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Abstract

Smart grid framework plays an indispensable role in dealing with the us-

age of available electrical energy proficiently. However, to manage power

supply effectively, electrical appliances and devices at home and building

environment should have smart energy management capability. Further,

Smart Energy Management System (SEMS) can be unified with the smart

grid for effective power consumption. SEMS can be used to control the

status of the electrical appliances and devices by monitoring environmen-

tal conditions with the associated sensors and the context in which the

appliance is being operated. In addition, SEMS can be used to reduce the

standby power consumption of the appliances by turning off the supply to

it. The SEMS system can be associated with a Grid or the distributed gen-

eration, and thus power negotiation techniques can be applied depending

on the availability of the power or tariff information. In this research work,

the emphasis is given to the design of a smart energy management system

and deployment of power negotiating algorithms for effective power utiliza-

tion. The proposed SEMS replaces the scenario of a complete power outage

in a particular region with partial load shedding in a controlled manner

as per consumer’s priority. The hardware experiments are demonstrated

assuming a demand response event, taking into account the constraints

of maximum demand limits in various cases of changing priorities. The

cost optimization algorithms are deployed by scheduling the appliances,

considering the Time of Usage (ToU) and minimum slab rate. Sensory in-

formation’s and indicators are used to control the loads with user comfort

settings and alarm the user during peak hour usage, respectively. Reli-

able ZigBee communication is established in the Application Transparent

(AT) mode of configuration with a self-diagnostic mechanism. Internet of

Things (IoT) environment is created for uploading the data, storing it in

the database with load wise data analysis daily and monthly basis with

Graphical User Interface (GUI).

The challenge of energy shortages requires an optimized solution to demand-

side consumer issues. Energy demand factors contribute to the implemen-

tation of variable tariff’s and reward consumer’s electricity usage during

off-hours rather than during peak hours. In addition, the surge in tariffs
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and price volatility emphasize the need to carefully schedule the operation

of large devices to minimize power consumption. In this task, a genetic al-

gorithm is used to find the optimal load schedule that minimizes the cost

spent on power according to considerations such as user comfort, maxi-

mum allowable demand, load characteristic’s, environmental factors and

so on. Further, this work will focus on testing the Binary Backtracking

Search and Artificial Bee Colony algorithms against the Binary Particle

Swarm algorithm benchmark to find the optimal load scheduling in terms

of complexity, cost optimization, and execution time.

On the other hand, the challenge in energy management lays focus on the

efficient utilization of available power sources without limiting power con-

sumption. Above issue seeks for design and development of an intelligent

system with day-ahead planning and prior forecasting of energy availabil-

ity. Hence there is a need for accurate energy prediction technique to

minimize imbalance in the power sector. In this context, an Intelligent

Smart Energy Management Systems (ISEMS) is proposed to handle en-

ergy demand in a smart grid environment with penetration of renewable

sources. The proposed scheme compares several prediction models for ac-

curate forecasting of energy for hourly and day-ahead planning. Based

on the predicted information, ISEMS negotiates the available power and

dispatch the control action depending on the consumer assigned priority

for an appliance. Several energy prediction models are evaluated and it is

found that the Particle Swarm Optimization (PSO) based Support Vector

Regressors (SVR) outperforms over other prediction models in terms of

performance accuracy.

Keywords: Demand Response (DR); Demand Side Management (DSM);

Internet of Things (IoT); Particle Swarm Optimization (PSO); Renewable

Energy sources(REs); Smart Energy Management Systems (SEMS); Smart

Grid (SG); Time of Use (ToU); ZigBee.
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Chapter 1

Introduction

This chapter presents an introduction of the thesis, including an overview and scope

of the research work. Following, the description of research objectives. Finally, the

overall organization of the thesis are included.

1.1 Overview

Modern electricity meters can measure power consumption with reasonable accuracy.

However, it requires manual reading, which is tedious and depends on human re-

sources. Outage management and recovery in the event of fault detection are time-

consuming processes in traditional metering systems. It is therefore essential to up-

grade our existing metering system. In this context, smart meters offer a practical so-

lution with built-in communication capabilities. Smart meters support a two-way flow

of information between the utility centre and consumers. Thus, Advanced Metering

Infrastructure(AMI) contributes an integral part in the context of the Smart Grid(SG)

framework, which facilitates full automation of various tasks related to power usage.

The smart grid framework plays an integral role in addressing the utility and demand

consumers and managing electrical energy efficiently. Overview of SG infrastructure

for DSM is shown in Figure.1.1.

Further, Demand Side Energy Management(DSEM) mainly focus on the Demand

Response(DR) program and Load management task at the consumer end. The DR

program encourages the consumer to participate during peak hours by providing them

economical and financial benefit and hence, balance the load profile curve (Gelazan-

skas and Gamage, 2014). Furthermore, load management allows the consumer to save
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Figure 1.1: Overview of SG infrastructure for DSM consumers

electricity cost by having control over the individual appliance. However, to man-

age power supply effectively, electrical appliances and devices at home and building

environment should have smart energy management capability. Further, the Smart

Energy Management System(SEMS) can be unified with the grid for effective power

utilization. Smart Energy Management System can be used to control the status of

the electrical appliances and devices by monitoring environmental conditions with the

associated sensors and the context in which the appliance is being operated. In addi-

tion, SEMS can be used to reduce the standby power consumption of the appliances

by turning off the supply to it. The SEMS systems can be integrated with grid or

distributed generation so that power negotiation techniques can be applied depending

on the availability of power or tariff information. In this context, emphasis will be

given to the design of smart sockets and deployment of power negotiating algorithms

for effective power utilization.

The technology that connects everything in our daily lives to the Internet, ex-

changes information, and controls each other is called the Internet of Things (IoT). In

addition, the use of IoT has enabled a variety of services that improve the convenience

of living. As a familiar example, a location can be used to detect when a smartphone
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is approaching a house and automatically turn on air conditioning and home lighting.

Moreover, an IoT environment can be used to monitor various services and energy

management operations.

On the other hand, one of the main goals of the smart grid is to save energy

consumption and minimize electricity costs. For residential, commercial and indus-

trial sectors, interruptible loads can be properly scheduled to reduce peak demand

and select lower tariff prices. Depending on the energy sector, load usage continues

to change. Some loads can be interrupted continuously, while others can be more

user-friendly based on time of use. Therefore, the increased load and random nature

of usage make it difficult to schedule appliances optimally. Therefore, researchers

have opted to solve this problem using optimization techniques. In literature, there

are several approaches discussed for scheduling demand-side load considering con-

straint parameters, computational time, complexity, best accurate schedule and ease

of implementation. Previously, authors have used linear, non-linear and mixed-integer

programming methods to solve the scheduling problem and minimize the electricity

consumption. The authors, (Pedrasa et al., 2009), have used Binary Particle Swarm

Optimization (BPSO) algorithm to solve a complex problem with widely varied load

constraints to obtain the best operational schedule and minimize the overall electric-

ity cost. Maximum demand, usage time, and the number of hours the appliance is

running determine the optimal schedule of load sets to save on electricity bills, tak-

ing into account user comfort. In this context, flexible loads are considered, as well

as time-based tariffs that take into account peak times. Performance evaluation of

various algorithms is performed in terms of computation time and optimal scheduling.

In the present scenario, the usage of renewable energy sources is of great interest

in the modern community due to increased energy demand and growing concern over

the hazardous environmental condition. Further, the availability of renewable energy

sources such as solar or wind energy is very random and unpredictable. The deep

penetration of renewable energy source integrated with smart grid environment makes

the system more challenging in terms of the energy management task.

The potential benefits of renewable sources greatly depend on the availability of

energy depending on the environmental factors. Further, due to its intermittent nature

to handle renewable source integrated with smart grid environment poses a complex

challenge in the efficient utilization of energy. The reliable solution could be, storing

the excess energy during peak generation and using it later but at the cost of expen-
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sive investment on storage devices. One of the alternate solutions would be feeding

surplus energy to the conventional grid system with the fixed tariff price and buyback

during a deficit of energy. Thus, developing an intelligent energy management system

is crucial to handle the uncertainties and provide reliable energy supply at a reason-

able cost. It is necessary to take into account the change in the amount of solar power

generation due to seasonal weather. Therefore, it is required to establish the correla-

tion between the solar power generation amount and variation of weather parameters.

Several parameters are influencing the generation of PV energy, which are identified

as sun intensity, cloud cover, wind speed, ambient temperature, rain, geographical

location along with sun-set and sun-rise time, etc. In literature several approaches

and prediction models are discussed considering weather parameters (Gigoni et al.,

2017),(Yona et al., 2013).

In this work, the emphasis is given to predict the availability of solar energy con-

sidering factors affecting the solar intensity due to seasonal variation. The historical

data of solar irradiation and other dependent parameters from the NREL database is

collected. Several machine learning-based prediction models are evaluated to find the

accurate model. Further, the predicted power is assumed to demonstrate the different

scenarios for optimal load strategy.

1.2 Research Motivation

In light of the literature survey, it is observed that the following topics motivate and

finds the scope of research in the area of demand side energy management.

• In the energy sector, there is a need for an integrated co-operative operational

mechanism taking into account of power supply and demand entity to reduce

the mismatch.

• The power management operational task seeks for the development of inexpen-

sive and efficient Smart Energy Management System(SEMS). Further, deploy-

ment of power negotiating algorithms with reliable communication capability

is essential to reduce the overall power consumption and hence, minimize the

electricity cost.

• A comprehensive initiative in smart grid is essential, which includes an energy

management framework associated with an IoT environment that monitors and

4



visualizes power consumption at the consumer premises.

• Optimization techniques are to be evaluated to find the cost effective and com-

putationally efficient approach for the given demand side consumer constraints.

• Accurate prediction of power generation or power availability is required for

proper scheduling mechanism.

Considering the scope from the above literature, research objectives are framed to

address the demand side energy management issues.
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1.3 Organization of the Thesis

In this thesis, the overall content is organized into six chapters and three appendices.

This section briefs about the overview information of each chapter and appendices.

The outline of the thesis is highlighted in Figure 1.2.

• Chapter 1: This introductory chapter describes the outline and scope of the

research, the motivation for the research, and the structure of the thesis.

• Chapter 2: In this chapter, a thorough literature survey has been carried out

to introduce state-of-the-art technologies and to identify potential gaps in the

area of demand-side energy management. It also describes the identified research

gaps and research objectives.

• Chapter 3: This chapter describes the development of a smart energy manage-

ment system that deploys a power negotiation algorithm with reliable commu-

nication capability. Several experimental demonstrations are performed, taking

into account different configuration scenarios.

• Chapter 4: This chapter presents various optimization techniques for demand-

side energy management applications to reduce costs and computational, time

taking into account user-defined constraints.

• Chapter 5: This chapter discusses the accurate forecasting of renewable power

for demand-side managed consumers considering historical data from the Na-

tional Renewable Energy Laboratory (NREL) website. Performance evaluations

of various machine learning models are carried out to find the best and accurate

model to predict available power generation.

• Chapter 6: This chapter presents contributions and conclusive remark. A brief

discussion on the future scope of the work is also included.
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Chapter 2

Literature Survey

The present study deals with the development SEMS, optimization techniques and pre-

diction models for demand-side consumers. Hence, the detailed background study and

the state-of-the-art related to SEMS, optimization techniques and prediction models

are discussed in this chapter.

2.1 Background

2.1.1 Deregulation Move and Necessity of Automation

It is desirable to analyse why the deregulation of the energy market has made automa-

tion solutions essential and hence, it is advisable to understand the concept above.

The following paragraphs briefly describe the idea and relevance of deregulation. For

the past few years, utilities have been operating under a unique model set by govern-

ment agencies. Electricity companies have the right to generate and supply electricity

to certain areas based on regulatory regulations set by the Regulatory Commission to

restore electricity rates and profit margins. Electricity industry regulations are rules

and restrictions set by government agencies that define how a particular industry

operates(Sharma et al., 2012).

• Characteristics of Regulatory Industry:

Monopoly Franchise: Monopoly refers to situations where a single entity or

one company manages the power sector industry. The above status, given by

government agencies in that territory, allows only local utilities to generate,

distribute, and sell electricity commercially.
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Obligation to serve: The utility agrees to provide electricity to consumers in

all categories in the region, regardless of profit margin.

Regulatory monitoring: Utilities should operate in a way that minimizes

overall revenue requirements.

Regulatory Charges: Utilities charges are set in accordance with government

regulatory rules and guidelines.

Assumed rate of return: The utility is assured a fair return on its investment,

if it confirms to the regulatory guidelines and practices.

• Deregulation: Deregulation in Power Industry is a restructuring of the rules

and economic incentives by expanding the role of customers in the pooled elec-

tricity market, including private participants. The transition of power sector

from regulated to deregulated structure has many positive and negative conse-

quences.

Deregulation has brought several entities to the market, while redefining the

scope of many of the existing players activities. There is variability among

players in the market as to how each entity defines its role in the power system.

However, at a broader level, the structure of the power sector can be identified

after deregulation the as shown in the Figure 2.1.
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• Motivation for Deregulation: There are many reasons that have led to dereg-

ulation of power systems. Deregulation will achieve the elimination of central

control and improved economic efficiency of electricity. Due to competition,

electricity prices can fall in the electricity sector, which benefits consumers (Ab-

hyankar and Khaparde, 2013).

For the following reasons, a major change in the scale of the economy is observed:

1. Technological innovation improved the efficiency of small units for gas tur-

bines, combined cycles, hydro and fuel cells over that of large ones.

2. Improvement in materials, including new high temperature metals, spe-

cial lubricants, ceramics, and carbon fiber, permit vastly stronger and less

expensive small machinery to be built.

3. Computerized control systems have been developed and often have zero

staff in the field.

4. Data communications and offsite monitoring systems can control the unit

from a remote operations center. The Remote Operations Center allows

one central operator to monitor multiple units at different sites, each as if

they were present.

Thus, in many cases it was possible to build new power plants that could provide

energy at a lower price than the customer was paying for the energy from the existing

old giant power plant. Electricity industry and commercial users are now able to

build and operate their own plants to produce cheaper electricity than utilities and

sell surplus electricity to smaller customers.

2.1.2 Smart Grid Infrastructure and Smart Meters

Currently, the generation of power monitoring and billing technologies relies on tra-

ditional energy meters. These meters are installed in individual homes to measure

electrical energy consumption. The energy consumed is recorded, and bills are cal-

culated by a person who checks the energy meter in each household. This process is

very inefficient and time-consuming. Besides, manual calculations can be erroneous,

and the amount of human resources required to complete a task is so large that the

entire process is not scalable. The major problem is that consumers are unaware of

their daily behaviour. The monthly feedback given to consumers is not enough to
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measure how appliances consume energy. Smart meters are intelligent, network-based

energy meters that solve most of the problems associated with traditional energy

meters (Barai et al., 2015). Smart meters can provide consumers with usage alerts

based on regular intervals of use of electrical energy. Also, the data collected by the

smart meter is sent over the network to the regulatory committee, eliminating the

need for manual calculations. Moreover, this reduces incorrect quotients in customs

duty calculations and provides a better approximation of cost. Current energy meters

have few limitations. Some of these meters lack a complete digital structure, leading

to erroneous measurements due to their inability to accommodate mechanical com-

ponents, the effort required to capture data, and the latest technological advances

(Khalifa et al., 2010).

The next step in progress is implementing a smart grid system. Smart grid systems

are built on the existing infrastructure of the power grid, but there are smart meters.

Recent power grids make it challenging to notice fluctuations in the electrical load

between appliances. As the population grows, the load on the power grid increases

and the necessary changes must be made to improve the scalability of the system. The

essence of smart grids is to increase grid efficiency through remote monitoring, relia-
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bility, and consumption measurement, and to communicate consumption by delivering

data (in real-time) to consumers and suppliers (Selvam et al., 2012). Since conven-

tional meters uses outdated technology, smart grid replaces traditional energy meters

with promising meters that use computers to quickly calculate energy consumption

and send information between homes and regulatory bodies. Moreover, it creates a

much more scalable and efficient system. Smart Meter is the latest network-based en-

ergy meter, provides a medium for consumers to improve power consumption. Smart

meters belong to the division of advanced measurement infrastructure or AMI and are

responsible for automatically transmitting meter readings to energy suppliers. The

benefits of smart meters are enormous, and almost all the problems associated with

traditional meters can be solved by replacing traditional meters with smart meters.

Figure 2.2 below shows an overview of the Smart Meter(SM) of the SG utility.

2.1.2.1 Advanced Metering Infrastructure (AMI)

AMI enables two-way communication between utility providers and consumers with

the aid of a smart meter gateway. In addition, it allows customers to decide on better

choices for their future energy usage. AMI comprises the transport of information on

metering data to the aggregator of the energy provider (Liu et al., 2012). Because

of the increased flow of information between the consumer and the utility providers,

congestion and loss of information are prevalent. Hence, there is a need to improve

the scalability of the network. Multi-channel capability can help achieve scalability.

This can be achieved by introducing multiple subnetworks with different operating

channels (Kulkarni et al., 2012).

2.1.2.2 Distribution System Automation

Distributed system automation plays a vital role in realizing the smart grid technol-

ogy when implemented on local power lines and neighbourhood stations. Automation

is a process of doing a particular task automatically in a sequence with faster oper-

ation rate and with minimal or no human assistance. It increases the reliability of

the overall system with real-time monitoring and intelligent control mechanism. Fur-

ther, the distribution system uses the sensory devices to gather the information and

make a smart decision for the optimal flow of power. It is a very tedious job for a

technician without the assistance of distribution system automation to identify and

analyze system performance. Distribution automation system plays a vital role in
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early detection of the faults and preventing the outage or blackout of the system by

regular maintenance (Mamo et al., 2009).

