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ABSTRACT 

Challenge of any manufacturing industry to give a better quality of products to society 

with minimum manufacturing cost, low manufacturing time and less consumption of 

raw material. Manufacturing involves various processes to convert raw material into 

finished products and hence meet demands with high-quality products. Selection of 

process parameters plays a significant role to satisfy all demands to ensure the quality 

of the product, increased production rate, and reduced operating cost. For such cases, 

optimization is essential to represent manufacturing process. Process parameters have 

been optimized by chosen best possible optimization techniques. Before conducting 

any experiments, selection of workpiece and tools it is necessary, to explore the 

literature to know, what has happened in earlier days. A literature survey has been done 

thoroughly existing statistical techniques are understood and implemented to optimize 

speed, feed, and depth of cut. EN47 spring steel has been chosen as work material which 

has a hardness of 45-48HRC. Hard turning process eliminates grinding process, and 

EN47 steel possesses low thermal conductivity and suitably oil hardened and tempered. 

Hardened spring steel offers excellent toughness and shock resistance, and are 

considered as suitable material for automobile applications. Other applications involve 

such as manufacturing of die, leaf spring for a heavy vehicle, crankshaft, spindles, 

pumps and steering knuckles and many general engineering applications.  

Experiments were performed using two different techniques, namely, one factor at a 

time (OFAT) approach and Design of Experiments (DOE). Cutting tool inserts are 

commercially available in the form of PVD coated TiAlN German make and are used 

during machining. Cutting forces, surface roughness, tool tip temperature, and material 

removal rate are estimated experimentally. From the experimental work, it is known 

that with an increase in nose radius, cutting forces, tool tip temperature, and material 

removal rate are increased, but surface roughness is decreased. Further, a tool with 

0.8mm nose radius exhibits nominal performance in all output performances. 0.8mm 

nose radius tools are used to work in three different cutting environments, namely dry, 

wet and cryogenic. From the analysis, cryogenic machining showed better quality of 

the machined surface, tool wear also reduced and tool tip temperature decreased. 
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Experiments were performed and analyzed using design of experiments (DOE) 

technique L27 full factorial design. A second order regression model was developed to 

know the interaction effect of output responses. Tool wear was analyzed by confocal 

microscope and SEM, with varying cutting time. ANOVA was used to identify the 

significant factor and percentage contribution for a particular output. Results from 

machining reveal that cutting force is mainly influenced by feed rate and depth of cut. 

Surface roughness was influenced by cutting speed and feed rate. Tool tip temperature 

was influenced by cutting speed and depth of cut. Material removal rate was influenced 

by speed, feed, and depth of cut.  

3D response surface plots show interaction effect on each output response. Main effects 

plots show optimum condition for each output performance. Normal probability plots 

showed that the developed models are adequate by observing normal error distribution. 

Determination coefficient (R2) value should be in between 1 or 100% in the model. 

Multi-objective optimization was identified by Desirability Approach (DA) and 

Particle Swarm Optimization (PSO). Also, Artificial Neural Network (ANN) is used to 

predict experimental results and compared with RSM model, as well as, experimental 

value. Statistical analysis was done by Minitab and Design Expert Software. Validation 

was performed by ANN. MATLAB is used to develop artificial neural network model, 

as well as; codes are developed for PSO. From the experimental analysis, the developed 

model showed a significant and good agreement between the experimental value and 

predicted value.  

Keywords: EN47 Spring Steel, Coated tungsten carbide tool, Cutting forces, Surface 

roughness, Wet machining, Cryogenic machining, Tool wear, Material removal rate, 

Chip morphology, Surface integrity, Artificial neural network, Particle Swarm 

Optimization, Response Surface Methodology, tool tip temperature, Desirability 

Approach. 
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Outline of the thesis 

Present thesis has been divided into five chapters which are as follows. 

Chapter 1: This chapter explains the background of the machining process, 

applications of metal alloys of spring steel EN47, basic techniques of Design of 

Experiments (DOE).  Different cutting environments like dry, wet and cryogenic 

conditions. Modeling and optimization techniques and need for the present study. 

Chapter 2: Deals with literature review, in which metal cutting process, the design of 

experiment, different cutting environments and modeling and optimization techniques 

are discussed in brief. Also, gain knowledge and familiar with the existing techniques 

and methodology, research gaps and objectives of research work. 

Chapter 3: This chapter explains the methodology of research work, description of all 

machines, measuring instruments, work piece material and cutting tool inserts used in 

the present work. 

Chapter 4: In this chapter explains result and discussion of experimental work. 

Machinability study of EN47 spring steel with tool inserts of different nose radii; 0.4, 

0.8 & 1.2 mm. One factor at a time approach was used to identify cutting forces, surface 

roughness, tool tip temperature, and material removal rate. From the comparative study 

based on the performance of output response, tool insert with best nose radius was 

selected for further work.  

Using the selected tool insert, turning experiments were conducted at different cutting 

environments; dry, wet & cryogenic condition using full factorial design (FFD) L27 

orthogonal array optimization technique to measure cutting forces, surface roughness, 

tool tip temperature, machined surface analysis, machined surface topography, chip 

morphology, and tool wear.  

Further modeling and optimization of cutting parameters were performed, multi-

objective optimization was done by composite desirability approach and PSO 

technique. Validation has been performed with a new set of cutting condition. Also, an 

artificial neural network was used to predict the experimental result. 

Chapter 5: Explains conclusions and future work.  
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CHAPTER 1 

1 INTRODUCTION 

This chapter explains the back-ground of the machining process, applications of EN47 

spring steel, basic techniques of the design of experiments (DOE).  It explains different 

cutting environments like dry, wet and cryogenic conditions, modeling and optimization 

techniques and explains the importance of need for the present study. 

1.1 Background 

In most of the cases, metals are used in industrial applications. Cutting of such metals 

is complex, which has resisted theoretical analysis. Machining is performed using a 

variety of machine tools. Economic analysis mainly depends on proper selection of 

cutting parameters, which is done either by the experience of the process planning or 

machining hand book. Selected cutting parameters, by hand book, are, not the optimum 

values, but range of values. Main objectives of any industry are to give a better quality 

of products with acceptable dimensional accuracy and better surface finish, without 

disturbing the product quality (Jawaid et al. 1999). 

Machining is a process of removing unwanted material from a given stock of material 

to give the desired output (shape), and it involves a number of processes. Extracted 

materials are in the form of chips obtained from workpiece material. Various machining 

process involved are turning, milling, shaping, drilling, broaching, sawing and abrasive 

machining. These processes involve independent input variables and dependent output 

variables, and their relationship is explained in this thesis. A skilled operator or engineer 

has direct control over the independent input parameter. They can specify input 

variables and setting them for machining process. Independent input variables involve 

workpiece material, cutting parameters, tool material, tool geometry, work holding 

devices and cutting fluids, etc. Dependent variables involve cutting forces, power 

consumption, surface finish, tool wear and failure, size and properties of the finished 

product, etc.  

Turning is one such machining process, used to remove excess material for generating 

new and smooth surfaces by the action of a stationary cutting tool against a rotating 

work piece, usually in a lathe machine (Richelsen 1994). Turning is the major operation 
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in a machining sequence, which involves centering, facing, boring, countersinking, 

plain turning, parting, knurling, step turning, taper turning and thread cutting, etc. Lathe 

machines are used in metal working, woodturning, parts reclamation, glass working, 

and metal spinning, etc. Turning process, having major process parameters like speed 

feed and depth of cut, denoted by Vc, ap, and f, respectively, will impact production 

cost. Also, tool material, workpiece, tool geometry, and cutting environment, influence 

the production rate. Cutting forces, surface roughness, material removal rate, and tool 

life are strongly correlated with input parameters.  

Turning of hardened steels becomes more beneficial when working in dry condition. 

EN47 spring steel, in oil hardened and tempering conditions, has good wear resistance, 

abrasion resistance and hardness of 45-48HRC, and hence are suitable for producing 

different parts gears, knuckles, shafts, spindles, and pumps. Also, EN47 steels are used 

for making leaf spring for heavy vehicles and many other general engineering 

applications. 

Single point (SNMG) tungsten carbide tool insert is used in turning operation. Tungsten 

carbide (WC) tool insert was essentially used for machining of hard material, as well 

as, soft material at higher cutting speed.  WC tools have good wear resistance, corrosion 

and thermal shock resistance, which is excellent for machining most steels, cast iron, 

nonferrous materials, stainless steel and alloys under stable conditions. 

Many experiments related to cutting forces, surface roughness, tool wear, tool vibration 

with different alloy steel, with different cutting condition have been studied. In a few 

studies, single objective optimization technique was taken into consideration for 

optimizing the interactions of process parameters for all output responses. However, in 

some cases, multi-objective optimization techniques are employed, to achieve the 

optimized process parameters for all output responses. (Abbas et al. 2016). 
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1.2 DOE technique 

Process parameters are optimized using Design of Experiment (DOE), which require 

mathematical models and predicts the behavior of the process. DOE gives systematic 

experimental plan and also reduce number of experiments for achieving a high quality 

product at low cost. (Montgomery 2012). Various application of DOE has been reported 

in literature review chapter, which involves machining of metallic and other alloy 

steels. But minimum work has been reported on spring steels with optimization 

technique under different cutting environments. 

Response Surface Methodology (RSM) is a suitable technique to optimize the cutting 

conditions and to study the effects of process parameters. RSM is a collection of 

statistical and mathematical data, which are very useful in understanding the model and 

analysis of the problems. Full Factorial Design (FFD) L27 orthogonal array (OA) gives 

sequentially arranged experimental design. Also, analysis of variance (ANOVA) 

provides significant terms for each output response. During the past few years, 

statistical techniques are employed for prediction of surface roughness, cutting force, 

tool tip temperature and material removal rate, etc. during machining.  

1.3 Cutting environments 

Cutting environment is a major independent variable, which involves (dry, wet and 

cryogenic condition) for a particular combination of tool and workpiece material. 

1.3.1 Dry Machining 

Dry Machining is a process, where machining is performed in the absence of coolant. 

Atmospheric air will be acting as a coolant. Dry machining is preferred for hard turning, 

where the hardness of the material is more than 50 HRC. Hard turning eliminates a 

series of operations essentially to produce required finished products. But during dry 

machining, temperature may be very high, and friction between tool and workpiece are 

more, causes reduced tool life, higher surface roughness and increased cutting force. 
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1.3.2 Wet Machining 

Wet machining is a process, in which the coolant was supplied to machining zone. 

Cutting fluids serve as a coolant which reduces the friction between tool and workpiece 

interface. But disposal of chips during cutting is very difficult in wet machining, 

conventional cutting fluids not only affects environments but also creates health issues 

to operator.  

1.3.3 Cryogenic Machining 

Cryogenic machining process, wherein liquid nitrogen (LN2) is supplied to machining 

zone. Cryogenic machining was employed to eliminate health problems caused during 

wet machining. Also, improved surface finish, reduced tool tip temperature and 

extraction of chips during machining are the features of cryogenic machining. 

Cryogenic machining is a type of dry machining with evaporation of delivered 

cryogenic fluids. In most of the cases, liquid nitrogen (LN2) and liquid carbon dioxide 

(LCO2) are used. Many of the researchers use liquid nitrogen (LN2) as a coolant to 

reduce the heat. LN2 substantially reduce the temperature between chip-tool interface 

(Evans and Bryan 1991). Cryogenic cooling technique substantially improves the tool 

life with reduction of adhesion-dissolution-diffusion wear of tool. Also, controls the 

temperature of machining zone (Venugopal et al. 2007). LN2 cooling technique 

improved machinability performance of Inconel 718 when compared with wet and 

minimum quantity lubrication (MQL) (Kaynak 2014). Cryogenic machining effectively 

reduced the coefficient of friction between tool and chip interface during the machining 

of titanium alloy Ti-6Al-4V(Hong and Ding 2001).  

1.4 Modeling techniques 

Particle Swarm Optimization (PSO) technique was proposed by James Kennedy and 

Eberhart R in 1995. These techniques were inspired by social behavior of birds flocking 

and fish schooling. PSO technique is used to find the optimal values which followed 

the work of animal society which has no leader for searching best value. In these 

techniques, particles will move through the multi-directional search space to find best 

position. 
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Desirability approach (DA) was demonstrated by Derringer and Suich in 1980, which 

was commonly used in industry for optimization of multi-objectives responses. 

Desirability approach was one of techniques to convert multi-objective output 

responses into a single objective function termed as composite desirability. 

Artificial neural networks (ANNs) is a modeling and data processing technique, which 

was inspired by biological neuron system. This technique pursuits mathematical 

modeling of learning process. ANN technique is very beneficial for classification and 

function approximation problems. 

1.5 Need for the present study 

Presently, industries work for better quality of products with reduced cost. Most of the 

cases, metal products are required in automobile industries for general engineering 

applications. So, metal cutting is essential for obtaining desired components, where the 

workpiece materials are subjected to various machining operations like turning, 

drilling, grinding, etc. Machining can be performed on soft workpiece material, as well 

as, hard materials so that final component can be obtained. In the present work, 

machinability characteristics of EN47 spring steel (45-48 HRC), will be studied. EN47 

spring steel has many engineering applications such as manufacturing of dies, knuckles, 

gears, shafts and leaf spring for heavy vehicles. From the literature survey, it is shown 

that limited work has been reported on EN47 spring steel. The main importance of this 

research work is to optimize the process parameters. Comparative studies are carried 

out with tool insert of different nose radius, with different cutting environments like 

dry, wet and cryogenic conditions. EN47 spring steel requires a high cutting conditions, 

which leads to higher tool wear and poor surface finish and hence resulting in difficulty 

in cutting. In such situations, an optimization technique should be employed. In the 

present investigation, a full factorial design (FFD), L27 orthogonal array (OA) was used 

to conduct the experiments. Three factors and three levels [(33) total of 27 experiments] 

are carried out from the design. The combination of cutting conditions is sequentially 

arranged, according to design. Experiments are conducted for every condition and are 

repeated three times, and average values are considered for analysis.  
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As reported by many researchers, metal cutting, is coupled with different cutting 

environments, for achieving a better quality of products like machining with coolants, 

machining with minimum quantity lubrication (MQL) and machining with liquid 

nitrogen (LN2), and thermally assisted machining (TAM). Some of the restrictions that 

have been observed during machining are usage and disposal of conventional coolants, 

which has more conscious regulations in the view of health and environmental issue. 

For overcoming these problems, industries are looking for alternative cooling 

techniques which can improve productivity and reduce environmental issues.     
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CHAPTER 2 

2 LITERATURE SURVEY 

This chapter gives brief discussion about metal cutting process, design of experiment 

(DOE), different cutting environments, modeling and optimization techniques. And also 

provides knowledge and familiarize with the existing techniques and methodologies. A 

brief discussion of published research work done by experts has been analyzed. Metal 

cutting involves many operations such as turning, drilling, grinding, milling, etc. 

According to DOE, experiments are conducted in sequential order, and the data is 

analyzed, according to the orthogonal array. Analysis of variance (ANOVA) is used to 

identify percentage contribution for each response. Main effects plots are used to know 

individual significant terms and response surface plots (3D plots) are used to 

understand the interaction effects for each output response. A second order regression 

model is developed to predict the output response. Different cutting environments have 

been reported, like machining with the dry condition, wet condition, and cryogenic 

machining. Also, machined surface topography, chip morphology, and tool wear 

analysis have been reported. Modeling and optimization involve desirability approach 

(DA), particle swarm optimization (PSO) and artificial neural network (ANN) have 

been studied.  

2.1 Independent variables 

2.1.1 Cutting parameters 

During machining, it is required to select appropriate input parameters (feed, speed, and 

depth of cut). In most cases, input parameters strongly depend on output responses and 

machine tool condition. By selecting proper cutting conditions, better quality of the 

product can be achieved. Speed, feed and depth of cut are the primary parameters. 

Workpiece and tool materials also influence the output performance. Cutting speed is 

normally denoted as revolution per minute (rpm) and represents workpiece rotation in 

a number of turns completed in one minute around a fixed axis. Feed rate can be defined 

as the total distance traveled by tool during one spindle revolution and it represented in 

mm/rev. Depth of cut is the distance, the tool is moving towards the workpiece in a 

single pass and is represented in mm. These three parameters (speed, feed, and depth 
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of cut) play a major role in material removal. Turning is a machining process to obtain 

cylindrical surfaces, by removing the excess material in the form of chips. In turning, 

two types of motions were observed: primary motion is rotary motion, and secondary 

motion is translation motion called as feed motion. Figure 2.1 shows the motions of 

turning. Workpiece rotates in symmetry about the rotation axis of the lathe machine. 

On lathe, different turning operation can be performed, and the sequence involves, 

facing, centering, plain turning, drilling, knurling, step turning, taper turning and thread 

cutting, etc. Lathe machines are used in metal working, woodturning, parts reclamation, 

glass working, and metal spinning, etc. 

 

Figure 2.1 Basic motion of turning (Viktor P Astakhov 2011) 

2.1.2 Workpiece material 

Proper selection of workpiece material for an application, depends upon metallurgical 

aspects and chemical compositions of workpiece. The dimensions of workpiece are 

major restriction during machining, for avoiding chatter and vibration the length and 

diameters (L/D) ratio not exceed 10 as per ISO 3685.  For hard materials has large 

cutting force and poor surface finish is obtained during machining, which results in 

reduced tool life. For such cases, proper selection of cutting parameters is essential for 

machining.  

