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ABSTRACT 

The hydro-geological properties of streambed together with the hydraulic 

gradients determine the fluxes of water, energy and solutes between the stream and 

underlying aquifer system. Uncertainty in stream-aquifer interactions arises from the 

inherent complex-nested flow paths and spatio-temporal variability of streambed 

hydraulic properties. The estimation and modeling of streambed hydraulic conductivity 

(Ks) is an emerging interest due to its connection to water quality, aquatic habitat, and 

groundwater recharge. 

Fragmenting streams with dams, diversions, and less frequently road culverts 

disrupt the longitudinal connectivity and capacity of a stream. Dam induced 

sedimentation affects hyporheic processes and alters substrate pore space geometries in 

the course of progressive stabilization of the sediment layers. The present study reports 

the spatial and temporal variability of streambed hydraulic conductivity along the 

stream reach obstructed by two Vented Dams in sequence. A detailed field investigation 

of streambed hydraulic conductivity using Guelph Permeameter was carried out in an 

intermittent stream reach of the Pavanje river basin located in the mountainous, forested 

tract of Western Ghats of India. Arriving at realistic statistical and spatial inference 

based on in-situ data collected is challenging, considering the possible sediment 

sources, processes, and complexity. Statistical tests such as Levene’s and Welch’s t-

tests were employed to check for various variability measures. The strength of spatial 

dependence and the presence of spatial autocorrelation among the streambed Ks 

samples were tested by using Moran’s I statistic. The measures of central tendency and 

dispersion pointed out reasonable spatial variability in streambed Ks distribution 

throughout the study reach during two consecutive years 2016 and 2017. The streambed 

was heterogeneous with regard to hydraulic conductivity distribution with high-Ks 

zones near the backwater areas of the vented dam and low-Ks zones particularly at the 

tail water section of vented dams. Dam operational strategies were responsible for 

seasonal fluctuations in sedimentation and modifications to streambed substrate 

characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous 

streambed Ks profiles. The channel downstream of vented dams contained significantly 

more cohesive deposits of fine sediment due to the overflow of surplus suspended 
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sediment-laden water at low velocity and pressure head. The statistical test results 

accept the hypothesis of significant spatial variability of streambed Ks but refuse to 

accept the temporal variations. Advanced geo-statistical techniques offer a wide range 

of univariate or multi-variate interpolation procedures such as kriging and variogram 

analysis that could be applied to these complex systems. The deterministic and geo-

statistical approaches of spatial interpolation provided virtuous surface maps of 

streambed Ks distribution. The Moran’s I index approved the presence of spatial 

dependence in the heterogeneous streambed Ks samples. Interpolation maps of Inverse 

Distance Weighting (IDW) and Radial Basis Functions (RBF) were more accurate than 

the krigged surface maps; however, the prediction uncertainty was lower around the 

sampled values in ordinary kriging estimates compared to deterministic methods. 

In-situ measurement of streambed hydraulic conductivity all along the length of 

the stream may not be an ideal and cost-effective way. Hence, the soft computing 

approaches could be applied to induce a rule based relationship for estimating the values 

of streambed hydraulic conductivity at unmeasured locations using representative 

georeferenced neighborhood data. The artificial intelligence (AI) based spatial 

modeling schemes were tested to predict the spatial patterns of streambed hydraulic 

conductivity. The geographical coordinates (i.e., latitude and longitude) of the sampled 

locations from where the in-situ hydraulic conductivity measurements were made were 

used as model inputs to predict streambed Ks over spatial scale using artificial neural 

network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector 

machine (SVM) paradigms. The statistical measures computed by using the actual 

versus predicted streambed Ks values of individual models were comparatively 

evaluated. The AI based spatial models provided superior spatial Ks prediction 

efficiencies with respect to both the strategies/schemes considered. The SVM model 

was found to predict reasonably accurate streambed Ks patterns. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General 

Soil water movement along different pathways and how long water resides in 

diverse soil zones are important and determine the quantity of recharge and quality of 

groundwater. The vertical downward flow of subsurface water is mainly controlled by 

gravity and the water movement in soils (homogeneous and heterogeneous) depends on 

hydraulic conductivity, suction potential and soil characteristics (Fox and Durnford, 2003; 

Menció et al., 2014). Soil hydraulic properties are highly nonlinear functions known to 

exhibit marked spatial variability in geologic media at various scales of observation. For 

instance, the hydraulic conductivity of a specific layer or substrate may control the net 

water movement rates and exchange among surface and groundwater systems. Streambed 

hydraulic conductivity is a key physical parameter, controlling the water fluxes across the 

stream–aquifer interface. It is highly influenced by streambed substrate characteristics 

(e.g., structure, effective porosity, grain size, packing), streambed alteration processes 

(e.g., aggradation, degradation, sedimentation, colmation, and erosion), and the 

configuration of stream channel geometry, floodplain connection, and streambed 

morphology (e.g., dunes, anti-dunes, pool-riffle sequences) (Schumm et al., 1984; 

Schneidewind et al., 2015). The streambed hydraulic conductivity affects the groundwater 

residence time and the potential for processes such as filtration, mixing, chemical 

interchange, decomposition, and solute transport. Variations in groundwater residence, 
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inflow and outflow rates could be associated with the hydraulic resistance of the clogging 

layer at the wetted perimeter of a streambed and river channel morphology (Katsuyama et 

al., 2010). The potential of groundwater recharge through streambed depends on the 

topography of the area, the velocity and depth of river stage and the hydro-geologic setting 

of the underlying aquifer. 

1.2 Composition and structure of streambed 

The streambed composition of various materials varying from bed load to fine-

grained sediments does not exhibit constant properties or conditions of stable equilibrium, 

as they are subjected to alternate wet and dry conditions, swelling and shrinks, dispersion 

and flocculation, cracking, compaction, aggregation, experience bio-chemical changes, 

and structural rearrangements in channel adjustments (Reid and Frostick, 1987; Rehg et 

al., 2005). Bed sediments originate from soil and dead plant material brought into the water 

body by erosion or direct deposition, and from organic matter produced in the water body 

itself. Differences in material sources and types are also due to hydrologic position and 

scale, such as from higher gradient channels in the headwaters to low gradient valley rivers. 

The in-channel or near-channel degradation, therefore, could alter streams essentially into 

high water table swamps in a braided channel form to lower water table systems with 

increased drainage due to gullying (Trimble, 2008). The heterogeneity in hyporheic and 

streambed substrates could be because of spatial variations in stream velocity (e.g., across-

channel); streambed alteration processes (e.g., aggradation, degradation, sedimentation, 

colmation and erosion); the configuration of channel geometry, floodplain connection, 

streambed morphology (e.g., dunes, step pools, anti-dunes, reattachment bars, pool-riffle 

sequences, etc.) and, natural and anthropogenic disturbances (Springer et al., 1999; Zhou 

et al., 2014; Tonina et al., 2016). 

The subsurface flow patterns and the stream–aquifer interactions via hyporheic 

zone are considerably more complex to characterize. It is not hard to imagine that most 

rivers dominated by gravel substrates have a permeable bed and a hyporheic zone with high 

porosity composed by gravels beneath it, and an intensive interaction exists between free 

surface flow and subsurface flow (Gordon et al., 2004). However, when dealing with 
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interactions between surface water, hyporheic zone and groundwater, spatial and temporal 

variability of water fluxes within the streambed exists and is related to channel bed 

morphology, relic valley materials, hydraulic properties (such as hydraulic conductivity, 

porosity), the roughness of stream substrate, and geo-hydrological processes (Kalbus et al., 

2006; Valerio et al., 2010; Fleckenstein et al., 2010). Figure 1.1 presents a generalized 

schematic of streambed, hyporheic and aquifer interaction. The illustration (A) represents 

a gully form of a channel with terrace (not floodplain) with more gradient and narrow flood 

plain. It is a losing stream as the water table is below the channel. Illustration (B) represents 

a bankfull channel with floodplain connection having a lesser gradient and possibly sinuous 

upstream. The paleochannel and valley sediments would have a similar form as present 

bank full channel, just displaced somewhat within the bounds of the floodplain. Illustration 

(C) represents a gaining stream with riparian vegetation. The presence of riparian 

(streamside) vegetation directly influences a stream’s physical, chemical, and biological 

diversity and composition. Illustration (D) represents a partially gaining and partially 

loosing stream. This condition is common in mountainous/hilly terrains. 

Depending on the amplitude of topographic variations, geometric and hydraulic 

properties of the streambed; the travel time, length, and depth of the groundwater flow path 

vary significantly from the points of recharge or collection to the points of discharge or 

dispersal (Tóth, 1962). Substrate modification may also be altered by runoff from 

impermeable surfaces, farming or clear-cutting of erodible or unstable landforms, or 

mining of channel substrates (Casas-Mulet et al., 2018). There are probably many such 

examples of local or area wide circumstances that have altered landforms that contribute 

to the variability of channel substrates and hydraulic conductivity. Some forces involved 

seem less extreme, such as wind-blown soils leaving loess deposits, tree blowdown or 

autumn leaf fall that could accumulate and clog channel substrates. Hurricanes, monsoons, 

floods, earthquakes, volcanism, plate tectonics, and severe wildfires are a few examples of 

extreme forces that could modify landscapes, stream morphology, and substrate materials 

(Schumm et al., 1984; Rosgen, 1996). 
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Figure 1.1 Generalized schematic of streambed, hyporheic and aquifer interaction. 
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1.3 Factors affecting streambed hydraulic conductivity 

The factors responsible for spatio-temporal variability of streambed hydraulic 

conductivity could be broadly categorized into geological, hydrological, anthropogenic and 

biological factors (refer Figure 1.2). Exact boundaries and the influence of most of the 

factors is seldom sufficiently known due to the spatial and temporal complexity. Diverse 

geological histories and climatic conditions influence landscape and stream conditions 

resulting in the highly variable conditions. Most variables are categorized under 

hydrogeological factors such as floods, stream morphology, sediment sources and 

composition, and depth to impermeable sediment or bedrock (Partington et al., 2017). 

Biotic influences contribute to complexity such as large wood, leaves, root systems, 

colmation (clogging of the substrate with organic particles), and benthic 

macroinvertebrates. Anthropogenic disturbances such as flow regime modification by 

dams, artificial ditching, river channelization, and land use changes may also influence 

streambed structure and conductance. 

 

Figure 1.2 Factors affecting streambed hydraulic conductivity 
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1.4 Significance of streambed hydraulic conductivity estimation 

Streams, rivers, wetlands, and lakes are seldom isolated, but typically hydraulically 

coupled or connected to some extent with underlying groundwater reservoir, with water 

passing back and forth with the flow interaction pattern mostly dependent on rainfall 

inputs, water head changes, and streambed conductance (Castro and Hornberger, 1991). 

The estimation and modeling of streambed hydraulic conductivity (Ks) is an emerging 

interest due to its connection to water quality, solute transport, and groundwater recharge. 

Detailed characterization of streambed may be beneficial and significant in improving our 

understanding of streambed hydraulic conductivity and its role in the mechanism of 

pollutant filtering via hyporheic zone and groundwater recharge or discharge. 

Determination of streambed hydraulic conductivity is important for studies designed to 

quantify base flow component of runoff (Cey et al., 1998; Gunduz, 2007); to quantify the 

impact of pumping wells on stream flow (Zume and Tarhule, 2008); to simulate regional 

ground water flow balances (Arnold et al., 2000); and to quantify solute transport, 

retention, and exchange with ground water. 

1.5 Modeling spatial processes using geostatistical analysis 

Geostatistical analysis refers to a set of models or tools for statistical analysis of 

continuous spatial data. Spatial data could be classified into three main categories namely, 

the spatial point data, geostatistical data, and lattice data. Spatial point data refers to a 

spatial process that is observed at a set of locations and the locations themselves are of 

interest. Geostatistical data refers to the observation of a spatial process that varies 

continuously at a few points e.g., mineral/soil properties at various locations. Lattice data 

refers to a spatial process that is observed on a regular or irregular grid. The first step in 

statistical data analysis is to verify three data features: dependency, distribution and 

stationarity. Geostatistics works best when the input data is best fitting to a Gaussian 

distribution. The geostatistical analyst of ArcGIS provides a variety of exploratory data 

analysis tools such as Kriging to accomplish the spatial modeling tasks that are aimed at 

understanding and modeling spatial variability. 
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1.6 Modeling spatial processes using artificial intelligence 

paradigms 

Artificial intelligence (AI) based approaches are increasingly being used nowadays 

for the purpose of determining spatial patterns of soil processes or ecological variables 

(Kirkwood et al., 2016; Leuenberger and Kanevski, 2015). These models have found 

enormous applications in various fields such as geography, geosciences, demography etc. 

They are found applicable for spatial modeling of land use dynamics, spatial 

(environmental) processes that are non-stationary, soil nutrient dynamics, air pollution 

exposure modeling etc. (Forkuor et al., 2017; Grekousis et al., 2013; Reid et al., 2015). The 

AI based models are known to model any spatial parameter based on their inherent ability 

to learn complex input-output relationships even without considering any of the influencing 

physical factors. Dense (in-situ) sampling of any soil/ecological parameter at locations of 

interest may not be an ideal and cost-effective way. Hence, soft computing based 

approaches could be applied to induce a rule based relationship for estimating/ predicting 

the values of a parameter at unmeasured locations using representative geo-referenced 

neighborhood data. There exist several studies using artificial intelligence (AI) algorithms 

for predicting soil parameters such as cation exchange capacity, hydraulic conductivity, 

soil organic carbon, microbial diversity over spatial scales (Ghorbani et al., 2015; Dai et 

al., 2014; Twarakavi et al., 2009). 

1.7 Vented Dam and its impacts on streambed 

A Vented Dam (Figure. 1.3) is a type of low head, storage dam, which consists of 

a number of gateways called ‘vents’ throughout the stretch of the dam to regulate and 

stabilize the streamflow during low flow periods (Shetkar and Mahesha, 2011a,b). ‘Stop-

log’ type of gates is employed to block the flow in Vented Dams. A number of long, 

rectangular, timber panels are stacked vertically between two piers, one and above the other 

in the grooves incised within the piers of the vented dam. The ditch between a pair of stop-

logs is stuffed with fine mud to prevent water leakage that occurs amid a couple of timber 

panels. A series of Vented Dams are constructed along the Pavanje river reach across the 

third and fourth order streams for controlling and storing the surface runoff contributed 
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from base flow. These Vented Dams are ‘seasonal structures’ which come into operation 

only after monsoon retreats. During the rainy season, the vents are unregulated offering no 

obstruction to the flood. These Vented dams retard runoff and control sedimentation during 

their operation (Gowda and Mayya, 2015). The water stored in the vented dams will be 

used for irrigation by local farmers during the post monsoon and winter periods (October 

to January). The stream dries up every summer (in the months of February to May). 

 

Figure 1.3 A view of Vented Dams across the Pavanje River; (a) Downstream of a 

unregulated Vented Dam (b) Downstream of a regulated Vented Dam (c) View of both 

upstream and downstream of a regulated Vented Dam (d) Pair of grooves incised within 

the piers to stack the timber panels for flow regulation 

The existence of hydraulic structures such as vented dams alter the natural river 

flow and, as a result, affect both suspended sediment and bed load transport, leading to 
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adjustments such as the localized growth or erosion of deposits and changes to the carrying 

capacity and functions of a river. It is observed that vented dams produce changes in 

sediment grain size distribution, bed forms, bed slope, and riparian vegetation. They indeed 

affect specific stream channel responses resulting in an irregular distribution of sediment 

supply and therefore the streambed conductance over surface layers could vary on spatial 

scales. 

1.8 In-situ measurement of hydraulic conductivity using 

GUELPH permeameter 

A portable field instrument, the Guelph permeameter (GP), is a promising tool for 

measuring field-saturated hydraulic conductivity in remote watersheds. The procedure 

involves measuring the consistent rate of water flow into saturated stream sediments from 

a cylindrical well hole, in which a constant depth (head) of water is maintained. The 

measurements are made when a ‘bulb’ of saturated soil is formed around the auger hole 

due to flow along both vertical (gravity) and lateral (capillary) directions. The instrument 

can be easily carried, assembled, and operated by a single person. The measurements could 

be made in the range of 15 - 75 cm below the soil surface within 30 to 120 minutes, 

depending on the soil type (Permeameter, G.U.E.L.P.H, 2012). 

1.9 Scope of the present study 

Fragmenting streams with dams, diversions and sometimes culverts disrupt the 

longitudinal connectivity of a stream (Chen, 2004; Fanelli and Lautz, 2008). The head of 

water behind dam adds hydraulic pressure to increase hydraulic conductivity (Ks), but if 

very fine sediments and organics settle as a result into the bed substrates, the Ks may be 

reduced. Most of the existing research focus on how in-stream structures affect the 

hyporheic exchange of water and heat between the surface flow and the underlying aquifer 

system. The hyporheic solute exchange and flux are likely to be influenced by longitudinal 

streambed profile and other geomorphic factors leading to heterogeneity and anisotropy of 

streambed Ks (Ryan and Boufadel, 2006; Song et al., 2007; Tonina and Buffington, 2009). 

Liu et al. (2018) studied the dynamic processes of hyporheic exchange in a riparian zone 
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downstream of the Xin’an river dam and found that dams also induce thermal heterogeneity 

in the subsurface via infiltration. Studies have shown that intense hyporheic exchange 

exists in the vicinity of in-stream structures (Hester and Doyle, 2008) and the streambed 

hydraulic conductivity and depth of alluvium are the key factors that determine hyporheic 

residence time (Tonina and Buffington, 2011). The study by Rana et al. (2017) determined 

that a series of in-stream structures have the potential to increase transient storage than a 

single structure. The effect of in-stream structures on the variability of streambed hydraulic 

conductivity at reach scale is seldom considered, analyzed or known.  

Hence, this study is intended to inform broadly on the spatial and temporal patterns 

of Ks along a dynamic streambed over relatively short distances (relative to the vented 

dams) and short time period (relative to the frequent high magnitude events). How does 

streambed Ks vary along the reach, upstream and downstream of a vented dam? 

Additionally, the premise of whether the streambed Ks has increased due to the hydraulic 

pressure exerted by head of water behind vented dams, or else declined due to settlement 

of very fine sediments and organics into the bed substrate is verified. Each situation may 

pose varying complexities to consider, and call for representative studies. 

In-situ measurement of streambed hydraulic conductivity all along the length of the 

stream may not be an ideal and cost-effective way. Hence, the soft computing approaches 

could be applied to induce a rule based relationship for estimating the values of streambed 

hydraulic conductivity at unmeasured locations using representative georeferenced 

neighborhood data. The artificial intelligence (AI) based spatial modeling schemes were 

tested to predict the spatial patterns of streambed hydraulic conductivity. The applicability 

of several AI approaches were tested and comparatively evaluated. 