2.1.2.3 Smart Grids and Penetration of Renewable Energy Sources

The smart grid enables different entities like utilities, distributed generators and con-

sumer premises to interface via communication and information technologies. The

recent advancement in Renewable Energy sources (REs) is seen to be an excellent

substitute for the diminishing conventional source of energy. Nowadays, to meet the

energy demand and promote financial benefits to the consumer, renewable sources

have made a deep penetration with the convention grid system (Eltigani and Masri,

2015). This phenomenal growth in the REs integrated with the grid system has a

significant contribution to the energy sector. On the other hand, the intermittent and

highly unpredictable nature of renewable sources poses a complex challenge in the

reliability and stability of the system. Demand-side energy management techniques

are an essential tool to monitor, store, and predict energy usage details and develop

a sustainable energy framework.

2.1.3 Recent Developments in Energy Management System

Associated with Smart Grid

Smart meters have a key role in the establishment of smart grid communication ar-

chitecture. The conventional static digital meters do not account for the communica-

tion between utility and consumer premises. The automation of the metering system

evolved with Advanced Metering Architecture (AMA), the meter is embedded with

communication capability. In the AMA system, information related to energy usage,

power outage and some fault conditions can be sent to the utility centre from the

consumer premises periodically or on the occurrence of events. Thus, the AMA sys-

tem facilitates automated billing and fast recovery from the power outages. Still, the

system accounts for only one-way communication between the consumer end and the

utility centre (Erol-Kantarci and Mouftah, 2015).

The next generation metering system evolved with an Advanced Metering Infras-

tructure (AMI), which incorporates two-way communication between the power utility

and consumer premises. The AMI system includes Home Area Network (HAN) com-

munication architecture, responsible for Home Energy Management System (HEMS),
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meter data management and smart meters communication. The architecture of AMI

includes end-users, meter data management and communication layers. Hence AMI

plays a major role in the metering system by alerting the consumers about energy

usage parameters, which accounts for efficient power management.

2.1.3.1 Wireless Communication Technology for Energy Mangement Sys-

tem and Smart Meter Networks

Wireless communication supports the exchange of information between the trans-

mitter and receiver through electromagnetic waves, without any physical connection.

Wireless technology has an advantage over wired communication as it reduces the com-

plication of cable installation. Wireless technology has been deployed over the last 30

years, and researches have put efforts to minimize cost, network complexity and power

consumption. In smart metering, the communication network is classified into differ-

ent categories based on the range of coverage such as Home Area Network(HAN),

Neighborhood Area Network(NAN) and Wide Area Network(WAN). Home Energy

Management System uses HAN to form a communication network within the con-

sumer premises between different distributed appliances or loads. NAN collects the

data from different HAN nodes. A survey shows widely used wireless technologies

are Wi−fi, Wi-Max, Bluetooth and ZigBee for industrial automation. Hence it is

required to choose suitable technology for the intended application(Gungor et al.,

2011). A comparison of wireless technology based on power consumption, data rate,

operation frequency and range of coverage is presented in the following Table 2.1.

Table 2.1: Comparison of various wireless technologies

Bluetooth Wi-fi WiMAX ZigBee

Standard 802.15 802.11a/b/g/n 202.16 802.15.4

Data Rate 1 Mbps 11–52 Mbps 70–80 Mbps up to 250 Kbps

Operating Range 10 meters 50-100 meters up to 50 kilometres 10-100 meters

Power Consumption Medium High High Very Low

Security Yes Yes Yes Yes

Complexity Medium High Very High Low

• ZigBEE Devices
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XBEE wireless devices use the open global standard IEEE 802.15.4 ZigBee protocol

to provide wireless connectivity between two terminals. ZigBee devices 1 consume low

power due to long-lasting battery, low latency for low data rate transfer, and various

networking options. These features make ZigBee the right candidate for the industrial

and home automation sectors.The XBee device can be configured into three different

modes as follows:

1. Coordinator

2. Router

3. End Device

• Coordinator: XBee as a coordinator module is responsible for forming the

network connection by selecting a channel and Personal Area Network (PAN)

ID. In a network coordinator module allows router and end devices to join the

network. In this configuration, it has to monitor the network without sleep mode

continuously and consumes more power compared to the other modules.

• Router: XBee as a router module has to join the PAN and further, and it can

manage the router and end device to join the network. In this mode, it can also

assist in data routing.

• End Device: XBee as an end device module joins the PAN to transmit or

receive the data.

2.1.3.2 Demand Side Energy Management

Demand Response: Demand response program aids for energy saving with the

curtailment of electricity by shifting the usage period. Further, demand response has

two different schemes based on time and incentive, as shown in Figure 2.3.

Time-based demand response program: Based on the price motive of the day time,

the program categorizes different schemes. (Palensky and Dietrich, 2011).

• Time-of-Use (ToU).

• Critical-Peak Pricing (CPP).

1https://www.digi.com/support/
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Figure 2.3: Classification of demand side consumer based on different schemes

• Real-Time Pricing (RTP).

Time-of-Use (ToU): The electricity provider provides tariff rates based on time

of usage for a day.

Critical-Peak Pricing (CPP): The electricity provider provides tariff rates by

considering peak hours.

Real-Time Pricing (RTP): In this scheme, tariff rates are decided on a real-time

basis considering the current demand and peak usage details.

Incentive-based demand response program: Based on the customer response during

high consumption of electricity, incentives are provided to motivate the customer and

hence minimize the overall consumption.

• Direct Load Control (DLC)
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• Interruptible/curtail able service (I/C)

• Emergency Demand Response Program (EDRP)

• Capacity Market Program (CMP)

• Demand Bidding/Buy Back

• Ancillary Service Markets (A/S)

Direct Load Control (DLC): DLC is a demand response program, in which

the electricity provider has direct control over the consumer appliances and switch

the appliance power with short prior notice. This method is best suitable for low

consuming domestic and commercial consumers section.

Interruptible Load service : In the case of interruptible load service, the con-

sumer appliance can be interrupted or curtailed during any uncertainty of the system.

Emergency Demand Response Program (EDRP) : In this program, the

customer receives incentives for minimising the consumption in case of any system

malfunction, breakdown due to operational failure and power shortage etc.

Demand bidding/Buy back: Demand bidding program encourages large con-

sumption customers to bid for curtailment during high tariff or peak consumption.

This program helps the consumer in cost-saving depending on their willingness to

curtailment.

Ancillary service program: Ancillary service deals with the generator failure,

transmission line fault and other system accidents caused.

2.2 Smart Energy Management Strategy for De-

mand Side Consumers

Demand Side Energy Management(DSEM) plays a significant role in the efficient

utilization of energy. In literature, there are several approaches discussed based on

appliance Time of Use (TOU), scheduling methods and demand response event. Fur-

ther, sensor data integration and real-time data monitoring can make the system more

efficient.
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2.2.1 User Appliance Scheduling and Controlling Approach

Load shedding due to insufficient power generation is one of the significant issues, and

hence, there is a need for efficient utilization of available power in the best optimal

way. When the available power from generating stations is less than the required

demand from the consumer’s end, conventionally power distribution to some of the

areas are tripped down by the utility in the order of their preference. The power con-

sumption pattern is shifted to off-peak hours to balance the system, and hence, each

affected area suffers the minimum possible blackout time. In recent years to overcome

the issue of the complete blackout, a significant area of research focuses on the design

of a Smart Energy Management System (SEMS) for consumers which benefit utilities

as well as the end-users (Kuzlu et al., 2015). Today, interests in energy management

systems have grown significantly, and now it is possible to optimize power utilization

at consumer premises to get finer control of available resources (Dı́az-Vilariño et al.,

2015),(Barelli et al., 2018). The main goal of SEMS is to satisfy user comfort with

available power, minimize energy consumption, and thus balance the demand and sup-

ply ratio. In demand-side energy management, during the peak consumption window,

there are multiple constraints to schedule power optimally. Nevertheless, environmen-

tal weather sensor data can also contribute to a greater extent in minimizing and

scheduling the available power effectively. Energy usage levels of Heat Ventilation Air

Conditioning (HVAC) and other heating appliance(s) depend upon the weather con-

dition in that region (Sehar et al., 2017). In general, the appliance can be categorized

as schedulable and non-schedulable (Huang et al., 2016). Further, the schedulable

appliance can be of interruptible or non-interruptible types. For example, a washing

machine can be considered a schedulable non-interruptible device, and a pool pump

can be a schedulable non-interruptible device (Zachar and Daoutidis, 2018),(Kumar

and Saravanan, 2019).

A comparative study of different literature published in the area of building energy

management system is discussed and listed in Table-2.2.

A considerable amount of literature focuses on algorithms deployed in demand-

side energy management framework associated with a DR strategy. In literature (Han

et al., 2011), authors propose a home energy management system to provide individ-

ual appliance usage details to the consumer and lets the consumer make a decision,

but no automation mechanism to control appliance operation. The authors in (Ueno

et al., 2006), have evaluated the effectiveness of Energy Management System (EMS)
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by considering power consumption data, ambient temperature, room temperature and

consumer usage profile prior and after deployment of the EMS system. It is reported

that significant power reduction can be made by changing the TV usage pattern,

avoiding standby power consumption and by varying the refrigerator capacities based

on the constraints above. In a recent work (Pedrasa et al., 2010), the authors pro-

posed an optimized model using Particle Swarm Optimization (PSO) scheduler, which

emphasis on minimizing electricity cost and reducing peak load consumption for a do-

mestic consumer. Furthermore, authors (Ahmed et al., 2017) deployed algorithm for

optimal real-time scheduling designed to shift the peak window and minimize the

overall energy consumption by assigning priority to the appliances. (Kuzlu et al.,

2012) presented a hardware demonstration of the energy management system at the

appliance level based on the DR program considering maximum demand limit con-

straint and also communication delay involved with energy management set up was

evaluated.

2.2.2 Energy Management Strategy Integrated with Sensory

Data

In recent literature, various investigations have been carried out with environmental

sensor data and user comfort integration to develop a more sophisticated energy man-

agement system. Authors (Klein et al., 2012) presents a multi-agent-based comfort

energy management system, which can dispatch the controls actions considering occu-

pants and sensory information data. It coordinates with the occupants in the building

and real-world data like actual ambient temperature, user preference, and user sched-

ules to maintain the user comfort and hence optimize the energy usage. Author’s

(Doukas et al., 2007), developed a knowledge database with building energy charac-

teristics and sensor feedback. Further, a rule set based intelligent system incorporated

with expert knowledge is designed to create a reliable energy profile to control energy

activities with preserving consumer comfort and minimizing the electricity cost. Au-

thors (Sehar et al., 2017) presents an integrated environment to control appliances in a

commercial building, i.e., Heating, ventilation, and air conditioning (HVAC) demand

to maintain Individual user satisfaction considering their preference. (Ogunjuyigbe

et al., 2017) suggested a demand-side load management technique that focuses on

maximizing the user satisfaction level based on a certain rule at a possible minimum
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cost with a predefined budget by the consumer. In this case, the acquired data can be

used for predictive analysis and further optimization in energy usage pattern (Fabrizio

et al., 2017).

Previous studies have suggested several optimal energy models for consumer-based

on DR strategies and optimization approach. Author’s (Tenfen and Finardi, 2015)

proposed detailed modelling of optimal energy management to reduce the operational

cost of the system, incorporated with shedding and scheduling of loads in demand

side. In this work, authors also consider reducing the start-up, shutdown, and main-

tenance costs. Authors (Yin et al., 2016), present a novel DR estimation framework

with regression models based on time of use and temperature set point for domes-

tic and commercial consumers. The developed framework shows a DR potential and

flexibility for peak load shed prediction. Author’s (Lagorse et al., 2010) have de-

veloped a multi-agent EMS architecture for smart home energy management system

with consumer intention and sensor feedback involving scheduling strategies and DR

mechanism. Further, this technique has been implemented for renewable sources inte-

grated with smart grid control. Author’s (Paterakis et al., 2015) focus on scheduling

and controlling in-home appliances to provide economic advantages for residential en-

ergy management, modelled using mixed-integer linear programming. Furthermore,

battery-based Energy Storage System (ESS) considered along with DR strategy im-

proved significantly in lowering the electricity cost.

In a recent work (Wang and Tang, 2017), proposed a novel supply based feed-

back control strategy. Global and local cooling distributors based on adaptive utility

function are employed to properly distribute the chilled water/air flow among dif-

ferent zones to sustain the uniform thermal comfort. The proposed system helps

resume operation quicker after the DR event and shows a significant reduction in

power consumption. Authors (Qureshi and Jones, 2018), have proposed a hierarchi-

cal control scheme providing ancillary service for demand-side management involved

with building thermodynamics and HVAC system by tracking temperature level and

load flexibility. The developed method offers flexibility in load scheduling and also

minimum operational cost.
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2.2.3 Communication Infrastructure and Remote Monitor-

ing of Energy Consumption

Several energy management frameworks are designed based on various communication

technology, such as Wi-Fi, ZigBee, and power-line carriers. The suitable communi-

cation mode between the consumer loads and utility gateway is used to control the

appliance with different operation strategy (Han and Lim, 2010),(Son et al., 2010).

Authors (Son et al., 2010), proposed a home EMS with key features involving real-time

data monitoring, intelligent control actions using power line communication. The de-

signed system provides remote monitoring feature for better energy conservation with

the use of Reduce model, a statistical model which examines the energy-saving choices

by including many different factors. The Internet of Things (IoT) introduced in recent

years has a wide range of application in the automation system. Integrating the IoT

environment in SEMS aids for remote monitoring and controlling at the appliance

level for efficient energy management (Abate et al., 2019),(Alavi et al., 2018). In a

study author’s (Ghatikar et al., 2016), developed new models using linear optimiza-

tion techniques and communication open standards. In addition, this work presents

a cost-effective solution to demand-side energy management challenges by exploring

communication technologies and information models for distributed energy system

integration and interoperability.

Most of the energy management implementations discussed in the literature focus

mainly on domestic consumers. They are designed to schedule the appliance opera-

tions based on Utility signals assigned with fixed priority parameters. There is still a

need to implement a flexible energy management system, which includes a variety of

consumers which can manage power-intensive loads and limit peak household demand

without significantly impacting user satisfaction or reducing overall power costs.

In addition, a reliable communication infrastructure with real-time monitoring and

ease of scalability at the appliance level is essential in the design of SEMS. In this

context, the proposed scheme emphasizes on design and development of real-time

hardware prototype.
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2.3 Optimization Technique in Demand Side En-

ergy Management

In the demand-side energy management, researchers have used several approaches to

solve optimization problems. A comprehensive and critical survey on various strategies

has been carried out in the following subsections.

The Demand Side Energy Management(DSEM) and Demand Response(DR) plays

a vital role in the energy sector for Residential as well as Industrial and Commercial

Consumers. DSEM deals with load management to avoid blackout conditions, reduc-

tion of energy usage, etc. In contrast, DR involves the participation of consumers

in the incentive-based programs to reduce the peak power usage and electricity bill

(Mohsenian-Rad et al., 2010). Load scheduling is a technique that involves finding

the best time to power on various loads in order to minimize their cost of energy.

Moreover, this is subject to considerations like variable cost of power, the fact that

some devices cannot remain on past certain times, the total maximum demand allowed

in the system, and the ratings of each device (Du and Lu, 2011). This problem has

many possible solutions, given that it is a standard constrained minimization exercise.

One of the significant differences from continuous minimization is that the slots we

considered give the problem a discrete characteristic per hour, and with this nature,

variable tariffs mean that the curve cannot be easily aligned.

In DSEM, the main aim is to minimize the electricity bill, maximize the user com-

fort and reduce the aggregated power. In this aspect, different DSM techniques and

algorithms have been discussed in the literature. In general, the optimization problem

has an objective function and dependent parameter constraints. In an energy manage-

ment strategy, the main objective function can be the minimization of the electricity

cost or aggregated power consumption along with maximum user satisfaction level.

Further, appliance operating parameters such as ToU, duration, priority etc. will be

parameter constraints (Dong et al., 2012).

Depending on the constraint parameters and the nature of the objective function,

optimization problems can be categorized as integer linear programming or integer

nonlinear programming. In addition, deterministic and stochastic programming prob-

lems are categorized based on the nature of the uncertain constraint variables involved.
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2.3.1 Minimization of Electricity Cost

The main objective of the optimization algorithm is to obtain the best optimal solution

for the given problem. In DSM strategy, the aggregated energy cost can be reduced

by shifting the peak hour consumption, minimizing energy usage, utilizing a maxi-

mum alternative source of energy like a renewable generation. The load scheduling

strategy and features of each load are required to get the best optimal solution. Fur-

thermore, a number of load parameter constraints and the objective function decides

the computational complexity of the scheduler.

Integer Linear Programming (ILP) is a widely used method in the literature to

solve the load scheduling problem. In a recent work Molderink et al. (2009), the

control algorithm is designed for domestic customers at the local and global level

based on the current state of the system and the external parameters that affect it.

The proposed controller determines when the appliance should be turned on or off with

the generator supply for a specific schedule. The proposed strategy maintains the level

of user satisfaction. However, this method only considers fixed interval scheduling. In

general, this technique is not best suitable for loads with different power consumption

patterns.

