Deep Learning (MMDL) model, which was an en-

semble of FFNN and GRU. The performances of these models were referred from

the paper (Purushotham et al., 2018) and the results of comparison of the pro-

posed approach against these models are tabulated in Table 6.8. The comparison

of AUROC and AUPRC values of the proposed PSO-NN+mTextCNN approach

with that of MMDL (Purushotham et al., 2018) is as depicted in Fig. 6.10. It

can be observed that the proposed approach significantly outperformed the best

performing model (MMDL) among models proposed by Purushotham et al. (2018)

by a margin of 10% in terms of AUROC and 27% w.r.t AUPRC. To encourage

other comparative studies that may use radiology notes corpus, we also bench-

marked the performance in terms of other metrics like accuracy, recall, F-score

performance and MCC values on this reproducible patient cohort. The model

showed good results in these experiments, achieving an accuracy of 0.78, precision

of 0.81, F-score of 0.77 and MCC value of 0.49. An important fact to be noted is

that our model is built using only textual features from unstructured clinical notes

and model by Purushotham et al. (2018) is based on structured patient data. As

4Available at https://github.com/USC-Melady/Benchmarking_DL_MIMICIII

https://github.com/USC-Melady/Benchmarking_DL_MIMICIII


130 Chapter 6. Disease Prediction Models for Unstructured Clinical Data

our approach models unstructured radiology text notes for each patient, an added

advantage is the elimination of the need for conversion from unstructured patient

data to structured patient data, thereby achieving huge savings in person-hours,

cost and other resources.

Table 6.8: Benchmarking proposed model against state-of-the-art model based on
structured data Purushotham et al. (2018)

Parameter Our

Approach

MMDL Super

Learner

GRU FFNN

Data Unstructured
Text

Structured
data

Structured
data

Structured
data

Structured
data

AUROC 0.85 0.77 0.75 0.72 0.71

AUPRC 0.76 0.60 0.54 0.51 0.50

Accuracy 0.78 -⇤ -⇤ -⇤ -⇤

Precision 0.81 -⇤ -⇤ -⇤ -⇤

Recall 0.78 -⇤ -⇤ -⇤ -⇤

F-Score 0.77 -⇤ -⇤ -⇤ -⇤

MCC 0.49 -⇤ -⇤ -⇤ -⇤

⇤ Metric not reported in the study

Results referred here, are as reported by Purushotham et al. (2018).

AUROC AUPRC

0.5

0.6

0.7

0.8

0.9 0.85

0.760.77

0.6

Metric for Comparison

F
-
s
c
o
r
e
m
e
t
r
ic

V
a
lu
e

PSO + mTextCNN

MMDL

Figure 6.10: F-score comparison for All Tasks on Respective Datasets
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6.3.5.1 Discussion

From our experiments, a significant potential for developing disease prediction

CDSS using unstructured clinical text reports directly, rather than depend on the

availability of structured patient data and EHRs, is observed. The proposed two-

stage textual feature modeling approach (word embedding extraction and PSO-NN

wrapper) was successful in capturing the rich, latent, patient-specific clinical in-

formation available in unstructured radiology reports, and using it to learn disease

characteristics for ICD9 disease group prediction.

The Word2Vec model trained on the subjective radiology corpus with opti-

mized parameter configuration generates word embedding features to be fed into

the proposed PSO-NN wrapper. The embedding features of the corpus gener-

ated by the pre-trained model trained on PubMed and PMC articles were also

fed into another instance of the proposed PSO-NN wrapper. The TextCNN archi-

tecture was modified and adapted (mTextCNN) for the problem of disease group

classification and prediction. The relevant features selected from both feature sets

were concatenated and fed into the mTextCNN for classification, which performed

e↵ectively, from which three factors are evident.

1. The word embeddings of corpus generated from the pre-trained Word2vec

model trained on PubMed and PMC articles further enhanced and enriched

the semantics of the textual features with biomedical domain knowledge.

2. The proposed PSO-NN wrapper removes irrelevant and redundant features

making the textual feature representation more e↵ective with lesser dimen-

sions.

3. These factors have enabled the proposed mTextCNN to generalize better

and learn the feature representation e↵ectively, resulting in promising predic-

tion performance better than state-of-the-art approaches built on structured

data.

The high AUPRC value of 0.77 in comparison to the state-of-the-art (based

on structured data) AUPRC of 0.60 and also the high AUROC value of 0.86

against the state-of-the-art value of 0.77 are indications that the unstructured

text clinical notes (radiology reports in our case) contain abundant patient-specific

information that can be used for predictive analytics applications. Moreover,

the conversion process from unstructured patient text reports to structured data

can be eliminated, thereby, saving huge person-hours, cost and other resources.

Additionally, as our proposed approach does not depend on structured patient
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data, it can be deployed to hospitals in developing countries where EHR adoption

is low.

6.4 Hybrid Text Feature Modeling for Disease

Group Prediction

As the previously presented DPMs gave promising results for radiology notes, next,

we made it our objective to observe performances of DPM based on physician’s

notes. This section presents such a generic disease prediction based CDSS based

on unstructured physician notes using a hybrid word embedding based text feature

modeling. The overall workflow is as depicted in Fig. 6.11. We used physicians’

clinical notes in unstructured text form from the MIMIC-III dataset for our exper-

iments. We extracted only the physician notes from the ‘noteevents’ table, which

resulted in a total of 141,624 physician notes generated during 8,983 admissions.

As per MIMIC documentation, physicians have reported some identified errors

in notes present in the ‘noteevents’ table. As these notes can a↵ect the training

negatively, records with physician identified errors were removed from the cohort.

Additionally, those records with less than 15 words are removed and finally, the re-

maining 141,209 records are considered for the study. Some characteristic features

of the physician notes corpus are tabulated in Table 6.9.

We observed that there were 832 kinds of physician notes available in the

MIMIC-III dataset such as Physician Resident Progress note, Intensivist note,

etc. The frequency statistics of the top ten kinds of physician notes are tabulated

in Table 6.10. A particular patient may su↵er from multiple diagnoses during a

particular admission and hence, it is necessary for the prediction to be a multi-

label prediction task. Therefore, for each physician note, all the diagnosed disease

groups during that particular admission were considered as labels and given binary

values - 0 (if the disease was not diagnosed) and 1 (if the disease was diagnosed).

6.4.1 Preprocessing & Feature Modeling

The physician notes corpus is first preprocessed using basic NLP techniques such

as tokenization and stop word removal as similar to previous works in this chapter.

Using tokenization, the clinical text corpus is broken down into basic units called

tokens and by the stopping process, unimportant words are filtered out. The pre-

processed tokens are then fed into a pre-trained word embedding model to generate

the word embedding vector representation of the corpus that can be considered
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Figure 6.11: Proposed ICD9 Disease Group Prediction Process

Table 6.9: Physician Notes Corpus Characteristics

Feature Total Records

Physician Notes 141,209

Unique Words 635,531

Words in longest Note 3,443

Words in shortest Note 16

Average word length of notes 858

Unique Diseases 4,208

Disease Groups 21

Table 6.10: Top 10 Types of Physician Notes

Note Type Occurrences

Physician Resident Progress 62,550

Intensivist 26,028

Physician Attending Progress 20,997

Physician Resident Admission 10,611

ICU Note - CVI 4,481

Physician Attending Admission (MICU) 3,307

Physician Resident/Attending Progress (MICU) 1,519

Physician Surgical Admission 1,102

Physician Fellow/Attending Progress (MICU) 970

Physician Attending Admission 873
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as textual features. The pre-trained word embedding model used in this study

is an openly available model that is trained on biomedical articles in PubMed

and PMC along with texts extracted from an English Wikipedia dump (Nédellec

et al., 2013), hence capturing relevant terms and concepts in the biomedical do-

main, which helps generate quality feature representation of the underlying corpus.

The pre-trained model generates word embedding vectors of size 1x200 for each

word and these vectors were averaged to generate a representation such that each

preprocessed physician note is represented as a 1x200 vector. The preprocessed

tokens are then used to train a Word2Vec model (Mikolov et al., 2013) (explained

in Section 5.2.3), a neural network based word representation model that gener-

ates word embeddings based on co-occurrence of words. The Skipgram model of

Word2Vec was used for training the physician notes tokens with a dimension size

of 200 (same as the pre-trained model) with an initial learning rate of 0.025. The

averaged word vector representation for each report tokens are extracted and then

fed into the neural network model along with the vector representation extracted

from the pre-trained model and the ICD9 disease group labels.

6.4.2 ICD9 Disease Code Grouping

ICD9 disease codes of patients were categorized into standard ICD9 disease groups

as per standards and strategy explained in Section 6.2.2. One di↵erence here was

that we considered the V and E codes in a single category. A total of 4,208 unique

ICD9 disease codes thus obtained were grouped into 20 ICD9 disease groups, i.e.,

potential labels. As the ICD9 group prediction task is a binary classification of

multiple labels, 20 labels (disease groups) were considered with binary values:

0 (negative diagnosis of the disease) and 1 (positive diagnosis of the disease).

The physician notes, modeled into two feature matrices of shape 141209 ⇥ 200

each, along with 20 ICD9 disease groups (labels) are now used to train the neural

network model.

6.4.3 Neural Network Model

The proposed Deep Neural Network Prediction Model is illustrated in Fig. 6.12.

The neural network architecture is divided into 2 parts – the first for determining

the weights for the hybrid combination of features dynamically and the next for

multi-label classification of ICD9 disease codes.

The process of dynamically modeling the weightage to be assigned for the

combination of pre-trained word embeddings and the word embeddings generated
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using the physicians notes is performed as shown in Fig. 6.13. The two feature sets

are fed as inputs into the neural network model, where both the input layers con-

sist of 200 neurons, equal to the number of features generated from both models.

The addition layer merges the two sets of input features in a weighted combination

which is dynamically determined through backpropagation of the overall neural

network architecture thereby ensuring the optimal and e↵ective combination that

o↵ers the best classification performance possible. This architecture also ensures

that the weights for the hybrid combination of features is always determined dy-

namically and hence can be used for any clinical text corpus. The combined set of

features, i.e., the hybrid features, are then fed on to a dense Feed Forward Neural

Network (FFNN) model which performs the training for multi-label classification

of ICD9 disease code groups.

input_1: InputLayer
input:

output:
(None, 200)
(None, 200)

dense_1: Dense
input:

output:
(None, 200)
(None, 200)

input_2: InputLayer
input:

output:
(None, 200)
(None, 200)

dense_2: Dense
input:

output:
(None, 200)
(None, 200)

add_1: Add
input:

output:
[(None, 200), (None, 200)]

(None, 200)

dense_3: Dense
input:

output:
(None, 200)

(None, 1024)

dense_4: Dense
input:

output:
(None, 1024)
(None, 512)

dense_5: Dense
input:

output:
(None, 512)
(None, 256)

dropout_1: Dropout
input:

output:
(None, 256)
(None, 256)

dense_6: Dense
input:

output:
(None, 256)
(None, 128)

dense_7: Dense
input:

output:
(None, 128)
(None, 20)

Figure 6.12: Overall Neural Network Model for ICD9 Group Prediction
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Figure 6.13: Hybrid Features using Dynamic Weighted Addition of Feature Rep-
resentations

6.4.4 Disease Prediction Model

The dynamically weighted feature matrix consisting of the hybrid word embedding

features, along with ICD9 group labels are next used for training a FFNN used

as the prediction model (depicted in Fig. 6.14). The input layer consists of

1024 neurons with input dimension as 200 (number of input features); followed

by three hidden layers with 512, 256 and 128 neurons respectively and finally

an output layer with 20 neurons, each representing an ICD9 disease group. To

prevent overfitting, a dropout layer, with a dropout rate of 20% was also added

to the FFNN model (see Fig. 6.12). As this is a binary classification for multiple

labels, binary cross entropy was used as a loss function, while Stochastic Gradient

Descent (SGD) was used as the optimizer with a learning rate of 0.01. Rectified

Linear Unit (ReLU ) activation function was used as the input and hidden layer

activation functions as the feature matrix values are standardized to the range -1

and 1. The major hyperparameters for the FFNN model – the optimizer, learning

rate of the optimizer and the activation function, were tuned empirically over

several experiments using the GridSearchCV function in Python sklearn library.

Finally, the output layer activation function is a sigmoid, again as the classification

is two-class for each of the 20 labels. Training was performed for 50 epochs and
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then the model was applied to the validation set to predict disease groups after

which the results were observed and analyzed.

.

.

. H
\b

ULd
¬F

Ha
WX

UH
V 

(2
00

) 
IQSXW
La\eU

1

2

200

3

1

2

4

3

HLddeQ
La\eU 

.

.

. 

1024

1

2

3

HLddeQ
La\eU 

.

.

. 

512

1

2

3

HLddeQ
La\eU 

.

.

. 

256

1

2

HLddeQ
La\eU 

.

.

. 

128

1

2

OXWSXW
La\eU 

.

.

. 

20

IC
D

9 G
URXS

(LabHOV) 

Figure 6.14: Feed-forward Neural Network - Disease Group Prediction Model

6.4.5 Experimental Results and Discussion

All experiments were performed on an Ubuntu based High-end Server with a 56-

core Intel Xeon processor, 128GB RAM, two Nvidia Tesla M40 GPUs (24GB each)

and 3TB hard drive. Implementations were done in Python using packages sklearn,

keras, tensorflow, gensim and matplotlib. To evaluate the proposed approach, we

performed several experiments using standard metrics like accuracy, precision,

recall, F-score, Area under Receiver Operating Characteristic curve (AUROC),

Area under Precision Recall Curve (AUPRC) and Matthew’s Correlation Coef-

ficient (MCC). We measured these metrics on a sample-wise basis, i.e., for each

report, the predicted and actual disease groups were compared and analyzed. It

can be observed from the Table 6.11 that the proposed model achieved promising

results: AUPRC of 0.85 and AUROC of 0.89. The accuracy, precision, MCC and

F-score of 0.79, 0.82, 0.57 and 0.79 respectively also indicate a good performance.

We compared the proposed model’s performance against that of baseline fea-

ture modeling approaches – TF-IDF based bag-of-words approach, trained word

embedding approach (only Word2Vec model) and a pre-trained word embedding

approach (using word embedding model trained on PubMed, PMC and Wikipedia

English articles). The term weighted bag-of-words approach uses term frequency

and inverse document frequency (tf ⇥ idf) scores calculated from the physician

notes corpus. TF-IDF is a numerical statistic that is intended to reflect how im-

portant a word is to a document in a collection or corpus. The sklearn English
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stopword list was used to filter the stopwords and n-gram (n = 1, 2, 3) features

were considered. Finally, the top 1000 features were extracted from the corpus and

then fed into the neural network model for training. The other two baselines were

kept the same as explained in Section 6.4.1. It is to be noted that in the neural

network configuration, only one input is present, i.e., there is no hybrid weighted

addition layer. The results of comparison are tabulated in Table 6.11. It can be

observed that the proposed approach that involves a hybrid weighted combina-

tion of pre-trained and trained word embeddings is able to perform comparatively

better in terms of all metrics.

Table 6.11: Experimental Results – Baseline Comparison

Parameter Proposed
Approach

Bag-of-
words

(TF-IDF)

Only
Word2Vec

Only Pre-
trained

AUROC 0.89 0.87 0.88 0.88

AUPRC 0.85 0.81 0.84 0.82

Accuracy 0.79 0.78 0.79 0.79

Precision 0.82 0.80 0.82 0.80

Recall 0.79 0.78 0.79 0.78

F-Score 0.79 0.78 0.79 0.79

MCC 0.58 0.53 0.57 0.56

Table 6.12: Experimental Results – Comparison with State-of-the-art

Parameter Our Approach Purushotham et al. (2018)

Type of Data Unstructured text Structured data

AUROC 0.89 0.77

AUPRC 0.85 0.60

Accuracy 0.79 -⇤

Precision 0.82 -⇤

Recall 0.79 -⇤

F-Score 0.79 -⇤

MCC 0.58 -⇤

⇤Results not reported in the study

Next, a comparative benchmarking of the proposed approach against the state-

of-the-art ICD9 disease group prediction model developed by Purushotham et al.
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Figure 6.15: ICD9 Group Labels Statistics Comparison

(2018) was performed. Although the number of records considered for both the

studies are di↵erent, it is to be noted that the labels are distributed similarly

(statistics shown in Fig. 6.15) and which therefore enables a fair comparison. We

consider this comparison in order to study the e↵ect of the disease group predic-

tion models built on structured (state-of-the-art) and unstructured patient data

(physician notes in this case). The results of the benchmarking are tabulated in

Table 6.12, which clearly shows the proposed approach outperformed the model

by Purushotham et al. (2018) by 15% in terms of AUROC and 40% in terms of

AUPRC. This shows that the predictive power of a model built on unstructured

patient data exceeds that of those built on structured data. To encourage com-

parative studies that use physician notes in MIMIC-III dataset, certain additional

metrics were also considered. The Recall & F-Score performance as well as the

MCC values of the proposed model over our easily reproducible patient cohort

data subset are also observed and provided.

6.4.5.1 Discussion

From our experiments, we observed a significant potential in developing prediction

based CDSS using unstructured text reports directly, eliminating the dependency
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on the availability of structured patient data and EHRs. The proposed approach

that involves a textual feature modeling and a neural network based prediction

model was successful in capturing the rich and latent clinical information available

in unstructured physician notes, and using it to e↵ectively learn disease group char-

acteristics for prediction. The Word2Vec model, trained on the physician notes

corpus with optimized parameter configuration, generates e↵ective word embed-

ding features to be fed into the neural network model. The hybrid combination

of these with the embedding features of the corpus generated by the pre-trained

model trained on PubMed and PMC articles further enhanced and enriched the

semantics of the textual features with biomedical domain knowledge. This is clear

from the baseline comparison shown in Table 6.11 and it is this combination that

has further enabled the FFNN to generalize better and learn the textual feature

representation, e↵ectively improving prediction performance when compared to

the state-of-the-art model built on structured data.

It is interesting to note that the patient data was modeled using only textual

features, without any EHRs, structured data or other processed information. The

high AUPRC and AUROC values obtained in comparison to the state-of-the-art’s

(based on structured data) performance is an indication that the unstructured

text clinical notes (physician notes in this case) contain abundant patient-specific

information that is beneficial for predictive analytics applications. Moreover, the

conversion process from unstructured patient text reports to structured data can

be eliminated, thereby saving huge man hours, cost and other resources. The pro-

posed approach also eliminates any dependency on structured EHRs, thus making

it suitable for deployment in developing countries.

For the presented DPMs in this chapter, other insights into related challenges

also came to light during our experiments. We found that the data preparation

pipeline adopted for this study could be improved significantly, as it created some

conflicting cases during training. This is because of the nature of the MIMIC-III

dataset itself, in which the radiology reports do not have a direct link to ICD9

disease codes. To overcome this problem, we designed a strategy for extract-

ing ICD9 codes from the DIAGNOSES ICD table to assign them to all patients

with the same patient identifier (SUBJECT ID) and hospital admission identi-

fier (HADM ID) in the radiology notes corpus. An unforeseen side-e↵ect of this

strategy was that, sometimes, the ICD9 disease codes/groups assigned to radiol-

ogy text reports might not be related to that particular disease. This could have
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reduced the model’s performance because of the assignment of conflicting labels

to textual features of radiology notes. Nevertheless, the presented DPMs achieved

promising results and the good performance indicates that the prediction model

was able to capture disease-specific features using the information present in the

clinical notes during the patients’ admission.

