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ABSTRACT 

 

Energy dissipation process of Horizontally Interlaced Multi-layer Moored Floating 

Pipe Breakwater (HIMMFPB) depends on various factors like pipe interference 

effect, the spacing between the pipes and number of layers. As the effect of all these 

factors on transmission is not clearly understood, it will be extremely difficult to 

quantify them mathematically. Furthermore, it is a complex problem, and till now 

there has not been available a simple mathematical model to predict the wave 

transmission through HIMMFPB by considering all the boundary conditions, and 

hence one has to depend on physical model studies which are expensive and time 

consuming.  

 

Computational Intelligence (CI) techniques, such as, Artificial Neural Network 

(ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine 

Regression (SVMR), Genetic Programming (GP) and Genetic Algorithm (GA) have 

been efficaciously proposed as an efficient tool for modelling and predictions in 

coastal/ocean engineering problems. For developing CI models in prediction of wave 

transmission for HIMMFPB, data set were obtained from experimental wave 

transmission of HIMMFPB using regular wave flume at Marine Structure Laboratory, 

National Institute of Technology, Karnataka, Surathkal, Mangalore, India. These data 

sets are divided into two groups, one for training and other for testing. The input 

parameters that influence the wave transmission  tK  of floating breakwater, such as, 

relative spacing to pipes  DS , relative breakwater width  LW , ratio of incident 

wave height to water depth  dH i , incident wave steepness  LH i  are considered in 

developing CI models for prediction of wave transmission past HIMMFPB. In the 

present work, five layer pipes with DS /  of 2, 3, 4 and 5 are considered. 

 

The ANN model is developed for prediction of wave transmission for HIMMFPB. 

Two network models, ANN1 and ANN2 are constructed based on the parameters 

which influence the wave transmission of floating breakwater. The input parameters 

of ANN1 model are LW / , dH i /  and LH i / . To study over a range of spacing of pipes 
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DS /  on tK , an input parameter, DS / is added to form ANN2 model. Training and 

testing of the network models are carried out for different hidden nodes and epochs. It 

is observed that the correlation (above 90%) between predicted wave transmission 

values by the network models and measured values are in good agreement.  

 

Furthermore, to improve the result of prediction of wave transmission of HIMMFPB, 

recently developed technique such as SVMR is used. This technique works on 

structural risk minimization principle that has greater generalization ability and is 

superior to the empirical risk minimization principle as adopted in conventional 

neural network models. Support vector machines (SVMs) are based on statistical 

learning theory. The basic idea of support vector machines is to map the original data 

x  into a feature space with high dimensionality through a non-linear mapping 

function and construct an optimal hyper-plane in new space.  Six SVMR models are 

constructed using kernel functions.  In order to study the performance of each kernel 

in predicting wave transmission of HIMMFPB, SVMR is trained by applying these 

kernel functions. Performance of SVMR is based on the best setting of SVMR and 

kernel parameters.  Correlation Coefficient (CC) of SVMR (b-spline) model (CC 

Train = 0.9779 and CC Test = 0.9685) is considerably better than other SVMR 

models. 

 

However, it is noticed that ANN model in isolation cannot capture all data patterns 

easily. Adaptive neuro-fuzzy inference system (ANFIS) uses hybrid learning 

algorithm, which is more effective than the pure gradient decent approach used in 

ANN. ANFIS models are developed to predict wave transmission of HIMMFPB. The 

performance of the ANFIS models in the prediction of tK  is compared with the 

measured values using statistical measures, such as, CC, Root mean Square Error 

( RMSE ) and Scatter Index ( SI ). All the ANFIS models have shown CCs higher than 

or equal to 0.9510, with RMSE  less than or equal to 0.051074 and SI  less than or 

equal to 0.102296. ANFIS5 model predictions are very realistic when compared with 

the measured values (CC Train = 0.9723, CC Test = 0.9635).  It is also observed that 

an DS  plays an important role to train ANFIS5 model to map an input-output 

relation. Furthermore influence of input parameters is assessed using Principal 
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Component Analysis (PCA). It is observed that LH i /
 

is the least influential 

parameter Based on the PCA study discarding the least influential parameters, 

ANFIS6 model is developed. It is observed that the ANFIS models yield higher CCs 

as compared to that of ANN models. 

 

To improve the performance of SVMR and better selection of SVMR and kernel 

parameters, hybrid genetic algorithm tuned support vector machine regression (GA-

SVMR) model is developed to predict wave transmission through HIMMFPB. 

Furthermore, parameters of both linear and nonlinear SVM models are determined by 

GA. The results are compared with ANN, SVMR and ANFIS models in terms of CC, 

RMSE and SI . Performance of GA-SVMR is found to be reliably superior.  

 

CI models can be utilized to provide a fast and reliable solution in prediction of the 

wave transmission for HIMMFPB, thereby making GA-SVMR as an alternate 

approach to map the wave structure interactions of HIMMFPB. 

 

Keywords: Floating Breakwaters; Wave Transmission; HIMMFPB; Artificial Neural 

Networks; Neuro-Fuzzy; ANFIS; SVMR; GA; GA-SVMR; Principal Component 

Analysis. 
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Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., Ph.D. Thesis, 2012, NITK, Surathkal, India.                         

CHAPTER 1 

 

INTRODUCTION 

 

1.1 GENERAL 

 

The environmental stress on the coastal zone is rapidly growing and there is a need to 

protect the coastal environment. The development of structures to provide protection 

against the destructive forces of the sea waves and to withstand the action of waves 

has been the constant challenge to coastal engineers. The coastal defense works such 

as seawalls, groins, offshore breakwaters, artificial nourishments have been tried to 

overcome the problem of erosion. Some of them have been successful while some 

others have failed to perform the job assigned for this purpose. The failure may be due 

to improper location and design or wrong choice of protective measures. The cause 

for the erosion is generally due to the concentration of wave energy at a specific 

location. Hence there is a need to dissipate the wave energy before it reaches coast. 

The use of breakwaters is one of the solutions to dissipate the wave energy. 

Breakwaters are constructed primarily to reduce or prevent wave action in an area 

which is to be sheltered. The waters directly behind the structure are protected from 

wave action and are comparatively calmer than the seaward waters.  

 

The requirement of any port, harbor or marina is sheltered area, free from the sea 

waves. In the coastal areas where natural protection from waves is not available, the 

development of harbor requires an artificial protection for the creation of calm areas. 

For large harbors, where perfect tranquility conditions are required, large structures 

such as rubble mound breakwaters or vertical wall breakwaters are used. However, for 

small recreational harbors or fisheries harbor and marinas where large littoral drift and 

on-shore and off-shore sediment movement exists, floating breakwater are most 

suitable in such circumstances. In recreational harbors swimmers and surfers prefer to 

have acceptable wave conditions to suit their sporting activity and for fisheries harbor, 
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where high level of tranquility conditions are not necessary. In such cases expensive 

rubble mound or vertical wall breakwaters may not be the right choice.  

 

In the last two decades, floating breakwaters (McCartney, 1985; Mani, 1991; Murali 

and Mani, 1997; Sannasiraj et al., 1998;  Sundar et al., 2003; Deepak, 2006; Hegde et 

al., 2007; Jagadisha, 2007; Kamath, 2010) have generated a great interest in the field 

of coastal engineering, as  floating breakwaters are less expensive compared to 

conventional type breakwaters. In addition, they have several desirable characteristics 

such as, comparatively small capital cost, adoption to varying harbour shapes and 

sizes, short construction time and freedom from silting and scouring. Floating 

breakwaters could also be utilized to meet location changes, extent of protection 

required or seasonal demand. They can be used as a temporary protection for offshore 

activities in hostile environment during construction, drilling works, salvage operation 

etc. In order to design a floating breakwater, it is necessary to study the motion 

characteristics of the structure. Hence, a study on wave transmission of the floating 

breakwater would provide a proper configuration to the structure. Several researchers 

have carried out experimental, analytical and numerical studies on floating 

breakwaters in the past but failed to give a simple mathematical model to predict the 

wave transmission through floating breakwaters by considering all the boundary 

conditions. It would be appropriate to discuss conventional breakwater in brief, types 

of floating breakwater and their relative merits over conventional breakwater. 

 

1.2 BREAKWATERS 

 

Breakwaters are barriers, either natural or artificial, that extend into the open water of 

a sea or a lake to break the force of the waves and provide calm water in a harbor. 

Natural breakwaters are offshore islands and promontories that shelter the shore from 

waves. Artificial breakwaters may be attached to the land or separated from it and are 

constructed in various shapes and sizes. They can be built of stones and rubble, of 

masonry, or of a combination of these. Since sea waves have enormous energy; the 

construction of structures to mitigate such energy is not easily accomplished. As these 
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structures need a considerable amount of initial investment, they should be properly 

aligned, designed and constructed. 
 

An optimum breakwater from its hydraulic performance point of view should transmit 

and reflect wave energy as low as possible and dissipate the energy as high as 

possible. Various types of breakwaters are in use throughout the world. Research 

activities are in progress to study the performance characteristics of different types of 

breakwaters in order to recommend the most feasible one for a given prevailing 

environment. Breakwaters are classified mainly as: 
 

 Rubble mound or heap breakwaters 

 Upright or vertical wall breakwaters 

 Mound with superstructure or composite breakwaters 

 Special type of breakwaters 

1.2.1 Rubble mound or heap breakwaters 

Rubble mound breakwaters are the oldest form of harbor protection structure. They 

are simple to build and easier to maintain. Rubble components may be obtained from 

local sources or quarries near or far. Consequently, the variation in size and shape, 

mineral content, hardness, abrasion resistance and other physical property is 

extremely wide.  They do not require skilled labour for construction. However, for  

 

 

 
Fig. 1.1 Typical cross section of rubble mound breakwater (Fousert, 2006) 
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deep water sites and at locations having large tidal ranges, the quantity of stones 

required may be large, causing high expenditure. A rubble mound structure is 

normally composed of a bedding layer and a core of quarry-run stone covered by one 

or more layers of larger stone and an exterior layer of large quarry stone or concrete 

armor units. Typical rubble mound cross sections are shown in Fig. 1.1 (Fousert, 

2006). The figure illustrates cross section features typical of designs for breakwaters 

exposed to waves on one side (seaward) and intends to allow minimal wave 

transmission to the other (leeward) side. Breakwaters of this type are usually designed 

with crest elevated to allow overtopping only in very severe storms with long return 

periods. 

1.2.2 Upright or vertical wall breakwaters 

These breakwaters are of types such as huge concrete blocks, gravity walls, concrete 

caissons, rock filled timber cribs and concrete or steel sheet pile walls as indicated in 

Fig. 1.2 (Fousert, 2006). Vertical wall structures are used as breakwaters, seawalls, 

and    bulkheads in  

 

 

 

 

harbors. The vertical structure accommodates port activities because ships can be 

moored next to the structure to facilitate loading and unloading activities. Generally 

Fig. 1.2 Conventional caisson breakwater with vertical front (Fousert, 2006) 
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vertical wall structures are designed to reflect the incident wave energy with little or 

no over topping. The main disadvantage of vertical wall breakwater is that, it cannot 

be easily repaired and consequences of failures are always catastrophic. The failures 

are mainly because of the scour at toe of the structure. The construction of this type of 

breakwaters requires high technical knowledge, heavy construction equipment and 

skilled labor leading to heavy expenditure. 

1.2.3 Mounds with superstructure or composite breakwaters 

These structures usually combine a rubble mound base through part of water column, 

topped by a vertical monolithic structure as shown in Fig. 1.3 (Fousert, 2006). The 

rubble base of composite structure strengthens the foundation, and the vertical portion 

offers the mooring advantages of vertical structure. These are used in locations where 

either the depth of water is large or there is a wide tidal range and in such situations, 

the quantity of rubble stone required to construct a breakwater of the full height would 

be very large. In such conditions, a combination of rubble mound and vertical wall or 

other form of super structure is adopted.  

 

 

 

 

Although the designs of the breakwaters differ from one another, a number of 

similarities can be identified. They are all built to block the incoming waves and to 

dissipate or reflect the wave energy. They are all fixed structures, designed for a 

Fig. 1.3 Composite breakwater (Fousert, 2006) 
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specific location. Bottom-founded structures are limited to a certain maximum water 

depth since these structures are not practical in deep water environments from a 

technical as well as an economical point of view. 

1.2.4 Special type of breakwaters  

Special type breakwaters are those employing some kind of special features and are 

not commonly used. Special type breakwaters can be divided into two kinds. One is 

the non-gravity type breakwaters such as pile type, floating, pneumatic etc. The other 

is the conventional breakwater with special features conceived to improve the 

functioning and stability of breakwater. Some special breakwaters are as follows: 

 

 Curtain wall breakwater – commonly used as secondary breakwater to protect 

small craft harbors. 

 Sheet pile walls – are used to break relatively small waves. 

 Horizontal plate breakwater – can reflect and break waves and are supported by a 

steel jacket. 

 Floating breakwater – very useful as breakwater in deep waters especially in 

places where the ground soil is poor for foundation 

 The pneumatic breakwater – breaks the wave due to water current induced by air 

bubbles. 

 

Breakwaters can further be classified into two categories based on their mobility. The 

first is permanent structure (immovable) and the second is a temporary structure 

(movable). Rubble mound, vertical wall and composite types of breakwaters are 

examples for the first type. The floating breakwater illustrates the second type. The 

permanent structure is desirable for harbors having intensive loading and unloading 

activities throughout the year. The cost of construction of permanent structures type 

breakwater increases rapidly for deeper waters. The floating breakwaters can be 

utilized for deeper waters, which have the following advantages. Its cost of 

construction does not increase rapidly with increase in depths. They do not offer 

obstruction to water circulation, fish migration and sediment transport beneath the 
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breakwater. They are mobile and can be relocated, if necessary. Their construction is 

less dependent on bottom soil conditions. The other features of the floating 

breakwater include short construction time, freedom from silting, scour and 

foundation problems and relatively small initial cost compared to conventional 

breakwaters.  

 

1.3 FLOATING BREAKWATERS 

 

A floating breakwater is a barrier floating at still water level Fig. 1.4 (Fousert, 2006).  

 

 

 

 

In most of the engineering applications, situations frequently arise, where sheltering 

of areas, in the near shore and offshore regions are required for short time to carry out 

a specific task in the calm zone. These tasks could be creation of temporary harbors 

for many purposes including defense, short time commercial operations, summer 

recreational facilities and reclamation of sea as well as erection of structures on these 

lands. Advantages are that they can be fabricated at remote sites and deployed in deep 

water or where foundations are difficult for conventional breakwater constructions. 

They also allow better water circulation, have very less impact on sediment transport, 

and fish migration than the conventional breakwaters.  

Fig. 1.4 Typical floating breakwater (Fousert, 2006) 



 

Introduction 

 

Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., Ph.D. Thesis, 2012, NITK, Surathkal, India.                        

 8 

This type of breakwater is of transportable type, which can be effectively used at 

different places in and around sheltered areas wherever needed. Further, the classical 

and most effective way to prevent the spread of oil spilled in harbors or other areas of 

sea is by surrounding the spill with floating barriers. Due to its mobility, this 

breakwater can be used at any location where construction of conventional breakwater 

is ruled out in the view of their high cost, impossibility of their reuse and perhaps 

construction time.  