In a similar work, using a Mixed Integer Linear Programming (MILP) method

authors (Mohsenian-Rad and Leon-Garcia, 2010) proposed an optimal energy con-

sumption scheduler for residential consumers to achieve minimum electricity bill. In

addition, the trade-off between minimizing the electricity cost and waiting time of an

appliance is considered.

An efficient home energy management scheme is proposed in (Zhou et al., 2014)

using Binary Particle Swarm Optimization. The objective of this technique is to

minimize the electricity bill with minimum interruption and to satisfy the different

constraints considered. Different load curves are targeted by random, single and dou-

ble optimal objectives.

2.3.2 Minimization of Aggregated Power Consumption

Reducing total power consumption depends on the optimum schedule obtained, con-

sidering the peak time. In this strategy, a good schedule relies on the DR event with

an incentive-based program offered to consumers. In reducing total power, the load

scheduling strategy should be carefully designed considering user preferences, schedul-
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ing and non-scheduling loads and tariffs.

Authors (Logenthiran et al., 2012) presents DSM with load shifting techniques, based

on a heuristic-based evolutionary algorithm to solve load scheduling problem. Various

types of loads from different sectors were included in the simulation and showed better

simulation results with electricity bill saving with reduced peak demand.

A Genetic Algorithm(GA) based DSM model is proposed in a article by (Khan

et al., 2015), energy management for residential consumers is carried out by load

shifting techniques for schedulable loads without reduction of electricity usage and

appliances are classified based on user preference and their characteristics.

Pedrasa et al. (2009) have investigated the BPSO algorithm for solving multi-

objective optimization problem by using a single aggregate objective function for a

significant number of loads under different constraints. It is observed that BPSO

achieved a near-optimal solution with less computation time for a relatively complex

problem.

Miao et al. (2012) use a GA based algorithm for home energy management system.

The main objective of his study is to reduce electricity cost by scheduling appliances

in a predefined slot with satisfying the user constraints. A comparative study was

carried out, and simulation results showed GA performs better and gives optimal

solution than the greedy method.

An efficient heuristic-based approach is presented by (Ogwumike et al., 2015) to

minimize the electricity cost scheduling the appliances in best available slots adhering

to the appliance operational and peak usage constraints. It is shown that the expo-

nential factor reduces the computational time, and hence heuristic algorithms can be

embedded within a simple microcontroller for smart meter application.

From the analysis of literature, it is observed that most of the optimization tech-

niques used in DSM are complex and takes more computational time, in turn, not

easily scalable and achieves less user satisfaction. Hence, in this work, an advanced

DSM technique is developed by considering load scheduling as a discrete optimization

problem and given the nature of such problems, there are multiple possible solutions.

We aim to find the optimal solution via the use of genetic algorithms, which performs

better in terms of peak power reduction, user satisfaction and computational time.
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2.4 Accurate Prediction Techniques for Renewable

Source Generation

Renewable Solar PV power generation is an abundant and promising source of energy

in the world. The main limitation remains that it is very unpredictable and intermit-

tent as it depends on tropical region or zones, environmental factor and meteorological

parameter like “irradiation”, “wind direction”, “wind speed”, “temperature”, “humid-

ity” and also mainly on “Sun-rise” and “Sun-set” time (Di Santo et al., 2018). Efficient

usage and management of these resources is very crucial to fulfilling the ever-increasing

energy demand of the consumer. In the digital world with an IoT environment, it has

made so many advancements in the energy sector for reliable data acquisition, remote

monitoring and controlling.

2.4.1 Input Selection of the PV Power Prediction Model

Solar energy, which comes from the Sun as solar radiation, is accessible renewable en-

ergy. The photovoltaic effect converts the solar cells made up of semiconductors in the

photovoltaic module into electricity. The output of PV power depends mainly on the

amount of solar irradiance. Certain meteorological parameters such as temperature

in the atmosphere, the temperature of the node, wind speed, direction and humidity

are further regarded as possible parameters for estimating the PV energy output.

2.4.2 Classification of PV Power Generation Prediction

The researchers have categorized the estimates for PV power generation according

to various factor categories. Nevertheless, the PV power forecast does not have set

requirements. The PV power forecasts, analysis of solar irradiance and other weather

data and predictions methods are categorized by most researchers according to the

predictive horizons, as shown in Figure 2.4. A comprehensive analysis was performed

on the basis of the following subsections for different classifications of PV generation

forecasting.

In coming days standalone solar PV generation plays a major role in the power

industry due to growing concern over the usage of fossil fuel (Kurczveil et al., 2014).

Hence it is essential to predict PV output data accurately and plan the operation

load/appliance at the consumer end for efficient utilization. Different approaches
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Figure 2.4: Classification of PV forecast types

can be considered for modelling of the solar irradiance depending on the availabil-

ity of dataset length, parameters considered and usage. In literature use of Sea-

sonal Auto-Regressive Integrated Moving Average (SARIMA), Radial Basis Func-

tion (RBF), wavelet decomposition network methods are employed (Ciabattoni et al.,

2013). However, the widespread use of these time series based model may not show

high performance since they are efficient with small range prediction. Authors de-

ployed of fuzzy logic technique to estimate insolation considering humidity and cloud

parameters, further used neural network technique to forecast solar energy with avail-

able data (Yang et al., 2014b). In a similar work, authors used historical data of

solar irradiance along with weather condition for prediction of solar PV output using

fuzzy logic method (Tanaka et al., 2011). Aunedi et al. (2013) have carried out an as-

sessment of frequency regulated refrigerators with deep penetration of renewable and

shown with the perspective of economic and environmental benefits. A weather-based

hybrid model was developed combined with a different prediction model for accurate

PV generation output (Yang et al., 2014a).

Accurate renewable forecasts for utilities, as well as energy consumers, have many

benefits, such as monitoring the distribution potential, efficiency, and reliable and

safe operation of utilities. Accurate forecasting information from renewable power

generators helps energy sector to minimize power fluctuations and maintain overall

reliability of the system. Continuous monitoring of the forecasting information may

also help the energy producers to preserve the health of the system (Gigoni et al.,
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2018).

On the other hand, there are several works carried out towards deployment of De-

mand Side Energy Management system. In the power engineering context, it is also

referred to be as ”Demand Response” event, which allows the consumer to change

their power consumption pattern considering ToU and Utility tariff price to avoid

peak usage. In recent articles authors (Pedrasa et al., 2010) and (Mohsenian-Rad and

Leon-Garcia, 2010) focus on scheduling and controlling in-home appliances to provide

economic advantages for residential energy management. Authors (Sehar et al., 2017)

presents an integrated environment to control appliances in a commercial building,

i.e., Heating, ventilation, and air conditioning (HVAC) demand to maintain Individ-

ual user satisfaction considering their preference. In literature authors (Ogunjuyigbe

et al., 2017) suggested a demand-side load management technique that focuses on

maximizing the user satisfaction level based on the certain rule at possible minimum

cost with a predefined budget by the consumer. Acquired data can be used for predic-

tive analysis and further optimization in energy usage pattern (Fabrizio et al., 2017).

In order to keep the power usage under a pre-determined limit authors (Busquet et al.,

2011) have implemented event-driven scheduling algorithms by assigning priority class

to home appliances. However, authors considered constant power supply from the grid

but not for the dynamic generation like the renewable source.

In this work, solar irradiation data from NREL site is collected for Mangalore

region, and the solar radiation output is usually available from 7 AM to 5 PM for a

day. Dataset is used to train the different models and validate the results obtained

to find the accuracy of the prediction. In order to make proper load scheduling or

pre-scheduling, accurate forecasting of source generation plays a key role in the energy

management system.

Based on state of the art, there is a need for more accurate renewable energy

prediction model for demand-side SEMS to manage load/appliance efficiently with-

out limiting user comfort. In this context, developing an accurate predictive model

based on several machine learning techniques is considered for an efficient energy

management system. Furthermore, it facilitates the user-configured dynamic priority

assignment function associated with the IoT environment. The proposed architecture

is evaluated at the laboratory level experimental set up, which shows a better SEMS

with prediction model with reliable communication.
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2.5 Objectives of the Research Work

1. Design and development of SEMS prototype for experimental validation.

• Deployment of power negotiation algorithm and user defined functions with

reliable communication.

• IoT Environment for data storage, remote monitoring and analysis.

2. Performance evaluation of optimization algorithms for Demand Side Energy

Management (DSEM) consumers.

3. Accurate prediction of power availability using different machine learning model

for DSEM consumers.
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Chapter 3

Design and Development of Smart

Energy Management System

3.1 Introduction

The modern era has considerably increased the usage of power appliances, and re-

search community has shown growing concern over minimizing the cause of the envi-

ronmentally hazardous and alternative source of energy resources. The ever increasing

demand for electricity consumption is a challenging issue to be addressed. Consumers

in developing countries are affected severely due to the insufficient power supply from

utilities during peak hours, leading to frequent unscheduled load shedding. To adapt

to the above situation, a consumer has to invest in fuel generators and battery storage

with additional financial burden counterpart inversely affecting the economic growth

of the country. At the other end, utilities have to invest huge amounts in developing

infrastructure for the generation plants to withstand peak hours, subsequently lead-

ing it to be underutilized. In order to maintain energy supply and demand, a reliable

power network within the power generation, transmission and distribution sectors is

required.

Smart Grid brings rapid transformation in the energy sector, enables the demand-

side management system to quickly respond during outages, peak load shifting, and

fault management. In addition, it facilitates the consumer to employ alternative re-

newable sources for minimizing electricity cost and efficient utilization of available

power sources. Demand Response (DR) program in Demand-Side Energy Manage-

ment (DSEM) is a viable solution to manage energy efficiently and in turn, benefit
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the consumer and utilities (Deng et al., 2015). Smart meters at the consumer’s end

have a crucial role to play in the power management of energy sectors (Beaudin and

Zareipour, 2015). Bidirectional communication between consumer premises and the

utilities provide a greater opportunity in the energy management system (Gelazan-

skas and Gamage, 2014). Currently, utilities provide different tariff rates based on

the categories of consumers. The classification of consumers is mainly based on the

usage of electricity and the business established in that region. Most commonly en-

ergy sectors divide consumers into different categories as Domestic, Commercial, and

Industrial customer (Lilis et al., 2017). For each category, there are different tariff

rates with Time of Usage (ToU) and penalty charged considering demand limit and

power factor parameters. Tariff rates are low for residential customers and high for

industrial customers, since industrial sector gives maximum profit for utilities, hence

it is listed to be in the high priority section.

3.2 Development of Smart Energy Management Sys-

tem

This section describes the proposed Smart Energy Management System (SEMS) in

detail with the algorithms embedded within the system.

3.2.1 Overview of Proposed SEM System

The concept of proposed smart energy management (SEM) system is shown in Figure

3.1. The overall system comprises of an SEM unit that provides a monitoring and

control functionalities for a consumer and another end Smart Sockets gather electri-

cal parameters from appliances and perform local control based on command signals

received from the SEM unit.

SEM unit also acts as a gateway that provides an interface between the utility and

a consumer. In such a scenario, the gateway receives the data of allocated maximum

demand limit from the utility, which is used as an input for our SEM unit. Utility,

on the other side, collects energy consumption data from all the SEM units in a city

and analyzes this data for updating the maximum demand limit of each household.

Collected data would also be used for billing purpose, and an e-bill would be generated

for each household.
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Figure 3.1: Overview of proposed smart energy management system

3.2.2 The Architecture of SEM Gateway

In general, SEM Gateway comprises of the following modules as shown in 3.2,

Micro-Controller

XBee

Module

Power Supply

Module

Main

Supply

LCD Display

RTC 

Module 

Push ButtonsPush Buttons

Ethernet 

Shield

Main Server

Database

Webpage

Figure 3.2: Functional block diagram of central gateway
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The SEM unit (central controller) acts as an intermediate gateway between the

utility and a consumer, and it is used here as the central control unit which runs a

decisive (power negotiation) algorithm that serves as a brain of the SEM system. It

decides to switch ON/OFF selected end-user appliances based on the utility signal

received, as well as homeowner’s load priority settings. During peak load hours, the

SEM unit warns consumer while switching on a high power-consuming appliance to

avoid high tariff charges. It is also responsible for collecting energy consumption data

from all the load controllers through XBee modules and providing an LCD interface for

homeowners to retrieve real-time energy consumption data and even with a provision

to configure the priority of an appliance as intended.

3.2.3 The Architecture of a Smart Socket Module (Load Con-

troller)

A load controller provides an interface between the SEM unit and a selected appli-

ance through Smart Socket Module (SSM). It provides essential power management

functions (i.e., control, communicate).

Micro-Controller

Current Transducer 

Voltage Transducer 

Signal Conditioning 

Circuit

XBee

Module

Relay

Power Supply

Module

Signal Conditioning 

Circuit

Main

Supply

Figure 3.3: Functional block diagram of smart socket module
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Different roles of functional module:

1. A data collection and processing module: The main task is to collects

real-time electrical parameters such as RMS voltage and current values, further

computes apparent power, real power, energy and power factor of an appliance.

Hall effect based LEM sensors is used here for voltage and current measurement.

2. A control module: It is an electronic relay circuit used to switch a selected

appliance ON/OFF, as per command sent by the SEM unit.

3. A communication module: It establishes a two-way communication path

between an SSM and the SEM unit.

The collected power consumption data from a load controller is to be sent to

the SEM Gateway counterpart commands from the SEM unit is received by a load

controller. Communication is established using Application Transparent (AT) mode,

and after collecting data from all load controllers, each load controller communicates

directly with the SEM unit and in turn, executes decisive algorithms and sends control

commands back to the load controller.

3.2.4 SEMS Communication and Web Based Data Archiving

The SEMS system establishes two communications between the controller and the

appliance. In addition, real-time data monitoring and archiving is performed using a

web-based interface through the SEM unit gateway.

3.2.4.1 Communication within Smart Energy Management System

Generally, the energy management system communication module is required at either

end of the master node and the slave node. One of the communication modules is inte-

grated with the SEM unit gateway and the other is associated with each smart socket

or load controller module.In practice, wireless communication is established between

the coordinator (user end) and the router (appliance end) module. The XBee Series-2

device is used here as a communication module, with an XBee module connected at

either end to allow communication within the SEMS. The XBee module of the load

controller is configured as a router (appliance end) and the other modules are con-

figured as coordinators (user end). Once communication is established between the
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router and the coordinator of the SEM system, the SEM unit runs a power negotiation

algorithm on the collected power consumption data, and the associated coordinator

sends control signals to the router.

3.2.4.2 Network Configuration of SEMS and Ethernet Shield

Initially, the Arduino analog input and output ports are in a logic low state. All data

pins anything connected to the Arduino Ethernet shield is set to a fixed baud rate. All

required libraries required for communication is connected to run at startup. Input or

output data type initial values are declared. Timing parameters are initialized globally

to set the time interval between server and client communication. An additional

reset switch is provided to restart the entire system configuration. All of the above

configurations are displayed on the serial monitor to verify the following Input or

output configuration.

The Ethernet shield (W5100) is located on top of the Arduino and communicates

with the Arduino GPIO. Arduino peripherals such as reset, ground, power supply

(5V ) are connected directly without external equipment. A LAN (local area network)

cable is connected to the board, allowing Internet connection. All configurations re-

lated to Ethernet shielding and data communication are programmed on the Arduino

microcontroller. The library that defines the Ethernet commands is programmed into

Arduino. These libraries and setup commands start running when the shield is acti-

vated. A static MAC address is assigned to the shield specified by the manufacturer.

As the board starts communicating with nearby network nodes, a dynamic IP is as-

signed to the board. Arduino board and Ethernet shield are made as clients of this

work. A static server IP is obtained which can work at different locations within the

local area network and burned into the program code. Ethernet shield keeps assigning

the same MAC IP address each time you communicate with the server. Ethernet

shield sends a failure message to Arduino during network configuration malfunction.

Every 5 minutes Arduino Ethernet clients connect to the server via a specific HTTP

port (80). Currently available The data calculated by the Arduino microcontroller is

sent to the server one by one. File-path is written in Arduino code for storing data on

the server. After Arduino recognizes the ethernet shield, all electrical parameters will

be successfully uploaded. A functional diagram of the Arduino and ethernet shield is

shown in Figure 3.4.
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Figure 3.4: Functional block diagram of the Arduino and ethernet shield

3.2.4.3 Server and WebPage

WAMP (Windows, Apache, MySQL, PHP) server is a web development platform on

Windows create dynamic web applications using Apache server, MySQL database and

PHP scripting language. In smart metering applications, the WAMP server is used as

a local server. Further, this application allows users to create a user ID and password

for authentication. Additionally, MySQL can be used to create multiple instances

and store it on the server. It is required to check configuration of the system before

installing WAMP server. After successful installation, all the files will be stored in a

particular folder specified by the user.

3.2.5 Smart Meter Firmware Requirement and Data Acqui-

sition

This section discusses the details of the software and hardware involved in the de-

velopment of SEMS. Figure 3.5 shows the firmware process involved in establishing a

successful connection and data upload.
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3.2.5.1 Software Requirement:

1. Arduino IDE (ATMEGA328 Microcontroller): Smart socket modules are

build based on the Atmega328, 8-bit microcontroller compatible with the Ar-

duino IDE open source platform.

Features:

(a) Operates with a clock speed of 16MHz

(b) The Atmega328 has 32 KB of flash memory for code

(c) Analog input pins :6

(d) Digital input pins :14

2. XCTU Software: XCTU sofware is used to establish communication between

two or more XBee RF modules.

Features:

(a) XCTU can detect and configure radio modules

(b) Configure XBee module in AT or API mode

(c) Firmware updation of XBee RF modules

3. WAMP Server: The WAMP server is used here to create a webpage using

Apache, store the data using MySQL database and programme using PHP lan-

guage.

