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ABSTRACT 

Hydroelasticty is a subject of interest in marine science and technology involving the 

mutual interaction of water waves and elastic bodies. It is a branch which deals with 

the elastic deformation of bodies which is in contact with liquids. Interdisciplinary 

subjects like this require the knowledge of structural mechanics, fluid mechanics, 

concepts of water wave propagation and boundary conditions. In this thesis, a 

numerical procedure has been proposed to analyze the equation of motion of the 

elastic plate which is having a shallow draft, L/d ≤ 1/20 (small thickness) with 

arbitrary geometry subjected to monochromatic gravity waves.The numerical model is 

capable of investigating the Very Large Floating Structure (VFLS) at finite (0.05 

≤h/λ≤ 0.5) and infinite (h/λ≤ 0.5) water depths. Herein, VLFS is considered to behave 

as thin elastic plate due to its dimensions. VLFS of rectangular, triangular and 

trapezoidal geometries are considered and elastic motion or vertical deflections of 

these shapes have been studied. A hybrid numerical model which combines Boundary 

Element Method (BEM) and Finite Element Method (FEM) is developed and used to 

solve fluid structure interaction between the elastic thin plate and water wave. A 

Higher Order Boundary Element Method (HOBEM) has been adopted in order to 

maintain the same order basis function and contains the same nodes between BEM 

and FEM. Two equations have been derived to develop the relationship between the 

displacement of the plate and the velocity potential under the plate. The first equation 

is derived from the equation of motion for the plate and is solved by Finite Element 

Method (FEM) to extract the displacement of the floating structure. The second 

equation is from water wave theorywhich is based on Boundary Integral Equation 

(BIE) that relates the displacement of the floating plate and velocity potential using 

free-surface Green’s function. A modified Green’s function which differs from the 

bygone Green’s function has been developed by using Bessel’s, Hankel and Struve 

functions of order zero. Both the equations are solved simultaneously to get the 

displacement of floating elastic plate and velocity potential. The results obtained are 

validated with Wang and Meylan (2004). The performance of the developed model is 

examined by checking the convergence rate and simulation time.It is learnt that the 

model gives its better performance in finite depth, whereas, its performance in infinite 
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depth lags by an average of 20% in simulation time than the results obtained by Wang 

and Meylan (2004).It is concluded that the model works better in finite water depth 

for rectangular and trapezoidal plates. 
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CHAPTER 1 

INTRODUCTION 

1.0. GENERAL 

This thesis examines fluid structure interaction, more predominantly the interaction 

between water waves and Very Large Floating Structure (VLFS). A numerical 

scheme is derived to solve the hydroelastic motion of a very large floating structure. 

Earth is also called as “Blue” planet due to the rich source of water on its surface. If 

seen from space, it looks like a blue colored planet. The major part of the Earth’s 

surface is covered by oceans, seas, lakes, rivers, etc. The entire surface of the Earth 

measures 510,083,000 square kilometers, in which, the land surface measures 

148,300,000 square kilometers. Thus, seventy percent of the earth’s total surface area 

is occupied by water. Only one third of the entire earth’s surface is available to live 

on. 

A new problem was faced by entire humanity in the early twentieth century such as 

lack of land and increase in population. With rapid growth in earth’s population, 

urban agglomeration and evolution of industrial development, there is a need of land 

reclamation. The countries like Japan, China, India, Pakistan, USA and Indonesia are 

thickly populated and facing the problem of shortage of land to live on. Many 

countries from Asia and Europe are expected to add to the list in a very short time. In 

the year 2011, the population of the world was about seven billions and it is estimated 

to reach 9.3 billions and 10 billions by 2050 and 2100, respectively. As the population 

increases, the available space decreases, which leads to land reclamation from sea. 

Few of the developed countries which have a long coastline and islands, and are in 

need of more land for development have taken successful measures to reclaim land 

from sea. Through land reclamation work, countries like Singapore, Japan, the 

Netherlands and etc. have expanded their areas significantly. The land reclamation 

works are, however, subject to certain restrictions such as negative impact on the 

coastline of the country. Huge cost is required in reclaiming land from deep waters, 

especially when the sand for reclamation has to be bought from other countries 
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(Watanabe et al., 2004a). The land reclamation solution is viable or suitable at 

shallow water depth or in general, water depth less than twenty meters. Many 

researchers and engineers have proposed interesting and attractive solutions to tackle 

the problems associated with reclamation works. The construction of Very Large 

Floating Structure (VLFS) is one of the suitable solutions to address the above said 

problem. VLFSs can be located far in the sea (deep ocean) as well as near the shore 

(shallow water).Due to its larger dimensions in plan view and comparing with 

thickness, it is assumed that the VLFSs behave as thin elastic plate. An elastic 

deformation is anticipated when it responds to wave load. Hence, it is necessary to 

study the hydroelastic behavior to analyze the VLFS. Hydroelasticity plays an 

important role in geophysics, where floating ice is modeled as elastic plate. In the case 

of offshore structures with larger surface area, the structural deformations are 

important rather than rigid body motions as they alter the surrounding pressure field. 

Ice is the solid shape of water and it is the simplest and most common floating 

structure as it can be found all around the world. The Marginal Ice Zone (MIZ) is an 

interfacial region that forms the boundary between open and frozen ocean. MIZ 

consists of patchwork of ice flow and open waterwhich can be divided into bands with 

floe size increasing with penetration depth.An extensive amount of literature exists to 

support the modelling of an ice-sheet as a floating elastic plate. Greenhill (1887) was 

the first to propose modeling a floating ice sheet by a thin elastic beam on a fluid 

foundation, suggested a dispersion relation based on the Euler-Bernoulli beam theory. 

Further, Squire et al. (1988) provided the most conclusive proof of the model by 

measuring the moving loads on ice.Wadhams et al. (1986, 1988), Kohout et al. (2014) 

and Kohout et al. (2014) conducted the experimental investigations on wave 

propagation in the MIZ. The researchers concluded that there is a strong attenuation 

of energy, which decreases as the wave period increases. 

Container ships are cargo ships that carry their entire load in truck-size intermodal 

containers, in a technique called containerization. They are the common means of 

commercial intermodal freight transport, and have been carrying most seagoing non-

bulk cargo.Today, about 90% of non-bulk cargo worldwide is transported by 

container, and modern container ships can carry over 19000 TEU. As container ships 
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have grown in size so has the problem of ship flexure and this is one of the most 

active areas of research in the domain of hydroelasticity. There have been several 

disasters at sea in which the flexural response has lead to ship failure. The study of the 

flexural response of a container ship to waves can be found in Huang and Riggs 

(2000), Hinrdaris et al. (2003) and Senjanovic et al. (2008, 2009). The responses 

wereanalyzed using the Finite Element Method for the elastic structure and the 

Boundary Element Method for the fluid.  

1.1 VERY LARGE FLOATING STRUCTURES (VLFSs) 

Very Large Floating Structures (VLFSs) are referred as Very Large Floating Platform 

(VLFP) in few of the literatures. VLFS can be constructed as floating breakwater, 

bridges, airports, piers and docks, wind and solar power plants, storage facility, 

military and emergency bases, entertainment facility, parks, spare for industries and 

also for habitation. Very few VLFSs have been constructed and are presently in 

operation. The construction or use of VLFS for habitation could become reality in 

near future. Already several researchers have proposed different design aspects for 

floating cities or huge living complex. VLFS are classified broadly into two 

categories (Watanabe et al., 2004a), namely Pontoon type and semi-submersible type. 

The pontoon type VLFS have the characteristics of high stability, easy maintenance 

and repair and low manufacturing cost. The semi-submersibles are used in the open 

sea where the wave heights are relatively large. Semi-submersibles maintain the 

constant buoyant force and hence they are used in open sea or deep sea to minimize 

the effect of wave. Semi-submersible VLFSs are suited for oil and gas exploration in 

deep seas. 

Floating structures offer several advantages over permanent structures which might 

extend from the shore into open water. They do not damage the marine eco-system, 

neither cause silt deposition in deep harbors nor do they disrupt the ocean currents. 

They are easy to construct, since most of the structural components are completed 

onshore, towed to the proposed offshore location and the installation is rapid. In 

VLFS, entire top surface is used as significant usable area, in contrast to the internal 

hold areas as used in water craft. The motion of the floating structure due to wind or 
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wave action must be substantially reduced to ensure the safety of people and facilities 

on a VLFS and to allow useful activities. Hence, VLFS must be securely moored to 

the ocean bed. 

The large structure with small thickness floating on a sea is called as pontoon type 

VLFS. The said type is more flexible when compared with other kind of offshore 

structures due to it’s dimensions and elastic nature. In these type of structures, elastic 

motions are considered to be more important than the rigid body motions. Thus, 

hydroelastic analysis takes centre stage in the analysis of the pontoon type VLFSs. 

The study consists of elastic motion of a floating structure in response to water waves 

and their impact on the entire fluid domain. In literature, Pontoon type VLFSs are 

referred as mat-like VLFSs due to their small thickness or draft in relation to the 

length, i.e. the third dimension (thickness) of floating structure is very small when 

compared with other two dimensions (length and breadth). The usual dimensions of 

these types of structures may vary from five hundred to five thousandmeters in length 

and hundred to onethousand meters in width, whereas, the thickness can be about two 

to tenmeters. The largest prototype Mega-Float with five thousand meters long and 

four hundred meters wide is constructed in Tokyo Bay, Japan which can be seen in 

Fig. 1.1.Because of large dimensions, it is difficult to understand the behavior of 

VLFSs.It is not possible to model as a rigid structure and the allowance for the 

Bending Moment (BM) must be considered. Also, because of the large size, the 

problem is often extremely computationally demanding, especially at high 

frequencies. The simplest model for a VLFS is a floating elastic plate and a great deal 

of research on floating plates has been motivated by the application to VLFSs. 
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Fig. 1.1: The Mega-Float, Tokyo Bay, Japan (Watanabe et al., 2004a). 

To be an efficient VLFS, it should always provide a very large surface, because 

the VLFS is used as ground for specific activities. VLFS can be formed by joining 

the necessary number of units, which can be of any arbitrary shape. The factor of 

safety and requirement of strength must be checked in the design of the structure. 

The materials used to construct the VLFS are either composite or non-composite 

materials. Usually, steel, concrete, pre-stressed and steel-concrete composite 

materials are used to build the floating structure.  

 

1.1.1 Advantages of VLFS 

Advantages of very large floating system over traditional land reclamation are 

as follows: 

 Time required to construct the VLFS is less. 

 Ease in construction.  

 The components can be constructed at shipyards and later can be 

transported to site. 
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 Expansion, removal and relocation of VLFS can easily be done. 

 As the depth of the water increases, construction cost of VLFS 

decreases and vice-versa. 

 Depth of the sea bed or sea bed profile is not affected by the 

construction of VLFS. 

 VLFSs don’t damage the marine ecological system or disrupt 

ocean/sea currents. Hence, VLFSs are environment friendly. 

 The structure will be safe in the deep water as the seismic energy will 

be dissipated by the sea. 

 

Although, pontoon type VLFSs are best suitable for use in calm waters, naturally 

sheltered waters, lakes or areas near to the shoreline,breakwaters are usually 

constructed near the VLFSs to avoid the impact of waves on it. Further, to stabilize 

the behaviour of VLFS, researchers/engineers have used special anti-motion devices 

and mooring systems. Due to its large dimension many cycles of wave crests and 

wave troughs are covered under it, hence, VLFS are not affected by the waves under 

it. Local deflection with small amplitude can be observed in these type of structures. 

This phenomenon is called as elastic response. The present thesis mainly deals with 

the oscillatory propagation of local deflection, which is caused by waves travelling 

from one end of the floating structure to the other end. The elastic response must be 

investigated to ensure the stability and factor of safety of the structure. 

According to Shuku et al. (2001), multi-stage reliability principle must be obeyed by 

VLFS. In addition, Shuku et al. (2001) and Watanabe et al. (2004a) describe that 

joining of floating units, safety regulations, environmental assessment technology and 

floating execution must also satisfy the reliability principle. The authors have also 

provided the required measures to be taken during airplane accidents, extreme marine 

and meteorological conditions. The expected lifespan of the floating structure is about 

one hundred years. With proper maintenance, the floating structure can further be 

used for the increased life span. Squire et al. (1988) and Watanabe et al. (2004a, 

2004b) have studied the effect of VLFSs on marine ecological system. It is concluded 

that the installation of VLFSs has minimal effect on the natural ecosystem. The 
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following subsection 1.1.2 describes the overview of VLFSs constructed/proposed 

around the world and their applications. 

 

1.1.2 Application of existing and proposed VLFSs 

Countries like Japan, Norway, UK, USA, Canada, Brazil and Saudi Arabia are 

already using Very Large Floating Structures for various purposes. Countries like 

China, the Netherlands, Singapore, Germany, Korea and Israel are planning to adopt 

very large floating structures in near future. In constructing the VLFS, Japan leads the 

entire world and has constructed the first Mega-Float (Isobe, 1999; Shuku et al., 2001;  

National Maritime Research Institute, Japan). They also constructed airstrips and 

VLFS test model for floating airport terminals in Tokyo Bay.  

 

Fig. 1.2: Kamigoto Floating Oil Storage Base, Nagasaki Prefecture, Japan (Photo 

courtesy of Shirashima Oil Storage Co Ltd). 



8 

 

Further, the following structures have been constructed recently in Japan, such as 

Yumemai floating Swing Bridge in Osaka (Watanabe et al., 2000), floating emerging 

rescue base in Yokohama, the floating oil storage system in Kamigoto (Fig. 1.2), 

amusement and entertainment facilities, parks and spare for floating bridges. For 

storing fuel, many countries have already adopted the VLFSs. Flat-boxed tankers 

must be constructed initially and are connected to each other to serve as an offshore 

oil storage facility (Fig.1.2). Two floating oil storages are situated in Kamigoto (first 

storage base) and Shirashima, Japan having a capacity of 4.4 and 5.6 million 

kiloliters, respectively. Yoneyama et al. (2004) provides details regarding design, 

mooring and experimental aspect of the oil storage bases. A single barge has a 

capacity of 880,000 kiloliters, wherein, totally five huge barrels are connected to form 

a large floating structure. The floating harbor facility constructed by different 

countries around the world can be seen in Watanabe et al. (2004b). 

 

Fig. 1.3: Bronnoysund Bridge and Nordhordland Bridge in Norway, (Watanabe 

2003). 

Bergsoyund and Nordhorland floating bridges are built in Norway (Fig. 1.3) and 

Kelowna floating bridge is built in Canada. Washington State has a floating bridge 
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called Evergreen Point Floating Bridge. Countries like Saudi-Arabia, Brazil and UK 

also use floating structures as bridges. The worldwide development and the history of 

floating bridges have been described by Watanabe (2003). Pontoon type floating 

bridge and its earliest applications has been narrated by Watanabe et al. (2004b). The 

Galata floating bridge in Istanbul is the first floating structure to be constructed, 

followed by the Lake Washington Hood Canal Bridge in Washington (Fig. 1.4). The 

above mentioned floating structures have been constructed between 1910-1950. 

 

Fig. 1.4: Lake Washington Hood Canal Bridge in Washington, (Watanabe et al., 

2004b). 

In early 1990s, construction of VLFSs gained its momentum and popularity for 

various applications. West India Qeray Foot Bridge in Docklands, New Swinging 

arch bridge in Germany, Admiral Clarey Bridge in USA, Dongjin Bridge in China etc. 

are few of the floating bridges present in the world. Countries like India, France and 

Austria are also developing floating bridge Structures. International Database and 

Gallery of Structures (https://structurae.net/), provide a complete detail of the pontoon 

bridges still in use. 
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Fig. 1.5: Yumemai floating bridge, Japan (Photo courtesy, kansai design). 