2.1.3 Tool material 

Selection of tool materials plays a vital role in machining. Usually tool material is 

harder than the workpiece. Commonly used tool materials are in production are high-
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speed steel (HSS), Carbide and coated tools, ceramics, cubic boron nitride (CBN) and 

diamond tipped tools. HSS tool is used for general purpose cutting, ceramic and carbide 

tools are used for cutting at higher cutting speeds which are available with a variety of 

grades and geometries. Higher cutting speed leads to higher tool tip temperature and 

reduced tool life. Nowadays, coated cutting tool inserts one replacing HSS and carbide 

tools which fulfill the functional requirement. Coated tool material have to wear 

resistant property at higher cutting speed and longer tool life. 

2.1.4 Tool geometry 

Tool geometry is essential for cutting tool to perform a cutting action. Tool geometry 

consists of rake angles, cutting edge angles, relief angles or clearance angle and nose 

radius. Large rake angle and clearance angles are preferred for HSS tools and small 

angles for carbide, ceramics tools which keep cutting tool material in compression, to 

avoid fracture of the tool, and tensile failure during machining. Cutting nose radius also 

influencing more during machining, higher nose radius leads a better surface finish but 

increased cutting forces and higher tool tip temperature. The better geometry of the 

cutting edge leads to an improved output performance and longer tool life. 

2.2 Machinability factors 

2.2.1 Effect of cutting parameters on cutting forces 

In metal working process, cutting force is the most important factor for machinability 

study. Cutting force is obtained by performing cutting action at specified cutting 

parameters (speed, feed, and depth of cut). It is necessary to identify cutting force while 

machining. Higher cutting force leads to reduced tool life and it affects the machined 

surface. So, it is necessary to optimize the cutting parameters. In machining, three 

cutting forces, namely, axial force (Fx), thrust force (Fy) and tangential force (Fz), are 

observed. From the Figure 2.2, it is observed that tangential force is the main cutting 

force and hence considered for the analysis. 
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Figure 2.2 Cutting forces 

Suresh et al. (2012) employed design of experiment (DOE) technique to optimize 

process parameters to identify cutting force and surface roughness by machining of 

AISI 4340 steel. From the experimental work, it is observed that low machining force 

and improved surface roughness obtained with machining combination of low 

machining time, low depth of cut, low feed rate and high cutting speed. 

Chen et al. (2014) investigated machinability study on GCr15 bearing steel with PCD 

tool, to identify the cutting force, surface topography and surface roughness. It was 

found that feed rate influenced more on surface roughness while minimum cutting force 

and reduced surface roughness values are obtained with higher cutting speed and lower 

feed rate. 

Pugazhenthi et al. (2018) employed design of experiment (DOE) to conduct 

experiments based on Central Composite Rotatable Design (CCRD) to, identify the 

cutting forces and surface roughness by machining AA7075/ (0-12%) TiB2 aluminum 

matrix composites. From the analysis, a downward trend was observed, while 

increasing cutting speed and TiB2 content. It was observed that cutting force increased 

with increase of depth of cut and feed rate. 

Mahamani et al. (2014) investigated machinability characteristics of AA2219-

TiB2/ZrB2 with uncoated tool insert, to identify surface roughness and machining 

force. Experiments were conducted based on L27 full factorial design to optimize the 
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process parameters. From the analysis, it was revealed that feed rate is a more 

influencing factor for surface roughness and cutting forces. 

Kishore et al. (2014) studied the effects of process parameters namely speed, feed, and 

depth of cut, during turning of Al6061 with 2wt% of TiC and Al6061 4 wt% of TiC 

with PCD and uncoated WC tool under dry condition, and output response being cutting 

force and surface roughness. From the experimental result, it was observed that the 

cutting force and surface roughness decreased with an increase in cutting speed and 

also to understand PCD is the best tool than the uncoated tungsten carbide. 

Kosaraju and Chandraker (2015) conducted turning experiments on MDN 350 steel 

using a cemented carbide tool. Experiments were conducted based on L9 orthogonal 

array. Cutting force and surface roughness were investigated. It was concluding that 

cutting speed and feed rate are more significant for cutting force and surface roughness 

respectively. 

Sayeed Ahmed et al. (2015) investigated the feed force and radial force by using 

Taguchi design approach. In this work, turning is carried out on mild steel with an HSS 

tool. To optimize the cutting parameters, experiments are conducted based on Taguchi 

L9 orthogonal array (OA). The analysis was done by Minitab software to identify the 

significant terms. It was concluded, that feed rate and depth of cut are influencing 

factors for feed force and radial force. 

Bensouilah et al. (2016) investigated the surface roughness and cutting force. Taguchi 

L16 orthogonal array was employed. AISI D3 cold worked tool steel is workpiece 

material, and CC6050 and CC650 are ceramic inserts used. ANOVA, S/N ratio, and 

RSM were adopted for acquiring data. It was concluding that the coated CC6050 

showed better for surface roughness and uncoated CC650 ceramic insert showed 

reduced cutting force. 

2.2.2 Effect of cutting parameters on surface roughness 

The machined surface has two important aspects, surface finish, and surface integrity. 

Surface finish is related to geometrical irregularities on the surface. Surface integrity 

deals with the metallurgical alterations of surface. Surface finish plays a vital role in 



 

12 

 

manufacturing sector, as it has most important quality characteristics which influence 

performance of machine part and hence the production rate. Better surface finish leads 

to the elimination further process like honing lapping and buffing. Most of the 

industries achieve a better quality of the products with less operating cost and shorten 

manufacturing time. Generally, surface roughness is a measure of fine irregularities in 

surface texture of machined parts and defined in terms of average roughness (Ra), 

waviness, lay and flaws. Surface roughness can be measured by comparing all the peaks 

and valleys from mean line and then averaging all the values. Surface Tester Probe 

measures vertical deviation of a real machined surface. When the deviations are large, 

the surface will be rough, and the value of roughness will be high, while deviations are 

small, surface will be smooth. During surface roughness measurement, different 

roughness parameters are present: Ra is arithmetic mean roughness, Rz is ten points 

mean roughness and Rt is maximum height of surface profile. Most of the cases Ra is 

considered for analysis according to Standard ISO 468:1982. During the analysis, 

arithmetic means roughness (Ra) is considered. 

Aruna and Dhanalaksmi (2012) revealed that the optimization technique reduces the 

cost and time of machining. In the present experimental work, nickel-based super alloy 

and Inconel 718 are the workpiece materials with cermet inserts as a tool.  Response 

surface method and 2nd order quadratic models are employed to investigate the surface 

roughness. Central composite design was used to determine the machining parameters. 

Experiments of all the parameters are validated, and the response values reasonably 

agree with predicted value. 

Nithyanandam et al. (2014) studied machinability of titanium alloy (workpiece) using 

nano-carbide insert (tool). Taguchi method was used to optimize the surface roughness 

with, speed, feed, depth of cut and nose radius, as cutting parameters. Optimum 

condition surface roughness was determined by using S/N ratio and ANOVA. It was 

concluded that the feed was the most influential parameter. 

Taguchi L9 orthogonal array was employed by Nikam and Kadam (2016) to investigate 

the effect of too geometry and surface roughness of 08040 steel with CVD coated 

carbide inserts CNMG and TNMG respectively. Experiments are conducted on a CNC 

machine, at low, medium and high levels of 3 factors namely, cutting speed, feed and 
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depth of cut. It was concluded that TNMG insert gave better surface roughness when 

compared to CNMG coated carbide insert and feed rate was the most significant 

parameter for obtaining better surface roughness. 

Hua and Liu (2018) studied the machinability of Inconel 718. Effects of process 

parameters and nose radius on machined surface, microhardness and work hardening 

during dry turning were investigated. Results revealed that feed rate and nose radius 

influence the machined surface, but there was no clear tendency of cutting speed. Work 

hardening was influenced by cutting speed and feed rate. Increased nose radius tends 

to reduce work hardening.  

Sharman et al. (2015) investigated machinability characteristics of Inconel 718 to 

identify surface integrity. It was found that feed rate influenced surface integrity, 

whereas no clear tendency for cutting speed. 

Pawade et al. (2007) studied machinability characteristics of Inconel 718 to investigates 

the surface integrity during dry turning. Results revealed that the tool cutting edge 

geometry and depth of cut, mainly influenced the work hardening beneath the 

subsurface of machined part of Inconel 718, whereas cutting speed had less significant. 

Lalbondre et al. (2013) studied the machinability of AISI51100 & AISI52100 steel with 

triangular P-30 inserts as a cutting tool. Face turning was carried out according to ISO 

3685: 1993(E). Effectiveness of this method was assessed by studying the cutting time 

required for flank wear (0.3mm). It was concluded that face turning was a simple and 

effective method of machining. 

Siddesh Kumar et al. (2017) conducted a turning process on different composite 

materials, to investigates machinability characteristics such as surface roughness and 

cutting force. Experiments were conducted with coated and uncoated tool insert. From 

the analysis it was concluded that cutting force and surface roughness are mainly 

influenced by feed rate, machining with coated tool inserts exhibits better performance. 

2.2.3 Effect of cutting parameters on material removal rate (MRR) 

Material removal rate can be defined as amount of material removed per unit time. 

[(initial weight – final weight)/machining time]. Main goal of machining is to increase 
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MRR which results in higher production rate with improved accuracy and precision of 

final product. Cutting parameters like speed, feed, and depth of cut influence MRR. 

Depth of cut is a significant factor for MRR. From the analysis, increased depth of cut 

leads to a higher MRR. Achieving a desired goal of productivity and increased material 

removal rate requires an advanced machining process, equipment, and control system. 

Specifically, improved productions are obtained with increased depth of cut and feed 

rate with higher cutting speed. 

Kaladhar et al. (2011), used Taguchi approach combined with utility concept of L8 

orthogonal array to conduct the experiments on AISI 202 steel with coated carbide tool, 

identify material removal rate and surface roughness. It was concluded that higher 

cutting speed and nose radius increased MRR and lower feed rate tends to improve 

surface roughness. 

Choudhuri et al. (2014) employed Taguchi L9 orthogonal array (OA) with utility 

concept for turning of aluminum 6061 with coated carbide insert, and it was stated that 

the single response results were not optimum values. So multi-characteristics response 

optimization such as surface roughness and material removal rate were employed 

during turning. It was concluded that higher levels of feed and depth of cut were used 

to maximize MRR and lower level of spindle speed was used to minimize surface 

roughness. 

Gupta and Kumar (2015) investigated the machinability characteristics on UD-GFRP 

material with PCD tool, using principle component analysis with Taguchi Method. Six 

input parameters such as speed, feed, depth of cut, nose radius, rake angle, and cutting 

environment and the output response are surface roughness and material removal rate. 

From the experiments, it was concluded that the surface roughness increases with an 

increase in feed rate. 

Kamble et al. (2015) performed turning operation on AISI 4340 with both coated and 

uncoated tool inserts based on the Fuzzy logic method, and it was used to convert 

multiple objectives into single objective, and a regression model was developed. It was 

concluded that quality characteristics such as MRR, Ra and cutting force were 

simultaneously improved by multi optimization. 



 

15 

 

Jewlikar et al. (2015) employed Taguchi technique L9 orthogonal array for the analysis. 

Turning process was carried out on HPT of Bohler K110 steel with carbide tipped tool 

insert. Speed, feed, and depth of cut are the input cutting parameters and the output 

parameters are cutting force and material removal rate. It was concluded that an increase 

in cutting speed decreased in surface roughness and also with an increase in feed rate, 

surface roughness also increases. 

2.2.4 Effect of cutting parameters on tool tip temperature 

Temperature is one of significant factors during machining, when, there is physical 

contact between tool and the work piece, heat will be generated on tool tip along with 

chip interface. Cutting temperature can be defined as the measure of heat developed at 

tool-chip interface. From experimental analysis and by literature survey, cutting speed 

was a most significant term for tool tip temperature. High temperature affects the tool 

tip and will reduce the tool life. Due to higher cutting temperature, tool material softens 

and deform plastically. Many methods are used to measure the temperature, like a tool-

workpiece thermocouple, implanted thermocouple, radiation method, and inserted 

thermocouple, etc. Nowadays, temperature is measured using a non-contact infrared 

thermal heat gun.  

El Hakim et al. (2015) studied the secondary hardening on tool steel AISI T15 high-

speed steel and AISI D2 cold work with multi-layer coated carbide insert, the effect of 

secondary hardening on machinability of cutting force, cutting temperature and tool 

wear are investigated. It was concluded that secondary hardening occurs during turning 

operation of HSS, which causes increased cutting force and temperature. 

Gosai and Bhavsar (2016) investigated the temperature measurement in turning of 

hardened EN36 material with CNMG 4325 coated carbide insert. Cutting temperature 

was measured by inserting a K-type thermo-couple sensor within the tool. LABVIEW 

software through Arduino R3 controller board was used to analyze the temperature and 

also mathematical model and equation are generated by using CCD-based RSM. 

Sivaiah and Chakradhar (2017a) conducting turning experiments on 17-4 PH Stainless 

steel with dry, wet, MQL and cryogenic conditions. to study the output performance of 

cutting force, surface roughness, chip morphology and tool tip temperature with 
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varying cutting velocities. Results reveal that cryogenic machining performs better than 

other cutting environments. 

Mia and Dhar (2016) developed a predictive model for temperature of tool and 

workpiece interface by turning of AISI 1060 steel with a coated carbide insert. RSM 

and ANN are used to predict tool tip temperature to optimize the process parameters. 

2.2.5 Effect of cutting parameters on tool wear 

Tool wear also plays an important role in machinability characteristics, which will 

affect the production rate. Normally tool wear refers to the gradual failure of tool, due 

to its continuous operation. Tool wear measurement is essential, to know how long a 

tool lasts its life. From ISO-3685, Vb max is 0.6mm, and Vb average is 0.3mm. Tool 

wear is affected by cutting parameters, machining condition, cutting tool geometry, 

workpiece material, tool material, and cutting environment, etc. There are two types of 

tool wear occur during machining operation; (i) crater wear and (ii) flank wear. Crater 

wear is formed the rake face of tool, while flank wear occurs on flank of the tool. From 

the experimental analysis, most of the cases flank wear was considered for tool wear 

analysis. 

Gaitonde et al. (2009) investigated the machinability characteristics of AISI D2 cold 

work tool steel, to identify cutting forces, surface roughness, and tool wear. Turning 

process was carried with two different tool material CC650 & CC650WG. Results 

reveal that CC650WG produced better surface roughness and minimum tool wear. 

CC650 perform well for cutting force and power. 

Sreerama Reddy et al. (2009) investigated surface roughness, cutting force and flank 

wear of cutting tool insert during turning of C45 workpiece material with coated 

tungsten carbide. Flank wear of deep cryogenic treatment of tool insert is less than the 

untreated tool inserts. Cutting forces reduced during cryogenic machining and surface 

finished improving.  

Satyanarayana et al. (2013) studied Taguchi based Grey relational analysis during 

turning of Inconel 718 work material with uncoated cemented carbide tool inserts. 

Taguchi based Grey relational analysis was used to obtain optimum value by employing 
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Taguchi L9 orthogonal array, which minimizes the cutting force, surface roughness and 

tool wear. Optimum value was obtained at 90m/min speed, 0.18mm/rev feed and 

0.5mm depth of cut and the process parameters have been optimized by ANOVA. 

Sahu and Choudhury (2015) predicted surface roughness and tool wear by employing 

Taguchi method. This research work, AISI 4340 steel was considered workpiece 

material and coated, and uncoated tool material are used. The influencing cutting 

parameters are speed, feed, and depth of cut. Turning process was performed using 

coated and uncoated tool material. Machining of hard material at a higher speed and 

lower feed was improved by coated inserts. 

Kaynak (2014) compared the machining performance of Inconel 718 with dry, MQL 

and cryogenic machining. The author concludes that the progression of flank wear and 

crater wear rate can be minimized using cryogenic machining 

2.2.6 Effect of cutting parameters on chips 

During machining, material is removed in the form of chips, and hence fresh surface is 

obtained on the workpiece. Chip formation helps to control machining condition, 

turning costs, surface finish and tool life which often lead to better process and 

increased productivity. Extraction of chips from machined surface affects production 

rate. Chips are separated in three ways: chips break against a workpiece; chips break 

against tool, and chips break by themselves. Chips formed at lower cutting speed are 

irregular in shape and shortened, while higher at cutting speed, chips are continuous 

and spring shape. Disposal of chips are essential; if not controlled, chips may affect 

machined surface and tool performance. 

Chinchanikar and Choudhury (2013) investigated machinability characteristics of AISI 

4340 with CVD and PVD tool material, to identify cutting forces, surface roughness, 

and chip morphology. Results reveal that CVD coated tool performs better than that 

PVD coated tool. 

Palanisamy et al. (2016) studied the microstructure properties of 15-5PH stainless steel 

at different aging conditions. The treated samples were machined to study the 

machinability aspects namely tool wear, surface roughness, cutting force and chip 
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morphology. Experimental investigations revealed that air-cooled samples exhibit 

higher cutting forces compare to furnace cooled samples, surface finishes were also 

good in at air cooled samples, whereas higher hardness was observed in unprocessed 

samples. 

2.3 Modeling and optimization technique 

2.3.1 Particle Swarm Optimization (PSO) 

Kennedy and Eberhart developed the particle swarm optimization (PSO) technique 

through imitating the preying behavior of birds or fishes. In PSO, for every solution in 

the searching space is seen as a ‘bird,’ known as ‘particle.’ All the particles have fitness 

values; and evaluated through a fitness function to be optimized. Particles are move 

through the search space with its best practice of personal and social experience. The 

personal experience embodied the individual effort to find the best solution, while 

social experience is taking help from neighbors to achieve best solution. Some of the 

experts work on PSO and are summarized.  

Gaitonde and Karnik (2012) used particle swarm optimization (PSO) developed by an 

artificial neural network (ANN) to optimize the process parameters to minimize the 

burr height and thickness during drilling of AISI 316L stainless steel. 