Features:

(a) Different web-pages are created to access the user login page, power con-

sumption data of and trend graphs.

(b) All the power parameters along with time stamping are stored in th database.

3.2.5.2 Hardware Requirement:

1. SEM Gateway (Central controller)
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The SEM gateway (central controller) uses the RF XBee module in AT mode to

communicate with the smart socket module. The SEM gateway has a display

unit for displaying power parameters. In addition, the RTC module is embedded

for the real-time clock, and the Ethernet shield is embedded for uploading real-

time data. The hardware component modules involved in the design are as

follows.

(a) ATMEGA328 based Arduino Micro-controller 1

(b) XBee Module2

(c) 16X2 LCD Module 3

(d) DS3231 RTC module 4

(e) Ethernet Shield1

2. Smart Socket Module

The smart socket module uses a DC power supply device and has a relay module

to control the load status. LEM current and voltage sensors are used to measure

power consumption data. Further, a signal conditioning circuit is used to obtain

the desired signal. The XBee module is used to send data to or receive data

from the central controller. The hardware component modules involved in the

design are as follows.

(a) ATMEGA328 based Arduino Micro-controller1

(b) LEM55A Current Transducer5

(c) LEM25P Voltage Transducer 2

(d) Signal Conditioning Circuit

(e) Power Supply Module

(f) 5V RELAY Module and Socket

1https : //www.microchip.com/wwwproducts/en/
2https : //www.digi.com/resources/documentation/digidocs/
3http : //www.datasheetmeta.com/pdf.php
4https : //datasheets.maximintegrated.com/
5https : //www.lem.com/sites/default/files/productsdatasheets/
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3.2.5.3 Data Acquisition and Uploading:

The ATMEGA328P based micro-controller is connected with a compatible Ethernet

shield to configure it as a client part, which establishes the communication with the

server. Arduino UNO microcontroller computes the different electrical parameters

by fetching the analog values of voltage and current sensors. These transducers will

give the stepped-down voltage signal in the range of less than 2.5V. Computation

of different electrical parameters will be performed at microcontroller end. Arduino

Ethernet shield is allocated with a unique MAC address and IP address during its

boot-up there is a connection established between client and server. Once the MAC

address and IP allocation are successful, all the information will be transferred between

client and server, and it is also displayed in the serial window of Arduino through serial

communication.

The controller reads the sensor values from the analog ports, which is a scaled-

down signal of actual voltage and current signal. Further, these values are converted

in digital values in the analog to the digital conversion process. The ATMEGA328P

based micro-controller has 10-bit ADC and hence takes the analog values in the range

of 0 to 1023. After performing several computations, the proportional analog values are

converted into actual voltage and current value. The timer will be running parallel,

which sends the signal to the ATMEGA328P controller. After every 5 min of an

interval, Arduino sends the information to the server.

3.2.6 Calculations of Different Electrical Parameters

1. Instantaneous Voltage/Current:

The signal conditioning is performed on the actual voltage and current signals

before it could be processed with the microcontroller unit. ATMEGA328 Ar-

duino Uno microcontroller kit is used to read the analog values from the circuit,

which is sampled using built-in 10-bit ADC. The maximum sampling rate de-

pends on the resolution of ADC, and each individual sampled signal gives the

instantaneous values of voltage and current readings.

Pinst = Vinst(n)× Iinst(n) (3.1)
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Figure 3.5: Firmware development of IoT environment for SEMS.
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∑
Pinst =

∑
Vinst(n− 1)×

∑
Iinst(n) (3.2)

P =

∑
Pinst

n
(3.3)

2. Calculating the Real Power(P):

The instantaneous values of voltage and current readings are used to estimate

the real power of the circuit. The product of instantaneous voltage and current

is calculated to find instantaneous power (Pinst), and the sum of instantaneous

power is calculated by successive addition of instantaneous power. Finally, the

sum of instantaneous power is divided by the number of samples(n) to get real

power consumption.

3. Root Mean Square(RMS) Voltage:

For the n no.of sample, the successive som of squared voltage from the instan-

taneous product of the voltage is calculated and divided by the n number of

samples to get the average and RMS value of the voltage given by the equation.

Vrms =

√∑
V 2

n
(3.4)

Similarly, Irms is given by

Irms =

√∑
I2

n
(3.5)

4. Apparent Power(S):

The product of RMS Voltage and RMS Current values gives the apparent power

of the load, which is given by

S = Vrms × Irms (3.6)

5. Energy (E):

Energy of an appliance is calculated as product of power and the time of power

consumption, which is given by
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Energy(E) = P × t (3.7)

3.3 Algorithms Embedded with Smart Energy Man-

agement System

The proposed SEMS control technology consists of smart socket units associated with

individual appliances to communicate with the SEM unit gateway (central controller)

using the XBee module in AT communication mode. The SEM unit of the proposed

method receives the maximum demand limit data allocated from utility and energy

consumption data from all installed smart sockets. In addition, SEM uses a decisive

algorithm for power negotiation to optimally schedule individual appliances. The

proposed SEMS incorporates the following algorithms into the SEM unit gateway and

Smart Socket Module (SSM) to address demand side energy management for optimal

energy use.

1. SEM Gateway (Central controller)

(a) Decisive algorithm operation during Demand Response(DR)

(b) Self-diagnostic feature to handle non-responding appliance

2. Smart Socket Module (Appliance end)

(a) Control actions dispatched at the appliance end

(b) Cost optimization algorithm

3.3.1 Decisive Algorithm Operation During Demand Response

The decisive algorithm is the key element in the proposed SEMS technique, which

considers the consumer priorities of appliances and operates the most critical appli-

ances even when the utility allotted power is less than the maximum demand. The

complete flowchart of the proposed SEMS technique with power negotiation algorithm

is shown in Figure 3.6. Further, the stepwise explanation of the deployed algorithm

is discussed in this section.
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1. The SEM decisive algorithm starts by gathering power consumption data of all

the appliances. This data collection would be done in a predefined order. If any

load controller does not respond, the controller runs a self-diagnostic algorithm

explained in section 3.3.2.

2. The collected data of power consumption is arranged in the order of consumer’s

priorities, and then SEM Gateway checks for following demand limit violations.

Total Apparent Power consumed > Maximum Demand Limit(MDL).

3. SEM Gateway sends a command to switch ON the maximum number of high

prioritized appliances such that the MDL is not violated and sends a command

to switch OFF the remaining appliances.

4. For any appliance which is switched ON, the decisive algorithm also checks for

following peak load condition (which depends on user convenient).

Total Appliance Power > 1/4 (Maximum Apparent Power of previous month )

In case, if the peak load conditions is being satisfied, the SEM unit gateway

sends a command signal to the load controller to alert consumers that power

consumption at peak load is high to avoid high tariff charges. Moreover, the

load controller alerts consumers by turning on the buzzer and LED for one

second.

5. After sending each command signal to all appliances, the SEM unit gateway

waits 30 seconds before the next data sampling. In addition, consumers can

update appliance priorities based on their satisfaction during the wait time.

Then repeat steps 1-5.

A flowchart of the SEM decisive algorithm for ”n” household loads is shown in

Figure 3.6. It is to be noted that before running this algorithm, priorities of appliances

are initialized with predefined settings. Also, two variables ”i” and ”k” are used in

the flowchart. The variable ”i” increases in priority order, while ”k” increases in a

predefined order to collect power consumption data for all appliances.
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3.3.2 Self-diagnostic Feature to Handle Non-Responding Ap-

pliance

Decisive algorithms provide reliable communication in case of failure. The opera-

tion sequence during the self-diagnosis mechanism is shown in Figure 3.7. The SEM

gateway sends a request signal to each load controller to collect power consumption

data. Under normal operating conditions, the load controller responds immediately

with energy consumption data for that particular load. In unusual situations where

the load controller’s XBee module is temporarily inactive, the data transfer sequence

is interrupted, and the load controller may not respond after returning to normal.

In such a situation, the SEM gateway waits a set time of 6 seconds before running

the self-diagnostic algorithm, continuously polling the load controller for the next 5

seconds, and simultaneously waiting for a response. Then, if the inactivity is due

to a temporary failure, the load controller responds with the relevant data. Further,

the SEM gateway continues to send requests to other load controllers. If the load

controller does not respond after 5 seconds of continuous polling, the SEM gateway

considers the load controller to be permanently inactive for that event, and it starts
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sending requests to other load controllers. Therefore, an idle load controller has little

effect on the rest of the system.

3.3.3 Cost Optimization Algorithm

The various tariff plans and slab pricing introduced for consumers are listed in Ta-

ble.3.1, and this subsection describes the evaluation of cost optimization techniques.

ToU rates have a significant impact on consumer energy costs. To minimize energy

costs, load scheduling algorithms have been developed, however not all appliances are

suitable for this algorithm. Appliances in a household are categorized into schedulable

and unscheduled devices that allow the appliance to be scheduled for operation based

on the willingness of the consumer. This algorithm runs in the load controller of all

schedulable appliances. Therefore, all schedulable loads are controlled by the decisive

and the load scheduling algorithm that runs on the SEM unit and the load controller,

respectively.

The ToU tariff of MESCOM for the fiscal year 2018 applicable to Low Tension (LT) in-

dustries (categorized as LT-5) 6 is mentioned in Figure 3.8. The ToU tariff mentioned

above is considered for the design of load scheduling algorithm with an objective of

cost optimization. SEM unit sends data of time to all schedulable appliances. Based

on the time zone, the load controller of a schedulable appliance decides the status of

the device. Also, based on the consumer’s daily usage, there is a predefined period of

time for a day during which the appliance must be operated.

The algorithm is designed in such a way that appliance is operated to the maximum

possible extent during 22 : 00 Hrs to 06 : 00 Hrs so that consumer would be benefited

with an incentive of Indian rupees 1/unit as presented in Figure 3.8. During peak

load hours, the appliance is forced to be switched OFF irrespective of the required

duration of operation in order to avoid penalty. During non-peak load hours when

neither incentive is offered, nor penalty is levied, i.e., from 10:00 Hrs to 18 : 00 Hrs,

appliance can operate if the required duration of operation is more than eight hours

else it is switched OFF so that it would be scheduled to operate between 22 : 00 Hrs

and 06 : 00 Hrs as incentive would be provided during this period. Due to insufficient

power generation, some appliances cannot operate for the required time due to control

6http://www.mesco.in/tariffs/Tariff-order2018.pdf
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Figure 3.8: The approved ToU tariff for LT consumers

of the SEM decisive algorithm. In this case, the algorithm compensates for the loss by

allowing it to run longer the next day. Every day at 10:00 pm, the required duration

of the operation is updated by adding the previous day’s pending requirements to the

daily requirements.

Table 3.1: Tariff plans and slab rates

Tariff Plan Slab Rate ToU
Flat Rate Medium 10AM to 6PM

Variable
Low 10PM to 6AM

High
6AM to 10AM
6PM to 10PM

3.3.4 Control Actions Dispatched on the Appliance End

The details inside the smart socket will be explained in detail in the next section, and

the algorithm flowchart is shown in Figure 3.9, and the role of the smart socket algo-

rithm is as follows. The Smart Socket decisive algorithm constantly checks requests

received from the coordinator end and sends power consumption data.
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The microcontroller unit associated with the smart socket calculates and sends

RMS current, voltage, real power and power factor parameters. The smart socket

receives command signals from the coordinator and controls relays to switch appliance

status accordingly. In addition, smart sockets receive signals from the coordinator and

provides any required warnings about the appliance consumption.

3.3.5 Configurable Priority Setting Feature

Configurable priority settings allow users to schedule appliance operations according

to their requirements. In this context, three different appliances are considered to

be assigned high, medium, and low priority. Critical appliances that take time-of-

use (ToU) into consideration are assigned a higher priority than other appliances. A

diagram of configurable priority scheduling is shown in Figure 3.10.
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Figure 3.10: Illustration of the configurable priority scheduling

Consumer priorities for using appliances change every few hours in a day. For

example, during the day AC is more important than lighting, but at night light is pre-

ferred over AC. As a result, prioritization is configurable to give consumers flexibility

in situations where requirements change, allowing consumers to update at any time

as needed. The priority of each load is displayed on the LCD screen in real-time.
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3.3.6 IoT Environment with an Energy Monitoring System
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Figure 3.11: Overview of IoT environment

Smart meter housing development is used to monitor energy consumption in real-

time. Developed SEMS power data can be uploaded to the server by establishing a

connection through the Ethernet shield. In addition, uploaded data can be accessed

and monitored using a data monitoring system or device. Collecting extensive me-

tering data allows you to consider studies on managing energy systems. Currently,

several research groups are exploring research areas such as real-time energy manage-

ment solutions, big data analytics, machine learning, and energy cost solutions. A

graphical view of the entire system is shown in Figure 3.11.

The energy monitoring system consists of a server and database management sys-

tem for real-time monitoring and data acquisition, as shown in Figure 3.12. The

server used is WAMP, and the overall application is accessed using localhost in intra-

net. The hostname can be changed from localhost to a specific domain name to access

power parameters via the Internet. Multiple databases are created in the server to

store different power parameters. Power data is uploaded to the server at the interval

of 5min. In the web portal, only an authorized person can be able to login into the

webpage using login credentials. Further, results and trend graphs are presented in

section-3.4.6.
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Figure 3.12: IoT environment for energy monitoring system

3.4 Demonstration and Result Analysis

In this section, results for different scenarios are demonstrated and are analyzed.

Experiments are conducted by assigning an order of priority to appliance with different

configurations, user comfort case and cost optimization technique are demonstrated

to prove the effectiveness of the energy management system.

3.4.1 Smart Energy Management System Experimental Setup

In this section, emulation of demand response event is presented in laboratory envi-

ronment for experimental verification of SEMS.

3.4.1.1 The Overall System Set-up

The overall SEM system is shown in Figure 3.13, which is set up in the laboratory en-

vironment with actual loads: a lighting load, a fan, and a charging laptop. Algorithms

deployed in SEM unit are designed to run the appliances in the order of assigned prior-

ity during the Demand Response(DR) event considering the maximum demand limit,

scheduling the appliance considering the Time of Usage (ToU) to accommodate it in

the minimum slab rate.
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Figure 3.13: Experimental setup of SEMS

Actual loads are used in the experimental work in the laboratory environment, and

an incandescent lighting bank is used as Load-A, which has the provision for varying

the power consumption by switching on/off the status of the individual bulb within it.

The fan is used as Load-B in the setup. Fans can change speed and are associated with

humidity and temperature sensors to show how user comfort is integrated with the

deployed algorithms. A charging laptop is included as Load-C. This load is deliberately

chosen to indicate the scheduling of rechargeable loads with regard to ToU.

3.4.1.2 User End Interface with the Display Unit

The SEM unit has the LCD unit to display the essential electrical parameter such

as energy consumption of the loads and the priority of the loads assigned. Switch

buttons are included to change the priority of the appliance according to the consumer

preference. The laboratory experimental setup of the SEM unit is shown in Figure

3.14.

3.4.1.3 Smart Socket Module as a Load Controller

The experimental setup uses three identical load controllers, which is named as smart

socket as depicted in Figure 3.15, these are used as general-purpose socket built for

switching the loads according to control signals received. Also, used for sub-metering
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application to measure the basic electrical parameters of the loads connected. The

module is associated with an ATMEGA328 microcontroller unit, measurement mod-

ules, i.e., voltage(LEM LV-25P) and current sensors (LEM LA-55P), a relay module

with 20A range for switching actions and XBee series-2 module for bidirectional com-

munication.

DS3231 RTC clock

XBee Series-2 module

ATMEGA 328 MCU

Figure 3.14: Experimental setup of SEM Gateway

3.4.1.4 SEM System Communication Modules

SEM systems use two identical XBee modules for ZigBee communication. XBee mod-

ule with SEM unit configured as coordinator and XBee module with smart socket

configured as a router. The experimental setup uses the application transparent (AT)

mode of ZigBee communication. The coordinator in the SEM unit sends a broadcast

data request message to the routers integrated with the smart socket in the predefined

order, which collects all the power consumption data from the loads connected to the

smart sockets. In turn, the router receives the control signal from the coordinator
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Xbee series-2

LEM LV-25P 

LEM LA-55P 

Relay Module

ATMEGA 328 MCU

Figure 3.15: Experimental setup of Smart Socket Module

of the SEM unit. The data collected from the router is in the format of the string.

In turn, it is converted to its equivalent decimal format to get the actual value of

electrical parameters.

3.4.2 Operational strategy of the configured priority loads

The mechanism of how the load works in various configurations is described in the

following subsections. Details of different cases are listed in the Table 3.2.

In this case, the incandescent bulb bank is considered as Load A and it is assigned

with the highest priority. A fan load is assigned with mid priority and battery charging

appliance is considered as a low priority, as it is a schedulable load. The SEM load

scheduling operation is depicted in Figure 3.16.

Details of the step-by-step execution of load scheduling using set priorities are

given below.

• Step 1: The SEM unit broadcasts a data request signal in the form of a string
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Table 3.2: Different load priority configuration cases

Case Priority Order Load Type Observation

I(a) Load A>Load B >Load Fixed
To show running of higher

priority loads

I(b) Load A>Load B >Load C Variable
To show running of higher priority

loads under dynamic consumption

II Load C>Load B >Load A Fixed
To show different priority

configuration

“Ca”.

• Step 2: Load A responds with its power consumption data: RMS voltage, RMS

current, power factor, apparent power, active power, reactive power and energy.