1.10 Organization of the Thesis 

The thesis is organized into six chapters. 

Chapter 1 provides a brief overview on the composition and structure of streambed, factors 

that influence streambed hydraulic conductivity and its role in stream-aquifer interaction. 
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The relevance of geostatistical and artificial intelligence systems for spatial modeling of 

soil processes are discussed. It also includes the scope of proposed investigation. 

Chapter 2 provides a detailed review of literature related to the variability of streambed 

hydraulic conductivity across diverse landscapes and stream systems. It includes a 

summary of available laboratory and in-situ methods of estimating streambed hydraulic 

conductivity. The statistical and geostatistical methods employed for spatial interpolation 

of streambed Ks are qualitatively evaluated in this chapter. Based on the identified research 

gaps, the formulated research objectives are presented. 

Chapter 3 presents the description of the study area which includes the details of 

physiographic, geologic and climatic features of the Pavanje river basin. A brief description 

on field experiments carried out for data collection and the experimental procedure of 

Guelph permeameter are also reported. 

Chapter 4 discusses, in detail, the statistical and geostatistical methods employed to 

evaluate the in-situ determined streambed Ks data. The details of implemented spatial 

modeling schemes and theoretical overview of artificial intelligence approaches considered 

are also included in this chapter. 

Chapter 5 presents the results of statistical analysis of streambed Ks data along with the 

spatial interpolation maps obtained through geostatistical approaches. The performance of 

AI based spatial modeling schemes for the prediction of streambed Ks are also presented. 

Chapter 6 reports conclusions drawn based on the research insights gained from the 

experimental study findings along with the limitations of the study and future scope.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 General 

This chapter discusses, in detail, various geological, hydrological, anthropogenic, 

and biological factors that influence streambed hydraulic conductivity and summarize the 

available laboratory and in situ methods of estimating streambed hydraulic conductivity 

(Ks). The statistical and geostatistical methods employed for spatial interpolation of 

streambed Ks are qualitatively evaluated. The review focuses on the current status and trend 

of streambed hydraulic conductivity research. However, due to the complexity of this 

subject, it is unlikely to present all the factors concerning streambed hydraulic conductivity 

and its connections between streams and groundwater. Due to the limited amount of 

research on this subject, and also the variability across landscapes and stream systems, it 

is inappropriate to try to describe all the conditions that may be encountered, but it is hoped 

that this review will help inform broadly on the subject. 

2.2 Influence of geological and hydrological factors on 

streambed hydraulic conductivity 

2.2.1 Impacts of streambed composition and sediment properties 

The geology and hydrology based physical properties and factors are sometimes 

difficult to separate, but geology includes earth forming and modifying events over 
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substantial time periods that have led to the base landforms and landscapes now present. 

The geologic factors that primarily influence streambed hydraulic conductivity are 

sediment particle size, substratum heterogeneity, longitudinal variations in impervious 

surfaces such as bedrock and sills, bed material depth, channel geometry, variations in 

hydraulic radius, and roughness due to natural and anthropogenic modifications (Jackson, 

1981; Stewardson et al., 2016). The other influencing factors that are uncommon include 

events such as consolidation or alteration of sediments through time, volcanic, tectonic, 

earthquakes, folding, and fracturing and shearing of bedrock materials (King and Wood, 

1994; Dale et al., 2005). 

Tables 2.2.1 and 2.2.2 provide representative values of hydraulic conductivity for 

various unconsolidated sedimentary materials and soils interfacing with permeability 

classes which are sometimes applied in the discussion. The range of hydraulic conductivity 

varies over several orders of magnitude for each sediment particle size class, reflecting 

variability that might be caused by settling, clogging of fine mineral or organic particles, 

compaction due to the weight of eroded materials, etc. Hence, the determination of Ks is 

not that simple or precise, due to uncertainty in stream–aquifer interactions resulting from 

the inherent complex-nested flow paths and particle size differences in substrate layers that 

pose difficulty to make generalizations. 

Table 2.2.1 Hydraulic conductivity of various unconsolidated sedimentary materials 

Substrate Particle Type Hydraulic Conductivity (m/sec) 

Gravel -4 -23×10  to 3×10  

Fine Sand -7 42×10  to 2×10  

Medium Sand -7 -49×10  to 5×10  

Coarse Sand -7 -39×10  to 6×10  

Silt, Loess -9 -51×10  to 2×10  

Till -12 -61×10  to 2×10  

Clay 11 -91×10  to 4.7×10  

Un-weathered Marine Clay 13 -98×10  to 2×10  

Source: Domenico and Schwartz (1990) 
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The fundamental fluvial processes through time have implications applicable for 

measuring and modeling streambed Ks. The well-sorted, younger, fresh sediment deposits 

are likely to have a greater hydraulic conductivity than the formerly entrenched valley 

deposits due to more frequent and more irregular vertical and lateral changes in texture. As 

time passes, the colluvial and alluvial deposits in the valleys with repeated wetting and 

drying cycles tend to settle, coalesce, and develop into soils with vegetation development 

and more recognizable horizons. Alluvial fan deposits at valley floors are stratigraphically 

complex, commonly displaying a high degree of heterogeneity in their sediment properties 

indicated by the variance of Ks (Hamill and Bell, 2013). 

Table 2.2.2 Soil classification based on saturated hydraulic conductivity values 

Permeability of Soil 

(according the 

relative permeability) 

Approximate range of 

saturated hydraulic 

conductivity (m/sec) 

Examples of soil types 

Highly impermeable < 10-10 
Clays with low and medium and 

high plasticity 

Impermeable from 10-8 to 10-10 

Gravel loams, gravel clays and 

sandy clays, loams with low and 

medium plasticity 

Lowly (poorly) 

permeable 
from 10-6 to 10-8 

Sandy loams, loamy sands and 

clayey sands, loamy gravels and 

clayey gravels 

Permeable from 10-4 to 10-6 
Sands and gravels containing fine-

grained fraction (5 – 15 %) 

Highly permeable > 10-4 

Sands and gravels without or with 

very low fine grained fraction 

(<5%) 

Source: ISO/TS.17892-11 (2004) 

The interaction of stream–aquifer interface via hyporheic zone is often influenced 

by colmation (a process of plugging of the streambed substrate pores by the settling of the 

suspended colloidal matter leading to consolidation of the hyporheic zone and 

minimization the bed hydraulic conductivity). Clogged streambed sediments are 

characterized by tight packing and a compact texture, with a low porosity. Colmation 

results in a low permeability sediment layer, known as a colmatage (Brunke, 1999). If the 
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diameter of clogging particles is larger than pore throats of the porous medium, the 

particulate matter gets entrapped at pore constrictions at various depths resulting in 

decreased hydraulic conductivity of the porous medium. Finer-grained riverbed is more 

vulnerable to external clogging than coarse-grained (Rosenberry et al., 2010). The 

colmation/decolmation of porous media by accretion/erosion of organic and inorganic 

particulate matter reduces/increases the hydraulic conductivity of the porous media 

depending on the geometry of the porous medium. The clogging layer does not seem to be 

stable over the long term, because of seasonal hydrostatic pressure variations. During the 

rising stage of storm or flood events, the relatively abrupt shift in stream power may entrain 

and move particles so that the initial hydraulic conductivity of the streambed substrates 

could be regained by reworking the subsurface sediment structure and decolmation 

(Baveye et al., 1998). 

2.2.2 Impacts of stream morphology and basin topography 

The braided streams occur in rivers when the threshold level of sediment load 

significantly exceeds the single thread channel capacity resulting in the infilling or 

aggradation of the channel and to some extent valley surface with the development of 

multiple channels, often sinuous and low habitat. The braided pattern is anticipated to 

present the highest diversity and extent of surface and subsurface exchanges facilitating 

high hydrological connectivity and aquifer recharge (Tockner et al., 2009). Anastomosed 

channels are fairly common in tropical and subtropical low gradient systems such as marine 

terraces and broad valley floodplains. Anastomosed channels are braided, but stabilized in 

place by well-vegetated settings such as rushes and sedges or dense bottomland with often 

fine grain substrates; however, the gravel beds are sometimes exposed by avulsions (i.e., 

flow diversions) that cause the formation of new channels on the floodplain (Makaske, 

2001). Extensive cohesive deposits of fine sediments across portions of floodplains having 

a low hydraulic conductivity add to the variability of conditions found in some 

anastomosed sections (Heritage et al., 2009). 

In a meandering-river system, at zones where point bar accumulations of water 

washed sediments are accumulated, the stream water table interaction is favored with 
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potential ramifications for groundwater-aquifer recharge (Ward and Trimble, 2003). 

Nowinski et al. (2011) studied the meander-scale changes in hydraulic conductivity of an 

alluvial aquifer adjacent to a stream and reports the temporal patterns of hydraulic 

conductivity. The lower initial hydraulic conductivity zones become further less permeable 

due to the hyporheic transport of fine materials that are flushed from upstream decolmated 

areas. Straight channels are characterized by increased channel gradients, entrenchment 

(i.e., limited floodplain), high stream power, and erosion-resistant banks (Schumm et al., 

1984; Makaske, 2001). Without high gradient, natural straight channels are unusual 

without some geological control such as shear lineament. Alternate bars or side bars may 

still exist, but be poorly formed as a consequence of steeper gradients and higher velocities. 

The porosity and Ks of individual bars vary across the length of bar deposits, and those 

with gravel deposits are expected to have higher Ks in potential recharge zones during 

floods (Bridge, 2003; Obana et al., 2014). Recharge from the straight river channels may 

be larger locally because of a fractured, sheared geology or due to coarse surficial deposits 

of higher Ks (Matsuda, 2004). 

Streambed topography often controls the distribution of water level and substrate 

changes that contribute to seepage forces and alteration of Ks. The fluvial and glacial 

systems produce fractal distributions of recharge, discharge, and associated subsurface 

flow patterns (Wörman et al., 2007). Streambed facets, substrates, and bedforms control 

reach-scale hyporheic pore water flows. The Ks tends to increase with the amplitude of 

bedforms within the reach (Stewardson et al., 2016). The spatial patterns of hyporheic flow 

are often controlled by bed topography and channel hydraulics (Harvey and Bencala, 1993; 

Tonina and Buffington, 2011). 

2.2.3 Impacts of stream stage and velocity 

Stream stage and velocity has implications on stream power and its ability to 

entrain, move, redistribute, and deposit channel particles. Spatially, high gradient segments 

of stream channel such as riffles may be narrower with coarser substrates and a high 

velocity of flow, while lower gradient pool segments common to sinuous bends are wider 

and deeper with a tendency to accumulate finer materials with lower Ks values. Natural 
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disturbances could sometimes promote change and rejuvenation as the fine bed material is 

scoured away when disturbed during torrential flows or periods of groundwater influx that 

helps to backflush fines, resulting in an increase in the hydraulic conductivity (Hannula 

and Poeter, 1995; Hatch et al., 2010). However, it is difficult to generalize these changes 

for all substrates, as some become embedded and compacted through time, may be 

stabilized by vegetation and do not easily break up during high flows. There is a substantial 

difference in the erosion capacity between clean and sediment-laden waters.  

Flood events could induce temporal changes in streambed elevation and particle 

size composition, influencing the bed’s hydraulic properties and stream–aquifer fluxes 

during and after an event. Simpson and Meixner (2012) observed preferential entrainment 

of bed load, both coarse and fine sediments during the rising phase of flood hydrographs 

leading to overall bed coarsening and increase in vertical hydraulic conductivity. The 

introduction of large wood to stream systems adds complexity, diverts flow and energy, 

improves habitat, and alters the local substrate composition (Lassettre and Harris, 2001). 

Blasch et al. (2007) while modeling two sequential streamflow events, observed that the 

hydraulic conductivity of the streambed surface layer changed by about four orders of 

magnitude due to sediment redistribution from one event to the next. The rate of streamflow 

loss to the unsaturated zone beneath depends primarily on the stream stage, vertical 

hydraulic conductivity, and geometry of the streambed (Simonds and Sinclair, 2002). In 

the case of stream disconnected from water table (i.e., losing stream), Wang et al. (2014) 

observed a linear relationship between the vertical seepage rate and streambed hydraulic 

conductivity. The vertical seepage rate had a linear relation with stream water depth during 

laminar (low Reynolds number) flows and exponential relation during turbulent flows. 

In gaining reaches of the stream, Chen et al. (2013) observed a decreasing trend of 

streambed hydraulic conductivity due to the upward winnowing of fine substrate from the 

deeper sediment cores; however, in losing reaches, hydraulic conductivity of deeper 

sediment cores increased due to silting of fine substrate in the porous top layers of the 

streambed. Rosenberry and Pitlick (2009) observed quite a dissimilar kind of situation 

where the magnitude of vertical hydraulic conductivity varied on the subject of seepage 
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direction, the gaining stream reach holding a higher Ks than the losing stretch. This 

contrasting characteristic is site specific and may be attributed by the composition, weight 

of substrate materials and vibrations that compact and settle substrates, reducing or 

enhancing hydraulic conductivity. Of course, these circumstances would not be found 

everywhere and difficult to generalize, as sometimes fine materials from landslides bury 

channels, with coarse channel materials buried and possibly providing a conduit for high 

flow. 

2.2.4 Impacts of stream water temperature and viscosity 

The density and viscosity of water are temperature sensitive variables. The 

hydraulic conductivity of a porous medium depends upon the density (ρ) and dynamic 

viscosity of the fluid (μ) involved and also on the average size and shape of the pores in a 

porous medium. The relationship between water temperature, density, and viscosity are not 

linear, and as the water temperature approaches freezing, the density and viscosity 

increases (Prince, 1984); however, the density decreases if the temperature falls below 4 

˚C as ice forms and floats on the surface. In fact, permeability is directly proportional to 

the unit weight of the fluid concerned and is inversely proportional to its viscosity (Hamill 

and Bell, 2013). The effects of stream water temperature changes on viscosity and 

hydraulic conductivity of streambed are cited in literature extensively (Constantz et al., 

1994, 2008; Su et al., 2004; Cardenas and Wilson, 2007a,b; Constantz, 2008; Irvine et al., 

2015; Gerecht et al., 2011). In a streambed, the vertical and horizontal distribution of 

temperature is a function of both the advective and conductive heat transport process 

(Soares et al., 2012). Constantz et al. (1994) suggest that high infiltration rates cause rapid 

convection of heat to the streambed. In a system where the stream recharges the aquifer, 

the streambed could experience daily fluctuations in temperature that are attenuated and 

delayed with distance and depth from the surface water body (Cardenas and Wilson, 

2007a). Cox et al. (2007) articulate that the parameters such as water temperature variation, 

scour, and clogging of the streambed influences the hydraulic conductivity of the 

streambed and observed a variation of 41% in Ks seasonally due to temperature variations 

alone. To evaluate the effect of water temperature on streambed vertical hydraulic 
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conductivity, Dong et al. (2014) conducted in situ permeameter tests in Clear Creek, NE, 

USA, where the coarser sandy sediments had a greater increase in the extent of the vertical 

hydraulic conductivity value per 1 ˚C increase in water temperature than sediments 

composed of silt and clay layers. 

The streambed temperature will be highly variable in the case of a losing stream, 

but it will be relatively stable with little fluctuation in the case of a gaining stream (Lee et 

al., 2013). Stream thermal regimes are affected by outside influences such as air 

temperature, solar radiation, and heat loss as a result of evaporation. The instream 

geomorphic influences which facilitate heat transfer are processes such as hyporheic 

exchange of water, groundwater inputs from the adjacent water table, as well as the ability 

of the substrate to subdue heat exchange (Hester and Doyle, 2008). The hydro-geomorphic 

processes that drive changes in sediment texture are fine-scale granulometric variables such 

as oxygen, interstitial space, and organic matter translocation (McKenzie-Smith et al., 

2006) along with the sources of sediments, weathering, particle breakup from tumbling, 

chemicals, freezing, etc. Hatch et al. (2010) from their experiments noticed that a 30% 

decrease in fluid viscosity would yield a commensurate increase in hydraulic conductivity 

of the streambed. The temperature of water entering the soil changes as it moves through 

the unsaturated zone before entering the water table producing variations in soil 

temperature and water viscosity which could have a direct impact on hydraulic 

conductivity (Dong et al., 2014). Ronan et al. (1998) spotted increased infiltration rates 

beneath an ephemeral stream and recognized the water viscosity effects on hydraulic 

conductivity from increased stream temperature. Lu et al. (2012) discusses the impact of 

temperature on the estimates of hydraulic conductivity and verified the inverse relationship 

of Ks value with the kinematic coefficient of viscosity. Beneficial to many streams and 

aquatic habitats, extreme temperature swings are limited and moderated by flow through 

hyporheic zone substrates relative to their capacity to absorb and dissipate heat over time. 

Groundwater influx to streams also contributes cool waters that help to moderate 

temperature extremes. 
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2.3 Influence of anthropogenic activities on streambed 

hydraulic conductivity 

2.3.1 Impacts of land use change and urbanization 

Urbanization, industrialization, and changes in the land use pattern have resulted in 

local changes in weather patterns that in some instances may approach irreversible 

disturbances to the hydrological processes. The increase in the impervious area associated 

with urban development affects the hydrologic cycle and consequently, there is an 

enhanced risk of channel instability and urban flooding (Niehoff et al. 2002). Urbanization 

often increases the discharging of pollutants to streams and water bodies from a variety of 

point and non-point sources. Physical changes as a result of soil compaction and vegetation 

losses within riparian zones may also alter water quality and hydrologic functions. The 

uncontrolled discharge of domestic, commercial and industrial wastewater to nearby ponds 

or rivers has the potential to cause major ecological and sustainability problems for the 

river inhabitants (Yule et al. 2015). Deforestation increases the runoff two to six times over 

what would occur naturally, reduces the vegetation transpiration, raises the water table, 

accelerates soil erosion, bank instability, and channel adjustments. Deforestation also 

affects the normal stream nutrient cycling, leaching, and transportation processes, some of 

which are desirable for ecological function (Biggs et al. 2002; Iwata et al. 2003). Due to 

deforestation, at landscape scales, the dense canopies, stabilizing root systems and 

increased filtering associated with stream buffers are destroyed, exposing streams to 

increased solar energy, erosion and pollutants. Excessive snagging and removal of large 

wood and aquatic plants from the channel could initiate bed level lowering as well as 

impact habitat diversity (Erskine and Webb 2003). Thomas et al. (2004) found greater 

siltation and exposure in deforested streams contributing to the development of a fine-

grained, organic-rich stream bed with increased presence to dominance or infilling by 

aquatic vegetation. 