1.3.1 Classification of floating breakwaters 

In recent years research work on floating breakwater has given the ocean engineers a 

wide spectrum of choice for the types of breakwaters depending on the situation and 

purpose for which the breakwater is intended. Based on the types developed and 

tested so far the floating breakwaters can be categorized into the following types: 

 

 Pneumatic and Hydraulic breakwaters 

 Flexible floating structures 

 Rigid floating structures 

 

Pneumatic and hydraulic breakwaters 

 

An artificial surface current can be produced by the air bubbles released from a 

compressed air manifold on the bed or by means of horizontal water jets from a pipe 

floating on the water surface. If the surface current is of sufficient magnitude and is 

directed towards the oncoming waves, the length of the wave is reduced and their 

height increased until instability occurs and the wave either breaks or is reflected.  

 

When air is used, the device is termed as Pneumatic breakwaters and when water jets 

are used, they are referred to as hydraulic breakwaters. The principle of operation of 

such a system is based upon the development of the vertical current of water or air 

which rises to the structure and spreads out more or less horizontally in both the 

upstream and downstream directions of the breakwater system. Although such 
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Fig. 1.5 Flexible assemblies type floating breakwater 

breakwater seem appealing for its simplicity of operation it is imperative for 

generating the air bubbles or water jets that could demand exorbitant amount of fuel. 

 

Flexible floating breakwater 

 

Flexible type of breakwater is represented in Fig. 1.5. Most of the flexible 

breakwaters have reasonably good wave attenuation capacity if the ratio of length of 

the breakwater to the wavelength is larger than one (length measure parallel to the 

wave propagation).  

 

 

 

 

 

 

 

 

 

 

 

 

Floating rigid breakwaters  

 

Like the fixed rigid structure, the floating rigid breakwaters reduces wave 

transmission by dissipation through breaking, reflection, friction or by interaction of 

waves, so that the orbital motion of the water particles is reduced. They may be 

divided into pontoon type structures, either vertical or horizontal, perforated models 

and miscellaneous structures of specific shape. The prismatic forms offer the best 

prospect for multiple use i.e., walkways, boat slips etc. Kato et al. (1969) reported an 

interesting comparison of the rectangular and trapezoidal sections. The inverted shape 

yielded lower transmission coefficients, but developed higher anchor forces. This type 

of breakwater is shown in Fig. 1.6. One of the main advantages of these floating rigid  
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or a flexible structure is its indifference to tidal level changes. Although during the 

past, considerable work has been done on the evaluation performance characteristics 

of floating breakwater and many significant contributions have been made for its 

development, none has achieved perfection considering all factors.  

 

 

 

 

 

 

 

 

 

 

 

The Catamaran pontoon illustrates one way of distributing a given mass to achieve a 

longer roll period and potentially a more stable platform than would be achieved with 

a same mass of single prism as shown in Fig. 1.7. The extra corners provide additional  

 

 

 

 

 

 

zones of energy loss, and the water mass between the hulls may add damping action, 

especially to sway (beam wise) excitation. The members of this group utilize 

combination of vertical walls as reflecting surfaces and outriggers for the stability to 

Fig. 1.6 Single prism-type floating breakwater  

Fig. 1.7 Catamaran type floating breakwater 
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develop a large roll period for a given weight. Brebner and Ofuya (1968) conducted 

extensive research on this type of breakwater. For the ‘A’ frame breakwater, they 

found that the range of effectiveness of a floating breakwater can be increased by 

large increase of its radius of gyration, involving only a slight increase of its mass.   

A-frame breakwater is indicated in Fig. 1.8. 

 

 

 

 

 

 

 

 

One restricting design parameter is the W/L (wavelength-to-breakwater width) ratio, 

McCartney (1985). As this value increases, the wave transmission coefficient, Kt 

decreases. The wave transmission coefficient is the ratio of the wave height 

transmitted across the breakwater to the incident wave height.  

1.3.2 Wave transmission of floating breakwater 

The design of floating breakwater is based on the principle that the wave energy is 

concentrated at the surface in deep water and the same energy is concentrated at 

below the surface in shallow water, which is to be dissipated. Therefore different 

types of floating breakwaters like Box, Pontoon, Mat, Tethered float and Pipe are 

becoming popular. Morgan (1969) reported floating breakwaters attenuate wave 

heights by one or more of the following methods: 

 Destruction of wave orbital motion – by the use of random placing of surface 

floats. 

 Viscous damping – by the use of a thin membrane on the water surface. 

 Dissipation of wave energy by breaking – by use of the floating slope. 

Fig. 1.8 A-frame floating breakwater 
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 Out of phase damping – by using an air-filled flexible bag below the water 

surface. 

 Wave reflection – which all floating breakwaters do to varying degrees. 

 

The basic concept by which floating breakwater reduces wave energy include 

reflection, dissipation, interference and conversion of the energy into non-oscillatory 

motion. The prime factor in the construction of floating breakwater is to make the 

width of the breakwater in the direction of wave propagation greater than one-half the 

wavelength and preferably as wide as incident wavelength. Otherwise, the breakwater 

rides over the top of the wave without attenuating it. Pontoon and Box types of 

floating breakwaters belong to the category in which the wave attenuation is achieved 

by reflecting the wave energy. Mat and Tethered belong to the other category, in 

which wave energy dissipation is mainly due to drag from the resultant float in 

motion. Pipe breakwaters mainly dissipate the wave energy, and also partly reflect 

and transmit the waves. For effective reflection, the breakwater should remain 

relatively motionless and penetrate to a depth sufficient to prohibit appreciable wave 

energy from passing underneath. 

1.3.3 Advantages and disadvantages of floating breakwaters 

Over the years, many different types of floating breakwaters have been developed and 

many conclusions have been drawn. Some of the advantages of floating breakwaters 

include: 

 Floating breakwaters are an economic alternative to fixed structures for use in 

deep waters (depths greater than 6000 mm). 

 Poor soil conditions may make floating breakwaters the only option available. 

 Floating breakwaters minimize the interference on water circulation and fish 

migration. 

 If ice formation presents a problem, floating breakwaters can be removed from the 

site. 
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 Floating breakwaters are not obtrusive and can be more aesthetically pleasing than 

fixed structures. 

 Floating breakwaters can easily be rearranged in a different layout or transported 

to another site for maximum efficiency.  

Some of the disadvantages of floating breakwaters are: 

 Floating breakwaters are ineffective in reducing wave heights for low steepness 

waves. 

  Floating breakwaters are susceptible to structural failure during catastrophic 

storms. 

 Relative to conventional fixed breakwaters, floating breakwaters require a high 

amount of maintenance. 

 

1.4 SCOPE OF THE PRESENT INVESTIGATIONS 

 

Several researchers in the past have carried out experimental, theoretical and 

numerical investigations on different types of floating breakwaters, such as, 

horizontal, sloping, A-type, Y-type, Cage, pontoon, tires, pipes etc., [Homma et 

al.(1964), Brebner and Ofuya (1968), Harris and Webber (1968), Kennedy and 

Marsalek (1968), Chen and Weigel (1970), Ito and Chiba (1972), Adee and Martin 

(1974),  Seymour (1976), Arunachalam and Raman (1980), Yamamoto et al. (1980), 

Bishop (1982), Leach et al. (1985), Sastry et al. (1985), Muralikrishna et al. (1987), 

Mani and Venugopal (1987), Harms (1979), Mani (1991), Williams et al. (1991), 

Murali and Mani (1997), Williams and Azm (1997), Sannasiraj et al. (1998), Rao 

(2000), Briggs et al. (2002), Hermanson (2003), Liang et al. (2003), Sundar et al. 

(2003), Stiassnie and Drimer (2003), Li et al. (2005), Loukogeorgaki and Angelides 

(2005) Ruol et al. (2008)]. These studies are carried out considering a floating 

breakwater in basic form with some assumptions common in hydrodynamics, which 

shows less improvement. It is also found that most of the numerical methods have 

been attempted on simple box-type rectangular floating breakwaters or spar buoy 
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floating breakwaters.  Till now, there has not been available a simple mathematical 

model to predict a wave transmission through floating breakwaters by considering all 

the boundary conditions. 

 

A Horizontal Interlaced Multi-layer Moored Floating Pipe Breakwater (HIMMFPB) 

was developed at Marine Structure Laboratory of National Institute of Technology 

Karnataka, Surathkal, Mangalore, India to attenuate the wave transmission to the 

shore (Amit, 2005; Deepak, 2006; Jagadisha, 2007). The pipe breakwater is floating 

and intended to be economical as the material involved in its construction is poly-

vinyl chloride (PVC) pipes, which are relatively inexpensive compared to other 

materials and also easily available in the market.  

 

For floating pipe breakwaters, the energy dissipation process depends on various other 

factors like pipe interference effect, the spacing between the pipes and number of 

layers. As the effect of all these factors on transmission and forces in the moorings is 

not clearly understood, it will be extremely difficult to quantify them mathematically. 

Still it is a complex problem. From the literature review (chapter 2), it is found that, 

CI techniques, such as, ANN, fuzzy logic, ANFIS, SVMR, GA and genetic 

programming are successfully used to solve complex problems associated with 

coastal/ocean engineering. However, it is observed that there are hardly any 

applications of CI on the wave transmission of floating pipe breakwater and 

HIMMFPB. 

 

1.5 ORGANIZATION OF THE THESIS 

 

The thesis is presented in Six chapters. 

 

 Chapter 1 - Introduction: Introduction to breakwaters and a short overview of the 

conventional breakwaters, special types of breakwaters, introduction to floating 

breakwaters, wave transmission of floating breakwaters, its advantages and 

disadvantages, scope of the present investigations has been discussed. 
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 Chapter 2 - Literature review: The literature review on theoretical and analytical 

studies specifically related to floating breakwaters, applications of computational 

intelligence in coastal/ocean engineering, problem formulation and objectives of 

present work have been discussed. 

 

 Chapter 3 – Experimental setup and data used:  Deals with the experimental 

investigations carried out in the regular wave flume at the department of applied 

mechanics and hydraulics, National Institute of Technology Karnataka (NITK), 

Surathkal, India, and it features the experimental model set up, and data used for 

developing CI models. 

 

 Chapter 4 – Research Methodology: In this chapter, theoretical background of 

research methods used to developed CI models to predict wave transmission of 

HIMMFPB, such as, ANN, ANFIS, SVMR and GA has been discussed.  

 

 Chapter 5 – Results and Discussion: The results obtained from the CI models, 

such as, ANN, ANFIS, SVMR and GA-SVMR in prediction of wave transmission 

of HIMMFPB are analyzed, interpreted and discussed. Also, the performance of 

these models is compared with each other. 

 

 Chapter 6 – Conclusions: Conclusions drawn based on the results of CI models 

and suggestions for future work have been presented. 

 

 Appendix I includes the MATLAB programs used to develop various CI models. 

 

 The Appendix I is followed by references, list of publications based on the present 

work, and a brief resume of the researcher.  
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1.6 SUMMARY 

 

The types of breakwaters that may be adopted have been discussed based on the 

situation and conditions, which includes different types of conventional breakwaters, 

such as, rubble mound breakwater, vertical wall breakwater, composite breakwater 

special type of breakwaters and floating breakwaters. Wave transmission of floating 

breakwaters, and its advantages and disadvantages over conventional type of 

breakwaters have been discussed. Moreover, the chapter highlights that most of the 

study on floating pipe breakwaters is experimental, numerical or theoretical in which 

researchers fails to give a simple mathematical model to predict wave transmission 

through floating breakwaters by considering all the boundary conditions. Still it is a 

complex problem. The scope of present investigations has been explained and the 

organization of the thesis is presented.  
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 CHAPTER 2 

 

LITERATURE REVIEW 

  

2.1 GENERAL 

 

Floating breakwaters are well accepted in recent years because of their basic 

advantages, such as, flexibility, easy mobilization, installation, and retrieval. The 

system can be fabricated in land, towed to the site, and installed along any desired 

alignment with ease. In addition, they have several desirable characteristics, such as, 

comparatively small capital cost, adoption to varying harbour shapes and sizes, short 

construction time and freedom from silting and scouring. Floating breakwaters could 

also be utilized to meet location changes, extent of protection required or seasonal 

demand. They can be used as a temporary protection for offshore activities in hostile 

environment during construction, drilling works, salvage operation, etc. Hence, it is 

necessary to study a detailed investigation of proposed floating breakwater. Proper 

formulation of the problem is necessary before carrying out any research work. For 

this purpose, an extensive literature review was carried out on floating breakwaters. 

Literatures on theoretical determination of transmission coefficient of floating 

breakwater have been discussed.  

 

However, it is noticed that theoretical determination of transmission coefficient for a 

typical floating structure with all its coastal boundary and depth variation is extremely 

difficult. This is because of complexity and non-linearity associated with wave-

structure interaction. Still it is a complex problem. Computational intelligence 

techniques are successfully used to solve complex problems, for this purpose, an 

extensive literature review was carried out on applications of computational 

intelligence such as, artificial neural networks, fuzzy logic, genetic programming, 

genetic algorithms, support vector machines, principal component analysis or 
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combinations of these techniques in coastal/ocean engineering in the following 

section.  

 

2.2 REVIEW OF THEORETICAL ANALYSIS 

 

Several researchers have carried out analytical and numerical studies on floating 

breakwaters in the past, and some of them are discussed below: 

Carr (1951) as reported by Ippen (1966) has considered two dimensional case of 

floating breakwater, which extends over full depth of fluid. Shallow water waves are 

considered and the pressure distribution is therefore hydrostatic. Applying the 

equation of conservation of energy to the system, Carr (1951) determined reflection 

coefficient rK  and the transmission coefficient tK  for freely floating breakwater. 

The equation for transmission coefficient tK  is given as: 

 

 

           

                                                (2.1) 

 

 

Equation 2.1 applies to a freely floating structure as indicated in Fig. 2.1. For the case 

of moored system in which the restoring force acting on the breakwater is 

proportional to the displacement from its mean position, the transmission coefficient 

is given by, 

 

  

    

                     (2.2) 
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Carr (1951) has presented a simpler formula for shallow water wave conditions for 

h/L < 0.04. 

 

 

       (2.3) 

                           (2.3)  

 

In the above expressions, 

 

L : Wave length, 

W : Breakwater weight per unit length (in direction parallel to wave crests), 

B : Breakwater width, 

D : Braft of breakwater, 

 : Density of water, 

h : Depth of water, 

T : Time period of wave and 

Tn : Natural period of the breakwater system. 
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Fig. 2.1 Sketch showing floating breakwater to full depth of water as 

per Carr (1951) 
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Macagno (1953) as reported by Headland (1995) presented an analytical formula for 

computing the wave transmission coefficient tK  of rectangular breakwater of width 

B, draft D, rigidly moored in water depth h, and subjected to incident waves having a 

period T, and wave length L; 

 

 

 

(2.4) 

 

 

 

In the above equation the assumption is that the breakwaters are rigidly held. Since, 

the breakwaters have some motion the above equation should not be expected to 

provide accurate predictions. Regardless of the shortcomings of Macagno (1953) 

theoretical equation 2.1, it predicts remarkably close to the measured results for wave 

periods of 3 sec or higher. 

 

The equations 2.2 to 2.4 assume the breakwater to be rigidly held and equation 2.4 

assumes shallow water wave conditions. Hence, any mathematical equation derived is 

as good as the assumptions made while formulating them. If the assumed conditions 

are simulated properly then the predicted values match fairly well with the 

experimental values. 

