
OPTIMIZING CONGESTION AVOIDANCE

AND CONGESTION CONTROL IN WIRED

AND WIRELESS NETWORKS

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

TAHILIANI MOHIT PRAKASH

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575025

MARCH, 2013

To,

my beloved ancestors,

parents and Rohit

Acknowledgements

In my journey towards the completion of my doctoral thesis, I was assisted and shown

the path by numerous people.

Things are definitely a lot easier when there is a person who gives you ideas,

who goes through each and every word written by you over and over, correcting it,

improving it, a person whom you turn to each time you have a doubt or some problem.

Words are insufficient to express my sincere gratitude and thanks towards my research

guide, Prof. K. C. Shet, for his constant guidance, support and encouragement.

He gave me a lot of freedom in my research and allowed me to work on the problems

of my interest. His passion for teaching and research showed me how academia can

be exceedingly rewarding and great fun at the same time. I have learnt a lot and still

have plenty to learn from him.

I am highly grateful towards my Research Progress Assessment Committee (RPAC)

Members Prof. U. Sripati and Prof. S. S. Kamath for their greatly valuable

comments. Their sharp questions forced me to think harder about my research. I

wholeheartedly thank Prof. T. G. Basavaraju who gave me an opportunity to join

NITK, Surathkal. I consider myself privileged for being a part of NITK, Surathkal.

This would not have been possible without his belief and confidence in me. I am

immensely thankful to Prof. K. Chandrasekaran for his strong support and con-

fidence in my research abilities. His encouraging feedback has always motivated me

in my research work. I humbly thank Dr. Annappa, HOD/Chairman, DRPC for

his regular inputs which have helped me me to do the work in the right direction.

I would also like to thank the ex-Head of our Department Sri Vinay Kumar for

providing the facilities needed to carry out the research work.

Assistant Professor Mr. B. R. Chandavarkar has been an excellent company

throughout my Ph.D studies. I am grateful to him for giving me an opportunity

to work with Pearson Publishers and contribute to its International Editions. He

was instrumental in collaborating and establishing Wireless Information Networking

Group (WiNG) and organizing SWN-2011 and SWN-2012 at NITK Surathkal. It is

hard to imagine a support better than the one provided by Mr. B. R. Chandavarkar.

It has been a pleasure to share the Research Lab with my colleagues. I would

like to thank Mrs. Raksha Prabhu, Mrs. Saumya Hegde and Dr. Prashanth

C. M. for their encouragement and kind support at the start of my Ph.D stud-

ies; Mrs. Geetha V. for the interesting discussions on life and phiolosophy and

Usha Divakarla for always finding a way to arrange parties. I would like to thank

Ganesh Reddy, Rino Cherian, Manoj Thomas, Anitha and Bane Raman

for being wonderful department mates, Fr. Johny Jose for always bringing a smile

on everyones face, Mr. Shivamurthy for his interesting queries on ns-2 and Mrs.

Poornalatha, Mr. Melwyn, Mr. Kiran, Mrs. Megha and Mrs. Pushpalatha

for their encouragement and support.

I would like to thank a few post graduate and under graduate students with whom

I was associated at NITK, Surathkal. I thank Shivaraj Shetty, Chirag Raval,

Vaidehi Panwala, Raviteja B. L., Tanusha Nadkarni, Rabna Rajendran,

Rochak Gupta, Sutanu Maiti,Abhishek Gupta,Anupma Raj,Madhulata H

and Rakesh Aggarwal for the wonderful moments we spent together while working

on several projects. Shivaraj Shetty always amazed me with his wonderful abilities

of problem solving; I thank him for the several discussions we had on the design

and implementation of XECN. He brought to my notice, a minor bug in the XECN

mechanism, for which I am highly grateful to him.

Manasa was my colleague for six years during my undergraduate and postgrad-

uate studies and more importantly, my best friend for almost a decade now. During

the not-so-great times of my studies, she was right there and provided excellent sup-

port. She has always been an integral part of my every success. I dont have words to

express my gratitude for the enormous amount of time, support and advice she gave

me whenever I needed it. She always motivated me to strive for the best. It is tough

to imagine a better friend than Manasa. Thank you, Manasa.

I am grateful to Mumtaz Mohammed Hussain and his family for their excel-

lent and boundless support throughout my nine years in Karnataka. I wholeheartedly

thank them and Manasa’s parents for recommending me to join Nitte for my post-

graduate studies; which provided an outstanding platform to explore my capabilities

and made me worthy to be a part of NITK. Mumtaz Hussain has been a great mentor,

an excellent critic and a fantastic blackboard off which I’d frequently bounce off my

ideas and dumb questions at times. He taught me the usefulness of the daily grind in

the life of a Ph.D. student and always motivated me to strive for the best, for which

I am deeply indebted to him. Thank you, Mumtaz bhai for always bringing a smile

on my face with your interesting comments and poems and every other thing.

My stay at Usha Kiran, Nitte would not have been so comfortable and enjoyable

without the constant support of Late Sri G. K. Shetty and his son Mr. Sandeep

Shetty; Bharati Kamath and her sons Hitesh Kamath and Sandesh Kamath.

I would like to thank them all for making my stay at Nitte a memorable one. Although

the journey from Nitte to NITK is quite long, for me, it was always short and sweet. I

would like to thank the Vishal bus staff Mr. Jayant, Mr. Krishna, Mr. Umesh,

Mr. Sunil, Mr. Afzal, Mr. Sudarshan, Mr. Santu and Mr. Yashodhar for

their kindness and concern towards me. They were very kind to pick/drop me near

my apartment, especially during the heavy rains in the monsoon. I would like to

thank Hegde uncle, Mr. Jeevan, Mr. K. Ramakrishna Rao, Mr. Prashant,

John uncle, Mr. Prasad, Amit, Nelson Tellis, Oneal Mascarenhas, Varun,

Wilson Tellis and Pawan kumar for sharing the lighter, fun filled moments in the

bus and helping me to beat the stress.

I would like to thank Mr. Abid for being an excellent company and providing

infinite support during the last five years. His galvanizing presence in my life has

added to my development as a researcher and as a human being. I am grateful to him

for giving me a bike which immensely helped in managing the time for my research

work. Thank you, Abid bhai for the wonderful support, fun filled moments and every

other thing.

I would like to thank the staff of our Deparment for all their help and support.

Mrs. Seema Shivaram was wonderful in helping me with all the official work. Mr.

Dayanand was very helpful in ensuring my Progress Seminars went well by taking

care of every other thing. I would also like to thank Mrs. Yeshavanti, Hema,

Vanita, Jaya, Mr. Kamath, Mr. Balachandra and Mr. Vairavnathan for

their help during my stay at NITK.

A special thanks to my beloved friends Meha Vaidya, Birju Ransariya, Dhar-

mendra Patel and Pavan Kumar Rambatla who have been a pillar of support

since my schooling days, Kumar Rohit - my apartment mate during my undergrad-

uate studies, Dhiraj Minocha and Tuhin Chakraborty - my classmates during

my undergraduate studies.

Whatever I am today, is because of the life long support of my fatherDr. Prakash

U. Tahiliani and my mother Mrs. Meena P. Tahiliani. I dedicate the successful

completion of my doctoral thesis to my father’s dream. My fathers great confidence

in my abilities encouraged me to always go an extra mile in my research. My little

brother, Rohit P. Tahiliani has been a rock of support in my life. His amazing

support and constant encouragement provided me with a lot of strength during my

research work. This thesis would not have been possible without the amazing support,

patience, constant encouragement, care, unfettered belief and prayers of my family.

No words can express my gratitude for them.

Finally, my deepest gratitude towards the Almighty for making this thesis possible.

Place: NITK, Surathkal Mohit P. Tahiliani

Date: 18th March, 2013

Abstract

Internet over the past few years has transformed from an experimental system into a

gigantic and decentralized source of information. The success of the Internet can be

partly attributed to the congestion control mechanisms implemented in Transmission

Control Protocol (TCP). TCP has been the de-facto transport protocol for Internet

since its inception. Although TCP constantly evolved over a period of two decades,

the diversity in the characteristics of present and next generation networks and a

variety of application requirements have posed several challenges to TCP congestion

control mechanisms. As a result, the shortcomings in the fundamental design of

TCP have become increasingly apparent. In this dissertation, we propose solutions

to overcome these shortcomings and increase the robustness of TCP by carefully

optimizing the fundamental TCP congestion control algorithms.

We focus on the middle ground between end-to-end transport protocols and net-

work based transport protocols. The major goal is to optimize the performance of

TCP while ensuring minimum deployment complexity. The motivation stems from

the fact that the need for deployment of Active Queue Management (AQM) and

Explicit Congestion Notification (ECN) has become apparent, owing to the drastic

impact of “persistently full buffers” on the performance of Internet. We aim to lever-

age the benefits of AQM/ECN mechanisms and provide a richer explicit feedback to

the end-hosts to aid them in making efficient congestion control decisions.

Although Random Early Detection (RED) has proved to be an effective AQM

mechanism, its performance is highly sensitive to the appropriate settings of the

parameters. Rather than tuning the parameters of original RED, this dissertation

instead, aims to improve the performance of Adaptive RED (ARED) and Refined

Adaptive RED (Re-ARED) by proposing two new AQM mechanisms. First, we

i

demonstrate that neither ARED’s conservative approach alone nor Re-ARED’s ag-

gressive approach alone suffices to improve the throughput and reduce the packet

drop rate. Hence, we have designed and implemented two new AQM mechanisms,

namely “Fast Adapting RED (FARED)” and “Cautious Adaptive RED (CARED)”

to combine the benefits of ARED and Re-ARED. Extensive simulation results show

that while FARED fails to achieve the desired goal, CARED offers robust perfor-

mance in a wide variety of scenarios and outperforms ARED and Re-ARED. Unlike

other RED variants, CARED requires only algorithmic modifications and is easy to

deploy.

Second, a new congestion signaling mechanism called “eXtended ECN (XECN)”

is designed and implemented to provide richer feedback to the end-hosts. XECN

does not require additional bits in TCP or IP header since it re-uses the bits already

allocated for ECN efficiently and unambiguously. Moreover, it requires modifications

only at the sender and the receiver. It does not require any modification in the

working of the router.

Third, we develop a new variant of TCP called “TCP Surathkal” which leverages

the benefits of AQM and XECN. TCP Surathkal takes congestion control decisions

based on the severity of congestion in the network. We present a modified design

of a fluid model which is based on Poisson Counter Driven Stochastic Differential

Equations to validate the working of TCP Surathkal. Results obtained by conducting

extensive simulations and mathematical modeling show that TCP Surathkal achieves

high utilization, reduces the packet drop rate and incurs less oscillations in the router

queues. The advantages of TCP Surathkal make it suitable for deployment in a wide

variety of networks.

ii

Table of Contents

Abstract i

Table of Contents iii

List of Tables v

List of Figures vi

Abbreviations and Nomenclature ix

1 Introduction 1

1.1 AQM for Congestion Avoidance . 3

1.2 TCP Congestion Control Laws . 6

1.3 Motivation and Assumptions . 7

1.3.1 Motivation for AQM . 7

1.3.2 Goals of Congestion Control mechanisms 8

1.3.3 Assumptions . 9

1.4 Outline of the Thesis . 10

2 Literature Review 11

2.1 RED based AQM mechanisms . 11

2.2 Mechanisms for Explicit feedback . 18

2.3 TCP Congestion Control . 22

2.3.1 End-to-end protocols . 24

2.3.2 Network based protocols . 26

2.3.3 End-to-end protocols with explicit feedback 27

2.3.4 Slowly responsive TCPs . 28

2.4 Problem statement . 29

2.5 Objectives . 29

3 ARED based robust AQM mechanisms 30

3.1 Overview of ARED . 30

iii

3.2 Overview of Refined Adaptive RED 32

3.3 Comparison of ARED and Re-ARED 33

3.3.1 Throughput and packet drop rate 33

3.3.2 Stability of the avg . 35

3.3.3 Inference . 42

3.4 Fast Adapting RED (FARED) . 43

3.4.1 Overview . 43

3.4.2 Design of FARED Algorithm 44

3.4.3 Results . 45

3.4.4 Inference . 51

3.5 Cautious Adaptive RED (CARED) 52

3.5.1 Overview . 52

3.5.2 Design of CARED Algorithm 52

3.5.3 Results . 54

3.5.4 Inference . 64

4 Network Controlled TCP 67

4.1 Overview . 67

4.2 eXtended ECN (XECN) . 68

4.2.1 Motivation . 68

4.2.2 XECN Mechanism . 71

4.3 TCP Surathkal Control Laws . 75

4.4 Results . 77

4.4.1 Comparison of TCP Surathkal and TCP SACK 77

4.4.2 Comparison with other TCP Variants 84

4.4.3 Performance evaluation of TCP Surathkal in Wireless networks 90

4.4.4 Inference . 95

5 Fluid model for TCP Surathkal 97

5.1 Genesis of the Fluid model . 97

5.2 Modified Fluid model for TCP Surathkal 99

5.3 Results . 100

5.4 Inference . 109

6 Conclusions and Future work 110

Bibliography 113

List of Publications 118

iv

List of Tables

1.1 Characteristics of different networks (Qazi 2010) 2

1.2 Performance Requirements of Internet Applications (Qazi 2010) . . . 2

1.3 WRED parameter setting in Cisco 12000 Series Router 5

1.4 TCP Variants in modern Operating Systems 6

2.1 Classification of RED Variants . 18

2.2 Possible Combinations to provide Explicit Feedback 19

3.1 Variables and Fixed Parameters of ARED 31

3.2 Variables and Fixed Parameters of Re-ARED 33

3.3 Throughput(kbps) of ARED and Re-ARED 35

3.4 Packet Drop Rate(%) of ARED and Re-ARED 35

3.5 Throughput(kbps) and Improvement(%) of FARED 46

3.6 Packet Drop Rate(%) and Improvement(%) of FARED 46

3.7 Variables and Fixed Parameters of CARED 53

3.8 Throughput(kbps) and Improvement(%) of CARED 60

3.9 Packet Drop Rate(%) and Improvement(%) of CARED 60

4.1 ECN codepoints in the TCP header 68

4.2 ECN codepoints in the IP header . 69

v

List of Figures

2.1 Marking function of RED . 12

2.2 Marking function of Gentle RED . 16

2.3 Choke packets . 19

2.4 ECN bits in IP header . 20

2.5 ECN bits in TCP header . 21

2.6 Explicit Congestion Notification . 21

2.7 Hop-by-hop Choke packets . 22

2.8 Congestion control protocols standardized by IETF 23

2.9 Evolution of end-to-end TCP protocols 25

3.1 Dumbbell topology . 34

3.2 avg dynamics of ARED and Re-ARED: 10 to 40 FTP Flows 37

3.3 avg dynamics of ARED and Re-ARED: 50 to 80 FTP Flows 38

3.4 Stability of avg with ARED - without background traffic 39

3.5 Stability of avg with Re-ARED - without background traffic 39

3.6 Stability of avg with ARED - with background traffic 40

3.7 Stability of avg with Re-ARED - with background traffic 40

3.8 ARED with sharp increase in the congestion level 41

3.9 Re-ARED with sharp increase in the congestion level 41

3.10 ARED with sharp decrease in the congestion level 42

3.11 Re-ARED with sharp decrease in the congestion level 42

3.12 avg dynamics of FARED, ARED and Re-ARED: 10 to 20 FTP Flows 48

3.13 avg dynamics of FARED, ARED and Re-ARED: 30 to 40 FTP Flows 49

3.14 avg dynamics of FARED, ARED and Re-ARED: 50 to 60 FTP Flows 50

vi

3.15 FARED with sharp increase in the congestion level 51

3.16 FARED with sharp decrease in the congestion level 51

3.17 Flowchart of Cautious Adaptive RED 54

3.18 avg dynamics of CARED, ARED and Re-ARED: 10 to 20 FTP Flows 56

3.19 avg dynamics of CARED, ARED and Re-ARED: 30 to 40 FTP Flows 57

3.20 avg dynamics of CARED, ARED and Re-ARED: 50 to 60 FTP Flows 58

3.21 avg dynamics of CARED, ARED and Re-ARED: 70 to 80 FTP Flows 59

3.22 Stability of avg with CARED - without background traffic 61

3.23 Stability of avg with CARED - with background traffic 61

3.24 CARED with sharp increase in the congestion level 62

3.25 CARED with sharp decrease in the congestion level 63

3.26 Variations in maxp with ARED - without background traffic 63

3.27 Variations in maxp with Re-ARED - without background traffic . . . 64

3.28 Variations in maxp with CARED - without background traffic 64

3.29 Variations in maxp with ARED - with background traffic 65

3.30 Variations in maxp with Re-ARED - with background traffic 65

3.31 Variations in maxp with CARED - with background traffic 66

4.1 ECN Negotiation . 69

4.2 eXtended ECN . 72

4.3 Dumbbell topology . 78

4.4 Throughput vs Bottleneck bandwidth 79

4.5 Throughput vs Bottleneck propagation delay 80

4.6 Throughput vs Number of flows . 81

4.7 Fairness ratio . 82

4.8 Congestion Window vs Time . 83

4.9 Average queue size vs Time . 84

4.10 Link Utilization with Bandwidth Changes 86

4.11 Percent of Mean Queue Length with Bandwidth Changes 86

4.12 Packet Drop Rate with Bandwidth Changes 87

4.13 Link Utilization with RTT Changes 88

vii

4.14 Percent of Mean Queue Length with RTT Changes 89

4.15 Packet Drop Rate with RTT Changes 89

4.16 Single hop wireless topology . 91

4.17 Throughput vs Wireless bandwidth 92

4.18 Throughput vs Wireless bandwidth 92

4.19 Varying error rate . 93

4.20 Varying error rate . 94

5.1 Oscillations in the cwnd with TCP and TCP Surathkal 102

5.2 Oscillations in the avg with TCP and TCP Surathkal 103

5.3 Oscillations in queue length with TCP and TCP Surathkal 104

5.4 Oscillations in the cwnd with TCP and TCP Surathkal 105

5.5 Oscillations in the cwnd with TCP and TCP Surathkal 106

5.6 Oscillations in the avg with TCP and TCP Surathkal 107

5.7 Oscillations in the queue length with TCP and TCP Surathkal 108

viii

Abbreviations and Nomenclature

maxp Maximum Drop Probability

maxth Maximum Threshold

minth Minimum Threshold

pd Packet Drop Probability

wq Queue weight factor for Exponential Weighted Moving Average

avg Average Queue Length

cwnd Congestion Window

newavg Current Average Queue Length

ns-2 Network Simulator - 2

oldavg Previous Average Queue Length

ACKs Acknowledgments

AIAD Additive Increase Additive Decrease

AIMD Additive Increase Multiplicative Decrease

AQM Active Queue Management

ARED Adaptive Random Early Detection

BER Bit-Error Rate

BRED Balanced Random Early Detection

ix

CARED Cautious Adaptive Random Early Detection

CBT-RED Class-Based Threshold Random Early Detection

CC Count Codepoint

CE Congestion Experienced

CWR Congestion Window Reduced

DCTCP Data Center Transmission Control Protocol

DRED Dynamic Random Early Detection

DSRED Double Slope Random Early Detection

ECE ECN Echo

ECN Explicit Congestion Notification

ECT ECN Capable Transport

EWMA Exponential Weighted Moving Average

FARED Fast Adapting Random Early Detection

FRED Flow Random Early Detection

FTP File Transfer Protocol

GAIMD General AIMD

GRED Gentle Random Early Detection

HSTCP High Speed Transmission Control Protocol

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

LRED Loss-ratio based Random Early Detection

MIMD Multiplicative Increase Multiplicative Decrease

x

NLRED Nonlinear Random Early Detection

PQM Passive Queue Management

RCP Rate Control Protocol

Re-ARED Refined Adaptive Random Early Detection

RED Random Early Detection

RED-PD Random Early Detection with Preferential Dropping

RTO Retransmission Timeout

RTT Round Trip Time

SACK Selective Acknowledgment

SARED Stabilized ARED

SRED Stabilized RED

STCP Scalable Transmission Control Protocol

TCP Transmission Control Protocol

VoIP Voice over Internet Protocol

Wi-Fi Wireless Fidelity

WRED Weighted Random Early Detection

XCP eXplicit Contol Protocol

XECN eXtended Explicit Congestion Notification

xi

Chapter 1

Introduction

Internet over the past few years has experienced phenomenal growth in terms of the

penetration rate and the diversity of the applications. It has transformed from an

experimental system into a gigantic and decentralized source of information. Accord-

ing to a 2011 study (Akamai 2011), the average connection bandwidth globally is

2.6Mbps while more than 27% of users having bandwidth above 5Mbps and 65% of

users having bandwidth above 2Mbps. The usage of narrowband (<256Kbps) has

shrunk to about 2.9% of the users. The success of the Internet can be partly at-

tributed to the congestion control mechanisms implemented in Transmission Control

Protocol (TCP). These congestion control mechanisms are widely deployed in well

known operating systems and are extensively used by a variety of Internet applica-

tions. However, tremendous growth in the range of bandwidth, increase in Bit-Error

Rates (BER) and increased diversity in applications have challenged the congestion

control mechanisms of TCP. These mechanisms must be able to accomodate and lever-

age the diversity in the characteristics of different networks (See Table 1.1), support

a variety of application requirements and different traffic workloads (See Table 1.2).

Thus, the need for optimizing these mechanisms has become extremely important.