• Step 3: Next, the SEM unit broadcasts a data request signal in the form of a

string ”Cb”.

• Step 4: Load B responds with power consumption data.

• Step 5: Next, the SEM unit broadcasts a data request signal in the form of the

string ”Cc”.

• Step 6: Load C responds with its power consumption data.

• Step 7: The SEM unit uses command signals in the form of the strings ”raah”,

”rbbh”, and ”rcch” to turn on the relays for all three loads.
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Case-I (a): Operational Strategy with Fixed Consumption of “Load a”.

In Figure 3.16, it is shown maximum demand is set to be 530W (i.e., input from

the utility). From the period 8.16.44 PM to 8.19.44 PM, all the three loads were

turned since the maximum power consumption is less than the maximum demand

limit (MDL). From Table 3.3, it is observed that the required power is below the max-

imum demand limit. Thus, according to the decisive algorithm, all three loads remain

”on”. In this case, since the total power demand is below the maximum demand limit,

the SEM unit turns on the relays for all three loads using command signals in the form

of strings ”raah”, ”rbbh”, ”rcch”.
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Figure 3.16: Experiment to demonstrate running of higher priority appliance with
MDL constraint
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Table 3.3: Appliance status after load scheduling case-I

Appliance Load A Load B Load C
Appliance Status On(1-bulb) on on
Apparent Power(W) 165 127 083
Power Demanded(W) 375
Maximum Demand Limit
(MDL)

530

Appliance Status after
power negotiation

on on on

Case-I(b)): Operational strategy with dynamic consumption of “Load

a”.

At the instant of 8.19.44 PM, the extra incandescent bulb in the bank is switched

((i.e., two bulbs ON) and the total power consumption exceeds the MDL.

The proposed SEM controller responds immediately to this scenario and turns

off the battery charging load (Load-C). In addition, at the instant 08.20.29 PM, the

lighting load alone consumes 497W of the 530W MDL, so switching the additional

bulbs (i.e., three bulbs on) increases the power consumption of the lighting load.

Therefore, the controller switches off the second load (Load-B) as well to balance the

supply and demand. Finally, when Load A consumption is decreased, Load B and

Load C are turned in the order of priority. Power consumption details and scheduling

of appliances by SEM, in this case, are listed in Table 3.4.

Table 3.4: Appliance status after load scheduling case-II

Appliance Load A Load B Load C

Appliance Status On(1-bulb) on on

Apparent Power(W) 330 127 083

Power Demanded(W) 540

Maximum Demand Limit

(MDL)
530

Appliance Status after

power negotiation
on on off
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3.4.3 Case-II: Operation Strategies for Configurations With

Different Load Priority Order

8.23.29 PM 8.23.44 PM 8.23.59 PM 8.24.14 PM 8.24.29 PM 8.24.44 PM 8.24.59 PM 8.25.14 PM 8.25.29 PM 8.25.45 PM 8.25.59 PM 8.26.14 PM 8.26.29 PM 8.26.44 PM 8.26.59 PM 8.27.14 PM 8.27.29 PM 8.27.44 PM 8.27.59 PM0100200300400500600

 

 LoadA LoadB LoadC MDL Total

Power (W)

Time(hh:mm:ss)

Load A is Tripped

8.23.29 PM 8.23.44 PM 8.23.59 PM 8.24.14 PM 8.24.29 PM 8.24.44 PM 8.24.59 PM 8.25.14 PM 8.25.29 PM 8.25.45 PM 8.25.59 PM 8.26.14 PM 8.26.29 PM 8.26.44 PM 8.26.59 PM 8.27.14 PM 8.27.29 PM 8.27.44 PM 8.27.59 PM0100200300400500600

 

 LoadA LoadB LoadC MDL Total

Power (W)

Time(hh:mm:ss)

Load A is Tripped

Figure 3.17: Experiment to demonstrate running of higher priority appliance with
MDL constraint

Similar to Case-I, but the load priorities have been changed as described in the table

ref tabe2 below in the graphical demonstration of Figure 3.17. The SEM unit compares

the total apparent power of all the three loads (0.330 + 0.127 + 0.083 = 0.54 kW)

with maximum demand limit of 0.53 kW. Since total power demand is more than the

maximum demand limit and power demand of the first two priority loads(i.e. load

C and load B) (0.083+0.127 = 0.210 kW) is less than the maximum demand limit.

SEM unit switch ON relays of load ‘c’ and ‘b’ but switch OFF relay in series with a

load ‘A’ using command signals in the form of strings “raal”, “rbbh”, “rcch”.

Appliance operation based on a decisive algorithm with an assigned order of pri-

orities is presented in the above Figure 3.17. The user wants to turn on all three

loads. Initially, all the loads are turned since there is no violation of MDL. Load ’A’

consumption is increased further, and it is observed that load ’A’ is itself tripped off

to avoid MDL violation since it is assigned with lower priority in this case.

3.4.4 User Preference Setting With Perceived Sensor Data

Most of the heating or cooling appliances are designed to operate at a fixed tempera-

ture or in a shorter range of temperatures which would force appliances to turn on or

off frequently. For example, an air conditioner attains the desired temperature accord-

ing to the temperature set by the consumer. The compressor in the air conditioner is

turned on and stays on until the room temperature is equal to the set temperature.

While the desired temperature is reached, the compressor turns off until the room

temperature rises again. Air conditioners consume a lot of power each time the com-

pressor is turned on. This power is much higher than the power consumed by air

conditioners for continuous operation (long cycles). Therefore, frequent short cycles

will affect the efficiency of the air conditioner. On the other hand, the efficiency of an

air conditioner increases as it operates for a longer time, i.e., longer cycle.
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Figure 3.18: Experiment to demonstrate user comfort setting with the sensed param-
eter

In the proposed system, the consumer is given provision to set a larger range of

temperatures to improve the efficiency of appliances, thereby reducing energy con-

sumption. When SEM unit sends command signals to switch on a heating or cooling

appliance, the load controller of that appliance also checks for comfort settings viola-

tion and controls appliance such that it always maintains the temperature within the

range of consumer’s comfort settings. In our case, data from humidity temperature

sensor Heat Index in Celsius(HIC) is used as the threshold value with an upper limit

(25C) and the lower limit 22C to control the load status as shown in Figure 3.18. At

the instant 7.43.20PM , room temperature is below 22C. Consequently, the controller

turned off the fan load. Similarly, after some time (i.e., at 07.51.16 PM) temperature

has crossed the upper limit (i.e., 25C), the controller turned on the fan load.
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Figure 3.19: Experiment to demonstrate scheduling operation with ToU

3.4.5 Scheduling Considering ToU Tariff

As explained in the earlier sections, appliances in the household can be categorized

into two groups, such as schedulable and non-schedulable. To reduce the electricity

cost during the ToU tariff, the proposed controller shifts the schedulable loads to

peak off hours. In this case, the controller uses the input from the RTC module and

peak hours information from the utility. Load scheduling characteristics for ToU tariff

system is shown in Figure 3.19. In this case, peak-off hours start from 10:00 PM. Thus

the controller shifts the battery charging (i.e., schedulable load) to 10 PM to reduce

the electricity cost.
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Figure 3.20: (a) Login Portal (b) Load and Time selection webpage

3.4.6 Iot Environment With Energy Monitoring System

The webpage is developed to display real-time energy consumption and other electrical

parameters. The web portal is created in such a way that only an authorized person

can be log into the webpage using login credentials. After successfully logging in, the

user can access the smart meter data repository. For example: If a user wants to

check the real-time energy consumption of any laboratory present on the webpage,

the user needs to select that laboratory and specify the date and time as shown in

Figure 3.20(a) and 3.20(b). By clicking view, it will enter into the next page, which

displays the acquired electrical parameters. In the main page, there is a provision

for checking the trend graph of power consumption of a different load, as shown in

Figure 3.21(a). In addition, as shown in Figure 3.21(b), different electrical parameters

will be displayed on this page. At the end of the page, it will show the total energy

consumption of the selected laboratory.

The user needs to enter the login credentials in the login page, as shown in Figure

3.20(a) After successfully logged in to the webpage, the user can enter into the main

page. In the main page, the user can have all the privileges to select the different

laboratories, check the real-time energy consumption, power usage data, possible to

view trend graph of energy consumption. If a user or guest wants to know the objective

and project details can check it in about the project. The load wise power data such as

RMS current, power demand, power factor, energy consumption, and assigned priority

for a load of developed SEMS system is shown in Figure 3.21. In addition, due time

in hours for the schedulable load is also shown in the power data table.
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(a)

(b)

(a)

(b)

Figure 3.21: (a)Power consumption of the schedulable load (b) Power consumption
trend graph

3.5 Summarry

The hardware prototype of SEMS is designed and developed in the laboratory envi-

ronment, experiments are carried out to demonstrate the effectiveness and working

of the power optimization algorithms deployed in the controller. The wireless ZigBee

communication is established using XBee series-2 modules between the SEM controller

and smart socket unit, incorporated with a new advanced self-diagnostic mechanism

to form a reliable network. The first experiment demonstrates the novel configurable

priority feature, where, in three different loads are considered, there is a provision

to change the priority order of an appliance according to the consumer requirement.

Secondly, in this work, different experimental scenarios are exhibited to show the run-

ning of only higher priority appliance during DR event and under MDL constraint.

Furthermore, cost optimization algorithms are deployed in the SEM controller, which

schedules the operation of a particular appliance during the off-peak hours consider-
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ing ToU tariff and hence utilize the lower slab rate to minimize electricity cost. In

order to avoid higher power consumption during peak hours, a warning is given to the

consumer with buzzer and LED indicators. Finally, to access the power consumption

data of individual load, secure web portal associated with an IoT environment is de-

veloped. The GUI provides a power consumption plot to display daily and monthly

appliance power usage. A database is provided for the energy management system

and can be used for further data analysis.
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Chapter 4

Demand Side Optimization

Approaches

4.1 Introduction

Smart grids integrate demand and supply entities with advanced communications

technologies and employ a control mechanism framework to respond more efficiently

to energy crises. The deep penetration of renewable energy sources, such as solar and

wind energy, poses the additional challenge of distributing energy in smart grid envi-

ronments. The above elements cover a variety of features in search of highly adaptable

grid infrastructure. The main responsibilities of modern smart grids are focused on

secure and reliable networks with high power quality, optimal power usage and max-

imum user satisfaction. In the previous chapter, the design and development of an

energy management system for demand-side consumers taking into account power

negotiation and user, adaptable features are considered. This chapter focuses on eval-

uating the performance of several optimization techniques for scheduling appliances

based on appliance category, usage patterns and consumer preferences. A typical op-

timization model with dependent parameters and objective function for demand-side

consumers is shown in Figure 4.1.

4.2 Optimization Techniques

This work uses several techniques of machine learning, and the underlying assumptions

behind each are described in the next section.
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Figure 4.1: Optimization model for demand-side consumers

Genetic algorithms are based on natural selection by pseudo-random modification

of the solution and filtering based on its suitability. Typically, these are the four key

steps (initialization, selection, mutation, crossover), and the last three stages will be

repeated several iterations or until the solution remains unchanged long enough. These

new methods have been tested against binary particle swarm optimization algorithm

as a benchmark and determined to be suitable for load scheduling, and are described

in the next section.

In SG, DSM makes grid service more effective and more reliable. The two main

functions are energy supply and end-user demand monitoring. Furthermore, at DSM

Consumers, all smart premises have an energy management system (EMS) and smart

meters to ensure that two-way communication between utilities and customers is stable

and reliable. The controller is provided with all details, such as load and devices,

sensors, local energy generation, energy storage and usage pattern (ESS), and the

EMS optimally controls the appliance’s scheduling.

4.2.1 Binary Particle Swarm Optimization

Binary Particle Swarm is a variant of the original Particle Swarm algorithm that

Kennedy and Eberhart invented in the population optimization process. The solution
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to this problem is inspired and is seen as a swarm of particles by the behavior of

flocking birds and schools of fish. Particles are initially randomly placed in solution

space and move into solution space. Particle position is affected at each iteration by

the most effective particle position. If the optimal position achieved by the particles

is pbest and the particle position that performs best is gbest, then at each learning

iteration the particle velocity and position can be updated as in equation 4.1 and 4.2.

vk+1
i = wvki + c1 × rand()(pbest− xki ) + c2 × rand()(gbest− xki ) (4.1)

xk+1
i = xki + vki (4.2)

where, vki = velocity of particle i at iteration k.

w = inertia coefficient, specified by programmer.

c1, c2 = acceleration coefficients, specified by programmer.

The solution space must be discretized in order to use PSO for the load schedul-

ing problem. Solution space needs to be discretized. Furthermore, the binary PSO is

mapped to a range of [0, 1] using sigmoid function as in equation 4.3, and uses same ve-

locity criteria and velocity mapping between the range +Vmax,−Vmax as conventional

PSO.

S(vi) =
1

1 + exp(−vi)
(4.3)

The position is updated by comparing S(vi) to a random number. If rand() <

S(vi),xi = 1 else xi = 0.

The rand() function is a random generator number between 0 and 1. The particles

modify the values before they fulfil the convergence criterion and achieve the maximum

number of iteration. In this case, rand() function guides the particle to the optimal

global value that increases the iteration count.

4.2.2 Artificial Bee Colony Algorithm

Karaboga and Akay (2009) have developed the Artificial Bee Colony(ABC) algorithm,

the bee colony algorithm uses a population-based optimization, with several differences
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from the PSO and finds an ideal solution based upon the bees drilling actions in a

comparative nature. The particles in the solution space are modelled as ’food source’

for the bees, and the bee colony consists of three groups of bees, each pertaining to

one stage of the algorithm. For its simplicity and usability, the ABC implementation

algorithm has received considerable attention in planning job optimization to solve

many practical problems (Chen and Xiao, 2013).

The three classes of artificial bees are known as employed bees, scouts and onlook-

ers. Bees make foraging decisions based on various factors. For example, distance to

food, quantity and quality of honey all these factors made up the assessment of food

sources and represented as profit.

In accordance with the classification, Scout bees are expected to search for new

food sources randomly, and Employee bees must search for the sources of food to warn

onlooker bees that are waiting for hives. The bees then calculate the health value of

the onlooker and choose the optimal source of food for the selection of the bees. Once

a food source has been selected, and all food has been collected, the bees working

on that food source are converted to scouts and again search for a new food source

randomly. Bees measure the consistency of food sources on the dance floor in real

nature. The bees dance, called “Waggle dance”, to inform others how far and how

much quantity towards which direction. All food sources are comparable with the best

ones by onlooker bees. The details of ABC algorithms are described in the following

sections.

The key steps of an algorithm for artificial colony of bees are as follows. The initial

parameters set are the number of bees used, the maximum number of the sources for

food used (limit), and the maximum number of iterations (max cycle) and the number

of bees being used, and the number of bees detected.

For random food sources selected under boundary constraints, the initialization and

fitness value of Scout bees are determined. Thereby, our load particles already comply

with start and end time and maximum demand constraints. In the algorithm, N is the

number of food sources, or solution space particles, and i = 1, ......N . D is the number

of decision variables, in our case the number of loads, and given by j = 1, ......D. A

counter is used for each food source, i.e. counti = 0 at start. Further, another food

source will be provided during the search process for the employed bee stage using
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equation 4.4.

vij = xij + φij(xij − xkj) (4.4)

Where, φij is a random number generated between 0 and 1, and j and i satisfy

previously set limits. The fitness of the new source of food is then evaluated and

modified in accordance with the cost function if the fitness level is better than the old

one.

Roulette wheel selection is used in the onlooker bee process to produce probability

of selecting each source of food using equation 4.5.

pi =
fitnessi∑N
i=1 fitnessi

(4.5)

Where, fitnessi is the fitness cost of the ith food source, N is the number of food

sources and a random number r is generated between 0 and 1, and if r < pi, a new

food source is generated as above. If the new food source is better, the algorithm will

greedily update the old one, and this will be repeated for all onlooker bees. In case,

if some food sources have not been improved during a certain number of Scout Bee

stages, those food sources will be abandoned. The algorithm thus avoids remaining

at local minima and finds a new, randomly assigned food source.

4.2.3 Backtracking Search Algorithm

BSA is a search algorithm for adaptive analysis using three components of genetic

operators, namely selection, mutation and crossover for generating individual trials

(Civicioglu, 2013). BSA is a population-dependent algorithm that uses a single con-

trol parameter, unlike the earlier two. It also possesses internal memory that is used

in generating a search matrix for generation of trial population. The BSA involves

mainly five stages for execution as described below:

Initialization: Initialization generates the initial population according to the

problem constraints. In this case, N is the size of the population and D is the dimen-

sion.

Selection-I: In this phase, historical population oldP is found for calculation of

search direction. The initial historical population is generated as as above in initial-
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ization stage. BSA determines the population that belongs to the randomly selected

previous generation as the historical population and remembers it until changed. Af-

ter oldP is changed, the order is altered to enhance the randomness of selection by

oldP := permuting(oldP ).

Mutation: Mutation process generates the trial population as per equation-4.6.

Mutant = P + F.(oldP − P ) (4.6)

Where F , is an acceleration term for the search matrix, (oldP−P ), given by equation-

4.7, thus allowing the BSA to take advantage of its experience.

F = 3rn (4.7)

Where, rn ∈ (0, 1), and M is a standard normal distribution, and F is the con-

trolled parameter.