Figure 1.5 shows the photographic view of a Yumemai Bridge in Osaka, Japan. It was 

built to connect the reclaimed islands Yumeshima and Maishima. The bridge consists 

of two floating pontoons and a movable floating arch bridge. Its dimensions are about 

nine hundred forty meters in length and forty meters in width. Container terminals, 

floating docks and piers are the additional applications of Very Large Floating 

Offshore Structures. A floating pier which has the capacity of fifty thousand tons of 

container ship has been designed in Valdez, Alaska. Countries like Japan, Vancouver 

and Canada have constructed many floating piers. The main advantage of a floating 

pier is that it always remains in a constant position with respect to the water line. 

Thus, smooth loading and unloading of cargo can be seen in floating piers. Countries 

like USA and Israel have floating docks and are used to repair ships. 

Floating emergency bases can be conveniently moved from one place to another place 

and can be protected from seismic shocks. Japan has three Disaster Prevention Bases, 

which are located near Yokohama, Asaka and Nagoya. All the bases consist of 

facilities such as hell pool, track crane, mooring and interior storage for cargo. 

Floating rescue base specifications can be obtained or found in Yoneyama et al. 

(2004) and Watanabe et al. (2004b). 
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Floating plant is another potential application of VLFS. Researchers have proposed 

the extraction of power in the form of wind and solar power plants (Takagi and Yano, 

2003; Takagi and Noguchi, 2005). A clean power plant concept was designed and 

proposed by the Association of Japan. Countries like Brazil, Saudi Arabia, Jamaica, 

Argentina and Japan are already using floating power plants in order to extract clean 

energy. For the purpose of amusement and entertainment, VLFSs are also used as 

floating entertainment facilities. Different shapes of VLFSs can be used for the 

construction of hotels, exhibition centres, shopping centres, recreation parks and 

fishing piers. The aesthetic and attractive panoramic views are the advantages of 

floating entertainment facilities can offer. Floating hotels can be seen in Australia, 

North Korea, Japan,  Russia and Ukraine. 

Floating airports are one of the most important and attractive application of VLFS. In 

recent times, many researchers and engineers are studying the possibility of 

constructing a floating airport in coastal waters. There is a need for airports as there is 

a considerable increase in the number of cities and air traffic as well. In Asia, great 

progress is being made in constructing airports and airport facilities in the sea. The 

world’s first floating airport is Kansai International Airport, Osaka, Japan, however, it 

is built in an artificial island. The airports situated on reclaimed lands and their details 

are as follows. Central Japan International Airport (Fig. 1.6), Nagoya has been 

constructed on an artificial island in Ice Bay, 35kilometers South of Nagoya. In the 

year 2015, 10.2 millions of people used the airport and it is ranked as eighth busiest 

airports in the nation. Changi airport, Singapore built on the reclaimed land acts as a 

primary airport for the civilians. In South East, it is considered as one of the largest 

transportation hubs. “Skytrax” rated this airport as the world’s best airport for the 

sixth time since 2013. It is one of the busiest airports in terms of international 

passengers. The airport is located approximately 17.24 kilometers from Marina Bay. 

Incheon International airport or Seoul-Incheon International airport is the largest 

airport in South Korea. Starting from the year 2005 and till now, it has been rated as 

the best airport worldwide by “Airport Council International”. It is located on an 

artificially created island. There are two islands namely Yeongiong and Yongyu 

islands whichare separated by a shallow sea. The area between these two islands was 
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reclaimed for the construction of airport. Hong Kong International Airport is located 

on the island of Chek Lap Kok, which is a reclaimed land for the construction of 

airport. The airport located at Chek Lap Kok which replaces Kai Taka airport and 

started its commercial operations since 1998 and is one of the world’s busiest 

passenger and cargo gateway airport. Further, there are many small and large floating 

airports in countries like USA and Japan can be seen. Research has been going on 

towards the direction for the analysis of floating connected pontoons and can be used 

as airports for military purpose. 

 

Fig. 1.6: Central Japan International Airport, Nagoya (Yoneyama, 2004). 

 

The next generation of VLFS is Very Large Mobile Offshore Structures (VLMOS) or 

Mobile Offshore Base (MOB). Mobility is the main advantage when compared with 

other offshore structures. Researchers in Japan have proposed to use VLMOS, for 

disaster prevention bases (Yoneyama, 2004). Also, it can be used for the extraction of 

different kind of energies by providing space for wind and solar power plants (Takagi  

and Yano, 2003; Takagi and Noguchi, 2005) as well. Further, USA initiated the study 

to provide support for military operations when fixed bases are not available and the 

descriptions are given in Zilman and Miloh (2000) and Watanabe et al. (2004b). 

Floating cities are dreams of all engineers and researchers. In the twenty first century, 

these floating cities will become a reality in Japan as proposed by Japanese Society of 

Steel Construction (Watanabe et al., 2004b) in Japan. Thus, for various purposes, lots 

of VLFSs are being used, but in the near future, even more applications would have 

been proposed.  
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1.1.3 VLFS system 

Fig. 1.7 shows the general concept and components of VLFS system. The system 

consists of 

1) Mat-like (very large) floating structure. 

2) A means of entry in the form of floating road or access bridge to connect 

floating structure from the shore. 

3) Breakwaters for providing sheltered area. 

4) Mooring facility to keep the platform in a specific place. 

5) Super structures, amenities and communication facilities on VLFS. 

 

 

 

Fig. 1.7: Components of VLFS system (Andrianov, A. I., and Hermans, A. J. 

2003). 

The present thesis mainly concentrates on the determination of vertical deflection of 

the floating platform with arbitrary shapes which are having many 

applications/operations related to human beings on floating islands or floating 

platforms. Following are some of the examples of floating platform with arbitrary 

shapes either formed naturally or man-made. The highest navigable lake in the world 

is called as Titicaca Lake, which is located 3.812 meters above Mean Sea Level 

(MSL). Uros-Indians are the inhabitants of this lake. The islands are made ofTotora 
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reeds stacked together and it needs proper maintenance. The reeds which are in 

contact with water result in rotting, so new reeds are added constantly at an intervals 

of thirty years. These types of structures may be of any shape. Figure 1.8 (a) shows an 

island floating on the surface of the water in Titicaca Lake. Titicaca Lake Island is a 

natural island and it requires regular maintenance.   

 

(a) 

 

                      (b) 

Fig. 1.8: (a) Titicaca Lake and (b) Chong Khneas village (Kashiwagi, M. 1999). 

Siem Reap in Cambodia is one of the floating islands in Asia. The Chong Khneas 

village always be floating as shown in Figure 1.8 (b), except when there are really dry 

periods. Most of these small villages keep on changing their location, so that they can 

always stay floating. 

  

(a)      (b) 

Fig. 1.9: (a) Floating villages in Vietnam and (b) The spiral island (Kashiwagi, M. 

1999). 

Villages on water can also be found in Vietnam as in Figure 1.9 (a), SouthEast Asia. 

The floating villages in Vietnam are made of small houses built on top of rafts. The 

lower end of the rafts is attached with wooden planks, which are connected to empty 
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barrels. Spiral islands in Mexico are the islands which consist of two-storey houses as 

shown in Figure 1.9 (b). The spiral island-I are constructed from filling the nets with 

discarded plastic bottles which support a structure of plywood and bamboo. Spiral 

island-II consists of three beaches and has been constructed by using similar method 

followed for Spiral island-I. 

In the year 2000, a transportable information centre was constructed in Amsterdam. 

The building is designed by Attika Architects to meet ultimate flexibility. Figure 1.10 

(a) provides three separate platforms which were initially constructed and then 

connected together to form a rigid floating structure. Initially, three platforms were 

launched into water separately and then they were pretensioned to form a rigid 

structure. A complex consisting of three hemispheres is situated in the centre of 

Rotterdamas shown in Figure 1.10 (b). Three interconnected floating domes are used 

to build this floating hemisphere. The building is durable and it is constructed of used 

materials. The structure is flexible and it can move on the surface of water as a 

floating platform. 

  

(a)      (b) 

Fig. 1.10: (a) Transportable Information Centre Amsterdam and, (b) A complex of 

three hemispheres Rotterdam (Shuku et al., 2001). 

As the floating structure can be of any shape and size, it is necessary to analyze the 

floating platform with arbitrary shapes. There is a need to study the behaviour of 

floating platform with arbitrary shapes. The above stated structures can not be 

developed by using a regular rectangular or square planform, but, are made to float as 

a complete structure by attaching many arbitrary planforms. Literature lags in the 
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study or analysis of arbitrary shape planforms. Analysis of Ice berg with arbitrary 

shape is the front runner in the analysis of floating VLFS. The present thesis mainly 

deals with the study of VLFS with arbitrary shapes and the obtained results from a 

proposed numerical scheme will be compared with the available literature. 

1.2 NUMERICAL METHODS 

Numerical method or a numerical simulation plays an important role in the design of 

engineering structures. The importance of numerical methods is increasing day by day 

due to its computational power, software quality and decrease in cost for simulating 

the model on computers as compared with experiments of high costs. However, 

numerical models must fulfill the strong requirement on efficiency, reliability and 

accuracy. Figure 1.11 shows the schematic sketch and procedures involved to solve 

physical problems. Initially, a base theory which suits the problem has to be selected. 

Further, this theory is supplemented by additional assumptions like problem 

dimensions, material properties, type of analysis, loading, etc. so that all the 

prescribed features adopted can lead to sufficient accuracy. This is called as “Physical 

model”. 
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Fig. 1.11: Engineering solution of physical problem. 

Subsequently, this physical model must be translated into the mathematical model. 

There are number of ways to express the physical model in terms of mathematical 

models. By selecting appropriate variables, units, coordinate systems, it can be 

represented in mathematical form. This leads to a particular mathematical description 

of physical problem with differential or integral equations, which are complemented 

by suitable mathematical descriptions of boundary and initial conditions. The 

modelling process plays a vital role in determining the best results to be obtained. The 

results can be obtained from a numerical tool, be it Finite Element Method (FEM), 

Boundary Element Method (BEM), Finite Volume Method (FVM), Finite Difference 

Method (FDM) or any other numerical methods. An appropriate solution scheme is as 

important as a good mathematical model, this helps to minimize the preparation and 

computational costs of the analysis. Thorough understanding of numerical tools is 

need to successfully solve the numerical problem. Few of the chosen solution 
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parameters may speed up the solution process, while few can yield erroneous results if 

applied incorrectly. After completion of the numerical analysis, the results must be 

analyzed and should be judged by experience and common sense, and should be 

always compared to other numerical models or any experimental models. First, it has 

to be assured that the accurate solution for the developed numerical model has been 

found. For instance, the use of inapproximate time-stepping or time-step size for the 

analysis of wave propagation can lead to unwanted oscillations or divergence and thus 

leading to useless results, even though after choosing the correct mathematical model 

for the analysis. Once convinced with the results obtained are accurate, then the 

interpretation of the obtained results from a physical point of view will be carried out 

to check whether it is a good or bad approximation. If the results are bad in physical 

point, then the analysis conducted ought to be modified or replace the physical model 

on which the analysis was based. At the end of the modelling, one should obtain a 

gratified solution for the real problems. 

1.2.1 Boundary Element Method 

Boundary Integral Equations (BIE) are classical tools for the analysis of Boundary 

Value Problems (BVP) consisting of partial differential equations (Costabel, 1986). In 

general, any approximate numerical solution of the Boundary Integral Equation is 

termed as “Boundary Element Method” (BEM). By using BEM, the Boundary Value 

Problem must be solved to get an approximate solution. The obtained approximate 

solution has the eminent feature which may be an exact solution of the partial 

differential equation. Some of the advantages of BEM over the other methods like 

Finite Element Method (FEM) or Finite Difference Method (FDM) are as follows: 

 Discretization will be carried out only at the boundary of the domain. When a 

boundary is just like a curve, i.e. two dimensional domain, this allows very 

simple data input and storage methods. 

 Exterior problems such as unbounded domains with bounded boundaries are 

handled easily. 

 Due to the usage of integrals and semi-analytical methods in BEM, the accuracy 

of the model can be increased. 
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 Due to the reduction in dimension, the modelling can be done more easily and 

effectively. 

 Problems involving semi-infinite and infinite domain can be modelled accurately. 

Few of the main difficulties associated with BEM are as follows: 

 A clear knowledge of a fundamental solution of the differential equation is 

necessary. 

 This method is available for linear partial differential equation with unknown 

constants. In case of pure BEM, nonlinear differential equations are generally not 

possible to solve. 

 Several approximate methods exist to solve different Boundary Value Problems 

or Boundary Integral Equations. 

 The Kernels are generally singular, whereas, Boundary Integral Equations are of 

the first kind. These type of problems leads to singularity.  

 The BEM matrices are non-symmetrical and dense in nature. 

The origin of Boundary Element Method can be seen in early Eighties. Using Green’s 

third identity, the direct Boundary Integral Equation for potential problems was 

carried out by Jaswon (1963) and Symm (1963). Further, Rizzo (1967) and Cruse 

(1969) developed BIE approaches for 2-D and 3-D electrostatic problems using 

Somigliana’s identity. Lachat and Watson (1976) has made breakthrough in the field 

of BIE and introduced algorithms for weakly singular and quasi-singular integrals. 

Further, the researchers introduced the sub region technique to handle large scale 

problems. Guiggiani and Gigante (1990) presented an algorithm for solving the 

Cauchy principal integral values. Further, The quasi arbitrary Lagrangian-Eulerian 

finite element method (QALEFEM) was used by Yan et al. (2010) which is based on 

the fully nonlinear potential theory (FNPT). Brebbia and Dominguez (1977) coined 

the name BEM and detailed in Brebbia (1978). 

 

1.2.2 Finite Element Method 

Finite Element Method (FEM) is one of the numerical techniques which is used to 

find approximate solutions of partial differential equations. It was originated from the 

necessity to solve the complex engineering problems, such as elasticity and structural 
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analysis problems in Civil, Mechanical and Aerospace engineering. The main 

advantage of FEM is that it allows for detailed visualization and distribution of 

stresses and strains in the structure. Before the conceptual design, analysis using FEM 

allows for redefining and optimization of the design to be constructed. Hrennikoff 

(1941) initially worked on Finite Element Analysis and the plane elastic plate was 

represented by collections of bars and beams. Clough (1960) termed or coined the 

word “Finite Element Method” and the first conference was held in 1965. 

Zienkiewicz and Cheung (1967) authored the first book on Finite Element Method 

and the commercial FEM software packages (ABAQUS and ANSYS) originated in 

the early Seventies. Algorithms on fluid flow, thermal and electromagnetic analysis 

were developed in 1980s and the researchers started using FEM to analyze the 

vibration of the structures. Further, the technique is improvised to analyze flexible 

structures. 
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CHAPTER 2 

LITERATURE SURVEY 

2.0 GENERAL 

The present chapter describes the various methods used for the problem of VLFS 

interacting with waves, sea bed profiles, breakwaters and mooring systems. Different 

VLFS models and their shapes are explored. This chapter also includes reports and 

research articles which give the basic theory for wave propagation and diffraction. 

Further, studies on the interaction between floating bodies and water waves are noted. 

In hydrodynamics, fluid-structure interaction problem is a known topic which deals 

with water wave interaction with fixed or floating structures. Herein, an attempt has 

been made to explore the studies on interaction between water waves and VLFS 

during past and present scenarios. 

The innovative works of John (1949, 1950) and Stoker (1957) on the motion of a 

floating rigid plate provided a new dimension for the analysis of floating structures. 