6.5 Summary

In this chapter, three disease group prediction models were presented. Firstly, a

novel ontology-driven text feature modeling approach and word embedding models

on radiology notes was presented, based on which e↵ective textual feature repre-

sentations were generated which were then used to train a deep neural network

classifier. Next, a two-stage feature modeling approach where word embedding

models and a novel PSO-NN wrapper were used on radiology notes to derive

e↵ective textual feature representation. These were then used to train a modi-

fied TextCNN classifier for disease group prediction. The third work consisted

of a hybrid feature modeling approach that used dynamic weighted combination

of pretrained and trained word embedding models for generating e↵ective tex-

tual feature representation to train a deep neural network classifier. These works

focused on modeling unstructured clinical notes for enabling disease group predic-

tion, and benchmarking these against state-of-the-art disease prediction models

built on structured clinical data. Experimental evaluation emphasised the supe-

rior performance of the proposed models by a significant margin. Furthermore,

the proposed strategies also help eliminate dependency on availability of struc-

tured clinical records, in addition to being suitable for deployment as a real world

CDSS, especially in developing countries where structured EHR adoption is low.
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Chapter 7

Aggregation based Disease Prediction

using Unstructured Clinical Data

7.1 Introduction

In the previous chapter, we presented the design of DPMs based on radiology

and physician notes. In this chapter, we focus on one of the most challenging

aspects of clinical data management, i.e. the streaming and incremental nature

of the patient data. During every hospital visit, the patients are assessed and

their conditions are diagnosed/monitored, resulting in generation of di↵erent types

of notes. This essentially is temporal data, i.e., can provide insights into the

evolution of patient condition since the time it was diagnosed to the current status.

Clinical notes like nursing notes, radiology notes, etc. can be frequent and even

redundant in a patient’s single admission. Even minute variations in conditions of

ICU patients are recorded and monitored regularly by trained nursing sta↵. Hence,

nursing notes are very data-rich voluminous resources containing continuously

documented subjective and objective assessments concerning a patient’s state.

Moreover, e↵ective modeling of such clinical text to aid in the early identification of

high-risk patients is of utmost importance, to provide prioritized care and prevent

further complications. In our previous works, we considered each unstructured

clinical note as a separate entity. However, in a real world hospital scenario, a

real need to deal with new patient data as it is generated is a growing need and

there exists a conspicuous gap in existing research towards addressing this. Thus,

well-defined strategies for modeling the unstructured patient data and leveraging

it for designing learnable decision-support models are essential.

143
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7.1.1 Problem Definition

In hospitals, voluminous and varied unstructured clinical notes such as radiology

notes, nursing notes, physician notes, prescriptions, etc. get recorded during the

single admission of a patient. Clinical notes maintained by caregivers, record sub-

jective assessments and crucial information concerning a patient’s state, which is

mostly lost when converted into structured EHRs (Dubois et al., 2017). Mining

and modeling such nursing notes for extracting rich patient data and utilizing this

to predict clinical events and outcomes with machine learning models is a chal-

lenging process, owing to their rawness, redundancy, high-dimensionality, sparsity,

complex temporal and linguistic structure, and presence of rich medical jargon and

abbreviations (Dubois et al., 2017; Jo et al., 2017). The e�cacy of using such raw

clinical notes largely depends on the ability to extract and consolidate the infor-

mation embedded in them e↵ectively (Wang et al., 2018). Disease coding and

grouping (ICD9 code and group prediction) and risk assessment via nursing notes

can aid in taking e↵ective measures at the earliest signs of patient distress. Recog-

nition of the onset of disease and the determination of its risk using clinical nursing

notes, followed by e↵ective communication and response by interdisciplinary care

team members could be both time- and cost-e�cient (Davis et al., 2008), which

can also lead to reduced hospital mortality rate Collins et al. (2013). In this

context, the problem that is observed and we aim to address is defined as follows:

“Given multiple patient records in the form of unstructured clinical

notes recorded during a single admission of an ICU patient, to design

and develop e↵ective aggregation, textual feature modeling and predic-

tion approaches for ICD9 disease group prediction.”

7.1.2 Motivating Example

Let us again consider the earlier example, the case of Hospital A and Hospital

C. For a Patient P consulting the physician Dr. Alice at Hospital A, Dr. Alice

reports a tentative diagnosis, say D1, prescribes medicines for the same, based

on the symptoms described by Patient P. Let us assume the patient is advised

to get admitted to the hospital and undergoes the prescribed treatment, however

no improvement is observed. The nurses who monitor the patient’s condition

frequently report back to the physician that his treatment is not being e↵ective.

Dr. Alice investigates further and orders some tests to be performed on Patient

P. After consulting the test results, Dr. Alice discovers that Patient P is in fact
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su↵ering from another condition (due to some symptoms/history that the patient

failed to mention), say diagnosis D2 and refers Patient P to specialist treatment.

Now, let us consider the scenario if the Patient P had visited Hospital C

for consulting the physician Dr. Charlie. During the pre-screening, the reception

enters patient symptoms into the EHR system. During the actual consultation, Dr.

Charlie sees these, and asks additional questions relating to the symptoms, which

again goes into the notes section of the EHR system. The patient is admitted and

then some of the first observations also go into the EHR database as nursing notes.

Now, the CDSS attached to Hospital C, has been trained with enough historical

data (that of other patients with similar symptoms) gives out a prediction for

Diagnosis D1 with a confidence level of x, and also that there is also a small

probability y that the patient may be su↵ering from condition D2. This insight is

provided as an alert to Dr. Charlie, who can immediately take informed decisions

such as ordering tests or referring the patient to the specialist. The CDSS attached

to the hospital has the capability to detect diseases or diagnoses in earlier stages,

which reduces the risk of misdiagnosis and additional wastage of time, potentially

reducing complications and deterioration of patient condition.

In this chapter, two ICD9 disease group prediction (DPM) models that are built

on novel aggregation strategies for unstructured clinical notes are presented. The

first DPM incorporates an aggregation strategy we refer to as ‘TAGS ’, an acronym

for T erm weighting of unstructured notes AGgregated using fuzzy S imilarity.

TAGS is a novel fuzzy similarity scoring based cleansing aggregation approach

that is employed to merge or purge nursing notes so as to improve the patient data

representation derived from the unstructured nursing notes. The second DPM is

built on a technique called FarSight, an aggregation model built on TAGS for

future lookup of disease groups for assessing early symptoms observed, to enable

early prediction of onset of diseases.

7.2 TAGS – Fuzzy Similarity based Aggregation

of Unstructured Clinical Notes

The workflow of the proposed TAGS aggregation approach for ICD9 disease group

prediction is depicted in Fig. 7.1. In an attempt to benchmark our work on open

datasets, we used the MIMIC-III database for the evaluation experiments, which

contains 2,083,180 note events, of which 223,556 are nursing notes of 7,704 distinct

ICU patients (subjects). The specifics of the nursing note text corpus used in the
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experiments described in this chapter are summarized in Table 7.1.

MIMIC-III Clinical
Notes

Similarit\-based 
Data Cleansing

NLP 
Preprocessing

Term Weighted Vector
Space Modeling

ICD9 Disease Group
Prediction Model

Figure 7.1: Proposed TAGS Model for ICD9 Disease Group Prediction based on
Aggregated Clinical Notes

We considered two criteria to select the MIMIC-III subjects in the dataset

preparatory phase. Firstly, the subjects with age less than 15 were identified

using the age at the time of admission to the ICU. Similar to the state-of-the-

art models (Johnson et al., 2018; Purushotham et al., 2018), only adult subjects

(age 15 or above) were considered for the study. Secondly, for each MIMIC-

III subject, only their first admission to the hospital was considered, and all later

admissions were discarded. This was done to ensure the prediction with the earliest

detected conditions, to enable faster risk prediction, avoid any information loss,

and to ensure similar experimental settings as the state-of-the-art models (Johnson

et al., 2018; Purushotham et al., 2018) considered for benchmarking. Figure 7.2c

throws more light on the distribution of the number of code group mismatches

across patients’ first admission to their later admissions, based on which it can be

observed that code groups in later admissions of over 94% of the patient nursing

notes are the same as those occurring in their first hospital admission. Owing

to this, we decided to consider only the first hospital admission of a MIMIC-III

subject, with minimal loss of information. Based on these criteria, the selected

patient cohort contained nursing notes corresponding to 7, 638 patients with a

median age of 66 years. The statistics of the data extracted from the MIMIC

database is shown in Figure 7.2.

Table 7.1: Statistics of the clinical nursing note text corpus.

Parameter Total Average

Clinical nursing notes 223,556 –

Sentences in the nursing notes 5,244,541 23.46

Words in the nursing notes 79,988,065 357.80

Unique words in the nursing notes 715,821 3.20

Due to various factors including outliers, noise, missing values, incorrect or

duplicate records, and others, the data extracted from the MIMIC-III database

had erroneous entries. Three major issues with the extracted data were identified
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(d) The distribution of nursing notes across various MIMIC-III subjects (red dashed line
exhibits the distribution at 50 nursing notes).

Figure 7.2: Statistics of the data extracted from the MIMIC-III database.
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and handled accordingly. Firstly, the erroneous entries in nursing notes with the

‘iserror’ attribute of the ‘noteevents’ table set to 1 were identified and removed.

Secondly, some subjects that had redundant records were identified, and were

deduplicated. The resulting data obtained by handling erroneous entries corre-

sponded to 6, 532 MIMIC-III subjects. Finally, a few MIMIC-III subjects had

multiple nursing notes with di↵erent ICD9 code groups, which were merged or

purged using a fuzzy token-based similarity approach, referred to as TAGS. We

discuss the methodology adopted for this process in detail in the Section 7.2.1.

7.2.1 Fuzzy Token-based Similarity Merging

The objective here to handle the multiple nursing notes of a MIMIC-III sub-

ject, by applying merging, to enable multi-label ICD9 code group classification.

Figure 7.2d shows the heavy-tailed distribution of nursing notes across various

patients, from which it is evident that the patient cohort has an average of 176.49

nursing notes per patient, with 4, 183 patients having more than fifty nursing

notes composed of over 17, 890 words on an average. Such voluminous nursing

notes often include many similar terms which could significantly a↵ect the vector

representations. To handle the voluminosity and near-duplicate nursing notes of

a patient, Monge-Elkan (ME) (Monge and Elkan, 1997), a token-based fuzzy sim-

ilarity scoring scheme is integrated with Jaro internal scoring scheme (Jaro, 1989)

and used as a decision-making mechanism. ME similarity is used to handle clini-

cal abbreviations, alternate names, and medical jargon in which Jaro similarity is

used as an internal scoring scheme to handle typographical errors and to obtain

a normalized similarity score between 0 and 1. Given two nursing notes ⌘i and

⌘j with |⌘i| and |⌘j| tokens (C(i)
k s and C(j)

l s) respectively, their ME similarity score

with Jaro is,

MEJaro(⌘i, ⌘j) =
1

|⌘i|

|⌘i|X

k=1

max
n
Jaro(C(i)

k , C(j)
l )

o|⌘j |

l=1

(7.1)

where, the Jaro similarity score of two given clinical terms (tokens) Ci of length
|Ci| and Cj of length |Cj| with m matching characters and t transpositions is,

Jaro(Ci, Cj) =

8
<

:
0, if m = 0

1

3

⇣
m
|Ci| +

m
|Cj | +

2m�t
2m

⌘
, otherwise

(7.2)

The nursing notes of a patient are processed in the order of oldest to the most

recent. Based on the predetermined similarity threshold (✓) ranging between 0
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and 1, a pair of nursing notes (⌘(k)i , ⌘(k)j ) corresponding to a patient (P(k)) are

merged only if MEJaro(⌘
(k)
i , ⌘(k)j ) is less than ✓, else ⌘(k)j is retained and ⌘(k)i is

purged, thus maintaining only the latest of the two nursing notes. Note that,

similarity merging and purging applies only to nursing notes and not to the ICD9

code groups. Corresponding ICD9 codes across various nursing notes of a patient

are merged to enable multi-label classification. The resultant nursing note for a

patient P(k) after merging is hereafter referred to as the aggregate nursing note of

that patient. For the purpose of this work, we have empirically determined the

fuzzy-similarity ✓ to be 0.825 using grid search.

Consider two sample nursing notes (⌘(p)i and ⌘(p)j ) of a patient (p) extracted

from the MIMIC-III database, recorded at times T (shown in Figure 7.3a) and

T 0 > T (shown in Figure 7.3b) respectively. It can be observed that both the

recorded nursing notes are quite similar—the nursing note recorded at time T 0

records all the details in the nursing note ⌘(p)i , along with additional ‘response’

concerning the patient’s state. To handle the voluminosity of the nursing notes

and delete the near-duplicate nursing notes, we compute the ME similarity (with

internal Jaro similarity scoring) score using Eq. (7.1). The nursing notes shown

in Figure 7.3 have an ME similarity score of 0.85, which is higher than the preset

threshold of 0.825. Thus, note ⌘(p)j is retained, and note ⌘(p)i is purged.

7.2.2 Preprocessing

The next phase in the NLP pipeline is to preprocess the nursing notes to achieve

data (text) normalization. Transformation of text into a canonical form allows

for the separation of concerns and helps maintain consistency. Preprocessing es-

Cancer (Malignant Neoplasm), Hepatic (Liver)
Assessment: Patient is more lethargic yesterday &
today than he was on Fri ([**2-10**] days ago).
Action: He was made DNR/CMO tonight, per agreement of family.
Assessment: Patient had acute SOB, midsternal chest pain,
feeling that he was going to die @ [**2016**] when he rolled
in bed onto bedpan & had BM. HR increased to low 70s SR.
BP increased to 149/systolic. Desatted to 85%.
Action: Given 100% high flow neb, 0.5 NTP & 0.25mg IV morph-
ine. EKG done during SOB.
Response: Pain & SOB relieved. No changes on EKG.
Plan: Now that patient is CMO, medicate w/morphine before
rolling patient in bed. Continue to medicate w/Lopressor to
prevent ACS as well as NTP or SL NTG, morphine & O2
during episodes.

(a) A sample nursing note (⌘(p)i ) of a patient (p) recorded at time T .

Cancer (Malignant Neoplasm), Hepatic (Liver)
Assessment: Patient is more lethargic yesterday &
today than he was on Fri ([**2-10**] days ago).
Action: He was made DNR/CMO tonight, per agreement of family.
Response: Patient and family comfortable w/this plan.
Both concerned about treatment for episodes of respiratory
distress/flash pulmonary edema.
Assessment: Patient had acute SOB, midsternal chest pain,
feeling that he was going to die @ [**2016**] when he rolled
in bed onto bedpan & had BM. HR increased to low 70s SR.
BP increased to 149/systolic. Desatted to 85%.
Action: Given 100% high flow neb, 0.5 NTP & 0.25mg IV morph-
ine. EKG done during SOB.
Response: Pain & SOB relieved. No changes on EKG.
Plan: Now that patient is CMO, medicate w/morphine before
rolling patient in bed. Continue to medicate w/Lopressor to
prevent ACS as well as NTP or SL NTG, morphine & O2
during episodes.

(b) A sample nursing note (⌘(p)j ) of a patient (p) recorded at time T 0 (> T ).

Figure 7.3: Two sample de-identified nursing notes from the MIMIC-III database.
The two nursing notes are quite similar, while the only new content is the updated
response (indicated as red italicized text).
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sentially includes tokenization, stopword removal, and stemming/lemmatization.

First, multiple spaces, special characters, and punctuation marks are removed.

During tokenization, the clinical notes’ text is split into several smaller tokens

(words). Stopwords from the generated tokens are removed using the NLTK En-

glish stopword corpus. Furthermore, character case folding is performed, and

references to images (file names such as ‘scanImage.png ’) are removed. It is to

be noted that, token-length based token removal was not performed to avoid the

loss of important medical information (such as ‘CT ’ in ‘CT Scan’). Finally, stem-

ming was performed for su�x stripping, followed by lemmatization to convert the

stripped tokens to their base forms. To eliminate overfitting and lower the com-

putational complexity, the tokens appearing in less than ten nursing notes were

removed before any further processing.

7.2.3 Vector Space Modeling of Aggregated Clinical Notes

An adaptation of the Bag of Words (BoW) that weighs each token in an unsu-

pervised way, is used as the term weighting scheme in the TAGS model. It is a

numerical statistic that captures both the importance and specificity of a term in

the given vocabulary. The weight (W (i)
m ) of a term w (i)

m (of total |w(i)| terms) in a

nursing note ⌘i (of total N nursing notes) occurring f (i)m times is given by,

W (i)
m =

8
<

:

⇣
1 + log

2
f (i)
m

⌘⇣
log

2

N
|w(i)|

⌘
, if f (i)

m > 0

0, otherwise
(7.3)

The weight of every term in a patient’s aggregate nursing note (P(k)) is computed to

obtain a vector V (k) 2 R|V|. Now, the patient information is in machine processable

form, which can be considered features for training machine learning classifiers.

7.2.4 ICD9 Disease Code Grouping

As discussed earlier, ICD9 codes are a taxonomy of diagnostic codes that are used

by doctors, public health agencies, and health insurance companies across the

world to classify diseases and a wide variety of infections, disorders, symptoms,

causes of injury, and others. Owing to the high granularity of ICD9 codes, re-

searchers suggested di↵erentiating between category-level (group) predictions and

full-code predictions (Larkey and Croft, 1995). Each ICD9 code group includes a

set of similar diseases, and almost every health condition can be represented with

a unique ICD9 code group. In this study, we focus on ICD9 code group predictions
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as a multi-label classification problem, with each patient’s nursing note mapped

to more than one group. All the ICD9 codes assigned to a patient’s admission are

grouped into ICD9 disease groups, as previously explained in Section 6.2.2. In this

study, the E and V codes are classified into the same code group to lower the com-

putational cost of training. Moreover, the ICD9 group with codes ranging from

760-779 were not considered as this group corresponds to conditions originating

in the perinatal period and usually assigned to neonates (age < 15). Therefore,

the ICD9 groups were classified into 19 diagnosis groups.

7.2.5 ICD9 Disease Code Group Prediction Model

In this section, the proposed prediction algorithms employed to achieve the task

of ICD9 code group multi-label classification are presented. We experimented

with eight di↵erent prediction models conforming to various algorithmic classes

including algorithm adaptation based, problem transformation based, and ensem-

ble models. Three classifiers – KNN, Logistic Regression (LR), and Support Vector

Machine (SVM) were utilized as One vs Rest (OvR) classifiers in the prediction of

ICD9 diagnosis code groups. LR, as explained in Section 4.2.3, is a discriminative

model that models the probabilities of possible outcomes using a logistic function.

K-Nearest Neighbors (KNN). KNN is a non-parametric instance-based learner

used in regression and classification tasks. In KNN classification, the output class

membership is determined by the majority vote of its K closest neighbors. In the

sense of multi-label classification, KNN first identifies the K closest neighbors and

then, based on the statistical inferences gained from the neighboring class label

sets, maximum a posteriori principle is used to determine the class label set of an

unseen instance.

Multi-Layer Perceptron (MLP). MLP is a feed-forward artificial neural net-

work with an input layer, one or more hidden layers, and one prediction layer at

the end, for classification. The first layer takes vector representations of the clin-

ical terms as the input and uses the output of each layer as the input to the

following layer with the help of a non-linear activation function such as a tanh,

sigmoid, softmax or ReLU. In training, to update the weights and biases, MLP

uses a supervised approach called Backpropagation (BP). BP is used to calculate

the gradient of the loss function to update weights, which aids the MLP to learn

the internal representations, allowing it to learn any arbitrary mappings within the
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network. In the case of multi-label classification, while the forward pass remains

the same, the classical BP algorithm uses a global error function that addresses

the dependencies between the class labels. In this study, we use vanilla neural net-

works with one hidden layer of 75 nodes and a ReLU activation function, which

were empirically determined using grid search.