Crossover: The Crossover process of BSA generates the trial population’s fi-

nal form by evaluating the fitness of the trial population. In this phase a binary

integer-valued matrix (map) of size (N × D) is calculated indicating individuals of

trial population T to be manipulated via relevant individuals of P . If mapn,m = 1,

where n ∈ 1, 2, 3, ...N and m ∈ 1, 2, 3, ...D, T is updated with Tn,m : Pn,m . The unique

mix rate parameter in the process controls the number of individuals in a trial that

will mutate. After mutation, updates are made according to selection II.

Selection-II: In this phase, based on a greedy selection, the Ti individual with

better fitness than the corresponding Pi individual is used to update Pi. Further, if the

optimal Ti is a better fit than the global optimal, the global optimal is also updated.

The next section describes the formulation of the load scheduling problem under

specified constraints and performs an evaluation of the optimal scheduling optimiza-

tion algorithm.
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4.3 The Problem Formulation

The work of (Remani et al., 2015) frames the load scheduling problem as a constrained

optimisation problem. Thus, one day is divided into 24 slots and one hour in a day

is every slot. In this case, slot 0 is the time between 12:00 AM and 1:00 AM, slot 2

between 2:00 AM and 3:00 AM, and so on. The individual load are modelled with

four parameters as dj = (sj, fj, lj, rj), where, [sj, fj] indicates the interval at which

the load can be operated, for a load operation, sj is the start time of the load and fj

is the end time of the load operation. lj is the working load time, the minimum load

time to be completed in order to operate efficiently and rj the load rating value is in

kW. Thus, a load dj = (1, 5, 2, 6) represents a load that may be operated from 1am to

6am, with its minimum on-time as two hours. In addition, it consumes 6kW of power

when on.

The cost function used is one of the total costs of energy drawn by all loads during

the day. The utility provides the ToU price in advance, and it is assumed that there is

a maximum demand limit above which no-load operation is allowed. The total cost is

a function to minimize, and the total demand must be below the maximum demand

limit. This is calculated hourly as Dt, which is the demand at time t given by the

following equation 4.8.

Dt =
k∑

j=1

rja
k
j (4.8)

Where, rj is an estimate of load j, and akj is a binary value of 1 if load j is on and 0

if off at the time that demand is calculated. The prospect solution detects demand

every hour and must always be below maximum demand. Therefore, the cost function

can be estimated as in equation 4.9.

TotalCost =
24∑
k=i

m∑
j=1

rjC
kakj (4.9)

Where, rj is the rating of load j, Ck is tariff rate and akj is a binary value of 1 if

load j is on and 0 if off at the kth time Constrained by sj > k > fj; by given equation

4.10.
fj∑

k=sj

akj = lj (4.10)
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Therefore, constrained optimization in the discrete solution space is used to find

the optimal start time for each load, so that the cost function is minimized while the

given constraints are satisfied.

4.4 Evaluation of Optimization Algorithms for De-

mand Side Energy Management

In this work, three different genetic algorithms are implemeneted, and the tic and

toc function is used to find the algorithm execution time. However, flow is modified

to suit the platform used, thereby altering the flow of algorithms as depicted in this

section’s flow charts.

In this case, simulation experiments are performed on the basis of PSO algorithms

to achieve the best solution for the proposed objective function. The particles make

up the element corresponding to each load selected from mj = (fj − Sj − lj + 1). For

example, if dj = (8, 12, 2, 4), then mj = 3. The ON time slot switch that can schedule

the load j is sj + n, where n = 0, 1, 2...mj and population is generated in binary.

The optimal global particles can provide an optimum schedule, and the corresponding

fitness values can achieve the lowest cost. The algorithm begins by initializing the

maximum demand limit, the number of loads, population size, word length of each

particle, the maximum number of iterations considered, pbest and gbest values.

The value of mj is calculated using the required load parameters such as start time

sj end time fj load rating rj and lj, and schedules the appliance in the allowed slot.

The initial population is generated within the tolerance of mj. Following, the velocity

parameters are initialized. The fitness of the i-th particle is calculated using equation

4.1, fit(i) < pbest(i), and if it does not violate the maximum demand limit of the

current position, pbest(i) = fitness(i) and location. pbest(i) < gbest, also stored if

gbest = pbest(i), and the global optimal particle position is saved.

The velocity value for each binary element of the particle is updated using the

equation 4.1 and 4.2 within the acceptable range +V max to −V max. The mapping

of the velocity S(vi) is done using a sigmoid function as in equation 4.3, and S(vi) is

compared to rand() to get a new position xi. The maximum number of iterations is

performed to get the schedule from the global best particle and get the best cost from
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Figure 4.2: The flow of particle swarm optimization algorithm

gbest. Finally, the number of iterations is checked, and when the iterations are over,

the algorithm ends. Otherwise, perform a further assessment of fitness and exit the

loop, as shown in the Figure 4.2.

In the ABC algorithm, all load parameters are defined, such as the number of loads
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Figure 4.3: The flow of artificial bee colony algorithm
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Figure 4.4: The flow of backtracking search algorithm
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as decision variables, the size of the population, the number of onlookers bees, the

demand limit, and the maximum number of iterations. The cost function is defined

as equation ??, and the maximum demand constraint is defined as equation 4.8. The

algorithm flow is shown in Figure 4.3.

In this application, the initial cost calculation for a particular load schedule loca-

tion is obtained according to fupper bound (end time), slower(j) bound (start time), and

maximum demand limit constraints. Further, random creation of initial food sources

is followed similar to the basic ABC algorithm. In the bee stage used, another food

source is generated as follows in equation 4.11:

pop(i).Position(j) = randi([slower(j), fupper(j)− durload(j) − 1]) (4.11)

Here, pop(i).Position(j) is load schedule position as fitness function , j and i follow

limits laid out earlier. The function randi is a random number generated between 0

and 1. Corresponding to the fitness, cost function is evaluated as per in equation 4.9

to get the best solution.

The Employed bee phase is used to find the near fitness value (i.e. cost) using

the number of population sizes (bees) at various schedule locations. The maximum

iteration fit is evaluated and updated with the best solution. Following, in the on-

looker bee phase roulette wheel section is run to get the probability value of the new

and better schedule position to find the optimal fitness value. Similar to the previous

case, fitness values are evaluated and updated with the best solution for a maximum

number of iterations.

In the scout bee phase, fitness values are calculated randomly, and in case the trial

particle has crossed the count limit than the evaluation is assumed to be struck, and

it is eliminated. Finally, the best solution is updated among all the bee particle after

global and local assessment to get the best cost value in our case. The best schedule

is obtained for the best cost position since the demand limit condition is intrinsic.

The backtracking search algorithm (BSA) algorithm is used to schedule load equip-

ment at specified times, taking into account user-defined constraints. The implemen-

tation of the algorithm is as depicted in Figure 4.4, starts by resetting the BSA

parameters, mainly the population size (N), the maximum number of iterations per-

formed (T), and the number of problem variables (D). This work uses 100 populations
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and 100-600 iterations to get the best results. In addition, it runs the BSA algorithm

to schedule user-defined appliance load requests. Each population (Zij) takes into

account user constraints such as appliance start time, end time, and the number of

hours that must run with the maximum demand constraint. The initial population is

calculated as in the following equation-4.12.

pop(i, j) = randi([low(j), up(j)− durload(j) − 1]) (4.12)

Where, i is the population size, and j is the number of loads as decision variables,

low(j) is the start time and up(j) is the end time of load.

Initially, historical population are created, if in case this is not the first attempt

then available historical population are chosen. Next, a permutation of the historical

population is used to enhance the mutation randomness. Population mutate carried

out as per the equation 4.6, and binary integer search matrix is prepared to evaluate

the fitness prior to crossover. The mix rate parameter is used to find the number

of population members to mutate. The final population generated through crossover

and fitness evaluation is carried out as per the cost function given by equation 4.9.

Finally, individuals are replaced in which it is found to have inferior fitness com-

pared to the mutants generated. Furthermore, if the overall cost function among

individuals is improved, the individual will be sent for another iteration. Otherwise,

it is made to terminate the algorithm. Global minima are stored to get the best cost

for the maximum iterations carried out, and the corresponding demand function gives

the best schedule.

4.5 Results and Discussion

The MATLAB simulation tool implements three algorithms using trial values ac-

cording to the author’s work on (Remani et al., 2015) using PSO. Experiments are

conducted to find the algorithm with the best runtime for the set number of iterations

and the one that converges fastest. The best load scheduling algorithm is chosen based

on convergence and speed of execution.

During the simulation, a different set of experiments is performed according to the

problem statements described in section 4.3. In this case, the six loads are considered

with four load parameters, such as load start time “s”, load end time “f”, number

77



of hours the load has been running “l”, and load rating “r”. The first trial uses

s = [2, 4, 6, 4, 5, 11], f = [11, 18, 8, 12, 10, 19], l = [2, 3, 3, 3, 6, 4], and ratings r =

[4, 4, 4, 5, 5, 6]. Thus six loads are present, each with one start time, end time, duration

and rating. Maximum demand is at 10kW, and the tariff price for 24 hour time slot is

given by P = [4, 4, 10, 10, 4, 4, 4, 4, 4, 4, 4, 10, 10, 10, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], having one

cost value per hour. The second trial also uses same parameters with six number of

loads with a maximum demand limit of 20kW.

4.5.1 The Binary Particle Swarm Optimization

The BPSO algorithm uses several parameters during execution. The initial accel-

eration factors c1 & c2, the inertial mass wmin & wmax that can be used to control

the velocity of the particles and the number of particles used are listed in the table 4.1.

The flowchart of the BPSO algorithm is presented in Figure 4.2. From the analysis,

it is observed that the binary PSO converges within eleven iterations for a small six-

load optimization problem. The demand over time for six-load using BPSO is shown in

Figure 4.6 also shows the power consumption demand pattern with maximum demand

limit of 10kW. The minimum best cost obtained is 428 for the trial of six loads. It is

also observed that to run through 600 iterations of the binary PSO for this problem

takes close to two minutes - 117.7 seconds. The best cost obtained over iteration plot

is shown in Figure 4.5.

Table 4.1: Parameters of BPSO algorithm

Parameter Values

c1 2.05

c2 2.05

wmin 0.4

wmax 0.9

No.ofParticles 20
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Figure 4.6: Demand( Max MD=10) over time for six-load BPSO
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Figure 4.7: Demand (MD=20) over time for six-load BPSO

The demand over time for six-load using BPSO is shown in Figure 4.7 shows

the power consumption demand pattern with maximum demand limit of 20kW and

correspondingly cost minima obtained is 404. The second trial of six loads takes 4.52

seconds for 600 iterations.
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4.5.2 The Artificial Bee Colony Algorithm

The flow of the ABC algorithm is shown in Figure 4.3. Similar to the BPSO case,

a different set of experiments are conducted considering maximum demand limit of

10kW and 20kW. The power demand consumption of the six load ABC over time

is shown in Figure 4.9. The ABC algorithm appears to converge the second fastest

of the three algorithms (within seven iterations). However, the execution time for

600 iterations is 9.27 seconds. The above scenario demonstrates the nature of the

ABC algorithm for problems with a large number of decision variables, and at higher

problem dimensions, it should perform better than the PSO. The best cost obtained

from the iterative plot is shown in Figure 4.10. Further, a comparative discussion is

presented in section 4.5.4.
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Figure 4.9: Demand (Max MD=10) over time for six-load ABC
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Figure 4.10: Best cost over iteration(Max n=100)

The demand over time for six-load using ABC is shown in Figure 4.11 shows

the power consumption demand pattern with maximum demand limit of 20kW and

correspondingly cost minima obtained is 404. Best Cost obtained over iteration plot

is shown in Figure 4.12 for 600 number of iterations.
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Figure 4.11: Demand (Max MD=20) over time for six-load ABC
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Figure 4.12: Demand over best cost iteration(Max n=600)

4.5.3 The Backtracking Search Algorithm

The analysis of the BSA algorithm is shown in Figure 4.4. Similar to the previous

case, a different set of experiments are conducted considering maximum demand of

10kW and 20kW. The power demand consumption over time for six load BSA with

maximum of 10kW demand is shown in Figure 4.15, which achieves a cost minimum of

434. The BSA terminates automatically after convergence due to its use of historical

values. Once there is a little divergence from the historical values, the BSA algorithm

ceases to count iterations and terminates. Here it is that convergence has occurred in

four iterations that have taken 2.3s to run 600 number of iteration as shown in Figure

4.14 . Further, the comparative discussion is presented in section 4.5.4.
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Figure 4.13: Demand (MD=10) over time for six-load BSA

Figure 4.14: Best cost over iteration(Max n=600)

The BSA converges in four iterations once again, although it takes 1.9s to run

those four, evidence of the greater complexity of the problem. It reaches the best

cost minima of 404 for maximum demand of 20kW as shown in Figure 4.15. Best
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cost over iterations plot that has taken 1.9s to run 600 number of iteration is shown

in Figure 4.16. Thus, the BSA algorithm seems to be better for this kind of small-

dimension problem, although the use of a large matrix may complicate things at higher

dimensions.
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Figure 4.15: Demand (Max MD=20) over time for six-load BSA

Figure 4.16: Best cost over iteration (Max n=100)
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4.5.4 Comparison of BPSO, ABC and BSA in Terms of Cost

Saving and Execution Time

The Table 4.2 and Table 4.3 shows the detailed comparison of execution time and

best cost obtained for three different algorithms corresponding to maximum demand

of 10kW and 20kW respectively.

Table 4.2: Execution time and best cost (MD=10)

Algorithm
Execution Time(sec)

Best cost MD
n=100 n=600

BPSO 0.443596 4.526016 428 10

ABC 1.876166 9.277867 458 10

BSA 2.804660 2.334307 428 10

Table 4.3: Execution time and best cost (MD=20)

Algorithm
Execution Time(sec)

Best cost MD
n=100 n=600

BPSO 0.479694 2.774221 404 20

ABC 1.887784 28.333441 434 20

BSA 0.987027 1.968387 404 20

The three different algorithms have been simulated and results are discussed in the

previous section.Best cost value is obtained for BPSO and ABC algorithms however

BSA algorithm has better execution time for small number of loads and need param-

eter tuning to get the accurate cost. It is also observed that for different demand

limit constraint used 10kW and 20kW, cost reduction is significant due to more space

availability for load scheduling in case increased demand.

4.6 Summary

In this work, three genetic algorithms have been implemented for the load scheduling

problem, following the work of (Remani et al., 2015) as a benchmark. Among the

implemented algorithms, the artificial bee colony algorithm as one that is well-suited
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to larger problem dimensions, and the backtracking search algorithm, as one that is

well-suited to smaller problem dimensions. Additionally used the binary PSO as a

benchmark in our evaluation. We conclude by saying that the ABC algorithm will

likely prove superior to the PSO for larger problem dimensions, and that the BSA

algorithm will prove superior to PSO for smaller ones. Due to the constraints of

memory, use of BSA for larger problem dimensions is unlikely to yield positive results.
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Chapter 5

Accurate Prediction of Renewable

Energy Generation for DSM

Consumers

5.1 Introduction

The next few years are expected to face rapid growth and challenges in power gen-

eration, distribution and use. For efficient electricity use, renewable and distributed

energy needs to be integrated, and demand-side smart energy management systems

need to be integrated. Renewable energy sources play an important role in the en-

ergy sector as the world of fossil fuels is depleted, meeting the growing demand of

consumers and the need for more reliable and lower cost energy supplies. Renewable

energy sources such as photovoltaic (PV), wind, and biomass microturbines are widely

used (Du and Lu, 2011).

Recently, there has been a great deal of interest for urban domestic consumers

in developing small rooftop photovoltaic (PV) systems. PV systems can be used in

stand-alone mode (off-grid connection) or in hybrid mode (grid connection with other

renewable energy sources such as wind energy or conventional supply).

Since the use of stand-alone PV requires an extensive storage system, typical grid-

attached PV systems are preferred over stand-alone PV systems for uninterrupted

supply in the maximum amount of time. As a result, there is a growing demand

for hybrid systems that include elements of both off-grid and on-grid systems. Most

grid-connected systems have no storage because unused power is exported to the grid.
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However, in developing countries such as India, there is a problem when exporting

power to the grid because the grid is not stable, and the grid is outage occurs.

PV storage is required as part of a modern grid-connected system. On the other

hand, the potential benefits of including renewable energy sources in microgrids are

often challenging to realize due to their intermittent nature and very unpredictable

(Craparo et al., 2017). Grid-connected PVs can increase the mismatch between power

generation and consumption and cause fluctuations in the entire power system. To

overcome this problem, an accurate prediction of renewable energy is essential.

Furthermore, depending on the availability of the utility grid and PV energy, con-

sumer loads need to be scheduled according to assigned priorities, and storage actions

need to be performed. In this case, it is necessary to develop a reliable prediction

model for predicting PV output based on solar irradiation levels and local weather

conditions or other external factors (Agüera-Pérez et al., 2018).

In this context, an Intelligent Smart Energy Management System (ISEMS) ar-

chitecture for demand-side energy management considering renewable energy sources

has been proposed. The developed architecture includes PV-generated data collec-

tion, predictive smart energy management systems, and an IoT environment for users

to access energy details and management. The proposed architecture uses a machine

learning approach to predict accurate energy every hour and the next day. Based

on the predicted information, the SEMS negotiates available power and dispatches

control actions according to the assigned priority of the appliance.