Hanafi et al. (2016) investigated machinability characteristics of Ploy Ether Ketone 

(PEEK), to identify cutting forces, cutting power and specific cutting pressure. Taguchi 

method DOE is used and to arrange for optimizing the process parameters by employing 

the PSO technique. Developed PSO program gives minimum values of output response 

with corresponding optimum conditions.  

Bharathi Raja and Baskar (2011)  conducted experiments on turning of copper, brass, 

aluminum and mild steel using CNC lathe. PSO technique was used for optimizing the 

cutting condition to identify the surface roughness. 

Mohanty et al. (2016) investigate machinability characteristics of Inconel 718. To 

identify the MRR, electrode wear rate, radial over cut and surface roughness during 

electric discharge machining. Multi-objective particle optimization (MOPSO) 

algorithm are used to find the optimal process parameters. 
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2.3.2 Desirability Approach (DA) 

Desirability approach was demonstrated by Derringer and Suich, in 1980. It is widely 

used in industry for optimization of multi-response problems. Desirability approach is 

one of techniques used to convert multi-objective output responses into a single 

objective function which is termed as composite desirability. A composite desirability 

value is obtained for multi responses from desirability approach. Optimum process 

parameters and optimal value for each output performance are obtained from 

desirability approach. If the composite desirability value lies in between 1 or 100% then 

developed model is adequate. 

Methodology for desirability approach Equation 2.1 to 2.4 (Azizi et al. 2012) 

Step-1: Calculate individual desirability index (di). 

There are three forms of desirability approaches. 

a. Smaller is better 

Value of y expected to be smaller is better. 

  2.1 

b. Nominal is better 

Value of y is required to achieve a particular target (T) 

 2.2 

Where ymax and ymin represent upper and lower tolerance limits of y. s and t represent 

weights. 
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c. Larger is better 

The value y expected to be larger is better 

 2.3 

Step-2: Compute composite desirability index (dG). 

 2.4 

Where di= Individual desirability; W1, W2 sum of individual weights; Wi weight of 

property 

Step-3: Determine optimum process parameters, higher composite desirability value 

implies a better quality of product. 

Step-4: Perform ANOVA for significant terms and percentage contribution for 

independent variable. 

Step-5: Calculate predicted optimum condition. 

Malghan et al. (2016) carried out milling process on aluminum metal matrix composite 

(MMC). To identify the cutting force, surface roughness and power consumption. The 

cutting parameters are analyzed by response surface method (RSM) of desirability 

approach (DA) and particle swarm optimization (PSO). Result reveals that predicted 

results shows very close to experimental results. PSO technique achieves significantly 

improved than DA technique. 

Meddour et al. (2018) turning process were carried out on AISI 4140 steel with ceramic 

tools. To identify the surface roughness and cutting force, modeled by an artificial 

neural network (ANN) and response surface method (RSM). Multi-objective 

optimization was performed with desirability approach (DA), and Non-dominated 
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sorting genetic algorithm (NGSA-II) is coupled with ANN. Result reveals that (NGSA-

II) provide more efficient than DA. 

Amel Chabbi et al. (2017) performed experiments on polyoxymethylene (POM C) 

polymer. Experimental analysis was divided into three steps such as unifactorial tests, 

modeling with RSM and ANN, and last step, multi-objective optimization by 

desirability approach (DA). Result reveals that to minimize output responses of cutting 

forces, cutting power and surface roughness. 

2.4 Artificial Neural Networks (ANNs) 

Artificial Neural Network (ANNs) is a modeling and data processing technique, which 

is inspired from biological neuron system. This technique pursuits mathematical 

modeling of learning process. ANN technique is very useful for classification and 

function approximation problems. 

 

Figure 2.3 Mathematical principle on a neuron (Kant and Sangwan 2015) 

In a biological system, brain stores all information by adjusting the linking patterns. In 

the same way that ANN can be trained to store the information in network by adjusting 

synaptic weights. Neural networks have three parameters namely, training, validating 

and testing. Determination of coefficient R2 value should be 100% or 1, so trained 

network is adequate. ANN model consists of three layers namely, input layer, hidden 

layer and output layers. The diagram for a network with a single neuron is shown in 

Figure 2.3. 

Kumar and Chauhan (2015) investigated machinability study on different composite 

materials of Al7075 with PCD tool, to optimize process parameters of approach angle, 
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speed and feed rate. Experiments are conducted based on design of experiments to 

identify surface roughness of different composite material. Researchers developed 

predicted models by using response surface method and artificial neural network. From 

the analysis, feed rate influence more on machined surface of all the composite 

materials. 

Hanief et al. (2017) employed design of experiments for turning of on red brass material 

using HSS tool. Full factorial design is used make experimental plan. Artificial neural 

network and regression models are comparing with each other. From the analysis, it 

was concluded that more accurate result was obtained with ANN model as compare to 

regression model. 

Ciurana et al. (2009) adopted PSO technique for pulsed laser micromachining of AISI 

H13 hardened steel to optimize the process parameters. PSO technique was coupled 

with ANN, to minimize surface roughness and volume error. Result reveals that 

developed models are suitable for optimizing the process parameters. 

Muthukrishnan and Davim (2009) investigated machinability characteristics of metal 

matrix composite (MMC) during turning with PCD tool. Experiments were conducted 

based on DOE technique and validated with artificial neural network (ANN). Result 

reveals that predicted results much closer to experimental results. 

Umbrello et al. (2007) used artificial neural network (ANN) for predicting subsurface 

residual stress during hard turning of 52100 bearing steel. To optimize cutting condition 

and the results shows that predicted errors ranged between 4 to 10%.  

Davim et al. (2008) studied machinability characteristics of 9SMnPb28k(DIN) free 

machining steel, to identify the surface roughness (Ra and Rt). Full factorial design L27 

orthogonal array are used to carry out the experiments. ANN training models were 

developed to study interaction effects of input cutting condition on surface roughness. 

Result reveals that feed rate (f) and cutting speed (Vc) influence more on surface 

roughness. 

Mia and Dhar (2016) conducted experimental work on EN24T steel during turning 

process with high pressure coolant (HPC). ANN was used for prediction of surface 



 

23 

 

roughness. Experiments were conducted based on full factorial design (FFD). Results 

reveal that Bayesian Regularization (BR), gives least Root Mean Square Error (RMSE). 

Hua and Liu (2018) reported machinability studies on Inconel 718 in order to identify 

microhardness, surface roughness and degree of work hardening. Experiments are 

conducted with three different feed rate, three different cutting speed, different nose 

radius during dry machining. From the experimental work result reveals that feed rate 

and nose radius having dominant effect on surface roughness. While there is no much 

effect of cutting speed on surface roughness. Increased cutting speed and feed rate are 

degree of work hardening strengthened. 

Meddour et al. (2018) investigated machinability studies on AISI 4140 hardened steel 

with different nose radius of tool insert. In this work an attempt is made to improve the 

prediction by ANN technique in order to identify cutting force and surface roughness. 

From the analysis result revels that a better surface roughness obtained with larger nose 

radius and low feed rate while increased cutting speed. In addition to that Desirability 

approach and Non-Dominated Sorting Genetic Algorithm (NSGA-II) coupled with 

ANN is used solve multi-optimization problems. From the analysis it was observed that 

NSGA-II is more efficient than desirability approach. 

Okokpujie et al. (2018) employed design of experiment, develop mathematical model 

using least square method. Experiments are conducted based on L27 orthogonal array in 

order to optimize cutting parameters such as cutting speed, feed rate and depth of cut. 

Aluminum 1061 is used as a work material with high speed steel (HSS) to investigate 

tool wear. 

From the literature survey it is observed that a lot of research work have been report on 

machine ability studies of different kinds of alloy, and optimization techniques. Limited 

work has been reported on machinability studies on EN47 spring steel using different 

cutting environments. In the present investigation, experiments are conducted based on 

full factorial design (FFD). Present work deals with the hard turning of EN47 spring 

steel with PVD coated tungsten carbide tool insert of three different nose radii 0.4, 0.8 

& 1.2mm. Experiments are conducted with three different cutting environments 

namely, dry, wet and cryogenic condition. Present work, has been carried out 

systematically, to study the effects of process parameters such as cutting speed (Vc), 
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feed rate (f) and depth of cut (ap) using various cutting environments, to identify cutting 

force (Fz), surface roughness (Ra) and tool tip temperature (T).  

2.5 Gaps found from literature survey 

From the literature review it is observed that lot of work has been conducted on AISI 

4340, mild steel, Al6061, AISI series, MDN series, Inconel 718 and as well as the EN 

series materials like EN 8, EN24, EN31, EN25 and EN353 to enhance the properties.  

A very limited work has been reported on EN47 spring steel. These materials are used 

widely in the manufacturing of leaf spring for heavy vehicles and other application like 

manufacture of dies, knuckles, gears and many general engineering applications. EN47 

spring steels relatively low in cost compare to other alloy steels like nickel-based steels, 

Inconel 718 and 17-4PH steels etc. 

2.6 Scope of the work 

➢ Prediction and validation of output responses; cutting force, surface roughness 

and temperature, chip morphology and tool wear during hard turning, which are 

essential to improve quality, productivity and tool life.  

2.7 Objectives 

➢ To carry out the turning process using tool insert of 0.4, 0.8 and 1.2mm nose 

radius, based on OFAT approach and select tool of best nose radius among tool 

inserts based on their performances. 

➢ To optimize input process parameters; speed, feed and depth of cut in dry, wet 

and cryogenic condition using the tool selected using DOE technique.  

➢ Multi optimization was done with Particle Swarm Optimization (PSO) and 

desirability approach (DA). 

➢ To develop mathematical model and prediction of all the output response by 

using regression model and corelate with artificial neural network (ANN). 
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CHAPTER 3 

3 EXPERIMENTATION 

This chapter explains methodology of research work, description all the measuring 

equipment’s, and work piece material, cutting tool inserts are used in the present work. 

3.1 Methodology 

Flow chart of methodology is mentioned in Figure 3.1 

 

Figure 3.1 Experimental flow chart 

 

Precision panther lathe machine is attached with Kistler
type lathe tool dynamometer

Work piece Material (EN47 spring steel)

Coated Tungsten carbide tool insert (TiAlN)

One factor at a time of approach (OFAT)

0.8 mm N R 1.2 mm N R0.4mm  N R

Output responses (Surface roughness, cutting force, tool
tip temperature and material removal rate)

Selection of best nose radius

Comparative studies using optimization technique
(L

27
 OA)

WetDry Cryogenic

Measurement of output responses such as cutting forces,
surface roughness, tool tip temperature, tool wear, chip
morphology, machined surface analysis and machined

surface topography

Statistical analysis using response surface method (RSM)

Develop a mathematical model and prediction of all the
output response using design of experiments and

correlate with ANN and PSO



 

26 

 

3.2 Experimental setup 

The experimental set up of precision panther lathe machine is attached with Kistler type 

lathe tool dynamometer as shown Figure 3.2. 

 

Figure 3.2 Experimental setup 

3.3 Experimental procedure 

1. Precision Panther lathe machine was used to turn spring steel EN47 samples 

using commercially available WC tools of different nose radii 0.4, 0.8 &1.2 

mm.  

2. Machining will be done at different sets of cutting speed, feed rates, depth of 

cut and at different nose radius of cutting inserts. 

3. Optimization of results are based on OFAT approach using L27 full factorial 

design. 

4. Select the best tool nose radius of their performance of output result. 

5. Experiments are conducted with different environment condition, namely dry, 

wet and cryogenic condition, using the selected tool. 

Workpiece

Dynamometer

ChargeAmplifier
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6. Cutting forces are acquiring with a kistler type lathe tool dynamometer during 

machining for each trial as per the experimental array. 

7. During machining, machining time and chip tool interface temperature are 

measured using stop watch and non-contact heat gun respectively.  

8. Surface roughness of machined samples is measured by Mitutoyo Talysurf 

SJ301 roughness tester. 

9. Chemical composition is confirmed by spectroscopy and flank wears on the 

coated carbide tools is measured using confocal microscope and SEM. Chip 

morphology studies are performed using SEM.  

10. Regression equation for each output response is obtained by using statistical 

tool and predicted results are compared with experimental value. Further 

response is optimized and corelated with ANN and PSO technique. 

3.4 Workpiece material 

Spring steel is commonly delegated as low carbon steel, medium carbon steel or high 

carbon steel with high return quality. These materials are suitable in oil hardening and 

tempering conditions. Spring steel have good wear and abrasion resistance. EN47 

spring steel are used to manufacture gears, knuckles, shafts, spindles and pumps. 

Further, EN47 spring steel is used for making leaf spring for heavy vehicles and many 

general engineering application. Chemical composition is confirmed by using 

spectroscopy and is mentioned in Table 3.1. Work Sample having length of 200 mm 

and diameter of 30mm is used for conducting turning experiments. For avoiding chatter 

and vibration of workpiece L/D ratio should maintain less than 10 according ISO 3685. 

Table 3.1 Chemical composition of EN47 spring steel  

Material C Mn Si S P Cr Fe 

EN 47 
0.45-

0.55 

0.50-

0.80 

0.50 

Max 
0.40 0.40 

0.80-

1.20 

Remaining 

3.5 Cutting tool material 

German make Kennametal, tungsten carbide tool inserts SNMG120404 (KUC10), 

SNMG120408 (K313), SNMG120412 (KCU25) with different nose radius as shown in 
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Figure 3.3(a-c). Cutting tool inserts are PVD coated tools mono-layer having a coating 

thickness of 2.939 µm, 3.156 µm and 4.659µm for 0.4, 0.8 & 1.2mm nose radius 

respectively, as confirmed by calo test. From the EDS analysis, coating layer consisted 

of Ti, Al & N in all inserts. Hence it is confirmed that the coating layer consists of 

TiAlN. 

 

Figure 3.3 (a-c) Cutting tool inserts of nose radius (a) 0.4mm, (b) 0.8 mm and (c)1.2 

mm  

Turning process are carried out on precision panther lathe machine. Kistler tool 

dynamometer is used to measure the cutting forces which is attached to the lathe 

machine. Tool tip temperature is measured by non-contact type infrared thermal heat 

gun. Material removal rate is measured by equation 3.1. Surface roughness was 

measured by Mitutoyo Talysurf SJ301. Calotest is performed to know the thickness of 

the coating and EDS analysis was done to know the composition coating materials in 

the tool insert. 

( )1 2W W g
MRR

t s

− 
=  
 

  3.1 

Where W1 is initial weight, W2 is final weight and t is the machining time in sec. 

3.6 Infrared thermometer 

Calibrated non-contact infrared (IR) thermometer for accuracy ±1% has been used to 

measure the cutting zone temperature. Non-contact type infrared thermal heat gun 

model ‘Center 350’ as shown in Figure 3.4.  

(a) (b) (c)
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Figure 3.4 Infrared thermometer 

3.7 Panther lathe machine 

Turning process is carried out on self-center 3 jaw chuck Precision Panther lathe 

machine having spindle speed ranges from 30 to 1250 rpm and 10 KW power, is shown 

in  Figure 3.5. Table 3.2 depicts technical specification of Panther lathe machine.  

 

Figure 3.5 Panther Lathe machine 
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Table 3.2 Panther lathe machine specification 

SL No Description 1350/1 

1 Type of bed Gap bed 

2 Length of bed 1370mm 

3 Width of bed 230mm 

4 Height of centre 177mm 

5 Admit between centre 540mm 

6 Swing over bed 335mm 

7 swing over Saddle 245mm 

8 Swing over cross slide 200mm 

9 Swing in gap 535mm 

10 Length of gap in front of face plate 125mm 

11 No. of Spindle RPM 8/16* 

12 Spindle RPM Range 45-938/ 30-1250* 50-1250* 

13 Taper in Spindle sleeve MT-4 

14 Spindle Hollow 42mm 

15 Spindle Nose Detail A2 size 4/D1 size 4* 

16 No. of British Threads 65 

17 Range of British Threads 4-60 TPI 

18 No. of Metric Threads 54 

19 Range of Metric Threads 0.35-6mm 

20 No. of D.P. Threads 65 

21 Range of D.P. Threads 8-120 DP 

22 No. of Module Threads 54 

23 Range of Module   Threads 0.175- 3 mod 

 

3.8 Surface roughness tester 

In the present work, machined surface analyzed by ‘Mitutoyo Talysurf SJ301’ 

roughness tester. Measurement was taken at five different places with cut off length of 

(λ) of 4 mm and average values are considered for analysis. Surface roughness (Ra) is 

a measuring of surface texture of machined part. Surface tester probe measures vertical 
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deviation of a real machined surface. If the deviations are large then roughness will 

high, while deviation are small then surface is smooth.  Figure 3.6 shows Mitutoyo 

surface roughness tester.  

 

Figure 3.6 Mitutoyo Talysurf roughness tester 

3.9 Lathe tool dynamometer 

Specific cutting forces (Fx, Fy, Fz) are measured by piezo electric based Kistler 9257B 

type lathe tool dynamometer as shown in Figure 3.7. and is attached to Panther lathe. 

 

Figure 3.7 Lathe tool dynamometer type 9257B (Kistler) 
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Kistler dynamometer is rigidly mounted on tool post and equipped with charge 

amplifier 5070A. Dynoware software 2825D-02 data acquisition is used to acquire data. 

Cutting forces were measured in real time with three-component Kistler 9257B linked 

with multichannel charge amplifier 5070A to high impedance cable. Technical 

specification of Kistler 9257B dynamometer is depicted in Table 3.3.  