Support Vector Machines (SVM). SVM is also a discriminative approach

that classifies by constructing hyperplane(s) in a high-dimensional space. For a

given set of linear separable training instances, SVM finds a linear rule that max-

imizes (optimizes) the geometric margin (street width). In practice, most of the

training sets are not usually linearly separable. Now, a trade-o↵ between minimiz-

ing prediction error and maximizing the geometric margin must be incorporated.

Kernels such as tanh, sigmoid, Radial Basis Function (RBF), and others are gener-

ally used to transform from the linearly inseparable space to a higher dimensional

space where the points could be separated. The RBF kernel defines a space that is

larger than linear or polynomial kernels and has properties such as being station-

ary, isotropic, and infinitely smooth. Thus, in this analysis, we used SVM with an

RBF kernel with � set to 1/#features.

One vs. Rest (OvR). OvR prediction strategy essentially transforms the

multi-label classification problem into multiple binary relevance tasks. OvR trains

a classifier such that for each class, the samples (aggregate nursing notes) of that

particular class are considered as positive and the remaining samples as negative.

The base classifiers produce a real-valued confidence score for the prediction de-

cision. Then, for an unseen instance, the combined model of all such classifiers

predicts all the class labels for which the corresponding base classifiers predicted

a positive result.

Ensemble Approaches. Three ensemble prediction approaches including Ran-

dom Forest (RF), Hard-voting Ensemble (HVE), and Stacking Ensemble (SE)

were also employed in the classification of ICD9 diagnostic code groups. RF or

decision tree ensembles (explained in Section 4.2.3) predict by constructing multi-

ple Classification And Regression Trees (CARTs) during training and predict the

output class as a function of the outputs of individual trees for the test data. In

multi-label classification, multiple labels are present in the tree leaves, and the

predictions of multiple base CARTs are combined using a simple voting scheme

(such as probability distribution or majority vote). In this work, we used RF
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with 100 CARTs with a maximum depth of 2. HVE aggregates the predictions of

multiple diverse classifiers using a majority rule. Given a set of diverse classifiers

(Nis) with prediction sets Yis, where each Yi a subset of Y (set of all class labels),

then the presence of a class (c) in an unseen instance (⌘(m)) can be estimated as,

Y(m)(c) =

8
><

>:

1, if
NP
i=1

Y
(m)

i (c) >
⌃
N
2

⌥

0, otherwise

(7.4)

Thus, using the majority voting principle, the possible class label set for the

unseen instance can be predicted. Many variations on the classifiers used in HVE

were tried, starting with KNN, MLP, LR, LR as OvR, SVM as OvR, and KNN

as OvR. After much experimentation, only MLP, LR as OvR, and SVM as OvR

were used, due to their superior performance.

SE (Wolpert, 1992) also combines discrete learning algorithms using a meta-

classifier. In the first phase, all the base classifiers (Nis) are applied to the training

data which generate the predictions (Yis). Then, in the second phase, a meta-level

dataset is created by replacing every trained record (⌘(k)) with the predictions for

that record (Y(k)
i )

N

i=1
. Then, another learning algorithm (L) is used to classify

the meta-level dataset. On an unseen testing instance ⌘m, the predicted class set

is L(Y(m)

i )Ni=1
. In this study, MLP, LR as OvR, and SVM as OvR are used as

first-level classifiers, and MLP is used as the second-level classifier. In contrast

to voting, SE learns at the meta-level, when combining multiple classifiers. The

results of the comparative performance of these prediction models are discussed

in Section 7.2.6.

7.2.6 Experimental Results and Discussion

To validate the proposed approach, we performed extensive experiments over the

nursing notes data obtained from the MIMIC-III database. Seven standard eval-

uation metrics – Accuracy, Area Under the ROC Curve (AUROC), Area Under

the Precision-Recall Curve (AUPRC), Matthews Correlation Coe�cient (MCC),

F-score, Coverage Error (CE) and Label Ranking Loss (LRL), were used to assess

the performance of each prediction algorithm with reference to each data model-

ing approach. The implementations in the Python sklearn and gensim packages

were used for the experiments and all experiments were performed in an Ubuntu

based High-end Server with a 56-core Intel Xeon processor, 128GB RAM, two

Nvidia Tesla M40 GPUs (24GB each) and 3TB hard drive. Exhaustive compar-
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ative study of the performance of various data and modeling approaches on the

nursing notes of the MIMIC-III database was performed. For the prediction task

of ICD9 code group classification, 10-fold cross-validation was performed. Further-

more, the mean and standard errors (of the mean) of the performance scores are

presented. Table 7.5 shows the performance of all data modeling approaches and

all prediction models using nursing notes processed using TAGS fuzzy token-based

similarity with ✓ = 0.825. Table 7.6 tabulates the performance of all data mod-

eling approaches and all prediction models using nursing notes processed without

any similarity modeling or aggregation. We also observed the performances of

other feature modeling strategies such as embedding approach Doc2Vec and topic

modeling approaches.

Doc2Vec aims at numerically representing variable length documents as fixed

length low dimensional document embeddings (vectors). Doc2Vec is essentially a

neural network with one shallow hidden layer that learns the distributed represen-

tations, to provide a content-related measurement. It incorporates semantic tex-

tual features obtained from the nursing notes text corpus. The Paragraph Vector

(PV) Distributed Memory (PV-DM) variant of Doc2Vec was chosen over PV Dis-

tributed Bag-of-Words (PV-DBoW) due to its ability to preserve the word order

in the nursing notes and its comparatively superior performance (Le and Mikolov,

2014). For an exhaustive analysis, Doc2Vec dimension sizes of 500 (trained for 25

epochs) and 1, 000 (trained for 50 epochs) were used.

A popular cluster analysis approach, Latent Dirichlet Allocation (LDA) is a

generative topic model based on the Bayesian framework of a three-layer struc-

ture (documents, topics, and terms). LDA generates a soft probabilistic and flat

clustering of terms into topics and documents into topics. LDA posits that each

(aggregate) nursing note ⌘(k)i of a patient P(k) and each term belongs to a set of d

(⌧ |V|) clusters (topics) T, with some probability ⇢. Thus, each nursing note is

transformed into vectors of topic probabilities, which could be considered features

for training classifiers.

Similar to other clustering approaches, there is no simple way to determine the

correct number of d LDA clusters. To cope with this issue, more complex models

such as Hierarchical Dirichlet process (HDP) which automatically determine the

number of clusters through posterior inference can be used. HDP is a hierarchi-

cal Bayesian non-parametric model that can model mixed-membership data with

potentially infinite terms, in an unsupervised way. In LDA, only the mixture of

topics is drawn from the Dirichlet distribution, while in HDP, a Dirichlet process

is used to capture the uncertainty in the number of terms, as is typically the case
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with clinical documents.

Probabilistic models are commonly evaluated by measuring the log-likelihood

of unseen documents. As an alternative to HDP, Topic Coherence (TC) between

topics can also be used to derive the optimal number of topics. TC is a way to

evaluate topic models with a much greater guarantee of human interpretability.

In this work, we adopted LDA with Topic Coherence (TC) as it accounts for

the semantic similarity between high scoring terms. Cv, a variant of coherence

measurement is used in this study, as it accounts for high correlation with all the

available human ranking data (Röder et al., 2015). The higher the coherence value,

the stronger is the model’s human interpretability and generalization ability.

To provide exhaustive analysis, HDP with truncation level set to 150 was mod-

eled with both BoW and term weighting. Alternatively, LDA (set to 100 topics)

with TC was modeled with BoW representations. Furthermore, the number of

LDA topics was determined by comparing the TC scores of several LDA models

obtained by varying the number of LDA topics from 2 to 500 in the increments

of 100. We observe that the T erm weighting of unstructured (nursing) notes

AGgregated using fuzzy S imilarity (TAGS ) model, modeled with LR as OvR,

consistently outperforms more complex vector space and topic models. Further-

more, it can be observed from Figure 7.4 that the model’s performance is higher

when nursing notes are processed with similarity modeling, than when processed

without similarity modeling.

In clinical tasks such as disease prediction, capturing True Positives (TP), False

Positives (FP), True Negatives (TN) and False Negatives(FN) is of utmost impor-

tance, due to the critical nature of the task itself. As can be seen from the results

in Tables 7.5 and 7.6, the AUROC metric captures True Positive Rate (TPR) and

False Positive Rate (FPR), while AUPRC captures the number of true positives

from positive predictions. AUPRC, unlike AUROC, varies with the change in the

ratio of target classes in the data, and hence is more revealing while evaluating im-

balanced data (Saito and Rehmsmeier, 2015). From Table 7.4, it can be observed

that the dataset is highly class imbalanced, and hence AUPRC is more informative

than AUROC. It can be seen that our approach outperforms the existing state-

of-the-art method by Purushotham et al. (2018) in these metrics, indicating the

significant decrease in the FP and FN. F-score captures both precision and recall

of the prediction, while MCC score serves as a balanced measure even with class

imbalance, as it takes into account TP, FP and FN. More specifically, in health-

care applications like disease or diagnosis prediction, FN (prediction miss, i.e., a

disease which is present, but not diagnosed) are likely to cause more harm than
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false positives (false alarm) and CE captures these false negatives. LRL performs

a pairwise label comparison to determine the loss of prediction. Existing works

have benchmarked their performance using only AUROC and AUPRC metrics.

Since all the metrics used in this research are very relevant and essential in under-

standing the proposed model’s predictive power, we benchmark these promising

results for the MIMIC-III dataset.

Furthermore, as explained earlier, the state-of-the-art work by Purushotham

et al. (2018) is built on structured EHRs that are modeled in the form of feature

sets to make clinical predictions. It is a fact that the richness and abundance of in-

formation captured by unstructured nursing notes are often lost in the structured

EHRs coding process (Dubois et al., 2017). Our proposed TAGS model combines

the fuzzy similarity based data cleansing and aggregating approach with a term

weighting scheme that captures the importance and rarity of clinical concepts, to

model the informally written clinical nursing text into a clinically relevant and

usable format e↵ectively. From the results, it can be seen that in contrast to

more complex data modeling approaches such as Doc2Vec and HDP, the TAGS

model is able to capture all the discriminative features of the clinical nursing notes

needed for the machine learning classifier to learn and generalize. We observe that

using the TAGS model, risk stratification can be achieved well in advance, with

an overall accuracy of 82.4%. Also, it can be noted that token-based similarity

processing of nursing notes yields higher performance in comparison to that pro-

cessed without similarity modeling. These promising results emphasize the need

for reduction in redundancy and anomalous data for relieving the cognitive burden

and improving the clinical decision-making process. CDSSs built on the predic-

tive capabilities of TAGS could be suitable for patient-centric and evidence-based

treatments, resulting in reduced mortality rates and better risk assessment.
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Figure 7.4: Benchmarking the best performing models (with and without fuzzy
similarity modeling) against Purushotham et al. (2018)’s model
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Table 7.2: ICD9 code group prediction using nursing notes of MIMIC-III (using
fuzzy similarity with ✓ = 0.825).

Data model Classifier
Performance scores

ACC AUROC AUPRC MCC F-score CE LRL

TAGS
(6, 532⇥ 14, 650)

KNN 0.7857± 0.0011 0.7681± 0.0010 0.5904± 0.0016 0.5286± 0.0019 0.6688± 0.0017 18.0936± 0.0501 0.4181± 0.0018

MLP 0.7947± 0.0009 0.7677± 0.0013 0.5987± 0.0018 0.5366± 0.0020 0.6664± 0.0018 18.2327± 0.0574 0.4226± 0.0024

KNN as OvR 0.7725± 0.0018 0.7645± 0.0011 0.5738± 0.0021 0.5108± 0.0024 0.6619± 0.0017 17.9385± 0.0791 0.4204± 0.0020

LR as OvR 0.8239± 0.0011 0.7868± 0.0011 0.6476± 0.0011 0.5953± 0.0018 0.6981± 0.0016 18.2849± 0.0643 0.3978± 0.0021

SVM as OvR 0.7413± 0.0014 0.6801± 0.0011 0.5249± 0.0014 0.4007± 0.0024 0.5207± 0.0019 19.5542± 0.0206 0.5880± 0.0018

RF 0.7630± 0.0012 0.6926± 0.0009 0.5486± 0.0014 0.4388± 0.0022 0.5450± 0.0016 19.5678± 0.0238 0.5728± 0.0014

HVE 0.8171± 0.0010 0.7781± 0.0007 0.6367± 0.0007 0.5786± 0.0007 0.6837± 0.0009 18.5659± 0.0614 0.4132± 0.0014

SE 0.7972± 0.0009 0.7698± 0.0015 0.6027± 0.0021 0.5421± 0.0016 0.6701± 0.0017 18.2673± 0.0630 0.4195± 0.0029

Doc2Vec 500
(6, 532⇥ 500)

KNN 0.7399± 0.0020 0.6628± 0.0027 0.5247± 0.0021 0.3949± 0.0041 0.4802± 0.0055 19.5644± 0.0278 0.6363± 0.0058

MLP 0.7368± 0.0009 0.7102± 0.0012 0.5240± 0.0020 0.4150± 0.0023 0.5911± 0.0021 18.8039± 0.0450 0.5078± 0.0021

KNN as OvR 0.7377± 0.0016 0.6674± 0.0024 0.5206± 0.0015 0.3888± 0.0030 0.4902± 0.0052 19.5144± 0.0269 0.6197± 0.0055

LR as OvR 0.7950± 0.0013 0.7579± 0.0011 0.5970± 0.0018 0.5262± 0.0023 0.6607± 0.0017 18.6491± 0.0375 0.4400± 0.0019

SVM as OvR 0.8059± 0.0013 0.7666± 0.0010 0.6184± 0.0012 0.5514± 0.0022 0.6743± 0.0015 18.7379± 0.0462 0.4273± 0.0017

RF 0.7484± 0.0013 0.6787± 0.0010 0.5356± 0.0010 0.4142± 0.0021 0.5190± 0.0018 19.6208± 0.0225 0.5991± 0.0019

HVE 0.8013± 0.0014 0.7636± 0.0011 0.6084± 0.0016 0.5407± 0.0024 0.6691± 0.0012 18.6652± 0.0149 0.4312± 0.0015

SE 0.8047± 0.0014 0.7652± 0.0011 0.6164± 0.0008 0.5482± 0.0023 0.6715± 0.0014 18.7367± 0.0483 0.4296± 0.0017

Doc2Vec 1, 000
(6, 532⇥ 1, 000)

KNN 0.7322± 0.0018 0.6543± 0.0030 0.5104± 0.0016 0.3741± 0.0036 0.4650± 0.0062 19.6614± 0.0478 0.6494± 0.0072

MLP 0.7458± 0.0011 0.7170± 0.0013 0.5307± 0.0011 0.4291± 0.0025 0.5989± 0.0015 18.8467± 0.0374 0.4988± 0.0021

KNN as OvR 0.7376± 0.0017 0.6712± 0.0029 0.5189± 0.0013 0.3883± 0.0035 0.5020± 0.0057 19.5014± 0.0415 0.6074± 0.0068

LR as OvR 0.7735± 0.0015 0.7414± 0.0017 0.5667± 0.0015 0.4845± 0.0030 0.6374± 0.0019 18.7376± 0.0526 0.4623± 0.0029

SVM as OvR 0.8067± 0.0012 0.7693± 0.0013 0.6187± 0.0012 0.5542± 0.0021 0.6762± 0.0016 18.6286± 0.0472 0.4227± 0.0023

RF 0.7464± 0.0012 0.6760± 0.0010 0.5334± 0.0014 0.4102± 0.0020 0.5136± 0.0018 19.6269± 0.0248 0.6045± 0.0020

HVE 0.7904± 0.0015 0.7562± 0.0018 0.5922± 0.0017 0.5201± 0.0033 0.6566± 0.0022 18.6607± 0.0545 0.4413± 0.0033

SE 0.8052± 0.0015 0.7680± 0.0013 0.6164± 0.0009 0.5510± 0.0025 0.6738± 0.0016 18.6683± 0.0402 0.4249± 0.0023

HDP with BoW
(6, 532⇥ 150)

KNN 0.7718± 0.0009 0.7422± 0.0009 0.5723± 0.0017 0.4892± 0.0018 0.6318± 0.0014 18.7632± 0.0514 0.4629± 0.0014

MLP 0.7912± 0.0011 0.7557± 0.0012 0.5974± 0.0014 0.5255± 0.0019 0.6502± 0.0019 18.6689± 0.0330 0.4464± 0.0022

KNN as OvR 0.7682± 0.0008 0.7397± 0.0010 0.5661± 0.0019 0.4822± 0.0018 0.6275± 0.0014 18.7482± 0.0380 0.4666± 0.0016

LR as OvR 0.7815± 0.0010 0.7417± 0.0011 0.5850± 0.0014 0.5017± 0.0020 0.6251± 0.0016 18.9294± 0.0476 0.4729± 0.0020

SVM as OvR 0.7511± 0.0011 0.6875± 0.0008 0.5410± 0.0015 0.4245± 0.0019 0.5284± 0.0017 19.4253± 0.0279 0.5827± 0.0015

RF 0.7574± 0.0015 0.6915± 0.0014 0.5486± 0.0017 0.4359± 0.0028 0.5412± 0.0023 19.5291± 0.0314 0.5751± 0.0026

HVE 0.7826± 0.0013 0.7404± 0.0015 0.5869± 0.0008 0.5029± 0.0022 0.6229± 0.0020 18.9688± 0.0626 0.4767± 0.0029

SE 0.7851± 0.0008 0.7453± 0.0008 0.5874± 0.0014 0.5083± 0.0013 0.6317± 0.0006 18.7915± 0.0498 0.4660± 0.0014

HDP with
term weighting
(6, 532⇥ 150)

KNN 0.7116± 0.0015 0.6723± 0.0018 0.4887± 0.0023 0.3479± 0.0034 0.5254± 0.0031 19.3027± 0.0297 0.5724± 0.0028

MLP 0.7409± 0.0016 0.6779± 0.0027 0.5245± 0.0014 0.3997± 0.0028 0.5158± 0.0056 19.5698± 0.0277 0.5940± 0.0069

KNN as OvR 0.7076± 0.0014 0.6689± 0.0018 0.4842± 0.0024 0.3399± 0.0034 0.5213± 0.0031 19.2999± 0.0269 0.5764± 0.0028

LR as OvR 0.7458± 0.0014 0.6780± 0.0010 0.5310± 0.0019 0.4082± 0.0027 0.5161± 0.0017 19.5929± 0.0258 0.5987± 0.0019

SVM as OvR 0.7413± 0.0014 0.6801± 0.0011 0.5249± 0.0014 0.4007± 0.0024 0.5207± 0.0019 19.5542± 0.0206 0.5880± 0.0018

RF 0.7557± 0.0010 0.6880± 0.0008 0.5376± 0.0012 0.4257± 0.0017 0.5359± 0.0015 19.4695± 0.0268 0.5800± 0.0015

HVE 0.7414± 0.0017 0.6801± 0.0013 0.5249± 0.0015 0.4007± 0.0029 0.5207± 0.0023 19.5542± 0.0083 0.5880± 0.0022

SE 0.7414± 0.0017 0.6801± 0.0013 0.5249± 0.0015 0.4007± 0.0029 0.5207± 0.0023 19.5542± 0.0083 0.5880± 0.0022

LDA with TC
(6, 532⇥ 100)

KNN 0.7883± 0.0016 0.7512± 0.0015 0.5939± 0.0014 0.5201± 0.0029 0.6440± 0.0021 18.7220± 0.0465 0.4554± 0.0025

MLP 0.8037± 0.0010 0.7657± 0.0014 0.6181± 0.0016 0.5544± 0.0021 0.6663± 0.0020 18.5933± 0.0463 0.4341± 0.0026

KNN as OvR 0.7838± 0.0012 0.7479± 0.0010 0.5859± 0.0008 0.5098± 0.0017 0.6389± 0.0015 18.7532± 0.0544 0.4593± 0.0019

LR as OvR 0.8018± 0.0010 0.7644± 0.0012 0.6157± 0.0014 0.5505± 0.0019 0.6624± 0.0017 18.6514± 0.0467 0.4361± 0.0023

SVM as OvR 0.7773± 0.0014 0.7272± 0.0013 0.5852± 0.0016 0.4949± 0.0026 0.5999± 0.0021 19.1559± 0.0464 0.5087± 0.0025

RF 0.7569± 0.0014 0.6945± 0.0011 0.5531± 0.0013 0.4415± 0.0023 0.5462± 0.0019 19.4421± 0.0404 0.5694± 0.0022

HVE 0.8018± 0.0011 0.7633± 0.0011 0.6160± 0.0011 0.5498± 0.0017 0.6607± 0.0012 18.6970± 0.0587 0.4384± 0.0020

SE 0.7983± 0.0012 0.7570± 0.0010 0.6096± 0.0012 0.5408± 0.0017 0.6504± 0.0013 18.7473± 0.0621 0.4513± 0.0017
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Table 7.3: ICD9 code group prediction using nursing notes of MIMIC-III (without
similarity modeling).