5.2 Machine Learning Techniques for Prediction

• Artificial Neural Network: The ANN is a popular regression model, which

uses input layer, hidden Layer and output as three different layers as shown

in figure 5.1. The model uses Back Propagation Algorithm(BPA) (Li and Shi,

2010). The input variables, xi, are mapped to the hidden layer neurons, vj, and

then to the output variables, y. The detailed mathematical formulations of the

artificial neural network are given below. In order to calculate the hidden layer

value, the following equation5.1 can be used.

vj = (1 + exp(−1 ∗
I∑

i=1

xiwij))
−1 (5.1)
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Figure 5.1: Flowchart of a basic prediction model.

Where, vj represents node j in the hidden layer, xi represents node I the input

layer, and the weight between nodes are represented by wij.

The output layer node y value can be calculated by equation 5.2,

y = (1 + exp(−1 ∗
J∑

i=1

vjwij)) (5.2)

The error parameter E between observed and predicted data can be calculated

by equation 5.3.

E = 0.5(d− y)2 (5.3)

Where, d represents the observed data propagation from the output layer and a

hidden layer that is represented by the following equations 5.7 respectively,

δy = (d− y)(1− y) (5.4)

δy = vj(d− vj)(1− y)δywj1), j = 1........., J (5.5)
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The weight adjustment between hidden and output layers and input and the

hidden layer can be carried out using below equation.

∆wn
ij = αδvj, i = 1, .....I, j = 1, .....J (5.6)

• PSO-ANN approach: The Back Propagation (BP) is a local search learning

algorithm. Therefore, the optimal search process of ANN may fail and return

an unsatisfactory solution. By adjusting the weight and bias value of ANN,

PSO can be implemented as a global search algorithm and the performance of

ANN can be improved. The detailed modeling of PSO algorithm is discussed in

section 4.2.1. As mentioned earlier, BP-ANN PSO is more likely to converge at

the minimum, and the global minimum can be found. Thus, the hybrid PSO-

based ANN model has search properties for two PSO ANNs, where PSO finds

the global minimum search space, and ANN uses optimized parameters to find

the best result.

• Support Vector Regressor: The SVR uses a function that approximates

the input domain-to-real mapping based on a training sample. The SVR, sup-

port vector regression, is the SVM utilization for function approximation and

regression (Li et al., 2009). Different basic kernel functions are used in SVM

models.The SVR model uses different optimization techniques than those used

in logistic or linear regression, such as neural networks .

The regression model is represented by the following equation 5.7

Y = f(X) = w.φ(X) + b (5.7)

Where, φ(X) is a high dimensional space characteristics that maps to input

vector, parameters w and b are normal vector and scalar. Variables w and b can

be predicted by minimizing the regularized risk function after initiating positive

slack parameters ζ1 and ζ∗2 that represent upper and lower excessive deviations

as following equation 5.8.
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RSVMs =
1

2
‖w‖2 + C

1

N

N∑
i=1

(ζ1 + ζ∗2 ) (5.8)

with subject to the following constraints given by equation 5.8


Yi − w.ø(xi)− b ≤ ε+ ζ1

w.ø(xi) + b ≤ ε+ ζ
∗
1 , i = 1, 2, ....N

ζ1 ≥ 0, ζ
∗
1 ≥ 0

(5.9)

Thus, the SVR is modeled by equation 5.10 with Lagrange multipliers δi, δ
∗
i as

follows,

Y = f(X) =
N∑
i=1

(δi − δ∗i )K(Xi, Xj) + b (5.10)

Where, K(Xi, Xj) represents the kernel function.

• PSO-SVR approach: The hyperparameters of the SVR model are derived

from the pattern of data and random default settings. The values of these

parameters determine the accuracy of the model. For a typical SVR model,

these hyperparameters are not optimized, hence the accuracy may not be the

best possible value. Using the hybrid PSO-SVR models, PSO algorithm is used

to optimize these parameters. The PSO builds a SVR model for each of its

iterations and find the smallest possible prediction error from and use the entire

solution space and its information to reach the optimal value. The detailed

modeling of PSO algorithm is discussed in section 4.2.1.

• Ensemble Methods (ENS): In ensemble learning approach, weak learners

(or base models) models that can be used as building blocks for designing more

complex models by combining several of them (John et al., 2015). Most of

the time, these basic models perform not so well by themselves either because

they have a high bias (low degree of freedom models, for example) or because

they have too much variance to be robust (high degree of freedom models, for

example). Then, the idea of ensemble methods is to try reducing bias and or

variance of such weak learners by combining several of them together in order to
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create a strong learner (or ensemble model) that achieves better performance.

{
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2 , .....Z

1
B

}
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1 , Z
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B

}
, .....

{
ZL

1 , Z
L
2 , .....Z

L
B

}
(5.11)

L independent weak learners can be assembled by the following equation 5.12

w1(), w2(), ......wL() (5.12)

Further, in order to get ensemble models with small variance, model is aggre-

gated to some kind of averaging process by the following equation 5.13 .

SL(.) =
1

L

L∑
l=1

wl(.) (5.13)

5.2.1 Data Processing and Validation

The basic idea of regression is to determine a function that approximates the target

values accurately using a set of input values. In general, a regression model has three

phases, such as data collection and preprocessing, building the model, training and

testing phase, as shown in Figure 5.2.

1. Data collection and preprocessing: Collecting a suitable dataset is the first

stage of designing a prediction model. This work involves collecting historical

solar radiation data from the National Solar Radiation Database (NSRDB) on

the NREL website for the Mangalore region and using data points for tempera-

ture, pressure, wind speed, global horizontal irradiance (W / m2). Further data

preprocessing is done to solve the problem missing data by replacing it with an

average data of the same day and normalization of the data is done.

2. Building the Model: At this stage, the designer must adjust various parame-

ters related to the model, such as variables, maximum depth, and coefficients, to

build an accurate model. The above forecast models are evaluated to decide the

best suitable model which give better accuracy. Of the five models, the random

forest regressor outperforms the other models in terms of accuracy. Therefore,

the random forest regression model is used in the ISEMS prediction method.

3. Training and Testing the model: During the training process, the entire
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dataset was split into a training dataset and a test dataset. In this case, the

daily forecast uses the 2013 dataset for training and uses the 2014 dataset to

predict any day in the trained model year. Similarly, for monthly forecasting,

train the model using the 2013 dataset and test the same month of a year using

2014 data.
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Figure 5.2: Flowchart of a basic prediction model.
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5.2.2 Prediction Models for Energy Management System

The proposed Intelligent Smart Energy Management Systems(ISEMS) architecture

shown in Figure 5.3 for demand-side energy management, taking into account the

renewable source. It has three stages, which are PV generation and data collection,

smart energy management system based on prediction and IoT environment for the

user to access the energy details and management. The proposed architecture uses a

machine learning approach to predict accurate energy for hourly and day ahead. Based

on the predicted information, SEMS negotiates the available power and dispatch the

control action depending on the consumer assigned priority of an appliance.

Load A

Load B

Load C

SEM Unit

Socket A

Socket B

Socket C

Load A

Load B

Load C

SEM Unit

Socket A

Socket B

Socket C

Socket- C

Socket- B

Socket- A

SEM Unit

+ve
-ve

Internet
Database

Prediction server

SEMS

PV Source & data log 

User access

Figure 5.3: Overview of proposed intelligent smart energy management system.

The different machine learning methods discussed earlier in section 5.2 are modeled

to predict solar irradiation level.

1. Artificial Neural Network(ANN):

The ANN model is shown in the flow chart and includes historical data with

various inputs, such as temperature, wind speed, day time, month, and so on.
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Figure 5.4: ANN Flowchart

Furthermore, the data is split into 75% as a training set and 25% a test data set.

Several combinations of ANN parameters and some neurons and hidden layers
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are tried to get the best optimal value. After a number of trials, the best-trained

model with minimal error will be selected. The flowchart of the ANN model is

shown in Figure 5.5.

2. PSO based Artificial neural Network(PSO-ANN):

Different analyzes are performed on various combinations of input parameters

to find the best optimal parameter values. First, to find the optimal value of the

PSO particle size, select fixed acceleration factors c1 and c2 and the number of

hidden layers n for different combinations of variable particle sizes taking into

account the minimum error. Additionally the optimal values of the acceleration

factors c1 and c2 are obtained using the same size of the hidden layer n as the

optimal particle size obtained in the initial analysis. Finally, a third analysis

is performed to find the optimal number of hidden layers, taking into account

previously obtained fixed optimal values of particle size and acceleration factor

values c1 and c2 for different combinations.

3. Support Vector Regression(SVR):

SVR uses different optimization techniques than those used in logistic or linear

regression, such as neural networks.

The meta parameter ”Gama” defines the Gaussian kernel function. It deter-

mines how different similar features are related to each other and, thus imparts

weight to the corresponding optimization functions. The Regularization param-

eter C controls the trade-off between hyperplanes and minimizes training errors.

The hyperparameters of the SVR model are derived from data patterns and

random initialization. The values of these parameters determine the accuracy

of the model, and in case of SVR, γ = 1.25 and C = 1 are used as initial val-

ues. Additionally, tuning of these parameters using optimization algorithms is

described in the next section.

4. PSO based Support Vector Regression(PSO-SVR): The hyperparameters of the

SVR model are derived from data patterns and random initialization. The values

of these parameters determine the accuracy of the model. In the SVR-based load

forecasting model described in the previous section, these hyperparameters have

not been optimized, and the resulting accuracy is sub-optimal. The PSO can

be used in the PSO-SVR model to optimize these SVR parameters. The PSO
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Figure 5.5: PSO based ANN flowchart

obtains the prediction error of the SVR model at each iteration, finds the smallest

possible prediction error from the entire solution space and uses that information

to arrive at the optimal value of the SVR parameter under investigation.

The operation of the PSO-SVR model flowchart 5.6. The hyperparameters of

the SVR model are initialized with random values by the SVR function. The

data is divided into a training set and a test set using a random index detailed in

the following section. The SVR algorithm is then run in iterations, as directed
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Figure 5.6: PSO based SVM flowchart

by the PSO, and the performance of the model is checked at each iteration.

Also, the direction in which the iteration needs to be performed is determined

by the PSO. Furthermore, PSO selects the value of the hyperparameter with the

lowest error value as the best solution. Next, the model accepts test data and

makes predictions using the optimal set of hyperparameters.

5. Ensemble Methods(ENS):

Feature selection is an essential criterion for data analysis and the decision tree

algorithm has the advantage of performing a function selection that implicitly

selects some top nodes if the dataset fits. Decision trees require little effort to
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prepare data, unlike the needs of other regression models. Furthermore, pro-

portional scaling between the parameters used, improve performance without

making linear assumptions, even when there is a non-linear relationship be-

tween parameters. In this method ensemble of decision trees, known as weak

or base learners. In this work, 50 base learners are chosen by performing trial

and error with a repeated number of experiments, which learn with lower com-

putational cost and achieves higher prediction rate. Hence, this method shows

better performance compared to other conventional techniques.

5.3 Performance Evaluation Metrics

The performance evaluation of a trained model is an important concern and defines

the suitability of the model for a practical application. This work examines three key

performance criteria that establish the accuracy of the model. These are described

below.

1. Root Mean Square Error (RMSE).

2. Mean Relative Error (MRE)

3. Mean Absolute Percentage Error (MAPE)

5.3.1 Root Mean Square Error

The Root Mean Square Deviation(RMSD) or Root Mean Square Error (RMSE) ex-

pressed as in equation 5.14 is often used as a measure of the differences of samples

and population values predicted by a model or an estimator and the values observed.

RMSE =

√√√√ 1

N

N∑
i=1

| P̂i − Pi

P̂i

|2 (5.14)

5.3.2 Mean Absolute Error

Absolute Error is the amount of error in the performance metric evaluation. It is the

difference between the measured value and “actual” value. The MAE is expressed by

the following equation 5.15.

102



MAE =
1

N

N∑
i=1

| P̂i − Pi

P̂i

| (5.15)

5.3.3 Mean Absolute Percentage Error

The mean absolute percentage error (MAPE), also known as mean absolute percentage

deviation (MAPD), is a measure of prediction accuracy of a forecasting method in

statistics. Further, it usually expresses accuracy as a percentage and is defined by the

following equation 5.16.

MAPE =
1

N

N∑
i=1

|P̂i − Pi|
Pn

∗ 100 (5.16)

Where, Pi is the actual value at the ith hour, P̂i is the predicted value and Pn is

the nominal power and N is the number of test points.

MAPE has two advantages. First, the absolute value ensures that positive and neg-

ative errors do not cancel each other. Second, because the relative error is independent

of the scale of the dependent variable, this measure allows comparing prediction ac-

curacy between data at different scales. In this work, the primary importance is given

to MAPE.

A detailed analysis of the performance of all models using the parameters described

in this section is provided in the next section. Such analysis is obtained by performing

several combinations and trials of the developed model.
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5.4 Results and Discussion

In this section, simulation experiments are conducted for short-term to medium-term

forecast models. Thus, different machine learning models are used to analyze the

results and find out accurate predictions method. In this context, historical data is

used for model training and model validation. Furthermore, it performs monthly and

daily forecasts for various scenarios using the different models developed. In addition,

error analysis is performed to find the best accurate model. The trend graph of

historical data is shown in Figure 5.7.
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Figure 5.7: Month-wise actual data of a year

5.4.1 Day-Wise Solar Irradiation Prediction

The performance of different machine learning-based regressor models are compared

for predicting the solar irradiance for a day. A plot of solar radiation versus time

(in hours) is taken, with the time being considered from 7 AM to 5 PM on that day.

The models were trained with a two-year dataset collected from NSRDB database and

tested for a daily basis to check the performance of the prediction model on the dataset.

Among all predictive regressor models, PSO-based SVM regressors outperform the

other methods shown in Figure 5.8.
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Figure 5.8: Day-wise prediction of different schemes

5.4.2 Month-Wise Seasonal Prediction Using ML Approach

Monthly forecasts for the Mangalore region use factual historical data each year to

distinguish rainy months, summer months, and winter months on a monthly basis.

Heavy rain was observed in July during the rainy seasons of June, July, August,

September and October. Furthermore, May is considered the hottest month, and

December is regarded as the coldest month.

Simulation experiments are performed using five different predictive models, such

as ANN, PSO-ANN, SVM, PSO-SVM, and Ensemble techniques. Each analysis is

performed using a different forecasting model considering season-wise. First, for sunny

days the model is trained using the 2012 and 2013 datasets, validated using the 2014

dataset, and confirms the accuracy of the prediction model used. Various metrics, such

as MAPE and MAE, are considered to determine the performance of the predictive

model. From the prediction plot, it is observed that during sunny days, the solar

radiation is periodic, and the prediction error is minimal, as shown in Figure 5.9.

Among the various models compared, the PSO-based SVM is more accurate than all
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other models.
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Figure 5.9: Prediction for sunny days(April-month) using different models

Similarly, a winter day simulation experiment is performed by training the 2012

and 2013 data sets and testing using the December 2014 data, as shown in Figure

5.10. However, the irradiation levels are periodic, which improves the accuracy of the

prediction. PSO-based SVM models perform better than all other models.

Finally, a simulation experiment is performed for a rainy day by training the 2012

and 2013 datasets and testing using the July 2014 data, as shown in Figure 5.11. In

this case, the irradiation is observed to be low and very random compared to sunny

and winter days. Therefore, error rates are significant in the rainy season.
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Figure 5.10: Prediction for winter days(Dec-month) using different models
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Figure 5.11: Prediction for rainy days(July-month) using different models
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The summer season April month forecast of the PSO-based SVM model is shown in

Figure 5.12 with error analysis, among all the different methods compared PSO-based

SVM model shows the best accuracy. Similarly, error analysis plots for the winter and

summer seasons are shown in Figures 5.13 and 5.14, respectively.
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Figure 5.12: Month-wise(April) prediction for sunny days based on PSO SVM model
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Figure 5.14: Month-wise(July) prediction for rainy days based on PSO SVM model
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Figure 5.13: Month-wise(Dec) prediction for winter days based on PSO SVM model

A detailed month-wise comparison with various evaluation metrics is summarized

in table 5.1. From the table 5.1, it is observed that the PSO based SVM model outper-

forms all other regressors in terms of Mean Absolute Percentage Error(MAPE). The

ANN and Ensemble methods have also been shown to improve accuracy in December

and April due to the more periodic data. On the other hand, in the rainy season, July

month, historical data is very random and difficult to predict accurately.

Table 5.1: Month-wise error analysis

Month Error Index ANN SVM ANN-PSO SVM-PSO Ensemble

December

MAE 67.1241 81.8647 65.5030 60.4142 80.6328

MAPE 6.71241% 8.18647% 6.55030% 6.04142% 8.06328%

RMSE 108.1940 115.3036 119.5684 109.6596 138.8190

April

MAE 70.2847 74.5081 68.9326 61.6458 75.5474

MAPE 7.02847% 7.45081% 6.89326% 6.16458% 7.55474%

RMSE 91.9098 114.3410 118.4938 83.7416 100.7348

July

MAE 126.8701 128.8019 126.199 115.6627 130.7009

MAPE 12.68701% 12.8802% 12.6199% 11.56627% 13.07009%

RMSE 165.5247 162.9518 191.3242 157.9393 201.4113
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5.5 Integrated Architecture of Smart Energy Man-

agement System

This section describes the proposed Integrated Architecture of Smart Energy Manage-

ment System as shown in Figure5.15. The design and deployment of a configurable

smart energy management system with power negotiating scheme is presented in the

Chapter-3. Further, the performance of optimization techniques are evaluated to

obtain the best cost and schedule considering various power parameter constraints.