Kashiwagi (1999) reviewed the most recent (till 1990s) studies and developments on 

the prediction of hydroelastic responses of VLFS. A very detailed survey of pontoon 

type VLFSs can be seen in Watanabe et al. (2004a, 2004b). Due to its small thickness 

compared to its horizontal dimensions (length and width), the Very Large Floating 

Structure can be modelled as a thin elastic plate. The depth of water plays a vital role 

in solving hydroelasticity problems. Three cases would be considered viz, very deep 

water (Infinite water depth), finite water depth (Intermediate water depth) and shallow 

water. It is difficult to solve the fluid structure problem in finite and infinite depths 

using analytical method, whereas, it can be solved by numerical approaches. 

Few of the notorious books are referred here, which are commonly used in fluid-

structure interaction. Hydrodynamics and its general information are given in 

“Hydrodynamics” by Lamb (1945). The interaction of a floating entity with water 

waves is described by Stoker (1957) in “Water Waves”. The problem of fluid motion 

and its solutions is given by Wehausen and Laitone (1960) in “Surface Waves” and 

Newman (1977) in “Marine Hydrodynamics”. The basic theory and their solution for 
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plates in shallow water region are given in Stoker (1957). Finite and infinite water 

depth models with their basic theory, boundary conditions and equations are described 

in Newman (1977). The study involving Green’s functions and equation of motion of 

plate is given in John (1949, 1950) and the extended works can be seen in 

Stoker(1957), Wehausenand Laitone (1960) and Newman (1977). Green’s function 

method was used to model the fluid and FEM was used to model the structure in the 

earliest works on VLFS. Basic theories involving wave propagation, diffraction, 

radiation is described by various authors (Landau and Lifshits, 1959; Kochinet al., 

1964; Phillips, 1966; Huntley, 1977; Lighthill, 1978). Further, the works of Gehring 

(1860), Kirchhoff (1876), Love (1906), Mindlin (1951), Timoshenko and 

Woinowsky-Krieger (1959), Weaver Jr et al. (1990) and Wang et al. (2010) are 

known for analysis of VLFS as a thin plate. The theories described in the 

aforementioned books are referred in this thesis. 

2.1 BASIC ASSUMPTIONS IN THE ANALYSIS OF VLFS 

The following assumptions are made in the hydroelastic analysis of Pontoon type 

floating structures (Watson, 1944; Lewis and Keller, 1964; Newman, 1977; Watanabe 

et al., 2004a, 2004b). 

 The VLFS with free edges is modelled as a thin elastic plate. 

 The fluid is ideal, inviscid, incompressible and the fluid motion is irrotational, so 

that the velocity potential exists. 

 Vertical motion of the structure alone is considered. The amplitude of incident 

wave and VLFS motions are small. 

 There won’t be any gap exist between fluid and the VLFS i.e. VLFS is always in 

contact with the fluid floating freely on the free surface. 

 Sea bottom is assumed to be horizontal. 

In this thesis, the above mentioned assumptions have been considered. Further, the 

details about boundary conditions, governing equations, etc. can be found in Chapter 

3. 
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2.2 DIFFERENT APPROACHES TO ANALYSE HYDROELASTICITY 

PROBLEM 

The problem of fluid structure interaction can be solved by different approaches. 

Modal expansion method and Direct method are the two basic methods used for the 

analysis of VLFS in the frequency domain and are studied in detail by various 

researchers. Numerical determination of eigen functions using Eigen Function 

Expansion Method is carried out by Wu et al. (1995), Kim (1998) and Ohmatsu 

(2000). The Ray method and the Geometrical Optics approach were studied by Takagi 

and Kohara (2000), Takagi and Nagayasu (2001) and Hermans (2001, 2003, 2004). 

Furthermore, the Wiener-Hopf technique (Evans and Davies, 1968; Tkacheva, 2001a, 

2001b, 2001c, 2002) is the widely used technique. The Galerkin method (Kashiwagi, 

1998) and the boundary element method (Hermans, 2000) with the accelerated 

Green’s function can be seen in Utsunomiya and Watanabe (2001). The hybrid 

methods, combination of BEM-FEM and coupled higher order BEM-FEM were 

explored by Seto (1998), Wang and Meylan (2004), Yoon et al. (2014), Pan et al. 

(2016) and Jagite et al. (2018). 

Mei and Tuck (1980) studied hydroelastic analysis by adopting the modal expansion 

method. The authors differentiated the method into two parts such as hydrodynamic 

analysis and the dynamic response of the plate. The deflection of the free-free edge 

plate is disintegrated into modes of vibration that can be chosen arbitrarily. Different 

methods of modal functions were studied by various authors. Researchers like Wu et 

al. (1995), Kashiwagi (1998) and Utsunomiya et al. (1998) studied the modal function 

for a free-free beam, Meylan and Squire (1996) and Meylan (2001) analyzed the 

modal functions of vibration for free plate in which the modal functions were 

calculated by using Green’s function technique (Taylor and Ohkusu, 2000) and Cubic 

B-spline function. For each mode, unit amplitude is considered and hydrodynamic 

radiation forces are evaluated for freely vibrating plate. The modal amplitudes and 

responses of the governing equation is calculated by Galerkin’s method. The model 

for thick plate analysis has been developed by Watanabe et al. (2006), and has studied 

the hydroelastic behaviour of a pontoon type VLFS. The study of fluid structure 

interaction has been carried out by using the modal expansion method in the 
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frequency domain. Using Mindlin theory, the circular thick plate with free edges have 

been analysed and the deflection is found to be in exact manner. Further, the study has 

been carried out to calculate the hydrodynamic diffraction and radiation forces using 

Eigenfunction Expansion Matching Method. Kim (1998) and Peter and Meylan 

(2004) used the modal expansion method to study the behavior of floating structures. 

The modes are divided into two types, namely dry and wet modes. Dry modes 

approach is the most commonly used method and the researchers Meylan and Squire 

(1996) and Kim (1998) adopted the dry modes approach because of its numerical 

efficiency and simplicity to solve the problem. Wet mode approaches are studied by 

Humamoto and Fujita (2002). The articulated floating plate was studied by Karmakar 

and Sahoo (2005). Further, the wave scattering by articulated floating elastic plate in 

infinite depth is studied by using the linearized water wave theory. The study was 

based on the geometrical symmetry of the articulated plate and the associated 

boundary value problem in the half plane is reduced to 2-D boundary value problem 

in the quarter plane. The solutions are derived by the direct application of a mixed 

type Fourier transform and the corresponding mode coupling relation. 

In the direct method, the deflection of VLFS is determined by solving the governing 

equations directly without expanding into eigen modes and both, 2-D and 3-D 

geometries can be solved. Direct method and its solution for VLFS were pioneered by 

Mamidipudi (1994). In the solution obtained by Mamidipudi (1994), radiation and 

diffraction potentials were established first, then solving the combined hydroelastic 

equation by using finite difference scheme, the deflection of VLFS is determined. 

Different types of direct methods were proposed by Ohkusu and Namba (1996, 1998). 

The authors perspective was based on the idea that the floating thin plate is also a part 

of free surface with properties differing from the fluid. In hydrodynamics, this 

problem is considered as a Boundary Value Problem (Babich and Kirpichnikova, 

2003) rather than a problem determining the elastic response of the floating body. 

Meylan and Squire (1996) used the approach proposed by Ohkusu and Namba (1996) 

to analyze the problems of 2-D ice-floe dynamics. Further, Zilman and Miloh (2000) 

applied Boundary Value Problem proposed by Ohkusu and Namba (1996) to solve the 

circular floating plate problem. The main advantage of Boundary Value Problem is 
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that, in case of shallow water depth a closed form solution can be obtained. By using 

the approximation theory of Stoker (1957), the shallow water solution can be 

obtained. Kashiwagi (1998) proposed another type of direct method, in which, the 

deflection of the plate is derived from the vibration equation of the structure, using the 

pressure distribution method. Cubic B-spline function is used to achieve the accuracy 

in a very short wavelength regime. Further, cubic B-spline functions are used to 

represent the unknown pressure and to satisfy the boundary conditions, Galerkin 

method is applied. Babich and Buldyrev (1991) described the asymptotic theory for 

short waves. The same theory was applied by Ohkusu and Namba (1998) to analyze 

the VLFS problem using Wiener-Hopf technique (Morse and Feshbach,1953; Noble 

1958). Tkacheva(2001a, 2001b, 2001c, 2002, 2003) solved various problems in fluid-

structure interaction. Vibrational equation method was proposed by Meylan (2002). 

Using Green’s function, the problems related to crack were studied by Squire and 

Dixon (2000) and Williams and Squire (2002). Further, Evans and Porter (2003) 

considered multiple crack problems. 

Using the geometrical-optics approach, Hermans (2000, 2001, 2003, 2004) solved the 

problem of diffraction of incident surface waves intercepted by floating platforms. 

Takagi and Kohara (2000) used the corresponding ray method to solve the VLFS 

problem. The improved ray method was proposed by Takagi (2001) and Takagi and 

Nagayasu (2002). Here, the authors have introduced and applied the parabolic 

approximations. The general ideas of geometric optics can be seen in Lewis and 

Keller (1964), Luneburg and Herzberger (1964) and Kay and Kline (1965). Kouzov 

(1963) studied the problem related to acoustics by using the Riemann-Hilbert 

technique. Evans and Davies (1968) presented the solution for evaluating 

transmission and reflection of waves in deep and semi-infinite regions. Kohout et al. 

(2007) and Kohout and Meylan (2008) studied the drift of complicated two 

dimensional model which consists of hundreds of elastic plates. The continuum 

mechanics-based finite element method was employed to model floating structures 

with arbitrary geometries, whereas, the boundary element method is used for the fluid 

by means of total potential formulation. According to Kim et al. (2013), an additional 

condensation procedure in conjunction with the modal superposition method, the 
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modified formulation can be linked to the conventional wave-structure interaction 

formulation. Further, Cho and Kim (2013) studied the interaction of oblique 

monochromatic incident waves with a submerged horizontal porous plate and has 

been investigated in the context of two-dimensional linear potential theory. Yoon et 

al. (2014) proposed a numerical procedure to analyze floating plate structures with 

multiple hinge connections in regular waves and investigated the maximum bending 

moment and deflection in the plate structures. The hinge connection was modelled by 

releasing the rotational degrees of freedom of the plate finite elements, in which, a 

complete condensation procedure is used considering structural mass, stiffness and 

fluid-structure interaction terms. As the number of hinge connections increases, the 

maximum bending moment in the floating plate decreases. The change in the 

maximum deflection due to hinge connections is large in the range of short wave. 

Also, it is reported that deflection becomes smaller as the wavelength becomes larger. 

Kim et al. (2014) proposed a Hydroelastic Design Contour (HDC) that can be 

practically used for the preliminary design of pontoon type rectangular Very Large 

Floating Structures (VLFSs). Using this design contour, one can easily predict the 

maximum bending moment of VLFS in irregular waves. To develop the design 

contour, Hydroelastic Response Contours (HRCs) were developed by carrying out 

hydroelastic analyses considering various structural and wave conditions. Based on 

the pre-calculated HRCs, HDCs were developed considering irregular waves. The 

conclusion was made stating that the maximum bending moments which is predicted 

through HDC can be used for the preliminary design of VLFS. A theoretical model of 

water wave over wash of a thin floating plate was proposed by Skene et al. (2015). 

The nonlinear shallow-water equations were used to model the over wash, and the 

linear potential-flow. The model was shown to predict qualitative and quantitative 

over wash properties accurately for shallow over wash, which generally occurs for 

incident waves with relatively short lengths or low steepness. The hydroelastic 

responses of a mat - like, rectangular very large floating structure edged with dual 

horizontal / inclined perforated plates using analytical, numerical and experimental 

methods was performed by Cheng et al. (2016). In the analytical method, the Eigen 

function Expansion - Matching Method (EEMM) for multiple domains has been 
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applied to evaluate the diffraction and radiation potentials, and then the elastic 

equation of motion is solved by the Rayleigh – Ritz method. In the numerical model, 

the modal eigen vector equation of the VLFS with discrete Mindlin plate elements 

were obtained by using the Finite Element Method, whereas, the Boundary Element 

Method is applied to solve the water wave equation. The hybrid Finite Element 

Method-Boundary Element Method (FEM-BEM) solution is employed for more 

general cases with the inclusion of inclined perforated anti – motion plates. A series 

of experiments were conducted in order to validate analytical and numerical solutions. 

Several experimental studies (Seto, 1998; Ohmatsu, 2000; Liet al., 2003) and 

numerical techniques were proposed by researchers in recent years. Direct integration 

method is the most common approach to analyze the VLFS in time domain and it uses 

Fourier transformation (Endo, 2000). Structural and fluid domain equations are both 

discretized in direct time integration method. Initially, the solution is obtained for 

fluid domain and the obtained solution/results are inserted into differential equations 

to capture elastic motion using Fourier transformation method. Coupling between 

Weakly Compressible Smooth Particle Hydrodynamics (WCSPH) and Total 

Lagrengian Smooth Particle Hydrodynamics (TLSPH) was carried out by He et al. 

(2017), to solve the hydroelastic problems. WCSPH and TLSPH methods are used to 

simulate fluid and structural dynamic equations, respectively. Mandal et al. (2017) 

studied the flexural gravity waves using eigen functions. Single layer and two layer 

fluids in both finite and infinite water depths are explored. The study concentrates to 

capture the scattering of gravity waves due to multiple articulations. 

2.3 MODELS IN DIFFERENT WATER DEPTHS 

In hydrodynamics, there are three different models of water depth namely, shallow, 

finite and infinite water depths are available. One of the three models must be used for 

the fluid-structure interaction problem. Generally, it is very difficult to solve finite 

water depth models analytically. Approximation theories were developed to solve the 

shallow and infinite water depth models. Shallow and infinite water depth models can 

be modelled by taking the limits of depth as zero and infinity, respectively. By 

deriving an approximation theory, Stoker (1957) treated the shallow water problem. 
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John (1949, 1950) studied for water with finite depth, Kochinet al. (1964) studied the 

wave propagation and diffraction for infinite deep water and Wehausen and Laitone 

(1960) studied both infinite and finite water depths, and was continued by Newman 

(1977) as well. 

Studies by authors such as Meylan and Squire (1996), Hermans (2000), Tkacheva 

(2001), Takagi (2002), Tkacheva (2001b) and Peter and Meylan (2004) consist of the 

problems of floating bodies in water waves for infinite water depth. The case of finite 

water depth was studied by different researchers like Mei and Black (1969), Fox and 

Squire (1994), Balmforth and Craster (1999), Takagi et al. (2000), Hermans (2001), 

Meylan (2001), Andrianov and Hermans (2003), Evans and Porter (2003), Tkacheva 

(2003), Hermans (2004) and Porter and Porter (2004). Few of the researchers have 

solved problems involving infinite water depth and later, they improved their 

technique to solve finite water depth (Guéret, 2003; Andrianov and Hermans, 2005, 

2006a, 2006b). By using Stoker theory, solutions were derived for the problem of 

shallow water depth (Evans and Davies, 1968; Ohkusu and Namba, 1998; Zilman and 

Miloh, 2000; Sturova, 2000, 2001; Tsubogo,2001; Ohkusu and Namba, 2004). 

2.4 APPLICATIONS AND PROBLEMS RELATED TO VLFS 

VLFS have many possible applications and therefore, researchers tend to take the 

problems according to the field requirements. For instance, the aircraft landing on and 

taking off effects on structures, different types of loads on VLFS and the connections 

and disconnections of several modules. 