Table 3.3 Technical specifications of Kistler 9257B dynamometer 

 Technical 
Data Type 9257B 

Measuring range 
Fx,Fy kN –5 ... 5 

Fz kN –5 ... 10 

Calibrated measuring range 
Fx,Fy kN 0 ... 5 

Fz kN 0 ... 10 

Sensitivity 
Fx,Fy pC/N ≈–7.5 

Fz pC/N ≈–3.7 

Natural frequency 
fn(x), fn(y) kHz ≈2.3 

fn(z) kHz ≈3.5 

Pretensioning direction   vertical 

Operating temperature range  °C 0 ... 70 

LxWxH  mm 170x100x60 

Weight  kg 7.3 

Degree of protection IEC/EN 

60529 
 

(w. conn. 

cable) 
IP67 

Connection   
Fischer flange 

9 pol. neg. 

 

3.10 Confocal microscope 

Surface roughness and surface texture was measured by confocal microscope model 

LEXTOLS411 shown in Figure 3.8. From the laser 3D surface tester measuring the 

surface topography of machined surface and measuring tool wear. 
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Figure 3.8 Confocal microscope 

3.11 Scanning Electron Microscope 

Scanning electron microscope are used analyze the surface defects of machined surface, 

chip morphology, tool wear analysis, microstructures and subsurface characteristics. 

The SEM images were taken with different magnification for extensive analysis at 

different locations.  

 

Figure 3.9 Scanning electron microscope 
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The resolution of SEM is 30KV. X-ray spectroscopy (EDAX) has been used for 

elemental composition of machined samples. Figure 3.9 depicts the ‘JEOL-JSM-

638OLA’ model SEM.  
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CHAPTER 4 

4 RESULTS AND DISCUSSION 

Stage-1 

Machinability studies of EN47 spring steel with different nose radii of 0.4, 0.8 & 1.2mm 

using (OFAT) one factor at a time approach to identify cutting forces, surface 

roughness, tool tip temperature and material removal rate. From the comparative study 

based on performance of output response, a best nose radius of cutting tool insert is 

used for further work.  

Stage-2 

Selected cutting tools insert are used to conduct the experiments with different cutting 

environment; dry wet & cryogenic condition using full factorial design (FFD) L27 

orthogonal array for optimizing the process parameters to measure cutting force, 

surface roughness, tool tip temperature, machined surface analysis, machined surface 

topography, chip morphology and tool wear. 

Stage-3 

In this stage, cutting parameters are modelled and optimized. Multi objective 

optimization was done by composite Desirability Approach (DA) and Particle Swarm 

Optimization (PSO) technique. Artificial neural network was used to predict the 

experimental result and validation also performed with ANN and RSM. 
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4.1 One factor at a time of approach (OFAT) 

OFAT explains the effect of individual cutting parameters like cutting speed (Vc), feed 

rate (f), depth of cut (ap) and different nose radii on cutting forces, surface roughness, 

tool tip temperature and material removal rate.  

OFAT method consists of selecting a starting point, or baseline set of levels, for each 

factor, and then successively vary each factor over its range with other factors held 

constant at the baseline level. After performing the tests, a series of graphs are usually 

constructed, showing the variation of response variables by varying one input factor 

with other input factors held constant (Montgomery 2012). One factor at a time 

approach (OFAT) is a technique of conducting experiments by varying one factor and 

maintaining other factors constant. OFAT is a kind of pilot run, to know the best 

condition based on the output response.  In the present work, 15 sets of experiments are 

conducted (three factors i.e. speed, feed and depth of cut and each factor having 5 

levels). Table 4.1 depicts pilot runs and experimental conditions. 

Table 4.1 OFAT Experimental conditions 

SL No 
Vc 

m/min 

ap 

mm 

f 

mm/rev 

1 24 0.6 0.093 

2 36 0.6 0.093 

3 59 0.6 0.093 

4 75 0.6 0.093 

5 118 0.6 0.093 

6 59 0.2 0.093 

7 59 0.4 0.093 

8 59 0.6 0.093 

9 59 0.8 0.093 

10 59 1.0 0.093 

11 59 0.6 0.062 

12 59 0.6 0.070 

13 59 0.6 0.093 

14 59 0.6 0.117 

15 59 0.6 0.125 
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Turning experiments are conducted on spring steel EN47 with dimension of 30 mm 

diameter, 200 mm length. Experimental cutting conditions are chosen based on pilot 

runs. Experiments are conducted on 3 jaw chuck PANTHER lathe machine. From the 

experimental work, varying cutting parameters, which influences the cutting force, tool 

tip temperature, surface roughness and material removal rate for different nose radii 

(NR) 0.4, 0.8 & 1.2 mm are studied.  

4.1.1 Varying cutting speed  

Figure 4.1 (a-c), shows that cutting forces reduce with increase in cutting speed. 

Relation between cutting velocity on cutting forces (Fx, Fy and Fz) at different nose radii 

(NR) are depicted in Table 4.2. 

Table 4.2 Relationship between varying cutting velocity on cutting forces (Fx, Fy & 

Fz) at different nose radius 

   Fx (N) Fy (N) Fz (N) 

Vc  0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 

24 45.27 57.22 72.89 190.25 215.75 248.69 270.45 350.26 400.26 

36 42.85 52.85 64.56 160.29 173.25 200.69 220.1 276.56 370.56 

59 25.89 34.94 52.13 133.56 163.87 200.54 200.36 240.56 285.69 

75 28.65 41.99 57.86 128.39 152.96 178.59 170.56 205.60 244.56 

118 31.23 45.26 60.28 112.56 143.89 168.96 130.28 160.23 190.40 

Table 4.3 Relationship between varying cutting velocity on MRR, surface roughness 

and tool tip temperature at different nose radius 

  MRR (g/s) Ra (μm) T (⁰C) 

Vc 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 

24 0.16 0.24 0.26 3.4 2.69 2.2 33.59 39.56 47.05 

36 0.22 0.27 0.36 2.9 2.44 2.0 45.69 52.96 57.96 

59 0.41 0.46 0.53 2.9 2.34 1.9 51.94 58.94 70.94 

75 0.45 0.59 0.64 2.6 1.78 1.2 65.58 73.56 84.58 

118 0.57 0.69 0.73 2.2 1.04 0.2 79.59 90.29 101.29 
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From the analysis, it is observed that, at higher cutting speed, cutting forces are reduced. 

Some of the reasons noticed that, with increase of nose radius, increase of bluntness of 

tool is more, which cause larger force in plastic deformation. Furthermore, increased 

nose radius cause increased specific energy i.e cutting force. (Parida and Maity 2017). 

Increased nose radius gives higher cutting forces, which is because of higher cutting 

speed tends to the formation of high temperature at the tool tip, which softens the work 

material and reduce the shear angle. (A. Chabbi et al. 2017; El Hakim et al. 2015; 

Shihab et al. 2014). 

Table 4.3 (a-c) depicts the relationship between varying cutting velocity on material 

removal rate (MRR), surface roughness (Ra) and tool tip temperature (T). From Figure 

4.2 (a), it is observed that material removal rate increases with increase in cutting speed, 

and increased nose radius gives higher material removal rate. This is due to reduction 

in friction between tool and workpiece, resulting in higher material removal rate.  

Figure 4.2 (b), it is observed that surface roughness reduced with increase in cutting 

speed, while increased nose radius gives better surface roughness. Influence of edge 

radius on the roughness of the machined surface. Which includes lays and grooves 

induced by edge chipping and built-up-edge. Periodically feed marks created by nose 

of the cutting tool (Hua and Liu 2018). Figure 4.2 (c) shows that tool tip temperature 

increases with increase in cutting speed. At increased nose radius, it was observed that 

there was an increase in chip thickness and chip-tool contact length. From the 

experimental work it is observed that increased nose radius leads to increase in the chip 

thickness and reduced shear angle, which is responsible for large shear plane in primary 

deformation zone (Parida and Maity 2017). 

4.1.2 Varying feed rate 

Figure 4.3 (a-c), it is observed that cutting forces (axial force (Fx), thrust force (Fy) 

and tangential force (Fz)) increase with increase in feed rate and are depicted in Table 

4.4. From the analysis, it is observed that cutting forces gradually increase with 
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increase in feed rate. Cutting forces also increase with increase in nose radius. Similar 

results were obtained by (Chou and Song 2004a).  

Table 4.5 depicts variation of feed rate on MRR, surface roughness and tool tip 

temperature. From Figure 4.4 (a), it is observed that material removal rate increases 

with increase in feed rate, and increase in nose radius. From Figure 4.4 (b), surface 

roughness increases with increase in feed rate. Further, increased nose radius gives 

better surface roughness. From Figure 4.4 (c), tool tip temperature increases with 

increase in feed rate, and this is due to increased contact length of tool-chip and leads 

to higher temperature. Further, tool tip temperature increases with increase in nose 

radius (Parida and Maity 2017).  

Table 4.4 Relationship between varying feed rate on cutting forces (Fx, Fy & Fz) at 

different nose radius 

  Fx (N) Fy (N) Fz (N) 

f 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 

0.062 20.64 30.64 49.57 90.23 117.25 140.25 145.26 177.7 215.69 

0.070 25.065 36.59 53.89 125.8 135.8 162.36 162.53 195.69 245.86 

0.093 25.89 34.94 52.13 133.56 163.87 200.54 200.36 240.56 285.69 

0.117 40.54 50.54 70.54 166.23 186.35 215.23 232.06 266.59 310.96 

0.125 53.93 61.58 82.56 187.27 197.27 229.56 256.59 275.89 368.56 

 

Table 4.5 Relationship between varying feed rate on MRR, surface roughness and tool 

tip temperature at different nose radius 

  MRR (g/s) Ra(μm) T(⁰C) 

f 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 

0.062 0.1259 0.159 0.198 2.2 1.16 0.98 30.26 35.69 51.29 

0.070 0.1659 0.329 0.429 2.68 1.66 1.34 37.59 46.12 65.21 

0.093 0.4113 0.457 0.528 2.885 2.34 1.9 51.94 58.94 70.94 

0.117 0.4982 0.598 0.642 2.94 2.45 2.2 56.29 67.59 77.28 

0.125 0.5893 0.622 0.725 3.52 3.21 2.89 58.96 69.54 81.56 
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Figure 4.1 (a-c) Variation of cutting speed on (a) axial force (Fx), (b) thrust force (Fy) and (c) tangential force (Fz) for different nose radii. 

(a) (b)

(c)
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Figure 4.2 (a-c) Variation of cutting speed on (a) MRR, (b) surface roughness and (c) tool tip temperature for different nose radii 

  

(c)

(b)(a)
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4.1.3 Varying depth of cut 

From Figure 4.5 (a-c), it is observed that cutting forces (Fx, Fy & Fz) increases with 

increasing depth of cut. At higher depth of cut, the tool penetrates deeper into the work 

piece and has to remove large volumes of material and hence higher cutting forces are 

required. Further, with increase in nose radius, contact between the tool and the 

workpiece is increased and results in the formation of large cross section of chips which 

may require high cutting force to deform the work materials. (A. Chabbi et al. 2017). 

Relationship between variation of depth of cut on cutting forces (Fx, Fy & Fz) at different 

nose radius are depicted in Table 4.6 

Table 4.6 Relationship between varying depth of cut on cutting forces (Fx, Fy & Fz) at 

different nose radius 

  Fx (N) Fy (N) Fz (N) 

ap 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 

0.2 26.57 32.16 43.04 50.26 71.72 100.36 86.23 135.69 177.5 

0.4 27.89 35.29 59.98 85.26 124 155.24 130.25 195.25 240.65 

0.6 25.89 34.94 52.13 133.56 163.87 200.54 200.36 240.56 285.69 

0.8 82.135 92.135 112.134 236.41 290.56 350.26 320.69 355.3 398.56 

1.0 94.79 104.79 124.79 310.24 350.25 384.25 365.21 419.3 470.26 

Table 4.7 Relationship between varying depth of cut on MRR, surface roughness and 

tool tip temperature at different nose radius 

  MRR (g/s) Ra(μm) T(⁰C) 

ap 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 

0.2 0.1869 0.2658 0.2934 2.25 1.23 1.11 32.26 37.95 49.95 

0.4 0.2359 0.3579 0.3872 2.56 2.2 1.86 36.29 45.26 59.56 

0.6 0.4113 0.4572 0.5279 2.885 2.34 1.9 51.94 58.94 70.94 

0.8 0.5289 0.5669 0.6289 3.51 2.89 2.66 55.78 65.29 75.86 

1.0 0.5569 0.6571 0.7584 3.81 3.12 2.85 61.73 70.29 79.15 

From the Figure 4.6 (a), it is observed that material removal rate increases with increase 

in depth of cut. Further, higher material removal rate is obtained, with increased tool 

nose radius. From Figure 4.6 (b), it is observed that surface roughness increases with 
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increase in depth of cut. But increased nose radius gives better surface finish. Form 

Figure 4.6 (c), it is observed that tool tip temperature increases with increase in depth 

of cut. Increase of nose radius may breakage the tool tip, which cause rise in 

temperature (Parida and Maity 2017).  Tool nose radius is also affected during 

machining, increased nose radius gives higher tool tip temperature, as the tool requires 

more energy to remove higher amount of material. Higher temperature reduced chip 

thickness and increased the chip tool contact length. Furthermore, due to rise in 

temperature at shear zone results reduction of flow stress. Increased nose radius tends 

to increase in flow stress because formation flank wear at higher nose radius (Parida 

and Maity 2017). Large nose radius seems to be finer surface finish and specific cutting 

energy is slightly higher. Maximum uncut chip thickness decreases with larger tool 

nose radius.(Chou and Song 2004b).Table 4.7 depicts the relationship between varying 

depth of cut on material removal rate (MRR), surface roughness (Ra) and tool tip 

temperature (T). 
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Figure 4.3 (a-c) Variation of feed rate on on (a) axial force (Fx), (b) thrusrt force (Fy) and (c) tangential force (Fz) for different nose radii.   

.    

(a) (b)

(c)
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Figure 4.4 (a-c) Variation of feed rate on (a) MRR, (b) surface roughness and (c) tool tip temperature for different nose radii. 

 

(a) (b)

(c)
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Figure 4.5 (a-c) Variation of depth of cut on (a) axial force (Fx), (b) thrusrt force (Fy) and (c) tangential force (Fz) for different nose radii.    

(a) (b)

(c)
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Figure 4.6 (a-c) Variation of depth of cut on (a) MRR, (b) surface roughness and (c) tool tip temperature for different nose radii. 

(a) (b)

(c)
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4.2 Selection of cutting tool insert 

Turning process was carried on EN47 spring steel at different tool nose radii (0.4, 0.8 

& 1.2mm), during dry condition. Experiments are conducted based on one factor at a 

time of approach (OFAT) and compared with one another. To identify the cutting 

forces, surface roughness, tool tip temperature and material removal rate. From the 

analysis, it was observed that tool of nose radius 0.8 mm exhibited excellent 

performance in all the cases. Hence tool insert of 0.8mm nose radius was selected for 

further experimental work. Various stages of work are represented in the flow chart 

shown in Figure 4.7.  

 

Figure 4.7 Flow chart showing the variuos stages of experimental work using tool 

insert of 0.8mm nose radius 

 

 

 

 

0.8 mm Nose radius

Comparative studies using optimization technique
(L

27
 OA)

WetDry Cryogenic

Measurement of output responses such as cutting forces, surface
roughness, tool tip temperature, tool wear, chip morphology,
machined surface analysis and machined surface topography

Statistical analysis using response surface method (RSM)

Develop a mathematical model and prediction of all the output
response using design of experiments and correlate with ANN

and PSO



 

49 

 

4.3 Turning process using optimization technique 

Full factorial design (FFD) L27 orthogonal array is used to optimize the process 

parameters. 27 experiments are performed with different cutting environment such as 

dry, wet and cryogenic environments. Various experimental set up are depicted in 

Figure 4.8. Cutting force, surface roughness and tool tip temperature are experimentally 

estimated at different cutting environments using a tool insert of 0.8mm nose radius by 

using DOE technique. Further, the results are analyzed by Minitab software tool and 

design expert software tool (A. Chabbi et al. 2017; Davim et al. 2008; Elbah et al. 2013). 

Table 4.8 depicts experimental plan and corresponding outputs under different cutting 

environments. 