As demonstrated in the field studies of river contamination, riverbeds play a vital role 

in the transport, filtering, and fate of contaminants in river systems (Jang and Liu 2005; 
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Barth et al. 2007; Gates et al. 2009; Sehgal et al. 2012). Contaminants may enter and leave 

the bed of the river by a variety of mechanisms (Zhu et al. 2014). Diffuse (non-point) 

sources of contaminants such as activities or actions which expose soils to erosion and 

connect to lotic waters sometimes transport sediments along with pollutants. Point sources 

of pollution are directly discharged wastes or wastewater from the industry, domestic use, 

community or urban releases from waste storage ponds or lagoons, and by the use of agro-

chemicals during irrigation and return flows (Nie et al. 2012). As long as the concentration 

of the contaminants is higher in the recipient water than in the pore water of the sediments, 

the net mass transport is directed into the sediments. Hence, the sediments act as a sink of 

contaminants (Forsman 2000), sometimes taking time for contaminant breakdown or 

continuing dilution of concentration as mixing occurs. However, contaminated sediment 

erosion and transport is a mechanism to consider if a breakdown does not occur. The 

hydraulic conductivity and porosity of the contaminated streambed sediments are the result 

of both erosion and depositional processes that take place in streams or rivers to produce a 

unique set of pore space geometries in the course of progressive adjustment and 

stabilization of the sediment layers through time (Messina and Biggs 2016). Weathering 

effects, which encourage for chemical breakdown of contaminated sediments, allow for 

settling and sediment embeddedness with trends to decrease particle size and the hydraulic 

conductivity of the streambed. 

Intensive pumping of groundwater near streams has the potential to disconnect the 

aquifer from stream water inputs or changing the flow fields from the stream to the pumped 

aquifer system. The aquifer configuration and type of sediments in the stream channel 

controls the recharge rate of the underlying water table (Wang et al. 2011). Various types 

of other anthropogenic activities also influence streams, streambeds and groundwater 

interactions; including hydrologic modifications associated with wetland draining, stream 

ditching, channel straightening, channel dredging and realignment for transport, dikes or 

dams of various types and intensities of flow alteration, culverts and bridges, dispersion of 

mine tailings into streams or lakes, mining of instream materials such as sand, gravels, etc. 

These anthropogenic activities could alter the chemistry, channel morphology and 

function, streambed substrate, particle size, composition, hydraulic conductivity, 
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groundwater connectivity, flow permanence and other factors that affect water, sediment 

and pollutant movement (Jiang et al. 2010). Extensive best practices or professional guides 

have been prepared for many circumstances and anthropogenic activities to help prescribe 

reasonable approaches for protection of water quality, and it is likely that some of these 

measures such as forested stream buffers (Welsch 1991) may benefit in maintaining 

stream-aquifer connectivity and function.  

2.3.2 Effects of engineering structures across or within a river/stream 

Erection of hydraulic structures are often designed specifically to alter the natural 

flow of water and as a result, affect sediment and pollutant transport, leading to adjustments 

such as the localized growth or erosion of deposits and changes to the carrying capacity 

and functions of a river (Skalak et al. 2009). Fragmenting streams with dams, diversions 

and less frequently road culverts disrupt the longitudinal connectivity and capacity of a 

stream. It is known that after the construction of a dam, dike, weir or a barrage, accretion 

starts upstream in response to the grade shift with lower stream velocity, whereas 

retrogression takes place downstream due to inefficient energy dissipation by the discharge 

of clean water from elevation. Another effect of aggradation is the increase in tortuosity, 

sinuosity or even braiding of the channel upstream due to the loss in gradient and ability to 

transport sediment. The tendency for increasing tortuosity could be illustrated, by 

comparing the unaffected reference stream sinuosity and meander belts with sections 

affected by structures (Allan and Castillo 2007). In general, the larger and higher the dam, 

the greater the influence, while small or instream structures may produce only localized 

effects.  Proper design and placement of small structures such as J-hooks and cross vanes 

could be used to reduce near bank stresses, effects of localized excessive sediment 

accumulations near bridges and habitat benefits (Rosgen 2001). Meandering alterations in 

low gradient systems may lead to adjustments or diversion of flow such as outflanking of 

hydraulic structures. Flow avulsion may not only be caused by diverting flow into a 

meandering channel that lacks capacity, but also if the river shifts its course to join other 

low-lying rivers. These kinds of changes indeed alter the affected stream-groundwater 

connections. 
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The tail-water releases of waters below the dam downstream are appreciably affected 

by the clean water effect, as these waters are hungry for sediment to the extent that stream 

degradation, bank and point bar erosion are typically significant. The channel gradient 

increases somewhat and this may extend over a considerable length downstream near large 

structures. The dam structure reduces the dominant discharge of a river and its fluctuations. 

The downstream channel tends to straighten, thus reducing the meander tendency 

(Mazumder 2004). Dams decrease the pollution effect considerably in the downstream part 

by lowering the pollution load coming from the source (Tahmiscioğlu et al. 2007). 

Downstream channels with lower than normal flows, may be invaded by vegetation and 

loose channel capacity, leading to increased flooding during severe floods.  Regular 

channel maintenance flows every year or two as capable are prescribed to help reduce 

vegetation encroachment and maintain channel capacity, even though degradation is a 

potential for some sections.  Measures to help maintain sediment transport through dams 

is sometimes employed to help reduce these effects. 

The function of constructed embankments or levees along the flow of a river is to 

restrict access to the floodplain through a physical barrier or through channel adjustments 

in morphology that generally increases the stage and the velocity of the flood flow. With 

the increased velocity and potential for degradation, the total silt carried downstream to 

other low gradient areas or to the sea/ocean by an embanked river would be more than that 

of an unbanked river. Other conditions being the same, unless deposited before the basin 

outlet, the rate of extension of the delta with more sediment delivered would be greater. 

Greater extension of the delta with an increase to base-level may cause portions (i.e., lower 

gradient) of the embanked river to rise and result in building up of the river bed. Hydraulic 

changes to rivers do not always produce the effects desired and are seldom permanent 

changes.  In the case of stable rivers, embankments may raise the flood level but are less 

likely to induce a change in the river bed configuration (Garde and Raju 2010). 

Embankments may be supplemented by other flood control measures such as storage 

reservoirs, diversion of the river, soil conservation practices, etc. Failure of these structures 

sometimes causes much more damage than would have naturally occurred, and that is why 

flood preparation and managing of water controls previous and during eminent hazards are 
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important elements to consider. The net effects of these structures to stream and 

groundwater interchange are seldom considered, analyzed or known.   

Bed load transport in mountainous streams varies with the geology, gradient, sources 

of material, flow intensity, stream power, and the riverbed structure. Corrugated metal 

culverts can be worn and damaged under high bedload transport conditions, suggesting 

bridges may be needed and cost effective for sustainable passage (Hansen 1987). Dams or 

similar structures are likely to capture this load and may be a reason to avoid structures in 

high gradient systems. Zhang et al. (2010) articulates that the bed load transport rate varies 

in a range of 3-4 orders of magnitude in a mountain stream at the same place and under 

unaffected flow discharge, with the presence or absence of a step-pool system. Check dams 

are sometimes used to augment habitat, stabilize mountainous streams and landslide 

hazards. A point to remember is the higher the check dams, more hydrologically unstable 

they are. Located, designed and installed inappropriately may cause more issues than 

leaving the stream alone. The construction of check dams can produce changes in channel 

cross-sectional geometry, grain-size distribution, bed forms, bed slope and riparian 

vegetation. Sediment and/or bedload retention behind check dams can facilitate localized 

channel widening or narrowing, armoring and/or incision downstream (Wohl 2010). On 

watersheds with coarse soil textures, check dams may be particularly effective due to 

greater sediment retention and formation of a permeable bed, with a better mix of substrate 

materials to add diversity (Polyakov et al. 2014). Low rise check dams have some benefit 

for grade control such as in gully systems (Rosgen 1994). Spur dikes, deflectors, groins, 

rock vanes, cross vanes and J hooks are transverse structures that extend into or across the 

stream from the bank and reduce erosion by deflecting flows away from the bank and 

reducing bank stress (Rosgen 2001). Generally, two or three rock vanes (discontinuous, 

redirective structures) are constructed along the outer bank of a bend in order to redirect 

flows near the bank towards the centre or thalweg of the channel. By designing structures 

to maintain a channel thalweg helps to reduce this potential for diversion. Some structures 

such as gabions can settle or move if not adequately anchored or keyed into channel, slope 

or position. Continuing update and review of anthropogenic modifications and instream 

structures are needed to consider their effects to manage flows, flood damage, aquatic 
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passage, habitat, stream morphology and stability, sediment and bedload transport, water 

quality and stream-aquifer interactions.  

2.4 Influence of biological factors on streambed hydraulic 

conductivity. 

The removal of riparian (streamside) vegetation may lead to a reduction in bank 

stability and contribute to failure if soils are unstable.  Activities that reforest or replace 

vegetation losses or allow for partial removal and regrowth are best to maintain stability as 

a general rule or best management practice. Vegetation removal may result in bank erosion 

or failure and stream siltation of fine sediments locally or downstream. The siltation 

generally reduces the number and capacity of pool sites, hydraulic conductivity due to finer 

materials and increases habitat homogeneity (leading away from pollution intolerant 

macroinvertebrates toward tolerant species). On slopes, over about 35%, special measures 

such as directional felling or adjusting logging systems may be needed to selectively fell, 

log or thin stream sides.   

Riparian ecosystems are biologically active zones of diversity and productivity, and 

also often act as a sink for nutrients or pollutants from runoff waters (Sabater et al. 2000). 

Trees and shrubs physically constrain and retain the soil near the stream banks, thereby 

protecting the streambed and limiting the scouring effect of running water. In regions with 

high organic matter accumulation (e.g., leaf litter buried in alluvial deposits) an actively 

growing biofilm might clog sediment or soil pore spaces and thereby reduce the hydraulic 

conductivity of the streambed (Chestnut and McDowell, 2000). Biofilms predominantly 

develop on small sediment particles because of their large surface areas. Biofilms have a 

low porosity and therefore result in localized areas of low Ks. Riparian vegetation helps to 

provide shade and cooler air temperatures that contribute to the cooler and consistent 

stream water temperatures. In cold weather circumstances, heavily vegetated stream 

buffers may locally help to capture snow or retain warmth to buffer the heat exchange. The 

nutrient buffer capacity of riparian zones depends on the complex combination of 

landscape and hydro-geomorphologic variables (Gu et al. 2007; Garrett et al. 2012). The 
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presence of roots in riparian and channel substrates can contribute to subsurface flow 

conduits or underground blockages. In addition, the presence and burial of wood debris 

within sediment deposition events can also add to substrate complexity and function 

(Lassettre and Harris, 2001; Erskine 2002). Wood that remains saturated has limited ability 

to decompose, while wood frequently exposed to air and associated macro and 

microorganism will decompose faster, increasing opportunity for voids, settling and 

localized water passageways (Lassettre and Harris, 2001). Song et al. (2010) provide 

evidence of bioturbation activities which could result in increasing the streambed hydraulic 

conductivity profiles.  

Tremendous complexity exists in fluvial systems and factors such as stream flow 

patterns; channel form; transport processes; and the distribution of riparian vegetation or 

woody debris that affect specific stream channel responses resulting in an irregular 

distribution of sediment supply (Abt et al. 1994). Organic sediment is derived from 

decaying accumulations of leaves, woody debris, algae, florae, and/or other organic 

material that develops falls or is delivered into streams (such as foliage). The microbial and 

macroinvertebrates attached to the debris or other inert matter contribute to the breakdown 

and processing of organic matter. Organic sediment transport through a fluvial system 

varies by location and season and is more difficult to quantify when compared to that of 

mineral sediment movement (Wynn and Mostaghimi, 2006). Organic and timber debris are 

sometimes more notable in bedrock and boulder-bed streams; it crafts a part of the stream 

geomorphology and permits a stabilizing effect. Streambeds buried or dominated by very 

fine sediments and nutrient accumulation, exposed to the sun, and with little flow 

disturbance have increased risk of clogging due to algal blooms. In contrast, sediment-

starved streams may be incapable of accumulating organic materials or providing diverse 

habitats for benthic organisms (Quinn et al. 2009). Aquatic plants or periphyton may shield 

the shoreline, or streambed substrates, consume nutrients and contaminants from the water 

and may help stabilize the streambed sediments. They may also limit normal hyporheic 

water, particle mobilization or transport and add roughness to reduce flow velocity which 

would promote finer particle settling. 
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The activities and response of various organisms that live in streambed hyporheic 

zone have the potential to breakdown clogged substrates and bioremediate contamination 

for the improvement in the groundwater quality relative to its future uses without added 

treatment (Whelan 2007). Sediment reworking by macroinvertebrates as well as others 

such as fish spawning may increase the Ks of river bed locally. Chemical processes within 

the hyporheic zone may result in mineral dissolution or precipitation, which will increase 

and decrease water density and Ks seasonally. Hyporheic zones usually support a variety 

of substrate habitats that may accommodate, depending on water quality, a variety of 

invertebrate species including ostracods, copepods, amphipods, tardigrades, nematodes, 

oligochaete worms, rotifers and early instars of aquatic insects. These fauna and flora 

within the hyporheic zone are significant contributors to organic and nutrient cycling in 

streambeds (Clarkin 2008). 

2.5 Laboratory and in-situ methods of estimating streambed 

hydraulic conductivity 

Streambed Hydraulic Conductivity (Ks) measurements have been performed using 

a variety of techniques.  Instream methods of determining Ks include slug tests (Duwelius 

1996; Cey et al. 1998; Springer et al. 1999; Ryan and Boufadel 2007), in-situ permeameter 

tests (Lindgren and Landon 2000; Rosenberry 2000; Chen 2004, 2005; Chen et al. 2008; 

Genereux et al. 2008; Huang et al. 2014; Jiang et al. 2015) and seepage flux measurements 

using seepage meters coupled with measurement of hydraulic gradient through the 

streambed (Landon et al. 2001; Murdoch and Kelly 2003; Rosenberry 2008; Rosenberry et 

al. 2012). In addition, streambed samples can be collected for grain-size analysis and Ks 

could be estimated from pedo-transfer functions based on grain- size distribution (Boadu 

2000; Song et al. 2009). Although field permeameters and seepage meters coupled with 

hydraulic gradient measurements determine vertical hydraulic conductivity (Kv), the slug 

tests measure horizontal hydraulic conductivity (Kh); and the hydraulic conductivity (Ks) 

values from grain-size methods are non-directional (isotropic). Reynolds et al. (2000) 

employed positive-head tension infiltrometer (TI) and single-ring pressure infiltrometer 

(PI) and classical undisturbed soil core (SC) methods for measuring Ks of single-grain sand, 
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structured loam, and cracking-clay loam soils. Cardenas and Zlotnik (2003) experimented 

with multilevel constant-head injection tests and multilevel slug tests to gather streambed 

hydraulic conductivity values. Piezo-Seep meter provided improved estimates of vertical 

saturated hydraulic conductivity, specifically in streambeds of medium to coarse textured 

sediments in the study conducted by Kelly and Murdoch (2003). Accurate evaluation of 

soil hydraulic conductivity, soil sorptivity, and matrix flux potential could be made in all 

types of soils using Guelph permeameter (Reynolds and Elrick 1985; Fares et al. 2000; 

Kodešová et al. 2010; MacDonald et al. 2012). For highly permeable gravel beds, Yamada 

et al. (2005) developed a packer test system based on Hvorslev’s equation (Hvorslev 1951) 

for the in-situ estimation of streambed hydraulic conductivity. Laboratory determined 

values may be more precisely measured, but rarely agree with field measurements. Field 

methods are generally more reliable than laboratory methods due to the closer 

approximation to natural conditions and lower disturbance while sampling. (Scott 2000). 

In addition, field sampling of streambed and valley bottom materials may exhibit 

variability of particle sizes resulting from various types of erosion and deposition processes 

of materials associated with vertical and lateral accretion, colluvial, splay, alluvial fan, and 

deltas (Happ et al. 1940; Trimble 2008). Piping in certain types of fine grained soil and 

weathered substrate materials can lead to rapid movement of water and sediments 

underground. An understanding of the geology, climate and hydrology forces of recent and 

past, and ample sampling of substrates should help to reveal and quantify the potential 

and/or presence of the variances caused by these variables. Decisions on how to conduct 

sampling for research and interpretations using in-situ or laboratory readings may be an 

iterative process that applies to the specific circumstances and intent.   

Other methods such as those described by Garrett et al. (2012) on end member 

analysis of water chemistry, and others who use radionucleotides or fluorescent dyes in 

tracing water flow rates or transfer are examples of alternative methods (Abbott et al. 

2016). Using fluorescent dyes, visual responses are possible, but fluorimeters can detect 

and quantify low concentrations in the parts per billion (ppb) range, well below 

visualization concentrations (Baker and Lamont-BIack 2001). A constant injection rate 

28



 

study of a known fluorescent dye concentration and monitoring concentrations downstream 

or in the hyporheic zone with fluorimeter at various levels could help define levels of 

dilution and rates of flow or exchange in layers (Holland et al. 2004). Applying 

hydrogeology and well-driller techniques of timed pumping or injecting water into wells 

with monitoring water levels in well or adjacent wells may also prove helpful in defining 

some of the local hydraulic conductivity processes.  A sampling of coarse channel 

substrates with various methods of freezing materials (or freeze coring) has also been used 

to help remove relatively undisturbed samples for particle size analysis (Everest et al. 1980; 

Ulrich et al. 2015). Coating non-cored, relatively undisturbed frozen samples with paraffin 

may facilitate follow-up with laboratory testing for hydraulic conductivity. 

2.6 Statistical and geo-statistical techniques employed for the 

assessment of spatio-temporal variability of streambed 

hydraulic conductivity   

Previous studies have found a significant spatial and temporal variability in the 

valley and streambed sediments (Hannula and Poeter 1995; Reynolds et al. 2000; Landon 

et al. 2001; Hatch et al. 2010). Statistical measures are frequently used to design a sampling 

network and describe field data in terms of measures of central tendency and variability. 

Table 2.6.1 provides a detailed information regarding the statistical techniques employed 

in the literature of streambed hydraulic conductivity assessment. Presently, there are a 

variety of procedures for generating interpolated hydraulic conductivity (Ks) fields from a 

sparse set of Ks measurements. Geostatistical spatial characterization of a specified 

variable involves the generation of maps and predicting values of that particular variable 

at numerous unsampled locations. These methods are best used with care and consideration 

of geology, hydrology, soil and topographic properties associated with the conditions as 

the distribution of particles, substrates, channel morphology, etc. are not necessarily 

random populations, but often affected by recognizable factors such as valley type, channel 

gradient, sinuosity, entrenchment and stream type (Clément and Piégay 2005).  
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Table 2.6.1 Statistical and Geo-statistical techniques for the assessment of variations of streambed hydraulic conductivity. 