Endo (2000) and Guéret (2003) presented the analytical model of landing or taking 

off from VLFS. Yeung and Kim (2000) investigated the translation load applied on 

the floating structure. Further, Sturova (2002, 2003) studied the effect of external 

loading on a floating platform in shallow water. 

The motions of air-cushioned Very Large Floating Platform (VLFP) were investigated 

by Pinkster (1998) and Guret and Hermans (2001, 2003). The obtained results of air-

cushioned VLFP were further compared with the results of pontoon type VLFS. 

Cheung et al. (2000) considered a pneumatic floating platform. The buoyancy force to 

lift/carry the weight of the structure is provided by the air pressure acting on the 
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underside of the deck. The dynamic characteristics of the system are modified by the 

trapped air introduced between the platform and the water. Further, the transient 

response of a pontoon type VLFS subjected to moving load due to airplane 

landing/take-off was studied by Senjanovic et al. (2015). By using Rayleigh's 

quotient, Senjanovic et al. (2015) proposed an approximate solution which consists of 

set of natural vibrations/frequencies.  

Traditionally, Very Large Floating Structures are considered as flat thin plates with 

uniform thickness at shallow water with the assumption of sea bed as a flat surface. 

But, usually the depth varies as it approaches near to the shore. The direct effect due 

to change in water depth and seabed can be seen in wave parameters, such as wave 

height, wave direction, wavelength, wave reflection and wave radiation. Hence, 

researchers like Takagi and Kohara (2000) have studied the non-flat bottom surface 

and non-uniform sea-bed. The topographical effects of the sea bed were studied by 

Murai et al. (2002). The solution has been derived by Porter and Porter (2004) by 

considering fluid of variable depth and variable thickness of floating structure for the 

case of finite water depth. The effect of irregular depth on floating structure was 

studied by Athanassoulis and Belibassakis (1999) and Belibassakis and Athanassoulis 

(2004 and 2005). 

Very Large Mobile Offshore Structures (VLMOS) are the next generation of VLFS 

and can be used for different purposes in the marine environment. Japan is using 

VLMOS for wind and solar power plants (Takagi, 2004; Watanabe et al., 2004b; 

Takagi and Noguchi, 2005). Due to their mobile nature, complexity in analysis is 

increased. If the mobility of the structure is made to zero, then they can be analyzed as 

normal VLFS. 

Sea ice-water interaction has been studied by various researchers. The principle 

approach remains same in both VLFS and sea-ice interactions. In general, the basic 

theory can be applied to solve both the problem as these two problems are very 

similar to each other. The reflection and transmission of waves with motion of ice 

sheets can be seen in Evans and Davies (1968), Doronin and Kheisin (1977), Fox and 

Squire (1994), Meylan and Squire (1996), Slepyan and Fadeev (1988), Balmforth and 
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Craster (1999) and Linton and Chung (2003). Eigen function, Wiener-Hopf and 

BEM-FEM are widely used techniques to solve hydroelastic problems. The study of 

diffraction is an age old problem in optics, acoustics, electromagnetism, etc. The 

diffraction of various kinds of waves when encountered with structure was studied by, 

Kouzov (1963), Lewis and Keller (1964), Luneburg and Herzberger (1964), Jones 

(1965) and Kay and Kline (1965). 

2.5 DIFFERENT SHAPES AND MODELS OF VLFS 

Classical thin plate theory or Kirchhoff theory (Gehring, 1860; Kirchhoff, 1876; 

Love, 1906), Mindlin theory (Mindlin 1951) and Timoshenko or Timoshenko-

Reissner theory (Timoshenko and Woinowsky-Krieger, 1959) are the most commonly 

used plate theories. Kirchhoff plate theory has been used by many of the researchers 

(Ohkusu, 1996; Kashiwagi, 1998; Kim, 1998; Takagi et al., 2000; Tkacheva, 2001c; 

Zilman and Miloh, 2000; Andrianov and Hermans, 2003, 2005, 2006a; Meylan, 2001; 

Khabakhpasheva and Korobkin, 2002) to analyse mat like VLFSs as thin plates. The 

plate is said to be freely vibrating or freely floating on the water surface when it has 

free edges. VLFSs can be modelled as orthotropic plates by varying plate mass and 

stiffness and are explored by Mamidipudi (1994) and Hermans (2003). Mindlin’s first 

order shear deformation theory is used to obtain the accurate stress results and the 

extended works can be seen in Andrianov and Hermans (2002), Watanabe et al. 

(2003), Wang et al. (2004) and Andrianov and Hermans (2005). 

VLFS has been modelled as a floating beam by various researchers. Such a model 

does not describe the 2-D action of Pontoon type VLFS. VLFSs have also been 

modelled as different modules and are linked to each other to frame a VLFS. 

Sandwich grillage model, articulated plate, plane grillage mode, etc. are few of the 

examples. Based on characteristics of wave, ocean currents and sea currents, the 

choice of VLFS shape depends. Generally, the VLFS vary in their size and can have 

any shape (Yoneyama et al., 2004; Watanabe et al., 2004a; Riyansyah et al., 2010; 

Gao et al., 2011; Michailides and Angelides, 2012). Researchers like Mamidipudi 

(1994), Ohkusu and Namba (1998), Korobkin (2000), Taylor and Ohkusu (2000), 

Takagi et al. (2000), Hermans (2003), Usha and Gayathri (2005) and Papathanasiou 
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and Belibassakis (2014) have studied the rectangular plan form in shape. The plates 

having one or two infinite dimensions can be analyzed with analytical or numerical 

methods as described in the review articles by Kashiwagi (1999) and Watanabe et al.  

(2004a). Numerical methods are often used to solve the problems consisting of finite 

plates. Tkacheva (2001) and Linton and Chung (2003) have considered a half-plane 

problem with strip of infinite length and a quarter infinite plates (Ohkusu and Namba, 

2004; Takagi, 2004). Hermans (2004) considered the floating platform with multiple 

plates connected to each other. A new model has been proposed by Lu et al. (2016) 

which is generally based on multi-body hydrodynamics and Euler-Bernoulli beam 

theory. A continuous VLFS has been divided into multiple modules and the section 

between two adjacent modules is considered as a beam element. Dry natural 

oscillation mode for hinged two-module flexible structure and hydrodynamic 

coefficients for each modes are evaluated by Sun et al. (2017). The finite gap that 

existed between two adjacent plates was studied by Chung and Linton (2003). 

Similarly, cracks in ice sheets was studied by Evans and Porter (2003). 

 

Non-rectangular VLFS can serve the purposes like floating airports, power plants, 

floating storage facilities and floating cities. Meylan and Squire (1996), Zilman and 

Miloh (2000), Peter et al. (2003), Tsubogo (2001) and Sturova (2003) have analyzed 

the VLFS having a circular plan form. Humamoto and Fujita (2002) studied the 

arbitrary shapes such as L-shaped, X-shaped, C-shaped and T-shaped VLFSs. It is 

necessary to study the different shapes of floating structures to expand the floating 

structure with ease. This thesis concentrates on study of VLFS with different shapes 

(arbitrary shapes). 

2.6 BREAKWATERS AND MOORING SYSTEMS 

Mooring systems, breakwaters and anti-motion devices are used to hold the VLFS in 

its place, to reduce its motion and keep it in its position. VLFS which are moored to 

shore are called as previous generations of VLFS and these are still in operating 

conditions in various countries. Breakwaters are used to reduce the energy of 

incoming waves and are usually constructed nearby the floating structures (Fig. 2.1). 

Special anti-motion devices can be used for this purpose as well. Studies have been 
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carried out on a VLFS moored in a reef or shore. Takagi (1996) studied the mooring 

force and elastic deformation of a VLFS on Tsunami waves. The hydroelastic analysis 

of the floating structure with mooring system has been analyzed by Watanabe et al. 

(2004a) and Yoneyama et al. (2004). By using a special mooring system which 

consists of the combination of dolphins with rubber fenders, the elastic motion of a 

VLFS can be reduced. Nagata et al. (1998), Utsunomiya et al. (1998), Ohmatsu 

(2000) and Nagata et al. (2003) studied the effect of breakwaters on the elastic motion 

of floating plate. Nagata et al. (1998) derived an analytical method to determine the 

motion of a VLFS in sea waves with breakwaters. Further, Nagata et al. (2003) 

analyzed the motion of VLFS which is surrounded by breakwater with the help of 

Higher-Order Boundary Element Method. Seto (1998) presented a numerical method 

for predicting the hydroelastic behaviour of VLFS in water region which is sheltered 

by breakwaters and land. Hybrid BEM-FEM method is employed to reduce the 

computational effort. Ohmatsu (2000) studied the effect of mutual interaction between 

the VLFS and the breakwater where the partial reflection coefficient is included. In 

the case of long waves, there is an effective reduction in the vertical deflection, 

whereas, for short waves the reduction is not always prominent. Usually all 

researchers and engineers consider the breakwaters as gravity type, anchored into the 

bottom. These types of breakwaters are not environmental friendly as they interrupt 

the water flow around VLFS. The construction cost may be higher for large depth 

installation as they are bottom mounted. Floating breakwaters are proposed such that 

they will allow the water to flow through openings at the bottom. This type of 

proposal is made to reduce the cost as well as to maintain the environmental friendly 

space. 
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Fig. 2.1: Existing breakwater in Latsi harbour. 

In recent times, different breakwaters have been proposed, such as multilayered wave 

barriers, vertical barriers, Oscillating Water Column (OWC) type, structure embedded 

with an OWC type breakwater and floating breakwater using a submerged plate. Usha 

and Gayathri (2005) studied about a twin plate breakwater for the case of deep water. 

The mega-float was analyzed to capture elastic motions. In order to reduce the elastic 

motion, special antimotion devices and submerged plates are utilized by researchers. 

One of the anti-motion devices is a box-shaped structure which is attached to the 

edges of the VLFS. Takagi et al. (2000, 2001a), through his experimental and 

numerical studies showed that the performance of anti-motion devices are effective in 

reducing the deflection/elastic motion. It also reduces the deflection, bending moment 

and shear force of the floating structure. In order to reduce the deflection of the 

floating structure, Korobkin and Khabakhpasheva (2001) investigated the use of 

attaching the horizontal plate to the VLFS or attaching vertical plates at the edges of 

VLFS. Horizontal plates proved to be more effective when L/h ≤ 1. As the vertical 

plate depth increases the effect of displacement reduces (d/w ≤ 1) and it is proven to 

be not economical as of horizontal plate. Korobkin and Khabakhpasheva (2001) and 

Watanabe et al. (2004a) have reported that there will be a sufficient reduction in the 
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motion of the VLFS if the mooring system is used together with plate attachments as 

an anti-motion device. It is also concluded that there is no need to use breakwaters, 

too. To reduce the hydroelasctic responses, researchers have proposed other forms of 

plate attachments such as L-shape, reverse L-shape and T-shape.Watanabe et al. 

(2004a, 2004b) provided the details on anti-motion devices, mooring system, wave 

forces and breakwaters for the VLFS system.  
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2.7 SUMMARY OF LITERATURE REVIEW 

Studies on hydroelastic behaviour of VLFS were performed by various researchers by 

using analytical, numerical and experimental works. The main objective is to 

minimize or to optimize the deflection, bending moment and shear force imposed by 

wave loading. In the analytical work, the wave force is separated into diffraction and 

radiation components based on the problem of interest and VLFSs were analysed. 

VLFS with different support conditions such as free-free, simply supported, moored 

condition, etc, have been analysed by using Eigen function Expansion Matching 

Method. Further, VLFS of circular shape has been analysed using Bessel’s function. 

In the numerical work, VLFS has been analysed as both beam and plate models. For 

the analysis of VLFS as a beam, Euler-Bernoulli’s beam theory has been adopted. To 

analyse as a plate, classical thin plate and Minlind’s theories for thin and thick plates, 

respectively have been used. The floating platform has also been analysed by hybrid 

method (combination of FEM and BEM). However, the incident velocity potential is 

calculated using Boundary Element Method. The articulation of the VLFS has been 

carried out and optimum hinge stiffness between two beams has been investigated. 

Studies were carried out for three different water depths, such as shallow, finite and 

infinite water depths. The effect of bathymetry change on the performance of floating 

platform has also been analysed. In case of experimental works, it has been observed 

that researches have used Elastic modulus of 103MPa, draft of 10mm and Poisson’s 

ratio of 0.35 to 0.40 and the results obtained were used for the validation of the 

analytical and numerical models developed by the researchers. 
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2.8 NECESSITY AND RELEVANCE OF THE PRESENT STUDY 

The literature showcases that the researchers have analyzed the hydroelastic analysis 

of VLFS both analytically and numerically. The reduction in the response of the 

floating structure has been analyzed by incorporating articulation and change in 

bathymetry through different methods and forms of Eigen function Expansion 

Matching Method. The researchers have used two and four noded elements in FEM to 

model the plate and to study the deflection of floating platform. The review of 

literature shows that the BEM model has not been modified and there is a need to 

explore this area. Further, the studies using Green’s function in BEM is scanty. There 

is a need to develop a modified Green’s function which will be suitable for finite and 

infinite depths, oblique wave attack and different shapes. Literature lags behind in the 

detailed explanation of Bessel’s and Hankel functions and their respective orders. 

There is a necessity to study Bessel’s and Hankel functions in order to modify the 

Green’s function. The study on numerical integration must also be explored to support 

and to check the number of integration points per node of an FEM element. It is 

specified that the use of Bessel’s function is limited/mostly used for circular platform. 

Hence, it is decided to include the functions like Bessel’s or Hankel functions of 

different orders. Further, traditional Green’s function has been modified to obtain 

comparably better results than the results reported in the available literature. In the 

present study, the use of Bessel’s function combined with Hankel’s function has been 

studied and adopted in the Green’s function. 

2.9 OBJECTIVES OF THE STUDY 

The present study is intended to demonstrate the effectiveness of the modified 

Green’s function in order to capture the vertical deflection of the floating platform.  

1. To develop a modified Green’s function and to study hydroelastic analysis 

of VLFS, using coupled equation (coupling between structure and waves). 

2. To develop a numerical model which is suited for finite and infinite water 

depths with variable bottom topography. 

3. To study the response of the structure for different angle of wave attacks. 
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4. To study the number of integration points per node and number of panels 

required for the convergence of the model. 

5. To study the response of different shapes (Rectangular, Triangular and 

Trapezoidal) of VLFSs. 

6. Validation of the numerical model by available literature. 
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CHAPTER 3 

MATHEMATICAL FORMULATION 

3.1 GENERAL THEORY AND PROPOSED SOLUTION 

This chapter deals with the formulation of mathematical model for the analysis of 

hydroelastic behaviour of VLFS under marine environment. Compared to horizontal 

dimensions, the thickness of the VLFS is considered to be small. The thickness/ draft 

is in the order of several meters, whereas, the horizontal dimensions are about several 

hundred meters to kilometers. Since the VLFS behave as a thin plate, hence forward 

in this thesis standard classical thin plate theory has been considered. A modified 

Green’s function has been developed and its justification is done. Further, it is 

incorporated in hybrid BEM-FEM method. The present work describes the solution 

for three different shapes of thin elastic plate. In addition, the numerical studies are 

presented for finite and infinite water depths with sloping bathymetery. Perhaps, 

horizontal dimensions of plate to have the order of thousand meters, the wavelength is 

of order from ten to hundred meters in practical circumstances. Therefore, similar 

conditions are adopted in the present work in order to develop the numerical model. 