Transport protocols with congestion control mechanisms are mainly classified into

three categories: (i) end-to-end protocols (e.g., TCP Newreno) that rely on implicit

congestion signals such as packet loss and/or latency, (ii) network based protocols (e.g.,

eXplicit Contol Protocol (XCP)) that rely on explicit feedback from the network and

(iii) end-to-end protocols with explicit feedback (e.g., TCP+AQM/ECN) that rely on

a few bits of explicit feedback from the network to aid end-hosts in making congestion

1

Table 1.1: Characteristics of different networks (Qazi 2010)

Network Capacity Latency BER
Wired LANs (e.g., Ethernet) 10Mbps - 10Gbps < 1ms ≤ 10−12

Data Centers 1Gbps - 1Tbps 100µs - 1ms 10−12

Wired WANs ≈10Mbps - 14Tbps 10ms - 300ms 10−12

802.11 WLAN/Mesh Networks <1Mbps - 600Mbps 1ms - 200ms >10−5

Cellular Data Networks (e.g., 3G) 384Kbps - 3Mbps ≈ 100ms - 1s 10−5

Satellite Networks 100Kbps - 155Mbps 250ms - 1s 10−10

Table 1.2: Performance Requirements of Internet Applications (Qazi 2010)

Application Examples Requirements
Interactive Voice over IP, Video Con-

ferencing
Minimal latency, small
jitter and less throughput
variations

Short flows (< 100KB) Google Search, Facebook Short response times
Medium sized transfers
(100KB - 5MB)

Picasa, YouTube, Face-
book photos

Low latency

Large transfers (> 5MB) Software updates, Video
On-demand

Consistent high through-
put

control decisions. While end-to-end protocols have performance limitations, network

based protocols have been considered as hard to deploy because they need to maintain

per-flow state at the routers. Since routers are complex and expensive devices, mod-

ifying them is a difficult task. Moreover, network based protocols require more bits

for explicit feedback than are available in the IP header (Qazi 2010). On the other

hand, end-to-end protocols with explicit feedback have lower deployment complexity

than network based protocols since they require modifications mainly at the end-hosts,

with incremental support from the routers (e.g., deployment of AQM/ECN) (Qazi

2010).

The performance of TCP-based applications, apart from the congestion control

mechanisms, critically depends on the choice of queue management scheme imple-

mented in the routers. Queue management mechanisms control the length of the

queues by dropping packets when necessary. Passive Queue Management (PQM)

(e.g., tail-drop) is the most widely deployed queue management mechanism in Internet

routers (Hassan and Jain 2004). PQM does not employ any preventive packet drop

2

before the router buffer gets full and hence, is easily deployable. However, due to the

inherent problems of PQM such as global synchronization (Floyd and Jacobson 1993),

lock-out (Hassan and Jain 2004), etc, Internet Engineering Task Force (IETF) rec-

ommends Active Queue Management (AQM) for the next generation Internet routers

(Hassan and Jain 2004). Moreover, another limitation of PQM called “persistently

full buffer problem” (recently exposed as a part of “bufferbloat” (Gettys 2011)) has

proved the acute need of widespread deployment of AQM. The expected advantages

of AQM deployment are: (i) overall performance improvement in terms of increase

in throughput, reduced delay, minimal packet loss and overcoming the limitations of

PQM. (ii) end-hosts can get richer explicit feedback which, infact, is required to meet

the challenges of the present and next-generation networks.

This dissertation focuses on improving the performance of end-to-end protocols

with explicit feedback, especially TCP+AQM/ECN. The major goals are (i) to opti-

mize the performance of existing AQM mechanisms for congestion avoidance while

ensuring minimal deployment complexity (ii) enable congestion signaling mechanisms

to provide richer feedback to end-hosts by using already available bits in the TCP

and IP header and (iii) to optimize the congestion control laws of TCP. We start by

providing a brief description of the standard AQM mechanisms.

1.1 AQM for Congestion Avoidance

TCP provides congestion control by four main algorithms namely Slow Start, Additive

Increase/Multiplicative Decrease (AIMD)1, Fast Retransmit and Fast Recovery. Slow

start and AIMD are used for dynamically changing the size of a congestion window

(cwnd). Slow Start increases the cwnd exponentially to quickly bring a newly started

flow to the desired speed. In steady state, TCP uses AIMD to vary the cwnd in

conjunction with fast retransmit and fast recovery. Fast Retransmit and fast Recovery

are triggered in the event of a packet loss and are used to quickly recover from the

state of congestion. These four algorithms, though modified several times in the

1AIMD algorithm is also known as Congestion Avoidance algorithm.

3

recent past, have been the cornerstones of TCP congestion control research.

Congestion avoidance mechanisms differ from congestion control mechanisms,

since former are proactive while latter are reactive. Though AIMD is also known

as Congestion Avoidance algorithm, it is a misnomer since AIMD does not try to

avoid congestion proactively (Bhandarkar and Reddy 2007). Henceforth, we con-

sider AIMD algorithms as Congestion Control mechanisms and AQM mechanisms

as Congestion Avoidance mechanisms since AQM mechanisms proactively inform the

sender about network state and avoid congestion.

The deployment of AQM mechanisms in the Internet has significantly increased

in the recent past, because PQM mechanisms have a few limitations such as:

• Global Synchronization (Floyd and Jacobson 1993): Traditional tail-drop gate-

ways do not provide an early congestion notification. This leads to global syn-

chronization, a phenomenon in which all senders sharing the bottleneck gateway

reduce their sending rate at the same time, thereby under-utilizing the network

resources.

• Lock-out (Hassan and Jain 2004): PQM mechanisms (e.g., tail-drop) allow a

single connection or a few connections to monopolize the buffer space in the

router queues. This results in unfair sharing of the network resources among

the connections, thereby giving rise to fairness problems.

• Bufferbloat (Gettys 2011): Since memory costs have reduced in the recent past,

modern Internet routers are designed with extremely large buffers. As a result,

today’s Internet suffers from poor network performance because TCP variants

implemented in modern operating systems are end-to-end protocols and hence,

do not reduce the sending rate unless a packet drop is encountered. Since

the packet drop occurs only when these large buffers overflow, queueing delay

experienced by each packet increases drastically, thereby degrading the Quality

of Service for delay sensitive applications such as DNS queries, Voice over IP

(VoIP) and other multimedia applications. This problem has been termed as

Bufferbloat.

4

AQM mechanisms have been extensively studied to monitor and limit the growth

of the queue at routers. These mechanisms avoid congestion by proactively inform-

ing the sender about congestion, either by dropping a packet or by marking a packet.

Random Early Detection (RED) (Floyd and Jacobson 1993) is the most widely de-

ployed AQM mechanism in the routers and Explicit Congestion Notification (ECN)

(Ramakrishnan et al. 2000) is the most popular marking mechanism (also known as

signaling mechanism) used in conjunction with RED. However, it has been shown that

the effectiveness of RED largely depends on appropriately setting atleast four parame-

ters, namely: minimum threshold (minth), maximum threshold (maxth), queue weight

factor (wq) for exponential weighted moving average and maximum drop probability

(maxp) (Feng et al. 1999; Floyd et al. 2001). Optimal values for these parameters

differ for different scenarios and are dependent on several other factors such as num-

ber of flows passing through same bottleneck gateway (Feng et al. 1999), packet size

(Misra et al. 2000), etc. Table 1.3 shows the values of these parameters used in Cisco

12000 Series routers that implement a modified RED called Weighted RED (WRED).

C is the capacity of the link in packets where mean packet size is 1500 bytes.

Table 1.3: WRED parameter setting in Cisco 12000 Series Router

Link Speed C minth maxth wq maxp

DS3 3666 110 367 9 1
OC3 12917 388 1292 10 1
OC12 51666 1550 5167 12 1

Adaptive RED (ARED) (Floyd et al. 2001) addresses the parameter sensitivity of

RED by dynamically varying maxp and automatically setting minth, maxth and wq

parameters. ARED requires setting of only one parameter - target queueing delay,

defined as the maximum amount of time a packet is delayed in the queue. In this

dissertation, we show that though ARED dynamically varies maxp, the adaptation

is conservative and leads to the loss of throughput for sometime, especially when

the level of congestion changes sharply. We further show that a combination of

conservative and aggressive approach to vary maxp yields robust performance in a

wide range of scenarios.

5

1.2 TCP Congestion Control Laws

Though the scale of the Internet and its usage increased by several orders of mag-

nitude in the recent past, TCP has evolved to keep up with the changing network

conditions and has proven to be scalable and robust. Table 1.4 shows the imple-

mentation of various TCP variants in modern operating systems (Afanasyev et al.

2010). However, since the nature of Internet applications changes frequently, some of

the assumptions made during the early design of TCP may not be valid in today’s

networks. As an example, TCP congestion control mechanisms assume network to

be a black box and rely on a packet loss as an implicit notification of congestion

(Ramakrishnan et al. 2000). While in most traditional networks this assumption is

true, newer network environments, especially wireless, challenge it. Moreover, using

packet loss as a congestion signal results in coupling of congestion control with loss

recovery; thus makes different types of losses difficult to discern (Qazi 2010). This

forces senders to respond in the same manner to all types of losses and worsens the

performance of TCP in wireless networks. Non-congestion losses are mistaken for

congestion losses and the sending rate is unnecessarily reduced.

Table 1.4: TCP Variants in modern Operating Systems

Operating System Default TCP
Linux Kernel > 2.6 CUBIC

Macintosh TCP Newreno + SACK
Windows XP/Vista/7 TCP Newreno + SACK

Android CUBIC

Another area of concern that arises from the early design of TCP is the conser-

vative approach adopted by TCP’s AIMD algorithm. When an acknowledgement

(ACK) is received in AIMD phase, the cwnd is increased as shown in Eq. 1.2.1. This

is known as Additive Increase phase of the AIMD algorithm.

cwnd = cwnd+
1

cwnd
(1.2.1)

When congestion is detected either through timeout or duplicate acknowledge-

ments (dupacks) or Selective Acknowledgements (SACK), cwnd is updated as shown

6

in Eq. 1.2.2. This is known as Multiplicative Decrease phase of the AIMD algorithm.

cwnd =
cwnd

2
(1.2.2)

After reducing the cwnd by half in the event of congestion, TCP linearly increases

the cwnd which takes considerable number of Round Trip Times (RTTs) to reach

the original sending rate i.e., the cwnd size when congestion is detected. While

decreasing the cwnd by half certainly reduces the load, “by half” is an ad-hoc decision

(Yang and Lam 2000).

In this dissertation, we design and implement a new TCP variant called “TCP

Surathkal”. TCP Surathkal employs an efficient multiplicative decrease mechanism

which reduces the cwnd based on the severity of congestion in the network, rather

than reducing it by half. We show that backing off as a function of the severity of

congestion can lead to better congestion responsiveness, faster fairness convergence

and less fluctuations in queues at the routers.

1.3 Motivation and Assumptions

In this section, we briefly discuss the motivation for AQM and the major goals of

congestion control mechanisms.

1.3.1 Motivation for AQM

The main motivation for using AQM is that it provides preventive measures to manage

a queue and eliminates the limitations associated with PQM. The goals of AQM are

specified as follows (Hassan and Jain 2004):

• Minimal packet loss - The number of packets losses due to buffer overflow in

routers must be reduced to improve the throughput.

• Low latency - The queueing delay must be kept low by maintaining a small

queue size to provide better service to interactive apllications.

7

• Fairness - Fair bandwidth allocation among the competing flows to avoid the

lock-out problem.

1.3.2 Goals of Congestion Control mechanisms

The major goal of congestion control mechanisms is to use the network as efficiently

as possible. There are a few performance goals that congestion control mechanisms

must achieve (Qazi 2010).

• Efficiency - Congestion control protocols should be able to achieve maximum

link utilization across a broad range of link capacities.

• Negligible Packet Loss - Packet losses due to buffer overflows should be negligi-

ble. These losses result in retransmissions which waste the network bandwidth.

• Stability - When networks face transient erratic behaviors caused by sudden

increases in traffic (e.g., flash-crowds), congestion control mechanisms should

be able to detect this behavior and move to a stable operating point.

• Fairness - Congestion control mechanisms should ensure fair usage of the avail-

able link capacity. Several definitions of fairness exist in the literature; the focus

of this dissertation is on the Jain’s fairness index.

• Easy to deploy - Ideally, the new congestion control protocol should be amenable

to deployment in the current Internet architecture. It should be able to coexist

with TCP without requiring complex router-level computations. Moreover, its

incremental deployment must be feasible without affecting the performance of

the protocols that already exist.

• Low Router Complexity - Protocols that require the routers to maintain per-

flow queues and classify every packet are considered complex. Such protocols

have more memory requirements and hence, incur more cost.

8

1.3.3 Assumptions

The scope of this dissertation has been limited to congestion in connectionless packet-

switched networks, and in particular, to networks with the same architecture as the

Internet. The assumptions made towards the network under consideration are as

follows (Toomey 1997):

• The network is a wide-area network with nodes passing data to other nodes

along links. The nodes are arbitrarily connected; the network does not have a

particular topology (e.g., spanning tree, hypercube, etc).

• The network is connectionless. There is no reservation of network bandwidth or

resources between a source of data transmission and its intended destination.

• The network is packet-switched. Packets are individually routed from a source

to a destination.

• The network uses semi-static routing. Routes can change slowly over time, but

most routes are static.

• The network sets no bandwidth constraints on data sources. A source host may

attempt to transmit data at a rate which will exceed the bandwidth or resources

on the links and the network elements.

• The network makes no transmission guarantee. The links on the network have

finite bandwidth and the nodes have finite buffer space for packets waiting to be

routed. If network components are unable to forward data on to the destination

for any reason, the data may be dropped.

Justification:

Currently, Internet provides only the best-effort delivery of data i.e. the network

only attempts to deliver the packets, without guaranteeing any performance bound.

Moreover, the Internet does not have a particular topology. These are, in general, the

main characteristics of the Internet. The assumptions made above are in-line with

the characteristics of the Internet.

9

1.4 Outline of the Thesis

The rest of the dissertation is organized as follows:

Chapter 2 provides the background of TCP and AQM, their limitations and a brief

survey of the related work. We also discuss the different types of explicit feedback

mechanisms, highlighting their merits and demerits.

Chapter 3 provides a detailed explanation of the performance of ARED and Re-

fined Adaptive RED (Re-ARED) (Kim and Lee 2006). We have highlighted the short-

comings of ARED and Re-ARED by carrying out extensive simulations in varying

scenarios. Further, we attempt to eliminate those shortcomings by designing two

new ARED based AQM mechanisms: Fast Adapting RED (FARED) and Cautious

Adaptive RED (CARED).

Chapter 4 discusses the eXtended Explicit Congestion Notification (XECN) mech-

anism which is newly designed to enable the TCP sender to infer the severity of con-

gestion in the network. This chapter also describes the working of TCP Surathkal,

which leverages the benefits of AQM mechanisms and XECN to improve the overall

performance of the network.

In Chapter 5, we present a modified design of a fluid model which is based on

Poisson Counter Driven Stochastic Differential Equations to validate the working of

TCP Surathkal. The effectiveness of TCP Surathkal is demonstrated by studying the

stability behavior of TCP Surathkal.

Chapter 6 presents the Conclusions and the possible future directions.

10

Chapter 2

Literature Review

The shortcomings of PQM schemes have posed a fundamental limitation in achieving

the objectives of congestion control. Recently, a lot of work has focused on optimizing

the performance of AQM mechanisms to avoid congestion. Since RED is widely

implemented and is the default AQM mechanism recommended by IETF for the next

generation Internet routers, we limit the scope of this dissertation to RED based AQM

mechanisms. This chapter reviews the important features of RED based active queue

management and TCP congestion control mechanisms. Further, we briefly review

the different types of mechanisms to provide explicit feedback to the end-hosts and

categorize them based on their deployment requirements.

2.1 RED based AQM mechanisms

The parameter sensitivity of RED has been addressed by several researchers and as a

result, RED has been extended and enhanced by adopting many different approaches.

The basic mechanism of RED, however, still remains the same.

On arrival of every packet, RED gateways calculate the average queue size (avg)

by using Exponential Weighted Moving Average (EWMA). If avg is less than minth,

the packet is enqueued. If avg is more than maxth, the packet is dropped
1. However,

if avg is between minth and maxth, the packet is dropped randomly with a certain

probability. RED, therefore, has two computational parts: computation of avg and

1In the presence of ECN, the router may choose to mark the packet instead of dropping. Hence,
we use the terms dropping and marking interchangeably.

11

calculation of packet drop probability (pd). The following equations show avg and pd

calculation of RED respectively:

avg = ((1− wq)× oldavg) + (wq × cur q) (2.1.1)

where oldavg = average queue size during previous packet arrival

cur q = current queue size

pd =























0 avg < minth

avg−minth

maxth−minth
×maxp minth ≤ avg < maxth

1 avg ≥ maxth

(2.1.2)

The probability with which a packet is dropped is a linear function of the avg.

Hence, when avg varies from minth to maxth, the drop probability varies from 0 to

maxp. If avg increases above maxth, drop probability becomes 1 i.e. all incoming

packets are dropped. Figure 2.1 shows the marking function of RED.

Figure 2.1: Marking function of RED

The effectiveness of RED highly depends on the appropriate setting of its parame-

ters. Moreover, it is difficult to find the appropriate values of parameters that enable

RED to perform equally well in different scenarios. RED may in fact perform worse

than PQM if its parameters are not correctly tuned. We now discuss the issues and

prior work done in appropriately setting these parameters.

12

Setting maxp

The choice of maxp significantly affects the performance of RED. If maxp is too small,

the number of active packet drops becomes less and hence, cannot prevent the queue

overflow. If maxp is too large, the number of active packet drops becomes more and

significantly affects the throughput.

(Feng et al. 1999) demonstrates that the choice of maxp depends not only on

the bandwidth delay product but also on the number of flows. An algorithm called

Self Configuring RED is developed and implemented in (Feng et al. 1999) to vary

maxp parameter based on the avg dynamics. The main idea is to modulate the

packet dropping behavior of RED by monitoring the variations in the avg. If the avg

oscillates around minth, the value of maxp is decreased to make RED less aggressive.

Similarly, if the avg oscillates around maxth, the value of maxp is increased to make

RED more aggressive. maxp is carefully varied so as to keep the avg between minth

and maxth. This algorithm performs well in different traffic scenarios since it reduces

the oscillations in the instantaneous queue length.

As an extension to Self Configuring RED, an Adaptive RED (ARED) is developed

in (Floyd et al. 2001) and its effectiveness over the original RED2 is demonstrated in

terms of improved throughput and reduced oscillations in the queue size. Unlike Self

Configuring RED, ARED is designed to keep the avg in target range between minth

and maxth and thus, maxp is varied accordingly. Moreover, ARED automatically

sets minth, maxth and wq parameters. The choice of target queuing delay, which

determines the trade-off between delay and link utilization, is left to the network

operators.

ARED follows an Additive Increase/Multiplicative Decrease (AIMD) policy to

vary maxp. While ARED adopts a conservative approach to vary maxp, Refined

Adaptive RED (Re-ARED)(Kim and Lee 2006) adopts an aggressive approach to

bring avg within its target range more quickly. However, like ARED, Re-ARED

too employs an AIMD policy to adapt maxp. Contrary to ARED and Re-ARED, a

modified ARED algorithm based on Multiplicative Increase/Multiplicative Decrease

2Original RED refers to the RED proposed in (Floyd and Jacobson 1993)

13

(MIMD) policy to adapt maxp is designed in (Marquez et al. 2007). However, the

results show that MIMD policy to adapt maxp yields similar results as the AIMD

policy.

Setting wq for EWMA

The avg in RED is required to filter out the transient congestion, while at the same

time, detect congestion that has persisted for several RTTs. If wq is too small, the

AQM may fail to detect the incipient congestion and lead to overall performance

degradation by causing queues to overflow. If wq is too large, avg tracks the instan-

taneous queue and leads to more oscillations in the queue, thereby degrading the

performance of AQM.

ARED, as discussed above, automatically sets the wq as a function of the link

bandwidth. It is shown in as

wq = 1− exp(
−1

C
) (2.1.3)

where C is the link capacity in packets/second, computed for packets of the spec-

ified default size (Floyd et al. 2001).

An ARED based algorithm3 that adaptively varies wq along with maxp is designed

in (Verma et al. 2002). The main goal of the algorithm is to modulate the aggressive-

ness of RED by varying the value of wq based on the changes in avg. If the change

in avg is negligible, smaller value for wq (wq1) is chosen to give more weight to the

oldavg. On the other hand, if the change in avg is significant, larger value for wq (wq2)

is chosen to give more weight to the instantaneous queue length. However, wq1 and

wq2 are fixed values and must be predefined.

Similar mechanisms, Stabilized ARED (SARED)(Javam and Analoui 2006) and

Self Tuning RED (Chen et al. 2011) focus on assigning different queue weights, wq, to

ARED instead of one fixed queue weight. The major limitation of these approaches

is that they introduce several new parameters to achieve performance gain. Setting

these additional parameters adds to the complexity.

3We call this algorithm as wq+maxp algorithm.

14

Setting minth and maxth

It is recommended that the minth for a RED router that carries only TCP traf-

fic should be around five packets. maxth should be at least three times minth

(Floyd et al. 2001). However, a different set of values are required for minth and

maxth to achieve fairness when non-TCP traffic (e.g., UDP traffic) co-exists with the

TCP traffic. This approach is adopted by Class-Based Threshold RED (CBT-RED)

(Parris et al. 1999). CBT-RED sets the minth and maxth thresholds according to the

traffic type and its priority. UDP traffic is assigned a separate drop threshold than

the one assigned for TCP traffic.

Balanced RED (BRED) (Anjum et al. 1999) achieves fairness among TCP and

UDP traffic by regulating the bandwidth of a flow based on the other active flows.

However, it requires per-flow accounting and hence, has scalability and deployment

issues.

ARED automatically sets minth based on the Eq.(2.1.4). maxth is set to three

times of minth.

minth = max(5,
dt ∗ C

2
) (2.1.4)

where dt represents the target queuing delay set by the network operators.

Setting minth as per Eq.(2.1.4) ensures that for high bandwidth links, minth is

set sufficiently high and for low bandwidth links, minth is set accordingly low.