Data model Classifier
Performance scores

ACC AUROC AUPRC MCC F-score CE LRL

Term weighting
(6, 532⇥ 14, 665)

KNN 0.7866± 0.0012 0.7689± 0.0016 0.5920± 0.0025 0.5306± 0.0032 0.6697± 0.0021 18.0463± 0.0691 0.4168± 0.0027

MLP 0.7962± 0.0011 0.7694± 0.0015 0.6009± 0.0026 0.5400± 0.0029 0.6685± 0.0024 18.2134± 0.0530 0.4199± 0.0026

KNN as OvR 0.7741± 0.0017 0.7662± 0.0014 0.5764± 0.0027 0.5144± 0.0032 0.6639± 0.0020 18.1744± 0.0644 0.4179± 0.0023

LR as OvR 0.8143± 0.0014 0.7804± 0.0017 0.6378± 0.0032 0.5845± 0.0035 0.6874± 0.0030 18.2934± 0.0389 0.3985± 0.0030

SVM as OvR 0.7414± 0.0015 0.6801± 0.0015 0.5249± 0.0026 0.4007± 0.0036 0.5207± 0.0028 19.5542± 0.0368 0.5880± 0.0024

RF 0.7653± 0.0011 0.6951± 0.0013 0.5517± 0.0024 0.4449± 0.0031 0.5484± 0.0023 19.5449± 0.0387 0.5695± 0.0022

HVE 0.8064± 0.0014 0.7782± 0.0014 0.6369± 0.0031 0.5788± 0.0032 0.6832± 0.0026 18.5193± 0.0489 0.4132± 0.0023

SE 0.7971± 0.0013 0.7693± 0.0018 0.6017± 0.0032 0.5412± 0.0034 0.6682± 0.0029 18.2290± 0.0363 0.4207± 0.0030

Doc2Vec 500
(6, 532⇥ 500)

KNN 0.7134± 0.0013 0.5986± 0.0021 0.4719± 0.0024 0.3111± 0.0040 0.3323± 0.0059 19.9011± 0.0208 0.7824± 0.0048

MLP 0.7370± 0.0011 0.7081± 0.0017 0.5217± 0.0022 0.4113± 0.0029 0.5885± 0.0026 18.8870± 0.0421 0.5113± 0.0028

KNN as OvR 0.7177± 0.0013 0.6091± 0.0020 0.4783± 0.0020 0.3167± 0.0035 0.3627± 0.0054 19.8782± 0.0171 0.7533± 0.0048

LR as OvR 0.7970± 0.0007 0.7586± 0.0009 0.5999± 0.0020 0.5291± 0.0016 0.6659± 0.0016 18.6661± 0.0346 0.4382± 0.0017

SVM as OvR 0.8068± 0.0010 0.7678± 0.0012 0.6206± 0.0024 0.5527± 0.0025 0.6774± 0.0018 18.7267± 0.0269 0.4245± 0.0021

RF 0.7490± 0.0014 0.6801± 0.0016 0.5351± 0.0027 0.4142± 0.0037 0.5232± 0.0029 19.6314± 0.0357 0.5942± 0.0027

HVE 0.8011± 0.0006 0.7627± 0.0008 0.6083± 0.0024 0.5387± 0.0013 0.6701± 0.0011 18.6705± 0.0216 0.4318± 0.0014

SE 0.8054± 0.0009 0.7659± 0.0010 0.6179± 0.0028 0.5489± 0.0022 0.6740± 0.0018 18.7635± 0.0400 0.4279± 0.0018

Doc2Vec 1, 000
(6, 532⇥ 1, 000)

KNN 0.7141± 0.0016 0.6058± 0.0026 0.4754± 0.0028 0.3192± 0.0045 0.3520± 0.0069 19.8945± 0.0179 0.7643± 0.0058

MLP 0.7442± 0.0011 0.7159± 0.0017 0.5312± 0.0024 0.4270± 0.0030 0.5995± 0.0027 18.8172± 0.0321 0.4992± 0.0028

KNN as OvR 0.7162± 0.0018 0.6112± 0.0034 0.4781± 0.0037 0.3219± 0.0058 0.3671± 0.0091 19.8661± 0.0200 0.7493± 0.0076

LR as OvR 0.7749± 0.0005 0.7425± 0.0007 0.5698± 0.0018 0.4864± 0.0017 0.6418± 0.0015 18.7278± 0.0397 0.4592± 0.0010

SVM as OvR 0.8071± 0.0009 0.7684± 0.0012 0.6194± 0.0027 0.5528± 0.0026 0.6768± 0.0022 18.6731± 0.0429 0.4239± 0.0020

RF 0.7455± 0.0014 0.6760± 0.0014 0.5313± 0.0023 0.4077± 0.0032 0.5138± 0.0025 19.6283± 0.0375 0.6034± 0.0025

HVE 0.7915± 0.0009 0.7559± 0.0014 0.5943± 0.0037 0.5200± 0.0035 0.6588± 0.0029 18.6419± 0.0225 0.4410± 0.0022

SE 0.8061± 0.0011 0.7674± 0.0013 0.6179± 0.0035 0.5508± 0.0032 0.6750± 0.0025 18.6649± 0.0241 0.4256± 0.0022

HDP with BoW
(6, 532⇥ 150)

KNN 0.7778± 0.0011 0.7505± 0.0014 0.5792± 0.0024 0.5033± 0.0027 0.6407± 0.0019 18.5832± 0.0558 0.4502± 0.0024

MLP 0.7946± 0.0013 0.7574± 0.0016 0.6026± 0.0031 0.5336± 0.0036 0.6518± 0.0028 18.6202± 0.0417 0.4467± 0.0028

KNN as OvR 0.7733± 0.0013 0.7476± 0.0017 0.5726± 0.0030 0.4949± 0.0037 0.6367± 0.0026 18.5783± 0.0456 0.4536± 0.0027

LR as OvR 0.7878± 0.0016 0.7453± 0.0020 0.5932± 0.0030 0.5183± 0.0042 0.6307± 0.0033 18.7679± 0.0444 0.4723± 0.0033

SVM as OvR 0.7623± 0.0014 0.6926± 0.0017 0.5510± 0.0029 0.4450± 0.0038 0.5411± 0.0032 19.5415± 0.0398 0.5776± 0.0029

RF 0.7619± 0.0015 0.6982± 0.0017 0.5535± 0.0029 0.4468± 0.0039 0.5563± 0.0030 19.5531± 0.0314 0.5606± 0.0030

HVE 0.7886± 0.0011 0.7438± 0.0016 0.5941± 0.0027 0.5183± 0.0029 0.6286± 0.0024 18.8647± 0.0482 0.4759± 0.0031

SE 0.7886± 0.0006 0.7431± 0.0011 0.5935± 0.0023 0.5172± 0.0017 0.6288± 0.0018 18.8853± 0.0417 0.4766± 0.0022

HDP with
term weighting
(6, 532⇥ 150)

KNN 0.7108± 0.0010 0.6718± 0.0018 0.4885± 0.0025 0.3476± 0.0030 0.5262± 0.0026 19.3230± 0.0378 0.5728± 0.0027

MLP 0.7413± 0.0014 0.6783± 0.0016 0.5253± 0.0029 0.4009± 0.0037 0.5167± 0.0033 19.5623± 0.0396 0.5934± 0.0046

KNN as OvR 0.7067± 0.0012 0.6685± 0.0020 0.4837± 0.0028 0.3393± 0.0036 0.5221± 0.0029 19.3410± 0.0392 0.5767± 0.0030

LR as OvR 0.7455± 0.0016 0.6779± 0.0016 0.5301± 0.0030 0.4072± 0.0041 0.5161± 0.0030 19.5868± 0.0369 0.5984± 0.0026

SVM as OvR 0.7414± 0.0015 0.6801± 0.0015 0.5249± 0.0026 0.4007± 0.0036 0.5207± 0.0028 19.5542± 0.0368 0.5880± 0.0024

RF 0.7559± 0.0012 0.6862± 0.0018 0.5386± 0.0030 0.4259± 0.0039 0.5313± 0.0033 19.4848± 0.0370 0.5854± 0.0030

HVE 0.7444± 0.0023 0.6789± 0.0012 0.5286± 0.0038 0.4058± 0.0049 0.5179± 0.0023 19.5742± 0.0588 0.5948± 0.0031

SE 0.7413± 0.0016 0.6800± 0.0010 0.5248± 0.0025 0.4007± 0.0031 0.5206± 0.0024 19.5566± 0.0507 0.5882± 0.0015

LDA with TC
(6, 532⇥ 100)

KNN 0.7872± 0.0011 0.7517± 0.0012 0.5937± 0.0023 0.5197± 0.0027 0.6449± 0.0024 18.7065± 0.0454 0.4539± 0.0020

MLP 0.8039± 0.0011 0.7669± 0.0014 0.6182± 0.0025 0.5547± 0.0028 0.6681± 0.0023 18.5665± 0.0489 0.4311± 0.0025

KNN as OvR 0.7824± 0.0008 0.7482± 0.0013 0.5851± 0.0022 0.5087± 0.0026 0.6392± 0.0021 18.7217± 0.0364 0.4581± 0.0021

LR as OvR 0.8018± 0.0013 0.7639± 0.0014 0.6152± 0.0027 0.5497± 0.0033 0.6626± 0.0025 18.6916± 0.0466 0.4367± 0.0024

SVM as OvR 0.7778± 0.0016 0.7297± 0.0015 0.5858± 0.0028 0.4961± 0.0036 0.6050± 0.0027 19.1415± 0.0275 0.5024± 0.0025

RF 0.7587± 0.0015 0.6962± 0.0013 0.5527± 0.0027 0.4424± 0.0032 0.5487± 0.0024 19.4452± 0.0393 0.5655± 0.0022

HVE 0.8009± 0.0009 0.7613± 0.0009 0.6141± 0.0022 0.5469± 0.0020 0.6584± 0.0018 18.7753± 0.0523 0.4423± 0.0019

SE 0.7975± 0.0011 0.7566± 0.0013 0.6078± 0.0027 0.5388± 0.0023 0.6509± 0.0025 18.7774± 0.0599 0.4510± 0.0029
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7.3 FarSight: Long-Term Aggregation by Future

Lookup

Our next work is an attempt to model the rich patient information embedded

in multiple clinical notes of a patient for disease prediction, using vector space

(Doc2Vec) and topic modeling (Nonnegative Matrix Factorization (NMF)), for

deriving optimal patient-specific data representations. FarSight, a variant of pa-

tient record aggregation mechanism intended to detect the onset of the disease

with the earliest recorded symptoms, infections, and disorders, along with a deep

learning prediction model, forms the core of this work. The proposed FarSight-

aggregated unstructured modeling was evaluated against näıve note aggregation

strategy and structured EHR based state-of-the-art model using standard eval-

uation metrics. The overall workflow of the proposed disease group prediction

system using the FarSight approach is as illustrated in Figure 7.5.

MIMIC-III COLQLcaO
NRWHV

FaUSLJKW GaWa
aJJUHJaWLRQ

NLP 
PUHSURcHVVLQJ

TH[WXaO FHaWXUH
MRGHOLQJ

ICD9 DLVHaVH GURXS
PUHGLcWLRQ MRGHO

Figure 7.5: FarSight Model for ICD9 Disease Group Prediction

The patient cohort considered for this work was the same one used in the

previous work, extracted from the MIMIC-III dataset, as explained in Section

7.2. First admissions of patients aged 15 and above were considered for the study,

and finally erroneous and duplicated records were filtered out. The resultant

patient cohort obtained after handling the erroneous entries contained nursing

notes corresponding to 6, 532 patients (140, 792 clinical notes)—the data in these

nursing notes were aggregated using the FarSight approach to detect the onset of

the disease with the earliest recorded symptoms.

7.3.1 Modeling Multiple Clinical Records

As the need for critical care facilities like ICUs grows, the limited availability of

resources including specialized monitoring equipment and trained clinical sta↵, is

often a major bottleneck. In addition, a lack of precise knowledge concerning the

etiology of ICU complications can lead to delayed and imprecise recognition of pa-

tients at high-risk, thus hindering preemptive treatment options. As a result, the

requisite care is often delivered only after the development of a particular compli-

cation. Therefore, detection of disease onset when the earliest recorded infections
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or symptoms are observed is of utmost importance, as it can significantly reduce

mortality and morbidity rates. Towards this objective, we present FarSight, a

long-term aggregation mechanism, which facilitates the aggregation of the patient

data using a future lookup on all the later detected symptoms and diseases1.

Let P be the set of all patients, indexed by p. For each patient, we have a

sequence of clinical nursing notes, �(p) = {(⌘(p)n , I(p)
n )}N(p)

n=1
, with each nursing note

⌘(p)n and the corresponding ICD9 diagnostic code (group) I(p)
n indexed by n, and

with N(p) number of notes (of total N nursing notes) for a patient p. Furthermore,

the nursing notes of a patient are ordered from oldest to the most recent. Now,

the aggregation of the ICD9 code groups across the nursing notes of a patient

is performed using FarSight, through a future lookup of the diseases in the long

run (dependent on the number of nursing notes recorded for that specific patient

(p), concerning several episodes during single hospital admission), resulting in

�(p) = {(⌘(p)n , I(p))}N(p)
n=1

, where I(p) = {I(p)
n }N(p)

n=1
. Note that, while the aggregation

of diagnostic code groups seems to be incremental in nature, the objective is

to predict the diseases and complications that are most likely to be observed

in the subsequent episodes of a patient’s current hospital admission—FarSight

facilitates such prediction through aggregation of diagnostic code groups across

all the episodes recorded for a patient, thus performing long-term aggregation

through future lookup. Ultimately, our goal is to learn a generalizable function

(G) that estimates the probability of classifying a given clinical nursing note ⌘(p)n

into a set of ICD9 diagnostic codes:

G(�(p)) ⇡ Pr(I(p) | ⌘(p)n ) (7.5)

It is to be noted that the proposed FarSight mechanism facilitates multi-label

classification by aggregating the diagnostic code groups across a patient’s multiple

medical records, rather than aggregating the raw medical text in the nursing notes.

Such an aggregation facilitates risk assessment at the initial stages of the disease,

with the earliest detected infections and symptoms.

Consider the nursing notes ({⌘(p)n }N(p)
n=1

) of a patient (p) ordered chronologi-

cally; assuming N(p) to be three, we have three medical records of the patient p

corresponding to three (distinct) diagnostic code groups ({I(p)
n }N(p)=3

n=1
). By em-

ploying the FarSight aggregation mechanism, we map each of the three medical

records to all the ICD9 code groups observed in the patient p’s nursing notes,

1In this context, ‘later detected diseases’ at time T are the diseases recorded in the medical
records after time T .
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i.e., {I(p)
n }N(p)=3

n=1
. Simply put, each ⌘(p)n corresponds to {I(p)

1
, I(p)

2
, . . . , I(p)

N(p)}. It is
important to stress that, FarSight aggregation is only e↵ective when the disease

symptoms are progressive and related (e.g., sore throat �! cold �! fever vs. sore

throat �! leukaemia). Since this study specifically considers the first ICU admis-

sion of a MIMIC-III subject, FarSight can be employed to stratify risk using the

earliest detected symptoms. However, through näıve aggregation of nursing notes

using patient identification numbers, we have ⌘(p)
1
� ⌘(p)

2
� . . . � ⌘(p)N(p) mapping

to {I(p)
1

, I(p)
2

, . . . , I(p)
N(p)} (� denotes concatenation). Thus, FarSight-aggregated

data can help train the underlying classifier in identifying all the possible diag-

nostic groups, by capturing the episode-specific characteristics, i.e., training at

the clinical note level. In contrast, patient-based aggregated data aids in training

the predictor at the patient level. Furthermore, the diagnostic code groups of

⌘(p)i (1 < i < N(p)) predicted using a model trained on FarSight-aggregated data

({(⌘(p)n , I(p)
n )}N(p)=3

n=1
) would include (with high probability) I(p)

i , owing to the train-

ing at nursing note granularity. However, employing a classifier trained on näıvely

aggregated data to predict the diagnostic code groups of ⌘(p)i (1 < i < N(p)) might

not include I(p)
i , as episode-specific characteristics are lost.

7.3.2 Preprocessing

Despite the inherent content-rich nature of the patient-specific information avail-

able in the clinical nursing notes, they are raw, sparse, informally-written, com-

plexly structured, and voluminous. Thus, any transformation of raw medical text

into a canonical form extends the learnability and generalizability of the underlying

deep neural architectures. Such normalization not only allows for the separation

of concerns but also helps maintain consistency. To achieve this, we subject all

the notes to NLP processing, which included tokenization, stopword removal, and

stemming/lemmatization. First, we removed multiple spaces and special charac-

ters. Next, we experimented with multiple tokenizers including MedPost2, Penn

bio tagger3, NLTK, Stanford log-linear part-of-speech tagger4, and GENIA tag-

ger5, to segment the medical text in the nursing notes into several primary building

blocks (tokens). MedPost tokenizer splits the input text at hyphens, slashes, in-

ternal periods, and punctuation within numbers (e.g., IL-20 i.e. 1,000 U/ml is

split as IL - 20 i . e . 1 , 000 U / ml), while Penn bio tagger splits the words

2ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/medpost.tar.gz
3https://www.seas.upenn.edu/~strctlrn/BioTagger/BioTagger
4https://nlp.stanford.edu/software/tagger.shtml
5http://www.nactem.ac.uk/tsujii/GENIA/tagger/

ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/medpost.tar.gz
https://www.seas.upenn.edu/~strctlrn/BioTagger/BioTagger
https://nlp.stanford.edu/software/tagger.shtml
http://www.nactem.ac.uk/tsujii/GENIA/tagger/


162 Chapter 7. Aggregation based Disease Prediction

at slashes (e.g., 0.05 U/ml is split as 0.05 U / ml), and hence are not employed

in this study.

We observed that the NLTK tokenizer was similar (in the splitting scheme)

to Stanford log-linear part-of-speech and GENIA taggers, with respect to DNA

sequences (e.g., CCAAAGCGTAAAAGG), words with numbers and letters (e.g.,

15th), and hyphenated compound words (e.g., x-ray). Thus, we employed the

NLTK tokenizer to facilitate the tokenization of nursing text. Utilizing the NLTK

English stopword corpus, we removed stopwords from the generated tokens. Fur-

thermore, punctuation marks (except hyphens and slashes) were also removed.