Reference 

& Test site 

Statistical 

Measures  

Geo-statistical 

Measures  
Applications Implications 

Chen (2004) 

Republican, 

Platte and 

Little Blue 

Rivers 

Measures of 

Central 

Tendency and 

Variability 

 

Kruskal-Wallis 

test 

 The Kruskal-Wallis test to 

determine the significance of the 

difference of Kv values between 

two test sites of the same river 

and between the test sites of two 

rivers. 

The Kruskal-Wallis test indicated a significant 

statistical difference of the Kv values between 

the Republican and Little Blue Rivers and 

between the Platte and Little Blue Rivers but 

found no such significant statistical difference 

between the Platte and Republican Rivers. 

Little Blue River is a smaller size hydrologic 

unit. 

Chen (2005) 

Platte River, 

USA 

Shapiro-Wilk test 

 

Kruskal-Wallis 

test 

Variogram fitted 

using the least 

squares methods 

Shapiro-Wilk test to check 

whether a sample is from a 

normally distributed population. 

Kruskal-Wallis test to determine 

the similarities of the Kv values 

from the test sites. 

Kv values of the Platte River in south-central 

Nebraska showed a normal distribution. 

A positive correlation was observed between 

Kv and the water depth which produced 

Periodicity of Kv values across the channel. 

Ryan and 

Boufadel 

(2007) 

Indian 

Creek, 

Philadelphia 

Kolmogorov–

Smirnov test 

Variogram 

analyses  

The Kv measurements at each 

depth were checked for Gaussian 

distribution. The combined data 

set deviated from the Gaussian 

distribution. The normal 

distribution of Kv (95% 

confidence level) at each depth 

was tested by Kolmogorov–

Smirnov test. 

Variogram analyses across the stream 

suggested symmetry – (in the upper layers of 

thalweg) and fractality - (in the lower layers). 

The variogram of ln Kv of the upper layer 

sediments suggests that fine sediments get 

trapped along the stream edge with low 

velocity and pressure head. 
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Genereux et 

al. (2008) 

West Bear 

Creek, North 

Carolina 

Measures of 

Central 

Tendency and 

Variability 

Exponential-

semivariogram 

models 

 

Contour maps 

Contour maps brought out 

anisotropic aspects of the Ks 

distribution without an 

anisotropic interpolation routine. 

The streambed Ks upstream and 

downstream of a small beaver 

dam were analyzed. 

Slightly bimodal distribution of the Ks was 

observed via histogram plotting. 

Higher Ks in the center of the channel indicated 

gateway for water and chemical fluxes through 

the streambed. 

The average streambed Ks was about 23% 

lower on the upstream of the dam. 

Leek et al. 

(2009) 

Touchet 

River, USA 

 Kolmogorov–

Smirnov (K-S) 

test 

 

Wilcoxon rank-

sum test 

 median two-

sample test 

 K-S, Wilcoxon rank-sum, median 

two-sample tests determine the 

differences in empirical 

cumulative distribution function 

(CDF), mean, and median of Ks 

between the two study sites and 

two depth intervals at each site. 

All the three tests approved the similarities in 

empirical CDF, mean, or median among certain 

depth intervals. On the other hand, the spatial 

patterns of Ks in channel sediments varied from 

one depth interval to another. 

Gaining and losing zones based on vertical 

hydraulic gradient varied among different 

depth intervals, suggesting the complexities of 

the water flow regime. 

Hatch et al. 

(2010) 

Fourth-order 

stream of 

Pajaro River, 

USA 

 

Cross Plots 

 

Ranges of Kv 

 Relationships between streambed 

hydraulic conductivity, discharge, 

and seepage rate were 

demonstrated through ‘Cross 

plots’. 

Local-scale variations in streambed seepage 

due to streambed topography was observed. 

The cross plot suggested a hysteresis 

relationship between streambed conductivity 

versus seepage rate. 

During higher discharge periods, increased Ks 

and seepage rates were observed due to bed 

scouring, however, as the discharge reduces, 

the sediment deposition progresses decreasing 

the seepage and Ks of bed. 
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Chen (2011) 

Platte River, 

USA 

 Kruskal–Wallis 

test 

  

 Mann–Kendal 

test 

 Kruskal–Wallis test to determine 

whether the Kv values from the 

three depth ranges have the same 

mean. 

Mann–Kendal test to detect the 

trend of Kv for channel sediments 

from the shallow to the deep part. 

The results rejected the Kruskal–Wallis test 

hypothesis at 80% level of confidence 

indicating that two populations (bed depths) 

have different means. 

The Mann-Kendal test rejected the hypothesis 

at 95% level of confidence indicating a 

decreasing Kv trend with depth. 

The hyporheic processes could affect 

streambed Kv distribution patterns for about 9 

m below the channel surface. 

Cheng et al. 

(2011) Platte 

River, USA 

Jarque–Bera (J-

B) test 

 

Kolmogorov–

Smirnov (K-S) 

test 

 

Lilliefors test 

 

Shapiro–Wilk (S-

W) test 

 

t-test 

Exponential-

semivariogram 

model 

(J-B), (K-S), (S-W) and Lilliefors 

tests determine whether 

streambed Kv at each test site is 

normally distributed. 

S–W test requires sample size N 

(7 ≤ N ≤ 2,000). The K–S and 

Lilliefors require sample size N 

(N ≥ 2,000). 

A t-test with unequal variance 

determines whether streambed Kv 

differs significantly between 

different test sites. 

The sites where the normal distribution of 

streambed Kv was observed suggested 

sediments were well distributed and belong to a 

single population of Kv. For sites where 

normality tests failed, the sediments deposited 

belong to different hydrogeological processes, 

including geological conditions, geomorphic 

history, and physical transport processes. 

A part of the population of samples was 

reduced to independent samples by drawing out 

the spatially correlated samples by using an 

exponential-semivariogram model. 
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Dong et al. 

(2012)  

Two point 

bars 

locations in 

Clear Creek, 

Nebraska 

 Kruskal–Wallis 

test 

 The Kruskal–Wallis test 

determines whether the Kv values 

from the point bars and from the 

streambed statistically belong to 

different populations. 

The streambed and point bar Kv values were 

heterogeneous.  

The smaller Kv values in the point bar locations 

result due to a weaker hydrodynamic condition 

that deposits fine materials at the point bar 

edge. 

Lu et al. 

(2012) Platte 

River, USA 

Kolmogorov–

Smirnov (K-S) 

test 

 

Sign test 

 K-S test to determine for normal 

distribution, log-normal 

distribution, uniform distribution, 

and exponential distribution 

respectively. 

Sign test - nonparametric test to 

determine if one group tends to 

produce different values from 

another group. 

The Ks value and kinematic coefficient of 

viscosity of water had an inverse relationship. 

Since, Ks is a complex function of sediment 

packing, structure, heterogeneity, and several 

other factors, the Ks values determined from 

grain size analysis and empirical formulas 

don’t represent any specific direction 

(anisotropic). 

Min et al. 

(2013) 

Donghe 

River, China 

 Shapiro–Wilk 

Test 

  

 Spearman 

Bivariate 

Correlation 

analysis 

 Shapiro–Wilk Normality Test 

determines whether Ks or ln Ks is 

normally or lognormally 

distributed. 

Spearman Bivariate Correlation 

analysis determines whether two 

non-normal distributed variables 

are significantly correlated at the 

95% confidence level. 

Ks values determined from Standpipe 

Permeameter were normally distributed, at the 

95% confidence level. However, the Ks 

determined using Falling-head Permeameter 

was log-normally distributed although not 

normally distributed. 

There was neither a statistical correlation nor 

difference between the Ks values of the upper 

and lower layers. 
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Chen et al. 

(2013) Platte 

River and its 

tributaries, 

USA 

 Measures of 

Central 

Tendency and 

Variability 

  

 Kruskal–Wallis 

test 

 Kruskal–Wallis test to determine 

if there are statistically significant 

differences between two or more 

groups of Kv. 

A decreasing trend of Kv was realized in the 

gaining streams. Higher Kv values occurred in 

the parts of the channels with greater water 

depth Opposite vertical Kv distribution patterns 

was perceived in gaining and losing streams. 

The Kruskal–Wallis test indicated that Kv of 

the gaining streams differs from Kv of the 

losing streams. In the losing streams, Kv 

increased downward from the channel surface 

to depth of about 5 to 10 m. In the gaining 

streams, Kv values showed a decreasing trend 

due to the upward flux of suspended sediments, 

which enhanced the pore spacing and elevated 

the Kv values in the top layers of the streambed. 

Datry et al. 

(2015)  

101 river 

reaches of 

French river 

monitoring 

network 

 Mann–Whitney–

Wilcoxon test 

  

 Wilcoxon 

signed-rank test 

 Mann–Whitney–Wilcoxon test to 

compare the mean of Ks values 

between a priori clogged and 

reference reaches. 

Wilcoxon signed-rank tests for 

assessing seasonal differences in 

reach-scale Ks and to assess 

potential observer’s bias. 

The distribution of streambed Ks was not 

normal across 101 stream reaches, and a large 

proportion of the values were null. The 

variability in Ks within-reach was high and 

influenced by penetrating depth and hyporheic 

exchanges. 

No significant influence of season on reach-

averaged Ks values and bias in measures by 

two different observers  
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Wu et al. 

(2015) 

Dawen 

River, China 

Kruskal-Wallis 

(K-W) test 

 

Kolmogorov–

Smirnov (K-S) 

test 

 K-W test determines whether two 

groups of the Kv values belong to 

the same population. 

K-S test determines whether a set 

of measurements come from the 

hypothesized distribution such as 

the uniform, the normal or the 

lognormal distribution. 

The sediment Kv values of the upper four layers 

before the flood season were distributed 

normally, while the Kv values of the fifth layer 

were lognormally distributed. 

The Kv values before and after the flood season 

statistically differed. 

The difference in Kv and its distribution 

patterns before and after the flood season were 

attributed to the infiltration of fine-grained 

particles. 

Wang et al. 

(2016a) 

Weihe River, 

the largest 

tributary of 

the Yellow 

River, China 

 Kruskal-Walls 

(K-W) test 

  

 Shapiro-Wilk test 

 Kolmogorov- 

Smirnov (K-S) 

test 

  

 Cox-Stuart test 

 Spearman 

Correlation test 

 The K-W test determines if 

streambed Kv values differ 

significantly between two test 

sites, between two sampling times 

or between two different layers. 

The Shapiro-Wilk test and K-S 

test were applied to verify the 

normal and log normal 

distributions of combined and 

individual datasets. 

Cox-Stuart test to detect the trend 

of median Kv values. 

Spearman Correlation test to 

measure the strength of the 

relationship between Kv values 

and water depth. 

The median Kv values showed no evidence of 

significant trends with time.  

K-W tests with the Bonferroni correction 

suggested no significant differences in the Kv 

values at each site and weak evidence of 

differences of Kv between the upper and lower 

layers.  

Larger particles of streambed sediments were 

responsible for higher Kv values while the 

lower Kv values were observed at locations of 

fine-grained sediment. 

The clogging with fine sediments and 

embedding of substrates with fines along 

channel margins were observed rather than in 

the thalweg of the river, perhaps resulting in 

heterogenous streambed hydraulic 

conductivity. 
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Kriging with semi-variogram models such as spherical, exponential and gaussian 

models are individually used to quantify the spatial variability of random variables between 

two sites and describe monotonic features of spatial correlation as the lag distance 

increases. Cardenas and Zlotnik (2003) generated a 3D hydraulic conductivity field 

through the application of 3D kriging module of Mining Visualization System where a 

spherical variogram model is fitted to the field data. Jang and Liu (2004) used Ordinary 

Kriging and Sequential Gaussian Simulations (mean and individual) to estimate the spatial 

variability and distribution of the hydraulic conductivity. Chen (2005) observed a positive 

correlation between vertical hydraulic conductivity (Kv) and the water depth from the 

variogram fitted using the least squares method. Semi-variograms and contour maps were 

developed by Genereux et al. (2008) to aid in visualization of the spatial variability in 

hydraulic conductivity. Cheng et al. (2011) fits an exponential model to the experimental 

semi-variogram along the flow direction at each test site to identify the horizontal and 

vertical correlation between independent samples. Kriging with semi-variogram modeling 

are collectively used to quantify the spatial variability of random variables between two 

sites and describe monotonic features of spatial correlation as the lag distance increases. 

The extent of remote sensing, geographic and hydrologic tools continues to expand and 

offer the potential for new approaches in design and analysis.  

2.7 Summary of literature review 

The review provides an overview of the factors such as streambed composition, 

morphology, topography and other hydro-geo-ecological factors contributing to the 

variability of streambed hydraulic properties. Examples of research were provided that 

were intended to help inform others by compiling information on the hydraulic, chemical, 

and meteorologic gradients that help define and determine the fluxes of water, energy, and 

solutes between streams and aquifers. Many researchers acknowledge that streambeds are 

intensely heterogeneous in both space and time. Literatures document that flood events 

change the structure of streambeds through erosion (degradation, aggradation, sediment 

transport, and/or material washing) resulting in significant differences in streambed Ks 

patterns. Some indeed mention that stream sinuosity and facets (riffles, runs, pools, and 
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glides) also process water, erosion, and sediment differently that add spatial complexity in 

association to the topographic position and scale, from headwaters, to stream or river 

valley, to outlet. A large portion of field researchers express that it is very challenging to 

identify, stratify, and characterize the erosion/sedimentation events deterministically. 

Some researchers conclude that the streambed hydraulic conductivity study should 

probably favor rivers or streams in equilibrium as controls, not actively aggrading or 

degrading, before attempting to compare with modifications or activities that bring on 

unstable conditions where change may be ongoing. Some literatures mention that studies 

in persistent stream bed such as bedrock with stability controls (stable systems), may not 

offer as much to the subject of variability of streambed conductance as one with a 

continuous supply of sediment materials.  

2.8 Research gaps identified based on literature review 

The hydraulic conductivity of the dynamic stream bed is difficult to predict and 

research. However, the in situ measurement of Ks values and other physical properties 

(such as streambed porosity, viscosity, water temperature, and particle size analysis) at 

regular interval for longer time periods could help in developing seasonal time series 

models which help to interpret the spatio-temporal variations of streambed Ks. At this 

stage, most of the experimental design and sampling is aimed at the understanding of the 

variability, processes, and functions that connect streams, hyporheic zones, and 

groundwater.  Putting these components together to help identify and model stream 

network and landscape processes are still at an early stage of consideration. 

The effects of in-stream structures on river/stream functions and their influences on 

the variability of streambed composition and hydraulic properties is seldom considered or 

known in the past. Channel morphology changes due to aggradation, degradation, and 

sediment storage. With clean water releases from dams, downstream erosion, substrate 

flushing, and sorting are the processes contributing to Ks variability with some potential to 

change with time. Researchers are expected to continue to consider, add, and expand their 

ability to characterize the spatial and temporal variability of streambed hydraulic 
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conductivity as a means to increase understanding of water interchange, channel filtering, 

etc. 

2.9 Problem formulation 

In the Western Ghats of Indian peninsula, the hydrological activity under the 

influence of south-west monsoon is more intensive. High variability in the stream flows 

consequent to the prevailing monsoon is a characteristic of the rivers in this humid zone 

(Venkatesh et al., 2009). Flash floods occur in the entire belt of foothills of the Himalayas 

and Western Ghats. The Western Ghats of India in folds numerous ephemeral and 

intermittent flashy streams having bed material predominantly composed of sand, gravel 

and large cobbles. The physics of these flashy streams is quite distinct from that of alluvial 

streams, viz; steep bed slopes, drainage basins are small, peak flows during monsoon 

season, high rates of sediment transport causing abrupt changes in bed profile, etc. (Putty 

and Prasad, 2000). Small reservoirs erected on the mountainous rivers are often beset with 

the danger of rapid siltation (Zhao et al., 2013). Even though, forests serve as a temporary 

barrier by with-holding storm water and preventing sheet erosion, the soil erosion from 

hillsides and silt flows from upland watershed may accumulate along valley sides and 

channel bed over time. These flashy streams fan out into the plains during times of 

abnormal floods which drives and spread out deposits into streambeds (Adams, 1989). 

The Pavanje River located in Western Ghats of India experiences flash floods 

during the monsoon seasons. Torrential rain washes down the soil and weathered substrate 

materials, and deposit them in the valleys and streams. The streamflow appears brownish 

red due to the dispersion of colloidal clay matter. The laterites of this area have variable 

consistency limits attributed from their distinct mineralogy. Plenty of sand, gravel and fine 

clayey soil leached out during surface water flow is deposited into streambeds and swampy 

areas. 

Hence, there exists a need for a study to address the spatial and temporal patterns 

of Ks along a dynamic streambed over relatively short distances (relative to the vented 

dams) and short time period (relative to the frequent high magnitude events). How does 
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streambed Ks vary along the reach, upstream and downstream of a vented dam? 

Additionally, one has to verify whether the streambed Ks will increase due to the hydraulic 

pressure exerted by head of water behind the vented dams, or else decline due to settlement 

of very fine sediments and organics into the bed substrate. Each situation may pose varying 

complexities to consider, and call for representative studies.  

In-situ measurement of streambed hydraulic conductivity all along the length of the 

stream may not be an ideal and cost-effective way. Hence, the applicability of the soft 

computing approaches could be tested to induce a rule based relationship for estimating the 

values of streambed hydraulic conductivity at unmeasured locations using representative 

georeferenced neighborhood data. No study exists in the literature related to the artificial 

intelligence (AI) based spatial modeling schemes to predict the spatial patterns of 

streambed hydraulic conductivity. Additionally, the potential of several AI approaches to 

predict streambed Ks could be evaluated comparatively.  

2.10 Objectives of the study 

Based on the literature gaps mentioned above, the following objectives were proposed: 

 Assessment of spatio-temporal variability of streambed hydraulic conductivity over the 

stream reach regulated by a series of vented dam. 

 Geostatistical analysis for spatial representation of the streambed hydraulic 

conductivity data.  

 Development and evaluation of artificial intelligence (AI) approaches for spatial 

modeling of streambed hydraulic conductivity. 
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CHAPTER 3 

STUDY AREA AND DATA COLLECTION 

 

3.1 General 

The study pertains to a part of the Pavanje river originating in the Western Ghats 

of India. The study is focused on the stream reach obstructed by two vented dams in 

sequence for assessing the spatial and temporal variations in streambed hydraulic 

conductance. The sections below explain in detail the physiography and geological details 

of the basin along with streambed sampling scheme and frequency. 