 

Kennedy and Marsalek (1968) devised an empirical equation compatible with wave 

theory for floating layer of logs. They reported that a floating layer of logs reflects 

comparatively little of the wave energy but dissipates a large portion of it.  The 

equation devised was; 
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Where, PE and KE are the proportion of the potential energy and kinetic energy lost 

as waves passes through the breakwater. It is assumed that the potential energy loss 

would be related to d/H (d = draft and H = incident wave height), and x/L (width of 

breakwater by wave length).  

 

 

The expression developed was; 

                                                            

(2.6) 

 

 

It was assumed that the kinetic energy dissipation would be related to x/L also and 

that it would be proportional to the fraction of total kinetic energy present in the top 

layer of water, which could be affected, by log layer. The fraction of kinetic energy 

present in a top layer of specified thickness z, for a wave of given dimension was 

designated as R (KE) and eventually the equation evolved was; 

 

                         (2.7) 

 

For numerical evaluation of R(KE), the following expression was employed 

 

 

                 (2.8) 

 

In the above equation, 

 

h: Total depth of water. 

 

S = h – z – d                   (2.9) 
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By evaluating the equations from 2.5 to 2.10, it is possible to predict the transmission 

coefficient through a flexible breakwater. Kennedy and Marsalek (1968) showed that 

the experimental, and the values predicted by the above equation match fairly well for 

a floating breakwater with layer of logs.  

 

Ito and Chiba (1972) presented a numerical model for determining the wave 

transmission characteristics of a rectangular floating breakwater. The model is two 

dimensional and accounts for breakwater response in heave, sway, and roll motion.  

 

A simple mathematical model to determine transmission coefficient tK  for floating 

tire breakwater was developed by Harms (1979) as given in equation 2.11. The 

mathematical model was based on the assumption that the power required to propel a 

tire of negligible mass at instantaneous velocity unidirectionally through a viscous 

fluid at rest is still applicable when the tire is fixed. It is further assumed that the 

power associated with the drag and inertia terms represents the rate at which the 

energy is dissipated within the structure, and that this is the dominant mechanism 

causing a reduction in the transmitted wave energy.  

 

 

                                   (2.11) 

 

In equation 2.11, 

 

Ht : Transmitted wave height, 

Hi : Incident wave height, 

Cd : Drag coefficient, 

L : Wavelength, 

W : Breakwater width and, 

P : Porosity, which is proportional to volume of breakwater by volume of tires. 
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Arunachalam and Raman (1980) have presented a useful semi-empirical relation to 

evaluate the wave transmission characteristics and peak mooring forces of a floating 

breakwater system. This equation is used for predicting the transmitted wave height 

applicable only for deep-water waves. Besides, it is mentioned that the transmission 

coefficient is affected by relative draft (D/d) only “slightly”, (D is the draft of model 

and “d” is depth of water). They found by using a perforated floating breakwater in a 

two dimensional flume that transmission coefficient was influenced considerably by 

relative water depth and relative depth of projection of the reflected face of the 

breakwater.  

 

Valioulis (1990) developed a
 
mathematical model using three dimensional finite 

element techniques for the motion response and
 
wave attenuation of two linked 

floating breakwaters moored to the
 
ocean floor. The two-body interaction problem has 

been divided into a
 
hydrodynamic problem and a motion response problem. The 

hydrodynamic problem
 
has been dealt with the calculation of the wave-exciting, 

added mass, and
 
damping forces on the two bodies induced by incident regular

 
waves 

and the waves caused by the motion of the
 
bodies. The motion response problem has 

been considered as a mechanical system subjected
 
to the harmonic hydrodynamic 

forces and restrained by the mooring
 
lines and the elastic links between the two 

bodies. The numerical model accounts for all three-dimensional effects, including
 
the 

incidence of oblique waves, the interaction of the two
 
breakwaters, their finite length-

to-width ratio, the finite water depth, and
 
the proximity of solid boundaries.  

 

Drimer et al. (1992) studied the performance of a box-type floating breakwater by 

implementation of simplified assumptions concerning the flow beneath a pontoon-

type floating breakwater, which led to an analytical solution of the two-dimensional 

linearized hydrodynamic problem. They compared the analytical results with a 

numerical solution of the full linear problem and found that there was good agreement 

over a wide range of parameters. 

 

Vethamony (1995) conducted theoretical analysis to compute the wave attenuation 

characteristics of a tethered float system for various wave heights, wave periods, 
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water depths, depths of submergence of floats and float sizes. The results showed that 

transmission coefficient does not vary with changes in wave height or water depth. It 

was reported that the float velocity decreases with increase in float size and 

transmission coefficient increases with increase in float size. The influence of wave 

period on wave attenuation was remarkable when compared to other parameters. It is 

also reported that the theoretical results has been compared with experimental values 

and found that the theory overestimates wave attenuation, which may probably be due 

to various linearizations involved in the theoretical formulation. 

 

Williams and McDougal (1996) developed an
 
analytical solution to investigate the 

behavior of a
 
submerged or surface-piercing, long tethered breakwater of rectangular 

cross section.
 
They solved the equations of motion to provide the surge,

 
heave, and 

pitch responses of the structure and calculated the wave reflection
 
and transmission 

coefficients. They concluded that a reasonable agreement was found between 

theoretical and
 
experimental values of the reflection and transmission coefficients.  

 

Williams and Azm (1997) investigated theoretically the hydrodynamic properties of a 

dual pontoon floating breakwater consisting of a pair of floating cylinders of 

rectangular section, connected by a rigid deck. The structure was partially restrained 

by linear symmetric moorings fore and aft. The fluid motion was idealized as 

linearized two-dimensional potential flow and the equation of motion of the 

breakwater is taken to be that of a two-dimensional rigid body undergoing surge, 

heave and pitch motions.  

 

Sannasiraj et al. (1998) conducted experimental and theoretical investigation of 

behaviour of pontoon-type floating breakwaters. A two dimensional finite element 

model was adopted to study the behaviour of pontoon-type floating breakwaters in 

beam waves. The stiffness coefficients of the slack moorings lines were idealized as 

the linear stiffness coefficients, which could be derived from basic catenary equations 

of the cable. The theoretical model was supported by experimental studies in wave 

flume. The comparison between the theoretical and experimental measurements 

showed good agreement except at the roll resonance frequency. The experimental 
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results showed a higher transmission coefficient for floating breakwater with cross 

moorings.  

 

Azm and Gesraha (2000) examined theoretically the hydrodynamic properties of long 

rigid floating pontoon interacting with linear oblique waves in water of finite arbitrary 

depth. Assuming rigid body motions, dynamic responses of the moored structure was 

approximately calculated. They reported that the pontoons were convenient 

alternative for protection from waves in shallow water and the method of solution was 

found to be computationally efficient. They also reported that the results were 

comparable to those obtained through other techniques.  

 

Williams et al. (2000) investigated theoretically the hydrodynamic properties of a pair 

of long floating pontoon breakwaters of rectangular section. The breakwater motions 

were assumed two dimensional, in surge, heave and pitch. The solution for the fluid 

motion has been obtained by the boundary integral equation method using an 

appropriate Green’s function. Numerical results that illustrate the effects of the 

various wave and structural parameters on the efficiency of the breakwaters as 

barriers to wave action have been reported. They found that the wave reflection 

properties of the structures depend strongly on their width, draft, spacing and the 

mooring line stiffnesses, while their excess buoyancy was of lesser importance.  

 

Liang et al. (2003) conducted experimental investigation on spar buoy floating 

breakwater to study the transmission and reflection characteristics, and mooring line 

tension induced by sea waves. They studied the variation of transmission coefficient 

with wave steepness for constant relative depth value. Theoretical predictions were 

made for multiple-layer fence system, the analytical solution was proposed linearly. 

The results show that the theoretical computations agree well with the experimental 

trends. 

 

Stiassnie and Drimer (2003) derived an analytical solution of the flow field by 

interaction of linear shallow water wave with freely floating box. The relatively small 

drift forces obtained in this new solution indicated the advantage of porous structures 
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as floating breakwaters in future use. The studies were carried out with the 

simplification that the motion of the box was restricted to sway only and its draft was 

equal to the water depth. Graphs of transmission coefficient, reflection coefficient, 

and energy dissipation with wavelength to width of breakwater have been plotted. The 

results have been compared for a porous fixed box, porous free box, and impermeable 

free box. 

 

Li et al. (2005) developed correction factor for the approximate numerical method 

proposed by Tsay and Liu (1983) to incorporate floating structure in 2D elliptical 

model. Since, Tsay and Liu (1983) model produced results that deviated considerably 

from the solution of the Laplace equations, a simple modification was developed. The 

modification approximately yielded improved results when compared with laboratory 

and theoretical results for a wide range of conditions. 

 

Gesraha (2006) investigated analytically the reflection and transmission of incident 

waves interacting with a long rectangular breakwater with two thin sideboards 

protruding vertically downward shaped as the Greek letter . The numerical results 

were accurate through the energy conservation principle have been reported. The 

conclusions drawn were that the resulting wave transmission was lower within the 

range of incident wave frequency tested. Gunaydina and Kabdasli (2007) have 

conducted experimental investigation of -type floating breakwaters under regular 

and irregular waves. Based on the experimental results empirical expressions have 

been suggested to define the transmission, reflection and energy-dissipation 

coefficients for different immersion depths of solid and perforated breakwaters under 

regular and irregular waves. Moreover, performance of solid and perforated -type 

breakwaters were compared with that of solid and perforated U-type breakwaters 

investigated by Gunaydina and Kabdasli (2006) under regular and irregular waves. 

 

Hong and Hong (2007) numerically evaluated the
 
absorbed power, motion and drift 

force of a floating wave
 
energy device with two oscillating water column within

 
the 

scope of the linear wave theory. They reported the reflection
 
and transmission 
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coefficients of the body by numerical analysis.
  
They concluded that the floating wave 

energy devices might serve
 
as a good floating breakwater having small drift force.  

 

Tay et al. (2009) studied using numerical tool, the hydroelastic responses and 

hydrodynamic interactions of two large floating fuel storage modules placed side-by-

side with the presence of floating breakwaters. These modules and breakwaters form 

the floating fuel storage facility (FFSF). The floating storage modules and 

breakwaters are modeled as plates and the linear wave theory has been used to model 

the water waves in the numerical model. The numerical model has been verified with 

existing numerical results and validated with experimental tests. Numerical 

simulations have been performed to determine the hydroelastic behavior and 

hydrodynamic interactions of floating storage modules placed adjacent to each other 

and enclosed by floating breakwaters under various incident wave angles. The effects 

of breakwaters, drafts, channel spacing formed by the two adjacent modules and water 

depth on the hydroelastic responses of the modules has been investigated by them.  

 

From the review of literatures on theoretical determination of transmission coefficient 

of floating breakwater, it is found that theoretical treatment for floating breakwater 

type of structures is difficult, mainly because, it is strongly believed that the energy 

dissipation at the structure is basically due to the turbulence caused at the structure. 

The energy dissipation process is subjected to some complex phenomenon. Therefore, 

many researchers have adopted physical model study to quantitatively determine the 

parameters that influence the phenomenon. However, these physical model studies are 

time consuming. The general characteristics of floating breakwater problems related 

to complexity and non-linearity are outlined below: 

 

 There exists vagueness associated with many of the governing variables and their 

effects on the performance of breakwater. Engineering judgments based on 

experience, subjectivity, confidence on model, and other factors are frequently 

used to deal with this non-statistical uncertainty. 
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 In order to derive mathematical model for prediction of performance of floating 

breakwaters researchers have introduce certain simplifying assumptions, since 

nonlinearity of ocean wave’s behavior produces lots of difficulties in 

mathematical modeling. 

 Most of floating breakwaters problems need to consider a large number of ocean 

wave parameters and dimension analysis of structure itself that affect the response 

of the systems. Thus, complexity is also an inherent feature of these problems. 

 

Hence, developing computational intelligence models shall provide fast and reliable 

solution in predicting the performance characteristics of floating breakwaters. 

 

2.3 REVIEW OF LITERATURE ON APPLICATIONS OF 

COMPUTATIONAL INTELLIGENCE IN COASTAL / OCEAN 

ENGINEERING 

 

Several researchers have adopted computational intelligence to solve complexity and 

vagueness associated with coastal/ocean engineering problems and some of them are 

discussed below: 

 

The first published paper in this area was by Mase et al. (1995). He applied neural 

network technique to predict the stability and damage level of rubble mound 

breakwater. According to them the neural network is an information-processing 

system, modeled on the structure of the human brain that is able to deal with 

information whose interrelation is not clear. They have considered six stability (input) 

parameters like Permeability of breakwater (P), Number of waves passing over 

breakwater (N), Damage level (Sd), Surf similarity parameter (ξm), dimensionless 

water depth (h/Hs), and spectral shape (SS). By adding spectral shape and 

dimensionless water depth parameters in the neural network model has shown 

improvement in the results. The predicted damages levels are matching well with the 

measured damage levels by Vander Meer’s (1998) and smith et al. (1992). The 
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agreement between the predicted stability numbers by neural network and measured 

ones is also good.  

 

Deo and Naidu (1999) used previous wave heights to predict their future values. They 

found that the cascade correlation algorithm was superior to back-propagation in 

terms of accuracy and training time.  

 

Mase and Kitano (1999) investigated the applicability of neural networks to predict 

weather impact wave force will act on the upright section of a composite breakwater. 

They fed four non-dimensional parameters to input layers i.e. h/L, H/h, d/h, and Bm/h. 

(h: the total water depth; L: the wavelength; H: the wave height; d: the water depth 

above the mound; and Bm: the horizontal distance from the shoulder of mound to the 

caisson). They found that neural network accurately predict whether impact wave 

force occurs on the upright section of a composite breakwater. 

 

Remote sensing of waves often necessitates presentation of data in the form of wave 

height values grouped over large time intervals. This restricts their use to long-term 

applications only. Deo and Kumar (2000) used model-free neural network and model 

based statistical and numerical methods to derive the weekly mean significant wave 

heights from their monthly mean observations thus making it suitable for short-term 

usage in the field. They trained the network using error back propagation, conjugate 

gradient and cascade correlation algorithms. The technique of cascade correlation 

took minimum training time and showed better coefficient of correlation between 

observations and network output. 

 

Deo et al. (2001) made an attempt to predict wave parameter using independent 

variables, rather than related measurement at earlier times or nearby locations. He 

predicted wave height and wave period by using wind speed over a previous period of 

times as inputs to multilayer perceptrons. They found that different ANNs were 

required for fair weather and monsoon conditions. 
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Mandal et al. (2001) developed back propagation neural network model for accurate 

prediction of tides which is reliably essential for human activities and construction 

cost in marine environment. This model predicts the time series of hourly tides using 

quick learning process called quick prop. The correlation coefficient between 

predicted tides and measured tides is found to be 0.998.  

 

The harmonic tidal level is conventionally used to predict the tidal levels. The 

determination of tidal components using the spectral analysis requires a long-term 

tidal level record (more than one-year data), and for calculating the coefficient of tidal 

component by least squares method requires a large database of tide measurements. 

This problem is solved by Lee and Jeng (2002) using neural network model with less 

data set. 