Calculating packet drop probability (pd)

It is observed that sharply increasing the drop probability to 1 when avg crossesmaxth

(see Fig.2.1) results in high number of packet drops. Hence, a modified RED known

as Gentle RED (GRED) is recommended by Floyd that varies the drop probability

from maxp to 1 when avg varies from maxth to twice maxth so as to reduce the

number of active packet drops. Figure 2.2 shows the marking function of GRED.

Stabilized RED (SRED) (Ott et al. 1999) has been designed to make the router

queue stable over a wide range of load levels. Instead of calculating the avg, SRED

15

Figure 2.2: Marking function of Gentle RED

drops packets depending on the instantaneous queue length and the number of active

flows. Eq.(2.1.5) and Eq.(2.1.6) show the packet drop probability (pd) and the final

packet drop function (psred) of SRED respectively. B represents the buffer capacity.

SRED achieves the goal of stabilizing the queue, however, suffers from low throughput

even for a small number of active flows.

pd =























maxp
B
3
≤ cur q < B

1
4
maxp

B
6
≤ cur q < B

3

0 0 ≤ cur q < B
6

(2.1.5)

psred =







pd for a large number of active flows

pd
65536

(numberofflows)2 for a small number of active flows
(2.1.6)

Double Slope RED (DSRED)(Zheng and Atiquzzaman 2000) implements two lin-

ear drop functions with different slopes to improve the throughput and delay of RED.

The main idea is to divide the queue between minth and maxth into two segments

and use a separate linear function for each segment. DSRED adapts to the level of

congestion by changing the slope of the drop function. The equation governing the

packet drop probability (pd) is given by Eq.(2.1.7).

16

pd =



































0 avg < minth

α(avg −minth) minth ≤ avg < midth

1− γ + β(avg −midth) midth ≤ avg < maxth

1 avg ≥ maxth

(2.1.7)

where α and β are given by Eq.(2.1.8) and Eq.(2.1.9) respectively. midth is a

threshold for the avg to change the slope of the drop function and γ is used as a

mode selector to adjust the slopes of the drop function.

α =
2(1− γ)

maxth −minth

(2.1.8)

β =
2γ

maxth −minth

(2.1.9)

Nonlinear RED (NLRED) (Zhou et al. 2006), on the other hand, replaces the lin-

ear packet dropping function of RED by a nonlinear quadratic function to improve the

effectiveness of RED. Eq.(2.1.10) shows the packet drop probability (pd) of NLRED.

Though DSRED and NLRED outperform the original RED, their parameter sen-

sitivity remains same as the original RED because they do not vary maxp and use

the default value of wq.

pd =























0 avg < minth

(avg−minth

maxth−minth
)2 ×maxp minth ≤ avg < maxth

1 avg ≥ maxth

(2.1.10)

Other RED Variants

There are another category of RED based AQM mechanisms that not only take av-

erage queue size into consideration but also consider the instantaneous queue size

to reduce the packet drop rate and improve the overall throughput. Examples

of such mechanisms include Modified RED (Feng et al. 2004) and Effective RED

(Abbasov and Korukoglu 2009). Appropriately setting thresholds for instantaneous

17

queue size is a challenging issue in these mechanisms. Moreover, since these mecha-

nisms are completely based on the original RED algorithm, the parameter sensitivity

of these mechanisms remains same as that of the original RED.

Other AQM mechanisms designed based on RED include: Flow RED (FRED)

(Lin and Morris 1997), Dynamic RED (DRED) (Aweya et al. 2001), RED with Pref-

erential Dropping (RED-PD) (Mahajan and Floyd 2001), Exponential RED (Liu et al.

2005), Loss-ratio based RED (LRED) (Wang et al. 2007), AQM mechanism based on

Neural Networks (NN-RED) (Hariri and Sadati 2007), etc. There are some concerns

on the suitability of approaches followed by all these mechanisms since they do not

eliminate the parameter sensitivity of RED. Moreover these mechanisms are more

complicated to deploy than the original RED algorithm.

We summarize this section by classifying the RED variants based on the parame-

ters they focus to improve the performance of original RED. This dissertation focuses

on designing robust ARED based mechanism that varies maxp efficiently to improve

the performance in terms of throughput and packet drop rate.

Table 2.1: Classification of RED Variants

maxp wq minth and maxth pd
Self Configuring RED wq+maxp algorithm CBT-RED GRED
ARED ARED BRED SRED
Re-ARED SARED ARED DSRED
ARED with MIMD Self Tuning RED NLRED

2.2 Mechanisms for Explicit feedback

Explicit feedback mechanisms have gained a lot of attention in the recent past because

of the increasing number of problems experienced with implicit congestion notification

mechanisms and partly due to the success of the ECN. Taking into consideration the

large diversity in the characteristics of Internet, absence of explicit feedback may

significantly affect the performance of TCP. We briefly discuss a few mechanisms

designed to provide explicit feedback to the end-hosts. Table 2.2 shows the possible

18

combinations to provide explicit feedback (Welzl 2006).

Table 2.2: Possible Combinations to provide Explicit Feedback

end-host generates router generates router updates Example
× X × Choke packets /

Source Quench
X × X Explicit Conges-

tion Notification
× X X Hop-by-hop

Choke packets
X X X Choke packets +

ECN

Choke packets

Choke packets (Nagle 1984) are generated by the router as soon as it notices conges-

tion and sent to the source. There are two types of choke packets: (i) which only

notify the source about the congestion e.g., Source Quench conveyed with Internet

Control Message Protocol (ICMP) and (ii) which provide additional information to

the source e.g., the degree of congestion. The most widely deployed, though its usage

is not recommended anymore (Welzl 2006), is the Source Quench message. Fig.2.3

(Welzl 2006) shows the working of choke packets.

Figure 2.3: Choke packets

Sending choke packets is the fastest method to notify sources about the congestion.

Moreover, the arrival of a choke packet at the source clearly indicates the presence of

19

congestion in the network and hence eliminates the ambiguity between a congestion

loss and a non-congestion loss.

The disadvantage of this method, however, is that the packet generation at routers

is a very complex task because it involves memory allocations and header initializa-

tions. Moreover, injecting additional packets in the network in a state of congestion

is not recommended, even if these packets travel in the other direction (Welzl 2006).

Explicit Congestion Notification

Explicit Congestion Notification (ECN)(Ramakrishnan et al. 2000) is one of the most

popular congestion signaling mechanisms in communication networks. It is widely de-

ployed in a large variety of operating systems at end hosts, modern Internet routers

and used by a variety of transport protocols. Apart from being used as a congestion

signaling mechanism, ECN in wireless networks is considered as an efficient mecha-

nism to distinguish congestion losses from non-congestion losses (Ramani and Karandikar

2000). Recently, the advantages of ECN have been demonstrated in data center

networks by a newly designed transport protocol called Data Center Transmission

Control Protocol (DCTCP)(Alizadeh et al. 2010).

As shown in Fig.2.4 and Fig.2.5, ECN uses two bits in the IP header, namely

ECN Capable Transport (ECT) and Congestion Experienced (CE), and two bits

in the TCP header, namely Congestion Window Reduced (CWR) and ECN Echo

(ECE), for signaling congestion to the end-hosts. ECN is an industry standard and

its detailed mechanism is described in RFC 3168. Fig.2.6 (Welzl 2006) shows in brief,

Figure 2.4: ECN bits in IP header

20

Figure 2.5: ECN bits in TCP header

Figure 2.6: Explicit Congestion Notification

the steps involved in the working of ECN mechanism.

Despite the fact that ECN can substantially improve network performance, net-

work measurements reveal poor usage of this option in today’s Internet. ECN is

generally used in conjunction with RED. Since network operators still hesitate to

enable RED, ECN too is disabled. In this dissertation, we leverage the advantages of

ECN and extend it further to provide even better feedback to the end-hosts than it

provides currently.

Hop-by-hop Choke packets

In hop-by-hop choke packets method (Gerla and Kleinrock 1980), every congested

router on the path from a source to a destination sends the congestion feedback to

21

its directly preceding router (see Fig.2.7). Based on this congestion feedback, the

preceding router immediately controls the sending rate which reduces the load on the

congested router and improves the network performance. This method has similar

drawbacks as that of “Choke packets” since it imposes significant amount of work on

the routers.

Figure 2.7: Hop-by-hop Choke packets

Choke packets + ECN

This method stems from the fact that while ECN is being deployed gradually in the

modern Internet routers, the old routers still continue to use the choke packets. As

a result, a combination of choke packets + ECN is being used currently to provide

the explicit feedback to the end-hosts. The advantages of ECN, however, cannot be

leveraged unless every router on the path from source to destination enables the ECN

option.

2.3 TCP Congestion Control

A series of congestion collapse in Internet is observed for the first time in October

1986. Since then the congestion control mechanisms have evolved significantly. A

simple congestion control mechanism called “Congestion control Using Timeouts at

the End-to-end layer (CUTE)” is proposed in (Jain 1986) which is the first mechanism

based on increase and decrease algorithms (Chiu and Jain 1989). This mechanism

maintains a variable called congestion window (cwnd) for each source. Parameters

such as maximum value of cwnd, minimum value of cwnd, cwnd initialization policy,

cwnd increase-policy and cwnd decrease-policy are considered in the design of the

CUTE mechanism.

22

In (Jacobson 1988), Jacobson developed a new principle called “Conservation of

Packets”, which means that a new packet is not injected into the network until an old

packet leaves the network. This principle leads to the formation of a key mechanism

called “Self-Clocking”, which means that the source uses returning acknowledgements

(ACKs) as a clock to determine when to send new packets into the network. Three

algorithms are designed and implemented: Slow-Start, AIMD and Fast Retransmit.

Slow-Start algorithm is designed to start the Self-Clocking mechanism. This algo-

rithm quickly fills the empty pipeline (network is viewed as a pipeline) at the begin-

ning of transmission or after a retransmission timeout (RTO) to bring the connection

towards its equilibrium (a connection is said to be in equilibrium if it is running sta-

bly with a full window of data in transit). AIMD closely obeys the “Conservation of

Packets” principle once the connection is in equilibrium. Fast Retransmit algorithm

considers dupacks as a sign of packet loss in the network and retransmits the lost

packet without waiting for a retransmission timer to expire.

Since the pioneering work of Raj Jain and Van Jacobson, a lot of research effort has

gone into the design of fair and efficient congestion control protocols for the Internet.

Fig.2.8 (Welzl 2006) shows some of the mechanisms / protocols standardized and

recommended for implementation by the IETF.

Figure 2.8: Congestion control protocols standardized by IETF

23

As discussed in the previous chapter, transport protocols with congestion control

mechanisms can be mainly classified into three categories (Qazi 2010): (i) end-to-

end protocols (ii) network based protocols and (iii) end-to-end protocols with explicit

feedback. In the following sections we discuss the work done in each of these categories.

2.3.1 End-to-end protocols

This section briefly reviews the congestion control protocols that preserve the original

end-to-end semantics of TCP i.e., neither source nor destination relies on any explicit

notification from the routers. End-to-end protocols treat the network as a black box

and rely on a packet loss and/or delay as an indication of congestion.

A lot of TCP variants that follow end-to-end semantics have been designed and

implemented. Protocols that rely on packet loss for congestion indication are termed

as loss-based or reactive protocols (Afanasyev et al. 2010). On the other hand, proto-

cols that rely on delay for congestion indication are termed as delay-based or proactive

protocols (Afanasyev et al. 2010). (Afanasyev et al. 2010) provide an excellent classi-

fication and a detailed description of all such TCP variants, with their strengths and

weaknesses. Fig.2.9, extracted from (Afanasyev et al. 2010), shows an evolutionary

graph of end-to-end TCP protocols.

As shown in Fig.2.9, TCP Tahoe (Jacobson 1988) is the first TCP implementa-

tion that includes Slow-Start, AIMD and Fast Retransmit algorithms. TCP Reno

(Jacobson 1990) is the first TCP implementation that includes Fast Recovery along

with the algorithms implemented in TCP Tahoe. TCP Vegas (Brakmo and Peterson

1995), on the other hand, includes a modified Slow Start algorithm and uses Additive

Increase / Additive Decrease (AIAD) instead of AIMD. The initial design of these

protocols laid the foundation for all currently known end-to-end TCP protocols. Since

then a number of TCP variants have been designed and implemented to: (i) provide

robustness against packet reordering (ii) efficiently utilize the available bandwidth in

wireless networks by distinguishing congestion losses from non-congestion losses, (iii)

achieve high utilization in high-speed/long delay networks, etc.

24

Several research studies have shown that using packet loss and/or delay as con-

gestion notification pose fundamental limitations in achieving high utilization and

fairness. Some of the limitations are listed below:

Figure 2.9: Evolution of end-to-end TCP protocols

• Assuming every packet loss indicates congestion - TCP congestion control mech-

anisms are fine tuned to perform well in wired networks where packet losses are

mostly due to congestion. However, wireless networks such as 802.11 Wireless

25

LAN, multi-hop wireless mesh networks, etc also suffer from significant packet

losses due to reasons such as transmission errors, collisions and link failures. The

inability to differentiate between congestion and non-congestion losses signifi-

cantly degrades the performance of TCP in wireless networks (Balakrishnan et al.

1997).

• Packet loss is a binary feedback - A packet loss is a binary feedback of congestion

which only indicates whether the network is congested or not congested. It does

not provide any additional information about the degree of congestion. This

forces the sources to be conservative in their increase-policy and aggressive

in their decrease-policy, e.g., in AIMD phase, TCP increases the cwnd by 1

packet per RTT and when a packet loss is detected, reduces the cwnd by half.

While this conservative approach fails to utilize the available bandwidth, it also

increases the oscillations in the queues and causes instability.

• Overflows buffers of any capacity - A packet loss due to congestion occurs only

when the buffers overflow. Hence, to obtain such a signal, the network needs

to be driven to a point of extreme congestion (Qazi 2010). This leads to the

bufferbloat problem and degrades the performance of delay sensitive Internet

applications.

• Hard to measure delay reliably - The protocols that use delay as an indicator of

congestion rely on accurate calculation of RTT. There are several factors such

as network asymmetry, use of delayed ACKs, etc that affect the calculation of

RTT. Moreover, delay-based protocols cannot fairly compete with loss-based

protocols, since the former are proactive while latter are reactive.

2.3.2 Network based protocols

Network based protocols overcome most of the limitations of end-to-end protocols by

relying on explicit feedback from the network. Examples of such protocols include:

eXplicit Control Protocol (XCP) (Katabi et al. 2002), Rate Control Protocol (RCP)

(Dukkipati 2008), etc.

26

The main idea of XCP is to generate precise feedback about window increase /

decrease from the routers. This feedback assists the sources to regulate their sending

rates. However, XCP requires additional 128 bits in the IP header.

RCP is a network based protocol in which each router assigns a single rate to all

flows passing through it. Calculating this single rate based on the number of active

flows passing through a router is a difficult task, considering the dynamic nature of

the Internet (Qazi 2010). Moreover, RCP needs additional 96 bits in the existing IP

header, making it extremely complicated to deploy.

There are several other network based protocols that maintain per-flow account-

ing and provide richer feedback to the end-hosts. However, the deployment of such

protocols is a complex task since they impose significant overhead on the routers.

Moreover, the interaction of such protocols with TCP leads to unfairness because

network based protocols generally tend to avoid congestion. TCP variants deployed

in the Internet are loss-based and hence may starve the network based protocols.

2.3.3 End-to-end protocols with explicit feedback

This category of protocols rely on a few bits of explicit feedback from the routers to

efficiently regulate the congestion control laws at the sources e.g., TCP+AQM/ECN

(Hollot et al. 2002). Unlike network based protocols, end-to-end protocols with explicit

feedback have minimal deployment complexity since AQM mechanisms are indepen-

dent of the congestion control laws. Moreover, end-to-end protocols with explicit

feedback typically require modifications at the end-hosts.

The success of TCP+AQM/ECN however, relies upto a great extent on the

widespread deployment and usage of AQM/ECN. Though the network measurements

show a poor usage of AQM/ECN in the Internet, the severe impact of bufferbloat on

the Internet performance has drawn the attention of several researchers towards the

deployment of AQM/ECN.

27

2.3.4 Slowly responsive TCPs

It has been observed that decrease-by-half is not a fundamental requirement of conges-

tion control (Yang and Lam 2000). In Digital Equipment Corporation bit (DECbit)

(Ramakrishnan and Jain 1988), also based on AIMD, a flow reduces its cwnd to 7/8

of the old value in response to a packet loss. In (Yang and Lam 2000), a General

AIMD (GAIMD) approach is proposed which states that the cwnd is increased by α

for every window of packets acknowledged and it is decreased to β of the current value

when there is a congestion indication. Unlike traditional TCP which implements (α,

β) = (1, 0.5), authors in (Yang and Lam 2000) suggest (α, β) = (0.31, 0.875) to im-

prove TCP’s friendliness with other competing flows and reduce the fluctuations as

compared to traditional TCP flows. (Kwon and Fahmy 2002) further propose a mod-

ification to GAIMD by differentiating congestion indications obtained through ECN

marks and congestion indications obtained either by a timeout or by three dupacks.

If congestion indication is obtained through an ECN mark, (Kwon and Fahmy 2002)

recommend (α, β) = (0.2, 0.875). However, it retains the basic TCP’s response of

(α, β) = (1, 0.5) if congestion indication is obtained either by a timeout or by three

dupacks.

These algorithms which modify the (α, β) parameters of AIMD are termed as

slowly responsive because unlike TCP, these mechanisms refrain from halving their

cwnd in response to a packet loss (Bansal et al. 2001). (Bansal et al. 2001) addresses

the fundamental question of whether these algorithms are safe to deploy in Internet by

investigating the behavior of these algorithms under more realistic dynamic network

conditions. The paper concludes that deployment of such algorithms in Internet is

safe and does not affect other congestion control mechanisms that co-exist.

Though all the slowly responsive algorithms demonstrate the effectiveness of ap-

propriately setting (α, β) parameters for AIMD, none of them attempt to adaptively

vary (α, β) based on explicit network feedback about congestion. Rather, these algo-

rithms use a fixed value for (α, β) parameters. Moreover, to the best of our knowledge,

the advantages of slowly responsive algorithms have not yet been fully studied in the

context of wireless networks.

28

2.4 Problem statement

To optimize congestion avoidance and congestion control mechanisms to maximize

the throughput by efficiently allocating resources of a network.

2.5 Objectives

The different objectives of the work are as listed below:

• To design ARED based efficient Active Queue Management (AQM) mecha-

nisms.

• To design an ECN based efficient congestion signaling mechanism that not only

differentiates congestion and non-congestion losses in wireless networks, but also

provides an information about the severity of congestion in the network.

• To optimize the exising AIMD algorithm by adaptively setting the (α, β) pa-

rameters based on the severity of congestion in the network.

• To study the overall performance improvement in above cases.

29

Chapter 3

ARED based robust AQM
mechanisms

The main objective of AQM mechanisms is to stabilize the router queues and main-

tain a good trade-off between high throughput and packet drop rate. Although RED

has proved to be an effective AQM mechanism, its performance is highly sensitive

to the appropriate settings of the parameters. Moreover, RED’s performance signifi-

cantly depends on the amount of traffic load and it has been shown that the average

queue length (avg) exhibits nonlinear instability (Ranjan et al. 2002, La et al. 2003).

Setting the parameters of original RED to achieve equally well performance in differ-

ent scenarios is yet not clearly known. Rather than tuning the parameters of original

RED, this dissertation instead, aims to improve the performance of Adaptive RED

(ARED). ARED is an efficient and promising AQM mechanism which overcomes a

majority of the problems related to the deployment of original RED.

3.1 Overview of ARED

Adaptive RED (ARED) is a variant of RED that dynamically varies maxp and au-

tomatically sets minth, maxth and wq parameters. The main idea of ARED is to

modulate maxp between 0.01 (1%) and 0.5 (50%) to maintain the average queue

length (avg) between a specified target range. ARED algorithm and its parameters

are shown in Algorithm 1 and Table 3.1 respectively.

30

Algorithm

If avg is below the target range, maxp is decreased by β to bring avg up within the

target range. On the other hand, if avg is above the target range, maxp is increased

by α to bring avg down within the target range. To ensure that a single modification

of maxp does not shift avg from below target to above target or vice versa, ARED

specifies an upper bound and lower bound for α and β respectively. These bounds

are derived based on the choice of the target range. Following equations show the

upper bound for α and lower bound for β:

α < 0.25×maxp (3.1.1)

β > 0.83 (3.1.2)

Table 3.1: Variables and Fixed Parameters of ARED

Variables Fixed Parameters
maxp interval : 0.5 seconds
avg : average queue
length

target : [minth + 0.4 × (maxth - minth),
minth + 0.6 × (maxth - minth)]
β: decrease parameter, 0.9
α: increase parameter, min(0.01, 0.25*maxp)

Algorithm 1: ARED Algorithm

every interval seconds :
if avg < target and maxp ≥ 0.01 then

decrease maxp :
maxp = maxp × β

end
else if avg > target and maxp ≤ 0.5 then

increase maxp :
maxp = maxp + α

end

Advantages

Based on the empirical observations and simulation analysis, (Floyd et al. 2001) show

that ARED can stabilize the queue within the specified target range and achieve high

31

throughput. Moreover, (La et al. 2003) analytically demonstrate that ARED has

more desirable properties of an AQM mechanism as compared to RED such as: (i)

the stability of ARED is independent of the number of flows (ii) ARED is less sensitive

to round trip propagation delay and (iii) the choice of target range provides a trade-off

between the stability and smaller queueing delay.

Limitations

Despite several advantages, it can be noted from Algorithm 1 that ARED updates

maxp at a slower time scale than avg. Hence, maxp converges slowly to a value that

stabilizes the avg within the target range. ARED’s conservative approach of updating

maxp has two disadvantages: (i) it degrades the throughput, especially when the level

of congestion varies sharply, and (ii) since avg remains out of the target range for

sometime, it leads to instability in the queue length.