  

 

Figure 4.8 Experimental setup during dry, wet and cryogenic condition

Experimental setup Dry

Wet Cryogenic
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Table 4.8 Experimental plan and output responses 

Sl No ap Vc f  Fz Dry  Ra Dry  T Dry Fz Wet Ra Wet T Wet  Fz Cryo Ra Cryo T Cryo 

1 0.2 59 0.070 85.95 3.54 39.60 79.56 3.28 35.90 71.90 2.13 34.95 

2 0.2 59 0.093 125.90 4.27 40.12 115.60 4.02 37.90 73.70 2.75 35.15 

3 0.2 59 0.117 167.05 5.12 42.56 142.95 4.77 37.80 85.33 3.51 36.55 

4 0.2 75 0.070 66.55 3.31 55.86 89.11 3.06 39.56 66.65 1.83 34.35 

5 0.2 75 0.093 123.05 3.88 57.98 114.87 3.56 40.78 72.36 2.39 36.15 

6 0.2 75 0.117 166.89 4.25 58.87 133.10 3.98 45.23 84.78 2.76 37.65 

7 0.2 118 0.070 65.00 3.43 62.58 85.635 3.14 55.58 65.54 1.92 37.95 

8 0.2 118 0.093 120.20 4.21 63.84 113.98 3.96 58.63 71.89 2.71 38.25 

9 0.2 118 0.117 164.89 4.93 64.25 132.28 4.87 61.20 83.83 3.42 38.55 

10 0.4 59 0.070 144.15 4.12 40.59 110.00 3.84 41.90 106.14 2.63 34.25 

11 0.4 59 0.093 219.35 4.28 45.26 139.75 4.08 42.87 121.50 2.77 34.45 

12 0.4 59 0.117 281.75 4.79 46.85 214.00 4.55 44.83 131.09 3.29 34.65 

13 0.4 75 0.070 142.83 3.83 60.87 109.21 3.59 58.84 97.36 2.33 36.55 

14 0.4 75 0.093 217.69 4.02 61.89 138.91 3.81 59.90 115.09 2.52 37.25 

15 0.4 75 0.117 279.86 4.68 62.48 169.80 4.48 60.10 119.36 3.19 37.65 

16 0.4 118 0.070 115.50 3.34 66.58 90.18 3.08 65.50 87.92 1.85 38.95 

17 0.4 118 0.093 214.69 4.12 67.56 136.93 3.89 65.69 113.69 2.61 39.65 

18 0.4 118 0.117 276.89 4.81 67.98 167.56 4.56 67.97 117.96 3.29 39.85 

19 0.6 59 0.070 198.45 4.37 42.69 122.40 4.01 40.50 125.23 2.86 34.35 

20 0.6 59 0.093 326.25 5.17 44.85 179.30 4.92 41.87 165.65 3.67 34.85 

21 0.6 59 0.117 442.35 5.45 45.27 221.70 5.17 43.60 202.95 3.94 35.55 

22 0.6 75 0.070 195.92 4.25 56.70 120.84 4.06 52.89 124.83 2.73 36.35 

23 0.6 75 0.093 321.45 4.59 58.50 175.35 4.39 56.88 164.15 3.07 36.65 

24 0.6 75 0.117 424.45 5.09 59.86 220.60 4.85 58.19 198.50 3.59 37.65 

25 0.6 118 0.070 193.61 3.19 75.89 118.96 2.93 72.76 122.68 1.68 40.85 

26 0.6 118 0.093 318.25 4.05 86.23 174.63 3.74 78.96 163.79 2.54 41.65 

27 0.6 118 0.117 422.87 4.77 97.50 218.96 4.52 92.58 197.54 3.28 42.35 
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4.3.1 Analysis of variance (ANOVA)  

(a) Cutting force:  

During cutting process, cutting forces are exerted by the tool on to higher cutting forces 

reduce the tool life and the machined surface affected. In this experimental work 

predictive modelling developed for cutting force by using 2nd order regression equation, 

to optimize the process parameters.  

Table 4.9 ANOVA for tangential cutting force (Fz) during dry condition 

Fz Dry Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 2.9970E+05 9 33295.68 626.06 < 0.0001  
A-f 1.09E+05 1 1.09E+05 2056.06 < 0.0001 36.36 

B-Vc 544.38 1 544.38 10.24 0.0053 0.18 

C-ap 1.67E+05 1 1.67E+05 3140.11 < 0.0001 55.56 

Total 3.01E+05 26         

Table 4.10 ANOVA for tangential cutting force (Fz) during wet condition 

Fz Wet Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4.5645E+04 9 5071.65 59.89 < 0.0001  
A-f 2.55E+04 1 2.55E+04 301.18 < 0.0001 54.17 

B-Vc 415.16 1 415.16 4.9 0.0408 0.88 

C-ap 1.61E+04 1 1.61E+04 189.67 < 0.0001 34.11 

Total 4.71E+04 26         

Table 4.11 ANOVA for tangential cutting force (Fz) during cryogenic condition 

Fz Cryo Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4.4625E+04 9 4958.28 123.82 < 0.0001  
A-f 6.78E+03 1 6.78E+03 169.28 < 0.0001 14.96 

B-Vc 190.39 1 190.39 4.75 0.0436 0.42 

C-ap 3.37E+04 1 3.37E+04 840.79 < 0.0001 74.32 

Total 4.53E+04 26         

From ANOVA Table 4.9 to Table 4.11 in all cutting environments depth of cut and 

feed rate influence the cutting force. P-value shows less than 0.05 in all the cases. 

Cutting speed is less significant as confirmed from ANOVA tables. Cutting force is 

reduced by increasing the cutting speed, as the contact time between tool and workpiece 

very less at higher speed. Higher temperature leads to thermal softening of work 

material and which reduces the cutting force (Chen et al. 2014).  
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(b) Surface roughness: 

Surface finish plays a vital role in manufacturing sector as it is the most important 

quality characteristics which, influence production rate as well as, machine part. Most 

of the industries try to achieve better quality of the products with less operating cost 

and shorten manufacturing time. Surface roughness can be reduced by increasing the 

cutting speed. This is because of thermal softening of work material, which results in 

better surface finish. At lower cutting speed, surface roughness was increased because 

of the formation of built of edge (BUE) on the tool flank face which leads to higher 

surface roughness. (Pawade et al. 2007). Table 4.12 to Table 4.14, it is shown that, feed 

rate influences surface roughness and it is confirmed by ANOVA tables. P-value shows 

less than 0.05 in all cutting environments. Feed rate is the major influencing factor 

during machining, followed by cutting speed, and depth cut, which have lesser 

significant. Surface roughness increases with increase in feed rate.  

Table 4.12 ANOVA for surface roughness (Ra) during dry condition 

Ra Dry Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 9.18 9 1.02 27.56 < 0.0001  
A-f 6.34 1 6.34 171.3 < 0.0001 64.63 

B-Vc 1.00 1 1 27.03 < 0.0001 10.19 

C-ap 0.59 1 0.59 15.93 0.0009 6.01 

Total 9.81 26       100 

Table 4.13 ANOVA for surface roughness (Ra) during wet condition 

Ra Wet Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 9.5 9 1.06 27.05 < 0.0001  
A-f 6.71 1 6.71 171.95 < 0.0001 66.04 

B-Vc 0.86 1 0.86 22.01 0.0002 8.46 

C-ap 0.55 1 0.55 14.19 0.0015 5.41 

Total 10.16 26       100 

In general, increasing feed rate (f) causes helical grooves on the machined surface; 

which are wider and deeper and leads to high surface roughness value. surface 

roughness decreases with increase in cutting speed, which is due to increasing 

temperature at the chip-tool interface, thus softening the work material, because of that 

workpiece can be easily deformed.  High cutting speeds are categorized by the absence 
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of built-up edge (BUE), because there is no surface degradation due to fragmented chips 

on the machined surface.(A. Chabbi et al. 2017) 

Table 4.14 ANOVA for surface roughness (Ra) during cryogenic condition 

Ra Cryo Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 8.93 9 0.99 32.57 < 0.0001  
A-f 6.15 1 6.15 201.93 < 0.0001 65.15 

B-Vc 1 1 1 32.68 < 0.0001 10.59 

C-ap 0.57 1 0.57 18.86 0.0004 6.04 

Total 9.44 26       100 

(c) Tool tip temperature: 

There are three distinct sources of heat generation in metal cutting. They are a) shear 

zone b) chip-tool interface c) work-tool interface. Majority of heat is generated at the 

shear zone and lowest heat is generated at work-tool interface. For successful 

machining operation, the generated heat is to be dissipated or removed from the 

machining zone. Heat is carried away by chip (60%), tool (30%) and machined surface 

(10%). Therefore, it becomes important to estimate the amount of heat generated and 

also various methods of reducing the heat generated.   

In this experimental work, analysis of tool tip temperature has been done with infrared 

thermal heat gun. Cutting speed increases the tool tip temperature also increases, 

because of the high friction between tool and the workpiece which leads to higher 

temperature at the tool tip interface, Moreover, at higher cutting speeds, formation of 

built up edge (BUE) are reduced, which intern improves the surface finish and reduce 

the cutting force. But, at higher cutting speed, tool wear is more and it affects the tool 

life. (Sivaiah and Chakradhar 2018a). 

Table 4.15 ANOVA for tool tip temperature (T) during dry condition 

T Dry Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4819.4 9 535.49 28.05 < 0.0001  
A-f 122.42 1 122.42 6.41 0.0215 2.38 

B-Vc 3894.64 1 3894.64 203.97 < 0.0001 75.71 

C-ap 505.9 1 505.9 26.5 < 0.0001 9.83 

Total 5144 26       100 
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Table 4.16 ANOVA for tool tip temperature (T) during wet condition 

T Wet Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4920.1 9 546.68 30.27 < 0.0001  
A-f 149.59 1 149.59 8.28 0.0104 2.86 

B-Vc 3525.42 1 3525.42 195.22 < 0.0001 67.45 

C-ap 1015.93 1 1015.93 56.26 < 0.0001 19.44 

Total 5227.1 26       100 

Table 4.17 ANOVA for tool tip temperature (T) during cryogenic condition 

T Cryo Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 133.82 9 14.87 46.48 < 0.0001  
A-f 7.35 1 7.35 22.96 0.0002 5.28 

B-Vc 104.11 1 104.11 325.41 < 0.0001 74.76 

C-ap 9.59 1 9.59 29.99 < 0.0001 6.89 

Total 139.26 26       100 

Tables ANOVA Table 4.15 to Table 4.17 shows ANOVA results for tool tip 

temperatures at different cutting conditions. In all cases cutting speed influences the 

tool tip temperature. P- value shows less than 0.05. Cutting speed and depth of cut are 

more significant, feed rate is less significant in the model. Increasing the cutting speed, 

tool tip temperature also increases because of the friction between tool and work 

material being high at higher cutting speed leads to higher temperature in cutting zone.  

4.3.2 Main effects plots  

Main effect plot is the graphical representation of each individual influencing factor for 

output response. Highest slope tends to more significant factor in model and optimal 

cutting conditions are identified. Figure 4.9 to Figure 4.11 shows the main effects plots 

for tangential cutting force during dry, wet and cryogenic conditions. Depth of cut 

shows a highest slope, followed by feed rate, and cutting speed have lesser slope. This 

is due to supplying of emulsion type of soluble coolant and liquid nitrogen on cutting 

zone, which leads reduced cutting force. The similar results were by (Jadhav and Jadhav 

2014; Sivaiah and Chakradhar 2017b).  

Figure 4.12 to Figure 4.14 shows the surface finish during machining at dry, wet and 

cryogenic condition. Surface roughness is highly influenced by feed rate, followed by 
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cutting speed and depth of cut. At higher cutting speed and lower feed rate, better 

surface roughness was achieved at all cutting environments. Figure 4.15 to Figure 4.17 

shows the main effects plots for tool tip temperature during machining at dry, wet and 

cryogenic condition. Cutting temperature is highly influenced by cutting speed, 

followed by depth of cut and feed rate. Table 4.18 to Table 4.20 depicts optimum 

conditions of output response under different cutting environments. 

Table 4.18 Optimum condition for cutting force (Fz) under different cutting 

environments 

  ap (mm) Vc (m/min) f (mm/rev) 

Dry 0.2 118 0.070 

Wet 0.2 118 0.070 

Cryogenic 0.2 118 0.070 

Table 4.19 Optimum condition for surface roughness (Ra) under different cutting  

environments 

  ap (mm) Vc (m/min) f (mm/rev) 

Dry 0.2 118 0.070 

Wet 0.2 118 0.070 

Cryogenic 0.2 118 0.070 

Table 4.20 Optimum condition for tool tip temperature (T) under different cutting 

environments 

  ap (mm) Vc (m/min) f (mm/rev) 

Dry 0.2 59 0.070 

Wet 0.2 59 0.070 

Cryogenic 0.2 59 0.070 
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Figure 4.9 Main effects plot for tangential cutting force (Fz) during dry condition 

 

Figure 4.10 Main effects plot for tangential cutting force (Fz) during wet condition 
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Figure 4.11 Main effects plot for tangential cutting force (Fz) during cryogenic 

condition 

 

Figure 4.12 Main effects plot for surface roughness (Ra) during dry condition 
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Figure 4.13 Main effects plot for surface roughness (Ra) during wet condition 

 

Figure 4.14 Main effects plot for surface roughness (Ra) during cryogenic condition 
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Figure 4.15 Main effects plot for tool tip temperature (T) during dry condition 

 

Figure 4.16 Main effects plot for tool tip temperature (T) during wet condition 

ap Vc

f

Dry
T

o
o
l 

ti
p

 t
e
m

p
e
r
a

tu
re

, 
T

 (
⁰C

)

ap Vc

f

Wet

T
o
o
l 

ti
p

 t
e
m

p
e
r
a

tu
re

, 
T

 (
⁰C

)



 

60 

 

 

Figure 4.17 Main effects plot for tool tip temperature (T) during cryogenic condition 

4.3.3 Normal Probability plots  

Normal probability plot is the graphical representation, when analysing data from un- 

replicated factorial designs, occasionally real high order interactions occur. The use of 

an error mean square obtained by pooling high order interactions is inappropriate in 

these cases. A method of analysis attributed to (Cuthbert 1959)  provides a simple way 

to overcome this problem.  

Daniel suggests examining a normal probability plot of the estimates the effects. The 

effects that are negligible are normally distributed, with mean zero and variance σ2 and 

will tend to fall along a straight line on this plot, whereas significant effects will have 

non-zero means and will not lie along the straight line. Thus, the preliminary model 

will be specified to contain those effects that are apparently non-zero, based on the 

normal probability plot. The apparently negligible effects are combined as an estimate 

of error (Montgomery 2012).  
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Figure 4.18 Normal probability plot for cutting force (Fz) during dry, wet & cryogenic  

condition 

 

Figure 4.19 Normal probability plot for surface roughness (Ra) during dry, wet & 

cryogenic condition 
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Figure 4.20 Normal probability plot for tool tip temperature (T) during dry, wet & 

cryogenic condition 

Figure 4.18 to Figure 4.20 shows that normal probability plot for cutting force (Fz), 

surface roughness (Ra) and tool tip temperature (T) during dry, wet and cryogenic 

condition respectively. This representation is basically a plot of the ordered 

observations from a sample of data against the corresponding percentage points from 

the standard normal distribution for the studied output responses.  

The diagnostic checking of the models were performed to prove the statistical validity 

of the models (Das et al. 2015). The model is said to be adequate if the points on the 

normal probability plots of the residuals should form a straight line. The other way is 

the plots of the residuals versus the predicted response should be structured less that is 

they should not contain particular obvious patterns (Sivaiah and Chakradhar 2018b). 

From the analysis it was observed that, all the points are fall on the straight line which 

indicates that the model is adequate. 
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4.3.4 3D surface graphs  

3D surface graphs help to identify the interaction effect on output response of cutting 

force (Fz), surface roughness (Ra) and tool tip temperature (T). Since each model has 

three variables (ap, Vc & f), each variable has three levels. Figure 4.21 to Figure 4.23 

show the surface response plots for tangential cutting force, surface roughness and tool 

tip temperature in dry, wet and cryogenic conditions. From 3D response plots, can 

understand the interaction of input factor influencing the various output responses, 

keeping the middle level as constant for each factor. 

Figure 4.21 (a-c) shows the interaction effect of input parameters on tangential cutting 

force. Cutting force is mainly influenced by the feed rate and depth of cut, as confirmed 

by analysis of variance and main effects plots. Experiments are conducted with different 

cutting environment like dry, wet and cryogenic. From the plots it is observed that 

cryogenic machining exhibits lower cutting force, as compared to, dry and wet 

condition. 

From Figure 4.22 (a-c) shows the interaction effect of input parameters on surface 

roughness. Surface roughness is mainly influenced by feed rate and cutting speed. From 

the plots, it is noticed that higher cutting speed and lower feed rate play a major role in 

achieving better surface finish. Cryogenic machining gives better surface finish as 

compared to dry and wet machining. 

From Figure 4.23 (a-c) it is observed that tool tip temperature is mainly influenced by 

cutting speed, as well as, depth of cut. At higher depth of cut and cutting speed leads to 

higher tool tip temperature.  From the 3D plots, it is observed that lower tool tip 

temperature was obtained using cryogenic machining. 
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Figure 4.21 (a-c) 3D surface plot for cutting force (Fz) during dry, wet and cryogenic condition 
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Figure 4.22 (a-c) 3D surface plot for surface roughness (Ra) during dry, wet and cryogenic condition 
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Figure 4.23 (a-c) 3D surface plot tool tip temperature (T) during dry, wet and cryogenic condition  
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4.3.5 Regression analysis  

Regression analysis was performed to obtain the correlation between the input and 

output response parameters. These models are developed by Design Expert 10 

software. Input cutting parameters and output responses of performance measures, was 

modelled by the second order quadratic equation. Regression equation is very useful to 

obtain predicted values, and will be compared with experiment result. Developed 

mathematical model has been tested through ANOVA, and the coefficient of 

determination R2 value is estimated. If these R2 values are 100% then, the obtained 

model is adequate, and is the desirable results. it can be calculated and approaching by 

equation 4.1 The regression equations for various cutting forces, surface roughness and 

tool tip temperature at different cutting conditions like dry, wet and cryogenic 

conditions are given in equations 4.2 to 4.10.  