 

Ultsch and Roske (2002) used new method for predicting sea levels by employing 

self-organizing feature maps, these maps are transformed from an unsupervised 

learning procedure to supervised one. The prediction of sea levels is done by using 

neural network models. Self-organizing feature maps neural network predicted result 

is compared with other six models, such as, hydrodynamic, statistical, nearest 

neighbor, persistence model and verbal forecasts. Sea level prediction by self-

organizing feature maps neural networks is better than all above-mentioned models. 

 

Tsai et al. (2002) predicted wave heights and periods at one coastal station using 

values from series of other station within Taichung harbour, Taiwan. Similarly, 

Huang et al. (2003) used water level at a series of locations to predict tidal currents at 

an inlet of Long Island, New York. Both studies used basic multilayer perceptron. 

Londhe and Deo (2003) developed ANN model to obtain distribution of attenuated 

wave pattern at the entrance of the harbor involving dredged approach channel. 

 

Deo and Jagdale (2003) develop neural network model for prediction of breaking 

waves. They trained the network by combining the existing deterministic relations 

with a random component, and then the network was validated with the help of fresh 

laboratory observations. The result shows that predicted breaking height and water 
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depth were more accurate than those obtained traditionally through empirical 

formulae. 

 

Huang et al. (2003) developed regional neural network –water level (RNN-WL) using 

feed-forward back propagation neural network structure to enable coastal engineers to 

predict long term water levels in a coastal inlet, the network was trained using hourly 

data over one month period and validates for another one month based on the data 

obtained from US national oceanographic and atmospheric administration (NOAA). 

The model was then tested over year long periods. Results indicate that, despite 

significant changes in the amplitude and phases of the water levels over the regional 

study area, the RNN-WL model provides very good long term prediction of both tidal 

and non-tidal water levels at the regional coastal inlets. They also examine the effect 

of distance on the RNN_WL model performance. Satisfactory results indicate that the 

RNN_WL model is able to supplement long-term historical water level data at the 

coastal inlets based on the available data at remote NOAA stations in the coastal 

regions.  

 

Tides can be conventially predicted by harmonic analysis, which is the superposition 

of many sinusoidal constituents with amplitude and frequencies determined by a local 

analysis of the measured tide. However accurate predictions of tide levels could not 

be obtained without a large number of tide measurements by the harmonic method 

Lee (2004) developed a back propagation neural network model using short term on 

site tidal level data obtained from Taichung Harbor in Taiwan. Model predicted 

results were compared with conventional harmonic method which revealed that back 

propagation neural network efficiently predict the long term tidal levels. 

 

Mohandes et al. (2004) used support vector machines and multilayer perceptron to 

predict wind speed. Mean daily wind speed data from Madina city, Saudi Arabia, is 

used for building and testing both models. Performance of support vector machine 

model is compared with multilayer perceptron. Statistical measure, such as root-mean 

square error between the actual and the predicted data indicate that support vector 

machine has shown favorably better predictions than multilayer perceptron model.  
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.  

Makarynskyy et al. (2004) used feed forward neural network to predict hourly sea 

level variations for 1/2, 1, 5 and 10 days mean sea level. The results show the 

feasibility of sea level forecasts in terms of correlation coefficient between the ranges 

0.7-0.9, root mean square error about 10% of tidal range and scatter index between 

the ranges 0.1-0.2. 

 

When the performance of ANN alone is poor, Jeng et al. (2004) adopt the concept of 

genetic algorithm based training of ANN models in an effort to overcome the 

problems inherent in ANN training procedure. He used this new approach for 

determining maximum liquefaction depth in a real world application. In the proposed 

ANN model wave period, water depth, wave height, seabed thickness and degree of 

saturation are used as the input parameters, and liquefaction depth as output 

parameter. 

 

Mandal et al. (2005) used back propagation neural network technique to estimate ocean 

wave parameters from theoretical pierson-moskowitz spectra and measured ocean wave 

spectra. They found that the ocean wave parameters estimation by back propagation 

neural network shows a very good correlation coefficient between measured and 

estimated ones. According to them the distribution of measured waves is not purely 

Gaussian distribution, but having multiple peaks with noise/spikes. Hence the 

correlation coefficients for training and testing field wave data are relatively less as 

compared to correlation coefficient for theoretical spectra. The correlation coefficients 

of neural network and scott spectra are comparable. According to them the ocean wave 

parameters can be directly obtained from the measured spectra using trained neural 

network. 

 

Rao et al. (2005) used ANN approach to estimate the wave parameters from cyclone 

generated wind fields. Estimation of significant wave height (Hs) and periods is 

carried out using back propagation neural network with three updated algorithms, 

namely Rprop, Quick prop and superSAB. The predicted values using neural 

networks match well with those estimated using Young’s model and a high 
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correlation coefficient of 0.99 is obtained. Similarly Karla et al. (2005) used feed 

forward back propagation neural network to obtain Hs at specified coastal site from 

the values sensed by a satellite at deeper locations.  

 

Makarynskyy et al. (2005) used ANN technique to predict Hs and zero crossing wave 

periods (Tz). They achieved a higher accuracy of simulating the Hs and forecasting 

Tz using this technique. Naithani and Deo (2005) developed a neural network to 

estimate the wave surface density over a wide range of wave frequencies from 

average wave parameters of Hs, Tz, Spectral width and peakedness parameters They 

compare the neural network predicted values with the measured ones. Results are 

more satisfactory than those yields by PM, JONSWAP and Scott’s spectra. 

 

Kazeminezhad et al. (2005) used an Adaptive Network based Fuzzy Inference System 

(ANFIS) and Coastal Engineering Manual (CEM) methods to predict the ocean wave 

parameters. According to them, the results indicate that ANFIS outperforms CEM 

method in terms of prediction capability. Here the CEM method over estimates the Hs 

and under estimates the peak spectral period, while predictions by ANFIS models are 

more accurate. 

 

Yagci et al. (2005) used neural network technique to predict the damage ratio of 

breakwater. According to them the accurate estimation of damage levels of breakwater 

is vital issue in design of breakwater. Network is constructed by considering input 

parameters like wave stiffness (Hs/Ls), significant wave period (Ts) and slope angle (α). 

They have used fuzzy logy system for mapping the inputs and output. The fuzzy model 

estimations of damage ratios were close to the predicted values by neural network 

methods. The employment of Artificial intelligence (AI) methods enables the 

consideration of wave period; wave stiffness, breakwater slope and wave height in 

estimating damage ratio. This application is useful especially when there is less number  

of laboratory data sets. The experimental data sets were plotted effectively using AI 

technique in order to generate more number of data sets.    

Kim and Park (2005) have applied the artificial neural network method to design rubble 

mound breakwater. According to them the neural network technique gives more 
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accurate results than the conventional empirical model and the extent of accuracy can 

be affected by structure of neural network. They have constructed five-network model 

based on the parameters, which affect the stability of rubble mound breakwater. The 

following input parameters are considered in their study like permeability of breakwater 

(P), number of waves (Nw), damage level (Sd), surf similarity parameter (ξm), spectral 

shape (ss), slope of breakwater (cot α), wave stiffness (Hs/Ls) and relative water depth 

(h/Ls).  They have shown that the trained neural network model could be embedded 

into Monte Carlo simulation technique to estimate the failure probability of breakwater. 

The neural network integrated reliability analysis gives more advanced results than by 

empirical model.  

 

Bazartseren (2005) used ANN model to predict the near shore morphology. The 

ANNs are used for deriving certain relations such as sediment transport, seabed and 

suspended loads. According to him, the neural network with the number of 

neighboring points and time lags is to be considered for deriving the morphology 

development tendency. It is attempted to estimate the bed form movement tendencies 

based on the local neighboring features of bathymetry. 

 

Mandal and Prabaharan (2006) used recurrent neural network with updated algorithm 

to forecast ocean waves. The recurrent neural network of 3, 6 and 12 hourly wave 

forecasting yields the correlation coefficient of 0.95, 0.90 and 0.87 respectively. 

According to them, the wave forecasting using recurrent neural network yields better 

results compared to previous neural network applications. 

 

The marine structures in Taiwan suffer from typhoon attack every year. The earlier 

theoretical models are not properly predicting the typhoon waves. Chang and Chien 

(2006) developed ANN- multi trend-simulating transfer function model which 

accurately forecasts wave peak. 

 

Rajasekaran et al. (2005 and 2006) used functional and sequential learning neural 

networks for accurate prediction of tides using very short-term observations. This 

method does not require harmonic parameters as used in conventional method. The 
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comparison between the measured and predicted tidal levels for 3 days and 1 month’s 

prediction using 1 day’s observation depicts the correlation coefficients 0.981 and 

0.999 which are higher than the values obtained by Tsai and Lee (1999). It shows that 

the functional and sequential learning neural networks predict better values as 

compared to other conventional methods.  

 

Chang and Lin (2006) present a tide generating neural network model (TGF-NN) for 

simulating tides at multi-points considering tide-generating forces. Harmonic method, 

response orthotide method, the NAO.99b model was also used to estimate the tides at 

single point. They have compared prediction accuracy of each method based on 

statistical measures, such as root mean square error and correlation coefficient in 

which TGF-NN model is efficient compare to harmonic method. Extended application 

of TGF-NN model to predicting tides at some points neighboring to an original 

interest point identifies more accurately simulating multi-point tides as compared to 

that of NAO.99b numerical model. 

 

The storm tidal prediction using conventional methods requires a huge amount of tidal 

data and many other parameters like central pressure of typhoon, speed of typhoon, 

heavy rainfall data, coastal topography and local features. Lee (2006) used neural 

network technique to predict the storm surge with the help of four input parameters 

such as wind velocity, wind direction, wind pressure and harmonic analysis of tides. It 

is found that the network predicts reliable and better results of storm surges. 

 

Browne et al. (2007) have carried out near shore swell estimation from a global wind 

wave model and compared with ANN model. The results revealed that the high 

correlations and relatively small standard-errors obtained by the ANN model on the 

validation data set indicates that 6-12 months of daily observations is sufficient to 

build a model that generalizes well.  

 

Karla and Deo (2007) trained the data in an innovated manner to tackle the problem 

of modeling wind speeds that are always associated with very high variations in their 

magnitude. They used radial basis function neural network to project information on 
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wind speed and waves collected by the TOPEX satellite at deeper locations to a 

specified coastal site. They found that to train the network with sufficient flexibility it 

is necessary to combine network instead of separate one involving an input and output 

of all the three parameters, i.e. wave height, period and wind speed. They also found 

that network training based on statistical homogeneity of data sets is essential to 

obtain accurate results. 

 

Mandal et al. (2007) used neural network technique to predict the stability number 

and damage levels of rubble mound breakwater. It is seen that a good correlation is 

obtained between network predicted stability numbers and estimated ones with less 

computational time compared to Mase et al. (1995) and Kim and Park (2005).  

 

El-bisy (2007) investigated the scour phenomena at the toe of sea walls and the 

different parameters that affected it. He collected the data by conducting experiments 

using different wave steepness, bed material grain sizes, wall positions and 

inclinations. Using this data he prepared parametric plots of toe scour for smooth 

impermeable inclined seawalls were prepared. Also they developed a neural network 

model on the basis of experimental data and the model was validated. Results 

indicated that this model can be used in coastal engineering applications. 

 

Bateni and Jeng (2007) develop adaptive neuro-fuzzy inference system (ANFIS) 

models for predicting scour depth as well as scour width for a group of piles 

supporting a pier. They used two combinations of input data. The first input 

combinations involves dimensionless parameters such as wave height, wave period 

and water depth, while the second combinations contain non-dimensional numbers 

including the Reynolds number, the keulegan-carpenter number, the shields parameter 

and the sediment number. The test results show that ANFIS perform better than the 

existing empirical formulae. They also found that the ANFIS predicts scour depth 

better when it is trained with the original (dimensional) rather than non-dimensional 

data. The depth of scour was predicted more accurately than its width. 

 



 

Literature Review 

 

 

Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                        

 37 

Tseng et al. (2007) developed a typhoon-surge forecasting model with back-

propagation neural network (BPN). The typhoon’s characteristics, local 

meteorological conditions and typhoon surges at a considered tidal station at time     

(t-1) and (t) was used as input data. They developed four models to test and compared 

under the different composition of the above mentioned input factors. For models 

calibration and verification they have collected sixteen typhoon events and their 

corresponding typhoon surges and local meteorological conditions at K-feng Tidal 

Station in the coast of north-eastern Taiwan between 1993 and 2000. Twelve of them 

were used in models calibration while other four were used in models verification. 

The results showed that the model comprising of 18 input factors has better 

performance. The same model was also applied to typhoon-surge forecasting at 

Cheng-Kung Tidal Station in south eastern coast of Taiwan and at Tung-Shih Tidal 

station in the coast of south-western Taiwan. Results showed that the application of 

BPN model in typhoon-surge forecasting at Cheng-Kung Tidal Station has better 

performance than that at Tung-Shih Tidal Station.  

 

Panizzo and Briganti (2007) developed ANN numerical model to forecast the wave 

transmission behind low-crested structures. Data used to train and test the network 

was gathered within the European research project DELOS. ANN results are 

compared with those from experimental formulations based on classical regression 

approach demonstrate a considerable improvement in the forecast accuracy. 

 

Altunkaynak (2008) proposed Genetic algorithm and Kalman filters method also 

called Geno-Kalman filtering for station 46002 located in the Coos Bay at Oregon, 

USA, to determine the relation among wind speed previous and current wave 

parameters. A comparison has been made between Perceptron Kalman filtering and 

Geno-Kalman filtering techniques. The results showed that the Geno-Kalman filtering 

methodology has smaller absolute mean square and relative errors than Perceptron 

Kalman filtering. Also coefficient of efficiency value which was used to evaluate 

results between observed and estimated is higher at Geno-Kalman filtering than 

perceptron kalman filtering. 
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Zamani et al. (2008) developed ANN and Instance-Based Learning (IBL) models to 

forecast significant wave heights for several hours ahead using buoy measurements. 

Experiments show that the ANN’s yield slightly better agreement with the measured 

data than IBL. According to them ANN’s can also predict extreme wave conditions 

better than the other existing methods. 

 

Gaur and Deo (2008) applied genetic programming (GP) to forecast ocean waves on 

real-time. They analyzed the wave rider buoy measurements available at two locations 

in the Gulf of Mexico. The forecasts of significant wave height are made over lead 

times of 3, 6, 12 and 24h. They used a sample size belong to a period of 15 years and 

a testing period of 5 years. The forecast made by the approach of GP can be regarded 

as a promising tool for future applications to ocean predictions. 

 

Londhe (2008) presents ANN and GP approach for estimation of missing wave 

heights at a particular location on a real time basis using wave height at other 

locations. Both approaches perform well in terms of accuracy of estimation, whereas 

GP model work better in case of extreme events. 

 

Gunaydin (2008) used ANN and regression method to predict monthly mean 

significant wave height from meteorological data. He used seven different ANN 

models comprising of various input combinations of monthly mean wind speeds, sea 

level pressures and air temperature ratios based on hourly observations. He found that 

ANN model having all parameters in the input layer, gave the best prediction 

performance. 

 

According to Malekmohamadi et al. (2008) Numerical wave modeling (NWM) is not 

justified due to economical consideration whereas ANN model is inexpensive but 

needs a long time period of wave data for training, which is generally inconvenient to 

achieve. He solved this problem by combining NWM and ANN. Wave data was 

generated by a NWM by means of a short period of assumed winds at a concerned 

point. This data was used to train ANN. The method was applied for wave hindcasting 
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to two different sites; Lake Superior and the Pacific Ocean. Simulation results showed 

the superiority of the combined method. 