When the level of congestion varies sharply, it takes atleast 24.5 seconds for ARED

to increase maxp from 0.01 to 0.5 or atleast 20.1 seconds to decrease maxp from 0.5 to

0.01 (Floyd et al. 2001). This is a significant amount of time, considering the dynamic

nature of the Internet wherein the congestion level keeps varying frequently. Refined

Adaptive RED (Re-ARED), described in the next section, addresses this limitation

of ARED.

3.2 Overview of Refined Adaptive RED

Refined Adaptive RED (Re-ARED) aims to improve the performance of ARED by

reducing the convergence time of maxp i.e. the time taken by maxp to converge to

a value that stabilizes the avg within the target range. The main idea is to update

maxp based on the ratio of the change in avg. This enables Re-ARED to quickly

stabilize the avg when the level of congestion varies sharply. Re-ARED algorithm

and its parameters are shown in Algorithm 2 and Table 3.2 respectively.

Unlike ARED, Re-ARED sets the target range as [minth + 0.48 × (maxth -minth),

minth + 0.52 × (maxth - minth)] to minimize the queueing delay. However, note that

the choice of target range provides a trade-off between smaller queueing delay and

32

Table 3.2: Variables and Fixed Parameters of Re-ARED

Variables Fixed Parameters
maxp interval : 0.5 seconds
avg : average queue
length

target : [minth + 0.48 × (maxth - minth),
minth + 0.52 × (maxth - minth)]

β: decrease parameter
α: increase parameter

Algorithm 2: Re-ARED Algorithm

every interval seconds :
if avg < target and maxp ≥ 0.01 then

decrease maxp :
β = 1− (0.17× target−avg

target−minth
)

maxp = maxp × β

end
else if avg > target and maxp ≤ 0.5 then

increase maxp :
α = 0.25×maxp ×

avg−target

target

maxp = maxp + α

end

stability of avg. In the next section, we compare the performance of ARED and Re-

ARED over a wide variety of scenarios in ns-2 to study the benefits and limitations

of each.

3.3 Comparison of ARED and Re-ARED

We compare the performance of ARED and Re-ARED in a diverse set of scenarios

such as: varying the number of long flows, the presence of web traffic, reverse traffic

and sharply increasing or decreasing the level of congestion. The parameters taken

into consideration are throughput, packet drop rate and stability of average queue

length (avg), with and without sharp variations in the level of congestion. A standard

bottleneck topology as shown in Fig. 3.1 is used for all the scenarios.

3.3.1 Throughput and packet drop rate

In this experiment, we vary the amount of traffic load that results in sharp increase

in avg and observe its impact on the throughput and packet drop rate of ARED and

33

Figure 3.1: Dumbbell topology

Re-ARED. Bottleneck bandwidth is fixed to 10 Mbps and RTT propagation delay is

set to 80 milliseconds (ms). File Transfer Protocol (FTP) is used to simulate the long

flows. The number of FTP flows is varied from 10 through 100. All flows start at the

same time and hence, result in a sharp increase in avg. The size of a TCP packet is

fixed to 1000 bytes excluding the headers. The target queueing delay is set to 5ms as

per the guidelines stated in (Floyd et al. 2001). We do not set minth, maxth, wq and

maxp because they are automatically configured by ARED and Re-ARED. Table 3.3

and Table 3.4 show the performance of ARED and Re-ARED in terms of throughput

and packet drop rate respectively. R-A represents the improvement of Re-ARED over

ARED.

It can be observed that neither ARED nor Re-ARED has consistent better per-

formance when compared to the other. Re-ARED’s aggressive approach of updating

maxp improves throughput upto 0.13% (12 Kbps) (See Table 3.3) and reduces the

packet drop rate upto 0.38% (Table 3.4). On the other hand, ARED’s conservative

approach of updating maxp achieves better throughput upto 0.12% (See Table 3.3)

and incurs less packet drops upto 0.28% (Table 3.4) in a few scenarios. These results

reveal that neither a conservative approach alone nor an aggressive approach alone

of updating maxp suffices to improve the overall performance.

34

Table 3.3: Throughput(kbps) of ARED and Re-ARED

FTP Flows ARED Re-ARED R-A (%)
10 9177 9189 0.13
20 9171 9182 0.12
30 9175 9186 0.12
40 9186 9185 -0.01
50 9178 9178 0.00
60 9166 9171 0.05
70 9162 9160 -0.02
80 9144 9153 0.10
90 9145 9139 -0.06
100 9108 9097 -0.12

Table 3.4: Packet Drop Rate(%) of ARED and Re-ARED

FTP Flows ARED Re-ARED R-A(%)
10 0.23 0.22 0.01
20 0.27 0.27 0.00
30 3.50 3.31 0.19
40 8.21 8.25 -0.04
50 10.41 10.54 -0.13
60 12.49 12.77 -0.28
70 13.94 14.02 -0.08
80 15.67 15.29 0.38
90 17.00 16.75 0.25
100 17.84 17.80 0.04

3.3.2 Stability of the avg

In this section, we compare the behavior of ARED and Re-ARED with respect to

the stability of avg. We analyze the performance of ARED and Re-ARED in five

different types of scenarios: (i) varying the number of long flows (ii) fixed number

of long flows without the background traffic (iii) fixed number of long flows with the

background traffic (iv) sharp increase in the congestion level and (v) sharp decrease

in the congestion level.

Scenario 1: Varying the number of long flows

In this experiment, we analyze the performance of ARED and Re-ARED in a scenario

similar to the one designed for analyzing the throughput and packet drop rate. The

35

main idea is to study the impact of one-time burst on the stability of avg with ARED

and Re-ARED. Figure 3.2a through 3.2d and Figure 3.3a through 3.3d show the

comparison of ARED and Re-ARED in terms of stability of avg as the number of

FTP flows increases i.e. the amount of burstiness increases.

With the increase in the number of FTP flows, ARED takes more time to con-

verge maxp and hence, avg tends to remain outside target range1 for a longer time.

On the other hand, Re-ARED’s aggressive approach converges maxp faster and its

performance is robust even when the number of FTP flows is large. This robustness,

however, comes at the cost of degraded throughput and/or increased packet drop rate

for a few scenarios as shown in Table 3.3 and Table 3.4.

Scenario 2: Fixed number of long flows without the background traffic

In this scenario, we further investigate the stability of avg by increasing the bottle-

neck bandwidth and RTT propagation delay to 15Mbps and 250ms respectively. A

simulation scenario similar to the one described in (Floyd et al. 2001) is designed.

100 one-way FTP flows are simulated without any reverse traffic or short flows.

Figure 3.4 and Figure 3.5 show the oscillations in the avg with ARED and Re-

ARED respectively. The avg exhibits smaller oscillations with Re-ARED because it

sets a smaller target range of [minth + 0.48 ×(maxth - minth), minth + 0.52 ×(maxth

- minth)]
2. ARED, instead, sets the target range as [minth + 0.4 ×(maxth - minth),

minth + 0.6 ×(maxth - minth)]
3. Both ARED and Re-ARED perform equally well in

this scenario by stabilizing the avg around their target range.

Scenario 3: Fixed number of long flows with the background traffic

We repeat the above experiment with a slightly more realistice traffic which, apart

from 100 long flows, also includes 20 short flows generating web-traffic and one long

flow generating the reverse traffic.

Figure 3.6 and Figure 3.7 show the oscillations in the avg with ARED and Re-

ARED respectively. It can be observed that, although a few irregularities exist, ARED

1The target range for this scenario turns out to be [9, 11]
2For minth = 20 and maxth = 80, target range turns out to be [48.8, 51.2]
3For minth = 20 and maxth = 80, target range turns out to be [44, 56]

36

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(a) 10 FTP Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(b) 20 FTP Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(c) 30 FTP Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(d) 40 FTP Flows

Figure 3.2: avg dynamics of ARED and Re-ARED: 10 to 40 FTP Flows

37

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(a) 50 FTP Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(b) 60 FTP Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(c) 70 FTP Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"ARED"
"Re-ARED"

(d) 80 FTP Flows

Figure 3.3: avg dynamics of ARED and Re-ARED: 50 to 80 FTP Flows

38

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"average_queue_length"

Figure 3.4: Stability of avg with ARED - without background traffic

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"average_queue_length"

Figure 3.5: Stability of avg with Re-ARED - without background traffic

maintains the avg within its desired target range in the presence of background traffic.

On the other hand, avg with Re-ARED oscillates out of its desired target range and is

largely affected by the presence of background traffic. The presence of reverse traffic

in the network affects the rate at which the ACKs arrive at the source. This causes

short time bursts in the forward TCP traffic which subsequently reflects in the change

of avg. Since Re-ARED depends on the ratio of change in avg to update maxp, its

queue length exhibits larger fluctuations when compared to ARED.

Scenario 4: Sharp increase in the congestion level

In this experiment, the major focus is to study the oscillations in instantaneous queue

length and avg of ARED and Re-ARED when the congestion level increases sharply.

39

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"average_queue_length"

Figure 3.6: Stability of avg with ARED - with background traffic

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"average_queue_length"

Figure 3.7: Stability of avg with Re-ARED - with background traffic

A simple scenario is designed in which the forward traffic consists of two long flows

and reverse traffic consists of one long flow. The total simulation time is 50 seconds.

To simulate a sharp increase in the congestion level, 20 new flows are started, one

every 0.1 seconds, after 25 seconds of the simulation. The scenario designed here is

analogous to the one used in (Floyd et al. 2001). Figure 3.8 and Figure 3.9 show the

performance of ARED and Re-ARED respectively.

It can be observed that ARED takes 5 seconds more than Re-ARED to stabilize

the avg within the target range because it updates maxp on a longer time scale than

avg. The avg increases sharply with the sudden increase in the level of congestion,

but since maxp is updated on a longer time scale than avg, it takes considerable

amount of time for ARED to bring the avg within the target range. On the other

40

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40 45 50
S

iz
e

(in
 B

yt
es

)
Time (in Seconds)

"ave_queue"
"queue"

Figure 3.8: ARED with sharp increase in the congestion level

hand, Re-ARED updates maxp aggressively based on the the ratio of change in avg

and stabilizes the avg faster than ARED.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 B
yt

es
)

Time (in Seconds)

"ave_queue"
"queue"

Figure 3.9: Re-ARED with sharp increase in the congestion level

Scenario 5: Sharp decrease in the congestion level

We repeat the above experiment to study the oscillations in instantaneous queue

length and avg of ARED and Re-ARED when the congestion level decreases sharply.

Figure 3.10 and Figure 3.11 show the performance of ARED and Re-ARED respec-

tively.

The aggressive approach to update maxp leads to a significant degradation in the

performance of Re-ARED when the congestion level decreases sharply. The queue

becomes empty and the bottleneck link is under utilized for a few seconds. Moreover,

Re-ARED takes around 15 seconds to stabilize the avg within the target range. Al-

though ARED takes almost the same time as Re-ARED to stabilize the avg, it has a

robust performance and utilizes the queue efficiently.

41

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40 45 50
S

iz
e

(in
 B

yt
es

)
Time (in Seconds)

"ave_queue"
"queue"

Figure 3.10: ARED with sharp decrease in the congestion level

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 B
yt

es
)

Time (in Seconds)

"ave_queue"
"queue"

Figure 3.11: Re-ARED with sharp decrease in the congestion level

3.3.3 Inference

The comparative study of ARED and Re-ARED brings out a few important obser-

vations of both the AQM mechanisms. We infer the following:

• Neither ARED’s conservative approach alone nor Re-ARED’s aggressive ap-

proach alone of updating maxp suffices to improve the overall performance in

terms of throughput and packet drop rate.

• Re-ARED is more robust than ARED in terms of maxp convergence time; es-

pecially when there is a sharp increase in the congestion level (See Scenario

1).

• ARED is more robust than Re-ARED in terms of maxp convergence time; es-

pecially when there is a sharp decrease in the congestion level (See Scenario

5).

• In the presence of reverse traffic and short flows, ARED offers better stability

42

of avg than Re-ARED. However, in the absence of background traffic, stability

of avg with both mechanisms is the same (See Scenario 2).

An AQM mechanism that combines the advantages of ARED and Re-ARED is

highly desired. In this dissertation, we design and implement two new ARED based

AQM mechanisms, namely Fast Adapting RED (FARED) and Cautious Adaptive

RED (CARED). The major goal is to stabilize the avg in a wide variety of scenarios

and at the same time, achieve high throughput and minimize the packet drop rate.

3.4 Fast Adapting RED (FARED)

3.4.1 Overview

If a single modification of maxp shifts avg from below target to above target or vice

versa, it may cause instability in avg. Hence, while adapting maxp it must be ensured

that a single modification of maxp does not exceed avg from below target to above

target or vice versa. This can be achieved by appropriately selecting upper bound

and lower bound for α and β respectively. Note that these bounds depend on the

target range.

Eq. (3.1.1) and Eq. (3.1.2) specify an upper bound and lower bound for α and β

respectively for ARED’s target range of [minth + 0.4 ×(maxth - minth), minth + 0.6

×(maxth - minth)]. These bounds ensure that single modification of maxp in ARED

would not exceed avg from below target to above target or vice versa.

In Re-ARED, bounds for α and β are same as that of ARED, but target range is

modified to [minth + 0.48 ×(maxth - minth), minth + 0.52 ×(maxth - minth)]. Since

bounds on α and β depend on target range, if target range changes, even bounds

must change. Hence, Re-ARED does not ensure that a single modification of maxp

would not exceed avg from below target to above target or vice versa. This may cause

instability in the avg and due to this reason, we believe, Re-ARED drops the avg

to zero when there is a sharp decrease in the congestion level (See Fig. 3.11). As

a result, we develop Fast Adapting RED (FARED) mechanism which makes minor

modifications to Re-ARED by appropriately selecting the bounds for α and β.

43

3.4.2 Design of FARED Algorithm

FARED algorithm retains the target range as specified in Re-ARED algorithm but

modifies the upper bound and lower bound for α and β respectively. New bound for

α is derived as follows:

Packet drop probability (p) in RED is calculated as follows (Floyd and Jacobson

1993):

p = maxp × (
avg −minth

maxth −minth

) (3.4.1)

Before adapting maxp

avg1 = minth +
p

maxp

× (maxth −minth) (3.4.2)

and after adapting maxp

avg2 = minth +
p

maxp + α
× (maxth −minth) (3.4.3)

Subtracting (3.4.3) from (3.4.2)

avg1 − avg2 =
α

maxp + α
×

p

maxp

× (maxth −minth) (3.4.4)

Hence to ensure avg does not exceed above target to below target

α

maxp + α
< (0.52− 0.48) (3.4.5)

⇒
α

maxp + α
< 0.04 (3.4.6)

⇒ α < 0.042×maxp (3.4.7)

Similarly for β, before adapting maxp

avg1 = minth +
p

maxp

× (maxth −minth) (3.4.8)

and after adapting maxp

avg2 = minth +
p

maxp × β
× (maxth −minth) (3.4.9)

44

Subtracting (3.4.9) from (3.4.8)

avg1 − avg2 =
1− β

β
×

p

maxp

× (maxth −minth) (3.4.10)

Hence to ensure avg does not exceed below target to above target

1− β

β
< (0.52− 0.48) (3.4.11)

⇒
1− β

β
< 0.04 (3.4.12)

⇒ β > 0.9615 (3.4.13)

Based on Eq. (3.4.7) and Eq. (3.4.13), the FARED algorithm is shown in Al-

gorithm 3. Note that the only difference between FARED and Re-ARED lies in

appropriate selection of upper bound and lower bound for α and β respectively. The

parameters of FARED, hence, are same as that of the Re-ARED.

Algorithm 3: FARED Algorithm

every interval seconds :
if avg < target and maxp ≥ 0.01 then

decrease maxp

β = 1− (0.0385× target−avg

target−minth
)

maxp = maxp × β

end
else if avg > target and maxp ≤ 0.5 then

increase maxp

α = 0.042×maxp ×
avg−target

target

maxp = maxp + α

end

We have implemented the FARED algorithm in ns-2 and compared its perfor-

mance with ARED and Re-ARED. The next section discusses the results.

3.4.3 Results

We verify the performance of FARED against ARED and Re-ARED in terms of

throughput, packet drop rate and stability of avg by repeating a few experiments

carried out in Section 3.3.

45

Throughput and packet drop rate

In this experiment, we analyze the performance of FARED in terms of throughput

and packet drop rate and compare its performance with ARED and Re-ARED. A

scenario similar to the one designed in Section 3.3.1 is used for simulations. Table 3.5

and Table 3.6 show the performance of FARED in terms of throughput and packet

drop rate respectively. F-A represents the improvement of FARED over ARED and

F-R represents the improvement of FARED over Re-ARED.

Table 3.5: Throughput(kbps) and Improvement(%) of FARED

FTP Flows ARED Re-ARED FARED F-A F-R
10 9177 9189 9193 0.17 0.04
20 9171 9182 9189 0.20 0.08
30 9175 9186 9186 0.12 0.00
40 9186 9185 9195 0.10 0.11
50 9178 9178 9187 0.10 0.10
60 9166 9171 9181 0.16 0.11
70 9162 9160 9168 0.07 0.09
80 9144 9153 9156 0.13 0.03
90 9145 9139 9139 -0.06 0.00
100 9108 9097 9108 0.00 0.12

Table 3.6: Packet Drop Rate(%) and Improvement(%) of FARED

FTP Flows ARED Re-ARED FARED F-A F-R
10 0.23 0.22 0.22 0.01 0.00
20 0.27 0.27 0.26 0.01 0.01
30 3.50 3.31 2.42 1.08 0.89
40 8.21 8.25 8.03 0.18 0.22
50 10.41 10.54 10.34 0.07 0.20
60 12.49 12.77 12.34 0.15 0.43
70 13.94 14.02 13.75 0.19 0.27
80 15.67 15.29 15.27 0.40 0.02
90 17.00 16.75 16.93 0.07 -0.18
100 17.84 17.80 17.82 0.02 -0.02

Results demonstrate that FARED algorithm achieves consistently better perfor-

mance than ARED and Re-ARED in terms of throughput and packet drop rate. When

compared to ARED, FARED improves the throughput upto 0.20% (18 Kbps) (See

46

Table 3.5) and reduces packet drop rate upto 1.08% (See Table 3.6). Similarly when

compared to Re-ARED, FARED improves the throughput upto 0.12% (11 Kbps) (See

Table 3.5) and reduces packet drop rate upto 0.89% (See Table 3.6). However, in the

next section we show that the FARED’s improvement in throughput and reduction

in packet drop rate is due to the over utilization rather than the efficient utilization

of the queue.

Varying the number of long flows

In this experiment, we study the impact of one-time burst on the stability of avg

with FARED. Fig. 3.12a through 3.14d show the comparison of FARED, ARED and

Re-ARED in terms of stability of avg as the number of FTP flows increases i.e. the

amount of burstiness increases.

Although the main goal of FARED is to stabilize the avg faster (by ensuring that

a single modification of maxp does not exceed avg from below target to above target),

we observe that it stabilizes avg much slower than Re-ARED. This mismatch can be

understood by comparing Eq.(3.4.7) with Eq.(3.1.1) and Eq.(3.4.13) with Eq.(3.1.2).

Eq.(3.4.7) limits the increase in maxp to 4.2% of current maxp value whereas

Eq.(3.1.1) allows maxp to increase by 25% of its current value. Similarly, Eq.(3.4.13)

limits the decrease in maxp to 96.15% of current maxp value whereas Eq.(3.1.1)

allows maxp to decrease by 83% of its current value. Thus, setting appropriate values

for α and β in FARED, infact, leads to diminishing returns because the increase

and decrease of maxp is restricted by the choice of a smaller target range. This is

confirmed by the results obtained in the next few sections.

Sharp increase in the congestion level

The focus of this experiment is to study the oscillations in the instantaneous queue

length and avg of FARED when the congestion level increases sharply. The simulation

scenario is similar to the one designed in scenario 4 of Section 3.3.2.

The drawback of selecting smaller target range in FARED is clearly visible in

Fig. 3.15. FARED fails to stabilize the avg when there is a sudden increase in the

congestion level. While this increases the queue utilization and certainly improves the

47

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"ARED"

(a) 10 FTP Flows - FARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"Re-ARED"

(b) 10 FTP Flows - FARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"ARED"

(c) 20 FTP Flows - FARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"Re-ARED"

(d) 20 FTP Flows - FARED vs Re-ARED

Figure 3.12: avg dynamics of FARED, ARED and Re-ARED: 10 to 20 FTP Flows

48

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"ARED"

(a) 30 FTP Flows - FARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"Re-ARED"

(b) 30 FTP Flows - FARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"ARED"

(c) 40 FTP Flows - FARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"Re-ARED"

(d) 40 FTP Flows - FARED vs Re-ARED

Figure 3.13: avg dynamics of FARED, ARED and Re-ARED: 30 to 40 FTP Flows

49

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"ARED"

(a) 50 FTP Flows - FARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"Re-ARED"

(b) 50 FTP Flows - FARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"ARED"

(c) 60 FTP Flows - FARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"FARED"
"Re-ARED"

(d) 60 FTP Flows - FARED vs Re-ARED

Figure 3.14: avg dynamics of FARED, ARED and Re-ARED: 50 to 60 FTP Flows

50

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40 45 50
S

iz
e

(in
 B

yt
es

)
Time (in Seconds)

"ave_queue"
"queue"

Figure 3.15: FARED with sharp increase in the congestion level

throughput, it degrades the quality for short flows by increasing the queueing delay.

Sharp decrease in the congestion level

We repeat the above experiment to study the oscillations in the instantaneous queue

length and avg of FARED when the congestion level decreases sharply. Fig. 3.16

shows the results.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 B
yt

es
)

Time (in Seconds)

"ave_queue"
"queue"

Figure 3.16: FARED with sharp decrease in the congestion level

Unlike Re-ARED, FARED prevents the avg from dropping to zero when there is

a sharp decrease in the congestion levels. The performance of FARED, however, is

not optimal since it does not stabilize the avg back within the target range.