References to images (e.g., MRI Scan.jpeg) were removed, and character case fold-

ing was performed. Note that, word-length based token removal was not performed

to eliminate the loss of important medical information (e.g., CT, DEXA, MRI,

and PET ). Before any further processing, medical concept normalization through

disambiguation of abbreviations (into their respective long forms) was facilitated

using CARD, an open-source framework for clinical abbreviation recognition and

disambiguation (Wu et al., 2016). Lastly, su�x stripping was performed through

stemming, followed by lemmatization for the conversion of the stripped tokens

into their respective base forms. Additionally, we eliminated the tokens appearing

in less than ten nursing notes (e.g., spot, cope, and inch) in order to lower the

computational complexity of training (the total number of tokens pre- and post-

elimination were 188, 742 and 32, 687 respectively) and mitigate problems arising

due to overfitting.

7.3.3 Topic Modeling of Clinical Notes

Topic modeling aims at finding a set of topics (collection of terms) from a collec-

tion of documents that best represents the underlying corpus. Latent semantic

analysis and other traditional methods of information retrieval compute the Sin-

gular Value Decomposition (SVD) of the BoW or TW matrix to generate a lower

approximation of the matrix—such methods often deal with matrix computations

of high complexity. NMF is a popular multivariate analysis approach that aims at

factoring a data matrix (M 2 | |⇥N) by minimizing the reconstruction error, with

nonnegativity constraints. This can be viewed as learning an unnormalized prob-

ability distribution over the topics (Stevens et al., 2012). Formally, NMF seeks a

factorization model for a given data matrixM and a target rank T (number of top-

ics) to explain the data matrix (M), where W � 0, H � 0, and T  min{| |, N}
(as shown in Eq. (7.6)). The unnormalized probabilities are learned by randomly
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initializing each set of probabilities and then updating them according to a set of

iterative rules defined in Eq. (7.7).

M ⇡ WHT, W 2 | |⇥T , H 2 N⇥T (7.6)

H  � H · W TM

W TWHT
W  � W · MH

WHTH
(7.7)

At first glance, NMF is an alternative factoring model similar to SVD that

considers di↵erent constraints (orthogonality) on the latent factors. However, the

e↵ectiveness of NMF when modeling real-life nonnegative data (e.g., text, images,

and audio spectra) has sparked widespread interest in the fields of signal processing

and data analytics (Fu et al., 2018). Representing real-life data into nonnegative

matrices and factoring them into latent factors yields intriguing results, and thus,

NMF is popularly recognized as a workhorse in data analytics.

As is the case with other clustering approaches, determining the optimal num-

ber of NMF clusters is a challenging problem. Moreover, learning topics from a

multinomial distribution of words from sparse and noisy textual data can often be

hard to interpret. Semantic Coherence (SC) is a way of evaluating models with

a higher guarantee of human interpretability. In our work, we adopt NMF with

SC, as it accounts for the semantic similarity between high scoring clinical terms.

We employ the Cv variant of the coherence measurement with the Normalized

Pointwise Mutual Information Score (NPMI) as the confirmation measure, owing

to its more significant correlation with the available human-judged data (Röder

et al., 2015).

Let Ti = {t1, t2, . . . , tn} be a topic generated from a topic model, represented

by its top�n most probable terms (tks). A topic depicts greater coherence when

the average pairwise similarity among the terms of that topic is high. Given a

predefined similarity score (Sim(tk, tl))6, we compute the SC score using:

SC(Sim, Ti) =

P
1kn�1

k+1ln
Sim(tk, tl)

�
n
2

� (7.8)

where tk, tl 2 Ti. The NPMI similarity score is used in finding collocations and

associations between the words and is computed as per (7.9) and (7.10). To

obtain the final conformation score, we average the individual confirmation scores

6In our work, we use NPMI as the similarity measure.
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obtained for all the topics (Tis).

NPMI(tk, tl) =
PMI(tk, tl)

�log
2
(Pr(tk, tl))

(7.9)

PMI(tk, tl) = log
2

✓
Pr(tk, tl)

Pr(tk)Pr(tl)

◆
(7.10)

The optimal number of topics in NMF was determined to be 100, by comparing

the coherence scores of several NMF models obtained by heuristically varying the

number of topics from 2 to 500. In this study, we built the NMF matrices on

both BoW and TW matrices, to enable an exhaustive comparison. Moreover, we

model the BoW and TWmatrices using NMF without coherence scoring (set to 150

topics, which was determined empirically using grid-search). The implementations

available in the Python Gensim package were employed to implement the NMF

models.

7.3.4 ICD9 Code Group Prediction

In our work, we focus on ICD9 code group prediction as a multi-label classification

problem, where each nursing note of every patient is mapped to multiple diagnostic

code groups. The ICD9 codes of a given admission from MIMIC-III are mapped

into 19 distinct diagnostic groups, similar to the previous study as explained in

Section 7.2.4. Here also our dataset does not contain any records in the ICD9

code range of 760 � 779 and all E-codes and V-codes are classified into the same

code group to lower the computational complexity of training.

The prediction model is a Convolutional Long Short-Term Memory (Conv-

LSTM) based architecture, where the convolution layer e↵ectively extracts the

high-level features from a given precomputed embedding of a clinical nursing note.

However, to capture the long-term dependencies in the nursing notes, we need a

substantial number of convolutional layers—such dependencies are easily captured

and retained by an LSTM network. Thus, a hybrid Conv-LSTM architecture is

designed in which both captures the high-level features and retains the long-term

dependencies over time. We used a hybrid Conv-LSTM network with one fully

connected layer of 289 ReLU processing units, one convolution or ConvNet layer

with 3⇥ 3 convolution window and a feature map size of 19, followed by another

fully connected layer of 289 ReLU processing units, and an LSTM layer with 300

hidden nodes. ICD9 code group prediction is facilitated by a sigmoid activation

of the final LSTM output (see Fig. 7.6e).
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For comparison, we implemented several other models. A Multi-Layer Percep-

tron (MLP) (explained in Section 7.2.5) is a fully connected feed-forward artificial

neural network with multiple layers of processing elements (neurons) interacting

through weighted connections. Typically, MLP consists of an input layer, one or

more hidden layers, and one classification layer at the top to solve the prediction

task. The input to the first layer is comprised of a d�dimensional embedding

(topics) of ⌘(p)n , and the output of each layer serves as the input to the subse-

quent layer. In our study, we use an MLP network with one hidden layer of 75

ReLU processing units and a prediction layer of 19 sigmoid processing units (see

Fig. 7.6a).

ConvNets are a regularized variation of the deep MLP architecture which are

aimed at minimal processing. They utilize layers with convolving filters, which

are applied to local features. Due to their transition invariance characteristics and

shared-weights architecture, ConvNets are space invariant. They are shown to be

e↵ective in a variety of NLP tasks, including semantic parsing, sentence modeling,

and search query retrieval (Kim, 2014). Consider that a clinical nursing note ⌘(p)n

is modeled to produce an n�dimensional embedding. A convolution operation

involving a filter is applied to a window of say h terms to produce a new feature. To

produce a feature map, we now apply this filter to every possible window of terms

in the embedding. Here, we extract one feature from one filter, and this process

can be extended to obtain multiple features from multiple filters (of varying sizes).

The features from the penultimate layer are passed to a fully connected layer using

a nonlinear activation function. We employed one fully connected layer of 289

ReLU processing units, and one ConvNet layer with 3 ⇥ 3 convolution window

and a feature map size of 19. Finally, the code group prediction is facilitated by

a fully connected layer of 19 sigmoid processing units (see Fig. 7.6b).

LSTM is a special type of Recurrent Neural Network (RNN) that e↵ectively

overcomes the gradient vanishing problem and captures long-term dependencies,

which is crucial to predict the code groups using nursing notes accurately. To

determine the extent to which LSTM memory units must memorize the current

state and retain the previous state, LSTMs employ an adaptive gating mechanism.

More specifically, an LSTM memory unit is composed of four gates: the input

gate, the forget gate, the output gate, and the candidate value for the cell state.

In nursing notes, the semantic meaning of a term is often influenced by the terms

before and after it. Thus, the predictability of diagnostic codes can be enhanced

by accessing both past and future input features for a given time—a Bi-LSTM

network can facilitate such functionality. In doing so, we can e↵ectively utilize
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future features (via backward states) and past features (via forward states) for a

particular time frame. We set the dimensions of the embedding and LSTM hidden

state to 289 (17 time steps with 17 features each) and 300 respectively. A sigmoid

activation of the final LSTM output facilitates the multi-label classification (see

Fig. 7.6c). The Bi-LSTM architecture is similar to that of LSTM, except that

Bi-LSTM employs two LSTM layers of 150 hidden states each (see Fig. 7.6d).

Gated Recurrent Units (GRUs) are a gating mechanism in RNNs, similar to

LSTM networks (with output gate) but with fewer parameters, as it lacks an out-

put gate. Each recurrent unit in a GRU network adaptively captures dependencies

of di↵erent time scales. A GRU memory unit is composed of two gates: the reset

gate and the update gate. The GRU computes a candidate hidden state and then

smoothly extrapolates it (gated by the update gate). We employ a segment-level

GRU, where the input embedding of a nursing note (of size N) is split column-

wise into 20 segments, followed by a fully connected layer of N + N/20 ReLU

processing units, and another fully connected layer of 20 ReLU processing units.

The outputs from various segments are then concatenated channel-wise and are

flattened. Regularization prevents co-adaptation of the hidden units and is hence

necessary. The flattened output is passed through a series of 10% dropouts and

fully connected ReLU processing units for regularization. Finally, the obtained

output is subject to batch normalization to stabilize the network and reduce the

covariance shift. A sigmoid activation of the normalized output facilitates the

prediction (see Fig. 7.6f). Next, all the models discussed are evaluated as per a set

of standard metrics on the standard dataset, for qualitative assessment of their

relative merits and drawbacks, and suitability for use as CDSSs in practice.

7.3.5 Experimental Results and Discussion

To validate our approach, we performed exhaustive benchmarking experiments on

the clinical nursing notes obtained from the MIMIC-III database as per the defined

cohort. All experiments were performed on an Ubuntu based High-end Server with

a 56-core Intel Xeon processor, 128GB RAM, two Nvidia Tesla M40 GPUs (24GB

each) and 3TB hard drive. A significant challenge was the multi-label prediction,

where a set of probable ICD9 code groups were to be predicted for a given clinical

nursing note. To assess the predictability of the proposed approaches, we employ

a pair-wise comparison of the actual and the predicted diagnostic code group

sets, performed via 5-fold cross-validation (the means and the standard errors of

the mean are presented). Furthermore, to accurately assess the performance of
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Table 7.4: Code group prediction using the data in the nursing notes aggregated
using FarSight.

Data model Classifier
Performance scores

ACC MCC F-score AUPRC AUROC

Doc2Vec
(140, 792⇥ 500)

MLP 0.7873± 0.0006 0.5587± 0.0011 0.7103± 0.0027 0.6577± 0.0012 0.7795± 0.0014

ConvNet 0.8053± 0.0005 0.5938± 0.0011 0.7332± 0.0006 0.6810± 0.0011 0.7967± 0.0004

LSTM 0.7986± 0.0016 0.5804± 0.0025 0.7250± 0.0026 0.6705± 0.0027 0.7885± 0.0016

Bi-LSTM 0.8018± 0.0008 0.5861± 0.0018 0.7265± 0.0043 0.6758± 0.0023 0.7906± 0.0026

Conv-LSTM 0.8069± 0.0023 0.5961± 0.0040 0.7338± 0.0022 0.6824± 0.0039 0.7962± 0.0019

Seg-GRU 0.7779± 0.0020 0.5332± 0.0051 0.6794± 0.0054 0.6505± 0.0030 0.7605± 0.0035

NMF�BoW
(140, 792⇥ 150)

MLP 0.7829± 0.0006 0.5498± 0.0009 0.7029± 0.0016 0.6530± 0.0017 0.7744± 0.0007

ConvNet 0.7965± 0.0007 0.5750± 0.0013 0.7187± 0.0041 0.6688± 0.0018 0.7860± 0.0020

LSTM 0.7921± 0.0005 0.5652± 0.0016 0.7093± 0.0030 0.6638± 0.0018 0.7794± 0.0017

Bi-LSTM 0.7894± 0.0007 0.5596± 0.0015 0.7042± 0.0020 0.6619± 0.0017 0.7758± 0.0012

Conv-LSTM 0.8048± 0.0021 0.5897± 0.0042 0.7240± 0.0034 0.6806± 0.0031 0.7911± 0.0024

Seg-GRU 0.7945± 0.0063 0.5666± 0.0137 0.7039± 0.0114 0.6698± 0.0057 0.7772± 0.0080

NMF�TW
(140, 792⇥ 150)

MLP 0.7953± 0.0004 0.5740± 0.0010 0.7167± 0.0010 0.6696± 0.0015 0.7850± 0.0005

ConvNet 0.8174± 0.0006 0.6181± 0.0008 0.7489± 0.0016 0.6948± 0.0014 0.8091± 0.0014

LSTM 0.8129± 0.0015 0.6062± 0.0028 0.7347± 0.0020 0.6908± 0.0024 0.7992± 0.0012

Bi-LSTM 0.8076± 0.0016 0.5952± 0.0034 0.7280± 0.0037 0.6839± 0.0024 0.7936± 0.0024

Conv-LSTM 0.8282± 0.0023 0.6368± 0.0042 0.7562± 0.0021 0.7089± 0.0046 0.8157± 0.0019

Seg-GRU 0.8249± 0.0021 0.6273± 0.0050 0.7434± 0.0057 0.7089± 0.0019 0.8073± 0.0040

NMF�BoW
with SC
(140, 792⇥ 100)

MLP 0.7820± 0.0004 0.5476± 0.0007 0.7011± 0.0008 0.6517± 0.0013 0.7735± 0.0006

ConvNet 0.7956± 0.0002 0.5731± 0.0007 0.7174± 0.0021 0.6672± 0.0017 0.7852± 0.0011

LSTM 0.7905± 0.0004 0.5619± 0.0003 0.7066± 0.0035 0.6623± 0.0020 0.7777± 0.0019

Bi-LSTM 0.7889± 0.0009 0.5598± 0.0005 0.7076± 0.0040 0.6598± 0.0024 0.7774± 0.0023

Conv-LSTM 0.8003± 0.0015 0.5817± 0.0033 0.7218± 0.0038 0.6735± 0.0024 0.7885± 0.0027

Seg-GRU 0.7918± 0.0041 0.5622± 0.0087 0.7034± 0.0112 0.6659± 0.0022 0.7763± 0.0070

NMF�TW
with SC
(140, 792⇥ 100)

MLP 0.7961± 0.0003 0.5753± 0.0009 0.7175± 0.0010 0.6703± 0.0016 0.7856± 0.0006

ConvNet 0.8192± 0.0006 0.6199± 0.0025 0.7466± 0.0043 0.6983± 0.0013 0.8077± 0.0023

LSTM 0.8142± 0.0014 0.6087± 0.0034 0.7367± 0.0050 0.6918± 0.0016 0.8003± 0.0030

Bi-LSTM 0.8096± 0.0006 0.5998± 0.0012 0.7318± 0.0030 0.6860± 0.0011 0.7961± 0.0019

Conv-LSTM 0.8343± 0.0031• 0.6459± 0.0073 • � 0.7602± 0.0068 • � 0.7170± 0.0045 • � 0.8192± 0.0046 • �

Seg-GRU 0.8285± 0.0028 0.6350± 0.0064 0.7502± 0.0060 0.7131± 0.0034 0.8120± 0.0048

the proposed methods, we employed five standard evaluation metrics including

Accuracy (ACC), MCC score, F-score, Area Under the Precision-Recall Curve

(AUPRC), and Area Under the ROC Curve (AUROC). In this study, a pairwise

comparison of the predicted and actual diagnostic code groups is presented.

For the clinical task of multi-label ICD-9 code group prediction, we compared

the Conv-LSTM model’s performance against five other deep neural architectures:

MLP, ConvNet, LSTM, Bi-LSTM, and Seg-GRU (depicted in Fig. 7.6). We used

the implementations available in the Python Keras package with the Tensorflow

backend. Grid-search was used to determine the optimal values of the hyperpa-

rameters employed in the underlying deep neural models. The deep neural models

were trained to minimize a cross-entropy loss (mean squared error prediction loss)

function using Adam optimizer.

The results of our experiments and the related studies are tabulated in Ta-
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Table 7.5: Code group prediction (with deep learners) using nursing notes aggre-
gated näıvely by patient identification numbers.

Data model Classifier
Performance scores

ACC MCC F-score AUPRC AUROC

Doc2Vec
(6, 532⇥ 500)

MLP 0.7898± 0.0031 0.5195± 0.0088 0.6542± 0.0069 0.5914± 0.0089 0.7556± 0.0030

ConvNet 0.7729± 0.0028 0.4841± 0.0049 0.6341± 0.0056 0.5679± 0.0056 0.7399± 0.0036

LSTM 0.8018± 0.0030 0.5427± 0.0062 0.6731± 0.0110 0.6098± 0.0054 0.7634± 0.0067

’ Bi-LSTM 0.7964± 0.0033 0.5308± 0.0083 0.6673± 0.0081 0.6003± 0.0094 0.7594± 0.0055

Conv-LSTM 0.7989± 0.0027 0.5321± 0.0044 0.6604± 0.0035 0.6050± 0.0039 0.7554± 0.0030

Seg-GRU 0.7673± 0.0046 0.4558± 0.0121 0.5991± 0.0109 0.5533± 0.0092 0.7179± 0.0064

NMF�BoW
(6, 532⇥ 150)

MLP 0.7810± 0.0026 0.4995± 0.0066 0.6179± 0.0070 0.5838± 0.0067 0.7354± 0.0030

ConvNet 0.7972± 0.0029 0.5392± 0.0085 0.6555± 0.0083 0.6068± 0.0072 0.7596± 0.0053

LSTM 0.7801± 0.0042 0.4960± 0.0074 0.6225± 0.0066 0.5776± 0.0085 0.7366± 0.0041

Bi-LSTM 0.7776± 0.0042 0.4904± 0.0094 0.6189± 0.0089 0.5735± 0.0070 0.7333± 0.0061

Conv-LSTM 0.7870± 0.0033 0.5141± 0.0075 0.6363± 0.0068 0.5920± 0.0083 0.7449± 0.0038

Seg-GRU 0.7893± 0.0074 0.5218± 0.0117 0.6436± 0.0026 0.5973± 0.0108 0.7495± 0.0025

NMF�TW
(6, 532⇥ 150)

MLP 0.7878± 0.0042 0.5153± 0.0108 0.6321± 0.0103 0.5939± 0.0093 0.7445± 0.0058

ConvNet 0.8065± 0.0033 0.5616± 0.0083 0.6739± 0.0075 0.6231± 0.0073 0.7707± 0.0050

LSTM 0.7858± 0.0026 0.5083± 0.0076 0.6327± 0.0068 0.5881± 0.0091 0.7410± 0.0041

Bi-LSTM 0.7800± 0.0044 0.4950± 0.0106 0.6249± 0.0054 0.5796± 0.0107 0.7349± 0.0041

Conv-LSTM 0.7876± 0.0014 0.5167± 0.0074 0.6440± 0.0123 0.5936± 0.0064 0.7482± 0.0074

Seg-GRU 0.7946± 0.0034 0.5304± 0.0103 0.6432± 0.0128 0.6044± 0.0101 0.7497± 0.0077

NMF�BoW
with SC
(6, 532⇥ 100)

MLP 0.7787± 0.0039 0.4910± 0.0091 0.6075± 0.0087 0.5790± 0.0073 0.7295± 0.0054

ConvNet 0.7956± 0.0028 0.5358± 0.0075 0.6550± 0.0067 0.6046± 0.0081 0.7599± 0.0039

LSTM 0.7770± 0.0012 0.4885± 0.0058 0.6176± 0.0114 0.5722± 0.0034 0.7336± 0.0069

Bi-LSTM 0.7757± 0.0039 0.4832± 0.0104 0.6118± 0.0116 0.5698± 0.0081 0.7292± 0.0055

Conv-LSTM 0.7823± 0.0042 0.5041± 0.0090 0.6331± 0.0076 0.5828± 0.0092 0.7436± 0.0047

Seg-GRU 0.7800± 0.0042 0.4969± 0.0164 0.6267± 0.0259 0.5796± 0.0095 0.7411± 0.0160

NMF�TW
with SC
(6, 532⇥ 100)

MLP 0.7884± 0.0037 0.5162± 0.0105 0.6316± 0.0090 0.5943± 0.0093 0.7441± 0.0052

ConvNet 0.8062± 0.0029 0.5608± 0.0085 0.6718± 0.0087 0.6229± 0.0087 0.7695± 0.0046

LSTM 0.7847± 0.0033 0.5049± 0.0101 0.6307± 0.0131 0.5848± 0.0079 0.7404± 0.0073

Bi-LSTM 0.7804± 0.0033 0.4949± 0.0097 0.6211± 0.0121 0.5784± 0.0066 0.7335± 0.0085

Conv-LSTM 0.7919± 0.0036 0.5246± 0.0096 0.6436± 0.0095 0.5997± 0.0069 0.7489± 0.0054

Seg-GRU 0.7928± 0.0049 0.5268± 0.0156 0.6446± 0.0158 0.6009± 0.0120 0.7511± 0.0093

Table 7.6: Code group prediction (with machine learners) using nursing notes
aggregated näıvely by patient identification numbers.