 

Beltrami (2008) implemented an ANN algorithm in the software of bottom pressure 

recorders (BPRs) for the automatic, real time detection of a tsunami within recorded 

signals. The performance and efficiency of ANN algorithms was compared to the one 

developed under the Deep-ocean Assessment and Reporting of Tsunami (DART) 

program run by the U.S. National Oceanic and Atmospheric Administration (NOAA). 

Results indicated that ANN algorithm showed an improvement in tsunami detection. 

 

The contribution of non-astronomical components to tidal level may be as significant 

as that of astronomical components under the weather, such as typhoon and storm 

surge. The traditional harmonic analysis method and other models based on the 

analysis of astronomical components do not work well in these situations. Liang et al. 

(2008) resolve this problem by developing  three back-propagation neural networks 

(BPNN) models viz; difference neural network model (DNN) for the supplementing 

of tidal record; minus-mean-value neural network (MMVNN) for the corresponding 

prediction between tidal gauge station; weather-data based neural network model 

(WDNN) for set up and set down. They found that above models perform well in the 

prediction of tidal level or supplement of tidal record including strong meteorological 

effects 

 

Verhaeghe et al. (2008) developed a 2-phase neural prediction method i.e. ‘classifier’ 

and ‘quantifier’. To train the network they used the overtopping database set up 

within the EC project CLASH (De Rouck, J; at el. 2005). The ‘classifier predicts 

whether overtopping occurs or not. If the classifier predicts overtopping, then the 

‘quantifier’ is used to determine the mean overtopping discharge. The method has an 

overall predictive capacity. 

 

Coastal structures like breakwater, groins and gabions are constructed to reduce the 

coastal erosion. The stability of individual stones on a sloping surface of breakwater is 

very important because many breakwaters fail due to a defective design. Mandal et al. 
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(2008) developed neural network technique in predicting the stability number. 

Parameters used in training the models are permeability of breakwater, number of 

attacking waves, significant wave height, mean wave period, damage level, slope 

angle, berm width and reduced armor weight ratio. Predicted stability number is 

compared with the estimated stability number by Hudson and Van der Meer. It is 

found that the network predicts lesser armor units compared to empirical formulae 

which makes the design more economical and safe. The coefficient correlation 

between the estimated stability number by empirical formulae and predicted stability 

number by neural networks are close to one. 

 

To avoid property loss and reduce risk caused by typhoon surges, accurate prediction 

of surge deviation is essential. Many conventional numerical methods and 

experimental methods for typhoon surge forecasting have been investigated, but none 

of them gave the accurate predictions, still it is a complex ocean engineering problem. 

to overcome this problem Rajasekaran et al. (2008) develop a support vector 

regression model for forecasting storm surges. To verify the performance of model 

they used original data of Longdong station at Taiwan invaded directly by the Aere 

typhoon. Results obtained were compared with numerical methods and neural 

network indicate that storm surges and surge deviations can be efficiently predicted 

using support vector regression. 

 

Sylaios et al. (2009) used Takagi- Sugeno rule based fuzzy inference system for 

forecasting wave parameters based on the wind speed, direction and the lagged wave 

characteristics. They used subtractive clustering method to identify the initial and 

final antecedent fuzzy membership functions. This model was applied on the wind 

and wave dataset recorded in years 2000 to 2006 (12,274 data points) by an 

oceanographic buoy deployed in the Aegean Sea. The model showed perfect fit for 

the training period and expanded its hindcasting ability during 2006 (1,044 data 

points) as the verification part of the series. Model results showed good agreement 

between the predicted and the observed significant wave height and zero up-crossing 

periods for a lead time of three hours. 
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According to Shahidi and Mahjoobi (2009) ANNs are not as transparent as semi-

empirical regression based models. In addition, neural network approach needs to find 

network parameters such as number of hidden layers and neurons by trial and error, 

which is time consuming. They have invoked model tree as a new soft computing 

method for prediction of significant wave height. The main advantage of model trees 

is that, compared to neural networks, they represent understandable rules, which can 

be readily expressed so that humans can understand. Model trees were developed 

using wind and wave data obtained from 6 April to 10 November 2000 and 19 April 

to 6 November 2001. M5 algorithm was employed for building and evaluating model 

trees. Wind speed as the input variable and the significant wave height (Hs) as output 

variable was used for training and testing data. Results indicate that error statistics of 

model trees was marginally more accurate. In addition model trees show that for wind 

speed above 4.7m/s, the wave height increases nonlinearly by the wind speed. 

 

Reikord (2009) used time varying parameter regression in logs. This time varying 

regression is estimated using kalman filter and a sliding window, with various 

window widths. He found that sliding window method is preferable. He also used 

hybrid model where they have combined neural networks with time-varying 

regression. This model was tested at an hourly frequency over a horizon of 1-4h, and 

at a daily frequency over 1-3 days. He found that all the models improve relative to a 

random walk. In the hourly data sets, forecasting the components separately achieves 

the best results, whereas in daily data sets, the hybrid and regression models yield 

similar outcomes. 

 

Mahjoobi and Mosabbeb (2009) used support vector machine (SVM) for prediction of 

significant wave height. The data used in this study was gathered from deep water 

locations in Lake Michigan. They used current wind speed (u) and those belonging up 

to six previous hours are given as input variables and significant wave heights (Hs) as 

output parameter. The SVM results are compared with those of ANN’s, multilayer 

perceptron (MLP) and radial basis function (RBF) models. After comparing they 

come to the conclusion that SVM can be successfully used for prediction of Hs, the 
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error statistics of SVM model marginally outperforms ANN with less computational 

time. 

 

Lee et al. (2009) applied ANN combined with thermographic analysis for estimating 

the depth of eroded caves in a seawall. From experimental setup, the interior 

condition of a structure was detected by using thermographic device by measuring the 

temperature changes on the surface. They obtain the difference between the air 

temperature and the measured concrete surface point on a thermographic image for 

neural network. They used this data to obtain an optimum ANN model for the 

estimation of the depth of eroded caves in sea wall. The model was verified using data 

from a seawall in Tainan city, Taiwan, and it was found that the ANN model 

efficiently estimates the depth of eroded caves in a sea wall. 

 

Genetic programming (GP) has nowadays attracted the attention of researchers in the 

predictions of hydraulic data. Guven et al. (2009) used field measurements to develop 

linear genetic programming (LGP) and Adaptive neuro fuzzy inference system 

(ANFIS) models for prediction of scour depth around a circular pile due to waves in 

medium dense silt and sand bed. The LGP model result was compared with ANFIS 

model. LGP model was observed to be in good agreement with measured data, and 

quite better than ANFIS and regression based equation of scour depth at circular piles. 

 

Hashemi et al. (2010) used feed forward back propagation ANN to predict seasonal 

beach profile evolution at various locations along the Tremadoc Bay, eastern Irish 

Sea. The beach profile variations were studied at 19 stations for a period of 7 years 

using ANN. Since ANN is a data driven techniques, principal component analysis and 

correlation analysis were employed to detect the proper dataset. The geometric 

properties of the beach, wind data, local wave climate, and the corresponding beach 

level changes were fed to the network. The model results were compared with field 

data. The performance is calculated using mean square error which is less than 

0.0007. ANN can predict seasonal beach profile changes effectively and are generally 

more accurate when compared with computationally expensive mathematical model. 
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Aydogan et al. (2010) developed feed forward back propagation artificial neural 

network model with different inputs and neuron numbers to predict vertical current 

profiles of a given point in a narrow strait, the Strait of Istanbul. The model was built 

on 7039 hours of concurrent measurements of current profiles, meteorological 

conditions, and surface elevations. The model predicted 12 outputs of East and North 

velocity components at different depths in a given location. The best model is 

accepted by trial and error in accordance with the observations with average root 

mean square error of 0.16 m/s. The same input parameters were then used to build 

models that predicted current velocities. Results of these predictions show good 

overall agreement with observations and can be used as a reliable tool for forecasting 

current profiles in straits. 

 

Iglesias et al. (2010) developed an Artificial Intelligence (AI) model with the focus on 

the effective draft, or draft available for containment that a floating boom will provide 

in open waters. The dataset were obtained through an extensive laboratory campaign 

in which seven model booms are subjected to numerous wave and current 

combinations. This dataset is randomly divided into two subsets, one for training and 

the other for testing or validating the model. Input and output variables are selected 

based on dimensional analysis and laboratory results. The AI technique chosen for the 

model is multilayer feed forward artificial neural networks trained with the back-

propagation algorithm, for their capability to apprehend higher-order patterns from 

the training examples and subsequently generalize them to other (validation) cases. In 

order to find efficient network architecture, a comparative study involving 640 neural 

networks is carried out. Having selected the best performing architecture, the model is 

successfully validated and becomes a virtual laboratory. 

 

Yoon at el. (2011) developed a two nonlinear time-series models for predicting 

groundwater level (GWL) fluctuations at a coastal aquifer in Korea using artificial 

neural networks (ANNs) and support vector machines (SVMs). The performance of 

the models is verified based on root mean squared error (RMSE) values. ANN models 

showed lower values than those of SVM during model training and testing stages. 

However, the overall model performance criteria of the SVM are similar to or even 
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better than those of the ANN in prediction stage. The generalization ability of a SVM 

model is superior to ANN model for input structures and lead times. The uncertainty 

analysis for model parameters detects an equifinality of model parameter sets and 

higher uncertainty for ANN model than SVM in this case. These results mean that the 

model-building process should be carefully conducted, especially when using ANN 

models for GWL forecasting in a coastal aquifer. 

 

From the review of literatures on applications of CI in coastal/ocean engineering it is 

observed that ANNs is commonly used by many researchers to evaluate or predict 

ocean wave parameters like wave height, wave period, wave direction, tidal levels and 

its timings, sea levels, water temperature, wind speeds, coastal currents sediment 

movement rate etc. Apart from this, damages of coastal structures, seabed 

liquefaction, storm surges and wave transmission have also been predicted using 

ANNs. For calibration and verification of the neural network model, many researchers 

used in-situ data, experimental data, and data generated by numerical or mathematical 

analysis. It is also found that in most of the applications a three layered feed forward 

back propagation neural network was used, apart from this some researchers trained 

the network with conjugate gradient and cascade correlation.  

 

It is also noticed that apart from improving the performance of ANN, computational 

effort and time needed for training and testing the model is significantly reduced 

compared to traditional methods. It is also reported that ANN model can learn with 

much less data sets. Sometimes single network may not always fit the entire domain 

of the training sample and in such cases different networks are developed over 

different sub-domain of the training sample size 

 

When the performance of ANN alone is poor in mapping input-output relation many 

researchers developed a hybrid model by combining ANN with fuzzy system, genetic 

algorithm, and ANN with numerical wave modeling. Apart from ANNs, many authors 

have used a new approach to solve coastal engineering problems like genetic 

programming, ANFIS, Model trees, Support vector machines or combinations of 

these techniques. 
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2.4 PROBLEM FORMULATION 

 

The literature review work carried on theoretical and experimental analysis on 

floating breakwater revealed that the researchers have carried out number of studies 

by considering simple form of floating breakwater and adopting some common 

assumptions in hydrodynamics to derive mathematical model for predicting wave 

transmission, but these models showed very poor agreement with experimental or in-

situ data. A physical wave system in nature is very complicated and physical model 

study like floating breakwaters is expensive and time consuming.  This is due to 

complexity and vagueness associated with many of the governing variables and their 

effects on the performance of floating breakwater.  

 

Similarly, for floating pipe breakwaters the energy dissipation process depends on 

various other factors like pipe interference effect, the spacing between the pipes and 

number of layers. As the effect of all these factors on transmission is not clearly 

understood, it will be extremely difficult to quantify them mathematically. 

Furthermore, it is a complex problem, and till now there has not been available a 

simple mathematical model to predict the wave transmission through HIMMFPB by 

considering all the boundary conditions, and hence one has to depend on physical 

model studies which are very much expensive and time consuming.  

 

Literature review work carried on computational intelligence in coastal/ocean 

engineering reveals that CI techniques have been successfully used to solve complex 

problems associated with coastal/ocean engineering. However, it is observed that 

there are hardly any applications of CI on wave transmission of floating breakwaters 

and HIMMFPB.  

 

In view of the above aspects, a detailed study was taken up on developing CI for the 

prediction of wave transmission through HIMMFPB, thereby providing a new 

approach to solve the problem of wave transmission prediction, which is highly 

complex and has huge non-linearity associated with its hydrodynamic performance. 



 

Literature Review 

 

 

Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                        

 46 

2.5 OBJECTIVES OF THE PRESENT INVESTIGATIONS 

 

The objectives of the present investigations involve the development of computational 

intelligence models to predict the transmission characteristics of Horizontal Interlaced 

Multi-layer Moored Floating Pipe Breakwater and are listed as follows: 

 

 To investigate the ability of soft computing approaches like artificial neural 

networks (ANNs), adaptive neuro fuzzy inference systems (ANFIS), support 

vector machines (SVMs), genetic algorithm (GAs) to effectively address various 

hard-to-solve design tasks and issues associated with the HIMMFPB. 

 

 To develop CI models in isolation for prediction of wave transmission of 

HIMMFPB. 

 

 To integrate and hybridize the fuzzy logic, neural networks, GAs, and SVMs to 

improve the wave transmission predictions of HIMMFPB. 

 

 To identify the most significant parameters as input to CI models by using 

principal component analysis (PCA).  

 

 To verify the impact of most significant parameters obtained by PCA on the 

performance of CI models. 

 

 To analyze and recommend the most reliable CI model in predicting wave 

transmission of HIMMFPB. 
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2.6 SUMMARY 

 

Detailed literature review on the theoretical works on floating breakwaters including 

the latest available literature has been discussed in this chapter. The detailed literature 

review reveals that several researchers in the past have carried out theoretical 

investigations on different types of floating breakwaters, such as horizontal, sloping, 

A-type, Y-type, Cage, pontoon, tires etc. However, it is observed that these theoretical 

studies fail to give a simple mathematical model to predict wave transmission through 

floating breakwater and HIMMFPB by considering all the boundary conditions. This 

is because of complexity and non-linearity associated with wave-structure interaction. 

Also it is brought to the notice that physical model studies are time consuming. To 

overcome this problem, CI is successfully used to solve the issue of complexity and 

non-linearity. A detailed literature review on applications of CI in coastal/ocean 

engineering has been discussed including the latest available literature. However, it is 

observed that there are hardly any applications of CI on prediction of wave 

transmission through floating breakwater and HIMMFPB and it is observed that there 

is a great scope for developing CI models in prediction of wave transmission for 

HIMMFPB. The objectives of the present investigation are also discussed in this 

chapter. 
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EXPERIMENTAL MODEL SETUP AND DATA USED 

 

3.1 GENERAL 

 

The prime factor in the construction of the floating breakwaters is to make the width 

of the breakwater (in the direction of wave propagation) greater than one-half the 

wavelengths and preferably as wide as the incident wavelength; else, the breakwater 

rides over the top of the wave without attenuating it. In addition to be effective, the 

floating breakwater must be moored in place with both leeward and windward ties 

otherwise, it would sag off and ride over the incident wave. Certain important features 

like large masses, large moment of inertia, and the combinations of two have 

influenced the development of floating breakwaters by various investigations. Most of 

the literature indicates that the parameter ‘relative width’ influences greatly the wave 

attenuation characteristics of the breakwater. A physical model study on wave 

transmission of HIMMFPB was carried out by (Magadum, 2005; Deepak, 2006; 

Jagadisha, 2007), using wave flume available in the Marine Structures Laboratory of 

Applied Mechanics and Hydraulics, Department of National Institute of Technology 

Karnataka, Surathkal, India. The data obtained by them has been used here in the 

present research work. For hydraulic model investigation, field conditions existing off 

Mangalore coast in Karnataka state of India were considered. The Laboratory 

conditions were decided through hydraulic modeling. The non-dimensional 

parameters influencing the phenomenon were obtained through dimensional analysis. 