3.4.4 Inference

Based on the results shown in the previous section, we infer the following about the

performance of FARED:

• Although FARED improves the throughput and reduces the packet drop rate as

compared to ARED and Re-ARED, its performance improvement is driven by

51

the over utilization of the queue rather than the efficient utilization. Moreover,

it leads to instability in the queue and causes variations in the delay.

• Selecting a smaller target range significantly affects the stability of avg because

it imposes constraints on the convergence time of maxp.

• FARED does not meet the desired goal of combining the advantages of ARED

and Re-ARED.

3.5 Cautious Adaptive RED (CARED)

3.5.1 Overview

The major objective of designing CARED is to combine the advantages of ARED

and Re-ARED and overcome the demerits of FARED. Unlike ARED and Re-ARED

that update maxp conservatively and aggressively respectively, CARED algorithm is

designed to update maxp either aggressively or conservatively depending on the level

of traffic load. The main idea of CARED is to carefully modulatemaxp when the level

of congestion varies sharply. We call the time period during which level of congestion

varies sharply as the “critical time period”.

The level of traffic load is classified into: “up” and “down”. While calculating

the avg, if current average queue length (newavg) is greater than previous average

queue length (oldavg), the level of traffic load is considered as “up” since the avg is

increasing. Similarly if current average queue length (newavg) is less than previous

average queue length (oldavg), the level of traffic load is considered as “down” since

the avg is decreasing. Based on this notion of level of traffic load, CARED algorithm

efficiently modulates maxp and provides robust performance in a wide variety of

scenarios. Setting other parameters such as minth, maxth, wq and target queuing

delay in CARED is similar to that of ARED. Like ARED, CARED also uses a target

range of [minth + 0.4 ×(maxth - minth), minth + 0.6 ×(maxth - minth)].

3.5.2 Design of CARED Algorithm

Table 3.7 shows the variables and fixed parameters used in the CARED algorithm.

The design considerations of CARED algorithm are as follows:

52

• If newavg is below targetlow and the level of traffic load is up, maxp is decreased

conservatively as per ARED. Aggressively decreasing maxp as per Re-ARED

would result in further increase in sending rate which may take newavg above

targetup.

• If newavg is below targetlow and the level of traffic load is down, maxp is de-

creased aggressively as per Re-ARED. Conservatively decreasing maxp as per

ARED in this scenario would lead to under utilization.

• If newavg is above targetup and the level of traffic load is down, maxp is in-

creased conservatively as per ARED. Aggressively increasing maxp as per Re-

ARED in this scenario would drop more packets than required. Since newavg

is already decreasing and moving towards the target range, active packet drops

must be conservative rather than aggressive.

• If newavg is above targetup and the level of traffic load is up, maxp is increased

aggressively as per Re-ARED to avoid newavg from crossing maxth. Conserva-

tively increasing maxp as per ARED in this scenario would take more time to

bring newavg back within the target range and hence may affect the throughput

and also increase the queueing delay.

Note that like ARED and Re-ARED, CARED also varies maxp within a range of

1% to 50%. CARED design and its parameters are shown in Fig. 3.17 and Table 3.7

respectively. CARED algorithm is shown in Algorithm 4.

Table 3.7: Variables and Fixed Parameters of CARED

Variables Fixed Parameters
maxp interval : 0.5 seconds
newavg : current avg targetlow: minth + 0.4 × (maxth - minth)
oldavg : previous avg targetup: minth + 0.6 × (maxth - minth)
β: decrease parameter β = 0.9 for ARED
α: increase parameter α: min(0.01, 0.25*maxp) for ARED

53

Figure 3.17: Flowchart of Cautious Adaptive RED

3.5.3 Results

We verify the performance of CARED against ARED and Re-ARED in terms of

throughput, packet drop rate and stability of avg by repeating the experiments carried

out in Section 3.3.

Throughput and packet drop rate

In this experiment, we analyze the performance of CARED in terms of throughput

and packet drop rate and compare its performance with ARED and Re-ARED. A

scenario similar to the one designed in Section 3.3.1 is used for simulations. Table 3.8

and Table 3.9 show the performance of CARED in terms of throughput and packet

drop rate respectively. C-A represents the improvement of CARED over ARED and

C-R represents the improvement of CARED over Re-ARED.

The improvement in throughput achieved by CARED is upto 0.32% (29 Kbps) and

0.2% (18 Kbps) (See Table 3.8) as compared to ARED and Re-ARED respectively.

Moreover, CARED reduces the packet drop rate upto 0.51% and 0.43% (See Table

54

Algorithm 4: CARED Algorithm

every interval seconds :
if newavg < targetlow and maxp ≥ 0.01 then

if newavg > oldavg then
decrease maxp as per ARED mechanism

maxp = maxp × β

end
else if newavg < oldavg then

decrease maxp as per Re− ARED mechanism

β = 1− (0.17× targetlow−newavg

targetlow−minth
)

maxp = maxp × β

end

end
else if newavg > targetup and maxp ≤ 0.5 then

if newavg > oldavg then
increase maxp as per Re− ARED mechanism

α = 0.25×maxp ×
newavg−targetup

targetup

maxp = maxp + α

end
else if newavg < oldavg then

increase maxp as per ARED mechanism

α = min[0.01, 0.25×maxp]
maxp = maxp + α

end

end

3.9) than ARED and Re-ARED respectively. Since CARED algorithm takes into

consideration the level of traffic load to switch from ARED to Re-ARED and vice

versa, it consistently minimizes the packet drop rate and maximizes the throughput.

Varying the number of long flows

In this experiment, we study the impact of one-time burst on the stability of avg

with CARED. Fig. 3.18a through 3.21d show the comparison of CARED, ARED and

Re-ARED in terms of stability of avg as the number of FTP flows increases i.e. the

amount of burstiness increases.

The results show that avg exhibits stable behavior with CARED. Fig. 3.21c and

Fig. 3.21d show the exact mechanism of CARED where it combines the behavior

of ARED and Re-ARED. It converges faster than ARED but slower than Re-ARED

based on the level of traffic load. Taking a look at the throughput for the same scenario

55

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(a) 10 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(b) 10 FTP Flows - CARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(c) 20 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(d) 20 FTP Flows - CARED vs Re-ARED

Figure 3.18: avg dynamics of CARED, ARED and Re-ARED: 10 to 20 FTP Flows

56

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(a) 30 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(b) 30 FTP Flows - CARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(c) 40 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(d) 40 FTP Flows - CARED vs Re-ARED

Figure 3.19: avg dynamics of CARED, ARED and Re-ARED: 30 to 40 FTP Flows

57

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(a) 50 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(b) 50 FTP Flows - CARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(c) 60 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(d) 60 FTP Flows - CARED vs Re-ARED

Figure 3.20: avg dynamics of CARED, ARED and Re-ARED: 50 to 60 FTP Flows

58

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(a) 70 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(b) 70 FTP Flows - CARED vs Re-ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"ARED"

(c) 80 FTP Flows - CARED vs ARED

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"CARED"
"Re-ARED"

(d) 80 FTP Flows - CARED vs Re-ARED

Figure 3.21: avg dynamics of CARED, ARED and Re-ARED: 70 to 80 FTP Flows

59

Table 3.8: Throughput(kbps) and Improvement(%) of CARED

FTP Flows ARED Re-ARED CARED C-A C-R
10 9177 9189 9189 0.13 0.00
20 9171 9182 9200 0.32 0.20
30 9175 9186 9195 0.22 0.10
40 9186 9185 9195 0.10 0.11
50 9178 9178 9190 0.13 0.13
60 9166 9171 9178 0.13 0.08
70 9162 9160 9164 0.02 0.04
80 9144 9153 9159 0.16* 0.07*
90 9145 9139 9145 0.00 0.07
100 9108 9097 9110 0.02 0.14

Table 3.9: Packet Drop Rate(%) and Improvement(%) of CARED

FTP Flows ARED Re-ARED CARED C-A C-R
10 0.23 0.22 0.23 0.00 -0.01
20 0.27 0.27 0.26 0.01 0.01
30 3.50 3.31 2.99 0.51 0.32
40 8.21 8.25 8.13 0.08 0.12
50 10.41 10.54 10.35 0.06 0.19
60 12.49 12.77 12.34 0.15 0.43
70 13.94 14.02 14.01 -0.07 0.01
80 15.67 15.29 15.46 0.21* 0.17*
90 17.00 16.75 16.95 0.05 -0.20
100 17.84 17.80 17.66 0.18 0.14

(i.e. 80 FTP flows) in Table 3.8, we observe that CARED achieves 0.16% and 0.07%

more throughput than ARED and Re-ARED respectively. Moreover, packet drop

rate with CARED for the same scenario is 0.21% and 0.17% (See Table 3.9) less as

compared to ARED and Re-ARED respectively. Thus, CARED improves the overall

performance of the network.

Fixed number of long flows without the background traffic

In this experiment, we further investigate the stability of avg by simulating CARED

in a scenario similar to the one described in scenario 2 of Section 3.3.2. The scenario

consists of 100 FTP flows without any background traffic.

Comparing Fig. 3.4, Fig. 3.5 and Fig. 3.22, we observe that CARED incurs

60

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"average_queue_length"

Figure 3.22: Stability of avg with CARED - without background traffic

smaller oscillations in avg than ARED and slightly larger oscillations than Re-ARED4.

However, for a target range of [44, 56], CARED’s performance is far better than that

of the Re-ARED.

Fixed number of long flows with the background traffic

We repeat the above experiment with a slightly more realistice traffic which includes

20 short flows generating web-traffic and one long flow generating the reverse traffic.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(in
 P

ac
ke

ts
)

Time (in Seconds)

"average_queue_length"

Figure 3.23: Stability of avg with CARED - with background traffic

It can be observed from Fig.3.23 that, apart from a few irregularities, CARED

maintains the avg within its desired target range and is not largely affected by the

4Note that the target range of Re-ARED is smaller than that of CARED

61

presence of background traffic. This is a desirable property of an AQM mechanism

since the Internet traffic is a mix of long, short and reverse flows.

Sharp increase in the congestion level

In this experiment, the major focus is to study the robustness of CARED mechanism

in terms of oscillations in the instantaneous queue length and avg when the congestion

level increases sharply. Scenario similar to the one used in Section 3.3.2 is simulated.

Fig. 3.24 shows the results.

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 B
yt

es
)

Time (in Seconds)

"ave_queue"
"queue"

Figure 3.24: CARED with sharp increase in the congestion level

Comparing CARED with ARED and Re-ARED (see Fig. 3.8 and Fig. 3.9 re-

spectively), it can be observed that the performance of CARED is between ARED

and Re-ARED i.e. it stabilizes the avg a few seconds faster than ARED and a few

seconds slower than Re-ARED. Thus, based on the level of traffic load, CARED be-

haves either like ARED or like Re-ARED and provides the benefits of both in a single

AQM mechanism.

Sharp decrease in the congestion level

We repeat the above experiment to study the robustness of CARED mechanism in

terms of oscillations in the instantaneous queue length and avg when the congestion

level decreases sharply. Fig. 3.25 shows the results.

We observe that CARED eliminates the shortcomings of Re-ARED in this scenario

(see Fig. 3.11) and does not drop the avg to zero. Moreover, CARED stabilizes the

avg faster than ARED.

62

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40 45 50
S

iz
e

(in
 B

yt
es

)
Time (in Seconds)

"ave_queue"
"queue"

Figure 3.25: CARED with sharp decrease in the congestion level

Variations in maxp

We further validate the performance of CARED with respect to the variations in

maxp. We simulate two scenarios for the same: one which is similar to scenario 2 of

Section 3.3.2 and the other which includes background traffic, similar to scenario 3

of Section 3.3.2.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 d
ro

p
pr

ob
ab

ili
ty

Time (in Seconds)

"max_p"

Figure 3.26: Variations in maxp with ARED - without background traffic

Fig. 3.26, Fig. 3.27 and Fig. 3.28 show the variations in maxp with ARED, Re-

ARED and CARED respectively when 100 FTP flows exist without any background

traffic. Fig. 3.29, Fig. 3.30 and Fig. 3.31 show the variations in maxp with ARED,

Re-ARED and CARED respectively when 100 FTP flows exist along with short flows

and reverse traffic.

We observe that CARED has minimal variations in both the scenarios and more-

over, is not largely affected by the presence of background traffic. A constant value

63

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 d
ro

p
pr

ob
ab

ili
ty

Time (in Seconds)

"max_p"

Figure 3.27: Variations in maxp with Re-ARED - without background traffic

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 d
ro

p
pr

ob
ab

ili
ty

Time (in Seconds)

"max_p"

Figure 3.28: Variations in maxp with CARED - without background traffic

of maxp in CARED implies that the avg oscillates only within the target range. This

ensures minimal variations in the delay, better throughput and least packet drop rate,

thus satisfying the goals of an AQM mechanism.

3.5.4 Inference

Based on the results obtained in a wide variety of scenarios, we infer the following

about the performance of CARED:

• CARED outperforms ARED and Re-ARED by achieving high throughput and

minimizing the packet drop rate. The effectiveness of CARED algorithm comes

by cautiously adapting maxp during the critical time period. Though CARED

64

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 d
ro

p
pr

ob
ab

ili
ty

Time (in Seconds)

"max_p"

Figure 3.29: Variations in maxp with ARED - with background traffic

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 d
ro

p
pr

ob
ab

ili
ty

Time (in Seconds)

"max_p"

Figure 3.30: Variations in maxp with Re-ARED - with background traffic

algorithm does not achieve least packet drop rate in some scenarios, its perfor-

mance in such scenarios is always between ARED and Re-ARED. CARED is

designed to operate either like ARED or like Re-ARED depending on the level

of traffic load and hence, in the worst possible scenario, its performance will

resort to that of ARED or Re-ARED.

• The design of CARED algorithm gives robust performance in a wide range of

scenarios in terms of stability of the avg.

• Unlike other RED based algorithms, CARED algorithm does not introduce

new parameters to achieve the performance gain. Based on newavg and oldavg

65

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 d
ro

p
pr

ob
ab

ili
ty

Time (in Seconds)

"max_p"

Figure 3.31: Variations in maxp with CARED - with background traffic

values, CARED algorithm infers the level of traffic load and variesmaxp accord-

ingly. Since there are only algorithmic changes and no new parameter settings

in CARED, it can be easily deployed in modern Internet routers without any

additional complexity.

To summarize, in this chapter, we have demonstrated that neither ARED’s conser-

vative approach alone nor Re-ARED’s aggressive approach alone of updating maxp

is sufficient to improve the performance in terms of throughput and packet drop

rate. Hence, we have designed and implemented two new AQM mechanisms, namely

FARED and CARED. We observe that FARED fails to achieve the desired goals of

combining the advantages of ARED and Re-ARED because of the choice of smaller

target range. CARED, on the other hand, outperforms ARED and Re-ARED in

terms of throughput, packet drop rate and stability of the avg in a wide variety of

scenarios. Thus, CARED achieves the goal of combining the benefits of ARED and

Re-ARED and hence, improves the overall performance of the network. Moreover,

the deployment complexity of CARED is negligible, since it requires only algorithmic

modifications to achieve the performance gain and does not require setting of any

new parameter.

66

Chapter 4

Network Controlled TCP

4.1 Overview

In this chapter, we present a newly designed network controlled TCP called “TCP

Surathkal”. A new variant of ECN called eXtended ECN (XECN) is also devel-

oped, which enables the sender to accurately infer the severity of congestion in the

network. The main aim is to optimize the performance of AIMD algorithm by lever-

aging the benefits of AQM/ECN and consequently improve the performance of TCP

across different types of networks. TCP Surathkal adaptively sets the (α, β) param-

eters of AIMD based on the severity of congestion in a network. To ensure minimal

deployment complexity, XECN and TCP Surathkal are designed as incremental mod-

ifications on the existing implementations of ECN and TCP respectively.

TCP Surathkal, unlike other TCP variants, does not reduce its congestion window

(cwnd) by half. Instead, it decreases cwnd adaptively and proportionally based on the

severity of congestion inferred by using the newly designed XECN mechanism. The

adaptive decrease mechanism of TCP Surathkal is similar to that of Data Center TCP

(DCTCP) (Alizadeh et al. 2010), a TCP variant designed to improve the performance

of TCP in Data Center Networks. However, TCP Surathkal differs from DCTCP in

two major aspects: (i) DCTCP modifies the original ECN1, but TCP Surathkal uses

XECN to enable the sender to infer severity of congestion in the network, and (ii)

Unlike DCTCP, the controller of TCP Surathkal sender is based on the instantaneous

number of marked packets rather than the average number of marked packets.

1The “original ECN” refers to the ECN proposed in RFC 3168

67

The performance of TCP Surathkal is compared with the existing variants of

TCP by carrying out extensive simulations using ns-2. The parameters taken into

consideration are link utilization or throughput, fairness, stability of cwnd, stability

of average queue length (avg), mean queue length and packet drop rate.

4.2 eXtended ECN (XECN)

4.2.1 Motivation

It has been noticed that the use of ECN in the Internet has increased by three folds

in the last few years (Bauer et al. 2011). Moreover, recently the advantages of ECN

have been demonstrated in Data Center Networks by using DCTCP. With minor

modifications to the original ECN mechanism, DCTCP obtains multi-bit feedback

about the severity of congestion in the network.

ECN uses two bits in the IP header, namely ECN Capable Transport (ECT)

and Congestion Experienced (CE) (See Fig. 2.4), and two bits in the TCP header,

namely Congestion Window Reduced (CWR) and ECN Echo (ECE) (See Fig. 2.5)

for signaling congestion to the end-hosts. The combination of two bits of IP header or

two bits of TCP header is known as a codepoint (Ramakrishnan et al. 2000). Table

4.1 and Table 4.2 show the ECN codepoints in the TCP header and the IP header

respectively.

Table 4.1: ECN codepoints in the TCP header

Codepoint CWR bit value ECE bit value
Non ECN-set up 0 0
ECN-Echo 0 1
CWR 1 0
ECN-set up 1 1

As described in RFC 3168 - the sender and the receiver must negotiate the use of

ECN during the three-way handshake (See Fig. 4.1). If both are ECN capable, the

sender marks every outgoing data packet with either ECT(1) codepoint or ECT(0)

codepoint. This serves as an indication to the router that both sender and receiver

are ECN capable. Whenever congestion builds up, the router marks the data packet

68

Table 4.2: ECN codepoints in the IP header

Codepoint ECT bit value CE bit value
Non-ECT 0 0
ECT(1) 0 1
ECT(0) 1 0
CE 1 1

by replacing ECT(1) or ECT(0) codepoint by the CE codepoint. When the receiver

receives a marked packet with CE codepoint, it infers congestion and hence, marks

a series of outgoing acknowledgments (ACKs) with ECE codepoint until the sender

acknowledges with CWR codepoint (See Fig. 2.6).

Figure 4.1: ECN Negotiation

The major observation here is that, even if the router marks just one data packet,

the receiver continues to mark ACKs with ECE until it receives confirmation from

the sender (See Step 3 of Fig. 2.6). This is to ensure the reliability of congestion

notification; because even if the first marked ACK is lost, other marked ACKs would

notify the sender about congestion. Note that this basic working of ECN aims to

only notify the sender about congestion. It is not designed to provide the additional

information about the severity of congestion to the sender.

At the receiver, counting number of packets marked by the router provides fairly

69

accurate information about the severity of congestion in the network. However, con-

veying this information to the sender by using ECN is a complex task. One of the

possible ways is to enable the sender to count the number of marked ACKs it receives

from the receiver. The limitation, however, is that even if router marks just one

data packet, receiver sends a series of marked ACKs. Hence, the number of marked

ACKs counted by the sender would be much higher than the number of packets ac-

tually marked by the router. This would lead to incorrect estimation of the severity

of congestion in the network.

To overcome this limitation, DCTCP modifies the basic mechanism of ECN2. Un-

like TCP receiver which sends a series of marked ACKs, DCTCP receiver sends a

marked ACK only when it receives a marked packet from the router i.e., it sets ECE

codepoint in the outgoing ACK only when it receives a packet with CE codepoint.

Thus, the DCTCP sender obtains an accurate number of packets marked by the router

by simply counting the number of marked ACKs it receives. Note that this modifica-

tion to the original ECN mechanism reduces the reliability because if a marked ACK

is lost, sender remains unaware of the congestion and does not reduce the sending

rate. However, since Data Center Networks are privately controlled networks, the

possibility that an ACK gets lost is negligible.

While DCTCP’s modifications to the original ECN are valid in Data Center Net-

works, these modifications pose several challenging issues if ported to the Internet.

Since Internet is a public network, ACKs on the reverse path may encounter conges-

tion and as a result, may be dropped. Hence, we propose XECN mechanism that

provides information about the severity of congestion to the TCP sender without

compromising with the reliability features of the original ECN mechanism. It is to

be noted that though XECN mechanism is designed to work with the Internet, it

suits equally well in Data Center Networks. Moreover, XECN mechanism does not

require any changes in the current architecture and working of the routers. It requires

modifications only at the sender and the receiver.

2We refer to it as “Modified ECN”.

70

4.2.2 XECN Mechanism

XECN mechanism provides a unique and novel approach to convey the information

about severity of congestion to the TCP sender without compromising with the re-

liablity features of the original ECN mechanism. This is achieved by reusing one of

the four codepoints used in TCP header in an unambigious manner.

Two bits assigned for ECN in TCP header are: CWR bit(8th bit) and ECE bit(9th

bit). A combination of these two bits yields four possible codepoints: CWR=0 and

ECE=0 (00), CWR=0 and ECE=1 (01), CWR=1 and ECE=0 (10), CWR=1 and

ECE=1 (11).

• 01 is used by the receiver for two purposes: one to inform the sender during

handshake that it is ECN capable and other to notify the sender about conges-

tion in the network (See Fig. 4.1 and Step 3 of Fig. 2.6).