Data model Classifier
Performance scores

ACC MCC F-score AUPRC AUROC

BoW
(6, 532⇥ 14, 665)

KNN 0.7741± 0.0023 0.4912± 0.0025 0.6320± 0.0019 0.5454± 0.0022 0.7405± 0.0019

LR as OvR 0.8056± 0.0019 0.5418± 0.0026 0.6668± 0.0012 0.6094± 0.0026 0.7348± 0.0012

SVM as OvR 0.7549± 0.0015 0.5064± 0.0016 0.6148± 0.0021 0.5789± 0.0018 0.6452± 0.0007

RF ensemble 0.7255± 0.0027 0.4067± 0.0012 0.5182± 0.0025 0.5133± 0.0023 0.6670± 0.0014

TW
(6, 532⇥ 14, 665)

KNN 0.7866± 0.0012 0.5306± 0.0032 0.6697± 0.0021 0.5920± 0.0025 0.7689± 0.0016

LR as OvR 0.8143± 0.0014 0.5845± 0.0035 0.6874± 0.0030 0.6378± 0.0032 0.7804± 0.0017

SVM as OvR 0.7414± 0.0015 0.4007± 0.0036 0.5207± 0.0028 0.5249± 0.0026 0.6801± 0.0015

RF ensemble 0.7653± 0.0011 0.4449± 0.0031 0.5484± 0.0023 0.5517± 0.0024 0.6951± 0.0013
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bles 7.4, 7.5, and 7.6. In Table 7.4, the performance of the proposed modeling

approaches that are built on FarSight-aggregated clinical nursing data is summa-

rized. Table 7.5 shows the performance of all the proposed modeling approaches

built on data obtained by näıvely aggregating the patients’ nursing notes using

their identification numbers. We observe that the NMF�TW with SC approach

built on FarSight-aggregated data and modeled using Conv-LSTM consistently

outperforms other data modeling and classification approaches with respect to all

the metrics. Also, the performance of the proposed models drastically increased

by 2.47% in Accuracy, 16.07% in MCC, 13.43% in F-score, 16.13% in AUPRC,

and 6.50% in AUROC when the data was aggregated using the FarSight long-term

aggregation mechanism.

We compared the actual and predicted (using Conv-LSTM trained on NMF�TW
with SC representations) number of clinical notes that received a particular di-

agnostic code group. It was observed that the diagnostic code ranges including

001� 139, 280� 289, 320� 389, 460� 519, 630� 677, and 780� 789 had less than

100 mismatches (< 0.007%); 520 � 579, 580 � 629, and 800 � 999 had less than

500 mismatches (< 0.35%) between the actual and predicted ICD9 code groups

across 140, 792 nursing notes. We also remarked that the maximum number of

mismatches (over 3, 500) corresponded to Ref and V-codes (4, 078 – 2.90%), and

the code range of 710 � 739 (4, 366 – 3.10%). Note that the statistics presented

above were measured as the maximum mismatches across all the cross-validation

folds. Table 7.6 illustrates the ICD9 code group prediction performance of con-

ventional machine learning models including K-Nearest Neighbors (KNN) with

K = 15, LR as One-vs-Rest (OvR) with stochastic average gradient solver, Sup-

port Vector Machines (SVM) as OvR with radial basis function kernel, and Ran-

dom Forest (RF) ensemble with 100 trees (maximum depth of 2), using nursing

notes aggregated näıvely by patient identification numbers. This study does not

include BoW or TW modeling on FarSight-aggregated data, owing to the high-

dimensionality and sparsity of such statistical transformations of the underlying

corpus (140, 792 ⇥ 32, 687). From Fig. 7.7, it is evident that the proposed deep

learners trained on FarSight-aggregated data outperform the conventional machine

learners and deep learners trained on näıvely aggregated data.

The ability of a model to e↵ectively capture the TP, TN, FP and FN in risk

assessment is of paramount importance, owing to the critical nature of the task

itself. As explained in the previous work, AUPRC measures the number of true

positives from the set of positive predictions, while AUROC captures the TPR and

FPR. AUPRC varies with a change in the ratio of the target classes in the data
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Figure 7.7: Comparison of the best performing models (aggregated with and with-
out FarSight) and benchmarking works in ICD9 code group prediction.

and hence, is more revealing than AUROC in this context (Saito and Rehmsmeier,

2015). Precision captures the proportion of the patient records that the proposed

model predicted to have a risk that actually had a risk, while recall expresses the

ability to find all the patients at risk. These are captured using the F-score, while

the MCC score accounts for TP, FP and FN, thus serving as a balanced measure

even with class imbalance.

To facilitate the prediction of clinical outcomes, most existing works, includ-

ing the state-of-the-art model (considered for benchmarking) (Purushotham et al.,

2018), rely on the structured nature of the EHRs, modeled as feature sets. From

Fig. 7.7, it can be observed that our model built on the unstructured nursing text

and modeled using FarSight-aggregated data, significantly outperforms the state-

of-the-art model by 19.34% in AUPRC and 5.41% in AUROC, and the hierarchi-

cal attention GRU model (Baumel et al., 2018) by 35.71% in F-score. Moreover,

most of the existing works benchmarked their performance only on the AUPRC

and AUROC metrics, while neglecting to assess the performance of their models

with metrics most suited in the cases of imbalanced data, as is the case with most

of the real-world data. We argue that the reliability and other critical aspects

of the underlying CDSS can be accurately and explicitly captured by assessing

the performance of a model using targeted metrics like Accuracy, F-score, and

MCC scores, which are incorporated in our work. The NMF�TW with SC model

was able to capture discriminative features of the nursing notes needed for the

classifier to learn and generalize. Also, the FarSight aggregation strategy e↵ec-

tively facilitates accurate risk assessment, well in advance, with an overall accuracy

of 83.3%. Thus, a CDSS equipped with the predictive capabilities of FarSight-

aggregation and NMF�TW with SC modeling could demonstrate evidence-based

and patient-centric risk assessments. Furthermore, these observations corroborate

the suitability of FarSight for clinical decision support in real-world hospital sce-
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narios, especially in developing countries with limited resources and low structured

EHR adoption rates.

7.4 Summary

In this chapter, two strategies for performing aggregation of unstructured clinical

notes namely – TAGS and FarSight were presented, based on which disease group

prediction models were built. TAGS strategy involved a fuzzy similarity scoring

based decision mechanism to merge/purge nursing notes and a term weighting

based vector space model for e↵ective textual feature representation, which were

then used to train ML classifiers. FarSight involved a future look-ahead mechanism

to map admission records to aggregated diagnosis groups across the admission

records. The model also involved a SC based NMF topic modeling approach

to e↵ectively represent the textual features, which were then used to train deep

learning architectures. Both the approaches facilitate early detection of onset

of disease groups and were found to outperform state-of-the-art approaches for

disease group prediction.
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Chapter 8

Population-centric Predictive Analytics

8.1 Introduction

Population health is an important contributor to the financial, socio-economic, de-

fense and behavioral aspects of a country (Holt et al., 2016; Organization, 2000).

Comprehensive investigations and vigilant surveillance of its population’s health is

a task of utmost importance for a country’s government agencies so as to prevent

epidemic outbreak scenarios, medicine shortage during epidemics, vaccine outrage

and even for detecting signs of bio-warfare and devising strategies for circumvent-

ing them. Automating population health surveillance based on the confluence

of technologies like Big Data Analytics, Data Mining and ML has thus created

huge scope in gaining potentially latent insights to help govern the health of a

population and also drive public health policies (Darcy et al., 2016; Krumholz,

2014). Patient level data available in hospitals can provide government agencies

with systematic data on instances of disease or virus outbreak, which can help

put e↵ective prevention and quarantine procedures in place. At the same time, it

also provides long-term data for future prediction of similar outbreaks even before

the symptoms manifest themselves. Statuses and posts on Online Social Network

(OSN) sites such as Twitter, Facebook, etc. have proven to be an abundant source

of useful information for such population based analytics. Several research works

that use Big Data Analytics and ML have been proposed over the years that prove

the same.

Public health policies have made vaccination mandatory for several endemic

diseases, which has turned out to be an important cornerstone of a country’s fun-

damental public health framework. Governments frame vaccination policies with

reference to the possibility of disease outbreak risks or biowar factors, and have

been hugely successful in completely eradicating contagious diseases like small-

177
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pox and polio, for instance, India’s commendable e↵orts towards implementing

long-term vaccination policies for all citizens. This underscores the need for ef-

fective framing of vaccination policies which in turn requires meticulous research

and data collection on vaccine-related behaviours, side e↵ects and people’s beliefs

(Zell et al., 2000). Understanding public opinion towards vaccination and outcome

planning is critical for the development of public health policies and e↵ective im-

plementation of such policies for maximising impact (Downs et al., 2008). Public

opinion on vaccinations can be diverse - for example, some people voluntarily get

vaccination shots for Influenza, while many others may choose not to, despite the

recommendations of medical practitioners, due to their own inherent biases. Sev-

eral factors a↵ect e↵ective policy formulation - vaccination behaviour defines if

people received the shot or not, and vaccination hesitancy indicates an inherent

disinclination towards vaccines or people’s negative opinions towards vaccination

(Joshi et al., 2018). It is crucial for the government health agencies to discern the

vaccination coverage or the statistics on the number of people who received the

vaccination shot, thus making vaccination behaviour (or shot) collection a task

of critical importance. Normally, such information is collected from the citizens

through surveys and targeted interactions, which are not only di�cult and time-

consuming procedures but also under-represent a lot of categories of citizens due

to sampling interval and framing errors (Huang et al., 2017; Keeter et al., 2006;

Parker et al., 2013). This requirement has led to extensive research towards au-

tomated vaccine behavior modeling and mining of public opinion on vaccination,

through potential alternate means, like mining OSN data for inferring people’s

views, experiences, biases, and potential hindrances to e↵ective implementation of

vaccination policies (Dredze et al., 2016).

Depression, a debilitating health condition that impairs su↵erers’ quality of

life, is a leading illness worldwide and is a major contributor towards the overall

burden of global diseases (Shen et al., 2017). It is estimated by the WHO that

around 300 million people of various ages su↵er from depression and also that

more than 800,000 people su↵ering from chronic depression commit suicide each

year1. Depression is a long lasting illness that can be diagnosed by di↵erentiat-

ing behaviours and can have fatal side e↵ects like suicidal tendencies. Statistics

show that over 70% of people in early stages of depression would not consult

psychological health personnel as they are unaware or even ashamed of their con-

dition (Shen et al., 2017). However, it is observed that people actually open up

in the relative anonymity and potential outlet o↵ered by social media platforms

1https://www.who.int/news-room/fact-sheets/detail/depression
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like Facebook and Twitter to share or vent out their emotions/moods through

messages and status updates. Such data opens up significant possibilities towards

understanding disease physiology and how it a↵ects individuals, so that e↵ective

early intervention measures and automated surveillance systems can be designed.

8.1.1 Problem Definition

Automated population health surveillance systems are seen as a vital solution to

the problems defined above and mining OSN data can provide essential insights

for government health agencies for informed decision making. Computational

techniques like NLP and ML aid in performing predictive analytics based on social

media data. Most existing OSN based prediction or analysis models are designed

to perform a specific task, say vaccine sentiment or depression detection. However,

in the real world scenario, this means that for each prediction task to be performed,

di↵erent learning architectures have to be designed and deployed, which makes it

challenging for governing bodies to manage and maintain these models. Hence,

there is a need for prediction architectures that are dynamic and e↵ective for

multiple prediction tasks. Therefore, the problem to be solved can be stated as

follows:

“Given openly available OSN data, build a generic prediction model ar-

chitecture that can perform multiple population health based prediction

tasks enabling insights into population health.”

8.1.2 Motivating Example

The Ministry of Health and Family Welfare, Government of India, actively moni-

tors population health of Indian citizens. Consider that an associated organization,

PopHealth collects health data from various state governments, who in turn col-

lect data from government hospitals, private hospitals and even from the numerous

primary health care centres introduced under the AB-PMJAY scheme. Now let

us consider one part of the data is the counts of say, flu a↵ected people, across the

country. This data collection typically takes a lot of time to be generated because

of operational reasons and takes even more time to analyze, to enable actionable

insights.

Because of the huge numbers of social network users and availability of OSN

data providers, PopHealth decides to add a technical module that monitors OSN

users in India and analyze these data also for signs of flu outbreak. The module
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with NLP and ML capabilities can analyze numerous posts such as Tweets and

Facebook posts, which can provide clearer insights of the health conditions of cit-

izens and might also give an idea of spread of the flu outbreak (as is evidenced

by popular services like Google FluTrendsTM). This technical module, along with

the incoming data from the hospitals and health organizations across India en-

ables PopHealth to make informed decisions on several factors like availability of

medicines, treatment measures and medical personnel, using military measures or

even quarantine measures (if necessary). In addition to general disease outbreaks,

PopHealth may also be able to assess sentiment and intent of people towards health

policies like vaccine policies, new healthcare initiatives, etc. as they can analyze

the OSN data of their citizens.

8.2 MDSHA: Multi-task Deep Social Health An-

alyzer using Particle Swarm Optimization

aided Topic Modeling

The overall workflow of the proposed MDSHA approach is as depicted in Figure

8.1. The tweets dataset corpus (required for the task) was subjected to a basic

preprocessing strategy where, initially, special characters except white spaces were

removed. Tokenization was performed so as to strip down the corpus into tokens.

Stemming and Lemmatization were performed to reduce the words to its root

form. Finally, stopping was also performed to remove unimportant words from

the corpus.
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Figure 8.1: Workflow of Proposed MDSHA
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8.2.1 Term Weighted n-gram Features

Next, the preprocessed tokens obtained from the corpus are then vectorized using

a TF-IDF (Term Frequency - Inverse Document Frequency) vectorizer to create

their TF-IDF weighted n-gram features. TF-IDF is a statistical measure that

signifies the importance or relevance of a word within a document and is often

considered as weighing factor in text mining approaches. In this approach, the

top 2000 TF-IDF weights for n-grams (i.e., unigrams, bigrams and trigrams) were

considered and were used as Text Feature Set 1 (hereafter referred to as FS1).

8.2.2 Word Embedding Features

Word Embeddings are dense real number vector representations of words or groups

of words that can be used as textual features for tasks like classification, clustering,

etc. They are considered e↵ective as they are generated taking concepts such as

context and co-occurrence of words into consideration. In our work, we adopted

the Skipgram model of Word2Vec Mikolov et al. (2013) (explained in Section

5.2.3), a neural network based word representation model that generates word

embedding vectors based on prediction of context given an input word. We used

a dimension size of 500 per word and averaged the vector representation such that

each tweet is represented by a 1x500 vector(hereafter referred to as Text Feature

Set 2 , i.e., FS2).

8.2.3 Latent Dirichlet Allocation

Topic modeling is an unsupervised method that determines a set of topics based

on the documents in a corpus, that most represent the documents. The objective

of topic modeling is to derive a representation such that - “each document is best

described by a set of topics and each topic is best described by a set of words”.

Latent Dirichlet Allocation (LDA) (explained in Section 7.2.5), a generative prob-

abilistic model, is a popular topic modeling approach that assigns documents in

a corpus to a set of topic clusters. LDA hypothesizes that each document, given

that it consists of a set of particular words, belongs to a set of topics with a certain

probability value. In this paper, the preprocessed tweets corpus is subjected to

LDA and the topic vectors that contain the probabilities of a document (that it

belongs to each of the topics) are extracted and used as features for supervised

classification, i.e., Text Feature Set 3 is hereafter referred to as FS3.

Similar to any unsupervised clustering technique, automatically determining
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the number of topics during LDA is a challenging task and remains an open

research problem. In this paper, we utilize Particle Swarm Optimization (PSO),

an evolutionary computation approach for dynamically determining the optimal

number of topics for various prediction tasks. The application of PSO for the same

is explained in detail in subsequent sections.

8.2.4 PSO-LDA Topic Modeling

The challenging task of determining the optimal number of LDA topics for topic

modeling also includes deriving the optimal number of features in the topic feature

vector generated by the topic model. For a particular prediction task, dynamically

determining the number of topics is critical and this is decided by modeling the

optimal feature set. To derive the optimal feature set, the solution subspace to

be searched is quite large and for this reason, evolutionary computation is an

apt choice to go with. Towards this objective, a wrapper module based on PSO

and Convolutional Neural Networks (CNN), referred to as PSO-CNN, is proposed,

which dynamically determines the number of topic clusters based on classification

performance of CNN using the combined set of all the textual features - FS1, FS2

and FS3.

The algorithm for the PSO aided topic modeling using the PSO-CNN wrapper

is as shown in Algorithm 5. The combination of the three feature sets – FS1,

FS2 and FS3, is fed into a PSO-CNN wrapper to determine the number of topics

based on the CNN’s classification performance. The neural network model, i.e.,

the CNN part of the wrapper was adopted from the TextCNN model (Kim, 2014)

for e↵ectively classifying text using textual features. The fitness performance of

the PSO-CNN wrapper was measured in terms of F-score (Eq. 8.3) as it considers

not only True Positives (TP), but also False Positives (FP) and False Negatives

(FN).