The numerical simulation can further be applied to small plates whose length is same 

or smaller than the wavelength. The present work is desired to capture the vertical 

displacement of the floating plate by considering frequency domain approach. Ocean 

engineering containing the problems related to infinite series and motivated for the 

use of Green’s function. The primary use of Green's functions is to solve non-

homogeneous boundary value problems. In the available literature, researchers have 

considered a delta function with parameter ξ, and a fixed value of ξ G(x, ξ). The 

Green’s function which is available has been modified by the researchers using first 

order of Bessel’s function in order to obtain deflection. Literature lags behind in 

explaining the use of Bessel’s functions and Hankel function of different orders to 

obtain the deflection of a structure. The present work concentrates on using the 

Bessel’s function and Hankel function of different order to obtain deflection. Further 

the obtained results have been validated with the results available in the literature. The 

mathematical formulation is based on BEM-FEM hybrid methodology with modified 
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Green’s function. Subsection 3.2 gives the details about the general theory and 

proposed solution method. Initially, physical and mathematical formulation of the 

problem is studied and is transferred into a numerical model by applying various 

boundary conditions. The proposed model is capable of analysing thin plates with 

arbitrary shapes. 

3.2 MATHEMATICAL FORMULATION 

Mathematical formulation for the fluid-structure interaction, herein, water waves – 

VLFS interaction is described as follows. Very Large Floating Flexible Structure of 

arbitrary shape, freely floating in an open sea, always in contact with the water 

surface and meets the incoming regular water waves is considered. Very Large 

Floating Structure is modelled as a thin plate  and Figure 3.1 shows the general 

geometry and coordinate system of the floating elastic plate. The plate occupies 

(covered) a certain part of the water surface which is denoted by SB. Further, SF, S∞ 

and SG to represent the open free surface, open free surface towards infinity and 

seabed, respectively. The vertical coordinate z, points upwards with the water surface 

at zero and sea floor at z=-h. The horizontal co-ordinates x and y are denoted by the 

vector X. With negligible draft, the plate is considered to be freely floating on the 

surface of the water with wave encountering at different angles. 
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(a) 

 

(b) 

Fig. 3.1: Schematic diagram of floating structure. (a) Sectional View and (b) Plan 

view. 

The structural and fluid properties considered in the problem are as follows. The plate 

which has the density ρi is considered to have the total length L, breadth B and 

thickness d, which freely floats on the water surface at a water depth h, and fluid 

density ρw. The structure is assumed to be elastic, homogeneous and isotropic in 

nature with D and υ as flexural rigidity and Poisson’s ratio, respectively. To satisfy 

the Laplace equation, fluid is assumed to be ideal, irrotational and inviscid in nature. 

With angular frequency ω, and wavelength λ the incident wave is assumed to be 

coming continuously with an angle θ. The equation of motion of elastic plate 

[Equation (1)] can be solved with boundary conditions as mentioned in Equation (2) 

(Wu. et al., 1995). 
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2
4

2i

W
D W h P

t



  


          (1) 

2 2

2 2
0

W W

n s


 


 


and  

3 3

3 3
2 0

W W

n s


 
  

 
        (2) 

where, W (x, y, z, t) is the plate displacement. Pressure at the interface of the water 

surface and the plate is denoted by P and n and s denote the normal and tangential 

directions, respectively. The pressure at the water surface can be obtained from the 

linearized Bernoulli’s equation (Newman, 1977).   

0

   w w

z

gW
t

P  







  on SB          (3) 

Further, Equation (1) and Equation (3) are equated to get the fluid plate interaction. 

2

2

4

0

 i w w

z

W

t
D W h g

t
W  





  



 




        (4) 

where, ϕ (x, y, z, λ) is the velocity potential of water wave and g is the gravitational 

acceleration constant. The variables are non-dimensionalised and are represented as 

follows 

x  =
x

L
, y  =

y

L
, z  =

z

L
 , w  =

w

L
, d  =

y
d

L
 and 

L xy


  . 

where, L is the longest dimension of the arbitrary shape. Substituting dimensionless 

variables in Equation (4), it is modified as follows, 

2
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0z

W
W W

t t


 



 
    

 
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where, the constants 4
( )

i

D
Stiffnes

g
s

L



  and ( )

w

ihMass
L





  
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3.2.1 Reduction to single frequency problem 

Assuming an incident wave with potential ϕI and angular frequency ω which enters 

the computational domain leads to vibrate the plate in a steady state harmonic motion 

in the same frequency ω. Therefore, the fluid structure interaction problem can be 

considered at a single frequency which allows to represent the time dependence by 

exp(iωt), where i is the imaginary number. Thus, the displacement and potential can 

be presented as the real parts of complex function as follows. 

( , , ) [ ( , ) ]Re i tW x y t w x y e                       (6a) 

0 Re ( , , , ) [ ( , ) ]i t

zx y z t x y e   

                      (6b) 

( , , ) Re[( ) ]i t

w wP x y t gw i e               (7) 

By substituting Equations (6a & 6b) and (7) in Equation (5) and omitting e
iωt

, 

Equation (5) becomes 

4 2( , ) ( , ) ( , ) ( , )w x y w x y i x y w x y              (8) 

For the sake of convenience, the bar over the non-dimensional parameters are 

eliminated henceforth. 

3.2.2 Equation of motion for water wave 

The single frequency velocity potential of water wave must satisfy the Laplace 

equation. 

2 ( , , ) 0,x y z             (9) 

and boundary conditions (Hermans, 2000). 

( , , ) 0x y z
z





, on SG                    (10) 

( , , ) ( , )x y z i w x y
z





 


, on SB                 (11) 

2

( , , )x y z
z g

 






, on SF                       (12) 

Equation (10) implies the boundary condition at the sea bed which expresses 

impermeability i.e. no fluid enters or leaves the sea bed and hence, the velocity 

component normal to the sea bed is zero. Equation (11) shows that no gap exists 
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between the plate and the water free surface. Equation (12) is called as combined 

kinematic and dynamic free surface boundary condition. The wave velocity potential 

must also satisfy the Sommerfeld Radiation (Seto, 1998) condition as |X|→ ∞  IXI → inf 

2lim ( ) 0I
x

IXI i
IXI

  


 
    

, on S∞                (13) 

Assumption is made that the incident potential is a plane wave and is given by, 

( cos sin ) kzin ik x y eA
e  



 , for infinite depth                (14) 

( cos sin ) cosh ( )

cosh

in ik x yA k z h
e

kh

 


 
 , for finite depth              (15) 

2

g


= ktanhkh,                    (16) 

 

3.2.3 Boundary Element Method for solving fluid motion 

In order to determine the fluid motion, the Boundary Element Method is adopted to 

the Laplace equation together with the boundary conditions [Eqns. (10-12)] into a 

boundary integral equation. This transformation reduces the modelling dimensionality 

from a 3-D fluid volume domain to 2-D fluid surface boundaries, thereby, requiring 

only the boundaries of the solution domain to be discretized. In carrying out the 

transformation, the 3-D fundamental solution and 3-D free surface Green’s function 

are used. The 3-D fundamental solution of Laplace equation based on a concentrated 

potential or source at the point ξ is given as (Brebbia, 1978).   

1
( , )

( , )
sG X C

R X




 
  

 
                  (17) 

Cs is the strength of the potential at the point X and it is convenient to set the source 

strength Cs = 1. Considering X = (x, y, z) as the field point and ξ = ( ξ, η, ζ) as the 

source point, the distance between source point and field point R(X, ξ) is given as 

2 2 2( , ) ( ) ( ) ( )R X x y z                           (18) 
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Fig. 3.2: Discrete version of BEM. 

 

where, XP ξP and  XQ ξQ are the symbolic representation of distances from source 

point to free surface and field point to free surface, respectively. 

The 3-D free surface Green’s function satisfies the seabed, water surface and 

Sommerfeld boundary condition. Therefore, the remaining unknown variables for the 

fluid part are only associated with the wetted bottom surface of the floating surface. 

The application of the Green’s second identity to the Laplace equation and the 

boundary conditions results in the following boundary Integral Equation (BIE) for the 

velocity potential (Brebbia and Dominguez, 1977).  

2 2

B B

I B B

S S

G
dS G dS

n n


  

 
  

                      (19) 

The procedure (Brebbia, 1978) is to be followed to obtain the Boundary Integral 

Equation (Eqn. 19) is explained in detailed manner as given below. The Green’s 

second identity for velocity potential is given as.  

2 2( )
S

G
G G d G dS

n n


  



  
      

  
                     (20) 

where, S, n and G are boundary surface of the fluid domain, unit outward normal and 

as fundamental solution Green’s function, respectively. The velocity potential ϕ 

satisfies 
2 0  everywhere in the solution domain. The fundamental solution G, 

however, satisfies 
2 0  everywhere except at the source point ξ, where, it is 

singular. To deal with this problem, one can surround the source point ξ by a very 
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small sphere of radius ε and surface Sε, and examine the solution in the limit as ε→0. 

By excluding this small sphere, the new volume is (Ω - Ωε) and the new surface is (S 

+ Sε), hence, Equation (20) becomes,  

 2 2

S S

G
G G d G dS

n n
 


  

 

  
      

  
                 (21) 

Within the volume (Ω - Ωε), 
2 2  0G   everywhere, which makes the left hand 

side of Equation (21) equal to zero. The boundary surface S can be further 

decomposed into S + Sε where, Sε is small sphere of radius ε around the source point ξ. 

 

Fig. 3.3: Decomposition of a 3-D fluid domain. 

The surface integral in Equation (21) can now be splitted into two surface integrals 

resulting in the following equation, 

0
S S

G G
G dS G dS

n n n n


 
 
      

      
      

                 (22) 

Referring to the sphere centered at ξ (Figure 3.3), the second integral in Equation (22) 

can be rewritten as, 

2

0

2 sin
S

G G
G dS G d

n n n n



 

   
      

     
      

                            (23) 
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α is the angle measured from the x-axis at the source point ξ. By substituting for G 

from the Equation (17) and using
n s

 
 

 
on the surface Sε, the integral of Equation 

(23) becomes, 

2

0

1 1
2 sin d

n s s n




   
    

  
   

  

2

0

1 1
2 sin d

s s s n




   
    

    
   

                                  (24) 
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1 1
2 sin d

n




   
 

 
  
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  

0

2 sin d
n




    
 

  
 

  

Taking each term in the limit as ε→0 results in the following  

 
0

0

2 sin 2 cos 4d




                            (25) 

Substituting Equation (25) in Equation (22) and rearranging the terms, the Boundary 

Integral Equation for the fluid part is obtained as 

4
S S

G
dS G dS

n n


 

 
 

                        (26) 

If the source point ξ in the Figure (3.3) is on the boundary S, Sε will become a small 

hemisphere with a surface area of 2πε
2
. Hence, the BIE for the fluid is given as 

2
S S

G
dS G dS

n n


 

 
 

                        (27) 

By decomposing the boundary surface S into SF, SB, SG and S∞ and applying boundary 

conditions on these surfaces, Equation (27) can be written as, 
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Fig. 3.4: Schematic diagram of coupled plate–water problem. 
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n n n n

 
 
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    
        
                        (28) 

By further decomposing the velocity potential ϕ into incident potential ϕI, the 

scattered potential ϕs and radiation potential ϕR, the integral on the right hand side of 

Equation (28) over the boundary surface at infinity S∞ can be written as (Brebbia, 

1978),   

 
 I S R

I S R
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G G
G dS G dS
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
 

      
            

   
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SI R
I S R

S S S

G G G
G dS G dS G dS

n n n n n n

 
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  
  

       
                  
          (29) 

As the scattered and radiated potential satisfy the Sommerfeld condition given in 

Equation (13), the integral on the right hand side of Equation (29) which involves of 

ϕs and ϕR vanish at S∞. Hence, equation (29) can be written as, 

I
I

S S

G G
G dS G dS

n n n n


 

 
 

    
          

                 (30) 

ϕI and G in Equation (30) are harmonic everywhere at S∞, with an exception at the 

point where the wave source ξ is located. Consider a small hemisphere of radius ε 

with surface Sε. 

 

Fig. 3.5: Decomposition of 2-D surface S∞ into S∞ ᴗ Sɛ (a) plan view (b) side view. In 

case ∂/∂n = -∂/∂s. 
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Equation (30) is then given by, 
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= -2πϕI                                (31) 

The second term in the right hand side vanishes because ε is very small. By 

substituting Equation (31) in (28) we obtain the final equation.  

2 2

B B

I B B

S S

G
dS G dS

n n


  

 
  

    

3.2.4 Discrete versions of the plate using Finite Element Method 

Equation of motions (Equ. 8) for plate and water wave (Equ. 19) are discretized using 

FEM and BEM, respectively. Each node contains three degrees of freedom, namely 

displacement (w), rotation degree θx (∂w/∂x) and rotation degree θy (∂w/∂y). The 

displacement w(x) is represented as shown below as a vector of functions. 
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Fig. 3.6: FEM panel showing three degree of freedom system. 

 

    d ,d dw wN X X Sx                        (32) 

The basis vector is defined by Love (1906)  

 11 12 13 21 22 23 31 32 33 41 42 43( )d N N N N N N N N N N NN NX                 (33) 

1 1 2 2 3 3, ),(  (  , ), ,( )j j j j j jx y xN N N N Ny N x y   , (j=1, 2, 3, 4) and are detailed 

further as given below. 

2 2

1

1
, ) (1 )(1 )(2 )

8
(    j jj jj x y x x y y x x y y x yN        

2

2

, ) (1 )( )( 1)
16

(   j j j

a
x y x x y yN y    

2

3 , ) ( )( 1)(1 )
1

(
6

jj j

a
N x y x x x y y      

The vector dw  is a vector of elements, which is given by 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
(2)( ) ( ) ( ) ( )3 31 1 2 4 4

4[ ]

d d dd d d d d
d d d d

d i i j

w w ww w w w w
w w w w w

x y x y x y x y

      


       
 

where,

( )

( ) ( ), ( )

d

jd

j j j

w
w w x w X

x x

 
 

 
and

( )

( )

d

j

j

w
w X

y y

 


 
 

Now, both the basis vector Nd  and constant vector
dw are of dimensions 1 x 12 and 12 

x 1, respectively. The potential can be expanded in an identical manner (Riyansyah et 

al., 2010) to the displacement i.e.  

     , dddx N X X S                        (34) 
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where, 
d  is vector of constant and is defined as follows. 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 3 31 1 2 2 4 4

1 2 3 4[ ]
d dd d d d d d

d d d

d
x y x y x y x y

      
    

      


       
                 (35a) 

where,

( )

( ) ( ), ( )

d

jd

j j jx X
x x


  

 
 

 
 and 

( )

( )

d

j

jX
y y




 


 
 

Likewise ( )in X  can be written as 

( ) ( )in in

d dX N X                       (35b) 

where, 

T

3 31 1 2 2 4 4
1 2 3 4

in inin in in in in in
in in in in in

d
x y x y x y x y

      
    

       
  

        
 

Representing the potential and displacement in the finite element basis function, 

Equation (8) will be solved. Further, Equation (8) is reduced to form the equivalent 

equation which is applied to analyze the panels.  

4 2( ) ( ) ( ) ( ).d d ddd d d dN w N w i N N w         

2 2 2 2 2 2 2 2
( )

2 2 2 2 2 2

2 ( ) ( )

{ [ 2(1 ) 2 ]}

( ) [ ]

d

T T T
dd d d d d d d d

d

T d T T d
d dd d d d d d d

d d

N N N N N N N N
dX w

x x y y x y x y x y

N N dx w i N N N N w dX

  

   



 

       
    

         

 



 

          (36) 

According to Meylan (2002) the mass and stiffness matrices are as follows. 