3.2 Pavanje river basin 

About three-fourths of the area of Pavanje river basin consists of mountainous and 

undulating land; its geological structure consist of laterite, dolerite, biotite hornblende 

granite, banded biotite gneiss and charnockite; and, on the whole, its topography is steep 

which accounts for the swiftness of river (Avinash et al., 2014). The watershed receives 

very heavy rainfall (around 3,900mm annually) from the southwest monsoon during the 

months of June to October (CGWB, 2012). The Pavanje River originates in the foothills of 

Western Ghats and flows towards the west to join the Arabian Sea. It lies between North 

latitudes 13°07′30″ to 12°57′30″ and East longitudes 74°45′00″ to 75°02′30″. The basin 

lies within the Dakshina Kannada district of Karnataka State, India (Figure. 3.1). Drainage 

frequency values of the basin range from 0.25 to 6.5 m/m2. The basement rocks of the basin 
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predominantly consist of granitic gneiss of the Archean age, one of the oldest rocks of the 

peninsular India. These basement rocks are overlaid by ferruginous laterites which cover 

up about 55–60% area of the basin. They are highly porous and permeable. The thickness 

of laterite cap varies in the order of 3m to 20 m. Lateritic mounds underlain by thin beds 

of clay, granites and gneiss; patches of dolerite dykes, charnockites, quartzite and chlorite 

schist’s are also noticed in some parts. Coastal alluvium and lateritic soils are predominant 

in the landscape formed by the weathering of underlying rocks and due to the marine and 

river processes (Gajendragad et al., 1986).  

 

Figure 3.1 Study Area - an intermittent stream of Pavanje River 
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The lateritic hills do not retain soil moisture and only thick vegetation and grassland 

is observed in these regions. Torrential rain washes down the soil and weathered substrate 

materials, and deposit them in the valleys and streams. The water appears brownish red 

due to the dispersion of colloidal clay matter. The laterites can have variable consistency 

limits attributed from their distinct mineralogy. Plenty of sand, gravel and fine clayey soil 

leached out during surface water flow is deposited into streambeds and swampy areas 

(Shwetha and Varija, 2013). 

3.3 Selection of study reach 

A series of vented dams (around 8) exist along the Pavanje river across the third 

and fourth order streams preferentially for recharge of water during non-monsoon periods. 

The sediment deposition and transportation takes place during the operation of vented dams 

and the elevation of the streambed varies from 3m to 63m above mean sea level over the 

entire river, hence there is possibility of significant variation in the streambed soil 

properties due to sediment transport during the rainy season. The reason for the selection 

of this particular stretch of the stream is that two vented dams are located (Figure. 3.1) in 

the span of around 750 meters and is an ideal site wherein we come across all the upstream, 

midstream and downstream environments with respect to vented dams. As already 

mentioned earlier, average rainfall over the basin is quite high and stream velocity is 

observed to be more during the monsoon period which aids in the sediment variation 

activity. The Pavanje river is dynamic and periodically alter the streambed morphology, 

besides bringing regular events such as inundation, bank erosion etc. Therefore, this part 

of stream stretch presents an ideal area for studying the sediment dynamics and their impact 

on streambed hydraulic conductivity, which is the major thrust of this study. 

3.4 Field experiments and data collection 

The stream shown in Figure 3.2 was considered for streambed hydraulic 

conductivity (Ks) estimation at a depth of 0.3m using Guelph Permeameter (GP). The Ks 

was measured in-situ during the months of February to May of two consecutive years (2016 
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and 2017) over a 1.829 km stream reach of Pavanje river, where the stream comes across 

two Vented Dams in sequence. Sampling of Ks was done as per the procedure followed by 

Chen (2004). The GP tests were conducted along 40 transects across the channel (see 

Figure 3.2) during dry periods covering the upstream and downstream reaches of each 

vented dam. The spacing between each transect was 50m and in each transect, for every 5 

meter distance, Ks was determined. A total of 187 Ks test samples were collected from the 

sampling spots every year. For the comparative evaluation of variability of Ks over the 

upstream and downstream of vented dams, the stream reach considered was divided into 

three segments (see Figure 3.2); the segment 1 is downstream of vented dam 1, segment 2 

is the mid-section which includes both the upstream and downstream environments, and 

lastly the segment 3 is upstream of vented dam 2. The longitudinal extent of segments 1, 2 

and 3 was approximately about 500, 729 and 600m respectively. Before the study began, 

the channel physiognomies like the type of substrate particles and width of the stream at 

each transect were surveyed. The sediments deposited in the stream were poorly sorted and 

composed of loamy sand, silt and fine- to medium-grained sand. The stream reach 

considered is a sinuous channel with a meander bend in the upstream. The width of stream 

varied from 18 to 50 m. Table 3.4.1 summarizes the channel characteristics of study reach.  

Table 3.4.1 Channel configuration and streambed characteristics at the study reach. 

Test Site  Textural class Structure Channel 

geometry 

Floodplain 

connection 

& Length 

Segment 1 Silt loam, loam, 

sandy loam 

Poorly sorted, rippled Sinuous Yes, 500 m 

Segment 2 Sandy loam, loam, 

loamy gravels 

Cross-stratified, 

horizontally stratified 

Sinuous No, 729 m 

Segment 3 Sandy clay loam, fine 

sand 

Cross-bedded, graded 

with ‘fines upward’ 

Meander No, 600 m 
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Figure 3.2 Experimental sampling scheme.
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3.5 GUELPH Permeameter 

Guelph Permeameter designed by Reynolds and Elrick (1985), is a constant head 

permeameter based on well/auger-hole method and ‘Marriotte’ principle for precise 

measurements of in situ saturated hydraulic conductivity. The procedure involves 

measuring the consistent rate of water flow into saturated stream sediments from a 

cylindrical well hole, in which a constant depth (head) of water is maintained. The Ks 

measurements are made when a ‘bulb’ of saturated soil is formed around the auger hole 

due to flow along both vertical (gravity) and lateral (capillary) directions. Depending on 

the soil type, Ks tests could be made within 30 min to 2 h utilizing just 3.0 to 4.0 liters of 

water. The two head procedure was followed to get more accurate Ks estimates. The Ks is 

calculated using the equations given below (Elrick and Reynolds, 1992; Permeameter, 

G.U.E.L.P.H., 2012). 

2 2 1 1sK G Q G Q     (3.1) 

1 1 35.22Q R   (3.2) 

2 2 35.22Q R 
 

(3.3) 
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where, R  is steady-state rate of fall of water in reservoirs (cm/s), Ks is sediment saturated 

hydraulic conductivity (cm/s), a is borehole radius (cm), H1 is the first head of water 

established in borehole (cm), H2 is the second head of water established in borehole (cm) 

and Ci is dimensionless shape factor that depends primarily on the H/a ratio and according 

to the soil texture-structure category. MacDonald et al. (2012), Lee et al. (1985) and More 

and Deka (2017) are few literature examples where Guelph permeameter was used for 

estimation of Ks in streambed, sandy and sandy loam soils. 
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3.5.1 Experimental procedure of GUELPH Permeameter 

 Before making a measurement using Guelph permeameter, it is necessary to 

prepare a well hole of required depth in the field using the auger and clean up 

tools. 

 The tripod should be centered over the clean well hole and the water filled 

Guelph permeameter has to be slowly lowered into the well hole as shown in 

Figure 3.3. Verify that both the inner and outer reservoirs are connected. 

 Thereafter the air inlet tip is raised slowly by gripping the upper air tube so as 

to establish the initial well head height (H1) equal to 5 cm.  

 Observe the flow rate from the reservoir at fixed time intervals. Monitor the 

flow rate until it has attains a steady state. Once there is no change in the flow 

rate at three consecutive time intervals, the reading can be noted down.  

 Now, refill the water to inner reservoir if needed and establish the second well 

head height (10 cm) by slowly raising the air inlet tip again. Make a reading 

by following the same procedure as mentioned above. 

 Based on the steady flow rate readings noted down, and by mentioning the 

category of soil texture as observed in the field, one could easily calculate the 

saturated hydraulic conductivity by using “Guelph Permeameter Calculator” 

spreadsheet. 

 

Figure 3.3 GUELPH Permeameter 
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3.6 Grain size analysis 

Grain size analysis of sediments provides the information on grain size distribution 

required for classification of the soil or sediment. In the present study, the grain size characteristics 

of sediments was analyzed that were collected from different transects of the streambed subjected 

to various degree of erosion, transportation and deposition mechanisms. Sieve analysis was 

performed on follows: 

 The sediment sample was removed by grab samplers. The sediment samples were properly 

labelled and brought to the laboratory. The samples were oven dried for 24 hours before 

sieving.  

 The procedure given in IS 2720-4 (1985) has been followed. The sieves used for sediment 

tests were 4.75mm, 3.35mm, 2.36mm, 1.18mm, 600µm, 300µm, 150µm and 75µm. 

 The sediment sample was placed the sieve stack and kept over the mechanical shaker for 

10 minutes. Soon after that, the stacks were removed carefully to weigh and record the 

weight of samples in each sieve with its retained soil including the bottom pan.  

 Particle Size D50 also known as median diameter or median value of particle size 

distribution was found.  It is the value of the particle diameter at 50% in the cumulative 

distribution. For example, if D50 is 3.5 mm, then 50% of the particles in the sample are 

larger than 3.5 mm, and 50% are smaller than 3.5 mm. D50 is normally used to characterize 

the particle size of group of particles. 
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CHAPTER 4 

METHODOLOGY 

 

4.1 General 

This chapter presents the statistical and geostatistical methods adopted in the 

present study in relation to the analysis of the streambed hydraulic conductivity data. An 

outline of descriptive and inferential statistics used for data analysis is presented. It also 

includes an overview of the artificial intelligence methods adopted for spatial modeling of 

streambed hydraulic conductivity. 

4.2 Statistical analysis 

4.2.1 Normality tests  

An evaluation of the normality of data is essential for some statistical tests since, 

normal data is a basic presumption in parametric testing. The Kolmogorov-Smirnov (K-S) 

test (Massey Jr, 1951), Lilliefors corrected K-S test (Lilliefors, 1967), Shapiro-Wilk test 

(Shapiro and Wilk, 1965) and D’Agostino-Pearson test (D’Agostino et al., 1990) were used 

to determine whether Ks data are normally distributed or not. The K-S test assesses the 

goodness of fit by comparing the standard normal distribution against the empirical 

cumulative distribution. However, K-S test is regarded as less sensitive and is not 

recommended for testing normality nowadays (Ghasemi and Zahediasl, 2012). The 
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Lilliefors test (a tailored version of K-S test) adjusts the K-S statistic for small values at 

the tails of probability distribution and examines for a significant difference between the 

empirical CDF and the specified distribution. Shapiro-Wilk (S-W) test is another similar 

normality test that effectively assesses the correlation between sample data and the 

corresponding ideal normal scores, and is an unbiased estimator of goodness-of-fit to the 

standard normal distribution. The D’Agostino -Pearson test is a versatile and powerful test 

against non-normality arising from skewness and kurtosis. Its test statistic is based on a 

comparative evaluation of kurtosis and skewness coefficients of the sample data with that 

of the moments of a normal distribution, quantified by Pearson’s coefficients. The common 

null hypothesis of all these statistical tests is that the Ks data has been drawn at random 

from a normal distribution. As with most statistical tests, a statistically significant p-value 

(typically ≤ 0.05) exhibits a strong evidence against the null hypothesis i.e., the sample 

distribution is non-normal. 

a. Kolmogorov-Smirnov (K-S) test 

The Kolmogorov-Smirnov test is defined by: 

1

1
max ( ) , ( )i i

i N

i i
D F Y F Y

N N 

 
   

 
                             (4.1) 

Ho: The data follow a normal distribution 

Ha: The data do not follow the specified distribution 

where, Ho is null hypothesis, Ha is alternate hypothesis, F is the theoretical cumulative 

distribution of the normal distribution of N ordered data points Y1, Y2, ..., YN. The hypothesis 

regarding the distributional form is rejected if the test statistic, D, is greater than the critical 

value obtained from a K-S table. 

b. Lilliefors corrected K-S test 

Lilliefors corrected K-S test is an improvement on the Kolomogorov-Smirnov test 

intended for correcting the K-S for small values at the tails of probability distributions. The 

K-S test is appropriate when the parameters of the hypothesized distribution are completely 
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known. However, in real time, it is difficult to specify the parameters of the distribution of 

any unknown data. In such case, the parameters are to be estimated based on the sample 

data. Given a sample of n observations, the Lilliefors statistic is defined as: 

max ( ( ) ( ))x nD F X S X                           (4.2) 

where, Sn(X) is the sample cumulative distribution function and F*(X) is the cumulative 

normal distribution function with X  , the sample mean. Even though, the Lilliefors 

statistic is same as the K-S statistic, the table for the critical values is different which leads 

to different conclusion about the normality of the data. 

c. Shapiro-Wilk (S-W) test 

The S-W test was originally designed to test univariate distributions for normality. 

Given a univariate data  ,.........,i nY y y arranged in ascending order, the Shapiro-Wilk 

test statistic is: 

2
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
                             (4.3) 

where, the ai are the Shapiro-Wilk coefficients, and S2 is the statistical variance of the 

sample. The W statistic requires that the sample size 7 and 2,000 (Shapiro and Wilk, 

1965). 

d. D’Agostino-Pearson test 

 The D'Agostino-Pearson test statistic combines the advantages of tests of skewness 

and kurtosis to generate an omnibus normality test. Here omnibus refers to the capability 

to detect deviations from normality due to either skewness or kurtosis. The test statistic is: 

   2 2 2

1 2K Z b Z b                  (4.4) 
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where,  1Z b  and  2Z b  are the normal approximations to test of skewness  1b and 

test of kurtosis  2b . The K2 statistic has approximately a chi-squared distribution, with 

two degrees of freedom when the population is normally distributed (D’Agostino et al., 

1990). 

4.2.2 Test for equality of variances 

The non-parametric tests – Levene’s Test (Levene, 1960) for assessing 

homogeneity of variance and Welch’s t-test (Welch, 1947) for analyzing sample means 

were used to determine if streambed Ks values differ significantly between two segments 

(i.e., the upstream and downstream of Vented dams) of the river and between two sampling 

times. The Kruskal-Wallis test is advantageous when the data are not normally distributed. 

However, while using it to test whether the medians of two data groups are different, it 

assumes that the observations in each group are from samples of same distribution, so if 

the data of two groups have dissimilar distribution (for instance, the observations of one 

group is skewed to the left and another is skewed to the right and have different variances), 

the results of Kruskal-Wallis test may be unreliable. If the distributions are heteroscedastic, 

it is better to use Levene’s Test or Welch’s t-test for two groups instead of Kruskal-Wallis 

test (Kao and Green, 2008). Whenever the sample sizes are small or unequal and the 

standard deviations of the two groups are substantially different or unequal, Welch’s t-test 

is recommended. Under the null hypothesis that the difference between two population 

means is equal, the Welch’s t-test calculates a t-statistic by adjusting the number of degrees 

of freedom even when the population variances are unequal. The Levene’s test examines 

for homogeneity of variances under the null hypothesis that variances are equal across each 

set of samples. 

a. Levene’s Test 

Levene's test (Levene, 1960) is used to test if k samples have equal variances. Equal 

variances across samples is called homogeneity of variance. For a variable Y of sample size 
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N divided into k subgroups, where Ni is the sample size of the ith subgroup, the Levene test 

statistic is defined as: 

 

 
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where, Zij can have one of the following three definitions: 

i. ij ij iZ Y Y   where,  iY  is the mean of the ith subgroup. 

ii. 
ij ij iZ Y Y   where, iY  is the median of the ith subgroup. 

iii. ˆ
ij ij iZ Y Y   where, ˆ

iY  is the 10% trimmed mean of the ith subgroup. 

iZ are the group means of the Zij and Z  is the overall mean of the Zij. 

The null hypothesis, 2 2 2

1 2: ........o kH       for Levene’s test is that the variances are 

equal across all samples. The alternate hypothesis, 2 2 2

1 2: ........a kH       is that the 

variances are not equal for at least one pair. The Levene test rejects the hypothesis that the 

variances are equal if , 1,k N kW F   . The , 1,k N kF    is the upper critical value of the F 

distribution with k-1 and N-k degrees of freedom at a significance level of α. 

b. Welch’s t-test 

The Welch’s t-test for unequal variances is a modification of a Student’s t-test to 

check if two sample means are significantly different. The modification made is with 

respect to the degrees of freedom employed in the test. The Welch’s t-test statistic is 

defined as: 
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where, X1 and X2 represent the two groups to compare and 1X and 2X  represent the means 

of two groups. N1 and N2 represent the size of groups and 1s  and 2s  are the standard 

deviation of the two groups. Soon after the determination of t value, from the ‘t table’ the 

critical value of Student’s t distribution corresponding to the significance level (5%) is 

evaluated. The null hypothesis, 1 2:oH    for the test is that the means are equal and the 

alternate hypothesis, 1 2:aH   is that means are not equal. 

4.3. Geostatistical analysis 

4.3.1 Spatial autocorrelation: Moran’s I 

Finding the spatial autocorrelation using Moran’s I (Index) (Moran, 1948) aids to 

examine whether the pattern of a phenomenon is clustered, dispersed, or random. When 

analyzing spatial data, Moran’s I index finds the correlation between the neighborhood 

values of a variable which are scattered in space in two or more dimensions. The Moran’s 

I index is a parametric test which exhibits the spatial autocorrelation value in between −1 

and +1, and generates a Z-score and p-value to evaluate the level of autocorrelation. A 

positive index value indicates that the data is spatially clustered while a negative index 

indicates dispersion. In the present study, the Moran’s I for different lags was determined 

to know the range of autocorrelation values as a function of distance. The Moran’s I is 

calculated as: 
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where, n is number of observations, i iz x x  , x is the value of the variable at location ‘i’ 

and x  is the mean value of the variable of interest, W is the sum of weights wij for all pairs 

in the system (Cliff and Ord, 1981). The inferential Local Moran’s I statistic is represented 

as slope in the scatter plot which signposts the type and strength of spatial autocorrelation 

of a variable. 
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4.3.2 Spatial interpolation schemes: Deterministic approach 

In the present study, two deterministic spatial interpolation methods namely the 

Inverse Distance Weighting (IDW) and Radial Basis Functions (RBF) were employed to 

generate the spatial distribution maps of streambed Ks.  

The IDW scheme estimates the magnitude of a variable/phenomenon at non-

sampled locations by taking the advantage of ‘weighting’ (i.e., the weight of any known 

point differs with the inverse square of its distance from the estimated point) (Shepard, 

1968). The IDW is a moving average interpolator based on search neighborhood strategy 

which doesn’t account for spatial structure (i.e., arrangement) of the sampled points. 