 

In the present work, experimental data obtained from physical model study on wave 

transmission of HIMMFPB was used in developing computational intelligence for 

predicting wave transmission through HIMMFPB. Experimental data was collected, 

categorized, compiled and organized in a systematic database. This database was 

divided into two sets for training and testing the computational intelligence models. 
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The input parameters that influence the wave transmission  tK  of floating pipe 

breakwater, such as, relative spacing to pipes  DS , relative breakwater width  LW , 

ratio of incident wave height to water depth  dH i , incident wave steepness  LH i  

were considered.  

 

3.2 EXPERIMENTAL SETUP  

3.2.1 Wave flume 

Experiments were conducted by (Magadum, 2005; Deepak, 2006; Jagadisha, 2007) 

generating regular waves in two-dimensional wave flume available in the Marine 

Structures Laboratory of Applied Mechanics and Hydraulics Department, National 

Institute of Technology Surathkal, Karnataka State, India. The details of the wave 

flume facility are given below: 

 

 Total Length   : 50  m 

 Channel length   : 41.5 m 

 Width    : 0.71 m 

 Maximum water depth  : 0.70 m 

 Wave flume type   : Two dimensional 

 Wave Generator   : Bottom hinged flap type 

 Waves generated   : Monochromatic type 

 Wave absorber   : Rubble mound spending beach 

 Range of  wave height generation : 0.03 m to 0.24 m 

 Range of wave period generation : 1.0 sec to 3.0 sec 

 

The wave flume consists of glass panels on one side to facilitate observations and 

photography. The wave generating chamber has a length of 6.3 m. Gradual transition 

was ensured between the normal flume bed level and that of generating chamber by a 
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ramp. The wave filter consisted of a series of vertical asbestos cement sheets spaced 

at about 0.1 m centre-to-centre, parallel to the length of the flume. The purpose of the 

filter was to dampen the disturbance caused by successive reflections and to polarize 

the generated waves. Granite stones, which were laid to slope, acted as wave absorber 

behind the flap in the generating chamber. The flume had iron railings on top of the 

sidewalls to enable the movement of a trolley. Fig. 3.1 gives a schematic diagram of 

wave flume and Plate 3.1 shows the view of the experimental setup used (Jagadisha, 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The wave generator system consisted of a bottom-hinged flap, which is moved back 

and forth by induction motor of 11 kW, 1450 rpm. This motor was regulated by 

Kirloskar made inverter drive (0 to 50 Hz), to rotate with a speed range of 0 – 155 

rpm. Desired wave period was obtained by changing the frequency through the 

inverter. A flywheel and bar-chain linked the motor with the flap. Wave height was 

varied for a particular wave period by changing the eccentricity of the bar-chain on 

the flywheel. 

 

HIMMFPB model 

Sea  side load cell 

and wave probe 

Load cell indicators 

Spending beach 

 

Lees side load cell 

and wave probe  

Plate 3.1 View of the experimental set up (Jagadisha, 2007) 
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3.2.2 About experimental HIMMFPB model 

The experimental study carried out (Magadum, 2005; Deepak, 2006; Jagadisha, 

2007), showed hydrodynamic characteristics of horizontally interlaced three and five 

layer floating breakwater systems, in which wave transmission is less for five layer 

systems. Spacings between the pipes of 2D, 3D, 4D and 5D were considered. In the 

flume, longitudinal pipes were placed along the direction of propagation of waves. 

The transverse pipes were placed perpendicular to longitudinal pipes and tied to them 

by binding wire of mild steel. The length of the longitudinal pipes defines the width 

W, of the floating breakwater. Both ends of the breakwater were tied with multi strand 

steel cables of nominal diameter 1.7 mm as moorings. One end of the cable was tied 

to the breakwater while other end was taken through a pulley (pulley was fixed to the 

bottom of the flume) and connected to the load cell, which was fixed to the frame as 

shown in Fig. 3.1. The model was kept in position by means of moorings with zero 

initial force (no tension) at a distance 28 m from the wave maker. All the experiments 

were conducted in water depths of 0.40 m, 0.45 m and 0.50 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Typical Experimental set up of HIMMFPB 

Fig. 3.3 Details of five layers of 

pipes 
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A pictorial representation of the model in plan and sectional view is shown in Fig. 3.2. 

The pipes of the breakwater model were ballasted with water to have only half the 

diameter of top layer of pipes above still water level as indicated in Fig. 3.3. 

 

The breakwater consisted of PVC (polyvinyl chloride) circular pipes of 32 mm inner 

diameter and 0.75 mm thick wall. The pipes were placed parallel to each other with 

centre-to-centre spacing S between them in each layer. Plates 3.2 shows the view of 

HIMMFPB with five layers of pipes and DS /  = 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.2 View of the floating pipe breakwater model with five layers of pipes and 

S/D = 5 (Jagadisha, 2007) 
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3.2.3 Instrumentation used 

Data acquisition system consisting of wave probes along with computational facility 

was used to acquire data on water surface elevations, incident wave heights and 

transmitted wave heights.  

 

3.3 EXPERIMENTAL PROCEDURE 

 

The Wave flume was filled with water to the required depth (0.40 m, 0.45 m or 0.5m). 

The wave probes were calibrated at the beginning of the work. For a given wave 

period, waves of different heights were generated by changing the eccentricity of the 

crank which controls the movement of the wave flap. Thus, the flume was run for 

different combinations of wave periods and wave heights. Before starting the 

experiments, the flume was calibrated without floating breakwater structure for 0.4 m, 

0.45 m and 0.5 m water depths to find the incident wave heights for different 

combinations of frequency and eccentricity. The combinations producing the 

secondary waves in the flume were not considered in the experiments.  The signals 

from the wave probe were recorded for transmitted wave height. Incident and 

transmitted wave heights were also cross-checked by measuring them manually. The 

waves were generated in bursts of five waves to avoid wave distortion due to 

reflection and re-reflection in the flume. The wave height on seaside and leeside of 

breakwater were recorded for each burst.  Six such trials were conducted and the 

average of the six values was recorded.  Similarly, the peak values of the mooring 

forces were recorded, for both seaside and leeside mooring lines. Plate 3.2 shows the 

view of experimental setup. 
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3.4 EXPERIMENTAL DETAILS OF HIMMFPB 

 

The experiments conducted on Horizontal Interlaced Multi-layer Moored Floating 

Pipe Breakwater models with three layers of pipes and five layers of pipes with 

relative spacings of 2, 3, 4, and 5 (Magadum, 2005; Deepak, 2006; Jagadisha, 2007),  

are discussed in this section. The width of the breakwater model was varied from 1.65 

m to 5.44 m for each case. These constitute 208 numbers of floating pipe breakwater 

model configurations. Each of these configurations was tested in 0.40 m, 0.45 m and 

0.50 m depths of water, wave heights ranging from 0.030 m to 0.18m, and wave 

periods ranging from 1.2 sec to 2.2 sec. The widths of the breakwater were decided by 

varying the W/L values from 0.4 to 2.65. The transmitted wave heights on the leeside 

of the breakwater was measured using wave probes and the peak mooring forces in 

seaside and leeside has been measured using load cells. Table 3.1 shows details of 

wave-specific and structure-specific parameter considered.  

 

 

 

 

Wave-specific parameters Experimental range 

Incident wave height, Hi (mm) 30, 60, 90,120,150 and180 

Wave period, T (sec) 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2 

Angle of wave attack 90
o
 

Depth of water, d (mm) 400, 450 and 500 

Structure-specific parameters Experimental range 

Diameter of pipes, D              32 mm 

Ratio of spacing to diameter of pipes, S/D 2, 3, 4 and 5  

Relative breakwater width, W/L 0.4 to 2.65 

Number of layers of pipes, n    5 

Table 3.1 Details of the wave-specific and structure-specific parameters 

of HIMMFPB (Magadum, 2005; Deepak, 2006; Jagadisha, 2007) 
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3.5  EXPERIMENTAL DATA OF HIMMFPB 

 

Experimental data obtained from physical model study on wave transmission of 

HIMMFPB was collected, categorized, compiled and organized in a systematic 

database. To develop computational intelligence models, non-dimensional input 

parameters that influence the wave transmission  tK  of floating breakwater, such as, 

relative spacing of pipes  DS , relative breakwater width  LW , ratio of incident 

wave height to water depth  dH i , incident wave steepness  LH i  are used. These 

experimental data was divided into two sets, one for training and other for testing the 

computational intelligence models (Table 3. 2).  

 

 

 

 

Experimental data on LW / , dH i / , LH i /  and tK  were used as a training data to 

train some of the CI models  having DS /  ratio as 2, 3, 4 and 5 respectively. To study 

over a range of DS / on tK , an input parameter DS /  is added. The numbers of data 

points used for training CI models are shown in Table 3.2.  

 

 

 

 

Input Parameters 
S/D 

ratio 

Number of 

data points 

for training 

Number of 

data points 

for testing 

Total data 

LW / , dH i / , LH i /   2 609 203 812 

LW / , dH i / , LH i /  3 576 233 809 

LW / , dH i / , LH i /  4 366 143 509 

LW / , dH i / , LH i /  5 580 234 814 

DS / , LW / , dH i / , LH i /  Total 2131 813 2944 

Table 3.2 Number of data points and input parameters used to train CI models 
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3.6 SUMMARY 

 

The chapter discusses in detail the physical model study on HIMMFPB carried 

out by (Magadum, 2005; Deepak, 2006; Jagadisha, 2007). It also discusses the 

wave flume, coastal area considered for prototype, experimental setup, 

experimental procedure and wave-specific and structure-specific parameters of 

HIMMFPB. Non-dimensional input parameters that influence the wave 

transmission  tK  of floating breakwater, such as, relative spacing of 

pipes  DS , relative breakwater width  LW , ratio of incident wave height to 

water depth  dH i , incident wave steepness  LH i  are also discussed. 

Moreover, chapter also discusses the collection, categorization, compilation and 

organization of the data on wave transmission through HIMMFPB in a 

systematic database, which was consider developing the CI models.  
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CHAPTER 4 

 

RESEARCH METHODOLOGY 

 

4.1 GENERAL 

 

To solve real-world problems, like hydrodynamic performance of HIMMFPB by 

considering all the boundary conditions and extracting knowledge from large amount 

of experimental or in-situ data is extremely difficult, since they are typically ill-

defined systems, and complex to model. In these cases, precise models are 

impractical, too expensive, or non-existent. Furthermore, the relevant available 

information is usually in the form of empirical prior knowledge and input-output data 

representing instances of the system's behavior. Therefore, we need an approximate 

reasoning system capable of handling such imperfect information. Bezdek (1996) 

defines such approaches within a frame called computational intelligence; similarly, 

Zadeh (1998) explains the same using the soft computing paradigm. According to him 

“In contrast to traditional, hard computing, soft computing is tolerant of imprecision, 

uncertainty, and partial truth”. In this context ANN, Fuzzy Logic (FL), Probabilistic 

Reasoning (PR), SVMR, Evolutionary Algorithms (EAs) and combinations of these 

techniques are considered as main components of CI. Each of these technologies 

provides us with complementary reasoning and searching methods to solve complex, 

real-world problems like wave transmission through HIMMFPB. In this chapter, 

theoretical background of research methods used to developed CI models to predict 

wave transmission of HIMMFPB, such as, ANN, ANFIS, SVMR and GA are 

presented. 
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4.2 ARTIFICILA NEURAL NETWORK 

4.2.1 Introduction 

An artificial neural network is an information processing system that has been 

developed as a generalization of the mathematical model of human cognition. A 

neural network is a network of interconnected neurons, inspired from the studies of 

the biological nervous system Fig. 4.1. In other words, neural network function in a 

way similar to the human brain. The function of a neural network is to produce an 

output pattern when presented with an input pattern. Neural network is the study of 

networks consisting of nodes connected by adaptable weights, which store 

experimental knowledge from task examples through a process of learning. The nodes 

of the brain are adaptable; they acquire knowledge through changes in the node 

weights by being exposed to samples. Neural network architecture are motivated by 

models of the human brain and nerve cells. A biological neuron has three types of 

components namely dendrites, soma and axon. The dendrites receive signals from 

other neurons. The soma sums the incoming signals. When sufficient input is 

received, the cell fires. The output area of the neuron is a long fiber called axon. The 

impulse signal triggered by the cell is transmitted over the axon to other cells. The 

connecting point between a neuron’s axon and another neuron’s dendrite is called a 

synapse. The impulse signals are then transmitted across a synaptic gap by means of a 

chemical process. 

 

 
Fig. 4.1 A biological nerve cell 
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The artificial neuron mimes the characteristics of the biological neuron Fig. 4.2. A 

processing element posses a local memory and carries out localized information 

processing operations. The artificial neuron has a set of inputs, each representing the 

output of another neuron. Each input is weighted before it reaches the main body of 

the processing element by the connecting strength or the weight factor analogous to 

the synaptic strength. The amount of information about the input that is required to 

solve a problem is stored in the form of weights. Each signal is multiplied with an 

associated weight before it is applied to the summing node. 

 

 

 

 

 

 

 

 

In addition, the artificial neuron has a bias term, a threshold value that has to be 

reached or extended for the neuron to produce a signal, a nonlinear function (F) that 

acts on the produced signal net and output (Y) after the nonlinearity function. 

 

In recent years, the research interest in Artificial Neural Networks (ANN) has 

increased and many efforts have been made on applications of neural networks to 

various coastal engineering problems. ANN in coastal/ocean engineering is 

commonly used by the researchers to predict ocean wave parameters like wave height, 

wave period, impact wave force etc. (Deo et al., 2001; Deo and Jagdale, 2003; 

Gunaydin, 2008; Londhe and Deo, 2003).  Apart from this, it has provided promising 

results in prediction of tidal levels (Chang and Lin, 2006), damages to coastal 

Fig. 4.2 Basic Neuron Model 
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structures (Mandal et al., 2007), depth of eroded caves in a seawall (Lee et al., 2009), 

seabed liquefaction (Jeng et al., 2004), storm surges (Tseng et al., 2007) etc. The most 

significant features of neural networks are the extreme flexibility due to learning 

ability and the capability of nonlinear function approximations. This fact leads us to 

expect neural networks to be an excellent tool for solving the motion characteristics of 

the floating pipe breakwater while overcoming complexity and non-linearity 

associated with wave-structure interaction of HIMMFPB. 