( ), T d

d d d dd

d

N N N N dX




   

where,  ,d d dd
N N m


                                                                                              (37) 

 
2 2 2 2 2 2 2 2

( )

2 2 2 2 2 2
[ 2(1 ) 2 ]

T T T
dd d d d d d d d

d

d

N N N N N N N N
dX k

x x y y x y x y x y
 



       
    

           

                         (38) 
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where, [k]d is the stiffness matrix and [m]d is the mass matrix (Wang and Meylan, 

2004). Equation (36) is simplified by incorporating mass and stiffness matrices and is 

given as 

       2
d d ddd d d d

k w m w i m m w                         (39) 

 

3.2.5 Higher Order Boundary Element Method [HOBEM] 

Without separating the velocity potential, Equation (34) can be discretized directly by 

using the Higher Order Boundary Element Method (Meylan, 2001). By substituting 

the boundary conditions and making use of the free-surface Green’s function, it can 

be obtained as 
2

( ) ( ) ( , ) ( ) ( )

B

I

S

x x G X i w d
g


       

 
   

 
              (40) 

Equation (40) is referred as water wave equation. It can be solved using the 

representation of the displacement and potential in the Finite Element basis functions. 

In HOBEM, the fluid potential is expressed as a function by using the nodal 

potentials. Substituting Equations (35a & 35b) into Equation (40) it is obtained as, 

   
2

1 1

( ) ( )( )
p p

d d d I d de e e de e e

e e

N X N X G N i G N w
g


   

 

                    (41) 

where, 

 ; ( )

e

de e eG N G X N d  


   

Following Wang and Meylan (2004) and applying an inner product Nd to both sides of 

the Equation (41) resulting in, 

2

1 1

, , ( ) , ( ) , ( ) ,
d d d d

p p

d d d d d I d d de e e d de e e

e e

N N N N N G N i N G N w
g


   

   
 

   

                     (42) 

, T

d d d dd

d

N N N N dX




                  (43a) 

, ( , ) T

d de d d de ed

d

N G N N G N dX




                   (43b) 
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Analogous to the definitions of the mass and stiffness matrix, the Green’s matrix [G]de 

is defined as (Brebbia, 1978)    

 ( )T

d de e de

e

N G N dX G


                   (44) 

The calculation of [G]de is separated into two cases, depending on whether d = e or 

not. This is because the free surface Green’s function is singular at 0X   . Since 

X lies in element, the singularity occurs when d = e. It can be noticed from Equation 

(44) that Green’s function occurs in the integral GdeNe and therefore it is needed to 

separate the solution GdeNe into the singular and the non-singular cases. By evaluating 

the integral GdeNe using a numerical integration method i,e., Gauss quadrature, it is 

obtained as.  

1

(X; ) ( )d (X; ) ( )
e

M

j je

j

e e jdeG N N NG G     




                 (45) 

where ξj and νj are sets of M integration points and their corresponding weights. Note 

that ξj needs to be determined from the corresponding Gauss points rj(rj, qj) by 

isoparametric coordinate transformation using basis function. Also, both the field 

element Δd(x, y) and source element Δe(ξ, η) are transformed into a parametric element 

Δr with natural coordinates (r, q) for integration (Wang and Meylan, 2004). The 

integral part in the Equation (44) is calculated in a similar way with the possibility of 

choosing different points and weights can be given as  

( )

1

( )( ) ( , )( )

d

N
T d T

d de e i d i i de e

i

N x G N dX u N r q G N


                    (46) 

where, xi and ui are sets of N integration points and their corresponding weights. By 

combining Equations (45) and (46), the numerical set of Green’s matrix [G]de is given 

by, 

( )

1 1

[ ] ( , ) ( )
N M

T ij

de i d i i j e j

i j

G u N r q G N 
 

  [ ][ ][ ]N NM MN G N               (47) 
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1 1 2

1 2 1

[ ]de T

N G N if d e
G

N G N if d e





 

where, G1 and G2 are rectangular matrix of N x M and square matrix of N x N, 

respectively. 
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(21) (22) (2 )
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N1 is 12 x N matrix and N2 is M x 12 matrix  
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                   (49) 

To avoid the singularity when Xi coincides ξj, Equation (34) is solved by using set of 

distinct points (xi) and (ξj). For the case of d = e, it is necessary to use more 

integration points because of singularity. There are several methods to calculate the 

singularity integral, however, coordinate transformation is widely used method and is 

described by Hamamoto et al. (1997). The same set of integration points and their 

corresponding weights will be employed for the case of non-singular Green’s 

function.  

       
2

1 1

,
P P

in

w d w d e ed d de de
e e

K K G i G w
g


   

 

                      (50) 

which is discretized version of the water wave Equation (40) for a single element. 

After assembling all the elements, the equation for the entire plate domain is 

expressed as,  

   
2

{ } { } [ ]{ } [ ]{ },in

w w e eK K G i G w
g


                     (51) 
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Herein, the fluid potential ϕ is coupled with plate displacement w. The direct solution 

method is adopted for solving the water plate interaction. 

According to Wang and Meylan (2004) and Kim et al. (2013), the force surface 

Green’s function at infinite depth is given as 

2 2 2 2

0 0 0

1 2
( , ) [ ( ) ( ) 2 ( )]

4 ( )
G X H X Y X i J X

X
        

 

 
       

 
            (52) 

where, H0, denotes Struve function of order zero,  

Y0 and J0 denote Bessel function of first and second kind with order of zero, 

respectively.  

The forcing function at finite water depth is given by Yiew et al. (2016) is as follows, 

2 44 2
2 (1) 2

0 04 2 2 2 4 2
1

1
( , ) cosh ( ) ( ) cos ( ) ( )

2 ( ) ( )

m

m m

m m

ki k
G X kh H k X k h K k X

k h k h


  

   





 
   

   


                     (53) 

where, H0
 (1) 

and K0, denote Hankel function of first kind and Bessels function of the 

second kind, both of order zero. Further, k is taken as the positive real solution to 

dispersion relation for free surface and km as the imaginary parts of the solutions with 

positive imaginary part. 

The modified simple equation which differs from Wang and Meylan (2004) and Yiew 

et al. (2016) is given below and has been further used in the numerical model. 

(1)

20( , ) ( , ) (cosh( ) )
2

H
G X G X kh h

C
 



 
   

 
                 (54) 

where,
1 (sin(2cosh( ) ))

2 2cosh( )

h Ch h
C

Ch h

 
  

 
 

By expressing the integral operator ( ) ( , ) ( )Gf X G X f d  


  and rewriting it as, 

2( ) ( ) ( ) ( )inX X G X G X                        (55) 

Solving Equations (51) and (55), the deflection of the floating platform can be 

obtained in finite and infinite water depths. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.0 GENERAL 

The proposed numerical model can be applied to analyse hydroelasticity of floating 

thin plate for any arbitrary shapes at finite and infinite water depths. The efficacy of 

the numerical model is studied for rectangular, triangular and trapezoidal shapes and 

are described in this chapter. The discussion is mainly focused on maximum 

deflection that occurs on floating elastic plate, simulation time to calculate the 

deflection and the error in convergence rate for integration points of N = M = 2, N = 

M = 4 and, N = 4 M = 8. MATLAB 2015 has been used to calculate the maximum 

deflection and time required for the simulation. Initially, the results for rectangular 

plate at finite and infinite water depths are discussed and are followed by the results 

of triangular and trapezoidal plates. To validate the proposed numerical model, the 

obtained results are compared with the numerical results of Wang and Meylan (2004), 

analytical results of Wu et al. (1995) and experiment results of Utsunomiya et al. 

(1995). The simulation time is expected to reduce, as the developed model consists of 

same number of the basis functions in both BEM and FEM. Further, by increasing the 

number of integration points (N and M), the accuracy of the model is also expected to 

be increased. The above said aspects are discussed in the forthcoming sections by 

considering the plate dimensions as given in Figure 4.1 and parameters reported in 

Table 4.1.  
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(a) 

   

(b)                 (c) 

Fig. 4.1: Different shapes of the floating plate (non dimensional) (a) Rectangular, (b) 

Triangular and (c) Trapezoidal. 

 

Table 4.1: Plate parameters used in the model 

Thickness, d 2m 

Draft, T 0.5m 

Poisson’s ratio 0.2 

Density of plate, ρi 922.5kg/m
3
 

Wavelength, λ 2m 

Non-dimensional rigidity of plate, β 5.828x10
-3

 

Non-dimensional Mass, ν 1.507 x10
-3
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4.1 HYDROELASTIC BEHAVIOUR OF RECTANGULAR PLATE 

This subsection describes the vertical displacement of rectangular plate, subjected to 

oblique wave attack at finite and infinite water depths. Vertical displacement, 

simulation time and error in the model for integration points N = M = 2 and N = M = 4 

are discussed here. 

The time period required to run the model in order to capture the elastic motion or 

vertical deflection of the floating rectangular plate is recorded. The model is analyzed 

by increasing the number of panels from 100 to 900 and by considering equal 

integration points (N = M = 4). The panel dependency of the proposed numerical work 

is observed to be absent when the number of panels crosses 900. Hence, the error is 

considered to be zero when the panel number is 900 and above. Based on this 

condition, the error is estimated for the considered panels with wave angle θ = 0 and 

Table 4.2 explains the details regarding error and simulation time for different number 

of panels. 

Table 4.2: Time and error as the function of panels with wave angle θ = 0. 

Number of panels  Time(s)  % Error  

100  66.144  0.3959  

225  334.032  0.1013  

400  1051.107  0.0216  

625  2532.635  0.0111  

900  5742.102  0.0010  

1089  8932.165  0.0010  

 

It is observed that as the number of panels in the plate increases the time required for 

the simulation increases, whereas, the error in deflection profile reduces. Figures 4.2 

(a) – 4.2 (d) depict the elastic motions or deflected profiles in the rectangular plate at 

finite water depth with angle of wave attack θ = 0. The maximum vertical deflection 

for 100 panels is 0.25, whereas, for 625 panels it is 0.012. It is observed that as the 
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number of panels increases, the deflection profile of the rectangular plate becomes 

smooth and provide accurate vertical deflection.  

  

(a) 

  

(b) 
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 (c) 

  

(d) 

Fig. 4.2: Deflection of rectangular plate for different number of panels and wave 

angle of θ = 0: (a) 625, (b) 400, (c) 225 and (d) 100 panels. 

Figures 4.3 (a) – 4.3 (d), exhibit the simulation of elastic motions at finite water depth 

at the depth of 1/4 for different angles of wave attack (θ = 0, π/6, π/4 and π/2) by 

keeping constant integration points (N =M =4) and number of panels 900. It can be 

seen that the elastic motion is captured elegantly over the entire plate as well as at the 

corners of the plate. Further, the simulation time for different number of panels is 

recorded and the error in deflection of the floating elastic plate is presented in Tables 

4.3 – 4.6 for θ = 0, π/6, π/4 and π/2, respectively. For the usage of 625 panels and for 
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wave angle of attack θ = 0, the error is on the higher side when compared with θ = π 

/2. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 4.3: Deflection of rectangular plate for different wave angle attack (a) θ = 0, (b) θ 

= π /6, (c) θ = π /4 and (d) θ = π/2. 

This is due to the fact that when the wave propagation is aligned with length of the 

plate, the bending effect is more due to its larger dimension. As the angle of wave 

attack increases and reaches θ = π /2, the wave propagation is aligned with shorter 

dimension of plate. At this situation, the bending effect is observed to be less and 

hence, the error is also less when compared with θ = 0. 
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Table 4.3: Time and error as the function of panels for integration points N, M = 4 and 

wave angle θ = 0. 

Number of panels  Time(s)  % Error  

100  66.144  0.4254   

225  336.144  0.1365   

400  1051.107  0.0498   

625  2532.635  0.0131   

900  5712.012  0   

 

Table 4.4: Time and error as the function of panels for integration points N, M = 4 and 

wave angle θ = π/6. 

Number of panels  Time(s)  % Error  

100  65.740  0.4108   

225  326.054  0.1293   

400  1050.88  0.0435   

625  2640.409  0.0126   

900  5385.264  0   

 

Table 4.5: Time and error as the function of panels for integration points N, M = 4 and 

wave angle θ = π/4. 

Number of panels  Time(s)  % Error  

100  65.46  0.4086   

225  328.028  0.1340   

400  1060.461  0.0442   

625  2695.860  0.0127   

900  5692.205  0   
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Table 4.6: Time and error as the function of panels for integration points N, M = 4 and 

wave angle θ = π/2. 

Number of panels  Time(s)  % Error  

100  67.253  0.4125   

225  326.757  0.1296   

400  1011.846  0.0496   

625  2537.883  0.0112   

900  5687.23  0   

 

Deflected profiles of the plate when subjected to different wave angles (θ = 0, π/6, π/4 

and π/2) of attack with integration points N, M = 2 and are shown in Figure 4.4. In 

order to understand the effect of number of integration points, the results are 

compared with integration points N, M = 4. Tables 4.7 – 4.10 explain the time 

required for the simulation and error in the model for the number of panels 

considered, subjected to different angles of wave attack (θ =0, π/6, π/4 and, π/2). It is 

observed that the error obtained using integration points N = M = 2 is lesser than the 

error obtained using integration points N = M = 4 subjected to wave angle of attack θ 

=0. It is also inferred that the error is less by an average of 3% for N = M = 4 when 

compared with N = M = 2. The simulation time for integration points N = M = 4 is 

three times higher than the simulation time required for integration points of N = M = 

2. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 4.4: Deflection of rectangular plate for different wave angles of attack: (a) θ = 0, 

(b) θ =π/6, (c) θ =π/4 and, (d) θ= π/2. 

 

By analyzing the integration points, N = M = 2, it is learnt that the error obtained at θ 

= 0 (in line with the length of the plate) is lesser than the error observed for the other 

angles of wave attack (θ =π/6, π/4, π/2). By considering number of panels as 225, 400 

and 625, the error observed for wave propagation in θ = π/6 is lesser than θ = π/4. 
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Table 4.7: Time and error as the function of panels for integration points N, M = 2 

and  

wave angle θ = 0. 

Number of panels  Time(s)  % Error   

100  32.841  0.4191   

225  113.355  0.1158   

400  353.636  0.0316   

625  907.434  0.0091   

900  1989.565  0   

Table 4.8: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

  

 

 

 

 

 

 

 

Table 4.9: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Number of panels  Time(s)  % Error  

100  21.214  0.4204   

225  106.627  0.1386   

400  345.691  0.0458   

625  961.570  0.0132   

900  1872.529  0   

 

Number of panels  Time(s)  % Error  

100  20.465  0.4214   

225  103.9953  0.1338   

400  332.914  0.0451   

625  898.959  0.0131   

900  1960.811  0   
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Table 4.10:  Time and error as the function of panels for integration points N, M = 2 

and  

wave angle θ = π/2. 

Number of panels  Time(s)  % Error  

100  20.182  0.3809   

225  103.807  0.1328   

400  362.531  0.0442   

625  904.001  0.0126   

900  1897.6193  0   

 

The efficacy of the present numerical model at finite water depth is explored by 

comparing with the results of Wang and Meylan (2004) and the surface profiles are 

presented in Figure 4.5 for different angles of wave attack. It can be seen that the 

present model captures the elastic motions smoother than Wang and Meylan (2004). 

Also, examining the deflection profiles, it is understood that the proposed numerical 

model simulates the edges of the plates smoothly due to the usage of modified 

Green’s function. Further, it is noticed that a smooth transition of surface mode is 

captured by the present model which is in accordance with practical sense.  

Wang and Meylan      Present model 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Fig. 4.5: Deflection of rectangular plate for different wave angles of attack: (a) θ = 

0, (b) θ = π/6, (c) θ = π/4 and, (d) θ = π/2 for N, M = 2. 