𝑅2 =
Model sum of squares

Total sum of squares 
   4.1 

Regression equation for Cutting force during dry, wet and cryogenic condition 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )2 2 2

59.3 362.9 1.225 3263

( ) 0.024 7448 3.47

199.5 0.00413 16998

p c

z p c p c

p c

a V f

F Dry a V a f V f

a V f

 − −  −  +  −

=   +   +   +

  +  − 

    4.2 

R2=87.33% 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )2 2 2

6.2 92.2 0.68 1780

( ) 0.048 2570 3.43

9.9 0.00486 4688

p c

z p c p c

p c

a V f

F Wet a V a f V f

a V f

 −  −  +  −

=   +   −   +

  +  − 

    4.3 

R2=96.80% 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
2

2 2 2

100.3 206.3 0.9 286

( ) 0.005 3123 0.98

168.2 0.00396 4185

p c

z p c p c

p c

a V f

F LN a V a f V f

a V f

 −  −  +  −

=   +   +   −

  +  − 

    4.4 

R2=92.67% 
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Regression equation for surface roughness during dry wet and cryogenic condition 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )2 2 2

4.51 3.37 0.0671 15.8

( ) 0.04160 9.3 0.1816

2.62 0.000332 13

p c

a p c p c

p c

a V f

R Dry a V a f V f

a V f

 +  −  +  −

=   −   +   +

  +  − 

   4.5 

R2=87.07% 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )2 2 2

3.75 4.28 0.0602 16.2

( ) 0.04546 10.7 0.2126

2.04 0.000289 23

p c

a p c p c

p c

a V f

R Wet a V a f V f

a V f

 +  −  +  −

=   −   +   +

  +  − 

   4.6 

R2=97.21% 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
2

2 2 2

3.35 3.00 0.0669 10.5

( ) 0.04135 4.8 0.1996

2.53 0.000321 5

p c

a p c p c

p c

a V f

R LN a V a f V f

a V f

 +  −  +  −

=   −   +   +

  +  − 

    4.7 

R2=95.54% 

Regression equation for tool tip temperature during dry wet and cryogenic condition 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )2 2 2

32.6 101.8 2.061 66

( ) 0.922 349 1.81

18.1 0.01186 646

p c

p c p c

p c

a V f

T Dry a V a f V f

a V f

− −  +  −  +
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R2=97.12% 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )2 2 2

6.1 21.3 1.015 330

( ) 0.717 267 2.45

89.4 0.00597 699

p c
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a V f

T Wet a V a f V f
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 

   4.9 

R2=92.74% 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
2

2 2 2

26.94 12.06 0.1336 36.1

( ) 0.1649 26.6 0.113

4.58 0.000607 65
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a V f

T LN a V a f V f
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=   −   −   +

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    4.10 

R2=96.09% 
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4.3.6 Machined surface analysis 

Machined surface, was analyzed by scanning electron microscope. Average surface 

roughness (Ra) value was considered for analysis. From the experimental work, 

different cutting environments namely dry, wet and cryogenic condition was employed 

for conducting the experiments. Turning experiments are conducted at various 

conditions and are listed below. 

(i) Vc=118 m/min; f= 0.093 mm/rev and ap=0.4mm 

(ii) Vc=59 m/min; f= 0.093 mm/rev and ap=0.4mm 

(iii) Vc=75 m/min; f= 0.070 mm/rev and ap=0.4mm 

(iv) Vc=75 m/min; f= 0.117 mm/rev and ap=0.4mm 

Condition (i) SEM micrograph is shown in Figure 4.24 (a-c) at higher cutting speed, in 

dry condition, microchips are adhered, burrs are formed with side flow of materials. In 

wet machining, burrs are eliminated and side flow of material is absent. Whereas in 

cryogenic machining, surface defects are much reduced, with good surface finish. This 

is because of thermal softening of workpiece as the friction and contact between the 

tool and workpiece are less. Further, increased cutting velocity tends to better surface 

finish. Surface roughness values, as measured by Talysurf roughness tester, and is 

estimated as 4.12μm, 3.89μm and 2.61μm for dry, wet and cryogenic machining 

respectively. 

Condition (ii) SEM image shows in Figure 4.25 (a-c) the presence of large number of 

microchips and microparticles are being adhered on the workpiece surface machined at 

dry condition. During machining at wet condition, formation of chips is reduced. 

During Cryogenic machining microchips are completely absent and present a defect 

free surface which is much smoother when compared to dry and wet machining. At 

lower cutting speeds, large quantity of materials moves on to the edge of the tool, 

thereby leading to high surface roughness. surface roughness values at dry, wet and 

cryogenic condition were found to be 4.28 µm, 4.08 µm and 2.77 µm respectively. 

Condition (iii) SEM images shown in Figure 4.26 (a-c) and samples containing less 

pits, less adhered micro particle, minimal microchips and less feed marks which leads 
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to minimum surface roughness. Ra value are measured by Talysurf roughness tester was 

found to be 3.83 µm, 3.59 µm and 2.33 µm for dry, wet and cryogenic respectively.  

Condition (iv) At higher feed rates, impressions of the tool marks are seen on the 

machined surface, which results in large roughness and is seen from SEM images 

(Figure 4.27 (a-c)). Surface roughness values for dry, wet and cryogenic machining are 

4.68 µm, 4.48 µm and 3.19 µm respectively. In dry machining adhered microparticles 

and microchips leads to higher surface roughness values. This is because of the 

formation of helical furrows formed by tool movement which are deeper and wider 

(Bensouilah et al. 2016). In cryogenic machining liquid nitrogen (LN2) was sprayed at 

the machined zone, i.e. at the tool – work piece interface led to the reduced temperature 

and less debris formation hence, better surface finish. From the SEM images, it is 

clearly shown that more surface defects like grooves, debris, side flow, and adhered 

micro particles were identified in dry and wet machining conditions and fewer surface 

defects was observed during cryogenic conditions, because of reduced material 

plasticity at cryogenic machining conditions (Bordin et al. 2017). 
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Figure 4.24 (a-c) SEM micrographs of machined surface at higher cutting speed (118 m/min) at different cutting environments (a) Dry 

(b) Wet & (c) Cryogenic condition 
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Figure 4.25 SEM micrographs of machined surface at lower cutting speed (59 m/min) at different cutting environments (a) Dry (b) Wet 

& (c) Cryogenic condition 
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Figure 4.26 SEM micrographs of machined surface at lower feed rate (0.070 mm/rev) at different cutting environments (a) Dry (b) Wet 

& (c) Cryogenic condition 
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Figure 4.27 SEM micrographs of machined surface at higher feed rate (0.117 mm/rev) at different cutting environments (a) Dry (b) Wet 

& (c) Cryogenic condition 
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4.3.7 Machined surface topography 

Machined surface topography as observed under confocal microscope are shown in 

Figure 4.28  and Figure 4.29. At low feed rate (f=0.070mm/rev, Vc=75m/min & 

ap=0.4mm) cryogenic machining produce lower surface peaks which compared to dry 

and wet machining. Figure 4.28 (a-c) during dry machining the waviness was very high 

due to side flow of chips at high temperature. In wet machining, waviness reduced 

slightly due to present of coolant during machining. At higher feed rate 

(f=0.117mm/rev, Vc=75m/min & ap=0.4mm) feed marks are very clear in dry, wet, and 

cryogenic condition and is shown in Figure 4.29 (a-c). Surface defects maximum during 

dry machining and is shown in Figure 4.29 (a).  Higher feed rate forms helical furrows 

which are wider and deeper. At higher feed rate, machined compromises of surface 

adhered micro particles, microchips and more side flow of materials which forms high 

surface roughness. 

Figure 4.30 and Figure 4.31 show the confocal images of machined surface at varying 

cutting speed in different cutting environments. At lower cutting speed (Vc=59 m/min, 

f=0.093mm/rev, & ap=0.4mm), surface roughness is very high due to the presence of 

built up edge on cutting tool which affects the machined surface. This is because of 

very high contact time between tool and workpiece. During cryogenic machining, 

surface peak intensity is comparatively lower than dry and wet conditions, as observed 

from Figure 4.30 (a-c). At higher cutting speed (Vc=118 m/min, f=0.093mm/rev, & 

ap=0.4mm), surface roughness is reduced, due to thermal softening of workpiece 

material and reduction in friction between tool and workpiece leads to better surface 

finish. During cryogenic machining very few surface defects as shown in Figure 4.31 

(a-c). Better surface roughness values are obtained with cryogenic machining and it can 

improve the product performance, compared to other cutting environments.  
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Figure 4.28 Surface topography at lower feed rate under different cutting environments (a) Dry (b) Wet & (c) Cryogenic condition 
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Figure 4.29 Surface topography at higher feed rate under different cutting environments (a) Dry (b) Wet & (c) Cryogenic condition
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Figure 4.30 Surface topography at lower cutting speed under different cutting environments (a) Dry (b) Wet & (c) Cryogenic condition 
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Figure 4.31 Surface topography at higher cutting speed under different cutting environments (a) Dry (b) Wet & (c) Cryogenic condition
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4.3.8 Chip morphology 

During machining material is removed from the bulk material in the form of chip. New 

surface will appear on the bulk material. Formation of chips helps to control machining 

condition, turning costs, surface finish and tool life, which often lead to better process 

and increased productivity. From the Figure 4.32 to Figure 4.37 show the SEM images 

of chips produced at different cutting parameters at various cutting condition of dry, 

wet and cryogenic conditions. Figure 4.32 shows the chips at lower cutting speed 

(Vc=59 m/min, f=0.093 mm/rev and ap=0.4 mm) all the cutting environments. At lower 

cutting velocity, chips are broken, irregular shapes and short. This is due to severe 

abrasive and rubbing action.  

From Figure 4.32 (a), during dry condition, chips are in the form of broken and irregular 

shape, thick long ribbon. which creates problem to machining operation as well as the 

operator. Whereas, in wet machining, chips are in the form of discontinuous spiral 

shape. Chip diameter is quite larger in wet machining, as observed from Figure 4.32 

(b). Similarly, in cryogenic machining chips are in the form of helical or tabular shape, 

with metallic color, spiral with small diameters and is shown in Figure 4.32 (c).   

Figure 4.33 (a) shows the chip morphology. At a higher cutting speed (Vc=118 m/min, 

f=0.093 m/min and ap=0.4 mm). Chips in the form of long ribbon with bluish color and 

saw tooth. These kinds of chips are unfavorable for machining, which affects the 

machined surface. Whereas, in wet machining, chips are in the form of a very long 

ribbon type and continuous having gray color as observed from Figure 4.33 (b). 

Similarly, in cryogenic machining, chips are in the form of long thin discontinuous 

chips as shown in Figure 4.33 (c). This type of chip is the most favorable condition. 

This is because of the presence of liquid nitrogen (LN2) at the machining zone, which 

leads to a lower temperature at cutting zone, causing a drop in the plasticity, as well as, 

breakability during chip formation and improve the chip flow control. During dry 

condition, extraction of chips becomes difficult because of jamming while machining 

and causes scratches on the machined surface, resulting in poor surface. In addition, 

side flow of material is increased during dry condition Whereas, very less side flow of 

material occurs during wet and cryogenic conditions and chips are easily extracted from 

the workpiece, due to application of coolant and LN2 in the cutting zone.  
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From the Figure 4.34 and Figure 4.35 it was observed that varying feed rate effects on 

chips. At low feed rate (f= 0.070 mm/rev, Vc=75m/min and ap=0.4mm) during dry 

machining chips are in the form of spiral shape bluish color. Whereas, wet and 

cryogenic condition chips in the form of close spring shape having metallic color, which 

are favorable chips, easily extracted from the workpiece. At high feed rate (f=0.117 

mm/rev, 75m/min and 0.4 mm) chips are in the form of elongated spiral shape during 

dry conditions, chips obtained with blueish color and chipping of side flow of material 

are more. Whereas wet and cryogenic condition chips are in the form of metallic color, 

which are favorable for machining. Feed rate increase from 0.070 mm/rev to 0.117 

mm/rev in dry and wet condition side chipping is more compare to cryogenic 

machining.  

Figure 4.36 and Figure 4.37 shows the SEM images of chips produced at depth of cut 

of 0.2mm and 0.6mm respectively at different cutting conditions. With increase in depth 

of cut chip thickness increases because of in rate of deformation. At low depth of cut 

(ap=0.2 mm f= 0.093 mm/rev, Vc=75m/min), under three different cutting 

environments, chips are in the form of spiral shape, long continuous thin ribbon type 

and having thickness of 186 μm, 123 μm and 98.7 μm for dry, wet and cryogenic 

respectively, diameter of the spirals formed are more in dry and wet machining. 

Whereas in cryogenic machining diameter is small. At higher depth of cut (ap=0.6 mm 

f= 0.093 mm/rev, Vc=75m/min) under three different cutting environments, chips are 

in the form of elongated spiral shape, helical with large diameter and having thickness 

of 455 μm, 376 μm and 225μm for dry, wet and cryogenic respectively. Chip thickness 

was reduced during cryogenic machining.
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Figure 4.32 SEM images of chips at Vc=59 m/min, f=0093 mm/rev & ap=0.4 mm (a) dry (b) wet & (c) cryogenic condition 
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Figure 4.33 SEM images of chips at Vc=118 m/min, f=0093 mm/rev & ap=0.4 mm (a) dry (b) wet & (c) cryogenic condition 
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Figure 4.34 SEM images of chips at f=0.070 mm/rev, Vc=59 m/min & ap=0.4 mm (a) dry (b) wet & (c) cryogenic condition 
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Figure 4.35 SEM images of chips at f=0.117 mm/rev, Vc=59 m/min & ap=0.4 mm (a) dry (b) wet & (c) cryogenic condition 

(a)

(c)

(b)
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Figure 4.36 SEM images of chips at ap=0.2 mm, f=0.093 mm/rev & Vc=75 m/min  (a) dry (b) wet & (c) cryogenic condition 
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Figure 4.37 SEM images of chips at ap=0.6 mm, f=0.093 mm/rev & Vc=75 m/min  (a) dry (b) wet & (c) cryogenic condition 

 

(a)

(c)

(b)



 

88 

 

From the analysis, it is observed that cryogenic machining gives better performance. 

This is because of the high pressure of LN2 impinging the cutting zone, which leads to 

reduced temperature and also less adhesion of chip residuals, side flow of material is 

minimum in cryogenic machining, due to action LN2. Whereas in dry machining, 

obtained chips are unfavorable than at different machining environments due to high 

cutting temperatures. Among all the machining environments cryogenic exhibits better 

performance, resulting in superior cooling effect, easy extraction of chips from 

workpiece material and avoid jamming of chips while machining. In addition, 

cryogenic machining involves no chip cleaning cost, no health hazards and easy 

disposal of chips. 

4.3.9 Tool wear analysis 

Tool wear describes the gradual failure of cutting tools due to regular operation. There 

are mainly two types of wear occurred during machining a) Flank wear b) Crater wear. 

Flank wear occurs on the flank face of the single point cutting tool. During cutting, the 

portion of the tool in contact with the machined workpiece erodes. Crater wear occurs 

on the rake face of the tool, which is in contact with chips, this erodes the rake face. 

Flank wear was identified, during the turning process of EN47 spring steel with coated 

cutting tool insert during dry, wet and cryogenic condition. In dry machining, no 

coolant was supplied at the machining zone and in wet machining, emulsion type 

cutting fluid was used and which was obtained by mixing the water with soluble oil in 

1:20 ratio. In cryogenic machining liquid nitrogen (LN2) are used conduct the 

experiments (Coelho et al. 2007; Davoodi and Eskandari 2015).  

Experiments are conducted based on L27 FFD optimization technique. The desirability 

approach is used to obtained optimum cutting condition for multi output responses and 

these conditions are considered for tool wear analysis. In such cases machining time 

was varied from 5 min to 20 min, at 5 min interval, using a new cutting edge for tool 

wear analysis for every experiment. Tool wear at different cutting conditions was 

measured by confocal microscope. Figure 4.38 to Figure 4.40 shows the tool wear at 

varying machining time for dry, wet and cryogenic conditions. The different machining 

times considered are 5, 10, 15 & 20min. Tool wear are found for dry condition are 

95.42, 177.33, 297.57 & 310.63 µm respectively; for wet condition 61.23, 70.67, 
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115.76 & 144.72 µm respectively; for cryogenic condition 44.57, 52.72, 61.23 & 

73.33µm respectively. 

Tool wear is minimum in cryogenic machining at all machining times this is due to less 

tool tip temperature, and less distortion of cutting edge during turning process. From 

the experimental work it is observed that the flank wear reduction in cryogenic 

machining was 53.29% and 27.21%, respectively compared to dry and wet condition at 

low cutting time. Similarly, at higher cutting time tool wear reduction in cryogenic 

machining was 76.40% and 49.32%, respectively compared to dry and wet condition. 

Overall, relationship between tool wear and machining time is shown in Figure 4.41.  

From the analysis it was observed that cryogenic machining is highly influencing the 

tool wear. This is due to efficient penetration of liquid nitrogen between tool and 

workpiece material resulting in reduced friction and reduced temperature. 

Formation of microgrooves, notch wear and adhesive wear were observed from the 

confocal images as shown in Figure 4.38  during dry machining. Similarly, Figure 4.39 

shows that, built of edge, edge chipping and abrasive marks forms during wet 

machining are observed. Figure 4.40 at cryogenic machining only abrasion wear is 

occurred, because of spraying of liquid nitrogen at cutting zone which reduces the 

sticking of workpiece to the cutting edge, resulting the absence of built up edge (BUE), 

microgrooves and notch wear, which leads an improved tool life. The major wear 

mechanism observed in cryogenic machining was abrasion wear. Control of abrasion 

and adhesion wear is done by spraying of liquid nitrogen (LN2). It provides lower 

friction and reduced tool tip temperature. While in wet machining, abrasion wear, 

adhesive wear and built up edge are formed. In dry machining microgrooves, edge 

chipping and notch wear are found during machining.   
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Figure 4.38 Tool wear analysis during dry condition 
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Figure 4.39 Tool wear analysis during wet condition 
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Figure 4.40 Tool wear analysis during cryogenic condition 
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Figure 4.41 Variation of tool wear with machining time for different conditions of machining 
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4.4 Multi objective optimization using DA and PSO technique 

(a) Desirability approach (DA) 

Desirability approach was proposed by Harrington and popularized by Derringer and Suich. 

DA is an optimization technique, widely used in industry, to optimize two or more 

responses. Desirability function optimization has been employed for all the responses 

in the machining study. During optimization process it is required to find out the 

optimal values of cutting parameters, to minimize the values of cutting force, surface 

roughness and tool tip temperature, under different cutting environments such as dry, 

wet and cryogenic. Optimization of multi objective responses was done by desirability 

approach.  