 

4.2.2 Architecture of a  ANN 

The neurons are assumed to be arranged in layers, and the neurons in the same layer 

behave in the same manner. All the neurons in a layer usually have the same 

activation function. Within each layer, the neurons are either fully interconnected or 

not connected at all. The neurons in one layer can be connected to neuron in other 

layer. The arrangement of neurons into layers and the connection pattern within and 

between layers is known as network architecture. 

 

Input layer: the neurons in this layer receive the external input signals and 

perform no computation, but simply transfer the input signals to the neurons in 

another layer. 

 

Output layer: the neuron in this layer receive signals from neurons either in the 

input layer or in the hidden layer 

 

Hidden layer: the layer of neurons that are connected in-between the input layer 

and the output layer is known as hidden layer. 

 

Neural nets are often classified as single layer networks or multilayer networks. The 

number of layers in a net can be defined as the number of layers of weighted 

interconnection links between various layers. While determining the number of layers, 

the input layer is not counted as a layer, because it does not perform any computation.  

 



Research Methodology 

 

 
Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                      

  62 

4.2.3 Feed forward back-propagation neural network 

In the present research work, feed forward back-propagation neural network is used. 

The feed forward back-propagation architecture was developed in the early 1970s. Its 

greatest strength is in non-linear solutions to ill-defined problems. The typical back-

propagation network has an input layer, an output layer, and at least one hidden layer. 

There is no theoretical limit on the number of hidden layers but typically, there is just 

one or two. Each layer is fully connected to the succeeding layer, as shown in Fig. 

4.3.  
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Fig. 4.3 Feed forward Back-propagation Network 
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According to Kosko (2003), learning of feed forward back-propagation neural 

network is based on some variant of the Delta Rule, which begins with the calculated 

difference between the actual outputs and the desired outputs. The complex part of 

this learning mechanism is for the system to determine which input contributed the 

most to an incorrect output and how is that element changed to correct the error. An 

inactive node would not contribute to the error and would have no need to change its 

weights. To solve this problem, training inputs are applied to the input layer of the 

network, and desired outputs are compared at the output layer. During the learning 

process, a forward sweep is made through the network, and the output of each element 

is computed layer by layer. The difference between the output of the final layer and 

the desired output is back propagated to the previous layer(s), usually modified by the 

derivative of the transfer function, and the connection weights are normally adjusted 

using the Delta Rule. This process proceeds for the previous layer(s) until the input 

layer is reached. There are many variations to the learning rules for back-propagation 

network. Different error functions, transfer functions, and even the modifying method 

of the derivative of the transfer function can be used.  

 

Mathematically, the feed forward artificial neural network is expressed as: 

 

  kor

m

j

kjk byTWxZ 
1

)(                  (4.1) 

 

jii

n

i

jij bxWY 
1

                  (4.2) 

 

Where x  is input value from 1 to n , jiW  are the weights between input layer and 

hidden layer nodes and  kjW   are the weights between hidden layer and output layer 

nodes. jib  and kob  are bias values at hidden and output layer respectively. m is the 

number of hidden layer nodes and )(yTr  is transfer function. This transfer function 

allows a non-linear conversion of summed inputs. 
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A non-linear transfer function is applied between input nodes and hidden nodes. In the 

present research work, Tansig is used as transfer function, which is expressed as:  

 

 
  











 1

2exp1

2

y
yTr                  (4.3) 

 

y  is the summation of input values with weights and biases. The transfer function 

improves the network generalization capabilities and speeds up the convergence of 

the learning process. The bias values for both hidden layer and output layer get 

adjusted at each time of iterations. The weights between hidden and output layers are 

calculated using updated Levenberg-Marquardt algorithm. 

 

In the present research work, the linear transfer function purelin  is applied between 

hidden layer and output layer, and it is expressed as:  

 

  nnpurelin                          (4.4) 

 

The overall objective of training algorithm is to reduce the global error, ,E defined as: 
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Where; p  is the total number of training patterns, kpd  is the desired value of the thk
 

output and the thp  pattern, kpo is the actual value of the thk output and thp pattern. Here, 

Levenberg-Marquardt (LM) updated algorithm (Wilamoski et al, 2001) is used to 

train the network.  
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4.2.4 Levenberg-Marquardt method 

In the present research work, Levenberg-Marquardt method is used to train the feed 

forward back-propagation neural network. The Levenberg-Marquardt method is a 

second-order method (Hagan and Menhaj; 1994, Masters; 1995). Rather than finding 

the error minimum directly, it aims to locate the zero of the error gradient. The zero 

 of a univariate function f may be found using the Newton-Raphson method 

according to the iterative formula of equation 4.6 

 

 
 n

n

nn
f

f




 1                   (4.6) 

 

When extended to a multivariate function,  becomes a vector and the derivative of 

the function is now a vector derivative, as in equation 4.7. 
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In the case of neural network optimization, we wish to find the zero of the error 

gradient g with respect to the network weights. Since g is a vector quantity and is 

itself a derivative, we have to work with the Hessian matrix H (equation 4.8). 

 

wn+1 = wn – [g (wn) / H(wn)]                 (4.8) 

 

Each element in the Hessian contains second derivatives of the error function, 

summed over all training patterns. However, the error measure E is related to the 

outputs and target outputs. The elements within the Hessian therefore contain values 

like that in equation 4.9, summed across all training patterns. 
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One can calculate local values of the first derivatives. These are the   values used in 

the gradient descent method. The second derivatives in the above equation are 

disregarded when estimating the Hessian. This is a reasonable estimate since the error 

(y−t) is expected to be small. Further, we expect the values of (y − t) to have an 

approximately Gaussian distribution with mean zero. When summed over a large 

number of training patterns the second terms are therefore likely to cancel out to a 

large extent. Having obtained an approximation of the Hessian, the Newton-Raphson 

method may be used to find the nearest zero of the error gradient. Two problems may 

arise. Firstly, the local Hessian estimation may not be an adequate representation of 

the underlying function. Secondly, the second-order algorithm by itself may approach 

a maximum or saddle point on the error surface, rather than a minimum. In order to 

avoid these problems, the Levenberg-Marquardt method includes an additional 

gradient descent term. The weight adjustment vector is then given by equation 4.10. 

 

w = (H +  diag (H))
 −1

 g                (4.10) 

 

The parameter   adjusts the relative weighting given to Newton’s method and to 

gradient descent. If the error falls after applying the weight adjustment,  is 

decreased. If, on the other hand, the error increases, the weight changes are reversed 

 is increased and the weight changes are re-calculated. 

 

In the present study, three-layered feed forward, back-propagation with Levenberg-

Marquardt updated algorithm is used to predict the wave transmission of HIMMFPB. 

 

4.2.5 Feed forward back-propagation neural network model for wave 

transmission prediction of HIMMFPB 

 

In order to allow the network to learn both non-linear and linear relationships between 

input nodes and output nodes, multiple-layer neural networks are often used. In the 

present work, the three layers feed forward back -propagation neural network is used 
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representing the input nodes as first layer, hidden nodes as second layer and output 

nodes as third layer.   

 

The back-propagation is a supervised learning technique used for training the neural 

network. The back propagation needs to know the correct output for any input 

parameters. The number of input nodes depends upon the complexity of the problem 

and the parameters, which influence the output parameters.  

 

In the present research work, the input parameters that influence the wave 

transmission  tK  of HIMMFPB, such as, relative spacing of pipes  DS , relative 

breakwater width  LW , ratio of incident wave height to water depth  dH i , 

incident wave steepness  LH i  are considered. Based on above input parameters, 

two ANN models are constructed to predict the transmission coefficient of 

HIMMFPB as shown in   Table 4.1. 

 

Table 4.1 ANN models with input parameters 

 

 

 

 

 

The main objective of back propagation neural network technique is to train the 

model such that the result outputs are nearer to the desired values. Therefore, the error 

between network output and desired value is minimum. 

 

Mathematically, the feed forward artificial neural network is expressed as: 
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j
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Model Input Parameters 

ANN1 LW / , dH i / , LH i /  

ANN2 DS / , LW / , dH i / , LH i /  
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Where x  is input value from 1 to n , jiW  are the weights between input layer and 

hidden layer nodes and  kjW   are the weights between hidden layer and output layer 

nodes. jib  and kob  are bias values at hidden and output layer respectively. m is the 

number of hidden layer nodes and )(yTr  is transfer function. This transfer function 

allows a non-linear conversion of summed inputs. 

 

A non-linear transfer function is applied between input nodes and hidden nodes. In the 

present research work, Tansig is used as transfer function, which is expressed as:  
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y  is the summation of input values with weights and biases. The transfer function 

improves the network generalization capabilities and speeds up the convergence of 

the learning process. The bias values for both hidden layer and output layer get 

adjusted at each time of iterations. The weights between hidden and output layers are 

calculated using updated Levenberg-Marquardt algorithm. 

 

In the present research work, the linear transfer function purelin  is applied between 

hidden layer and output layer, and it is expressed as  

 

  nnpurelin                        (4.14) 

 

The overall objective of training algorithm is to reduce the global error, ,E defined as: 
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Where; p  is the total number of training patterns, kpd  is the desired value of the thk
 

output and the thp  pattern, kpo is the actual value of the thk output and thp pattern. Here, 

Levenberg-Marquardt (LM) updated algorithm (Wilamoski et al, 2001) is used to 

train the network. The codes are written in MATLAB 7 Release 14 (Appendix A-1 to 

A-3). 

 

The correlation coefficient is calculated to know the how best the network predicted 

tK  values are matches with the measured tK  values. The straight line is drawn at an 

angle of 45
o
 between the two axes to fit the data points. A high correlation is obtained 

when all the points lies exactly on this straight line.  

 

4.3 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 

4.3.1 Introduction 

Fuzzy inference systems are the most popular constituent of the soft computing area 

since they are able to represent the human expertise in the form of IF antecedent 

THEN consequent statements. In this domain, the system behavior is modeled using 

linguistic descriptions. Although the earliest work by Zadeh (1965) on fuzzy systems 

has not been paid the attention, which it deserved in early 1960s, since then the 

methodology has become a well-developed framework. The typical architecture of 

fuzzy inference systems (FIS) are introduced by Wang (1994, 1997), Takagi and 

Sugeno (1985), and Jang et al. (1997). A fuzzy system having generalized bell 

membership function, product inference rule and weighted average defuzzifier has 

become the standard method in most applications. Takagi and Sugeno (1985) change 

the defuzzification procedure where dynamic systems are introduced as 

defuzzification subsystems. 

4.3.2 ANFIS architecture 

Inspired by the idea of basing the fuzzy logic inference procedure on a feed forward 

network structure, Jang (1993) proposed a fuzzy neural network model – the Adaptive 
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Neural Fuzzy Inference System or semantically equivalent, Adaptive Network-based 

Fuzzy Inference System (ANFIS), whose architecture is shown in Fig. 4.4. Jang 

(1993) reported that the ANFIS architecture can be employed to model nonlinear 

functions, identify nonlinear components on-line in a control system, and predict a 

chaotic time series. It is a hybrid neuro-fuzzy technique that brings learning 

capabilities of neural networks to fuzzy inference systems. The learning algorithm 

tunes the membership functions of a Sugeno-type Fuzzy Inference System using the 

training set of input-output data. A detailed coverage of ANFIS can be found in Jang 

(1993), Jang et al. (1997). The ANFIS, from the topology point of view, is an 

implementation of a representative fuzzy inference system using a back propagation 

neural network-like structure. It consists of five layers. The role of each layer is 

       

 

 Fig. 4.4 ANFIS Structure 
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briefly presented as follows: let l

iO  denote the output of node i  in layer l , and ix  is 

the thi  input of the ANFIS, i  = 1, 2,… p . In layer 1, there is a node function M  

associated with every node: 

 
l

iO  = iM  ix                  (4.16) 

 

The role of the node functions 1M , 2M , … qM  here,  is same as  the membership 

functions  x  used in the regular fuzzy systems, and q is the number of nodes for 

each input. Generalized bell membership function is the typical choice. The adjustable 

parameters that determine the positions and shapes of these node functions are 

referred to as the premise parameters. The output of every node in layer 2 is the 

product of all the incoming signals: 

 

2

iO  =    
jjll xMANDxM                (4.17) 

 

Each node output represents the firing strength of the reasoning rule. In layer 3, each 

of these firing strengths of the rule is compared with the sum of all the firing 

strengths. Therefore, the normalized firing strengths are compared in this layer as: 

 

3

iO  = 
i i

i

O

O
2

2

                 (4.18) 

 

Layer 4 implements the Sugeno-type inference system, i.e. a linear combination of the 

input variables of ANFIS 1x , 2x ,… px plus a constant term 1c , 2c ,… pc , from the 

output of each THENIF  rule. The output of the node is a weighted sum of these 

intermediate outputs: 

 

4

iO  = 3

iO   



p

j

jjj cxP
1

               (4.19) 
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where, parameters 1P , 2P ,… pP  and 1c , 2c ,… pc , in this layer are referred to as the 

consequent parameters. The node in layer 5 produces the sum of its inputs, i.e., 

defuzzification process of fuzzy system (using weighted average method) and is 

obtained as: 

 

5

iO  = 
i

iO4                  (4.20) 

 

ANFIS distinguishes itself from normal fuzzy logic systems by the adaptive 

parameters, i.e., both the premise and consequent parameters are adjustable. The most 

remarkable feature of the ANFIS is its hybrid-learning algorithm. The adaptation 

process of the parameters of the ANFIS is divided into two steps. For the first step of 

the consequent parameters training, the Least Squares method (LS) is used, because 

the output of the ANFIS is a linear combination of the consequent parameters. The 

premise parameters are fixed at this step. After the consequent parameters have been 

adjusted, the approximation error is back propagated through every layer to update the 

premise parameters as the second step. This part of the adaptation procedure is based 

on the gradient descent principle, which is the same as in the training of the feed 

forward back propagation neural network. The consequence parameters identified by 

the LS method are optimal in the sense of least squares under the condition that the 

premise parameters are fixed. Therefore, this hybrid-learning algorithm is more 

effective than the pure gradient decent approach, because it reduces the search space 

dimensions of the original back propagation method. The pure back propagation 

learning process could easily be trapped into local minima. When compared with 

employing either one of the above two methods individually, the ANFIS converges 

with a smaller number of iteration steps with this hybrid learning algorithm. 

 

The present research work considers the ANFIS structure with first order Sugeno 

model containing generalized bell membership functions. At fuzzification level, all 

ANFIS models use product inference rule and hybrid learning algorithm that 
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combines least square method with gradient descent method to adjust the parameter of 

membership functions, whereas weighted average is used as defuzzifier. 

 

4.3.3 Fuzzy logic approach for wave transmission  prediction of HIMMFPB 

In the present investigation, the input parameters that influence the wave transmission 

 tK  of HIMMFPB, such as, relative spacing of pipes  DS , relative breakwater 

width  LW , ratio of incident wave height to water depth  dH i , incident wave 

steepness  LH i  are considered to develop ANFIS. Based on above input 

parameters, Six ANFIS models are constructed to predict the transmission coefficient 

of HIMMFPB as shown in Table 4.2.  

 

 

 

 

 

 

 

 

 

 

 

LW / , dH i / , LH i /
 
and tK  are used as a training data to train ANFIS1, ANFIS2, 

ANFIS3 and ANFIS4 network having DS /  ratio as 2, 3, 4 and 5 respectively. 