Tables 4.11 – 4.14 provide the comparison of Wang and Meylan (2004) and the 

developed numerical model with respect to simulation time and error in simulation for 

integration points of N, M = 2. In general, it is observed that the simulation time for 

the present model is lesser than the simulation time of Wang and Meylan (2004). 

Further, it is learnt that as the number of panel increases, there is a considerable time 
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saving is observed. For the number of panels as 900, the time saving is about 3%, 9% 

and an average of 12% for θ = 0, θ = π/6 and θ = π/4 & θ = π/2, respectively. Further, 

for the usage of 625 panels, the increase in percentage of error is found to be about 

50%, 66%, 15% and -30% for the wave excitation angles θ = 0, θ = π/6, θ = π/4 and θ 

= π/2, respectively. The negative sign indicates that the present model works better 

than Wang and Meylan (2004). 

 

 

Table 4.11: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels  Time(s) % Error Time(s) % Error 

100 32.841 0.4191 21.775 0.2357  

225 113.355 0.1158 113.354 0.0548  

400 353.636 0.0316 369.544 0.0169  

625 907.434 0.0091 925.887 0.0044  

900 1989.565 0 2036.955 0  
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Table 4.12: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error   Time(s) % Error 

100 20.465 0.4214 20.655 0.2357  

225 103.9953 0.1338 110.216 0.0542  

400 332.914 0.0451 380.003 0.0169  

625 898.959 0.0131 978.376 0.0044  

900 1960.811 0 2134.043 0  

 

Table 4.13: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error   Time(s) % Error 

100 21.214 0.4204 20.545 0.2377  

225 106.627 0.1386 106.521 0.0793  

400 345.691 0.0458 359.234 0.0239  

625 961.570 0.0132 945.527 0.0112  

900 1872.529 0 2082.876 0  
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Table 4.14: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/2. 

Present model   Wang model  

Number of panels   Time(s) % Error    Time(s) % Error 

100 20.182 0.3809 21.047 0.2233  

225 103.807 0.1328 108.958 0.0579  

400 362.531 0.0442 367.448 0.0803  

625 904.001 0.0126 949.028 0.0454  

900 1897.6193 0 2144.247 0  

 

Figure 4.6 captures the deflection of the plate at infinite water depth from the present 

model with different wave attack angles for N, M = 4. Also, it compares the surface 

profile captured by Wang and Meylan, (2004). It is noticed that both the models are 

equally competitive in capturing the surface modes and the deflection at the corners of 

the plate.  

Wang and Meylan    Present model 

 

(a) 



 

73 

 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.6: Deflection of rectangular plate in infinite water depth for different wave 

angles of attack: (a) θ = 0, (b) θ = π/6, (c) θ = π/4 and, (d) θ = π/2 for N, M = 4. 

Tables 4.15 – 4.18 give the comparison in the aspect of time required for simulation 

and error in the deflection of both models. It is understood that the present model 

gives lesser error than Wang and Meylan (2004). However, the simulation time is on 

the higher side for most of the test conditions. The percentage of error is found to be 

lesser in the present model for all the angles of wave attack. The said percentage 
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decrease in error is about 30%, 80%, 74% and 19% for excitation angles θ = 0, θ = 

π/6, θ = π/4 and θ = π/2, respectively. 

Table 4.15: Time and error as the function of panels for integration points N, M = 4 

in infinite water depth and wave angle θ = 0. 

Present model   Wang model  

Number of panels  Time(s) % Error    Time(s) % Error 

100 23.012 0.384 22.937 0.411  

225 122.199 0.0915 128.108 0.1025  

400 402.622 0.0267 408.996 0.0315  

625 1043.968 0.0076 1040.267 0.0099  

900 2260.613 0 2134.043 0  

 

 

Table 4.16: Time and error as the function of panels for integration points N, M = 4 in 

infinite water depth and wave angle θ = π/6. 

Present model   Wang model   

Number of panels Time(s) % Error   Time(s) % Error  

100 24.585 0.3858 23.927 0.4125   

225 125.861 0.1180 124.203 0.1598   

400 405.896 0.0388 414.360 0.0421   

625 1056.352 0.0110 1053.640 0.0195   

900 2321.061 0 2231.190 0   
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Table 4.17: Time and error as the function of panels for integration points N, M = 4 in 

infinite water depth and wave angle θ = π/4. 

Present model   Wang model   

Number of panels  Time(s) % Error    Time(s) % Error 
 

100 24.4553 0.3789 24.184 0.3995   

225 123.403 0.1218 121.550 0.1289   

400 407.082 0.0398 406.328 0.0412   

625 1048.909 0.0114 928.149 0.0198   

900 2379.090 0 2306.478 0   

 

Table 4.18: Time and error as the function of panels for integration points N, M = 4 in 

infinite water depth and wave angle θ = π/2. 

Present model   Wang model   

Number of panels  Time(s) % Error  Time(s) % Error 
 

100 24.231 0.3473 23.039 0.4128   

225 138.359 0.1175 113.368 0.1970   

400 422.657 0.0387 402.945 0.0410   

625 1043.968 0.0042 1020.984 0.00498   

900 2379.090 0 2134.043 0   

 

The developed numerical model is compared with the analytical work of Wu et al. 

(1995) and experimental work of Utsunomiya et al. (1995) and are projected in Figure 

4.7. The length of the model is 10 m, the model is made of polyurethane plates having 
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the width of 0.5 m, elastic modulus is 103 MPa, and the density is 0.22 g/cm
3
. The 

experiment has been carried under the conditions of the water depth of 1.1 m, the 

incident wave heights of 5, 10, and 20 mm. The predicted deflection profile by the 

developed numerical model is found to be reasonable agreement with the analytical 

and experimental works. It can be observed that as the number of panels increases the 

profile of the developed numerical model is having a good agreement with both the 

analytical and experimental works.   
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Fig. 4.7: Deflection of rectangular plate for integration points N, M = 4 and θ = 0
o
 (a) 

= 225, (b) = 400, (c) = 625 and, (d) = 900 panels. 

The efficacy of the model has been checked for the higher integration points N = 4 

and M = 8 at infinite water depth. Figure 4.8 gives the deflection of the floating thin 

elastic plate subjected to oblique wave angle and it can be seen that a smoother 

surface profile is observed for all the considered angles of wave attack. The time 

required for the simulation and error in the model as a function of panels has been 

studied and are shown in Tables 4.19 – 4.22. 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig 4.8: Deflection of rectangular plate in infinite water depth for different wave 

angles of attack (a) θ = 0, (b) θ = π /6, (c) θ =π /4 (d) θ = π /2 for N = 4 and M = 8. 

 

Table 4.19: Time and error as the function of panels for integration points N = 4 and 

M = 8 in infinite water depth and θ = 0. 

Number of panels  Time(s)  % Error  

100  72.871  0.3766   

225  353.683  0.0799   

400  405.896  0   

 

Table 4.20: Time and error as the function of panels for integration points N = 4 and 

M = 8 in infinite water depth and wave angle θ = π/6. 

Number of panels  Time(s)  % Error  

100  72.81  0.3656   

225  343.43  0.0856   
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400  1108.504  0   

 

Table 4.21: Time and error as the function of panels for integration points N = 4 and 

M = 8 in infinite water depth and wave angle θ = π/4. 

Number of panels  Time(s)  % Error  

100  66.915  0.3635   

225  350.898  0.0894   

400  1108.900  0   

 

 

Table 4.22: Time and error as the function of panels for integration points N = 4 and 

M = 8 in infinite water depth and wave angle θ = π/2. 

Number of panels  Time(s)  % Error  

100  69.615  0.3275   

225  348.891  0.0858   

400  405.896  0   

 

It is observed that as the integration points increases the time required for the 

simulation also increases and the error in deflection decreases. The model converges 

as the number of panels reach 400 for integration points N = 4 and M = 8, whereas, 

the model converges at 900 panels for N = M = 2 and N = M = 4. Usage of 100 

number of panels at θ = π/2 gives less error when compared with other wave 

directions. A nominal variation in error is observed among different angles of attack 

for 225 panels. However, the error is less for the wave propagation in line (θ = π/2) 

with the breadth of the plate. This reduction in error considering different wave angles 

is due to increase in integration points from N =M = 2 to N = 4 and M = 8. 
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4.2 HYDROELASTIC BEHAVIOUR OF TRIANGULAR PLATE 

This subsection describes the vertical displacement of the triangular plate, subjected 

to oblique wave at finite and infinite water depths. Vertical displacement, simulation 

time and error in the model for integration points N = M = 2 and N = M = 4 are 

discussed here. 

The simulation time necessary to run the model is recorded in order to represent the 

vertical deflection of the floating plate. Initially, by considering an equal number of 

integration points (N = M = 2), the numerical model has been analysed at finite water 

depth. Further, the panel dependency of the model has been captured by increasing 

the number of panels from 77 to 527. The elastic modes or vertical deflection of the 

triangular plate for different panels have been represented in Figures 4.9 (a) – 4.9 (e) 

and it can be seen that as the panel number increases the smoothness in deflection 

profile is evident. It is experimented that the panel dependency is absent as the 

number of panels crosses 527. Based on this condition, the error is estimated for the 

panels 77 to 527 at different angles of wave attack. 

 

6.75  

 

       (a)         (b) 
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      (c)           (d) 

 

(e) 

Fig 4.9: Deflection of triangular plate for different number of panels and wave angle 

of θ= 0: (a) 77, (b) 152, (c) 252, (d) 377 and (e) 577 panels. 

The proposed model is experimented with different angles of wave attack θ = 0, π/6 

and π/4. The elastic modes are analysed for simulation time and error in deflection. 

The obtained results are given in Tables 4.23, 4.24 and 4.25 for angles of wave attack 

θ = 0, π/6 and π/4, respectively. It is observed that as the number of panels increases, 

the time required for the simulation also increases. It is also noted that as the number 

of panels increases, the error in the elastic mode is reduced.  
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Table 4.23: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = 0. 

Number of panels Time(s) % Error 

77 5.705 0.8727  

152 29.027 0.4392  

252 91.402 0.1626  

377 228.151 0.048  

527 475.635 0  

 

Table 4.24: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

Number of panels Time(s) % Error 

77 5.902 0.4889  

152 28.259 0.1424  

252 90.341 0.0529  

377 229.659 0.0168  

527 474.620 0  
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Table 4.25: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Number of panels Time(s) % Error 

77 5.456 0.466  

152 29.048 0.2022  

252 95.920 0.0668  

377 217.844 0.0193  

527 463.550 0  

 

The suitability of the developed numerical model is validated by using the results of 

Wang and Meylan (2004). Figure 4.10 depicts the comparison of surface modes 

between the present model and the model developed by Wang and Meylan (2004). It 

can be seen that the deflection profile is smooth at the corners and edges of the plate. 

The transition of surface mode obtained at the corners by the present numerical model 

is in accordance with practical sense. Also, the profile obtained from the developed 

numerical model gives the satisfactory results. It is due to the adaptation of modified 

Green’s function in the present numerical model.  

Wang and Meylan Present model 

 (a) 
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 (b) 
 

 

(c) 

 

Fig 4.10: Deflection of triangular plate for different wave angles of attack: (a) θ = 0, 

(b) θ = π/6, (c) θ = π/4 for N, M = 2. 

Tables 4.26 to 4.28 provide the details of the time required for the simulation and 

error in the models for the number of panels considered, subjected to different angles 

of wave attack (θ = 0, π/6 and π/4). It is understood that the time saved by the present 

model is about an average of 20% when compared with Wang and Meylan (2004) 

model. The error in the present model decreases in proper intervals as the number of 

panels increases, whereas, in Wang and Meylan (2004) the decrease in error is not in 

proper intervals and it fluctuates as the number of panels increase. Also, it is observed 

that the error is higher for wave angle of attack θ = 0 by considering the cases of all 

number of panels. 

 

Table 4.26: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 
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77 5.705 0.8727 13.239 0.5494  

152 29.027 0.4392 32.548 0.2648  

252 91.402 0.1626 104.401 0.0971  

377 228.151 0.048 271.689 0.0286  

527 475.635 0 599.424 0  

 

Table 4.27: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 5.902 0.4889 7.030 0.3192  

152 28.259 0.1424 34.118 0.0852  

252 90.341 0.0529 113.316 0.0442  

377 229.659 0.0168 258.660 0.0137  

527 474.620 0 548.819 0  

 

Table 4.28: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 
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77 5.456 0.466 6.871 0.3256  

152 29.048 0.2022 32.666 0.1463  

252 95.920 0.0668 103.562 0.0516  

377 217.844 0.0193 266.876 0.0155  

527 463.550 0 545.946 0  

 

The number of integration points has been increased from N = M = 2 to N = M = 4 

and the salient results are reported. Figure 4.11 illustrates the comparison of surface 

modes between the present model and Wang and Meylan (2004) model for the 

integration points of N = M = 4. The smoothness is improved for the increased panels 

and as there is a better profile is obtained by the present model for all the wave angles 

of attack. 

Wang and Meylan Present model 

 

(a) 

 

 

(b) 
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(c) 

 

Fig 4.11: Deflection of triangular plate for different wave angles of attack: (a) θ = 0, 

(b) θ = π/6, (c) θ = π/4 for N, M = 4. 

The time required for simulation and error in the model has been presented in Tables 

4.29 – 4.31 and compared with the results of Wang and Meylan (2004). By 

introspecting the results obtained by the present model, the time required for the 

simulation is four times higher than that of integration points N = M = 4. Further, the 

error in deflection reduces considerably for integration points N = M = 4. On the 

aspect of simulation time Wang and Meylan (2004) model requires 1.2 times higher 

than that of present model. However, the error is on the higher side for the present 

model by an amount of 45% (average) for the number of panels as 377 and θ = 0, π/6. 

The said increase in percentage of error is about 15% for θ = π/2. By analysing the 

trend of percentage error, it is understood that there is a fluctuation in the trend of 

error in Wang and Meylan (2004) as observed for N = M = 2.    

 

Table 4.29: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 19.54 0.87 23.28 0.162  

152 97.757 0.4365 112.943 0.012521  



 

89 

 

252 293.249 0.1613 352.326 0.00079  

377 735.292 0.0475 869.565 0.0265  

527 1469.878 0 1259.744 0  

 

Table 4.30: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 18.075 0.4869 23.330 0.0030  

152 89.025 0.141 118.785 0.0029  

252 276.041 0.0524 360.749 0.0004  

377 657.504 0.0165 860.591 0.00769  

527 1446.549 0 1845.036 0  

 

Table 4.31: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 20.326 0.463 24.173 0.00711  

152 113.068 0.2005 122.010 0.00349  
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252 310.974 0.0662 354.22 0.00529  

377 741.488 0.0191 884.896 0.01571  

527 1499.705 0 1759.534 0  

 

Further, the developed numerical model is used to capture the elastic motions of 

triangular plate at infinite water depth subjected to different wave angles of attack, 

and for integration points of N = M = 2. The comparison between the developed 

numerical model and Wang and Meylan (2004) has been shown in Figure 4.12. It is 

noticed that both the models are equally competitive in capturing the surface modes 

and the deflection at the corners of the plate.  

Wang and Meylan Present model 

 

(a) 

 

 (b) 
 

 

(c) 
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Fig 4.12: Deflection of triangular plate for different wave angles of attack in infinite 

water depth: (a) θ = 0, (b) θ = π/6 and (c) θ = π/4 for N, M = 2. 