 

Figure 4.42 Desirability plot for cutting force, surface roughness and tool tip 

temperature during dry condition 
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Figure 4.43 Desirability plot for cutting force, surface roughness and tool tip 

temperature during wet condition 

Figure 4.42 to Figure 4.44 shows the desirability plot for cutting force, surface 

roughness and tool tip temperature with various cutting environment namely dry, wet 

and cryogenic conditions. From DA technique, optimum conditions of combined output 

responses as well as optimum value for each output response is obtained and is shown 

in Table 4.21. 

Table 4.21 Optimum conditions by desirability approach 

  Vc f ap Fz Ra T Desirability Value 

Dry 59 0.07 0.2 81.3987 3.6536 43.5165 0.8916 

Wet 66.1515 0.07 0.2 85.2956 3.2193 40.5272 0.9156 

Cryo 69.7273 0.07 0.2 70.178 1.9801 35.2923 0.9005 
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Figure 4.44 Desirability plot for cutting force, surface roughness and tool tip 

temperature during cryogenic condition 

(b) Multi objective particle swarm optimization (MOPSO) 

Particle swarm optimization (PSO) technique is used to obtaining a multi objective 

response. In the present work, multi objective optimization is imposed on the cutting 

parameters (speed, feed and depth of cut) to optimize output parameters (cutting force, 

surface roughness and tool tip temperature). Particle swarm optimization uses 

MATLAB codes for minimizing the output responses. Experiments are planned, based 

on design of experiments (DOE) a full factorial design (FFD) orthogonal array (OA) 

are employed. The parameters of MOPSO are represented in Table 4.22 and the 

working conditions for the MOPSO model are illustrated in Figure 4.45. 

 

Ra

Fz

ap Vc
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Figure 4.45 Principle of the particle swarm optimization 

Table 4.22 Parameters of MOPSO 

Number of parameters (m) 3 

Number of iterations (i) 1000 

Number of particles (n) 100 

Lower bounds of variables (LB) [59 0.070 0.2] 

Upper bounds of variables (UB) [118 0.117 0.4] 

2nd order regression equations are developed form statistical technique, and the same 

regression equations are used for PSO and corresponding PSO codes are developed 

from MATLAB software for minimization problem. Optimized cutting conditions and 

corresponding values of output response under dry, wet and cryogenic condition are 

depicted in Table 4.23. Multi objective optimization of optimal values are observed 

from convergence plots as shown in Figure 4.46 (a-c) under different cutting 

environments. 
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Table 4.23 Optimum condition by PSO technique 

 
Vc f ap Fz Ra T Optimum Value 

Dry 118 0.07 0.2 66.1189 3.4241 59.6338 63.4500 

Wet 81.0368 0.07 0.2 82.0368 3.0477 47.2132 70.9801 

Cryo 103.651 0.07 0.2 65.2688 1.7990 37.1093 56.9649 

 

 

Figure 4.46 MOPSO Convergence graph 

 

 

 

 

 

 

 

(a) (b)

(c)

Dry Wet

Cryo
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4.5 Artificial Neural Networks (ANNs)   

ANN is an information handling and demonstrating strategy that emerged in quest for 

scientific displaying of the learning procedure, which was motivated by the human 

brain. ANN is particularly helpful in grouping and capacity guess issues, more often 

when not decided, for example, neural processing, requires various neurons, to be 

associated together into a neural system. Neurons are arranged in the form of layers. 

Every neuron inside the system is typically a straightforward preparing unit, which 

takes at least, one source of info and produces a yield. At every neuron, each info has a 

related weight, which changes the quantity. The neuron essentially includes each one 

of the sources of information and computes an output yield to be passed on.  

In the present work, ANN is developed using MATLAB software with neural network 

tool box, the most suitable activation function, and the best training algorithm. Figure 

4.47 represents three input parameters such as cutting speed, feed rate, depth of cut and 

ten hidden layer and one output layer are present in the network. Table 4.24 depicts 

ANN training parameters.  

Table 4.24 ANN training parameters 

ANN Training parameters 

Network Type Feed forward back propagation 

Training function TRAINLM 

Adoption learning function LEARNGDM 

Performance function MSE 

Number of layers 2 

Number of neurons 10 

Transfer function LOGSIG 

Epochs 1000 

Max fail 600 

Figure 4.48 to Figure 4.56  shows the regression plot for tangential cutting force, surface 

roughness and tool tip temperature during dry, wet and cryogenic condition 

respectively. Feed forward back propagation method was used to train the network, in 

order to reduce the Mean square error (MSE) between experimental value and predicted 
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results. By adjusting the synaptic weight connections, the error is reduced. The R2-value 

of the training, testing and validating data should be near to 1 or 100% then trained 

model are adequate. From the ANN model, predicted values are obtained, and these 

predicted values are compared with regression model and experimental value. 

 

Figure 4.47 Artificial Neural Network  

 

Figure 4.48 ANN Regression plots for cutting force during dry condition 
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Figure 4.49 ANN Regression plots for cutting force during wet condition 

 

Figure 4.50 ANN Regression plots for cutting force during cryogenic condition 
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Figure 4.51 ANN Regression plots for surface roughness during dry condition 

 

Figure 4.52 ANN Regression plots for surface roughness during wet condition 
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Figure 4.53 ANN Regression plots for surface roughness during cryogenic condition 

 

Figure 4.54 ANN Regression plots for tool tip temperature during dry condition 
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Figure 4.55 ANN Regression plots for tool tip temperature during wet condition 

 

Figure 4.56 ANN Regression plots for tool tip temperature during cryogenic condition 
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Figure 4.57 (a-c) Experimental versus predicted values for cutting force, surface 

roughness and tool tip temperature during dry condition 

 

Figure 4.58 (a-c) Experimental versus predicted for cutting force, surface roughness 

and tool tip temperature during wet condition 

(a) (b)
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Figure 4.59 (a-c) Experimental versus predicted for cutting force, surface roughness 

and tool tip temperature during cryogenic condition 

Figure 4.57 to Figure 4.59 shows the experimental and predicted values of ANN and 

RSM of cutting force, surface roughness and tool tip temperature, at dry, wet and 

cryogenic condition. From the graphs, it is noticed that trained and predicted results are 

in good agreement with the experimental data. 
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4.6 Validation 

In order to validate the model, nine new cutting conditions are select randomly which 

are available on the lathe machine but does not belongs to previous cutting conditions. 

Regression model and ANN models are arranged with new cutting conditions as shown 

in Table 4.25. Error percentage was ANN trained network and RSM models was 

calculated by equation 4.11. 

% 100
e p

e

y y
Error

y

−
=     4.11 

Where ye is the experimental value and yp is the predicted value 

Table 4.25 New cutting condition for validation 

Sl No ap  Vc  f  

1 0.3 59 0.078 

2 0.3 75 0.087 

3 0.3 118 0.100 

4 0.5 59 0.087 

5 0.5 75 0.100 

6 0.5 118 0.078 

7 0.6 59 0.100 

8 0.6 75 0.078 

9 0.6 118 0.087 

Table 4.26 to Table 4.31 shows the percentage errors are comparing experimental 

values with RSM model and ANN trained network, during different cutting 

environments such as dry, wet and cryogenic respectively. From the analysis it is 

observed that % error is not exceeding 10% while comparing experimental values with 

RSM and ANN model. 
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Table 4.26 Error percentage of output response during experimental vs RSM under 

dry condition 

  Fz Dry Ra Dry T Dry 

Sl No Exp RSM 
% 

Error 
Exp RSM 

% 

Error 
Exp RSM 

% 

Error 

1 136.89 132.46 3.23 3.77 3.99 5.71 43.89 42.52 3.11 

2 148.45 152.42 2.67 3.73 3.87 3.77 62.59 57.35 8.37 

3 194.52 181.92 6.48 4.32 4.30 0.49 71.82 67.87 5.51 

4 255.85 246.99 3.46 4.56 4.62 1.33 45.26 42.37 6.39 

5 310.19 293.62 5.34 4.39 4.47 1.79 56.89 61.40 7.92 

6 181.96 193.09 6.12 3.42 3.56 4.10 68.48 74.60 8.93 

7 375.15 359.05 4.29 5.20 5.16 0.77 42.84 44.34 3.50 

8 232.49 244.19 5.03 4.29 4.22 1.70 65.42 60.01 8.27 

9 291.75 284.37 2.53 3.72 3.89 4.51 75.59 82.26 8.83 

 

Table 4.27 Error percentage of output response during experimental vs ANN under 

dry condition 

  Fz Dry Ra Dry T Dry 

Sl 

No 
Exp ANN 

% 

Error 
Exp ANN 

% 

Error 
Exp ANN 

% 

Error 

1 136.89 138.82 1.41 3.77 3.71 1.47 43.89 40.92 6.77 

2 148.45 140.29 5.50 3.73 3.55 4.80 62.59 60.28 3.69 

3 194.52 188.32 3.19 4.32 4.40 1.90 71.82 72.89 1.49 

4 255.85 272.23 6.40 4.56 4.62 1.32 45.26 47.43 4.80 

5 310.19 304.74 1.76 4.39 4.11 6.37 56.89 51.24 9.94 

6 181.96 188.29 3.48 3.42 3.57 4.37 68.48 72.51 5.88 

7 375.15 368.29 1.83 5.20 5.24 0.81 42.84 40.56 5.31 

8 232.49 238.96 2.78 4.29 4.35 1.34 65.42 68.29 4.39 

9 291.75 299.63 2.70 3.72 3.79 1.92 75.59 79.58 5.28 
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Table 4.28 Error percentage of output response during experimental vs RSM under 

wet condition 

  Fz Wet Ra Wet T Wet 

Sl 

No 
Exp RSM 

% 

Error 
Exp RSM 

% 

Error 
Exp RSM 

% 

Error 

1 102.59 109.84 7.07 3.58 3.71 3.74 39.56 40.10 1.38 

2 109.56 118.50 8.16 3.36 3.64 8.41 46.59 50.49 8.37 

3 144.59 132.51 8.35 4.11 4.10 0.30 60.28 65.23 8.22 

4 148.56 151.31 1.85 4.37 4.37 0.01 45.45 43.26 4.83 

5 185.74 170.75 8.07 4.31 4.25 1.41 60.16 57.38 4.62 

6 115.69 125.76 8.71 3.39 3.29 2.83 73.59 72.66 1.26 

7 193.47 194.42 0.49 4.93 4.89 0.72 40.84 43.48 6.46 

8 135.59 138.89 2.44 4.13 3.98 3.65 53.18 54.67 2.80 

9 145.89 156.40 7.21 3.38 3.61 6.69 78.54 77.61 1.18 

 

Table 4.29 Error percentage of output response during experimental vs ANN under 

wet condition 

  Fz Wet Ra Wet T Wet 

Sl No Exp ANN 
% 

Error 
Exp ANN 

% 

Error 
Exp ANN 

% 

Error 

1 102.59 105.69 3.02 3.58 3.41 4.65 39.56 37.24 5.85 

2 109.56 114.56 4.56 3.36 3.23 3.76 46.59 43.05 7.59 

3 144.59 148.69 2.84 4.11 4.22 2.67 60.28 62.36 3.45 

4 148.56 150.62 1.38 4.37 4.39 0.54 45.45 48.49 6.70 

5 185.74 185.29 0.24 4.31 4.39 1.79 60.16 60.21 0.08 

6 115.69 117.51 1.57 3.39 3.13 7.64 73.59 75.52 2.62 

7 193.47 192.69 0.40 4.93 4.95 0.33 40.84 38.80 4.99 

8 135.59 133.54 1.51 4.13 4.28 3.69 53.18 54.54 2.57 

9 145.89 144.72 0.80 3.38 3.24 3.99 78.54 79.49 1.21 
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Table 4.30 Error percentage of output response during experimental vs RSM under 

cryogenic condition 

  Fz Cryogenic Ra Cryogenic T Cryogenic 

Sl No Exp RSM 
% 

Error 
Exp RSM 

% 

Error 
Exp RSM 

% 

Error 

1 85.56 88.54 3.49 2.63 2.50 4.86 34.55 34.49 0.18 

2 87.45 89.27 2.09 2.25 2.38 5.73 36.98 36.25 1.98 

3 92.58 94.23 1.78 2.91 2.79 4.11 38.83 39.01 0.46 

4 130.36 133.78 2.62 2.98 3.11 4.49 34.5 34.58 0.23 

5 148.57 143.98 3.09 3.01 2.97 1.47 36.95 36.92 0.08 

6 113.49 115.41 1.70 2.15 2.05 4.84 41.56 40.22 3.21 

7 182.49 177.44 2.77 3.56 3.64 2.38 34.85 34.95 0.30 

8 147.75 140.29 5.05 2.77 2.71 2.22 36.88 36.68 0.54 

9 142.51 151.84 6.55 2.25 2.37 5.36 40.76 41.42 1.62 

 

Table 4.31 Error percentage of output response during experimental vs ANN under 

cryogenic condition 

  Fz Cryogenic Ra Cryogenic T Cryogenic 

Sl 

No 
Exp ANN 

% 

Error 
Exp ANN 

% 

Error 
Exp ANN 

% 

Error 

1 85.56 80.95 5.39 2.63 2.71 2.91 34.55 34.69 0.39 

2 87.45 86.22 1.41 2.25 2.19 2.86 36.98 37.21 0.63 

3 92.58 90.53 2.22 2.91 3.10 6.36 38.83 38.52 0.80 

4 130.36 127.99 1.82 2.98 2.90 2.82 34.5 34.49 0.02 

5 148.57 150.64 -1.39 3.01 3.10 3.08 36.95 37.98 2.79 

6 113.49 111.34 1.90 2.15 2.20 2.33 41.56 39.10 5.93 

7 182.49 188.33 -3.20 3.56 3.74 4.94 34.85 34.81 0.12 

8 147.75 152.83 -3.44 2.77 2.83 2.23 36.88 36.92 0.11 

9 142.51 138.49 2.82 2.25 2.04 9.51 40.76 40.71 0.13 
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Figure 4.60 (a-c) Validation for cutting force, surface roughness and tool tip 

temperature during dry condition 

 

Figure 4.61 (a-c) Validation for cutting force, surface roughnees and tool tip 

temperature during wet condition 

(a)

(c)

(b)

(a)

(c)

(b)
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Figure 4.62 (a-c) Validation for cutting force, surface roughness and tool tip 

temperature during cryogenic condition. 

From Figure 4.60 to Figure 4.62, it is observed that validations have been performed 

with various cutting conditions. From validations, it is observed that developed 

regression model and ANN trained network are well in agreement with experimental 

results. 

 

  

(a)
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CHAPTER 5 

5 CONCLUSIONS 

• The present work are to machine EN47 spring steel on a lathe machine using 

tungsten carbide cutting tool insert of different nose radii 0.4, 0.8 and 1.2mm 

using various optimization techniques. 

• One factor at a time approach (OFAT) was used to identify machinability factor 

on EN47 spring steel. Result revealed that, in all the cases, tool insert with 

0.8mm nose radius exhibits nominal performance.  

• Optimization technique was employed to know the machinability characteristics 

of EN47 spring steel with coated tungsten carbide tool insert of 0.8mm nose 

radius at different cutting environment such as dry, wet and liquid nitrogen and 

obtaining the optimum cutting conditions for cutting forces (Fz), the surface 

roughness (Ra), tool tip temperature (T). Chip morphology, surface integrity 

with varying cutting speed and feed rate. Tool wear analysis was done with 

different cutting environment. Obtained results are correlated with Particle 

Swarm Optimization (PSO) and Artificial Neural Network (ANN). From the 

above discussion of results the following conclusions are written: 

• From the ANOVA results, cutting force (Fz) was influenced by the depth of cut 

(ap) and feed rate (f), surface roughness was influenced by feed rate and cutting 

speed and tool tip temperature was influenced by cutting speed and depth of cut 

for all cutting environments. 

• From the main effect plots, it is observed that individual factor like cutting force 

(Fz), surface roughness (Ra) and tool tip temperature (T) are influenced by depth 

of cut and feed rate, feed rate and cutting speed, cutting speed and depth of cut 

respectively, and it was confirmed with ANOVA table. 

• From the experimental analysis, 2nd order regression model has been developed, 

by investigating using residual analysis, where all residual points closely fall on 

the straight line, as it confirmed by normal probability plots. 
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• From the response surface plot, interaction effect of most significant factor is 

observed.  

➢ For cutting force (Fz), depth of cut and feed rate are influencing factor. 

➢ For surface roughness (Ra), feed rate and cutting speed are influencing 

factor. 

➢ For tool tip temperature (T), cutting speed and depth of cut are influencing 

factor. 

• From the Regression analysis, it was observed that the predicted values are much 

closer to the actual values.  

• Analysis of machined surface and chip morphology indicate the effect of varying 

feed rate and cutting speed.  

➢ Surface roughness, at higher cutting speed during cryogenic machining, was 

improved by 36.82% and 33.16% as compared to dry and wet machining 

respectively. 

➢ Surface roughness, at lower cutting speed during cryogenic machining, was 

improved by 35.28% and 32.10% as compared to dry and wet machining 

respectively. 

➢ Surface roughness, at lower feed rate during cryogenic machining, was 

improved by 39.16% and 35.10% as compared to dry and wet machining 

respectively. 

➢ Surface roughness, at higher feed rate during cryogenic machining, was 

improved by 31.84% and 28.79% as compared to dry and wet machining 

respectively. 

• Machined surface analysis, showed the appearance of surface defects such as feed 

marks, pits, adhered micro particle, adhered chip particle side flows and saw tooth 

of chips. These defects are predominant in dry condition and very less in cryogenic 

machining. 
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• Machined surface topography was done by different cutting environment to identify 

the surface waviness of machined surface. From the analysis, it is observed that 

cryogenic machining gives the best surface finish. 