Precision =
TP

TP + FP
(8.1)

Recall =
TP

TP + FN
(8.2)

F -score =
2 ⇤ Precision ⇤Recall

Precision+Recall
(8.3)

At the beginning, a swarm or flock of particles, along with particle positions

were initialized as a list of number of topics candidates for the LDA model. For
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Algorithm 5 Topic Modeling using PSO-CNN Wrapper
Input : Text Feature Sets – FS1, FS2 and FS3 and labels for the given prediction
task
Output : Optimal number of topics for Topic Modeling and Performance for the
optimized Feature Sets (m features)

1: Initialize 8 particles with their positions and velocities
Position vector, x = [250, 500, 750, 1000, 1250, 1500, 1750, 2000]
Velocity of each particle, v = [0, 0, 0, 0, 0, 0, 0, 0]
local best = [�1,�1,�1,�1,�1,�1,�1,�1]
global best = 0

2: while iterations  50 do
3: for each particle do
4: Use particle position value for LDA topic modeling and generate FS3
5: Concatenate FS3 with FS1 and FS2
6: Feed the combined feature sets and labels to PSO-CNN wrapper for

training
7: Calculate fitness of feature set (F-score performance of PSO-CNN
8: if fitness > local besti then
9: Set local besti = current particle position, xi

10: end if
11: if fitness > global best then
12: Set global best = current particle position, xi

13: end if
14: end for
15: Update velocities and positions of particles
16: end while
17: Return global best . Optimal number of topics

each of the position i, the best classification performance of the PSO-CNN in

terms of F-score, local besti, and that of the entire swarm or flock, the global best

is calculated and the positions and velocities of the particles are updated using

standard PSO equations (Eq. 8.4 and 8.5). In our work, a set of eight particles

were used, and the PSO-CNN wrapper was set to 50 iterations. The best position

of the swarm or flock after all the iterations was considered as the optimal number

of topics for the LDA topic modeling for a given prediction task. The performance

at this position, global best, was considered the result metric.

vi+1 = w ⇤ vi + c1 ⇤ r1 ⇤ (local besti � xi) + c2 ⇤ r2 ⇤ (global best� xi) (8.4)

xi+) = xi + vi+1 (8.5)



184 Chapter 8. Population-centric Predictive Analytics

where, c1 and c2 are empirically determined constants 0.5 and 0.2 respectively

and r1 and r2 are randomly generated real numbers.

The CNN model in the PSO-CNN wrapper consisted of three one dimensional

convolution layers consisting of 512 filters with kernel (filter) sizes - 5,6 and 7

respectively. The input layer consisted of the number of units pertaining to the

number of topics determined by the PSO aided Topic modeling module and the

total number of features in the combined feature set. Each convolution layer was

provided with a Rectified Linear Unit (ReLU) activation function. Respective

maxpooling layers (one dimensional) were added to each of the convolution layers,

after which a concatenation and flatten layers were provided and finally, a dropout

of 50% was also added to avoid overfitting. The output layer included a sigmoid

activation function and rmsprop optimizer was used for training with binary cross-

entropy as the loss function. The overall architecture of the CNN model used in

the proposed approach is illustrated in the Figure 8.2.
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Figure 8.2: CNN model used in PSO-CNN Wrapper

8.2.5 Experimental Results & Discussion

The proposed MDSHA approach was benchmarked for three di↵erent population

analytics based prediction tasks – Flu Vaccine Hesitancy (Flu Vaccine Intent),

Flu Vaccine Behaviour (Flu Vaccine Shot Received or Not) and finally, Depression

Detection on respective datasets. The performances of the prediction models were

measured and compared in terms of standard ML metrics – precision, recall and
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F-score. The proposed MDSHA approach is also benchmarked against the state-of-

the-art approaches for the respective tasks. The experimental results and analysis

are presented in detail in subsequent sections.

8.2.5.1 Task 1: Flu Vaccine Hesitancy (Intent)

The Intent prediction task uses tweets to determine the intent or hesitancy of a user

towards an influenza vaccine, i.e., whether the user intends to receive the vaccine

or not. We used the DS1 dataset collated and provided by Huang et al. (2017) for

this task. The dataset consists of 10,000 tweets that are based on influenza vaccine

and its characteristics are as tabulated in Table 8.1. It is to be noted that only

the relevant tweets were used (irrelevant tweets are labelled in the dataset) and

that rows with missing labels were dropped, after which we were left with 9513

rows. MDSHA was applied to the dataset and the PSO-CNN wrapper based Topic

modeling module was used to determine the optimal number of topics as 634, along

with 500 Word2Vec embeddings and 2000 top n-gram features, thereby making

the total number of textual features as 3134. The performance of the proposed

MDSHA approach is compared to that of the state-of-the-art approach by Huang

et al. (2017), where TF-IDF weighted n-gram features and Logistic Regression

classifier were used for the task. Similar to their approach, the performance of

MDHSA was measured after a 5-fold cross validation process. The comparison of

performance is as shown in Table 8.2.

Feature Frequency

Unique tweets 9,865

Users 9,334

Words 1,54204

Intend/Receive (Positive) 3,148

Negative Intend 6,365

Only Intends 2,354

Shot Received 743

Table 8.1: Dataset Statistics of DS1

From Table 8.2, it can be observed that the proposed MDSHA approach out-

performed Huang et al. (2017)’s approach in terms of Recall and F-score by 5%

and 2% respectively. Higher values of recall and F-score indicate that MDSHA was

able to reduce the number of False Negatives (FN), thus making the classification
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Approach Precision Recall F-Score

Huang et al. (2017) 0.84 0.80 0.82

MDSHA 0.84 0.84 0.84

Table 8.2: Flu Vaccine Intent: Comparison on DS1

much more e↵ective.

8.2.5.2 Task 2: Flu Vaccine Behaviour (Shot Received or Not)

In this prediction task, the Vaccine Behaviour of a user is to be determined, i.e.,

whether a twitter user received an influenza vaccine shot or not, depending on

the users’ tweets. We used two datasets for this task - Huang et al. (2017)’s

dataset (DS1) and Joshi et al. (2018)’s dataset (DS2), used by these authors, in

their respective studies. For DS1, we applied the proposed MDSHA approach

for the 3097 tweets (2354 positive and 743 negative). It is to be noted that only

the relevant tweets were chosen in which the labels were either intends to receive

(negative) or shot received (positive) as similar to the tasks performed by Huang

et al. (2017). The PSO-CNN wrapper based topic modeling module was used to

determine the optimal number of topics to be 2000 and the total number of textual

features added to 4500. The performance was compared against the Logistic

Regression based approach on n-gram features by Huang et al. (2017). Similar to

their approach, the performance was measured after 5-fold cross validation and

the results are as shown in Table 8.3.

Table 8.3: Flu Vaccine Shot Detection: Comparison on DS1

Approach Precision Recall F-Score

Huang et al. (2017) 0.90 0.95 0.93

MDSHA 0.92 0.91 0.91

Dataset DS2 is actually the training dataset used in SM4HH 2018 workshop

(shared task #4), for which Joshi et al. (2018) presented the cross-validation re-

sults on the training dataset, making it easier for us to compare with, as we do not

have access to the test dataset of the task. This dataset also consisted of tweets

with respective labels (positive or negative) and the respective characteristics of

the dataset are provided in Table 8.4. The proposed MDSHA approach was ap-

plied on the dataset and 10-fold cross-validation was performed (as similar to that
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of Joshi et al. (2018)). The PSO based topic modeling module determined the

optimal number of LDA topic clusters to be 289, making the total of textual fea-

tures to be 2789. The MDSHA approach was compared against the performance

of the approach by Joshi et al. (2018) and the results are tabulated in Table 8.5.

Table 8.4: Dataset Statistics of DS2

Feature Frequency

Tweets 5,391

Words 84,826

Shot Received 1,558

Shot not Received 3,883

Table 8.5: Flu Vaccine Shot Detection: Comparison on DS2

Approach Precision Recall F-Score

Joshi et al. (2018) * * 0.81

MDSHA 0.86 0.86 0.86

* indicates metric not reported in study

From Table 8.3 and Table 8.5, it can be observed that the proposed MDSHA

approach outperforms the existing approaches in terms of precision metric and

F-score metric respectively for DS1 and DS2. For DS1, the MDSHA approach

slightly underperforms in case of F-score when compared to Joshi et al. (2018)’s

approach. High value of precision indicates that MDSHA achieved better number

of TP while reducing FP, thus making the classification much more e↵ective in

determining whether the user took the vaccine shot or not. Moreover, the proposed

MDSHA approach significantly outperformed the existing method on DS2 by 6%

in terms of F-score.

8.2.5.3 Task 3: Depression Detection

This prediction task aims to determine whether a Twitter user is depressed or

prone to depression, based on his or her tweet attributes and content. For the

task of depression detection, we used the dataset created and benchmarked by

Shen et al. (2017) (DS3). DS3 consists of users and their tweets with demographic

details, including three subsets - D1 (6493 tweets labeled as depressed), D2 (5384

tweets labeled as non-depressed) and D3 (a large unlabeled set). D1 and D2 were
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used for classification performance benchmarking and D3 was used by Shen et al.

(2017) for behavior analysis of users. The overall statistics of DS3 are as tabulated

in Table 8.6. We applied the proposed MDSHA approach on the combined set

of D1 and D2 and performed 5-fold cross validation. The optimal number of

LDA topic clusters determined by the PSO aided topic modeling module was 250,

making the total number of textual features to be 2750. The results were compared

with the performance of Shen et al. (2017)’s model and are tabulated in Table 8.7.

Table 8.6: Dataset Statistics of DS3

Feature Frequency

Tweets 11,877

Users 11,059 (5,899 depressed and
5,160 non-depressed)

Words 194,082

Depressed (Tweets) 6,493

Non-depressed (Tweets) 5,384

Table 8.7: Depression Detection: Comparison on DS3

Approach Precision Recall F-Score

Shen et al. (2017) * * 0.85

MDSHA 0.97 0.97 0.97

* indicates metric not reported in study

From Table 8.7, it can be observed that the proposed MDSHA approach sig-

nificantly outperforms Shen et al. (2017)’s approach by 14% in terms of F-score.

This indicates that the proposed approach is able to detect depressed users based

on tweets by users in a much more e↵ective way than the state-of-the-art ap-

proach. A visualization of the F-score metrics of the proposed approach against

existing state-of-the-art approaches is provided in Figure 8.3 for illustrating the

improvement in the performance.

8.2.6 Discussion

From Tables 8.2, 8.3, 8.5, 8.7 and also Figure 8.3, it can be observed that the

proposed MDSHA approach outperforms the existing approaches for the tasks of

flu vaccine intend (DS1), vaccine shot detection (DS2), depression detection (DS3)
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Figure 8.3: F-score comparison for All Tasks on Respective Datasets

in terms of most metrics. While it falls below the existing approach’s F-score for

flu vaccine behaviour (shot detection) on DS1 by 2%, the precision has improved

by 2%, ensuring the reduced number of FP. The FP, in this case, is a critical

measure as it detects a user to have received the shot even though he has not and

hence should be reduced. Moreover, the proposed MDSHA approach significantly

improved over the state-of-the-art approach by 6% in terms of F-score on DS2,

ensuring its e�cacy for the task of flu vaccine behaviour (shot detection). It is also

to be noted that the proposed MDSHA approach is based on purely tweet text and

does not include any other kind of features. The topic modeling probabilities, along

with other textual features such as word embeddings and n-grams, the PSO and

neural network based MDSHA approach is able to generalize the context and make

the classification tasks more e↵ective. Moreover, the ability of PSO based topic

modeling approach that determines the optimal number of topic clusters for LDA

topic modeling, makes MDSHA well-suited for any task due to its dynamic nature.

Having proven to be e↵ective in multiple tasks of population based analytics on

OSN data, MDSHA can be considered to be a generic approach for real-world

applications for such tasks.
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8.3 Summary

In this chapter, a generic model for population health analytics based on OSN data

called MDSHA was presented. The proposed approach involved a novel PSO based

topic modeling approach for e↵ective textual feature representation and a CNN

based classifier for prediction. The proposed MDSHA approach was trained and

tested for three population analytics based prediction tasks – flu vaccine hesitancy

(intent recognition), flu vaccine behaviour (shot received or not) and depression

detection. For each task, the proposed approach outperformed the respective

state-of-the-art approaches.
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Chapter 9

Conclusion & Future Work

9.1 Conclusion

Big Data Analytics in Healthcare is an emerging field that has the potential to

revolutionize evidence based medicine, genomic analytics, patient profile analyt-

ics, healthcare delivery, clinical operations, research & development and public

health policies. Predictive Analytics based CDSSs that demonstrate superior per-

formance over traditional rule based systems have helped caregivers in superior

diagnosis and intervention decisions. In this thesis, several strategies for building

intelligent individual-centric and population-centric predictive analytics CDSSs

were designed and evaluated. The lack of e↵ective feature representation ap-

proaches observed from extensive literature review was taken into account. The

defined objectives included designing feature modeling and patient representa-

tion generation techniques for both structured and unstructured clinical data, for

enabling large-scale analytics applications like mortality prediction, disease pre-

diction, population analytics etc.

In Chapter 4, approaches for building CDSSs for patient-centric predictive

analytics using structured data were presented. First, an empirical study was

performed to observe the e↵ect of feature selection on mortality prediction perfor-

mance using the combined feature set of traditional severity scoring based MPMs.

The approach involved a Logistic regression based RFE wrapper feature selection

process and a Random Forest classifier which outperformed the traditional sever-

ity scoring based MPMs by a margin of 12-16% in terms of accuracy. From this

work, it was determined that feature selection can prove to be e↵ective in improv-

ing mortality prediction performance. Next, towards the same, a GA-ELM model

was proposed in this research to determine the relevant lab events that helps in

e↵ective patient-specific mortality prediction. The proposed approach involved a

193
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GAWFS model that determined the best contributing labevents to mortality pre-

diction and an ELM classifier to e↵ectively predict the patient-specific mortality

risk. The proposed approach was found to outperform traditional severity scoring

based MPMs by 11-29% and state-of-the-art ML based MPMs by upto 14% in

terms of AUROC metric performance.

In Chapter 5, approaches for modeling unstructured clinical textual data to

build mortality risk prediction models were discussed. A patient-specific mortal-

ity prediction using ECG text reports for cardiac patients was proposed. This

work included an unsupervised data cleansing approach to filter out anomalous

and special cases and an ELM classifier to perform the prediction. The proposed

ELM based approach outperformed the best performing traditional severity scor-

ing SAPS-II based MPM, by nearly 19% in terms of AUROC performance. Next,

a benchmarking study on performance of word representation models for patient

specific mortality prediction using unstructured clinical notes was also performed.

It was determined that the Word2Vec skipgram model generated the better feature

representation and the random forest classifier trained on these features outper-

formed traditional severity scoring based MPMs by a significant margin of 26-38%

in terms of AUROC metric.

Chapter 6 presented in detail, the various approaches for building e↵ective dis-

ease prediction models based on unstructured clinical notes, in which three ICD9

disease group prediction approaches were proposed. First, an ontology-driven fea-

ture modeling approach was proposed to e↵ectively improve the disease group pre-

diction performance. The proposed approach assisted by pretrained embeddings

and deep neural networks, outperformed the state-of-the-art disease group predic-

tion model (built on structured data) by 9% in terms of AUROC metric. Second,

a two-stage feature modeling approach based on word embeddings and a PSO-

NN wrapper was proposed to further enhance the performance of disease group

prediction model using unstructured patient records. The performance of the

proposed approach, in comparison against the state-of-the-art disease group pre-

diction model was found to be 10% better in terms of AUROC metric. Thirdly, a

hybrid feature modeling approach was proposed to e↵ectively model unstructured

patient records for disease group prediction. The proposed approach involved

dynamically determined weighted combination of word embedding features and

deep neural networks, the AUROC performance of which was better than that of

state-of-the-art disease group prediction approach by 15%.

Approaches for aggregation of unstructured patient records using TAGS and

FarSight were explored for e↵ective disease group prediction indicating possible
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capability for early disease diagnosis, details of which are presented in Chapter 7.

TAGS approach involved a fuzzy similarity scoring based decision-making mecha-

nism to merge/purge clinical notes and a vector space model that generated e↵ec-

tive feature representation to train machine learning classifiers. FarSight approach

involved an aggregation mechanism that enabled future diagnosis lookup, mapping

clinical notes to collectively aggregated diagnosis across medical records during an

admission. The approach also involved topic modeling approach for e↵ective tex-

tual feature representation which was trained using deep learning models. Both

the approaches – TAGS and FarSight based DPMs outperformed state-of-the-art

disease group prediction models built on structured data by a margin of 3% and

20% in terms of AUPRC metric respectively.

Chapter 8 presented the techniques that paved the way towards population-

centric predictive health analytics through analysis of OSN data. Towards population-

centric predictive health analysis tasks such as flu vaccination hesitancy (intent

recognition), flu vaccination behaviour (shot detection) and depression detection,

a generic model MDSHA was proposed which uses a novel PSO based topic mod-

eling approach for e↵ective feature representation and predictive modeling. The

performance of the proposed MDSHA approach was compared to that of existing

state-of-the-art approaches for respective prediction tasks – vaccination hesitancy,

vaccination behaviour and depression detection using according datasets and the

former outperformed them in all tasks by 2%, 6% and 14% respectively in terms

of F-score metric.

All CDSS approaches developed as part of this thesis are intended to assist

healthcare personnel with insights based on the prediction outputs of the respec-

tive CDSS models. The outputs in terms of probabilities can also tell the health

personnel the certainty with which the CDSS model makes a particular prediction,

with which the health personnel can make informed decisions.

E.g., Currently, the mortality risk of the ICU patients are estimated using tra-

ditional scoring based systems, for which a multitude of (sometimes unnecessary)

lab events may be required for calculating the mortality risk. With the availabil-

ity of our proposed approach (discussed in Section 4.3), the hospitals will be able

to determine the optimal subset of labevents that are required to be prescribed

with respect to their infrastructure and patients. The proposed mortality risk

estimation model can determine the mortality risk of a patient based on the op-

timal subset lab event values at the earliest possible time instant and provide the

doctors with a probability value between zero and one, based on which further

treatment decisions can be taken. Therefore, the model ensures that the hospital



196 Chapter 9. Conclusion & Future Work

will be able to determine the mortality risk e↵ectively, with reduced number of

lab events, which can result in savings in terms of cost, time and other resources.

While the previously provided example showcases a use case of the proposed

mortality risk estimation model based on structured patient data, we are provid-

ing one more example with respect to disease group (generic diagnosis) prediction

models using unstructured data. Let us consider a patient admitted into the ICU

due to his/her condition. The continuously monitoring nursing sta↵ enter their

narrations or notes into the integrated CDSS of the hospital, where a ML based

text classification model (such as the ones presented in Chapter 6), can gener-

ate diagnosis predictions based on the input notes. The aggregation strategies

presented in Chapter 7 can ensure that the textual feature representations are

intelligently generated for which the ML based model can predict possible diag-

noses. The predicted diagnoses are also in terms of probabilities which range

between 0 and 1 for each of the disease groups, which may enable the doctors to

make decisions accordingly.

The contributions in this thesis has explored various avenues of developing ef-

fective decision support systems using structured and unstructured data sources

that are available in the domain of healthcare at patient level, hospital level and

even at population level. We believe that the technical capabilities of decision

support systems proposed in this thesis, such as NLP, AI and other data modeling

strategies, has an excellent potential for deployment as real-world CDSS applica-

tions. We also believe that in doing so, the works proposed in this research can

assist healthcare personnel significantly in a positive manner which can ultimately

improve the overall quality of healthcare.

9.2 Future Directions

This thesis put forth several approaches towards design and development of CDSSs

for various prediction tasks in the domain of Healthcare Informatics. A complete

and integrated CDSS for a hospital will consist of one or more such models or

systems, which will be designed to work based on task-specific inputs and outputs,

as required by end-user applications.

E.g., The scenarios that described our contributions through the example con-

sisting of Hospitals B and C discussed in earlier chapters will benefit from inte-

grated CDSSs integrated with their existing hospital systems. The doctors’ notes

in Hospital C may be processed by one of the modules in the integrated CDSS and

the prediction output (say, diagnosis) may be recommended to the doctor with
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good level of accuracy (which will improve as the system is fed a wide variety of

patient records) who can then make an “informed decision”. Assuming a patient is

currently admitted in the ICU for continuous care and monitoring, the monitored

lab test values and the recorded nursing notes can be fed into the CDSS models.

Once this data is processed the doctor is provided with available progressive and

additional insights which may reflect the patient’s current condition in terms of

mortality risk or even a change in the diagnosis.