Hence, the efficiency of interpolation is dependent on spacing and density of the samples. 

Inverse Distance Weighting is arrived at using the formula (Johnston et al., 2001): 

 
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                                          (4.8) 

where,  ˆ
oZ s  is the estimated value for unknown location  os , N is the number of 

measured sample points, ( )iZ s  is the measured value at the location ,i is   are the weights 

assigned to each measured points which are determined by: 
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where, dio represents the distance between estimated location so and each of the measured 

location si, ‘p’ is the weighting power, the rate of which falls off as the distance becomes 

larger. 

The Radial basis functions (RBF) belong to the category of exact interpolation 

technique with an ability to generalize scattered data to several space dimensions by 

expanding a linear combination of the basis functions with radial symmetry, (i.e., same 
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span in all dimensions) (Baxter, 1992). RBF is established in terms of radial distance from 

a point: 

    2 2
( , ) ( )c cZ x y w x x y y w x c w r                            (4.10) 

where, w is the weight of RBF determined from interpolation conditions; c = (xc,yc) are the 

coordinates of the point, or center; and r is the spatial distance from neighborhood point in 

the xy-plane to the center, ϕ(r), r ⩾ 0 may be any one of the basis functions. There exists 

several options of RBFs namely, thin plate spline, completely regularized spline, spline 

with tension, multi-quadratic and inverse multi-quadratic spline whose shapes are different 

from one another and result in non-identical interpolation surface. The RBF estimated 

values could be above the maximum and below the minimum measured values whilst, the 

values estimated from IDW interpolation never crosses the upper and lower limits of 

measured values (Buhmann, 2003). 

4.3.3 Spatial interpolation schemes: Geostatistical approach 

Kriging is the universally accepted best linear unbiased estimator, since it takes 

regionalization into consideration. The procedure involves exploratory statistical data 

analysis, fitting suitable semivariogram model, generation of prediction surface map, and 

(optionally) provides some measures of certainty or accuracy by exploring a variance 

surface (Johnston et al., 2001). The semivariogram models used in Ordinary Kriging (OK) 

are the mathematical forms used to describe the inherent spatial correlation structure in the 

data. Kriging weights for the neighborhood measured points are assigned based on the 

concept of spatial stationarity of the data quantified through semivariogram model. The 

variance of estimation error is a resultant of the variogram type and the spatial scattering 

of measured neighborhood points. The experimental variogram is generally composed with 

irregular scatter of neighborhood points due to large lag distance and tolerance; and is 

different from that of ‘theoretical variogram’ which is a plot of variance against lag fitted 

with a model curve (Goovaerts, 1999). In the present study, OK involving circular, 

spherical, pentaspherical, exponential and guassian variogram models were tested to 
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describe the semivariance. The OK estimator for point estimation is arrived based on the 

mathematical relations given below:  

Z(p) = μ + ε(p)                                (4.11) 

where, p = (x,y) is one of the sample location and Z(p) is the value of the random variable 

of interest at that particular location; μ is the fixed unknown mean for the data; and ε(p) is 

the random error representing the variation around the mean which is intrinsically 

stationary. When provided with N measurements 1( ),............., ( )nZ p Z p  at known 

locations 1,......., np p  the estimate Ẑ  at an unsampled location po is given as a weighted 

sum of the data, 

 
1

ˆ ( )
n

o i i

i

Z p Z p


                               (4.12) 

where, λi is an unknown weight for the measured value at the ith location. To ensure 

unbiasedness condition for the unknown measurement, the sum of the weights λi must be 

equal to 1. i.e., 
1

1
N

ii



 with the expected error: ˆ ( ) ( )o oE Z p Z p 
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variance: 
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    

  
                        (4.13) 

where, ( , )i jp p is the semivariance of Z between the data points 𝑝𝑖 and 𝑝𝑗; ( , )i op p is the 

semivariance between the ith data point and the target point 𝑝𝑜. For comprehensive details 

related to geostatistics and the mathematical concepts of OK and semivariogram modeling 

one can refer to the following literatures (Webster and Oliver, 2007; Kitanidis, 1997; 

Goovaerts, 1997). 
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4.4 Artificial Intelligence Paradigms 

4.4.1 Artificial Neural Network 

The Multi-layer Perceptron (MLP) Neural Network is one of the most versatile 

algorithm that has proven capable to simulate highly complex and nonlinear relationships 

between a set of input variables (predictors) and the output data (predictand). A three 

layered perceptron network with one hidden layer is as shown in Figure 4.1. The network 

is trained on a set of reference data by adjusting the parameters of MLP network with the 

assistance of a Levenberg-Marquardt Back Propagation (BP) algorithm. The network 

architecture involving a set of processing units (neurons), a specific topology of weighted 

links connecting the neurons and the learning paradigm that updates the connection weights 

determine the efficiency of MLP neural network.  

 

Figure 4.1 Multi-layer Perceptron (MLP) Neural Network architecture 
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Every single input (Xn), weighted by an element ( )ijw  of the weight matrix (W) are 

summated and provided to the transfer function or activation function (φ) along with a bias 

(B) term. The activation function constructs a non-linear decision boundary via linear 

combinations of the weighted inputs and then applies a threshold to transform the net inputs 

from all the neuronal unit into an output signal. The Levenberg-Marquardt back 

propagation learning rule incrementally adjusts the weight and bias terms to minimize the 

mean square error (MSE) of the network. The quantum of progressions made in adjusting 

the synaptic weights and biases at every epoch is determined by the learning rate parameter. 

Smaller learning rates end up in longer training time however, warrant stability that steers 

to minimum errors. 

4.4.2 Adaptive Neuro-Fuzzy Inference System 

Adaptive neuro-fuzzy inference system (ANFIS) introduced by Jang, (1993) is a 

hybrid machine learning approach which involves a fuzzy inference system (FIS) assisted 

with back propagation algorithm to tune the membership function parameters of FIS. 

Depending on the complexity of the problem addressed, sometimes the back propagation 

gradient descent method in combination with a least squares method is used to adjust the 

parameters of FIS (Jang et al., 1997). The fuzzy inference system, based on the number of 

input parameters encompasses a set of fuzzy IF–THEN rules or conditional statements to 

approximate nonlinear functions. ANFIS is a multilayer feedforward five layer architecture 

as illustrated in Figure 4.2. The fixed nodes are represented by circular outline and the 

square outlines are adaptive nodes presided by parameter settings. Each node performs a 

particular function on incoming signals. Every node in the layer 1 (adaptive node) is 

associated with a node function governed by premise parameters. The output of every 

single node of layer 2 (fixed node) represents the firing strength of a rule which is nothing 

but the product of all incoming signals. Similarly, the output of every single node of layer 

3 (fixed node) represents the normalized firing strength. Every node in the layer 4 is an 

adaptive node associated with a node function governed by consequent parameters. The 

final fixed node in layer 5 labeled as (Σ) computes the overall output as the summation of 

all incoming signals (Abraham, 2005). The premise and consequent parameters of ANFIS 
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are tuned in the learning process by means of a hybrid technique which involves the 

gradient descent back propagation method coupled with a least squares optimization 

algorithm to provide optimal outputs. Soon after the training converges, the values of the 

premise parameters of membership function are fixed in the search space and the overall 

output is expressed as a linear combination of the consequent parameters (Jang, 1992). 

Herein, grid-partitioning (GP) type of the ANFIS model was employed in the streambed 

hydraulic conductivity modeling scheme. The performance of ANFIS model is greatly 

affected by the type and number of membership functions, which are usually ascertained 

by trial and error procedure.  

 

Figure 4.2 ANFIS architecture 

4.4.3 Support Vector Machine  

SVM one of the supervised learning method was introduced in 1992 by Vladimir 

Vapnik and his co-workers (Vapnik 1995). Basically, SVM is a machine learning technique 

for linear and non-linear classification as well as regression. In the case of non-linear data, 

SVM maps the data-sets of input space into a higher dimensional feature space, using 

kernel functions which have the ability to convert them into linear ones. In the high 

dimensional feature space, simpler and linear hyper plane classifiers that have a maximal 
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margin between the classes are obtained. SVM provides maximum predictive accuracy 

automatically either by avoiding/minimizing over fitting of data. SVM is based on 

Structural Risk Minimization principle and includes convex optimization algorithm 

wherein the empirical risk and the confidence interval of the learning machine are 

simultaneously minimized by maximizing the geometric margin. SVM can efficiently 

perform nonlinear regression by utilizing Kernel trick. The computation is critically 

dependent upon the length of the training patterns/data-set, selection of hyper-parameters 

and finding out their optimal values while modeling. The details regarding SVM and its 

theory could be found in the following literatures (Cortes and Vapnik 1995; Cristianini and 

Shawe-Taylor 2000; Vapnik, 1999).  

           Let us consider a simple linear regression problem trained on data set 

 n....., 1,i    ;v,uχ ii   with input vectors ui and linked targets vi. A function g(u) has to 

be formulated approximately in order to link up inherited relations between the data sets 

and thereby it could be used in the later part to infer the output v for a new input data u. 

Standard SVM regression uses a loss function  g(u)v,L ε  which describes the 

deviation of the estimated function from the original one. Several types of loss functions 

can be mined in the literature e.g., linear, quadratic, exponential, Huber’s loss function etc. 

In the present context the standard Vapnik’s – ε insensitive loss function is used which is 

defined as 

 









otherwiseεg(u)v

εg(u)vfor  0
 g(u)v,Lε

 (4.14) 

Using ε-insensitive loss function, one can find g(u) that can better approximate the 

actual output vector ‘v’ and has the at most error tolerance ε from the actual incurred targets 

vi for all training data, and concurrently as flat as possible. Consider the regression function 

defined by 

bw.ug(u)   (4.15) 

where, χ w , χ is the input space; Rb is a bias term and (w.u) is dot product of vectors 

w and u. Flatness in Equ. (4.15) refers to a smaller value of parameter vector w. By 
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minimizing the norm 
2

w , flatness can be ascertained along with model complexity. Thus 

regression problem can be stated as the following convex optimization problem. 

 

 
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n,1,2,...... i   0,ξ,ξ

ξεvbuw

ξεbuwv
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ξξCw
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
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



 (4.16) 

where, i and i

  are slack variables introduced to evaluate the deviation of training 

samples outside ε-insensitive zone. The trade-off between the flatness of g and the quantity 

up to which deviations greater than ε are tolerated is depicted by 0C . C is a positive 

constant influencing the degree of penalizing loss when a training error occurs. 

Underfitting and overfitting of training data are avoided by minimization of the 

regularization term w2/2 along with the training error term  



n

1i

ii ξξC  in Equ. (4.16). 

The minimization problem in Equ. (4.16) represents the primal objective function. 

Now the problem is dealt by constructing a Lagrange function from the primal 

objective function by introducing a dual set of variables, iα  and iα  for the corresponding 

constraints. Optimality conditions are exploited at the saddle points of a Lagrange function 

leading to the formulation of the dual optimization problem: 

       
ii

n n n

i j i ii j i ii j i
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i,j 1 i 1 i 1
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           
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n...,1,2,......i     C,α0
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0αα  
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1i

ii








 

     (4.17) 

After determining Lagrange multipliers, iα  and iα ; the parameter vectors w and b 

can be evaluated under Karush–Kuhn–Tucker (KKT) complementarity conditions 

(Fletcher, 1987), which are not discussed herein. Therefore, the prediction is a linear 

regression function that can be expressed as 
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    buu ααug i

n

1i

ii 


 (4.18) 

 

Thus SVM regression expansion is derived; where w is depicted as a linear combination 

of the training patterns vi and b can be found using primary constraints.  For g(u)  

Lagrange multipliers may be non-zero for all the samples inside the ε-tube and these 

remaining coefficients are termed as support vectors. 

 Now for making SVM regression to deal with non-linear cases; pre-processing of 

training patterns ui has to done by mapping the input space χ into some feature space   

using nonlinear function  χφ  and then apply to the standard support vector 

algorithm. Let ui be mapped into the feature space by nonlinear function φ(u) and hence 

the decision function is given by 

bφ(u)wb)g(w,   (4.19) 

This nonlinear regression problem can be expressed as the following optimization 

problem. Figure 4.3 depicts the concept of nonlinear support vector regression 

corresponding to Equ. 4.20. 

 

Figure 4.3 Nonlinear SVM with Vapnik’s ε-insensitive loss function. 

(Adapted from Yu et al. 2006) 
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(4.20) 

where w is the vector of coefficients, ξi and ξi
* are the distances of the training data set 

points from the region where the errors less than ε are ignored and b is a constant. The 

index i labels the ‘n’ training cases. The y ∈ ± 1 is the class labels and ui is the independent 

variable. Then, the dual form of the nonlinear SVR can be expressed as 
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    (4.21) 

The “kernel trick” )φ(u),φ(u)u,K(u jiji   is used for computations in input space χ to 

fetch the inner products into feature space  . Any function satisfying Mercer’s theorem 

(Vapnik. V, 1999) should be used as kernels. Finally, the decision function of nonlinear 

SVM regression with the allowance of the kernel trick is expressed as follows. 

    buuK ααug i

l

1ji,

ii 


 (4.22) 

The parameters that impact over the effectiveness the nonlinear SVM are the cost constant 

C, the radius of the insensitive tube ε, and the kernel parameters. These parameters are 

mutually dependent over one another and hence altering the value of one parameter affects 

the other linked parameters also. The parameter C checks for the smoothness/flatness of 

the approximation function. A smaller value of C yields a learning machine with poor 

approximation due to underfitting of training data. A greater C value overfits the training 

data and sets its objective to minimize only the empirical risk making way for more 

complex learning. The parameter ‘ε’ is related with smoothening the complexity of the 

approximation function and controls the width of the ε-insensitive zone used for fitting the 
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training data. The parameter ‘ε’ influences over the number of support vectors, and then 

both the complexity and the generalization capability of the approximation function is 

dependent upon its value. It also governs the precision of the approximation function. 

Smaller values of ε lead to more number of support vectors and results in complex learning 

machine. Greater ‘ε’ values result in more flat estimates of the regression function. 

Determining appropriate values of C and ε is often a heuristic trial-and-error process.  

Figure. 4.4 shows the general network architecture of SVM.  

 

Figure 4.4. Network architecture of SVM. (Adapted from Chen and Yu, 2007) 

4.5 Strategies for spatial modeling using AI Paradigms 

For spatial modeling of streambed hydraulic conductivity, two diverse 

schemes/strategies were adopted. As already mentioned, the hydraulic conductivity tests 

were conducted along 40 transects across the channel covering the upstream and 

downstream reaches of each vented dam. The spacing between each transect was 50m and 

in each transect, for every 5 meter interval, Ks was determined. So, in the first strategy, the 

training and testing dataset were chosen in such a pattern that, the Ks data along a transect 

was estimated by considering the Ks data of two neighborhood transects both upstream and 

downstream. The Figure 4.5 shows the scheme of selection of training and testing transects 
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along the study reach.  The Ks data measured at transect locations – 2, 3, 5, 6, 8, 9, 11, 12, 

13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40 were considered as 

training features and the models were calibrated to estimate the Ks values at transects – 1, 

4, 7, 10, 14, 17, 20m 23, 26, 29, 32, 35, 38. The predicted Ks values were evaluated against 

the observed Ks values at those transects. The sample size considered for training and 

testing of AI models were 134 and 53 Ks point samples in the case of Strategy 1. During 

model development, the point location details (i.e., the geographical information - latitude 

and longitude) from where the Ks values were sampled along each transects were 

considered as model inputs by targeting measured Ks. Specifically, the geographical 

coordinates were the predictors and the Ks values serve as predictand. The testing transects 

were considered to be the unknown locations where there is a necessity for prediction. 

While model testing, the Ks values were estimated at those testing transect locations by 

entering only geographical coordinates as inputs so that it becomes easier to validate the 

model predictions based on the observed Ks values. Similarly, in the second strategy, the 

alternate transects - one after the other were considered as training and testing transects. 

The scheme of Strategy 2 is as shown in Figure 4.6. In this case, the samples of upstream 

transects are considered for training the models. The sample size considered for training 

and testing of AI models were 96 and 91 Ks point samples in the case of Strategy 2. 
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Figure 4.5 Spatial modeling scheme – Strategy 1 

 

Figure 4.6 Spatial modeling scheme – Strategy 2 
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4.6 Performance evaluation measures 

The spatial prediction performance of all the models were evaluated by computing 

error and efficiency statistics as given below. 

Statistical Criteria Value Inference 

 

Root Mean Square Error, 
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Nash-Sutcliffe Efficiency,  
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0.75 < NSE < 1.00 

0.65 < NSE ≤ 0.75 

0.50 < NSE ≤ 0.65 

0.4< NSE ≤ 0.50 

NSE ≤ 0.4 

 

Very good 

Good 

Satisfactory 

Acceptable 

Unsatisfactory 
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Kling-Gupta efficiency, 

KGE =      
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Bias Ratio, 
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0.60 < KGE ≤ 0.70 

0.50 < KGE ≤ 0.60 

0.4< KGE ≤ 0.50 

KGE ≤ 0.4 

Very good 

Good 

Satisfactory 

Acceptable 

Unsatisfactory 

 

where, O and P signpost the observed and predicted Ks values, respectively. O  and P  are 

the mean of observed and forecasted values, 𝜎𝑜 and 𝜎𝑝 are the standard deviation of 

observed and forecasted values, respectively. N represents the total number of data 

samples. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

5.1 General 

This chapter presents the descriptive and inferential statistical results of streambed 

Ks measurements sampled from the study reach. The obtained statistical measures are 

thoroughly discussed and comparatively evaluated to provide a major theoretical advance, 

on the state of the understanding about the processes controlling hydraulic conductivity. 

The spatial maps of streambed Ks plotted by using deterministic and geostatistical 

approaches are presented and discussed succinctly. The chapter also includes the results of 

prediction of Ks using AI based approaches. 

5.2 Analysis of streambed hydraulic conductivity values from 

in-situ GUELPH permeameter tests 

The descriptive statistics of in situ measured streambed hydraulic conductivity (Ks) 

along the three segments of the study reach measured at two different time periods are 

presented in Table 5.2.1 to illustrate the overall variation in the Ks distribution. The 

magnitude of Ks with reference to the three segments varied by two orders of magnitude. 