Tables 4.32 – 4.34 provide the comparison in the aspect of time required for 

simulation and error in the deflection of both models. It is understood that the present 

model gives lesser error than Wang and Meylan (2004). However, the simulation time 

is on the higher side for most of the test conditions. A uniform decreasing trend in 

percentage of error is observed for both the models. By considering the number of 

panels as 377 and θ = 0 the percentage of error in the present model is about 4.5%, 

whereas, Wang and Meylan (2004) gives as 8%. The said percentage is about 1.27 & 

2.7% and 1.9% & 6% for θ = π/6 and θ = π/4, respectively.    

 

Table 4.32: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 2.388 0.788 3.578 0.985  

152 11.971 0.409 12.325 0.562  

252 39.371 0.1516 42.321 0.195  

377 104.221 0.0451 110.896 0.0812  

527 221.452 0 229.458 0  
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Table 4.33: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 2.374 0.4962 3.578 0.5236  

152 13.018 0.1384 12.325 0.2367  

252 43.920 0.0527 42.321 0.0912  

377 103.988 0.0168 110.896 0.027  

527 246.014 0 252.458 0  

 

Table 4.34: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 2.349 0.4505 3.578 0.585  

152 12.672 0.194 12.325 0.362  

252 40.132 0.0634 42.321 0.095  

377 101.816 0.0187 110.896 0.0612  

527 244.107 0 252.458 0  
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Further, the results are simulated for the integration points of N = M = 4. Figure 4.13 

compares the results of the present model and Wang and Meylan (2004). The surface 

profiles of the triangular plate in both the models are same. Further, it can be observed 

that the profile of the elastic motions is smoother than that of integration points N = M 

= 2.  

Wang and Meylan Present model 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Fig 4.13: Deflection of triangular plate for different wave angles of attack in infinite 

water depth: (a) θ = 0, (b) θ = π/6 and (c) θ = π/4 for N, M = 4. 

Tables 4.35 – 4.37 provide the comparison in the aspect of time required for 

simulation and error in the deflection of both models. It is understood that the present 

model works better in terms of time saving and percentage of error. For θ = 0 and 

number of panels as 77, the time saving by the present model is about 50%. As the 
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panel number increases, the percentage of time saving keep decreasing, and it is about 

2%, for panel number as 527. Similar trend is observed for the wave angles of attack θ 

= π/6 and θ = π/4. It is learnt that as the panel number increases, the reduction in 

percentage of error increases when compared with Wang and Meylan (2004) for all 

the angles of wave attack. By considering the panel number as 377, the percentage of 

reduction in error is about 40% for all the angles of wave excitation. 

 

Table 4.35: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 6.125 0.8723 9.214 0.9251  

152 29.508 0.4013 32.842 0.5217  

252 94.847 0.1411 103.952 0.32  

377 237.850 0.0414 248.74 0.09  

527 494.424 0 501.90 0  

 

 

Table 4.36: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/6 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 
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77 6.291 0.3912 7.235 0.5002  

152 31.475 0.1151 32.365 0.195  

252 97.725 0.047 100.32 0.0921  

377 248.747 0.0144 251.089 0.0199  

527 515.965 0 521.005 0  

 

Table 4.37: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

77 6.143 0.3639 8.561 0.425  

152 31.529 0.8995 32.36 0.992  

252 101.423 0.0533 105.952 0.6257  

377 255.173 0.0149 257.482 0.0210  

527 496.356 0 501.102 0  
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4.3 HYDROELASTIC BEHAVIOUR OF TRAPEZOIDAL PLATE 

This subsection describes the vertical displacement of the trapezoidal plate, subjected 

to oblique wave at finite and infinite water depths. Vertical displacement, simulation 

time and error in the model for integration points N = M = 2 and N = M = 4 are 

discussed here. 

To check the efficacy of the proposed model on complex geometry, trapezoidal shape 

has been considered and simulation is carried out. Figure 4.14 illustrates the elastic 

modes of the trapezoidal plate for integration points N = M = 2 subjected to different 

wave angles of attack. Also, it is compared with the results of Wang and Meylan 

(2004). It is learnt that both the profiles are almost similar. 

Wang and Meylan Present model 

 (a) 
 

 (b) 
 

 (c) 
 

Fig 4.14: Deflection of trapezoidal plate for different wave angles of attack: (a) θ = 0, 

(b) θ = π/4, (c) θ = π/6 for N, M = 2. 
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Table 4.38: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 32.078 0.4348 23.030 0.5323  

304 146.583 0.0693 177.569 0.0558  

572 580.193 0 708.349 0  

 

 

Table 4.39: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 18.055 0.2821 22.511 0.2021  

304 140.055 0.0369 190.182 0.0285  

572 595.381 0 731.642 0  
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Table 4.40: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 16.621 0.3102 23.366 0.2465  

304 129.986 0.0483 169.222 0.0345  

572 544.287 0 727.322 0  

 

Initially, the simulation is carried out with 120 panels as mentioned in Wang and 

Meylan (2004). Also, the simulation is tried by increasing the panels to 304 and 572. 

A further increase in panels i.e. beyond 572, the dependency is observed to be absent. 

Tables 4.38 – 4.40 compare the results of present model and Wang and Meylan 

(2004) for N = M = 2 subjected to wave angle of attack θ = 0, π/6 and π/4. It can be 

observed that the time required for the simulation is lesser than Wang and Meylan 

(2004) by an average of 130% for panels 120, 304 and 572. A decreasing trend is 

observed for all angles of wave attack in the present model, however, fluctuation in 

error is observed in Wang and Meylan (2004). By considering the number of panels 

as 304, the increase in error is about 19% and an average of 30% for θ = 0 and θ = π/6 

& π/4, respectively.  

Figure 4.15 shows deflection of the trapezoidal plate for increased number of 

integration points N = M = 4 and the surface profile is compared with Wang and 

Meylan, (2004). Tables 4.41 – 4.43 provide the results for N = M = 4 and for angle of 

wave attack θ = 0, π/6 and π/4. A thorough investigation reveals that there is 20% of 

time saving for all the angles of wave attack when compared with Wang and Meylan 
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(2004). However, the error in deflection profile is higher than Wang and Meylan 

(2004) and also fluctuates with respect to number of panels 

 

Wang and Meylan Present model 

 (a) 
 

 (b) 
 

 

(c) 
 

Fig 4.15: Deflection of trapezoidal plate for different wave angles of attack: (a) θ = 0, 

(b) θ = π/6, (c) θ = π/4 for N, M = 4. 
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Table 4.41: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 55.106 0.6358 69.221 0.334  

304 425.550 0.0687 541.978 0.011  

572 1656.301 0 2205.208 0  

 

 

Table 4.42: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 59.337 0.2798 79.658 0.222  

304 442.093 0.0365 550.925 0.016  

572 1710.054 0 2253.355 0  
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Table 4.43: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 55.713 0.3071 71.726 0.441  

304 429.326 0.0477 564.247 0.046  

572 1698.675 0 2191.471 0  

 

Further, the developed numerical model is used to capture the elastic motions of 

trapezoidal plate at infinite water depth. The plate has been analyzed for different 

wave attack angles with N = M = 2. The results obtained by the developed model are 

compared with the results of Wang and Meylan (2004) and is shown in Figure 4.16. It 

is noticed that both the models are equally competitive in capturing the surface modes 

and the deflection at the corners of the plate.  

Wang and Meylan Present model 

 (a) 
 

 (b) 
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 (c) 
 

 

  

Fig 4.16: Deflection of trapezoidal plate for different wave angles of attack: (a) θ = 0, 

(b) θ = π/6, (c) θ = π/4 for N, M = 2. 

Tables 4.44 – 4.46 provide the comparison in the aspect of time required for 

simulation and error in the deflection of both models. It is understood that the usage 

of present model saves simulation time by an average of 3% and 7% for θ = 0 & π/4 

and θ =π/6, respectively. The percentage of error is lesser by an amount of 8% for θ = 

0. The said percentage is about 6% for θ = π/6. 

 

Table 4.44: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 7.675 0.4169 8.001 0.4201  

304 63.212 0.0668 64.125 0.0721  

572 284.734 0 285.1023 0  
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Table 4.45: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 7.637 0.2471 8.235 0.257  

304 65.433 0.0375 69.415 0.04005  

572 312.208 0 314.612 0  

 

Table 4.46: Time and error as the function of panels for integration points N, M = 2 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 8.147 0.2959 8.247 0.3001  

304 71.427 0.0439 72.321 0.0495  

572 298.242 0 299.555 0  

 

Further, the results are simulated for the integration points of N = M = 4. It can be 

observed that the profile of the elastic mode is smoother than the surface modes 

obtained for N = M = 2. Figure 4.17 compares the results of the present model and 

Wang and Meylan (2004). Both the models are equally competitive in capturing the 

surface profiles.  
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Wang and Meylan Present model 

 (a) 
 

 (b) 
 

 

(c) 

 

 

 

Fig 4.17: Deflection of trapezoidal plate for different wave angles of attack: (a) θ = 0, 

(b) θ = π/4, (c) θ = π/6 for N, M = 4. 

 

Tables 4.47 – 4.49 provide comparison in the aspect of time required for simulation 

and error in the deflection of both models. The error in the present model is lesser 

than that of Wang and Meylan (2004). By considering the panel numbers as 304, the 

reduction in error is about 14%, 20% and 30% for wave angles of attack θ =0, θ = π/6 

and θ = π/4, respectively. Further, the simulation time of Wang and Meylan (2004) is 

on the higher side by an average of 2% for most of the test conditions. 
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Table 4.47: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = 0. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 19.892 0.3 20.231 0.369  

304 153.063 0.045 155.192 0.0512  

572 656.457 0 658.008 0  

 

 

Table 4.48: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/6. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 18.874 0.2089 19.324 0.295  

304 156.731 0.0267 157.624 0.0318  

572 644.054 0 646.005 0  
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Table 4.49: Time and error as the function of panels for integration points N, M = 4 

and wave angle θ = π/4. 

Present model   Wang model  

Number of panels Time(s) % Error Time(s) % Error 

120 19.818 0.3062 20.145 0.3054  

304 154.070 0.0307 155.217 0.0399  

572 630.012 0 632.914 0  
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.0 GENERAL  

1. The proposed model is capable of analysing the hydroelasticity for the floating 

plate with arbitrary shapes at finite and infinite water depths. 

2.  The model uses modified Green’s function which differs with Wang and 

Meylan, (2004). 

3. By using Bessels and Hankels functions, the elastic motion/vertical deflection 

are obtained accurately. 

4. The main advantage of the proposed numerical model is that BEM and FEM 

accommodate the same number of basis functions. 

5. Error and simulation time with respect to number of panels in the developed 

model has been compared with the results of Wang and Meylan, (2004).  

6. The model dependency differs for different shapes of the plate. Model 

saturates at 900, 527 and 572 panels for rectangular, triangular and trapezoidal 

plates, respectively. 

7. The efficacy of the model has been checked by using three different set of 

integration points, N =M = 2, N =M = 4 and N =4, M = 8. 

8. Fluctuation of the error in the developed model has been observed for N =M 

=2 and N =M =4 subjected to oblique wave angle of attack. 

9. With the use of modified Green’s function, it can be concluded that the 

deflection profile at the corners of the triangular/trapezoidal plate can be 

captured very accurately and surface profile in a smooth manner. 

5.1 RECTANGULAR PLATE 

1. It is observed that as the integration points and the number of panels increase, 

the time required for simulation increases and vice - versa.  

2. As the number of panels increases, the error reduces gradually in the present 

model, whereas, the decreasing trend is not observed in Wang and Meylan 

(2004) as it fluctuates. 
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3. In finite water depth, the error is observed to be less by an average of 3% for N 

= M = 4 when compared with N = M = 2. 

4. For integration points N = M = 4, the time required for the simulation is about 

three times higher than that of N = M = 2. 

5. For integration points N = M = 2, the percentage error is found to be high by 

50%, 66%, 15% and -30% for wave angle of attack θ =0, θ = π/6, θ = π/4 and 

θ = π/2, respectively. 

6. In infinite water, and for integration points N = M = 4 the percentage decrease 

in error is about 30%, 80%, 74% and 19% for wave angle of attack θ =0, θ = 

π/6, θ = π/4 and θ = π/2, respectively. 

7. The model converges as the number of panels reach 400 for integration points 

N = 4 and M = 8, whereas, the model converges at 900 panels for N = M = 2 

and N = M = 4 

8. At infinite water depth, the developed numerical model lags behind the model 

developed by Wang and Meylan (2004) in terms of time required for the 

simulation, but provides good agreement with error in deflection. 

5.2 TRIANGULAR PLATE 

1. In finite water depth, and for integration points N = M = 4 the present model 

saves the simulation time by an average of 20% when compared with Wang 

and Meylan (2004) model. 

2. In finite water depth, the time required for the simulation using integration 

points N = M = 4 is four times higher when compared with N = M = 2.  

3. It is observed that for integration points N = M = 2 the model developed by 

Wang and Meylan (2004) requires 1.2 times higher simulation time than that 

of present model. 

4. In infinite water depth, and for integration points N = M = 2 the error obtained 

by the present and Wang and Meylan (2004) models are about 1.27% & 2.7% 

and 1.9% & 6% for θ = π/6 and θ = π/4, respectively. 

5. The developed model in inifinte water depth with θ = 0 and number of panels 

as 77 saves the simulation time by 50% for integration points N = M = 2.  
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6. In infinite water depth, the reduction in percentage of error is observed to be 

about about 40% for all the angles of wave excitation. 

7. The error decreases at proper interval for the developed model. Further, the 

model is in good agreement with the model developed by Wang and Meylan 

(2004). 

5.3 TRAPEZOIDAL PLATE 

1. The simulation time for N = M = 4 is nearly two times greater than that of N = 

M = 2 

2. In finite water depth, it can be observed that the time required for the 

simulation is lesser than Wang and Meylan (2004) by an average of 130% for 

panels 120, 304 and 572 with angle of wave attack θ =0. 

3. By considering integration points as N = M = 4, it is observed that there is 

20% of time saving for all the angles of wave attack when compared with 

Wang and Meylan (2004). 

4. In infinite water depth, the usage of integration point N = M = 2 saves 

simulation time by an average of 3% and 7% for θ = 0 and θ = π/6, 

respectively. The percentage of error is lesser by an amount of 8% for θ = 0.  

5. By considering the panel numbers as 304, the reduction in error is about 14%, 

20% and 30% for wave angles of attack θ =0, θ = π/6 and θ = π/4, 

respectively. Further, the simulation time of Wang and Meylan (2004) is on 

the higher side by an average of 2% for most of the test conditions in inifinte 

water depth with integration points as N = M = 4.  

5.4 LIMITATIONS OF THE STUDY 

 The developed numerical model is best suited for the analysis of structure in 

Cartesian coordinate system, whereas, the model requires modification to 

analyze the structure in polar coordinate system. 

 The plate is assumed to be thin and thin plate theory has been incorporated to 

develop the numerical model, hence, thick plates cannot be analyzed. 
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 The developed numerical model is suited for analyzing the structure at finite 

and infinite water depths. 

 The plate is assumed to be continuous without any connections in-between. 

 Accuracy of the vertical deflection can be further improved by adopting eight 

noded finite element basis function and higher integration points. 

5.5 SCOPE FOR FUTURE WORK 

 The developed numerical model can be further extended to study the structure 

in polar coordinates. 

 The singularity in the model can be reduced to study the behavior of structure 

in shallow water. 

 Amount of time required to construct the VLFS is less. 

 Connection designs for multiple structures can be studied further. 

 By incorporating shell theory, the model can be utilized to analyze both thin 

and thick plates. 

 The effect of airplane landing and takeoff, can be adopted to analyze the 

floating structure.  

 How and up to what extent the VLFSs are environment friendly. 
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