In addition, accurate prediction model are developed using the historical data from

NREL NSRDB database for short term forecasting to facilitate day ahead planning

in energy management system.
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Figure 5.15: Proposed Integrated Architecture of Smart Energy Management System

5.6 Summary

With the spread of renewable energy, Intelligent Smart Energy Management Sys-

tems(ISEMS) are being developed to handle energy demands in smart grid environ-

ments. The proposed scheme explores the development of accurate predictive models
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by extensively comparing ANN, PSO-ANN, SVM, PSO-SVM, and Ensemble regres-

sion methods for hourly and day-to-day planning. Based on the predicted information,

ISEMS negotiates the available power and dispatches control actions according to the

priority assigned to the appliance. Among the several energy prediction algorithms

evaluated, the PSO-based SVM regressor was found to outperform other prediction

models in terms of performance accuracy.
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Chapter 6

Conclusion and Future Scope

In this thesis, the emphasis is given to the design and development of a smart energy

management framework benefiting the utility provider and the demand side consumer.

Further, different optimization techniques are investigated to get the best optimal

schedule for schedulable loads. Due to the deep penetration of renewable sources,

accurate prediction models are developed for day-ahead planning.

6.1 Conclusion Summary

In Chapter 1, a brief overview of the research work is presented. Following, scope and

motivation of the work is highlighted. Finally, the organisation of thesis is included.

In Chapter 2, the background of the research work is discussed. Next, a compre-

hensive literature review in the area communication technology and load management

for demand-side consumers is presented. Further, a detailed investigation of the op-

timization approach and prediction models are discussed to find the potential gap in

the research area. Finally, based on the identified research gaps research objectives

are framed.

In Chapter 3, the hardware prototype of SEMS is designed and developed in the

laboratory environment, and experiments are carried out to demonstrate the effective-

ness and working of the power optimization algorithms deployed in the controller. The

wireless ZigBee communication is established using XBee series-2 modules between the

SEM controller and smart socket unit. SEMS also incorporates new advanced self-
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diagnostics mechanisms to form a reliable network. The first experiment shows a new

configurable priority feature that takes into account three different loads. There is

also a provision for changing appliance priorities according to consumer requirements.

Secondly, in this work, different experimental scenarios are exhibited to show the run-

ning of only higher priority appliance during DR event and under MDL constraint.

Furthermore, cost optimization algorithms are deployed in the SEM controller, which

schedules the operation of a particular appliance during the off-peak hours. It con-

siders ToU tariff and hence utilize the lower slab rate to minimize electricity cost. In

order to avoid higher power consumption during peak hours, a warning is given to

the consumer with buzzer and LED indicators. Finally, to access the power consump-

tion data of individual load, secure web portal associated with an IoT environment

is developed. GUI is provided with power consumption plot to view power usage of

an appliance daily, and monthly basis and also, database is provided for the energy

management system with a provision to use it for further data analytics.

In Chapter 4, the evaluation of schedulable loads optimization algorithm that takes

into account user constraints and load parameters are performed. The simulation ex-

periments are conducted with three different optimization algorithms BPSO, ABC

and BSA to find the best one in terms of optimal cost and execution time.

Further, in Chapter 5, due to the deep penetration of renewable energy, the de-

velopment of an Intelligent Smart Energy Management System (ISEMS) that handles

energy demand in a smart grid environment is proposed. The proposed scheme con-

siders developing an accurate prediction model by extensively comparing ANN, PSO-

ANN, SVM, PSO-SVM and Ensemble regression techniques for hourly and day-ahead

planning. Based on the predicted information, ISEMS negotiates the available power

and dispatch the control action depending on the consumer assigned priority for an

appliance. Among the several energy prediction algorithms evaluated, it is found that

the ensemble of PSO based SVM regressors outperforms over other prediction models

in terms of performance accuracy. Finally, evaluation metrics MAE and MAPE are

used to evaluate the performance accuracy of the model.
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6.2 Scope for Further Investigation

In light of present work, further investigation can be carried out in the following

research direction.

In the future, further investigation can be carried out on fine tuning parameters

of hybrid optimization algorithms to get more accurate results and to include user

satisfaction parameters.

In the present scenario, data analytics has wide scope with the evolving of IoT and

machine learning techniques. In this context, a real time deployment of non-intrusive

load monitoring for demand load disaggregation can be the study of interest.
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Appendix A

Details of the hardware modules

used in SEMS

This section presents the detailed specification and source of information about the

proprietary hardware items used in design and devcelopment of Smart Energy Man-

agement System.

A.1

Appendix A

The ATmega328P is low power complementary metal-oxide semiconductor 8bit mi-

crocontroller, the architecture of this is based up on the AVR enhancement Reduced

Instruction Set Computer(RISC) architecture. The high-performance micro-controller

integrates 32 Kilo Bytes flash with writes, while read in progress features, 23 general

purpose I/O lines, 1024B EPROM, 32 general purpose registers, 3 flexible timers with

comparison mode, external and internal interrupts, 1 byte directional 2-wire serial in-

terface, serial port SPI, 6-channel 10-bit analog-digital converter, a watchdog timer

programmable using an internal oscillator, and 5 power saving mode options and soft-

ware. The operating range of the device is 1.8-5.5 volts. The specifications of Arduino

module, ATMEGA328 based controller is listed in table A.1.

The DHT11 sensor module consists of a temperature and humidity sensor, cali-

brated for digital signal output. DHT11 is reliable, highly efficient, and has long-term

stability that exists with the help of digital signal acquisition technology. The detailed

117



Table A.1: Specification of ATMEGA328 based MCU 1

Parameters Description
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory
32 KB (ATmega328) of which 0.5 KB
used by bootloader

Clock Speed 16 MHz

specification are listed in the following table A.2

Table A.2: Specification of Temperature and Humidity DHT11 module

Parameters Description
Power Supply 3.3∼5.5V DC

Measurement Range
Temperature 0∼ 50oC
Humidity 20-90% RH

Accuracy
Humidity +-5%RH
Temperature 1oC

Resolution
Humidity 1%RH
Temperature 1oC

Sampling Frequency 1Hz

The display unit used to interface with controller is known as Liquid Crystal Dis-

play (LCD), which has 16x4 (16 columns by 4 rows). Potentiometers are used to

adjust the brightness of the LCD. The two terminals of the potentiometer are con-

nected to VCC and GND, and the output terminal of the potentiometer is connected

to the VEE of the LCD. The detailed specification of LCD module is listed in table

A.3.

LEM creates a wide range of electrically isolated current and voltage transducers

that have become the standards in the measurement field. The aspects of thermal,

mechanical, thermal conditions and environmental conditions must be taken into ac-

count while selecting a transducer.Transducer selections for electrical requirements

include power requirements, peak measurements, response times, di/dt, dv/dt, and

more. The detailed specification of current and voltage sensor module is listed in

118



Table A.3: Specification of LCD module 3

Pin no. Symbol Description Function
1 Vss (Ground) Ground 0V (GND)
2 Vcc (+5V) Powers the LCD with +5V (4.7V – 5.3V) +5V
3 VEE Decides the contrast level of display.

4 RS Instruction/data register selection
RS=0: Instruction Register

RS=1: Data Register

5 R/W Read/Write selection
R/W =0: Instruction Register

R/W=1: Data Register
6 Enable Enable Signal
7 DB0 Data Input/output lines 8Bit: DB0-DB7
8 DB1
9 DB2
10 DB3
11 DB4
12 DB5
13 DB6
14 DB7
15 LED +ve +ve terminal +5V
16 LED -ve -ve terminal 0V

table A.4 and table A.5 respectively.

Table A.4: Specification of LEM LA-55P current sensor module module5

Attribute Value
Current Ratio 55:1
Sensor Technology Closed Loop
Supply Voltage 12 - 15 V
Input Current 55A
Output Current 25 mArms
Overall Height 27.2mm
Overall Width 36.5mm
Overall Depth 14.45mm
Minimum Temperature -25oC
Maximum Temperature +85oC
Series LA
Mounting Type PCB Mount

The DS3232 module is a low cost, accurate and an integrated temperature com-

pensated crystal oscillator(TCXO). The device maintains time and date information

in seconds, minutes, hour and in day, month and year correspondingly. The detailed
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Table A.5: Specification of LEM LV-25AP current sensor module module5

Attribute Value
Current Ratio 14:1
Sensor Technology Closed Loop
Supply Voltage 12 - 15 V
Input Current 14A
Output Current 25 mA
Overall Height 16.45mm
Overall Width 26mm
Overall Depth 29.2mm
Minimum Temperature 0oC
Maximum Temperature +70oC
Mounting Type PCB Mount
Series LV

specification of the module are listed in table A.6.

Table A.6: Specification of DS3231 RTC module module4

Parameters Description
Operating Voltage Range 2.7V ∼5.5V (including 24C32).
Voltage Supply for RTC 2.2 V ∼5.5 V
Battery Holder 2032 Coin Battery.
I2C interface Fast (400kHz) I2C Interface.
EEPROM AT24C32 32Kbit Serial I2C.

Time and Date Format
Time: HH: MM: SS (12/24 hr).

Date Format: YY-MM-DD-dd.

Operating Temperature Range
Commercial (0oC to +70oC)

Industrial (-40oC to +85oC).
Digital Temp Sensor Output 10bit,±3oC Accuracy and 0.25C resolution.
Dimensions in mm (LxWxH) 38 x 22 x 14
Weight(gm) 8
Shipment Dimensions 12x8x5cm
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A.2

Appendix B

In SEMS network, the coordinator builds a Zigbee network as shown in Figure A.1.

After the network is formed, other nodes can join. The coordinator must configure

XBee because the default system class for the XBee module is a router. In SEMS for
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Figure A.1: XBee mesh network

offering wireless end-point connectivity to modules, XBee (Series-2) 2mw modules are

used. The specifications of XBee modules are listed in Table A.7.
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Table A.7: Specification of XBee module 2

Specification XBee Series 2
Performance

Indoor/Urban Range up to 133 ft. (40 m)
Outdoor RF line-of-sight Range
Transmit Power Output
(software selectable)

2mW (+3dBm)

RF Data Rate 250,000 bps
Serial Interface Data Rate
(software selectable)

1200 - 230400 bps
(non-standard baud rates also supported)

Receiver Sensitivity -95 dBm (1% packet error rate)
Power Requirements

Supply Voltage 2.8 – 3.4 V
Operating Current (Transmit) 40mA (@ 3.3 V)
Operating Current (Receive) 40mA (@ 3.3 V)
Power-down Current <1; 1 uA @ 25oC

General
Operating Frequency Band ISM 2.4 GHz
Dimensions 0.960” x 1.087” (2.438cm x 2.761cm)
Operating Temperature -40 to 85o C (industrial)

Antenna Options
Integrated Whip, Chip, RPSMA, or U.FL
Connector

Networking & Security

Supported Network Topologies
Point-to-point, Point-to-multipoint, Peer-topeer
& Mesh

Number of Channels
(software selectable)

16 Direct Sequence Channels

Addressing Options
PAN ID and Addresses, Cluster IDs and
Endpoints (optional)
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Appendix B

Design Specification for Smart

Socket Module

B.1 Design of Smart Socket for SEMS

The schematic design of the smart socket is shown in Figure B.1.Using the Hall Effect

based voltage and current transducers, the single-phase power parameters (voltage

and current) are stepped down to low-level voltage signals. Schematic of the voltage

transducer is shown in Figure.B.1. Input resistance R1 is chosen such that the measur-

ing resistance RM is selected in the range of 10− 350ohm. Similarly, the schematic of

the current transducer is shown in Figure B.1. Measuring resistance, RM is selected in

such a way that, the output voltage shouldn’t exceed 4.5V. These signals are further

conditioned using a signal conditioning circuit to level shift the signal by 1.8V DC

offset. This offset voltage is generated by the power supply module using a voltage

divider circuit. Arduino Microcontroller can read only positive voltages (0 − 5V ). If

the input voltage to the microcontroller exceeds 5V it may get damaged. So, in the

signal conditioning circuit, a Zener diode with a cut-off voltage of 4.7V is used at the

output stage to prevent the overvoltage. This signal conditioning circuit is tested by

applying the stepped down signals from voltage and current transducers and found

to be within 0-4V range. These output signals are given to the analog pins of the

Arduino microcontroller. Relay module provides the capability to switch a selected

appliance ON/OFF, depending on the command sent by the microcontroller unit.

The phase line from the load supply passes through the current transducer and

is connected to the NC pin of the relay. In addition, the COM pin of the relay
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module is connected to one port of the socket. Finally, the neutral wire is connected

to another port on the socket. The communication path is established using the

Xbee series2 module. This module is connected to the SEMS unit (router) and allows

the SEMS unit to send control commands to all load controllers. In the coordinator

module, Arduino receives commands from the different router via Xbee module. It also

collects energy consumption data from all routers via the XBee module and provides

an LCD interface that allows consumers to get the entire energy consumption data.

In addition, energy consumption data is uploaded to a local server (WAMP) using the

Arduino ethernet shield.
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Figure B.2: Design of smart gateway for SEMS.

B.2 Accuracy Calculation and Power Consumption

Measurement of SEMS Modules

Calibration in our study is performed with a power meter considered as reference. It

is calculated as follows:

(Measured value - offset factor) * k = V alue observed in ref power meter)

Where k is a scaling factor, at more than two load conditions, the power measured

by the setup and reference meter measurements was recorded. As a result, the offset

and scaling factors are determined. In this work, the experimental module must

consider the following error cases to determine accuracy:

• Non-linearity of ADC
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• Tolerance of resistors used

• Accuracy of op-amps used

• Accuracy of LEMs transducers

The ATMEGA 328 microcontroller is provided with successive approximation type

analog to digital converter(ADC). The ADC module has a resolution of 10-bits. From

the datasheet specification of ATMEGA328 controller it is found that there is an

error of±1LSB. Hence, the accuracy of the converter used is ±0.125%. Further

calculations are made, assuming that the tolerance of the resistor component is used

as 0.05%. Power(P) is calculated using the instantaneous product value of Voltage(V)

and Current(I) as in equation B.1.

P = V × I (B.1)

The designed power supply unit is supplied with 230V main supply, which outputs

±12V to power up transducer. The power supply module has a possible measurement

error of 2%. The resistor components used in the design of voltage divider circuit have

a tolerance of 0.05%. Considering the internal reference voltage to be 0.9V .Hence, the

overall error might contribute to 2 + 0.05× 2 = 2.1% = 0.0189v.

To measure the instantaneous value of the voltage and current from the transducer

output, which is multiplied by the appropriate scaling factor, the expression can be

written as in equation B.2.

V = (0.9± 0.0189)× (1 + (
Rf

R1

))− (
Rf

R1

)× VLEM(v))× kv (B.2)

where, kv is a Voltage scaling factor.

Similarly, for the current measurement, it can be calculated as given by the equa-

tion B.3.

I = (0.9± 0.0189)× (1 + (
Rf

R1

))− (
Rf

R1

)× VLEM(i))× ki (B.3)

where, ki is a Current scaling factor.

The percentage of error in ADC is ±0.125%.
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B.2.1 Voltage Accuracy Measurement

The manufacturer’s datasheet shows that the percentage error of the LEM LV 25P

transducer at the secondary coil current IS is 0.9%. The RMS output of the LEM

transducer measures 1.89V for an input voltage supply of 230V . Given that the

tolerance of all resistors used in the circuit is 0.05 %, the percentage error of VLEM(v)

is given by equation B.4.

VLEM(v) = LEM(error) +Rf (error) +R1(error) +R2(error) +R3(error) (B.4)

Where, R2 = 100kΩ, R3 = 100Ω

VLEM(v) = 0.9% + 0.05% + 0.05% + 0.05% + 0.05% = 1.1%0f1.89v = 0.02079v (B.5)

Therefore, the above equation B.5 can be described as in equationB.6.

V = (0.9± 0.0189)× (1 + (
Rf

R1

))− (
Rf

R1

)× 0.02079)× kv (B.6)

V = (1.8± 0.0586))× kv (B.7)

Hence, the percentage of error in voltage measurement is ±0.0586
1.8

= ±3.25%.

Therefore, overall percentage of error in voltage measurement is calculated as:

3.25 + 0.125 = ±3.375%

B.2.2 Current Accuracy Measurement

The supplied main current to the load is measured by passing through a current

transducer LEM LA 25P. A nominal current of 2A is considered to be passed through

the transducer. In this case IS = 2mA which flows through a burden resistor of 100Ω

leading to RMS output voltage of LEMs transducer proportional to 0.2A.

Thus, the overall percentage error in current transducer can be expressed as in

equation B.8. Further, modified as in equation B.9 and calculated as in in equation

B.10.
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ILEM(i) = LEM(error) +Rf (error) +R1(error) +R2(error) +R3(error) (B.8)

Where, R2 = 100kΩ, R3 = 100Ω

VLEM(i) = 1.05% of 0.2A = 0.02A

I = (0.9± 0.0189)× (1 + (
Rf

R1

))− (
Rf

R1

)× 0.02079)× ki (B.9)

I = (1.8± 0.0407))× ki (B.10)

The percentage of error in current measurement is ±0.0407
1.8

=2.26%.

The percentage of error in current measurement including ADC error is 2.26+

0.125 = ±2.385%.

Therefore, the cumulative percentage of error in power measurement is calculated

as, 2.625% + 2.385% = ±5.01%

B.3 Power Consumption Measurement of SEMS

Modules

The deployment of SEM units, which runs 24 hours a day for 365 days a year, will

add to the annual electricity consumption due to the SEM’s residual power needs.

Therefore, it is required to analyze the energy consumption of the proven SEM unit

and load controller used in this experiment. The estimated power consumption is

detailed in Table B.1.
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