The streambed Ks along the stream reach varied from 11.634 cm/day – 793.886 cm/day 

and 16.932 cm/day – 777.989 cm/day during the sampling periods 2016 and 2017, 

respectively. The longitudinal variability of streambed hydraulic conductivity along every 

50m upstream and downstream of vented dams is presented in Figure 5.1. It is evident that, 

there exists significant differences in mean Ks values of the upstream and downstream 

segments of vented dams. Progressive decrease and inconsistent mean Ks values can be 
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observed while getting away from the vented dam 1 towards downstream. Due to lateral 

accretion deposits spread out by second order stream confluence at around 50m 

downstream of vented dam 2, an elevated mean Ks is observed at this transect. The mean 

Ks values of all transects, downstream of vented dam 1 varied between 31.85–188.98 

cm/day for 2016 samples and 35.77–192.09 cm/day for 2017 samples; similarly at segment 

2 varied between 100.88–535.73 cm/day for 2016 samples and 111.33–504.87 cm/day for 

2017 samples. The mean Ks values of all transects upstream of vented dam 2 varied 

between 473.59–755.39 cm/ day for 2016 samples and 377.39–753.31 cm/day for 2017 

samples. The streambed Ks samples of segment 3 had reasonable temporal variability due 

to episodic changes in substrate particles and organic matter inputs at the meander bend of 

stream which is evident from significant differences in the minimum and extreme values 

of Ks. 

Table 5.2.1 Descriptive statistical analysis of field-scale streambed hydraulic 

conductivity (Ks) (cm/day) 

2016 Data Min Max Mean Sd Var Kurtosis Skewness 

Segment 1 11.634 205.2 87.015 59.339 3521.092 −0.992 0.638 

Segment 2 76.871 558.481 328.703 142.222 20227.01 −1.125 −0.444 

Segment 3 376.678 793.886 674.809 101.678 10338.47 1.295 −1.358 

Full Stretch 11.634 793.886 349.809 255.518 65289.44 −1.337 0.283 

2017 Data        

Segment 1 16.932 231.967 93.676 62.386 3892.03 −0.646 0.775 

Segment 2 65.86 547.88 332.857 141.238 19948.25 −1.113 −0.426 

Segment 3 280.273 777.989 657.485 121.177 14683.98 1.583 −1.503 

Full Stretch 16.932 777.989 348.578 249.325 62162.71 −1.301 0.298 

  Note: Sd – Standard Deviation; Var – Variance 

Many varying conditions occur as a result of different geologic and geomorphic 

characteristics of a river. The stream characteristics that can influence streambed hydraulic 

conductivity include the configuration of channel geometry, floodplain connection, 

streambed substrate characteristics like texture, structure etc.  
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Figure 5.1. D50 and Mean Ks values at transects along the study reach. 
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The grain size distribution of sediments collected from each transect of the study 

reach was analyzed in terms of D50 (median diameter), which showed a good correlation 

with mean Ks values of the corresponding transect. Coarse sediments tend to have a greater 

percentage of pore space, and hence a lower density, whilst the fine sediments usually 

contain a greater fraction of clay packed in the pore spaces between larger grains that 

affects the streambed Ks. As a support to this premise, significant statistical correlation 

existed between the D50 (median diameter) and mean Ks values of transects along the study 

reach with R=0.97 and 0.96 for samples of 2016 and 2017, respectively. Over the entire 

study reach, D50 varied between 1.25–4.2 mm with reference to 2016 sediment samples 

and 1.4–4.15 mm for 2017 samples. As expected, D50 didn’t exhibit a static or 

homogeneous distribution over the reach due to complex patterns of flow and sediment 

regime instigated by the existence of vented dams. As a result of silt and particulate organic 

matter inputs from the floodplain and riparian vegetation, the sediments of segment 1 had 

lower D50 values in the range 1.25–2.25 mm with respect to 2016 samples and 1.4–

1.78mm pertaining to 2017 samples. The sediments of segment 2 (sinuous channel) and 

segment 3 (meandering channel) had moderate D50 values as presented in Figure 5.1. 

5.3 Variability of streambed hydraulic conductivity along the 

study reach 

5.3.1 Results of Statistical analysis  

The variation of Ks data depicted via box plots (presented in Figure 5.2) allows to 

analyze the mean, median, range; identify outliers, extreme values and the dispersion 

represented via interquartile range. The frequency distributions of Ks data is graphically 

represented by histograms (refer Figures 5.3 and 5.4) wherein a normal distribution is 

hypothesized and tested through ‘Normality tests’. The results of Kolmogorov-Smirnov 

(K-S), K-S with Lilliefors correction, Shapiro-Wilk and D’Agostino-Pearson tests for Ks 

measured at two time periods are provided in Table 5.3.1. With reference to the full stretch 

of stream reach considered, all the normality tests showed a p-value less than 0.05, which 

signposts a non-normal distribution of both Ks and ln(Ks) of two different time periods. 
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Even after transforming the Ks data by using natural log, the distribution remained non- 

normal due to inherent heterogeneity and significant field scale variability of Ks across the 

study reach. The Ks data of segment 1 of the year 2016 was observed to have non-normal 

distribution based on all test statistics. However, the ln transformed Ks values were found 

to be normally distributed based on the K-S and D’Agostino-Pearson tests for the same 

segment. 

 

 

Figure 5.2 Box and whisker plots summarizing Ks measurements of the study reach. The 

intrabox dots denote medians, triangles denote outliers, whiskers represent minimum and 

maximum values, and the box edges denote 25th and 75th percentiles. 
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Table 5.3.1 Comparison among various Normality Tests for checking normal distribution 

Normality Tests 

  

Ks data of 2016 Ks data of 2017 lnKs data of 2016 lnKs data of 2017 

Test 

Statistic 

 p-value Test 

Statistic 

 p-value Test 

Statistic 

 p-value Test 

Statistic 

 p-value 

 Segment 1 

Kolmogorov-Smirnov (K-S) Test 1.4814 0.0248 1.5419 0.0172 0.9377 0.3428 0.7887 0.5626 

K-S Lilliefors Modification 0.1897 0 0.1974 0 0.1201 0.0289 0.101 0.1961 

Shapiro-Wilk Test 0.8825 0 0.888 0 0.9377 0.0039 0.9544 0.0233 

D'Agostino-Pearson Test 11.5312 0.0031 7.6412 0.0219 3.0898 0.2133 2.8792 0.237 

  Segment 2 

Kolmogorov-Smirnov (K-S) Test 1.6903 0.0066 1.2728 0.0783 1.8715 0.0018 1.6047 0.0116 

K-S Lilliefors Modification 0.1992 0 0.15 0.0004 0.2206 0 0.1891 0 

Shapiro-Wilk Test 0.9105 0.0001 0.9232 0.0003 0.8385 0 0.8524 0 

D'Agostino-Pearson Test 17.8104 0.0001 16.9169 0.0002 10.6289 0.0049 12.2018 0.0022 

  Segment 3 

Kolmogorov-Smirnov (K-S) Test 1.3148 0.063 1.5417 0.0172 1.4682 0.0268 1.7326 0.0049 

K-S Lilliefors Modification 0.1789 0.0002 0.2098 0 0.1998 0 0.2358 0 

Shapiro-Wilk Test 0.8544 0 0.8161 0 0.7981 0 0.7455 0 

D'Agostino-Pearson Test 16.0185 0.0003 18.8866 0.0001 25.509 0 31.0407 0 

  Full Stretch 

Kolmogorov-Smirnov (K-S) Test 2.0831 0.0003 1.67 0.0076 2.3596 0 2.1546 0.0002 

K-S Lilliefors Modification 0.1523 0 0.1221 0 0.1726 0 0.1576 0 

Shapiro-Wilk Test 0.9035 0 0.9076 0 0.9001 0 0.9059 0 

D'Agostino-Pearson Test 202.9678 0 157.1172 0 17.5491 0.0002 17.6867 0.0001 
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Figure 5.3 Histograms constructed from streambed Ks samples of the year 2016 
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. Figure 5.4 Histograms constructed from streambed Ks samples of the year 2017 
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In the 2017 study period, all the normality tests except, Shapiro-Wilk test accepted the null 

hypothesis of normal distribution of the ln transformed Ks values at the segment 1 even 

though, the realistic Ks values were found to be non-normal. The K-S test was the only one 

to confirm normality of Ks values sampled from segment 2 (during 2017) and segment 3 

(during 2016) with a fair p-value > 0.05. Due to the skewed nature of Ks data of segment 3 

during 2017, all the normality tests rejected the null hypothesis of normal distribution of 

Ks data at a significance level of 0.05. A distribution can deviate from that of normal due 

to lack of symmetry (skewness), kurtosis and mixture of distributions. The empirical CDF 

curve of the K-S test and the Q-Q plots presented in Figures 5.5 and 5.6 also portray that 

Ks data follows a non-normal distribution with reference to Ks data of full stretch.  

 

Figure 5.5 Empirical CDF curve of the K-S test and the Q-Q plot of the 2016 Ks data. 
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Figure 5.6 Empirical CDF curve of the K-S test and the Q-Q plot of the 2017 Ks data. 

The results of Levene’s and Welch’s t-tests (Table 5.3.2) infer that there exists 

significant differences in the variance and mean of streambed Ks sampled from the three 

segments of the study reach. The mean and variance of streambed Ks samples measured at 

the upstream section of vented dams significantly varied from that of the downstream Ks 

samples during both the study periods. For instance, the test statistic of Levene’s test, 

conducted for testing equality of variance between samples of segments 1 and 2 of the year 

2016, was relatively large with W=28.92 and p=0. The fluvial sedimentation on the 

upstream channel of the vented dams, and the bed incision at the downstream which is 

however compensated during floods accompanied by retrogressive erosion were the main 

reasons for significant spatial variability of Ks. Various kinds of valley deposits, their 

physical composition, distinct associations of several deposits, relative distribution and 
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accumulation places in the streams are some other related factors causing variability in 

streambed Ks. With respect to streambed Ks of individual segments sampled at different 

time periods, the Levene’s test failed to reject the null hypothesis at the 0.05 significance 

level (Table 5.3.2) thereby confirming the assumption of temporal homoscedasticity of 

streambed Ks. The Welch’s t-test also accepted the null hypothesis that there was no 

significant differences in the central tendency of the Ks values sampled between the two 

time periods in the study reach thereby discarding the rationale of temporal Ks evolution. 

The negative test statistic (t-values) reflect that the sample mean was smaller than that of 

the hypothesized mean. 

Table 5.3.2 Test results of Levene’s and Welch’s t-tests. 

 Levene’s Test Welch’s t-test 

Between Samples of Test Statistic p-value Test Statistic p-value 

Segment 1 & Segment 2 of 2016 28.92 0 -13.13 0 

Segment 2 & Segment 3 of 2016 8.41 0.004 -15.92 0 

Segment 1 & Segment 3 of 2016 5.37 0.022 -37.24 0 

Segment 1 & Segment 2 of 2017 36 0 -12.95 0 

Segment 2 & Segment 3 of 2017 5.19 0.024 -13.86 0 

Segment 1 & Segment 3 of 2017 7.07 0.009 -30.77 0 

Segment 1 of 2016 & 2017 0.03 0.866 -0.6 0.547 

Segment 2 of 2016 & 2017 0 0.993 -0.18 0.861 

Segment 3 of 2016 & 2017 0.42 0.52 0.8 0.423 

Full Stretch of 2016 & 2017 0.27 0.604 0.05 0.962 

 

5.3.2 Results of Geostatistical analysis 

The residual spatial autocorrelation between the samples of a variable in the 

geographical lattice can be detected through ‘Spatial correlogram’ which is usually a plot 

of Moran’s I as a function of distance or number of neighbors. The Moran’s I coefficient 

between P and Plag is simply a slope of the least squares regression line that best fits the 
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points. Each of the spatial neighborhood sensitivity plots as presented in Figures 5.7, 5.8, 

5.9 and 5.10 are distance based (spatial) correlogram revealing the Moran’s I across several 

neighborhood sizes. A significant and positive spatial autocorrelation was observed in the 

streambed Ks patterns as represented by Moran’s I value close to +1. The Moran’s I was 

observed to diminish for the farthest neighbors from that of the reference point representing 

shrinking of spatial dependence.  

 

Figure 5.7 Moran’s I Spatial Correlogram for streambed Ks patterns of segment 1 which 

is the downstream of vented dam 1. The dots indicate the values of Moran’s I at a 

significance level of 0.05. 
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Figure 5.8 Moran’s I Spatial Correlogram for streambed Ks patterns of segment 2 which 

is the streambed between vented dam 1 and 2. 

 

Figure 5.9 Moran’s I Spatial Correlogram for streambed Ks patterns of segment 3 which 

is the upstream of vented dam 2.  

81



 

Figure 5.10 Moran’s I Spatial Correlogram for streambed Ks patterns considering the 

entire study reach. 

The streambed Ks patterns with reference to segments 1 and 2 showed a reasonable 

good spatial autocorrelation up to 12 nearest neighbors as per non-directional Moran’s I 

indices. The spatial correlogram of the streambed Ks patterns with respect to full stretch of 

the study reach had virtuous spatial influence up to 24 nearest neighbors. The streambed 

Ks patterns at the meandering stream section - segment 3 was seen to have relatively weaker 

positive spatial auto-correlation with distant neighbors. The local Moran’s I scatterplot was 

used as an exploratory graphical tool for assessing the strength of spatial autocorrelation in 

the streambed Ks data. In the Figure 5.11, scatter plots of Moran’s I are presented, in which 

the slope of the regression line gives the local Moran’s I index. The sign (positive or 

negative) of the Moran’s I index will be simply the sign of the slope of the regression line. 
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Figure 5.11 The local Moran’s I scatterplot for streambed Ks patterns. The upper-right and lower-left quadrants of the scatter plot 

indicate positive spatial association of values that are higher and lower than the sample mean, respectively. The lower-right and 

upper-left quadrants include samples that exhibit negative spatial association or spatial outliers; i.e., these sampled values convey 

little similarity to their neighboring ones. 
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The streambed Ks samples of two sampling periods were interpolated by 

incorporating the Standard-IDW and completely regularized spline kernel based RBF 

interpolation methods using the ‘geostatistical analyst’ wizard of ArcGIS 10.3. The Root 

Mean Square Error and Kling-Gupta Efficiency (KGE) measures presented in Table 5.3.3 

were calculated based on the observed and predicted Ks values assessed through cross-

validation by the IDW and RBF methods. The KGE index ranges from −∞ to + 1 which 

accounts for all the sources of systematic errors from different components (i.e., bias, 

correlation and variability) (Gupta et al., 2009). The KGE of RBF estimates (Ks) for the 

two periods were 0.985 and 0.978, respectively which necessarily represents a robust 

prediction or spatial interpolation. Figure 5.12 and 5.13 presents the prediction maps of 

streambed Ks for two time periods using the IDW and RBF methods. With the use of 

sampled streambed Ks values along the study reach, experimental semivariograms were 

constructed to characterize the spatial variability of the sampled streambed Ks using 

Circular, Spherical, Pentaspherical, Exponential and Gaussian semivariogram models. 

However, the results of only the best-performing semivariograms are reported along with 

the streambed Ks estimates and their estimation variance at the nodes. 

Table 5.3.3 Performance evaluation of IDW and RBF interpolation methods. 

Variable Model RMSE 

(cm/day) 

KGE 

Ks of 2016 IDW -Standard  39.277 0.9812 

RBF - Completely Regularized Spline 33.045 0.9857 

Ks of 2017 IDW – Standard 43.982 0.9794 

RBF - Completely Regularized Spline 40.505 0.9785 
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Figure 5.12 Streambed Ks patterns interpolated through IDW and RBF methods with respect to 2016 Ks data 
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Figure 5.13 Streambed Ks patterns interpolated through IDW and RBF methods with respect to 2017 Ks data 
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Semivariogram modeling and ordinary kriging analyses were performed in ArcGIS 

10.3. Through many simulation trials by using different semivariograms, the best 

performing experimental semivariograms (presented in Table 5.3.4) of streambed Ks for 

the study reach were found. The nugget, which represents the small scale variability or the 

measurement error is selected based on database, and adjusted along with major axis and 

active lag distance for fitting the semivariogram model that appropriately captures the 

spatial distribution of Ks data. The lag parameters, including the lag spacing and tolerance 

of the experimental variograms were tested for 9, 12, 15 and 21 number of nearest 

neighbors back-to-back. The spatial autocorrelation was observed to drop significantly 

above 21 neighborhood spacings and, the experimental semivariograms modelled by 

considering 15 nearest neighbors performed better.  

Table 5.3.4 Parameters of semivariogram models fitted to Ks data 

Data Model Nugget 

[Co] 

Partial 

Sill [C] 

Range DR RMSE 

(cm/day) 

KGE 

Ks of 

2016 

Pentaspherical 1235.441 51758.58 3.95E-03 0.0233 42.9766 0.9725 

Circular 2323.572 51124.07 3.09E-03 0.0434 46.7514 0.966 

Ks of 

2017 

Exponential  544.8727 51366.14 4.45E-03 0.0104 44.5049 0.9747 

Pentaspherical 1578.387 48662.01 4.05E-03 0.0314 46.6615 0.9701 

For the Ks samples of the year 2016, Pentaspherical and Circular semivariograms 

performed better than others tested with an RMSE = 42.976 and 46.751 cm/day 

respectively; and correspondingly for the Ks data of 2017, the Exponential and 

Pentaspherical models provided better characterization of the spatial variability of 

streambed Ks. Figures 5.14, 5.15, 5.16, and 5.17 demonstrates the fitted theoretical 

semivariograms against the empirical semivariance estimates of streambed Ks. The nugget 

to sill ratio or dependence ratio (DR) quantifies the degree of spatial autocorrelation and 

gives an idea of how much variance is successfully accounted in the semivariogram model; 

a DR of less than 0.25 indicates a strong degree of spatial autocorrelation and, if the DR 

ratio ranges between 0.25 and 0.75, it is regarded as moderate spatial association; and lastly 

a DR > 0.75 indicates weak spatial autocorrelation (Aidoo et al., 2015).  
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Figure 5.14 Pentaspherical model for streambed Ks samples of 2016 

 

 

Figure 5.15 Circular model for streambed Ks samples of 2016 
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Figure 5.16 Exponential model for streambed Ks samples of 2017 

 

 

Figure 5.17 Pentaspherical model for streambed Ks samples of 2017. 
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From the simulated semivariograms (presented in Table 5.3.4) which have very 

strong dependence ratio’s, krigged surface maps of streambed Ks were generated for two 

time periods (refer Figures 5.18 and 5.19). While applying the ordinary kriging, both 

anisotropic and isotropic models were fit; nevertheless, the anisotropic models revealed 

superior fits for interpolating streambed Ks. Among the three interpolation methods tested, 

the RBF method was the one with lowest RMSE and higher KGE in all the cases. The 

highly dense homogeneous network of samples contributed for relatively good 

performance of IDW and RBF methods. According to Li and Heap (2008), while modeling 

samples of dense homogeneous networks, the geostatistical methods, for instance ordinary 

kriging doesn’t show superior spatial predictions than deterministic methods, such as IDW 

and RBF, however, the prediction uncertainty will be lower around the sampled values in 

ordinary kriging estimates compared to deterministic methods. In Figure 5.20 the Taylor 

diagrams portray the relative performance of individual interpolation methods in 

simulating the spatial patterns of streambed Ks. The performance of all the three 

interpolation methods (IDW, RBF and OK) were marginally equal/similar in terms of root 

mean square difference/error (RMSD), standard deviation and correlation coefficient.  
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Figure 5.18 Krigged Streambed Ks patterns for the year 2016 
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Figure 5.19 Krigged Streambed Ks patterns for the year 2017 
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Figure 5.20 Taylor Diagrams for performance evaluation of Interpolation methods. 
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5.4 Discussion on influence of vented dams on the variability of 

streambed Ks 

It is expected that due to the obstruction caused by vented dams, the coarse 

sediment load will be held back in the upstream reaches, and the river will dig-in near the 

tail end of vented dams to get stabilized in its course at the middle reach. The array of 

channel adjustments that occur both upstream and downstream of vented dams were the 

factors responsible for the variability of streambed Ks. The presence of series of vented 

dams imparts particle size heterogeneity all along the direction of the stream and vertically 

within the bed. Cyclic scour and re-deposition events over time and, intrusion or settlement 

of fine sediments due to water stagnation behind dams can lead to changes in substrate 

composition all along the study reach.  