• 10 is used by the sender to inform the receiver that congestion notification is

received and appropriate action has been taken (See Step 4 of Fig. 2.6).

• 11 is used by the sender for ECN negotiation with the receiver during TCP

handshake (See Fig. 4.1).

XECN aims to reuse 11 codepoint to provide the information about severity of

congestion from the receiver to the sender. The reasons for reusing 11 codepoint are

two folds:

• 11 codepoint is used only in SYN packet which initiates TCP handshake proce-

dure - this implies that during the ECN negotiation, not only CWR and ECE

flags are set to 1, but SYN flag is also set to 1 (See Fig. 4.1). In non-SYN

packets (e.g., data packets), both CWR and ECE will never be set to 1, i.e. 11

codepoint is never used when SYN=0. Thus, it is infact a combination of three

bits (CWR, ECE and SYN) which is used for ECN negotiation.

• Since 11 codepoint is used presently only with the SYN packet i.e. from the

sender to the receiver - there will not be any ambiguity if 11 codepoint is reused

to provide some information from the receiver to the sender.

71

Figure 4.2: eXtended ECN

We call 11 codepoint as the Count Codepoint (CC) when used in a non-SYN

packet. CC is used only by the receiver. Based on this notion of reusing 11 codepoint,

XECN mechanisms at the receiver and at the sender are shown in Algorithm 5 and

Algorithm 6 respectively. Fig. 4.2 explains the working of XECN in brief.

XECN mechanism at the receiver

Each time the receiver gets a marked packet from the router, it marks the ACK with

CC. This approach produces an exact sequence of packets marked by the router at the

sender. After sending CC, if packets are received without any mark from the router,

receiver keeps marking ACKs with ECE until the sender responds with CWR. This

ensures that the reliability of ECN is not compromised in XECN.

Algorithm 5: XECN mechanism at the receiver

On arrival of every data packet

if CE then
Mark the ACK with Count Codepoint (CC)

end
else if sender has not yet responded to congestion then

Mark the ACK with ECN-Echo (ECE)
end
else

Do not mark the ACK
end

72

XECN mechanism at the sender

The sender maintains a Counter which counts the total number of packets marked

by the router. Whenever the sender receives a marked ACK with CC, it increments

the Counter by 1 because an arrival of CC indicates that the receiver has received a

marked packet from the router. On receiving the first ACK with CC, sender reduces

the cwnd and responds to the receiver by setting CWR in outgoing data packet.

Window is reduced only once for packets of the same cwnd. Note that sender resets the

Counter to 0 for every new cwnd. Sender neither responds nor increments the Counter

for ACKs with ECE, once it receives an ACK with CC for that cwnd. However, due

to unpredictable behavior of the traffic in the Internet, an ACK with CC may get lost.

As a result, sender may directly get an ACK with ECE without previously receiving

an ACK with CC. In such cases, sender intelligently infers that the ACK with CC

might have been lost because receiver always sends an ACK with CC first and then

ACKs with ECE. Hence, for the first ACK with ECE, sender increments the Counter,

reduces the cwnd and also responds to the receiver by setting CWR in outgoing data

packet.

Algorithm 6: XECN mechanism at the sender

Reset the Counter for new cwnd

On arrival of every ACK

if CC then
Increment the Counter by 1
Mark the data packet with CWR if cwnd is reduced

end
else if ECE and Counter is 0 then

Increment the Counter by 1
Mark the data packet with CWR if cwnd is reduced

end
else

Do not increment the Counter
Do not mark the data packet with CWR

end

Thus, by using XECN, TCP sender obtains multi-bit feedback about the severity

of congestion from the receiver without compromising the reliability of the original

ECN mechanism. However, there are few scenarios during which the sender might

73

not be able to get the accurate information from XECN:

• When the router is highly congested, it marks almost every packet. Suppose the

router marks ‘n’ consecutive packets of the same flow. Hence, for each of these

‘n’ consecutive marked packets, receiver sends an ACK with CC. Assuming the

worst network state, if all ‘n’ consecutive ACKs with CC get lost, sender directly

receives an ACK with ECE for which it increments the Counter by 1 and not

by ‘n’. This is because sender is unaware of the loss of consecutive ACKs with

CC. Although the sender can predict the total number of lost ACKs because of

the cumulative nature of TCP ACKs, there is no way it can predict how many

of them were carrying CC.

• Suppose the router marks alternate packets of the same flow. The resulting

ACK series from the receiver would be: ACK with CC, ACK with ECE, ACK

with CC, ACK with ECE, . . . and so on. Again, assuming the worst network

state, if all ACKs with CC are lost, it would result in an inaccurate count at

the sender.

In XECN, we assume that all the lost ACKs carried CC and hence, increment the

counter accordingly. The justification for the same is as follows:

The average Round Trip Time (RTT) in the Internet is approximately 150ms to

200ms and the upper limit of TCP Retransmission Timeout (RTO) is approximately

2 seconds. It means that in every 250 milliseconds the sender receives an ACK. If an

ACK does not arrive within 2 seconds, sender retransmits the packet. Hence it must

be noted that if 8 consecutive ACKs are lost (i.e. n = 8 in example described above),

TCP’s retransmission timer would expire. As a result, TCP sender retransmits the

lost packet and resets cwnd to 1. Hence whenever n > 7 the information about

severity of congestion is not required by the sender since it resets the cwnd to 1 based

on RTO. This proves that information provided by XECN mechanism would be useful

only when n = 8 or less. Thus, the information provided by XECN mechanism will

have an inaccuracy of atmost seven packets in the worst network state. Due to this

inaccuracy, the sender might reduce the cwnd a little more than necessary.

74

4.3 TCP Surathkal Control Laws

TCP Surathkal leverages the benefits of AQM mechanisms and varies its sending

rate intelligently based on the information provided by XECN. The only difference

between TCP Surathkal and other TCP variants is the way TCP Surathkal reduces

its cwnd adaptively based on the network feedback. Other features of TCP such

as slow start, additive increase during congestion avoidance phase and recovery of

lost packets are retained in TCP Surathkal. The controller at TCP Surathkal sender

works as explained below:

Additive Increase Phase

When an ACK is received, cwnd is updated as

cwnd = cwnd+
1

cwnd
(4.3.1)

Multiplicative Decrease Phase

When the first marked ACK is received, cwnd is updated as

cwnd = cwnd× (1−
α

2
) (4.3.2)

where α (0 6 α 6 1) is the fraction of packets marked in the last cwnd and is

calculated as shown in Eq.(4.3.3). Thus, when congestion is low (α is near 0), cwnd

is reduced slightly and when congestion is high (α is near 1), cwnd is reduced by half,

just like traditional TCP.

α =
total number of marked ACKs received in last RTT

total number of packets sent in last RTT
(4.3.3)

Note that the cwnd is increased on arrival of every ACK, whereas it is decreased

only once per RTT i.e., when the first marked packet is received by the sender for that

cwnd. Marked ACK here indicates the codepoints as explained in XECN mechanism.

75

Features of TCP Surathkal

TCP Surathkal adaptively sets the multiplicative decrease factor of AIMD based on

the severity of congestion in the network. It is a network controlled TCP which works

with any AQM3, provided that XECN is used as the signaling mechanism.

TCP Surathkal differs from DCTCP since the former uses “XECN” while the

latter uses “Modified ECN” for congestion signaling. Moreover, TCP Surathkal sender

calculates α (see Eq.(4.3.3)) based on the instantaneous number of marked packets

rather than the average number of marked packets like DCTCP sender. DCTCP uses

a simple AQM mechanism at the routers which marks the incoming packets based on

the instantaneous queue length and a pre-determined marking threshold. In a burst

situation, the router marks all the packets which are above the marking threshold

and as a result, the DCTCP sender receives a chain of consecutively marked ACKs

from the receiver. To accommodate this burst, DCTCP sender takes an average of

the marked ACKs and decreases the cwnd accordingly.

On the other hand, TCP Surathkal is designed to work with AQM mechanisms

that detect congestion and mark the packets at the routers based on the average

queue length (avg), e.g., RED based AQM mechanisms. avg in these mechanisms is

calculated by using EWMA which filters out the burst situations by accommodating

the incipient congestion. Hence, the TCP Surathkal senders need not take care of

the burst situation. Thus, rather than calculating α based on the average number of

marked ACKs, TCP Surathkal sender uses instantaneous number of marked ACKs to

calculate α.

Deployment Complexity

TCP Surathkal requires XECN implementation only at the sender and the receiver.

It does not require any modifications in the working of the routers. Moreover, since

XECN is only an algorithmic modification, it can be incrementally deployed over the

existing implementations of ECN. Note that XECN does not introduce any additional

bit(s), rather, it efficiently utilizes the existing ECN bits.

3Eq.(4.3.3), however, must be modified based on the type of AQM mechanism used in the routers.

76

4.4 Results

We have implemented the XECN mechanism and TCP Surathkal by extending the

network simulator, ns-2. The performance of TCP Surathkal is compared with other

TCP+AQM/ECN variants in a diverse set of scenarios such as: varying the bottleneck

bandwidth, varying the RTT, varying the number of flows, etc. In the next section,

we compare the performance of TCP Surathkal with TCP SACK4. TCP SACK is one

of the most widely deployed TCP variant in the modern operating systems except

Linux kernel > 2.6.

4.4.1 Comparison of TCP Surathkal and TCP SACK

We compare the performance of TCP Surathkal and TCP SACK in a standard net-

work topology shown in Fig. 4.3. S, R and D represent sources, routers and desti-

nations respectively. “n” different sources are connected to the router R1 which in

turn is connected to the router R2. “n” different destinations are connected to the

router R2. The link between R1 and R2 is configured to be the bottleneck link to

simulate congestion. Default values of the bandwidth and delay for the links between

the routers and the end nodes are fixed at 10 Mbps and 2 milliseconds respectively.

The bottleneck bandwidth and delay are varied in accordance with the requirements

of the experiment i.e., to study the impact of various network parameters on the

performance of TCP Surathkal, we vary one parameter at a time, while keeping the

other parameters fixed. Each source transfers a bulk of data to the receiver with a

packet size of 1000 bytes. ARED is used as an AQM mechanism in routers since it

has more desirable properties of an AQM as compared to RED. Target queuing delay

is set to 5 milliseconds. ECN and XECN are used as signaling mechanisms by TCP

SACK and TCP Surathkal respectively. Queue size at routers is fixed to 50 packets,

unless otherwise specified.

File Transfer Protocol (FTP) sources start sending the data at time 0 seconds.

All simulations are run for 1100 seconds. The receiver advertises a large window

such that the sending rate is not limited by the receiver. The parameters used for

4TCP SACK refers to TCP Newreno + SACK

77

comparison are throughput, fairness, stability of the cwnd and stability of the average

queue length (avg).

Figure 4.3: Dumbbell topology

Impact of bottleneck capacity

In this experiment, we show the impact of halving the cwnd on the performance

of TCP SACK, as the bottleneck bandwidth is increased, and the corresponding

improvement in the performance of TCP Surathkal. The propagation delay is fixed

to 50ms. The topology consists of two FTP flows. The experiment is first run with

TCP SACK and repeated for TCP Surathkal. Fig. 4.4 shows the results. The X-axis

shows the bottleneck bandwidth in Mbps and the Y-axis shows the total throughput5

in Mbps.

It can be observed from the graph that TCP Surathkal performs significantly bet-

ter than TCP SACK. Improvement in throughput of TCP Surathkal is upto 15.82%

when compared to TCP SACK. TCP SACK fails to utilize the available bandwidth

since it reduces the cwnd by half. TCP Surathkal reduces cwnd depending on the

severity of congestion in the network. As a result, when bottleneck bandwidth in-

creases, TCP Surathkal efficiently utilizes the available bandwidth.

Impact of round trip delay

In this experiment, we show the impact of varying the propagation delay on the

performance of TCP SACK and TCP Surathkal. By varying the propagation delay,

we intend to vary the overall RTT and study its impact on both the protocols. The

5Headers are ignored in the throughput calculation.

78

8 10 12 14 16 18

Bottleneck Bandwidth (Mbps)

8

10

12

14

16

18
T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP SACK TCP Surathkal

Figure 4.4: Throughput vs Bottleneck bandwidth

bottleneck bandwidth is fixed to 8Mbps. The topology consists of two FTP flows.

The experiment is first run with TCP SACK and repeated for TCP Surathkal. Fig.

4.5 shows the results.

Results in the graph show that the performance of TCP SACK degrades rapidly

as the propagation delay increases. Higher propagation delay leads to significant

increase in the overall RTT and hence, prevents rapid increase of the cwnd because

cwnd is increased only once per RTT. Moreover, TCP SACK reduces cwnd by half

and hence, takes long time to increase cwnd back to the original sending rate i.e. the

cwnd size when congestion is detected. As a result, the link is under utilized.

On the other hand, increase in the propagation delay has minimal impact on the

performance of TCP Surathkal since it reduces cwnd depending on the severity of

congestion. In a few RTTs, TCP Surathkal ramps up back to the original sending

rate and thus, uses the available bandwidth efficiently. The improvement in the

throughput of TCP Surathkal is upto 11.59% when compared to TCP SACK.

79

50 100 150 200 250

Propagation delay (ms)

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8
T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP Surathkal TCP SACK

Figure 4.5: Throughput vs Bottleneck propagation delay

Fairness of TCP Surathkal

In this experiment, we study the fairness properties of TCP Surathkal by using Jain‘s

fairness index. Jain‘s fairness index quantifies the fairness achieved by flows sharing

a common bottleneck bandwidth. It is shown below:

fairness =
(
∑n

i=1 xi)
2

n
∑n

i=1(xi)2
(4.4.1)

where ‘n’ represents the total number of flows and xi represents the throughput

of flow i (1 ≤ i ≤ n).

The value of fairness is between 0 and 1. When all flows achieve the same through-

put, the fairness equals 1.

We compare the performance of TCP SACK and TCP Surathkal by varying the

total number of FTP flows, but sharing the same bottleneck link capacity. The

number of FTP flows is varied from 2 to 50, with half of the flows using TCP SACK

and the other half of the flows using TCP Surathkal. The bottleneck bandwidth and

propagation delay are fixed to 8Mbps and 50ms respectively. Fig. 4.6 shows the

80

results.

4 8 12 16 20 24 28 32 36 40 44 48

Number of FTP Flows

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP Surathkal TCP SACK

Figure 4.6: Throughput vs Number of flows

It is observed from the graph that when the number of flows are less, the aver-

age throughput of TCP Surathkal flows is significantly higher than that of the TCP

SACK. It is to be noted that this is not due to TCP Surathkal’s unfairness or ag-

greviseness, but due to the approach of decreasing cwnd intelligently based on the

network feedback. Like TCP SACK, TCP Surathkal too probes the available band-

width in an additive increase manner. TCP SACK flows decrease cwnd by half and

hence leave the link under utilized. Since TCP Surathkal flows do not reduce by half,

they utilize the bandwidth left over by TCP SACK flows.

As the total number of flows increase in the network, the average throughput

achieved by TCP Surathkal flows is almost equal to that achieved by TCP SACK

flows. When there are large number of TCP SACK flows, if one TCP SACK flow

reduces its cwnd by half, other TCP SACK flows can claim some of this bandwidth

and hence, the difference between aggregate throughput of TCP Surathkal flows and

aggregate throughput of TCP SACK flows reduces. Fig. 4.7 shows the fairness ratio

between TCP Surathkal and TCP SACK as the total number of flows passing through

81

the bottleneck link increases.

4 8 12 16 20 24 28 32 36 40 44 48

Number of Flows

0.6

0.7

0.8

0.9

1
F
a
ir

n
e
s
s
 R

a
ti

o

Figure 4.7: Fairness ratio

The fairness between TCP Surathkal and TCP SACK is above 90% if the total

number of flows passing through the bottleneck link are 32 or more, while it is more

than 95% if the total number of flows is above 40.

Stability of the cwnd

In this experiment, we present the benefits of TCP Surathkal in terms of stabilizing

the cwnd as compared to TCP SACK. The bottleneck bandwidth and propagation

delay are fixed to 8Mbps and 50ms respectively. The experiment is first run with

TCP SACK and repeated for TCP Surathkal. Fig. 4.8 shows the results.

It can be seen from the graph that the cwnd of TCP SACK sender oscillates more

than that of TCP Surathkal sender. Oscillations in the cwnd of TCP SACK are in

the range of 10 packets to 100 packets whereas in case of TCP Surathkal, oscillations

are in the range of 55 packets to 70 packets. Multiplicative decrease by a factor of 2

results in large oscillations in TCP SACK. These oscillations in the cwnd further lead

to large oscillations in the queue length at routers. This causes variations in the delay

82

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (Seconds)

"TCP Surathkal"
"TCP SACK"

Figure 4.8: Congestion Window vs Time

and severely affects the performance of time sensitive applications e.g., multimedia

applications, etc.

TCP Surathkal’s adaptive decrease mechanism stabilizes the cwnd at the sender

and consequently stabilizes the queue size at the routers (See next section for de-

tails). Thus, TCP Surathkal reduces the variations in the delay and improves the

performance of time sensitive applications. In Chapter 5, we develop a fluid model

for TCP Surathkal and analytically prove that TCP Surathkal significantly reduces

the oscillations in the cwnd and the avg.

Stability of the avg

In this experiment, we measure the avg at routers to evaluate the performance of

TCP Surathkal and TCP SACK. As described before, we configure the routers with

ARED AQM mechanism. ARED addresses the parameter sensitivity of RED by

automatically setting all the required parameters based on the network dynamics.

ARED aims to keep the average queue size within a range of 40% to 60% of the

minimum and maximum thresholds set for the avg.

Based on our network topology, ARED sets minimum threshold for avg to 5

packets and maximum threshold for avg to 15 packets. Hence in our simulations,

ARED aims to keep the avg within target range which is between 9 packets and 11

83

packets. Fig. 4.9 shows the results.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

Time (Seconds)

"TCP Surathkal"
"TCP SACK"

Figure 4.9: Average queue size vs Time

It can be seen from the graph that TCP Surathkal flows maintain the avg within

the desired range whereas TCP SACK flows maintain avg much lower than the de-

sired range. TCP Surathkal‘s performance is controlled by the network and hence,

complements the design of ARED mechanism since the avg with TCP Surathkal flows

is 10 packets, exactly as desired by ARED. TCP SACK under utilizes the available

queue size by maintaining an avg of only 7 packets. Moreover, oscillations in avg are

larger with TCP SACK flows than that of TCP Surathkal. Large oscillations create

instability in the avg and affect the overall performance of the network.

4.4.2 Comparison with other TCP Variants

In this section, we compare the performance of TCP Surathkal with other popular

TCP variants such as: SACK, High Speed TCP (HSTCP) (Floyd 2003), Scalable

TCP (STCP) (Kelly 2003), CUBIC (Rhee and Xu 2005) and XCP. Moreover, we

simulate all protocols with RED as the AQM mechanism to demonstrate the robust-

ness of TCP Surathkal across different AQM mechanisms. The parameters taken into

consideration are link utilization6, mean queue length and packet drop rate.

6Given a certain link capacity, higher utilization values mean higher throughput.

84

To study the impact of various network parameters on the performance of TCP

Surathkal, we vary each network parameter, one at a time, while keeping other pa-

rameters fixed. The basic network scenario consists of a dumbbell topology with

bottleneck bandwidth set to 10Mbps and RTT set to 80ms. The forward traffic con-

sists of 5 FTP flows, 5 flows carrying the interactive voice traffic (codec G.711, 64

kbps rate), 5 flows carrying the live streaming data (streaming rate is 640Kb and

packet size is 840 bytes) and several short web-like flows. The reverse traffic consists

of 5 FTP flows and 5 flows carrying the live streaming data. We have used a standard

tool called “TCP Evaluation Suite” (Wang et al. 2007) for simulations (and the above

mentioned parameters are based on the guidelines mentioned in this suite).

The reverse traffic causes congestion on the reverse path and hence, the ACKs

which are traversing through that path have a high probability of getting dropped.

The main idea behind simulating the reverse traffic is to demonstrate the robustness

of XECN mechanism, even when the ACKs carrying CC are lost.

Impact of bottleneck bandwidth

We vary the bottleneck bandwidth in the basic scenario from 10Mbps to 1Gbps while

keeping the other network parameters fixed. This covers the range of bandwidths for

Wired LANs and Wired WANs as shown in Table 1.1. Fig.4.10 shows the results for

link utilization.

It is observed from the graph that TCP Surathkal achieves high link utilization

across a wide range of bottleneck capacities. TCP Surathkal outperforms most of the

other protocols, especially HSTCP, STCP and CUBIC. However, for bandwidths >

100Mbps, XCP performs better than other protocols. Note that XCP is a network

based protocol and requires maintaining of per-flow state at the routers. Moreover,

its deployment is a challenging issue since it requires additional 128 bits in the IP

header. STCP, on the other hand, achieves poor utilization than other protocols.

Fig.4.11 shows the results for mean queue length. A lower mean queue length

offers high burst tolerance and improves the performance of time sensitive traffic by

inducing minimal queueing delay. We observe that the performance of TCP Surathkal

85

 20

 40

 60

 80

 100

 10 100 1000

Li
nk

 U
til

iz
at

io
n

(%
)

Bandwidth (Mbps) Log Scale

Link Utilization with BW Changes

Surathkal + RED
SACK + RED

HSTCP + RED
STCP + RED

CUBIC + RED
XCP

Figure 4.10: Link Utilization with Bandwidth Changes

 0

 20

 40

 60

 80

 100

 10 100 1000

M
ea

n
Q

ue
ue

 L
en

gt
h

(%
)

Bandwidth (Mbps) Log Scale

Percent of Mean Queue Length with BW Changes

Surathkal + RED
SACK + RED

HSTCP + RED
STCP + RED

CUBIC + RED
XCP

Figure 4.11: Percent of Mean Queue Length with Bandwidth Changes

86

 0

 2

 4

 6

 8

 10 100 1000

P
ac

ke
t D

ro
p

R
at

e
(%

)

Bandwidth (Mbps) Log Scale

Packet Drop Rate with BW Changes

Surathkal + RED
SACK + RED

HSTCP + RED
STCP + RED

CUBIC + RED
XCP

Figure 4.12: Packet Drop Rate with Bandwidth Changes

is similar to that of the other protocols. The mean queue length occupied by all proto-

cols is almost the same, except XCP which performs exceptionally better than other

protocols. On the other hand, STCP has the highest mean queue length amongst all

the protocols.