Such integrated systems require dedicated physical/cloud infrastructure for

database related tasks for storing EHRs and also for training and deployment

of ML based CDSS models. It is also to be noted that such integrated EHR

based CDSSs require extensive desktop/mobile/web application development that

includes a rich and well-designed user interface for all the stakeholders (health

personnel, patients, hospital sta↵, admin, etc.) to work on. Designing frameworks

for e↵ectively inputting patient data into the EHR database is a challenging task

as well. A large number of healthcare personnel do not prefer to use such systems

due to lack of good user interfaces and due to the time consuming nature of

currently existing frameworks’ input mechanisms. An intuitive user interface is a

mandatory requirement for such use cases and a lot of e↵ort and brainstorming

needs to be put into this before implementing such frameworks in a hospital.

Training hospital sta↵ and health personnel to use the systems required for the

CDSSs to function will also be a challenge to be overcome. Another key issue to be

handled will be the hybrid nature of the patient data streaming into the integrated

CDSS application. The new data streaming into the system needs to be stored

e�ciently and also has to be handled based on the kind of data, i.e., respective

data representation strategies need to be incorporated which can generate e↵ective

feature representations for the ML models to consume. Yet another issue will be

the e�ciency of such models to perform tasks in almost real time, which means

that there has to be high performance computing based models in place to ensure

parallel execution wherever possible. Finally, patient data is meant to be private

between the doctors and the patients and has to be stored securely. This means

that there has to be e↵ective security on the servers and an authentication system

that ensures that only the authenticated users with specific roles can access the

data.

The above paragraphs discussed the requirements and challenges while deploy-

ing the research presented in this thesis as real world CDSS applications. However,

there is abundant scope for research as well in the domain of Healthcare Analytics

and Informatics. Some directions to explore for further research are as follows:
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• Currently, the DPMs predict the ICD9 disease groups only, i.e. they predict

at a higher level of granularity than actual disease codes. E↵ective models

to accurately predict ICD9 codes based on the predicted ICD9 groups using

deep learning and evolutionary computation shall be explored in future.

• Currently, the works presented in this thesis takes either structured or un-

structured data as input. Observing the performances of CDSS models which

hybridize and model structured and unstructured data is a research we wish

to pursue.

• Unstructured clinical reports are now an input to the research works pre-

sented in this thesis. Clinical report generation using information extracted

from structured and unstructured patient data is an avenue intended to be

explored.

• The population based prediction model presented in this thesis considers

only OSN data. Using real population health data (such as government

data on epidemic case counts for various regions) in association with OSN

data for e↵ective population-centric predictive analytics is also an interesting

avenue that we wish to explore in the future.

• Finally, a major volume of healthcare data is the image format. In this thesis,

medical images are not considered for modeling. Multi-modal prediction

based CDSS models based on unstructured text and images will be explored,

which show significant potential and promise.
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Göbel, G., S. Andreatta, J. Masser, and K. P. Pfei↵er (2001). A mesh based

intelligent search intermediary for consumer health information systems. Inter-

national journal of medical informatics , 64(2), 241–251.

Greenhalgh, T. (1997). How to read a paper. the medline database. BMJ: British

Medical Journal , 315(7101), 180.

Grnarova, P., F. Schmidt, S. L. Hyland, and C. Eickho↵ (2016). Neural docu-

ment embeddings for intensive care patient mortality prediction. arXiv preprint

arXiv:1612.00467 .

Gunter, T. D. and N. P. Terry (2005). The emergence of national electronic

health record architectures in the united states and australia: models, costs,

and questions. Journal of medical Internet research, 7(1), e3.



References 209

Guyon et al. (2002). Gene selection for cancer classification using support vector

machines. Machine learning , 46(1), 389–422.

Harutyunyan, H., H. Khachatrian, D. C. Kale, and A. Galstyan (2017). Multi-

task learning and benchmarking with clinical time series data. arXiv preprint

arXiv:1703.07771 .

Haug, P. J., R. M. Gardner, R. S. Evans, B. H. Rocha, and R. A. Rocha, Clini-

cal decision support at intermountain healthcare. In Clinical decision support

systems . Springer, 2007, 159–189.

Herland, M., T. M. Khoshgoftaar, and R. Wald (2014). A review of data mining

using big data in health informatics. Journal of Big data, 1(1), 2.

Himes, B. E., Y. Dai, I. S. Kohane, S. T. Weiss, and M. F. Ramoni (2009).

Prediction of chronic obstructive pulmonary disease (copd) in asthma patients

using electronic medical records. Journal of the American Medical Informatics

Association, 16(3), 371–379.

Hinton, G. E., S. Osindero, and Y.-W. Teh (2006). A fast learning algorithm for

deep belief nets. Neural computation, 18(7), 1527–1554.

Hira, Z. M. and D. F. Gillies (2015). A review of feature selection and feature

extraction methods applied on microarray data. Advances in bioinformatics ,

2015.

Holt, D., F. Bouder, C. Elemuwa, G. Gaedicke, A. Khamesipour, B. Kisler,

S. Kochhar, R. Kutalek, W. Maurer, P. Obermeier, and Others (2016). The

importance of the patient voice in vaccination and vaccine safety—are we lis-

tening? Clinical Microbiology and Infection, 22, S146—-S153.

Huang, G., G.-B. Huang, S. Song, and K. You (2015). Trends in extreme learning

machines: A review. Neural Networks , 61, 32–48.

Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew, Extreme learning machine: a new

learning scheme of feedforward neural networks. In Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference onvolume2. IEEE, 2004.

Huang, J., C. Osorio, and L. W. Sy (2019). An empirical evaluation of deep

learning for icd-9 code assignment using mimic-iii clinical notes. Computer

Methods and Programs in Biomedicine, 177, 141–153.



210 References

Huang, X., M. C. Smith, M. J. Paul, D. Ryzhkov, S. C. Quinn, D. A. Broniatowski,

and M. Dredze, Examining patterns of influenza vaccination in social media. In

Workshops at the Thirty-First AAAI Conference on Artificial Intelligence. 2017.

Jain, H. and C. G. Huimin Zhao, David P. Klemer, A scheme for symptom based

retrieval of electronic medical records. In Proceedings of the Fourth Workshop

on e-Business (WeB 2005). Las Vegas, NE, 2005.

Jaro, M. A. (1989). Advances in record-linkage methodology as applied to match-

ing the 1985 census of tampa, florida. Journal of the American Statistical As-

sociation, 84(406), 414–420.

Jensen, P. B., L. J. Jensen, and S. Brunak (2012). Mining electronic health records:

towards better research applications and clinical care. Nature Reviews Genetics ,

13(6), 395.

Jo, Y., L. Lee, and S. Palaskar (2017). Combining lstm and latent topic modeling

for mortality prediction. arXiv preprint arXiv:1709.02842 .

Johnson et al. (2013). A new severity of illness scale using a subset of acute physi-

ology and chronic health evaluation data elements shows comparable predictive

accuracy. Critical care medicine, 41(7), 1711–1718.

Johnson, A. E., T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi,

B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark (2016). Mimic-iii, a freely

accessible critical care database. Scientific data, 3.

Johnson, A. E., D. J. Stone, L. A. Celi, and T. J. Pollard (2018). The mimic

code repository: enabling reproducibility in critical care research. Journal of

the American Medical Informatics Association, 25(1), 32–39.

Jonquet, C., N. H. Shah, and M. A. Musen (2009). The open biomedical annotator.

Summit on translational bioinformatics , 2009, 56.

Joshi, A., X. Dai, S. Karimi, R. Sparks, C. Paris, and C. R. MacIntyre, Shot or

not: Comparison of nlp approaches for vaccination behaviour detection. In Pro-

ceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining

for Health Applications Workshop & Shared Task . 2018.

Joulin, A., E. Grave, P. Bojanowski, and T. Mikolov (2016). Bag of tricks for

e�cient text classification. arXiv preprint arXiv:1607.01759 .



References 211

Joulin, A., E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for e�cient

text classification. In Proceedings of the 15th Conference of the European Chap-

ter of the Association for Computational Linguistics: Volume 2, Short Pa-

persvolume2. 2017.

Kawamoto, K., C. A. Houlihan, E. A. Balas, and D. F. Lobach (2005). Improving

clinical practice using clinical decision support systems: a systematic review of

trials to identify features critical to success. Bmj , 330(7494), 765.

Keeter, S., C. Kennedy, M. Dimock, J. Best, and P. Craighill (2006). Gauging the

impact of growing nonresponse on estimates from a national RDD telephone

survey. International Journal of Public Opinion Quarterly , 70(5), 759–779.

Kennebeck, S. S., N. Timm, M. K. Farrell, and S. A. Spooner (2012). Impact of

electronic health record implementation on patient flow metrics in a pediatric

emergency department. Journal of the American Medical Informatics Associa-

tion, 19(3), 443–447.

Kennedy, J. and R. Eberhart, Particle swarm optimization (pso). In Proc. IEEE

International Conference on Neural Networks, Perth, Australia. 1995.

Kim, S., W. Kim, and R. W. Park (2011). A comparison of intensive care unit mor-

tality prediction models through the use of data mining techniques. Healthcare

informatics research, 17(4), 232–243.

Kim, Y., Convolutional neural networks for sentence classification. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Association for Computational Linguistics, Doha, Qatar, 2014. URL

https://www.aclweb.org/anthology/D14-1181.

Knaus, A. William, Draper, et al. (1985). Apache ii: a severity of disease classifi-

cation system. Critical care medicine, 13(10), 818–829.

Knaus et al. (1981). Apache-a physiologically based classification system. Critical

care medicine, 9(8), 591–597.

Knaus et al. (1991). The apache iii prognostic system: risk prediction of hospital

mortality for critically iii hospitalized adults. Chest , 100(6), 1619–1636.

Koh, H. C., G. Tan, et al. (2011). Data mining applications in healthcare. Journal

of healthcare information management , 19(2), 65.

https://www.aclweb.org/anthology/D14-1181


212 References

Kohavi, R. and G. H. John (1997). Wrappers for feature subset selection. Artificial

intelligence, 97(1-2), 273–324.

Krumholz, H. M. (2014). Big data and new knowledge in medicine: the thinking,

training, and tools needed for a learning health system. Health A↵airs , 33(7),

1163–1170.

Lang, D. (2007). Consultant report-natural language processing in the health care

industry. Cincinnati Children’s Hospital Medical Center, Winter , 6.

Larkey, L. S. and W. B. Croft (1995). Automatic assignment of icd9 codes to

discharge summaries. Technical report, Technical report, University of Mas-

sachusetts at Amherst, Amherst, MA.

Le, Q. and T. Mikolov, Distributed representations of sentences and documents.

In International Conference on Machine Learning . 2014.

Leape, L. L. (1994). Error in medicine. Jama, 272(23), 1851–1857.

LeCun, Y., L. Bottou, Y. Bengio, and P. Ha↵ner (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE , 86(11), 2278–2324.

Leroy, G. and H. Chen (2001). Meeting medical terminology needs-the ontology-

enhanced medical concept mapper. IEEE Transactions on Information Tech-

nology in Biomedicine, 5(4), 261–270.

Li, C., L. Chen, J. Feng, D. Wu, Z. Wang, J. Liu, and W. Xu (2019). Prediction

of length of stay on the intensive care unit based on least absolute shrinkage

and selection operator. IEEE Access , 7, 110710–110721.

Li, C., Y. Zhang, and X. Li, Ocvfdt: one-class very fast decision tree for one-

class classification of data streams. In Proceedings of the Third International

Workshop on Knowledge Discovery from Sensor Data. ACM, 2009.

Li, M., Z. Fei, M. Zeng, F. Wu, Y. Li, Y. Pan, and J. WanMulti-label classification

of patient notes: case study on ICD code assignmentg (2018). Automated icd-9

coding via a deep learning approach. IEEE/ACM transactions on computational

biology and bioinformatics .

Liang, Z., G. Zhang, J. X. Huang, and Q. V. Hu, Deep learning for healthcare

decision making with emrs. In Bioinformatics and Biomedicine (BIBM), 2014

IEEE International Conference on. IEEE, 2014.



References 213

Lindberg, D. A., B. L. Humphreys, and A. T. McCray (1993). The unified medical

language system. Yearbook of Medical Informatics , 2(01), 41–51.

Lipton, Z. C., D. C. Kale, C. Elkan, and R. Wetzell (2015). Learning to diagnose

with lstm recurrent neural networks. arXiv preprint arXiv:1511.03677 .

Liu, Z. and W. W. Chu, Knowledge-based query expansion to support scenario-

specific retrieval of medical free text. In Proceedings of the 2005 ACM sympo-

sium on Applied computing . ACM, 2005.

Lovis, C. (2011). Clinical information systems: cornerstone for an e�cient hospital

management. Studies in health technology and informatics , 169, 992–5.

Lowe, H. J. and G. O. Barnett (1994). Understanding and using the medical sub-

ject headings (mesh) vocabulary to perform literature searches. Jama, 271(14),

1103–1108.

Malet, G., F. Munoz, R. Appleyard, and W. Hersh (1999). A model for enhancing

internet medical document retrieval with “medical core metadata”. Journal of

the American Medical Informatics Association, 6(2), 163–172.

Mamlin, B. W., J. M. Overhage, W. Tierney, P. Dexter, and C. J. McDonald, Clin-

ical decision support within the regenstrief medical record system. In Clinical

Decision Support Systems . Springer, 2007, 190–214.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary

structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein

Structure, 405(2), 442–451.

McDonald, C. J., J. M. Overhage, W. M. Tierney, P. R. Dexter, D. K. Martin,

J. G. Suico, A. Zafar, G. Schadow, L. Blevins, T. Glazener, et al. (1999). The

regenstrief medical record system: a quarter century experience. International

journal of medical informatics , 54(3), 225–253.

McDonald, C. J. and W. M. Tierney (1988). Computer-stored medical records:

their future role in medical practice. Jama, 259(23), 3433–3440.

McManus, K., E. K. Mallory, R. L. Goldfeder, W. A. Haynes, and J. D. Tatum

(2015). Mining Twitter data to improve detection of schizophrenia. AMIA

Summits on Translational Science Proceedings , 2015, 122.



214 References

Medori, J. and C. Fairon, Machine learning and features selection for semi-

automatic icd-9-cm encoding. In Proceedings of the NAACL HLT 2010 Second

Louhi Workshop on Text and Data Mining of Health Documents . Association

for Computational Linguistics, 2010.

Michelson, J. D., J. S. Pariseau, and W. C. Paganelli (2014). Assessing surgical site

infection risk factors using electronic medical records and text mining. American

journal of infection control , 42(3), 333–336.

Mikolov, Chen, et al. (2013). E�cient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781 .

Miotto, R., L. Li, B. A. Kidd, and J. T. Dudley (2016). Deep patient: An un-

supervised representation to predict the future of patients from the electronic

health records. Scientific reports , 6.

Moja, L., K. H. Kwag, T. Lytras, L. Bertizzolo, L. Brandt, V. Pecoraro, G. Rigon,

A. Vaona, F. Ruggiero, M. Mangia, et al. (2014). E↵ectiveness of computerized

decision support systems linked to electronic health records: a systematic review

and meta-analysis. American journal of public health, 104(12), e12–e22.

Monge, A. and C. Elkan (1997). An e�cient domain-independent algorithm for

detecting approximately duplicate database records.

Moreno et al. (2005). Saps 3 - from evaluation of the patient to evaluation of the

intensive care unit. Intensive care medicine, 31(10), 1345–1355.

Mullenbach, J., S. Wiegre↵e, J. Duke, J. Sun, and J. Eisenstein (2018). Ex-

plainable prediction of medical codes from clinical text. arXiv preprint

arXiv:1802.05695 .

Musen, M. A., B. Middleton, and R. A. Greenes, Clinical decision-support systems.

In Biomedical informatics . Springer, 2014, 643–674.

Nachtigall, I., S. Tafelski, M. Deja, E. Halle, M. Grebe, A. Tamarkin, A. Roth-

bart, A. Uhrig, E. Meyer, L. Musial-Bright, et al. (2014). Long-term e↵ect

of computer-assisted decision support for antibiotic treatment in critically ill

patients: a prospective ‘before/after’ cohort study. BMJ open, 4(12), e005370.

Nédellec, C., R. Bossy, J.-D. Kim, J.-J. Kim, T. Ohta, S. Pyysalo, and P. Zweigen-

baum, Overview of bionlp shared task 2013. In Proceedings of the BioNLP

Shared Task 2013 Workshop. 2013.



References 215

Nguyen, P., T. Tran, N. Wickramasinghe, and S. Venkatesh (2017). Deepr: A

convolutional net for medical records. IEEE journal of biomedical and health

informatics , 21(1), 22–30.

Nikfarjam, A., A. Sarker, K. O’Connor, R. Ginn, and G. Gonzalez (2015). Phar-

macovigilance from social media: mining adverse drug reaction mentions using

sequence labeling with word embedding cluster features. Journal of the Ameri-

can Medical Informatics Association, 22(3), 671–681.

Nimgaonkar, A., D. R. Karnad, S. Sudarshan, L. Ohno-Machado, and I. Kohane

(2004). Prediction of mortality in an indian intensive care unit. Intensive care

medicine, 30(2), 248–253.

Orabi, A. H., P. Buddhitha, M. H. Orabi, and D. Inkpen, Deep learning for

depression detection of twitter users. In Proceedings of the Fifth Workshop on

Computational Linguistics and Clinical Psychology: From Keyboard to Clinic.

2018.

Organization, W. H., The world health report 2000: health systems: improving

performance. World Health Organization, 2000.

Pakhomov, S. V., J. D. Buntrock, and C. G. Chute (2006). Automating the assign-

ment of diagnosis codes to patient encounters using example-based and machine

learning techniques. Journal of the American Medical Informatics Association,

13(5), 516–525.

Parker, A. M., R. Vardavas, C. S. Marcum, and C. A. Gidengil (2013). Conscious

consideration of herd immunity in influenza vaccination decisions. American

journal of preventive medicine, 45(1), 118–121.

Patel, P. and B. Grant (1999). Application of mortality prediction systems to

individual intensive care units. Intensive care medicine, 25(9), 977–982.

Pennington, J., R. Socher, and C. Manning, Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP). 2014.

Perotte, A. J., F. Wood, N. Elhadad, and N. Bartlett, Hierarchically supervised la-

tent dirichlet allocation. In Advances in neural information processing systems .

2011.



216 References

Perreault, L. E. and J. B. Metzger (1999). A pragmatic framework for understand-

ing clinical decision support. Journal of Healthcare Information Management ,

13, 5–22.

Pirracchio et al. (2015). Mortality prediction in intensive care units with the super

icu learner algorithm (sicula): a population-based study. The Lancet Respiratory

Medicine, 3(1), 42–52.

Plovnick, R. M. and Q. T. Zeng (2004). Reformulation of consumer health queries

with professional terminology: a pilot study. Journal of medical Internet re-

search, 6(3), e27.

Pollak, V. E. (1983). Computerization of the medical record: Use in care of

patients with endstage renal disease. Kidney international , 24(4), 464–473.

Purushotham, S., C. Meng, Z. Che, and Y. Liu (2018). Benchmarking deep learn-

ing models on large healthcare datasets. Journal of biomedical informatics .

Rav̀ı, D., C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G.-Z.

Yang (2017). Deep learning for health informatics. IEEE journal of biomedical

and health informatics , 21(1), 4–21.

Reddy, K. S., V. Patel, P. Jha, V. K. Paul, A. S. Kumar, L. Dandona, L. I. G.

for Universal Healthcare, et al. (2011). Towards achievement of universal health

care in india by 2020: a call to action. The Lancet , 377(9767), 760–768.
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