Statistically significant differences in streambed Ks and substrate composition 

subsisted between upstream and downstream sections of vented dams. Significant 

differences also existed in streambed Ks distribution at different transects within each 

segment of the study reach. Hydraulic conditions represented by head levels and duration 

of water storage behind the dams and, the operational strategies were significant factors 

accounting for within-channel Ks differences. The low-Ks zones at the tail water section 

downstream of vented dams occur due to the intrusion of fine sediments and organics into 

the pore spaces of a stable gravel substrate resulting in choking of hyporheic zones and 

anoxic conditions.  

During periods of substrate movement induced by storm peaks, the streambed is 

extremely dynamic to characterize. A significant volume of bed load is being released and 

incorporated at the same time period. Anthropogenic disturbances to streambed via in-

stream gravel mining, livestock washing, contaminant release from laundry wash, 

groundwater pumping for agricultural use are some significant factors to consider that lead 

to variability of Ks. There can be a surge of chemical substances and other nutrients 

released from anthropogenic activities due to river obstruction. 
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5.5 Results of AI based spatial models for Ks prediction 

The geographical coordinates (i.e., latitude and longitude) of the sampling locations 

(points) from where the in-situ hydraulic conductivity measurements were made were used 

as model inputs to predict streambed Ks over spatial scale using artificial neural network 

(ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine 

(SVM) paradigms. The statistical measures computed by using the actual versus predicted 

streambed Ks values of individual models are comparatively evaluated. 

5.5.1 Performance of ANN prediction models 

Based on trial and error scheme, the number of hidden neurons of multi-layer 

perceptron neural network (ANN) were determined. The tansig and purelin were employed 

as input and output transfer functions along with Levenberg-Marquardt back propagation 

learning rule. The model structure and performance statistics of the ANN model for each 

strategy are presented in Table 5.5.1 along with the performance statistics of ANN model 

for each strategy. From the statistical indices, it is evident that the performance of ANN 

models during the testing phase were satisfactory but not up to the mark. For instance, the 

MAE of all the models were sufficiently high and the RRMSE values above 0.4 signposts 

that the spatial Ks predictions were not so accurate but fall under satisfactory category. 

With reference to Strategy 1 model of 2017, even though the training results were good 

with an NSE = 0.835, the test performance was merely acceptable with an NSE =0.75.  

Table 5.5.1. Performance indices of ANN modeling 

ANN 

Model 

Model 

structure 

Train Test 

RRMSE MAE 

(cm/day) 

NSE RRMSE MAE 

(cm/day) 

NSE 

Strategy 1 - 

2016 

2-3-1 0.445 84.67 0.796 0.462 100.63 0.782 

Strategy 1 - 

2017 

2-3-1 0.411 81.22 0.835 0.491 108.72 0.75 

Strategy 2 - 

2016 

2-5-1 0.265 36.41 0.917 0.482 92.36 0.765 

Strategy 2 - 

2017 

2-5-1 0.395 68.26 0.821 0.458 85.82 0.788 
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5.5.2 Performance of ANFIS prediction models 

The adaptive neuro fuzzy inference system (ANFIS) with grid partitioning method 

was calibrated by selecting the shape and optimal number of membership functions. The 

optimal ANFIS architectures calibrated based on trial and error approach for spatial 

modeling of streambed Ks are presented in Table 5.5.2. The ‘hybrid’ training algorithm 

which includes the back propagation gradient descent method in combination with a least 

squares method was used for fitting the training data set. The performance statistics of 

ANFIS model for each strategy are presented in Table 5.5.3.  

Table 5.5.2. The optimal ANFIS architectures 

ANFIS Models ANFIS Parameters 

Membership function 

Number Input output 

Strategy 1 - 2016 3 gaussmf constant 

Strategy 1 - 2017 3 gaussmf constant 

Strategy 2 - 2016 3 gbellmf constant 

Strategy 2 - 2017 3 gbellmf constant 

 

Table 5.5.3. Performance indices of ANFIS modeling 

ANFIS Model Train Test 

RRMSE MAE 

(cm/day) 

NSE RRMSE MAE 

(cm/day) 

NSE 

Strategy 1 - 2016 0.206 40.78 0.957 0.247 56.14 0.937 

Strategy 1 - 2017 0.216 41.78 0.955 0.222 51.5 0.949 

Strategy 2 - 2016 0.279 45.278 0.931 0.372 67.386 0.86 

Strategy 2 - 2017 0.294 47.98 0.913 0.335 64.6 0.887 
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From the statistical indices, it is evident that the performance of all the ANFIS 

models during the testing phase have acceptable accuracy measures. For instance, the MAE 

of all the models were sufficiently less and the RRMSE values less than 0.4 and 0.3 

signposts that the spatial Ks predictions were decently and highly accurate, respectively. 

The Strategy 1 model of 2017, had higher prediction accuracy compared to other ANFIS 

models with a test NSE = 0.949. The gaussian and gbell membership functions were found 

to provide better prediction accuracy for the spatial modeling strategies 1 and 2, 

respectively.  

5.5.3 Performance of SVM prediction models 

The Support Vector Machine (SVM) with radial basis kernel function was 

employed in this study to predict the spatial streambed hydraulic conductivity. The optimal 

parameters of SVM (i.e., the cost, kernel and the ε-insensitive loss function) were identified 

via 3D Grid Search. The Table 5.5.4 presents the optimal values of SVM parameters. 

Hypothetically, a logarithmic grid ranging between 2-12 to 212 is usually sufficient for 

arriving at the best parameter combination. In the event that the best parameters lie on the 

limits of the grid, further search could be extended in that direction in a subsequent search. 

The performance statistics of SVM model for each strategy are presented in Table 5.5.5.  

 

Table 5.5.4. The optimal SVM architectures 

SVM Models SVM Parameters 

Radial Basis Kernel function 

Cost ‘C’ Gamma ‘γ’ Epsilon ‘ε’ 

Strategy 1 - 2016 1024 38 0.0707 

Strategy 1 - 2017 1156 44 0.1080 

Strategy 2 - 2016 980 52 0.1785 

Strategy 2 - 2017 1120 40 0.0967 
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Table 5.5.5. Performance indices of SVM modeling 

SVM Model Train Test 

RRMSE MAE 

(cm/day) 

NSE RRMSE MAE 

(cm/day) 

NSE 

Strategy 1 - 2016 0.155 50.45 0.965 0.241 52.56 0.941 

Strategy 1 - 2017 0.204 51.67 0.933 0.265 56.41 0.928 

Strategy 2 - 2016 0.264 52.567 0.927 0.322 57.66 0.895 

Strategy 2 - 2017 0.196 50.96 0.942 0.295 55.3 0.911 

From the statistical indices, it is evident that the performance of all the SVM models 

during the testing phase were of relatively higher accuracy. The MAE of all the model 

predictions were sufficiently less and the RRMSE values less than 0.3 signposts superior 

spatial Ks predictions. The Strategy 1 model of 2016, had higher prediction accuracy 

compared to other SVM models with a test NSE = 0.941.  

5.5.4 Comparative evaluation of AI models 

The three AI models, namely the ANN, ANFIS and SVM provided more or less 

satisfactory spatial predictions with respect to both the strategies considered. Both SVM 

and ANFIS prediction models performed much better than the ANN models and, based on 

the error indices the SVM models performed relatively better than the ANFIS prediction 

models. For comparative evaluation of all the models, Table 5.5.6 presents the evaluated 

statistical indices of test phase. The Figures 5.21 illustrate the scatter plots based on the 

observed v/s predicted streambed Ks values of the Strategy 1 - ANN, ANFIS and SVM 

models during the test phase. Similarly, Figure 5.22 illustrate the scatter plots of Strategy 

2 - ANN, ANFIS and SVM models during the test phase. The scatter plot displays the 

strength, direction, and form of the relationship between the observed and predicted 

streambed Ks. The prediction performance or the relative skill of different AI models is 

graphically summarized via Taylor diagrams as presented in Figures 5.23 and 5.24. 
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Table 5.5.6 Comparative evaluation of AI models with respect to test phase results 

 

 

 

 

 

 

 

 

 

 

 

 

With reference to Strategy 1 model for 2016 Ks data, the SVM model provides 

relatively better predictions than other two based on the NSE statistic. The RRMSE = 0.24 

indicates relatively good spatial Ks predictions. The instances of underestimation and 

overestimation of observed Ks values were better captured in scatter plots presented in 

Figure 5.21; wherein the Ks predictions by SVM model was quite closer to the observed 

values.  In Taylor diagram as presented in Figure 5.23, three statistical indices namely the 

correlation coefficient (R), the standard deviation (σ) and the root-mean-square difference 

(RMSD) are used to characterize the statistical relationship between the modelled and 

reference fields. In this case, both ANFIS and SVM predictions were analogous to each 

other. For comparative evaluation of RRMSE and NSE statistic, the Figure 5.25 presents 

the pictographic representation via bar chart. The model efficiencies of spatial modeling 

scheme 1 (i.e., strategy 1) were better compared to strategy 2 due to the incorporation of 

more number of sampling points in training. 

Statistic RRMSE  MAE (cm/day)  NSE 

 Strategy 1 -2016 

ANN 0.462 100.63 0.782 

ANFIS 0.247 56.14 0.937 

SVM 0.241 52.56 0.941 

  Strategy 1 - 2017 

ANN 0.491 108.72 0.75 

ANFIS 0.222 51.5 0.949 

SVM 0.265 56.41 0.928 

  Strategy 2 -2016 

ANN 0.482 92.36 0.765 

ANFIS 0.372 67.386 0.86 

SVM 0.322 57.66 0.895 

  Strategy 2 - 2017 

ANN 0.458 85.82 0.788 

ANFIS 0.335 64.6 0.887 

SVM 0.295 55.3 0.911 
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Figure 5.21 Scatter plots of the Strategy 1 – ANN, ANFIS and SVM models during the test period 
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Figure 5.22 Scatter plots of the Strategy 2 – ANN, ANFIS and SVM models during the test period 
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Figure 5.23 Taylor diagrams plotted for comparative evaluation of the  

Strategy 1 – ANN, ANFIS and SVM models of test phase 
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Figure 5.24 Taylor diagrams plotted for comparative evaluation of the  

 Strategy 2 – ANN, ANFIS and SVM models of the test phase 
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Figure 5.25 Plot of RRMSE and NSE statistic of all the AI models 

Pertaining to Strategy 1 model for 2017 Ks data, the performance of ANFIS 

prediction model was found to be relatively superior than the SVM model. The ANN 

model underperformed as compared to ANFIS and SVM predictions. From the scatter 

plots presented in Figure 5.21, it can be observed that both ANFIS and SVM models were 

analogous in capturing the spatial variations of streambed Ks. From the Taylor diagram 

as presented in Figure 5.23, it can be observed that the standard deviation of ANN 

predictions significantly differs from that of the observed Ks data. Here, the RMSD, 

standard deviation and correlation coefficient of ANFIS predictions were superior to 

SVM predictions. 

On comparison of the statistical indices with regard to Strategy 2 models for 2016 

and 2017 Ks data, it was evident that the SVM predictions outperform than the other two 

models in terms of all the indices considered. The scatter plots presented in Figure 5.22 

portray the ability of individual AI models to fit the observed Ks data. From the Taylor 

diagrams as presented in Figure 5.24, it could be seen that the standard deviation of 

ANFIS predictions were closer to the standard deviation curve of observed Ks data. 

However, the RMSD and correlation coefficient (R) of SVM models were relatively less 

and higher than the ANFIS predictions, respectively. Henceforth, based on NSE, RMSD 

and R values, the SVM model predictions were considered to be efficient even though, 

the ANFIS predictions were less biased compared to SVM predictions. 
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5.6 Summary 

The results of statistical and geostatistical analysis describe the variability of streambed 

hydraulic conductivity at fine spatial and temporal resolution over a significant length of 

river and time period. The geostatistical procedures employed for generating interpolated 

hydraulic conductivity (Ks) fields from a set of Ks measurements aid in visualizing the 

patterns of streambed Ks and the impact of vented dams on the variability of Ks. The 

potential of AI based spatial modelling schemes to predict the streambed Ks were 

comparatively evaluated. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 General 

The chapter presents the conclusions drawn based on the research insights gained 

from the experimental study findings along with the limitations of the study. The future 

recommendations are directed toward researchers in the field of fluvial hydrology, 

interested to take up and carry out additional research to broaden the scope and findings of 

this study. 

6.2 Conclusions  

 The streambed was heterogeneous with regard to hydraulic conductivity distribution 

with high-Ks zones near the backwater areas of the vented dams and low-Ks zones 

particularly at the tail water section of vented dams due to an upset of equilibrium 

between supply and removal of sediments near the vented dam cross section. 

 The measures of central tendency and dispersion show that the streambed Ks had 

reasonable spatial variability within the study reach, with a minimum value of 11.63 

cm/day, and the maximum being 793.88 cm/day during the year 2016 and ranged 

between 16.93 and 777.98 cm/day during the year 2017. The bedrock underlying the 

streambed and aquifer properties can also be the cause for low hydraulic conductivity 

at some sections of the stream. 
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 The Levene’s and Welch’s t-tests confirm the hypothesis of the significant spatial 

variability of streambed Ks between the upstream and downstream reaches of the 

vented dams. However, significant temporal variability of streambed Ks was not 

observed during the study period across all the three segments.  

 Analysis of results demonstrates a strong influence of vented dam presence, 

particularly on grain size and streambed Ks distribution. The spatial variability of 

streambed Ks can be because of factors such as accretion or depletion of streambed 

elements, local anomalies in substrate materials derived from river network. 

 The sediments of segment 2 (sinuous channel) and segment 3 (meandering channel) 

showed moderate to slightly higher D50 values due to the retention of coarse sediment 

load derived from the upland watershed. However, the sediments of some of upstream 

transects of segment 2 and segment 1 had lower D50 values as a result of settlement of 

suspended silt and particulate organic matter inputs from the floodplain and riparian 

vegetation. The variability of particle sizes resulting from erosion and deposition 

processes influence streambed hydraulic conductivity.  

 The Moran’s I index approved the presence of spatial dependence in the heterogeneous 

streambed Ks samples.  

 The IDW and RBF interpolation maps were found more accurate than the krigged 

surface maps; however, the prediction uncertainty was lower around the sampled 

values in ordinary kriging estimates compared to deterministic methods. 

 The AI based spatial models provided more or less satisfactory spatial Ks prediction 

efficiencies with respect to both the strategies/schemes considered.  

 Although ANN and ANFIS models provided satisfactory level of predictions, the SVM 

model was found to provide more accurate streambed Ks patterns due to its inherent 

capability to adapt to input data that are non-monotone and non-linearly separable. 

 The tuning of SVM parameters via 3D grid search was responsible for higher 

efficiencies of SVM models. 
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6.3 Contributions from the Study 

 This study verified the premise that due to the obstruction caused by vented dams, the 

coarse sediment load will be held back in the upstream reaches, and the river will dig-

in near the tail end of vented dams to get stabilized in its course at the middle reach. 

The array of channel adjustments that occur both upstream and downstream of vented 

dams are the factors responsible for the variability of streambed Ks. 

 With clean water releases from dams, downstream erosion, substrate flushing, and 

sorting are the processes contributing to Ks variability with some potential to change 

with time. 

 The impact of vented dams on the variability of streambed Ks was better revealed via 

virtuous maps of deterministic and geostatistical spatial interpolation schemes. 

 Even with limited field experimental data, the study discloses the potential of data 

driven models to predict streambed Ks patterns by presenting two spatial modeling 

schemes. 

 The spatial modelling schemes/strategies proposed were found suitable for predicting 

streambed Ks patterns. With such spatial modeling schemes that incorporate the 

neighborhood data to predict the variable of interest, one can easily predict at unknown 

point locations with significant confidence level. 

6.4 Limitations and Future Scope 

 This study was based on streambed Ks data sampled during two consecutive years 2016 

and 2017. In future, a multi-year sampling of streambed Ks can be conducted to confirm 

or modify findings of this study.  

 In the present study, the in-situ streambed Ks samples were collected at a solitary depth 

of 30 cm. For testing at greater depths, removing streambed substrate is difficult and 

also requires purchase of extension tubes. In future, one can conduct experiments at 

assorted depths to study the Ks variations with depth.  

 Some of the limitations of Guelph permeameter include measurement time of several 

hours at few locations where the bedrock is nearby. 
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 The variability of streambed hydraulic conductivity is assessed at fine spatial and 

temporal resolution. Future efforts should involve longer study durations and expanded 

stream corridor profile to better characterize temporal and spatial variations of 

streambed Ks. Such efforts would permit better understanding of hyporheic exchanges 

under variable flow conditions 

 Individual impacts of anthropogenic disturbances to streambed and its Ks via instream 

gravel mining, contaminant releases, groundwater pumping for agricultural use etc. are 

some of the significant factors to consider. 
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measurement of hydraulic conductivity of 
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Recording the water level change in the permeameter column 

 

 

 



 
View of Streambed between Vented dam 1 and 2 

 

 
View of Streambed upstream of Vented dam 2 

 

  



 
View of Vented Dam when gates are open in the month of May 2016 

 

 
Soil sampling from streambed  
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