Fig.4.12 shows the results for packet drop rate. Packet drops are highly undesired

since they lead to re-transmissions and waste the network bandwidth. It is observed

that XCP has the least packet drop rate and STCP has the highest packet drop

rate. The packet drop rate of TCP Surathkal is similar to other TCP variants,

except in a few scenarios where the bottleneck bandwidth is < 100Mbps. When

the bandwidth is less and the reverse traffic is bursty, a lot of ACKs which carry

CC are dropped. This phenomenon leads to inaccuracy in estimating the severity of

congestion and increases the convergence time of TCP Surathkal. This causes slightly

more packet drop rate. When more bandwidth is provisioned, the packet drop rate of

TCP Surathkal decreases sharply and becomes equal to that of the other protocols.

It is to be noted that TCP SACK performs equally well as TCP Surathkal with

87

 20

 40

 60

 80

 100

 10 100 1000

Li
nk

 U
til

iz
at

io
n

(%
)

RTT (ms) Log Scale

Link Utilization with RTT Changes

Surathkal + RED
SACK + RED

HSTCP + RED
STCP + RED

CUBIC + RED
XCP

Figure 4.13: Link Utilization with RTT Changes

respect to all the parameters. However, the next section highlights the limitations of

TCP SACK when RTT is varied.

Impact of round trip delay

In this section, we vary the round trip delay in the basic scenario from 10ms to 1000ms

while keeping the other parameters fixed. This covers the range of latencies for Wired

WANs, 802.11 WLAN/Mesh networks, cellular data networks and satellite networks.

Fig 4.13 shows the results for link utilization.

It is observed from the graph that TCP Surathkal performs equally well as com-

pared to the other protocols. TCP Surathkal, infact, achieves more utilization than

other protocols when the RTT is > 100ms. The average latency in Internet is around

150ms to 250ms (Paxson et al. 2011). The performance of other protocols, especially

SACK and STCP, degrades sharply with the increase in RTT. Though XCP performs

consistently better than other protocols, TCP Surathkal outperforms XCP in a few

scenarios where the RTT is slightly < 1000ms.

88

 0

 20

 40

 60

 80

 100

 10 100 1000

M
ea

n
Q

ue
ue

 L
en

gt
h

(%
)

RTT (ms) Log Scale

Percent of Mean Queue Length with RTT Changes

Surathkal + RED
SACK + RED

HSTCP + RED
STCP + RED

CUBIC + RED
XCP

Figure 4.14: Percent of Mean Queue Length with RTT Changes

 0

 2

 4

 6

 8

 10 100 1000

P
ac

ke
t D

ro
p

R
at

e
(%

)

RTT (ms) Log Scale

Packet Drop Rate with RTT Changes

Surathkal + RED
SACK + RED

HSTCP + RED
STCP + RED

CUBIC + RED
XCP

Figure 4.15: Packet Drop Rate with RTT Changes

89

Fig.4.14 shows the results for mean queue length when RTT is varied. It is ob-

served that TCP Surathkal performs significantly better than other TCP variants by

occupying the least mean queue length. XCP retains its exceptional performance and

is the only protocol that outperforms TCP Surathkal. CUBIC and STCP have the

highest mean queue length among all the protocols.

Fig.4.15 shows the results for packet drop rate when RTT is varied. TCP Surathkal

consistently outperforms HSTCP, STCP and TCP SACK in all the scenarios. The

packet drop rate of CUBIC increass as the RTT increases, whereas, the packet drop

rate of TCP Surathkal decreases as the RTT increases. As a result, TCP Surathkal

outperforms CUBIC when RTT > 50ms. The average latency in the Internet being

around 150ms to 250ms, we infer that TCP Surathkal achieves the best performance

since it outperforms even XCP when RTT > 100ms.

4.4.3 Performance evaluation of TCP Surathkal in Wireless
networks

Due to the widespread deployment of Wireless Fidelity (Wi-Fi) hotspots, it has be-

come extremely important to improve the performance of TCP in wireless networks.

Wireless networks are characterized by high channel error rates as shown in Table

1.1. TCP’s inability to distinguish congestion losses from non-congestion losses cause

severe degradation in the throughput. In this section, we evaluate the performance

of TCP Surathkal with TCP SACK and TCP Westwood (Casetti et al. 2002). While

TCP SACK is the most widely used protocol, the rationale behind selecting TCP

Westwood for the performance evaluation is that it is widely implemented in the

Linux kernel. Moreover, it is considered highly effective in wireless networks with

lossy links, especially in mixed wired and wireless networks (e.g., Wi-Fi).

The wireless network topology used for simulations is shown in Fig. 4.16. The

default values for the wired link bandwidth and delay are fixed at 75Mbps and 5ms

respectively. The wireless link bandwidth is kept fixed at 11Mpbs, unless otherwise

specified. Link layer retransmissions are not enabled so as to demonstrate the benefits

of TCP Surathkal without leveraging the advantages of lower layer functionalities.

ARED is used as an AQM mechanism in routers. ECN is used as the signaling

90

mechanism for other protocols, whereas, XECN is used for TCP Surathkal. FTP

sources start sending the data at time 50 seconds. All simulations are run for 1150

seconds. The receiver advertises a large window such that the sending rate is not

limited by the receiver.

Figure 4.16: Single hop wireless topology

Impact of bottleneck capacity

In this experiment we show the effect of halving the cwnd on the performance of

TCP SACK in wireless networks, as the bottleneck bandwidth is increased, and the

corresponding improvement in the performance in case of TCP Surathkal. There is no

error in the channel and hence all the packet losses occur only due to congestion. The

wireless bandwidth is varied from 5Mbps to 12Mbps. The topology consists of two

flows. Fig. 4.17 and Fig.4.18 show the performance comparison of TCP Surathkal

with TCP SACK and TCP Westwood respectively.

It can be seen from Fig.4.17 that TCP Surathkal consistently outperforms TCP

SACK while the wireless bandwidth is varied. There is an improvement of upto 4.02%

in the throughput of TCP Surathkal as compared to TCP SACK. RTT variation

in wireless networks is extremely high due to the interference effects and the time

spent in waiting for contention. As a result, the sending rate of TCP is largely

affected since updation of cwnd occurs in every RTT. Thus, decreasing cwnd blindly

by half in wireless networks results in degraded throughput for TCP SACK. TCP

Surathkal efficiently utilizes the bandwidth since it decreases cwnd based on the

91

5 6 7 8 9 10 11 12

Bottleneck bandwidth (Mbps)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP Surathkal TCP SACK

Figure 4.17: Throughput vs Wireless bandwidth

5 6 7 8 9 10 11 12

Bottleneck bandwidth (Mbps)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP Surathkal TCP Westwood

Figure 4.18: Throughput vs Wireless bandwidth

92

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Error rate (%)

3.4

3.5

3.6

3.7

3.8
T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP Surathkal TCP SACK + ECN TCP SACK

Figure 4.19: Varying error rate

network feedback about the severity of congestion.

On the other hand, Fig.4.18 shows that the throughput achieved by TCP Surathkal

and TCP Westwood is exactly the same. This is because unlike TCP SACK, TCP

Westwood does not reduce the cwnd by half. Instead, the main idea of TCPWestwood

is to use the “bandwidth estimate” to vary the cwnd. The bandwidth is estimated by

monitoring the returning ACKs (Casetti et al. 2002). Since both TCP Surathkal and

TCP Westwood vary the cwnd based on the network conditions, they achieve similar

throughput and effectively use the available bandwidth.

Impact of channel errors

In this experiment, we present the results for the simulation showing the performance

improvement offered by TCP Surathkal at various channel error rates. The workload

consists of two flows. Packet losses in this scenario may be due to channel errors,

congestion or both. Fig. 4.19 shows the improvement in the performance of TCP

Surathkal when compared to TCP SACK. To demonstrate the advantages of using

ECN in the wireless networks, we consider two types of configuration for TCP SACK:

(i) TCP SACK with ECN and (ii) TCP SACK without ECN.

93

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Error rate (%)

2

2.5

3

3.5

4
T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

TCP Surathkal TCP Westwood

Figure 4.20: Varying error rate

It is observed that the use of ECN leads to a considerable increase in the through-

put of TCP SACK. TCP Surathkal, however, outperforms both the configurations of

TCP SACK and achieves maximum throughput. TCP Surathkal achieves upto 3.62%

more throughput than TCP SACK+ECN and upto 6.68% more throughput than TCP

SACK without ECN. It has been shown in (Tickoo et al. 2005) that maintaining suffi-

cient cwnd granularity helps to improve the performance of TCP in wireless networks

when the channel error rates are high. Since TCP Surathkal does not reduce cwnd by

half like TCP SACK, its cwnd granularity remains higher than that of TCP SACK.

Moreover, TCP SACK considers packet loss due to error as an indication of conges-

tion and wrongly decreases the cwnd. TCP Surathkal relies on XECN mechanism to

provide congestion notification and does not react to packet losses due to the channel

error. As a result, TCP Surathkal performs consistently better than TCP SACK,

with moderate channel error rates upto 4%. Although several research studies rely

on link layer mechanisms to improve the performance of TCP in wireless networks,

it is to be noted that the improvement in TCP Surathkal is independent of such link

layer mechanisms. Combining TCP Surathkal with such link layer mechanisms may

further improve the overall performance of the wireless networks. However, we are

94

looking into this as a part of our future work.

Fig.4.20 shows that the throughput of TCP Westwood degrades drastically when

the channel error rates are increased. High channel error rates lead to ACKs being

dropped and hence, cause inaccuracies in the bandwidth estimation policy of TCP

Westwood. On the other hand, TCP Surathkal achieves significantly better through-

put than TCP Westwood. TCP Surathkal relies on an explicit feedback in the form

of XECN to estimate the severity of congestion in the network. XECN is care-

fully designed to provide an additional information about congestion to the sender,

while retaining the reliability of the congestion notification. Results show that TCP

Surathkal achieves an improvement of upto 76.96% in throughput when compared to

TCP Westwood.

4.4.4 Inference

We have demonstrated the efficacy of TCP Surathkal in a wide range of environments

by comparing its performance with other popular transport protocols. Based on the

results obtained in these scenarios, we infer the following:

• TCP Surathkal efficiently utilizes the available link capacity. The performance

of TCP Surathkal is robust in terms of link utilization across (i) different bot-

tleneck capacities, (ii) varying RTT and (iii) different traffic types, varying

from only FTP flows to richer traffic mix including interactive voice traffic, live

streaming, reverse traffic, web-traffic, etc.

• The mean queue length with TCP Surathkal is either same or less than that with

the other TCP variants. Thus, TCP Surathkal does not increase the latency

for delay sensitive traffic and offers high burst tolerance.

• Packet drop rate of TCP Surathkal, except in a few scenarios, is considerably

less than the other protocols. The performance of TCP Surathkal is significantly

better in terms of packet drop rate when the RTT is in the range of 100ms and

1000ms. This is the range for an average RTT in the Internet.

• TCP Surathkal is fair to other competing flows in the network, especially TCP

SACK which is the most widely used TCP in the Internet.

95

• TCP Surathkal improves the overall performance of the wireless networks. Note

that this improvement is achieved without using any link layer mechanism to dif-

ferentiate congestion packet losses from non-congestion losses. TCP Surathkal

can be easily merged with other TCP variants designed specifically for wireless

networks, to further provide a robust performance.

• The above mentioned advantages of TCP Surathkal make it suitable for use

across a variety of networks such as Wired WANs, 802.11 WLAN/Mesh net-

works and satellite networks. Moreover, since TCP Surathkal achieves high link

utilization and maintains low queue length, it meets the requirements of various

applications such as interactive applications, large and medium data transfers.

• The deployment complexity of TCP Surathkal is low since it requires XECN to

be implemented only at the sender and the receiver. Moreover, it does not need

any additional bit(s) in the TCP or IP header and makes no modifications in

the working of the routers.

96

Chapter 5

Fluid model for TCP Surathkal

A variety of mathematical models such as the periodic model (Mathis et al. 1997),

detailed packet loss model (Padhye et al. 2000), stochastic model with general loss

process (Altman et al. 2000), fluid model (Misra et al. 2000), etc have been developed

for modeling TCP. While some of these models focus on a particular module of TCP,

others add a new level of generality to the process of TCP modeling (Hassan and Jain

2004). In this dissertation, we explore the fluid model to study the behavior of TCP

Surathkal because this model is suitable for analyzing a network that consists of

routers with AQM mechanisms and TCP flows.

5.1 Genesis of the Fluid model

(Misra et al. 2000) presents a fluid model based on Poisson Counter driven Stochastic

Differential Equations to model the interactions of a set of TCP flows and routers

with AQM mechanisms. This model is appropriate to analyze the behavior of TCP

Surathkal because the presence of AQM mechanisms at routers is the fundamental

requirement of TCP Surathkal.

The model is based on the assumption that packet losses to flow i are described

by a Poisson process Ni(t) with time varying rate λi(t). Ni(t) denotes the number of

packet losses suffered by flow i and t denotes the time when the TCP sender detects

the losses. Note that t is different from the time when the actual packet is dropped at

the router. The time varying nature of λi(t) models the independent packet dropping

mechanisms generally found in AQMs (Misra et al. 2000).

97

The data traffic is modeled as a fluid and a set of differential equations that

describe the AQM mechanism and the router queueing process are derived. This

model takes into consideration the entire system in which the sending rate of TCP

is closely coupled with the packet losses. Thus, the system is a closed loop control

system resulting in a set of coupled differential equations (Misra et al. 2000).

Assuming that N long flows are traversing a single bottleneck router with trans-

mission capacity C, the fluid model for TCP is given by Eq.(5.1.1), Eq.(5.1.2) and

Eq.(5.1.3):

dWi

dt
=

1

Ri(q)
− (

Wi

2
)

Wi(t− τ)

Ri(q(t− τ))
p(x(t− τ)) (5.1.1)

dx

dt
=

loge(1− wq)

δ
x(t)−

loge(1− wq)

δ
q(t) (5.1.2)

dq(t)

dt
≈ −C +

N
∑

i=1

Wi

Ri(q)
(5.1.3)

where Wi(t) and Ri(t) denote the cwnd and RTT at time t of flow i (1 ≤ i ≤

N) respectively. q(t) denotes the instantaneous queue length. τ represents the round

trip delay for a loss notification to reach the sender. C represents the capacity of the

bottleneck router in packets. x represents the avg at the router. p(x) represents the

packet drop probability as a function of x. wq represents the smoothing constant for

exponential weighted moving average x. δ represents the sampling interval.

Ri(t) is given by

Ri(t) = βi +
q(t)

C
(5.1.4)

where βi is the fixed propagation delay and q(t)
C

models the queueing delay.

Eq.(5.1.1) models the AIMD behavior of TCP. The first term on Right Hand Size

(RHS) corresponds to the additive increase part, which shows that cwnd increases

by one in every RTT. The second term on RHS corresponds to the multiplicative

decrease part, which shows that cwnd decreases by half at the instant of the arrival

98

of a loss notification i.e., when

Wi(t− τ)

Ri(q(t− τ))
p(x(t− τ)) = 1 (5.1.5)

Eq.(5.1.2) provides an estimate of the average queue length (avg) at the router

based on the samples taken every δ seconds. Note that in RED, samples are taken on

arrival of every packet rather than a fixed value δ. Hence, the value of δ in the fluid

model is carefully chosen to be 1/C. The rationale behind selecting 1/C is explained

in detail in (Misra et al. 2000).

Eq.(5.1.3) describes the behavior of the instantaneous queue length at the router.

The first term on Right Hand Size (RHS) corresponds to the decrease in the instan-

taneous queue length due to the servicing of the packets. The second term on RHS

corresponds to the increase in the instantaneous queue length due to the arrival of

packets from the TCP flows.

Thus, based on these three equations, we can get the estimate of the cwnd evo-

lution, the avg and the instantaneous queue length. A detailed derivation of these

equations is provided in (Misra et al. 2000).

5.2 Modified Fluid model for TCP Surathkal

In this section, we develop a fluid model for TCP Surathkal which is a minor modifi-

cation of the fluid model discussed in the previous section.

The only difference between TCP and TCP Surathkal is that TCP decreases

cwnd by half in the event of congestion, whereas TCP Surathkal decreases cwnd by

an adaptive parameter, α (see Eq.(4.3.2)). Moreover, recall that TCP Surathkal does

not require any modifications in the working of the routers. Based on this aspects,

the modified fluid model for TCP Surathkal is given by Eq.(5.2.1), Eq.(5.2.2) and

Eq.(5.2.3).

dWi

dt
=

1

Ri(q)
− (

Wiαi

2
)

Wi(t− τ)

Ri(q(t− τ))
p(x(t− τ)) (5.2.1)

99

where αi represents the fraction of packets marked in the last RTT of flow i.

dx

dt
=

loge(1− wq)

δ
x(t)−

loge(1− wq)

δ
q(t) (5.2.2)

dq(t)

dt
≈ −C +

N
∑

i=1

Wi

Ri(q)
(5.2.3)

Since TCP Surathkal does not require any modifications at the router, equations

(5.2.2) and (5.2.3) are same as that of the TCP i.e. equations (5.1.2) and (5.1.3).

Moreover, as shown in Eq.(5.2.1), the additive increase part of TCP Surathkal

(first term of RHS) too is similar to that of TCP. The only change, however, lies in

the multiplicative decrease part of Eq.(5.2.1). Unlike TCP which decreases the cwnd

as Wi/2, TCP Surathkal decreases the cwnd as Wi αi/2.

The next section presents a comparative analysis of TCP and TCP Surathkal with

respect to the stability of the cwnd and the stability of the avg.

5.3 Results

We have compared the performance of TCP and TCP Surathkal by implementing

both the fluid models in Matlab. A standard dumbbell topology is used for the

experiments. The total number of flows in the network is fixed to 40. Bottleneck

bandwidth is set to 5Mbps. Propagation delay for all flows is set to 200 ms. The

buffer at the bottleneck router is sized so that all the packet losses are only because

of RED. Minimum threshold (minth) for the avg at the router is fixed to 150 packets.

Maximum threshold (maxth) for the same is fixed to 200 packets. The exponential

weighted moving average constant (wq) is fixed to 0.0001 and maximum drop proba-

bility (maxp) is fixed to 0.1. Sampling interval δ is set to 1/C. The parameters used

in the analysis are similar to the ones used in (Misra et al. 2000).

The analysis of TCP and TCP Surathkal is carried out by designing two different

scenarios: Scenario 1 consists of 40 persistent long flows whereas Scenario 2 consists

of 20 ON-OFF long flows and 20 persistent long flows.

100

Scenario 1

40 TCP flows are started at time, t = 0 seconds and stopped at time, t = 70 seconds.

The same experiment is repeated for TCP Surathkal. Fig.5.1a through Fig.5.3b show

the results obtained for this scenario.

It is observed from the results that the cwnd of TCP Surathkal sender stabilizes

much quicker than that of the TCP sender. The results obtained in Fig.5.1a-5.1b are

similar to the ones in Fig.4.6 obtained from ns-2 simulations. Since the cwnd stabilizes

quickly with TCP Surathkal, so does the avg and instantaneous queue length. This

leads to better performance for time sensitive traffic because the variations in the

delay are reduced.

Scenario 2

40 TCP flows are started at time, t = 0 seconds. At time, t = 75 seconds, 20 TCP

flows are stopped and they are re-started at time, t = 300 seconds. All 40 TCP flows

are then stopped at time, t = 380 seconds. The same experiment is repeated for TCP

Surathkal. Fig.5.4a through Fig.5.7b show the results obtained for this scenario.

Oscillations are considered to be harmful for the network as they result in unac-

ceptably large queue lengths and hence, incur a large variability in delays for the flows

going through. Even if the mean delay turns out to be the same, these oscillations

add considerable jitter to the delays. If the buffer is not large enough, then the effect

of the oscillations causes buffer overflows. They also cause periodically high loss rates

and affect the throughput adversely (Misra et al. 2000).

It is observed from the results that the cwnd, the avg and the instantaneous queue

length exhibit large oscillations with TCP when 20 ON-OFF TCP flows are turned

off. Moreover, the system does not approach a stable operating point unless 20 ON-

OFF TCP flows are restarted. The traffic in the Internet is highly dynamic with large

number of flows entering the network or leaving the network at the same time. It is

highly desirable to bring the system to a stable operating point to reduce the impact

of oscillations on the performance of time sensitive traffic.