• In the tool wear analysis have been to identify the failure of cutting-edge features, 

such as micro grooving, notch wear, adhesive, and abrasive wear and built up edge 

are observed in dry condition while wet and cryogenic condition tool wear was 

minimum.  

• Multi-objective optimization was done by composite Desirability Approach (DA) 

and Particle Swarm Optimization (PSO) and are compared with each other, for all 

conditions. Desirable value of (89.16, 91.56 and 90.05) and (63.45, 70.98 and 

56.96) under dry, wet and cryogenic condition with respect to DA and PSO. These 

values are approaching each other, which proves the adequacy of the developed 

model.  

•  Artificial Neural Network is used to improve determination of coefficient (R2) for 

the output performances such as cutting force, surface roughness and tool tip 

temperature.   
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SCOPE OF FUTURE WORK 

Machinability studies of EN47 spring steel have been performed under different cutting 

environments like dry, wet and cryogenic condition. Still, there is a scope for future 

work on machinability studies of spring steel they are follows. 

➢ Machinability studies along with cutting tool vibration analysis. 

➢ Detailed study of chip morphology. 

➢ Detailed study of tool wear mechanisms during machining. 
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APPENDIX 

Table 5.1 ANOVA for tangential cutting force (Fz) during dry condition 

Fz Dry Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 2.9970E+05 9 33295.68 626.06 < 0.0001 
 

A-f 1.09E+05 1 1.09E+05 2056.06 < 0.0001 36.36 

B-Vc 544.38 1 544.38 10.24 0.0053 0.18 

C-ap 1.67E+05 1 1.67E+05 3140.11 < 0.0001 55.56 

AB 74.3 1 74.3 1.4 0.2535 0.02 

AC 14706.96 1 14706.96 276.53 < 0.0001 4.89 

BC 0.79 1 0.79 0.015 0.9044 0.00 

A2 528.15 1 528.15 9.93 0.0058 0.18 

B2 45.31 1 45.31 0.85 0.3689 0.02 

C2 382.19 1 382.19 7.19 0.0158 0.13 

Residual 904.11 17 53.18   0.30 

Cor 

Total 
3.01E+05 26    

100 
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Table 5.2 ANOVA for tangential cutting force (Fz) during wet condition 

Fz Wet Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4.5645E+04 9 5071.65 59.89 < 0.0001 
 

A-f 2.55E+04 1 2.55E+04 301.18 < 0.0001 54.17 

B-Vc 415.16 1 415.16 4.9 0.0408 0.88 

C-ap 1.61E+04 1 1.61E+04 189.67 < 0.0001 34.11 

AB 72.7 1 72.7 0.86 0.3671 0.15 

AC 1751.15 1 1751.15 20.68 0.0003 3.72 

BC 1.03 1 1.03 0.012 0.9134 0.00 

A2 40.18 1 40.18 0.47 0.5002 0.09 

B2 62.77 1 62.77 0.74 0.4013 0.13 

C2 0.95 1 0.95 0.011 0.9171 0.00 

Residual 1439.61 17 84.68     3.06 

Cor 

Total 
4.71E+04 26       

100 
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Table 5.3 ANOVA for tangential cutting force (Fz) during cryogenic condition 

Fz Cryo Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4.4625E+04 9 4958.28 123.82 < 0.0001 
 

A-f 6.78E+03 1 6.78E+03 169.28 < 0.0001 14.96 

B-Vc 190.39 1 190.39 4.75 0.0436 0.42 

C-ap 3.37E+04 1 3.37E+04 840.79 < 0.0001 74.32 

AB 5.88 1 5.88 0.15 0.7062 0.01 

AC 2585.45 1 2585.45 64.56 < 0.0001 5.71 

BC 0.013 1 0.013 0.00032 0.986 0.00 

A2 32.02 1 32.02 0.8 0.3837 0.07 

B2 41.58 1 41.58 1.04 0.3225 0.09 

C2 271.53 1 271.53 6.78 0.0185 0.60 

Residual 680.77 17 40.05     1.50 

Cor 

Total 
4.53E+04 26       

100 
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Table 5.4 ANOVA for surface roughness (Ra) during dry condition 

Ra Dry Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 9.18 9 1.02 27.56 < 0.0001 
 

A-f 6.34 1 6.34 171.3 < 0.0001 64.63 

B-Vc 1 1 1 27.03 < 0.0001 10.19 

C-ap 0.59 1 0.59 15.93 0.0009 6.01 

AB 0.2 1 0.2 5.5 0.0314 2.04 

AC 0.023 1 0.023 0.61 0.4438 0.23 

BC 0.77 1 0.77 20.89 0.0003 7.85 

A2 3.31E-04 1 3.31E-04 8.93E-03 0.9258 0.00 

B2 0.29 1 0.29 7.9 0.012 2.96 

C2 0.066 1 0.066 1.79 0.1989 0.67 

Residual 0.63 17 0.037     6.42 

Cor Total 9.81 26       100 
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Table 5.5 ANOVA for surface roughness (Ra) during wet condition 

Ra Wet Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 9.5 9 1.06 27.05 < 0.0001 
 

A-f 6.71 1 6.71 171.95 < 0.0001 66.04 

B-Vc 0.86 1 0.86 22.01 0.0002 8.46 

C-ap 0.55 1 0.55 14.19 0.0015 5.41 

AB 0.28 1 0.28 7.15 0.016 2.76 

AC 0.03 1 0.03 0.78 0.3896 0.30 

BC 0.92 1 0.92 23.68 0.0001 9.06 

A2 9.70E-04 1 9.70E-04 2.50E-02 0.8765 0.01 

B2 0.22 1 0.22 5.68 0.0291 2.17 

C2 0.04 1 0.04 1.03 0.3253 0.39 

Residual 0.66 17 0.039     6.50 

Cor Total 10.16 26       100 
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Table 5.6 ANOVA for surface roughness (Ra) during cryogenic condition 

Ra Cryo Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 8.93 9 0.99 32.57 < 0.0001 
 

A-f 6.15 1 6.15 201.93 < 0.0001 65.15 

B-Vc 1 1 1 32.68 < 0.0001 10.59 

C-ap 0.57 1 0.57 18.86 0.0004 6.04 

AB 0.25 1 0.25 8.08 0.0113 2.65 

AC 0.006186 1 0.006186 0.2 0.6579 0.07 

BC 0.76 1 0.76 25.1 0.0001 8.05 

A2 4.51E-05 1 4.51E-05 1.48E-03 0.9697 0.00 

B2 0.27 1 0.27 8.98 0.0081 2.86 

C2 0.061 1 0.061 2.01 0.1739 0.65 

Residual 0.52 17 0.03     5.51 

Cor Total 9.44 26       100 
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Table 5.7 ANOVA for tool tip temperature (T) during dry condition 

T Dry Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4819.4 9 535.49 28.05 < 0.0001 
 

A-f 122.42 1 122.42 6.41 0.0215 2.38 

B-Vc 3894.64 1 3894.64 203.97 < 0.0001 75.71 

C-ap 505.9 1 505.9 26.5 < 0.0001 9.83 

AB 20.16 1 20.16 1.06 0.3186 0.39 

AC 32.34 1 32.34 1.69 0.2104 0.63 

BC 379.81 1 379.81 19.89 0.0003 7.38 

A2 0.76 1 0.76 0.04 0.8439 0.01 

B2 373.63 1 373.63 19.57 0.0004 7.26 

C2 3.14 1 3.14 0.16 0.69 0.06 

Residual 324.6 17 19.09     6.31 

Cor Total 5144 26       100 
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Table 5.8 ANOVA for tool tip temperature (T) during wet condition 

T Wet Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 4920.1 9 546.68 30.27 < 0.0001 
 

A-f 149.59 1 149.59 8.28 0.0104 2.86 

B-Vc 3525.42 1 3525.42 195.22 < 0.0001 67.45 

C-ap 1015.93 1 1015.93 56.26 < 0.0001 19.44 

AB 37 1 37 2.05 0.1705 0.71 

AC 18.9 1 18.9 1.05 0.3206 0.36 

BC 229.57 1 229.57 12.71 0.0024 4.39 

A2 0.89 1 0.89 0.049 0.8266 0.02 

B2 94.5 1 94.5 5.23 0.0353 1.81 

C2 76.78 1 76.78 4.25 0.0548 1.47 

Residual 307 17 18.06     5.87 

Cor Total 5227.1 26       100 
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Table 5.9 ANOVA for tool tip temperature (T) during cryogenic condition 

T Cryo Sum of Squares DoF Mean Square F-Value P-value % Cont 

Model 133.82 9 14.87 46.48 < 0.0001 
 

A-f 7.35 1 7.35 22.96 0.0002 5.28 

B-Vc 104.11 1 104.11 325.41 < 0.0001 74.76 

C-ap 9.59 1 9.59 29.99 < 0.0001 6.89 

AB 0.079 1 0.079 0.25 0.6257 0.06 

AC 0.19 1 0.19 0.59 0.4543 0.14 

BC 12.15 1 12.15 37.97 < 0.0001 8.72 

A2 0.007746 1 0.007746 0.024 0.8782 0.01 

B2 0.98 1 0.98 3.06 0.0985 0.70 

C2 0.2 1 0.2 0.63 0.4382 0.14 

Residual 5.44 17 0.32     3.91 

Cor Total 139.26 26       100 
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Table 5.10 Experimental verses predicted (RSM and ANN) during dry condition 

Sl No Cutting Force (Fz) Surface Roughness (Ra) Tool Tip Temperature (T) 

  Exp RSM ANN Exp RSM ANN Exp RSM ANN 

1 85.95 81.40 110.74 3.54 3.65 3.61 39.60 43.52 41.17 

2 125.90 131.68 66.41 4.27 4.17 4.27 40.12 43.63 41.80 

3 167.05 164.98 164.54 5.12 4.70 4.95 42.56 43.03 43.19 

4 66.55 74.40 107.63 3.31 3.36 3.38 55.86 56.03 54.24 

5 123.05 125.97 66.08 3.88 3.95 3.83 57.98 56.81 57.20 

6 166.89 160.60 162.38 4.25 4.54 4.25 58.87 56.90 58.98 

7 65.00 66.08 81.82 3.43 3.42 3.43 62.58 59.55 60.43 

8 120.20 121.08 102.25 4.21 4.18 4.24 63.84 62.12 63.63 

9 164.89 159.29 165.61 4.93 4.97 4.95 64.25 64.07 64.21 

10 144.15 136.54 136.60 4.12 4.02 4.13 40.59 41.10 40.89 

11 219.35 221.09 210.95 4.28 4.50 4.29 45.26 42.82 45.26 

12 281.75 290.14 279.09 4.79 4.98 4.85 46.85 43.89 44.81 

13 142.83 129.41 117.79 3.83 3.60 3.79 60.87 56.56 60.07 

14 217.69 215.24 148.40 4.02 4.14 3.70 61.89 58.95 61.54 

15 279.86 285.62 210.77 4.68 4.69 4.67 62.48 60.71 61.67 

16 115.50 120.73 117.95 3.34 3.30 3.41 66.58 68.01 64.12 

17 214.69 209.99 213.33 4.12 4.02 4.16 67.56 72.19 80.41 

18 276.89 283.95 279.61 4.81 4.76 4.84 67.98 75.82 72.37 

19 198.45 207.65 203.84 4.37 4.60 4.46 42.69 40.13 41.96 

20 326.25 326.46 329.10 5.17 5.03 5.11 44.85 43.46 44.73 

21 442.35 431.26 434.66 5.45 5.47 5.41 45.27 46.21 44.86 

22 195.92 200.39 215.18 4.25 4.04 4.21 56.70 58.54 57.47 

23 321.45 320.47 332.15 4.59 4.54 4.64 58.50 62.54 57.01 

24 424.45 426.60 436.06 5.09 5.05 5.24 59.86 65.98 60.72 

25 193.61 191.34 195.94 3.19 3.39 3.30 75.89 77.92 74.46 

26 318.25 314.86 421.64 4.05 4.06 4.06 86.23 83.71 86.99 

27 422.87 424.57 420.81 4.77 4.76 4.72 97.50 89.01 76.47 
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Table 5.11 Experimental verses predicted (RSM and ANN) during wet condition 

Sl No Cutting Force (Fz) Surface Roughness (Ra) Tool Tip Temperature (T) 

  Exp RSM ANN Exp RSM ANN Exp RSM ANN 

1 79.56 87.62 80.39 3.28 3.35 3.32 35.90 36.36 37.20 

2 115.60 118.15 89.41 4.02 3.87 4.01 37.90 35.95 38.17 

3 142.95 144.72 137.16 4.77 4.40 4.78 37.80 36.31 41.93 

4 89.11 83.11 83.77 3.06 3.10 3.11 39.56 44.84 39.66 

5 114.87 112.38 112.13 3.56 3.70 3.27 40.78 45.33 42.00 

6 133.10 137.63 143.39 3.98 4.30 3.98 45.23 46.64 46.29 

7 85.64 83.34 83.53 3.14 3.15 3.13 55.58 52.50 55.69 

8 113.98 109.21 108.22 3.96 3.97 3.99 58.63 55.41 60.00 

9 132.28 130.92 137.22 4.87 4.79 4.76 61.20 59.24 60.87 

10 110.00 105.78 110.82 3.84 3.77 3.51 41.90 42.09 41.40 

11 139.75 148.14 145.55 4.08 4.24 4.10 42.87 42.91 43.88 

12 214.00 187.04 203.73 4.55 4.71 4.64 44.83 44.55 46.55 

13 109.21 101.12 95.16 3.59 3.37 3.52 58.84 52.86 45.00 

14 138.91 142.21 143.77 3.81 3.92 3.72 59.90 54.58 56.13 

15 169.80 179.80 171.07 4.48 4.47 4.53 60.10 57.17 61.83 

16 90.18 100.93 87.21 3.08 3.03 3.09 65.50 66.68 66.71 

17 136.93 138.63 133.37 3.89 3.80 3.88 65.69 70.83 67.41 

18 167.56 172.68 171.20 4.56 4.57 4.64 67.97 75.94 72.56 

19 122.40 124.74 128.54 4.01 4.34 4.08 40.50 40.66 41.01 

20 179.30 178.92 168.35 4.92 4.77 4.84 41.87 42.71 38.67 

21 221.70 230.16 218.73 5.17 5.19 5.07 43.60 45.63 44.21 

22 120.84 119.93 136.02 4.06 3.80 4.07 52.89 53.73 52.85 

23 175.35 172.84 212.70 4.39 4.31 4.55 56.88 56.68 58.63 

24 220.60 222.76 220.37 4.85 4.81 4.83 58.19 60.54 60.91 

25 118.96 119.33 117.84 2.93 3.08 3.06 72.76 73.71 69.73 

26 174.63 168.84 173.02 3.74 3.79 3.56 78.96 79.08 80.44 

27 218.96 215.23 203.24 4.52 4.51 4.51 92.58 85.48 90.63 
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Table 5.12 Experimental verses predicted (RSM and ANN) during cryogenic condition 

Sl No Cutting Force (Fz) Surface Roughness (Ra) Tool Tip Temperature (T) 

  Exp RSM ANN Exp RSM ANN Exp RSM ANN 

1 71.90 73.64 72.00 2.13 2.19 2.20 34.95 34.43 34.85 

2 73.70 80.23 73.71 2.75 2.66 2.73 35.15 35.23 35.08 

3 85.33 82.38 78.88 3.51 3.15 3.49 36.55 36.13 34.32 

4 66.65 68.81 66.70 1.83 1.90 1.82 34.35 35.67 35.32 

5 72.36 75.75 72.35 2.39 2.45 2.09 36.15 36.42 36.14 

6 84.78 78.27 84.79 2.76 3.01 2.84 37.65 37.29 37.09 

7 65.54 65.85 65.75 1.92 1.93 1.77 37.95 37.45 37.90 

8 71.89 73.76 71.88 2.71 2.68 2.68 38.25 38.10 38.22 

9 83.83 77.29 83.88 3.42 3.44 3.40 38.55 38.84 38.56 

10 106.14 96.22 83.38 2.63 2.54 2.65 34.25 34.14 34.33 

11 121.50 117.17 121.47 2.77 2.99 2.82 34.45 34.82 34.40 

12 131.09 134.31 131.24 3.29 3.45 3.73 34.65 35.59 34.66 

13 97.36 91.37 79.55 2.33 2.12 2.27 36.55 35.90 36.54 

14 115.09 112.68 115.00 2.52 2.64 2.52 37.25 36.54 37.25 

15 119.36 130.19 117.54 3.19 3.18 3.20 37.65 37.27 37.66 

16 87.92 88.36 87.65 1.85 1.79 1.74 38.95 39.11 38.95 

17 113.69 110.64 113.44 2.61 2.51 2.55 39.65 39.63 38.60 

18 117.96 129.16 118.03 3.29 3.26 3.53 39.85 40.25 39.84 

19 125.22 132.26 125.02 2.86 3.09 2.76 34.35 34.22 34.43 

20 165.65 167.57 165.83 3.67 3.52 3.61 34.85 34.77 34.66 

21 202.95 199.70 190.87 3.94 3.96 3.87 35.55 35.42 35.55 

22 124.83 127.38 144.14 2.73 2.53 2.73 36.35 36.51 36.30 

23 164.15 163.06 179.17 3.07 3.03 3.05 36.65 37.02 36.65 

24 198.50 195.56 173.04 3.59 3.55 3.53 37.65 37.63 37.66 

25 122.68 124.33 122.54 1.68 1.85 1.70 40.85 41.13 40.82 

26 163.79 160.97 163.48 2.54 2.55 2.50 41.65 41.53 41.67 

27 197.54 194.48 197.54 3.28 3.27 3.47 42.35 42.02 42.17 
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