TCP Surathkal, on the other hand, minimizes the oscillations in the cwnd, the

101

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

Time (Seconds)

Congestion Window Size at the Sender

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

(a) Average cwnd of 40 TCP senders

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

Time (Seconds)

Congestion Window Size at the Sender

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

(b) Average cwnd of 40 TCP Surathkal senders

Figure 5.1: Oscillations in the cwnd with TCP and TCP Surathkal

102

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

200

Time (Seconds)

Average Queue Size at the Router

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

(a) avg with 40 TCP senders

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

200

Time (Seconds)

Average Queue Size at the Router

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

(b) avg with 40 TCP Surathkal senders

Figure 5.2: Oscillations in the avg with TCP and TCP Surathkal

103

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

500

550

Time (Seconds)

Instantaneous Queue Size at the Router

In
st

an
ta

ne
ou

s
Q

ue
ue

 S
iz

e
(P

ac
ke

ts
)

(a) Instantaneous queue size with 40 TCP senders

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

500

550

Time (Seconds)

Instantaneous Queue Size at the Router

In
st

an
ta

ne
ou

s
Q

ue
ue

 S
iz

e
(P

ac
ke

ts
)

(b) Instantaneous queue size with 40 TCP Surathkal senders

Figure 5.3: Oscillations in queue length with TCP and TCP Surathkal

104

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (Seconds)

Congestion Window Size at the Sender

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

(a) Average cwnd of 20 ON-OFF TCP senders

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (Seconds)

Congestion Window Size at the Sender

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

(b) Average cwnd of 20 ON-OFF TCP Surathkal senders

Figure 5.4: Oscillations in the cwnd with TCP and TCP Surathkal

105

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (seconds)

Congestion Window Size at the Sender

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

(a) Average cwnd of 20 persistent TCP senders

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (Seconds)

Congestion Window Size at the Sender

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

(b) Average cwnd of 20 persistent TCP Surathkal senders

Figure 5.5: Oscillations in the cwnd with TCP and TCP Surathkal

106

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

200

Time (Seconds)

Average Queue Size at the Router

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

(a) avg with 40 TCP senders

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

200

Time (Seconds)

Average Queue Size at the Router

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

(b) avg with 40 TCP Surathkal senders

Figure 5.6: Oscillations in the avg with TCP and TCP Surathkal

107

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

500

550

Time (Seconds)

Instantaneous Queue Size at the Router

In
st

an
ta

ne
ou

s
Q

ue
ue

 S
iz

e
(P

ac
ke

ts
)

(a) Instantaneous queue size with 40 TCP senders

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

500

550

Time (Seconds)

Instantaneous Queue Size at the Router

In
st

an
ta

ne
ou

s
Q

ue
ue

 S
iz

e
(P

ac
ke

ts
)

(b) Instantaneous queue size with 40 TCP Surathkal senders

Figure 5.7: Oscillations in the queue length with TCP and TCP Surathkal

108

avg and the instantaneous queue length and brings the system to a stable operating

point. These advantages of TCP Surathkal make it suitable for a large variety of

Internet applications.

5.4 Inference

Based on the results obtained by comparing the fluid models of TCP and TCP

Surathkal, we infer that by reacting based on the severity of congestion in the net-

work, TCP Surathkal improves the stability of the system. TCP Surathkal stabilizes

the cwnd, the avg and the instantaneous queue length and consequently improves the

overall performance of the network.

109

Chapter 6

Conclusions and Future work

In this dissertation, we have addressed the parameter sensitivity of RED and high-

lighted some of the limitations of ARED and Re-ARED. We have designed and im-

plemented two new ARED based AQM mechanisms that aim to vary the maximum

drop probability efficiently, especially when the level of congestion varies sharply. We

have also designed and implemented a new congestion signaling mechanism that pro-

vides a richer feedback about congestion to the end-hosts while using the bits already

allocated for ECN in the TCP header. Finally, we have developed a new TCP variant

which reduces its sending rate based on the severity of congestion. A modified fluid

model is also developed to validate the performance benefits of newly designed TCP

variant.

To summarize, contributions made in this research work are

• We have compared the performance of ARED with Re-ARED and demonstrated

that neither a conservative approach alone nor an aggressive approach alone of

updating maxp suffices to improve the overall performance in terms of through-

put and packet drop rate.

• Hence, we have designed and implemented two new AQM mechanisms, namely

FARED and CARED, that aim to combine the advantages of ARED and Re-

ARED to improve the overall performance of the network by reducing packet

drop rate and maximizing throughput. It is observed that FARED fails to

achieve the desired goal because of the smaller target range. We note that

selecting a smaller target range imposes constraints on the convergence time

110

of maxp. On the other hand, CARED fulfills the desired goal of combining

the benefits of ARED and Re-ARED. CARED provides robust performance in

terms of throughput, packet drop rate and stability of the avg across a wide

variety of scenarios. Moreover, since there are only algorithmic changes and no

new parameter settings in CARED, it can be easily deployed in modern Internet

routers without any additional complexity.

• We have designed XECN, a new congestion signaling mechanism which extends

the basic functionality of the ECN mechanism. XECN not only notifies the

sender about the congestion, but also enables the sender to infer the severity

of congestion in the network by counting marked acknowledgements. XECN

requires changes only at the sender and the receiver; it does not require any

modification in the router. Moreover, XECN does not introduce any additional

bit(s), rather, it efficiently utilizes the already available ECN bits in the TCP

header. Hence, it can be incrementally deployed over the existing implementa-

tions of ECN.

• We have also designed a new variant of TCP called TCP Surathkal which de-

creases the cwnd adaptively based on the network feedback provided by XECN.

We show the effectiveness of TCP Surathkal by carrying out extensive simula-

tions using ns-2 and compare its performance with TCP SACK, HSTCP, STCP,

CUBIC, Westwood and XCP in a wide variety of scenarios ranging from wired

to wireless networks. Results demonstrate that TCP Surathkal improves overall

performance of the network while being fair to the other TCP variants. Since

TCP Surathkal depends on XECN for efficient utilization of network resources,

it also overcomes the drawback of TCP in wireless networks by distinguishing

congestion losses from non-congestion losses. Moreover, since TCP Surathkal

decreases cwnd based on the severity of congestion, it achieves significant im-

provement even when error rates in wireless networks are moderate. The above

mentioned advantages of TCP Surathkal make it suitable for use across a variety

of networks such as Wired WANs, 802.11 WLAN/Mesh networks and satellite

networks.

111

• We have developed a modified fluid model for TCP Surathkal to study its per-

formance benefits. Results show that TCP Surathkal significantly reduces the

oscillations in the queue. The effectiveness of TCP Surathkal is demonstrated

by analyzing its stability behavior.

As a part of the future work, we are currently working on the modified fluid

model and testing the performance of TCP Surathkal while using ARED and CARED

instead of using the original RED.

Although we adapt the multiplicative decrease factor in TCP Surathkal based on

the severity of congestion, we do not adapt the additive increase factor. We intend to

explore further in this direction while keeping our major focus on the fairness issues.

The benefits of TCP Surathkal make it suitable for use in satellite networks. We

aim to study the benefits of TCP Surathkal in satellite networks by comparing its

performance with TCP variants which are specifically designed for satellite networks.

Moreover, the adaptive multiplicative decrease mechanism of TCP Surathkal can

be easily combined with Loss Tolerant TCP (LT-TCP) (Tickoo et al. 2005) which is

especially designed for extreme wireless networks and works with error rates upto 50%.

It would be interesting to study the performance benefits offered by TCP Surathkal

over LT-TCP in such networks.

It would be useful to evaluate the performance of CARED, XECN and TCP

Surathkal in a real time implementation. CARED implementation would require

collaboration with commercial vendors of routers such as Cisco, Juniper and others.

XECN and TCP Surathkal can be implemented as Linux kernel modules. The results

obtained in the commercial routers in the field will have a lot of bearing to validate

the simulation results.

112

Bibliography

Abbasov, B. and Korukoglu, S. (2009). “Effective RED: An algorithm to improve REDs

performance by reducing packet loss rate.” Elsevier Journal of Network and Computer

Applications, 32, 703-709.

Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L. (2010). “Host-to-Host Congestion Control

for TCP.” IEEE Communication Surveys and Tutorials, 12, 303-342.

Akamai. (2011). “The State of the Internet.” 2nd Quarter, 2011 Report, 4(2), 1-46.

Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S.

and Sridharan, M. (2010). “Data Center TCP (DCTCP).” ACM SIGCOMM Computer

Communications Review, 40(4), 63-74.

Altman, E., Avrachenkov, K., Barakat, C. (2000). “A stochastic model of TCP/IP with

stationary random losses.” Proc., ACM SIGCOMM.

Anjum, F. M. and Tassiulas, L. (1999). “Balanced RED: An algorithm to achieve fairness

in the Internet.” Technical Report TR99-17, Department of Electrical Engineering and

Institute for Systems Research, University of Maryland at College Park.

Aweya, J., Ouellette, M., Montuno, D. Y. (2001). “A Control Theoretic approach to Active

Queue Management.” Elsevier Computer Networks, 36, 203-235.

Balakrishnan, H., Padmanabhan, V. N., Seshan, S., Katz, R. H. (1997). “A Comparison of

Mechanisms for Improving TCP Performance over Wireless Links.” IEEE/ACM Trans-

actions on Networking, 5(6), 756-769.

Bansal, D., Balakrishnan, H., Floyd, S., Shenker, S. (2001). “Dynamic behavior of slowly-

responsive congestion control algorithms.” ACM SIGCOMM Computer Communications

Review, 31(4), 263-274.

Bauer, S., Beverly, R., Berger, A. (2011). “Measuring the State of ECN Readiness in Servers,

Clients, and Routers.” Proc., 2011 ACM SIGCOMM Conference on Internet Measure-

ments, 171-180.

113

Bhandarkar, S. and Reddy, A. L. N. (2007). “Emulating AQM from end hosts.” ACM

SIGCOMM Computer Communications Review, 37(4), 349-360.

Brakmo, L. and Peterson, L. (1995). “TCP Vegas:End to End Congestion Avoidance on a

Global Internet.” IEEE Journal on Selected Areas in Communications.

Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., Wang, R. (2002). “TCP Westwood:

End-to-End Congestion Control for Wired/Wireless Networks.” Wireless Networks Jour-

nal, 8(5), 467-479.

Chen, J., Hu, C., Ji, Z. (2011). “Self-tuning Random Early Detection algorithm to improve

performance of network transmission.” Mathematical Problems in Engineering, 2011, Ar-

ticle ID. 872347.

Chiu, D.-M. and Jain, R. (1989). “Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks.” Computer Networks and ISDN Systems,

17, 1-14.

Dukkipati, N. (2008). “Rate Control Protocol (RCP): Congestion control to make flows

complete quickly.” Ph.D thesis, Department of Electrical Engineering, Stanford Univer-

sity.

Feng, G., Agarwal, A., Jayaraman, A., Siew, C. K. (2004). “Modified RED Gateways under

Bursty Traffic.” IEEE Communications Letters, 8, 323-325.

Feng, W., Kandlur, D., Saha, D., Shin, K. G. (1999). “A Self Configuring RED.” Proc.,

IEEE INFOCOM ’99, 3, 1320-1328.

Floyd, S, Gummadi, R., Shenker, S. (2001). “Adaptive RED: An algorithm for increasing

the robustness of RED’s Active Queue Management.” Technical Report.

Floyd, S, (2003). “HighSpeed TCP for Large Congestion Windows” Request For Comments

3649, Experimental.

Floyd, S. and Jacobson, V. (1993). “Random Early Detection Gateways for Congestion

Avoidance.” IEEE/ACM Transactions on Networking, 1(4), 397-413.

Gerla, M. and Kleinrock, L. (1980). “Flow control: A Comparative Survey.” IEEE Trans-

actions on Communications, 28(4), 553-574.

Gettys, J. (2011). “Dark Buffers in the Internet.” IEEE Internet Computing, 15(3), 96.

Hariri, B. and Sadati, N. (2007). “NN-RED: An AQM mechanism based on Neural Net-

works” Electronic Letters, 43, 10531055.

114

Hassan, M. and Jain, R. (2004). “High Performance TCP/IP Networking: Concepts, Issues

and Solutions.” Pearson Education, Inc., New Jersey.

Hollot, C., Misra, V., Towsley, D., Gong, W. (2002). “Analysis and Design of Controllers

for AQM Routers Supporting TCP Flows.” IEEE Transactions on Automatic Control,

47(6), 945-959.

Jacobson, V. (1988). “Congestion Avoidance and Control” Proc., ACM SIGCOMM ’88,

Stanford, CA.

Jacobson, V. (1990). “Modified TCP Congestion Avoidance Algorithm.” Technical Report,

Email to the end2end-interest Mailing List.

Jain, R. (1986). “A Timeout-based Congestion Control Scheme for Window Flow-controlled

Networks.” IEEE Journal on Selected Areas of Communications, 7.

Javam, H. and Analoui, M. (2006). “SARED: Stabilized ARED.” Proc., International Con-

ference on Communication Technology, 1-4.

Katabi, D., Handley, M., Rohrs, C. (2002). “Internet Congestion Control for High

Bandwidth-Delay Product Networks.” Proc., ACM SIGCOMM ’02.

Kelly, T. (2003). “Scalable TCP: Improving performance in highspeed wide area networks.”

ACM SIGCOMM Computer Communications Review, 33(2), 83-91.

Kim, T. and Lee, K. (2006). “Refined Adaptive RED in TCP/IP Networks.” Proc., SICE-

ICASE International Joint Conference, pp. 3722-3725.

Kwon, M. and Fahmy, S. (2002). “TCP Increase/Decrease Behavior with Explicit Conges-

tion (ECN).” Proc., IEEE International Conference on Communications, 4, 2335-2340.

La, R. J., Ranjan, P., Abed, E. H. (2003). “Analysis of Adaptive Random Early Detection

(Adaptive RED).” Proc., 18th International Teletraffic Congress (ITC 03).

Lin, D. and Morris, R. (1997). “Dynamics of Random Early Detection.” Proc., ACM SIG-

COMM ’97, 127-137.

Liu, S., Basar, T., Srikant, R. (2005). “Exponential-RED: A Stabilizing AQM scheme for low

and high-speed TCP protocols.” IEEE/ACM Transactions on Networking, 13, 1068-1081.

Mahajan, R. and Floyd, S. (2001). “Controlling high bandwidth flows at the congested

router.” Proc., IEEE ICNP ’01.

Marquez, R., González, I., Carrero, N., Sulbarán, Y. (2007). “Revisiting Adaptive RED:

Beyond AIMD Algorithms.” Proc., 1st EuroFGI International Conference on Network

Control and Optimization (NET-COOP’07), 30(4), 74-83.

115

Mathis, M., Semke, J., Mahdavi, J. (1997). “The macroscopic behavior of the TCP conges-

tion avoidance algorithm.” ACM Computer Communications Review, 27(3), 67-82.

Misra, V., Gong, W.-B., Towsley, D. (2000). “Fluid-based Analysis of a Network of AQM

Routers Supporting TCP flows with an Application to RED.” ACM SIGCOMM Com-

puter Communications Review, 30(4), 151-160.

Nagle, J. (1984). “Congestion Control in IP/TCP Internetworks.” Request For Comments

896.

Ott, T. J., Lakshman, T. V., Wong, L. (1999). “SRED: Stabilized RED.” Proc., IEEE

INFOCOM ’99, 1346-11355.

Padhye, J., Firoiu, V, Towsley, D., Kurose, J. (2000). “Modeling TCP throughput: A simple

model and its empirical validation.” IEEE/ACM Transactions on Networking, 8(2), 133-

145.

Parris, M., Jeffay, K, Smith, F. D. (1999). “Lightweight Active Router Queue Management

for Multimedia Networking.” Proc., SPIE, 162-174.

Paxson, V., Allman, M, Chu, J., Sargent, M. (2011). “Computing TCP’s Retransmission

Timer.” Request For Comments 6298, Standards Track.

Qazi, I. A. (2010). “An Efficient Framework of Congestion Control for Next-Generation

Networks.” Ph.D Dissertation, University of Pittsburgh.

Ramakrishnan, K. K., Floyd, S., Black, D. (2001). “The Addition of Explicit Congestion

Notification (ECN) to IP.” Request For Comments 3168, Standards Track.

Ramakrishnan, K. K. and Jain, R. (1988). “A Binary Feedback Scheme for Congestion

Avoidance in Computer Networks with a Connectionless Network Layer.” Proc., ACM

SIGCOMM ’88, 314-329.

Ramani, R. and Karandikar, A. (2000). “Explicit Congestion Notification (ECN) in TCP

over Wireless Networks.” Proc., IEEE ICPWC, 495-499.

Ranjan, P., Abed, E. H., La, R. J. (2002). “Nonlinear instabilities in TCP-RED.”

IEEE/ACM Transactions on Networking, 12(6), 1079-1092.

Rhee, I. and Xu, L. (2005). “CUBIC: A New TCP-Friendly High-Speed TCP Variant.”

Proc., PFLDNet’05.

Tickoo, O., Subramanian, V., Kalyanaraman, S., Ramakrishnan, K. K, (2005). “LT-TCP:

End-to-end framework to Improve TCP Performance over Networks with Lossy Links.”

Proc., International Workshop on Quality of Service (IWQoS).

116

Verma, R., Iyer, A., Karandikar, A. (2002). “Active Queue Management using Adaptive

RED.” IEEE/KICS Journal of Communications and Networks, 5, 275-281.

Toomey, W. K (1997). “A Rate-Based Congestion Control Framework for Connectionless

Packet-Switched Networks.” University of New South Wales, Doctoral thesis.

Wang, C., Liu, J., Li, B., Sohraby, K., Hou, Y. T. (2007). “LRED: A Robust and Responsive

AQM algorithm using packet loss ratio measurement.” IEEE Transactions on Parallel

and Distributed Systems, 18, 29-43.

Wang, G., Xia, Y., Harrison, D. (2007). “An NS-2 TCP Evaluation Suite.” Internet Draft,

Informational.

Welzl, M. (2006). “Network Congestion Control: Managing Internet Traffic” Wiley Series

in Communication Networking and Distributed Systems.

Yang, Y. R. and Lam, S. S. (2000). “General AIMD Congestion Control.” University of

Texas at Austin, Technical Report TR-200009.

Zheng, B. and Atiquzzaman, M. (2000). “DSRED: an Active Queue Management scheme

for Next Generation Networks” Proc., 25th Annual IEEE Conference on Local Computer

Networks (LCN’00), 242-251.

Zhou, K., Yeung, K. L., Li, V. O. K. (2006). “Nonlinear RED: A simple yet efficient Active

Queue Management Scheme” Elsevier Computer Networks, 50, 3784-3794.

117

List of Publications

Refereed Journals

1. Tahiliani, M. P., Shet, K. C. and Basavaraju, T. G. (2012). “CARED: Cau-

tious Adaptive RED Gateways for TCP/IP Networks.” Journal of Network and

Computer Applications, Elsevier, 35, 857-864.

2. Tahiliani, M. P., Shet, K. C. and Basavaraju, T. G. (2012). “Comparative

Study of High-speed TCP Variants in Multi-hop Wireless Networks.” Interna-

tional Journal of Computer Theory and Engineering, accepted for publication,

November 2012.

3. Tahiliani, M. P., and Shet, K. C. (2012). “TCP Surathkal: Network Con-

trolled TCP for Wired and Wireless Networks.” IEEE/ACM Transactions on

Networking, submitted, January 2012.

4. Tahiliani, M. P., and Shet, K. C. (2013). “TCP Surathkal: A Proactive

TCP for efficient Congestion Control.” Journal of Computer Communications,

Elsevier, to be submitted.

Conference Proceedings

1. Tahiliani, M. P., Shet, K. C. and Basavaraju, T. G. (2012). “FARED: Fast

Adapting RED Gateways for TCP/IP Networks.” Proc., International Con-

ference on Advanced Computing, Networking and Security (ADCONS 2011),

Springer LNCS, N.I.T.K., Surathkal, 434-442.

2. Tahiliani, M. P., Shet, K. C. and Basavaraju, T. G. (2010). “Performance

Evaluation of TCP Variants over Routing Protocols in Multi-hop Wireless Net-

works.” Proc., International Conference on Computer and Communication

Technology (ICCCT 2010), IEEE Xplore, M.N.N.I.T., Allahabad, 387-392.

3. Tahiliani, M. P., and Shet, K. C. (2013). “Analysis of Cautious Adaptive

RED.” to be submitted to IEEE ICACCI 2013, IEEE Xplore, SJCE, Mysore,

March 2013.

118

Brief Bio-Data

Mohit P. Tahiliani

Research Scholar

Department of Computer Science and Engineering

National Institute of Technology Karnataka, Surathkal

P.O. Srinivasanagar

Mangalore, 575025

Phone: 09844965159

Email: tahiliani.nitk@gmail.com

Permanent address

Mohit P. Tahiliani

S/o, Dr. Prakash U. Tahiliani,

17/B, “Udhav-Kunj”,

Alka Society, Chhapra Road,

Navsari-396445,

Gujarat, INDIA.

Qualification

M.Tech. Computer Science and Engineering, Visvesvaraya Technological Univer-

sity, Belgaum, 2009.

B.E. Computer Science and Engineering, Visvesvaraya Technological University,

Belgaum, 2007.

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations and Nomenclature
	Introduction
	AQM for Congestion Avoidance
	TCP Congestion Control Laws
	Motivation and Assumptions
	Motivation for AQM
	Goals of Congestion Control mechanisms
	Assumptions

	Outline of the Thesis

	Literature Review
	RED based AQM mechanisms
	Mechanisms for Explicit feedback
	TCP Congestion Control
	End-to-end protocols
	Network based protocols
	End-to-end protocols with explicit feedback
	Slowly responsive TCPs

	Problem statement
	Objectives

	ARED based robust AQM mechanisms
	Overview of ARED
	Overview of Refined Adaptive RED
	Comparison of ARED and Re-ARED
	Throughput and packet drop rate
	Stability of the avg
	Inference

	Fast Adapting RED (FARED)
	Overview
	Design of FARED Algorithm
	Results
	Inference

	Cautious Adaptive RED (CARED)
	Overview
	Design of CARED Algorithm
	Results
	Inference

	Network Controlled TCP
	Overview
	eXtended ECN (XECN)
	Motivation
	XECN Mechanism

	TCP Surathkal Control Laws
	Results
	Comparison of TCP Surathkal and TCP SACK
	Comparison with other TCP Variants
	Performance evaluation of TCP Surathkal in Wireless networks
	Inference

	Fluid model for TCP Surathkal
	Genesis of the Fluid model
	Modified Fluid model for TCP Surathkal
	Results
	Inference

	Conclusions and Future work
	Bibliography
	List of Publications