Experimental analysis shows that tK  is better with increase in DS / ratio, in this 

regard to study over a range of S/D on tK , an input parameter, DS /  is added to form 

ANFIS5 model. ANFIS6 model is the same as ANFIS5 model without LH i /  

parameter. The codes are written in MATLAB 7 Release 14 (Appendix A-4 and A-5). 

 

Model DS / ratio Input Parameters 

ANFIS1 2 LW / , dH i / , LH i /  

ANFIS2 3 LW / , dH i / , LH i /  

ANFIS3 4 LW / , dH i / , LH i /  

ANFIS4 5 LW / , dH i / , LH i /  

ANFIS5 Total DS / , LW / , dH i / , LH i /  

ANFIS6 Total DS / , LW / , dH i /  

Table 4.2  ANFIS models with input 

parameters 
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The flowchart of ANFIS procedure used in the present research work,  is shown in 

Fig. 4.5. In the first step, initialization of the fuzzy system is done using 

genfis1command, which specifies the structure and initial parameters of the fuzzy 

inference system (FIS) with training data matrix, number of membership functions 

and membership function type associated with each input. In the above, the number of 

membership functions is determined by trial and error. In the second step, parameters 

for learning are set with the number of iterations and tolerance. Once the learning 

parameters are set, anfis command is used for learning; anfis uses a hybrid learning 

algorithm to identify parameters of sugeno-type fuzzy inference systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

An ANFIS distinguishes itself from normal fuzzy logic systems by the adaptive 

parameters, i.e. both the premise and consequent parameters are adjustable. The most 

remarkable feature of the ANFIS is its hybrid-learning algorithm. The adaptation 

process of the parameters of the ANFIS is divided into two steps. For the first step of 

consequent parameters training, Least Squares method (LS) is used because the output 

of ANFIS is a linear combination of the consequent parameters. The premise 

parameters are fixed at this step. After the consequent parameters have been adjusted, 

the approximation error is back propagated through every layer to update the premise 

parameters as the second step. This part of the adaptation procedure is based on the 

Initialize the fuzzy system 

Use genfis1 or genfis2 commands 

 

Give the parameters for 

learning 

Number of Iterations (epochs) 

Tolerance (error) 

 

 
Start learning process 

Use command anfis 

Stop when tolerance is achieved 

Validate 

With independent data 

Fig. 4.5 ANFIS procedure 
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gradient descent principle, which is the same as in the training of the back-

propagation neural network. The consequent parameters identified by the LS method 

are optimal in the sense of least squares under the condition that the premise 

parameters are fixed. Therefore, this hybrid-learning algorithm is more effective than 

the pure gradient decent approach, as it reduces the search space dimensions of the 

original back propagation method. The pure back propagation learning process could 

easily be trapped into local minima. When compared with employing either one of the 

above two methods individually, the ANFIS converges with a smaller number of 

iteration steps with this hybrid learning algorithm. Once the tolerance is achieved, the 

learning process is stopped and the validation is carried out by testing data set to 

compare the efficiency of the ANFIS model with actual system. In the present work, 

three generalized bell membership functions have been assigned to each input 

variables as the initial membership function and is obtained by:  

 

i

i

i

A b

a

cX

X
i









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
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
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


 



2

1

1
)(                (4.21) 

 

where { iii cba ,, } is the premise parameters set that changes the shape of the 

membership function with maximum equal to 1 and minimum equal to 0  and X is the 

input variable. The physical meaning of the parameters in bell membership function is 

given in Fig. 4.6, where a  = half width of bell function, b = slope at crossover point  

(where degree of membership = 0.5) and c = center of corresponding membership 

function. Each input variable is classified into three fuzzy categories with linguistic 

attributes as Lowi, Mediumi, and Highi (i = 1 - 3 for ANFIS1, ANFIS2, ANFIS3, and 

ANFIS4 models, whereas for ANFIS5 model, i = 1 - 4). Initial values of premise 

parameters before learning are set in such a way that the centers of the membership 

functions are equally spaced along the range of each input variable. Fig. 4.7 shows the 

initial membership function before learning for an ANFIS5 model associated with 4 

inputs DS / ,  LW / ,  dH i /
  
and LH i / . As the training process, takes place values 
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Fig. 4.6 Physical meaning of the parameters in the bell membership function 

 

(b) LW /  (a)  DS /  

(d) LH i /  (c) dH i /  

Fig. 4.7 Initial membership functions of input parameters (x-axis) for 

ANFIS5 model 

 



Research Methodology 

 

 
Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                      

  77 

of a , b  and c  change, the bell shaped function vary accordingly, thus exhibiting 

various forms of membership functions on linguistic attributes iA . The hybrid-

learning algorithm that combines least square method with gradient descent method is 

used to adjust the parameters of membership function. In present investigation, 

product inference rules are used at the fuzzification level and weighted average is 

used as defuzzifier for all ANFIS models. 

 

4.3.4 Principal component analysis 

In order to assess the influence of input parameters, principal component analysis 

(PCA) is carried out. The code is written in MATLAB 7 Release 14 (Appendix A-8). 

PCA is simple, non-parametric method for extracting relevant information from 

confusing data sets (Shlens, 2009). It transfers the data set on to different axes 

orthogonal to each other in the data space. The projections of the data on those vectors 

are the principal components and are found by calculating the eigenvectors of the data 

correlation matrix. The corresponding eigen values give an indication of the amount 

of information that the respective principal components represents. Thus by 

discarding those components, which explains a negligible part of the data variance, a 

high rate of data compression can be obtained. 

 

PCA estimates eigen values and variances of four non-dimensional parameters for 

each component, as shown in Table 4.3. The first component alone accounts for 

84.914 % of the total variance, the second component alone accounts for 14.431%, 

the 3
rd

 and 4
th

 components together account less than 1% respectively. According to 

PCA, the first two components together account more than 99%. The factorial weights  

of the four components are shown in Table 4.4. This shows the first principal 

component has strong relation to the DS / , and the second principal component has 

strong relation to LW / . In fact first principal component reflect the porosity 

parameter accounts for 84.914% of the total variance and the second principal 

component reflects the relative breakwater width, which accounts for 14.431%.    
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Principal Components Numbers PC1 PC2 PC3 PC4 

Eigen Value 1.35350 0.23002 0.01038 0.00005 

% Variance 84.914 14.431 0.652 0.003 

Cumulative % variance 84.914 99.345 99.997 100.000 

 

 

 

 

Input Parameters PC1 PC2 PC3 PC4 

DS /  -0.99991 0.01327 0.00107 0.00025 

LW /  0.01328 0.99966 -0.02056 -0.00944 

dH i /  0.00074 -0.02164 -0.99089 -0.13293 

LH i /  0.00048 0.00661 -0.13310 0.99108 

 

From this study, it is observed that LH i / is the least influential parameter. Based on 

the PCA study considering the first three input parameters, ANFIS6 model was 

developed. 

 

4.4 SUPPORT VECTOR MACHINE REGRESSION 

4.4.1 Introduction 

SVMs are the recently developed learning techniques that have gained enormous 

popularity in the field of classification, pattern recognition and regression. SVM 

works on structural risk minimization principle that has greater generalization ability 

and is superior to the empirical risk minimization principle as adopted in conventional 

neural network models. Han et al. (2007) applied SVM for flood forecasting, Msiza, 

et al. (2008) used ANN and SVR for water demand prediction, Rajasekaran et al. 

(2008) developed a support vector machine regression (SVMR) model for forecasting 

Table 4.3 Principal component analysis 

 

Table 4.4 Factor loading of principal components 
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storm surges. They compared these results with numerical methods and ANN, which 

indicated that storm surges and surge deviations are efficiently, predicted using 

SVMR. Radhika and Shashi (2009) used SVM for prediction of atmospheric 

temperature. Mahjoobi and Mosabbeb (2009) presented that the  SVM creates a more 

reliable model with better generalization error, in comparison to ANN, they also 

reveal that SVMs do not over-fit, while ANNs may face such problem and need to 

deal with it. However, it is observed that there are hardly any applications of SVMs 

on wave transmission of floating breakwater. This fact leads us to use SVM models in 

this work. 

4.4.2 Theoretical background of SVMR 

Vapnik (1998) proposed the support vector machines (SVMs), which is based on 

statistical learning theory. The basic idea of support vector machines is to map the 

original data x  into a feature space with high dimensionality through a non-linear 

mapping function and construct an optimal hyper-plane in new space.  Hence, given a 

set of data   N

iii dxS
1

,


 , where ix
 
is the input data set, id  is the desired result, and 

N corresponds to the size of the data set. Then, according to Smola and Scholkopf 

(1998), the SVM regression function is expressed as 

 

    bxwxfy ii                   (4.22)  

 

Where  xi  is the non-linear function in feature of input x , and both iw and b  are 

coefficients, which are estimated by minimizing the regularized risk function as 

expressed below: 

 

   



N

i

ii ydL
N

CwCRMinimize
1

2
,

1

2

1
:              (4.23) 

where; 
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              (4.24) 
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The first term in equation 4.23 is called regularized term, measures the flatness of the 

function. The second term is the empirical error measured by the  - insensitive loss 

function, which is defined as equation 4.24. C  and   are user determined parameters, 

id
 
is the actual value at period i , iy  is the forecasted value at period i , and C  is a 

weighing parameter considered to specify the    trade-off between the empirical risk 

and model flatness. Equation 4.24 defines a range where the loss will be zero if the 

forecasted value is within the  - tube (Equation 4.24 and Fig. (4.8)). However, if the 

value is out of the  - tube then the loss is the absolute value, which is the difference 

between forecasted value and  . Introducing two positive slack variables i  and *

i  

in Equation 4.24, it is possible to transform it into a primal objective function given 

by: 

   



N

i

iiii CwwRMinimize
1

*2*

2

1
,,:              (4.25) 

subject to the constraints; 
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i  and *

i   represents the distance from the actual values to the corresponding 

boundary values of  - tube. 
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The key idea is to construct the Lagrange function from the primal objective function 

and corresponding constraints by introducing the dual set of variables, 
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(4.26) 

 

Equation 4.26 is minimized with respect to primal variables *,,, bwi , and 

maximized with respect to non-negative Lagrangian multipliers iii  ,, *

 
and *

i . 

Finally, Karush-Kuhn-Tucker conditions are applied to the regression, and Equation 

4.26 thus yields the dual Lagrangian, 
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

 


 

Fig. 4.8 The loss margin setting corresponds to one-dimensional 

linear SV machine
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subject to the constraints; 
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In Equation 4.27, i
 
and *

i   are called Lagrangian multipliers that satisfy equalities, 

0*  ii  . After calculating i  and *

i , an optimal desired weights vector of the 

regression hyper-plane is represented as: 

 

   ji

N

i

ii xxKw ,
1

**



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Therefore, the regression function is expressed as: 

 

      bxxKxf ji

N

i

ii 


,,,
1

**               (4.29) 

 

Here,  
ji xxK ,  is called the kernel function. The value of the kernel equals the inner 

product of two vectors ix and jx  in the feature space  ix
 

and  jx , 

i.e.,      
jiji xxxxK  , . The role of the kernel function simplifies the learning 

process by changing the representation of the data in the input space to a linear 

representation in a higher-dimensional space called a feature space. A suitable choice 

of kernel allows the data to become separable in the feature space despite being non-

separable in the original input space. This allows us to obtain non-linear algorithm 

from algorithms previously restricted in handling linearly separable datasets. The 

function that satisfies Mercer’s condition by Vapnik (1995) can be used as the kernel 

function.  
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4.4.3 Support vector machine regression for wave transmission  prediction of 

HIMMFPB 

In the present study, the input parameters that influence the wave transmission  tK  

of floating breakwater, such as, relative spacing of pipes  DS , relative breakwater 

width  LW , ratio of incident wave height to water depth  dH i , incident wave 

steepness  LH i  are used  to train SVMR models are shown in Table 4.5. 

 

 

 

 

In the present work, we have experimented with the six kernels as shown in Table 4.6. 

The linear kernel function is used for linear SVMR model, whereas the polynomial, 

radial basis function (rbf), exponential radial basis function (erbf), spline and b-spline 

kernels are used for non-linear SVMR models. According to Karatzoglou and Meyer 

(2006), Gaussian radial basis function kernel is the general purpose kernel used when 

there is no prior knowledge about the data. The linear kernel is useful, when dealing 

with large sparse data vectors, as usually the case in text categorization. The 

polynomial kernel is popular in image processing, whereas, the spline kernels 

typically perform well in regression. Selection of two kernel parameters ( d , ) and 

Model Input Parameters 

Number 

of data 

points for 

training 

Number 

of data 

points for 

testing 

SVMR(linear) 

 DS ,  LW ,  dH i ,  LH i  2131 813 

SVMR(polynomial) 

SVMR(rbf) 

SVMR(erbf) 

SVMR(spline) 

SVMR(b-spline) 

Table 4.5 Data used for training and testing the SVMR models with input 

parameters 
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support vector machine parameters ( C , ) of a SVMR model is significant in 

accuracy of the forecasting, where, the parameter d  represents the degree of 

polynomial and b-spline kernel functions, whereas,   is the width of rbf and erbfb 

kernel functions. The  

 

 

generalization performance of SVMR depends on a good setting of C ,  and kernel 

parameters d and . Parameter C determines the trade-off between the model 

complexity (flatness) and the degree to which deviations larger than  tube (Smola 

1996 and Gunn, 1998). If C  is too large (infinity), then the objective is to minimize 

the empirical risk only, without regard to the model complexity (Cherkassky and Ma, 

2004). In the present study, quadratic loss function is used. The main idea of using 

this loss function is to ignore the errors, which are situated within the certain distance 

of the true value. Parameter   controls the width of the  -insensitive zone, which is 

used to fit the training data. The number of support vectors ( nsv ) used to construct 

regression function depends on , the big , the fewer support vectors are selected and 

results in data compression (Kecman, 2001). The performance of SVMR depends on 

the good setting of SVM and kernel parameters. As there are no general rules to 

Kernels Functions 
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6

1
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1
,1, jijijijiji xxxxxxxxxxK 

 

b-spline    jidji xxBxxK  12,  

Table 4.6 Kernel Functions 
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determine the free parameters, the optimum values are set by two-stage grid search 

method. Initially a coarse grain search (i.e. for C =100,500,1000;   =1,2; d  and      

  = 1,2,3) is performed to identify the near optimal values, and then a fine grain 

search (i.e. for C = 10, 20, 30;   = 0.001, 0.01, 0.1, 1; d  and   = 0.001, 0.01, 0.1, 1) 

is done to identify the optimal values. 

 

To optimize these parameters for better generalization of SVMR model, SVMR 

model is hybridized with GAs. Section 4.5 details the genetic algorithm in parameter 

selection, whereas section 4.6. details interface of genetic algorithm with support 

vector machine regression to obtain the best GA-SVMR model. 

 

4.5 GENETIC ALGORITHM FOR SELECTING PARAMETERS IN THE 

SVMR MODEL  

 

Genetic algorithms are search methods based on principles of natural selection and 

genetics (Holland, 1975). The algorithm is based on the principle of the survival of 

the fittest, which tries to retain genetic information from generation to generation. In 

the present work, GAs is used to search for better combination of C ,   and kernel 

parameters ( d  and  ) to maximize the generalization performance of SVMR model. 

The procedure of genetic algorithms in parameter selection is shown in Fig. 4.9, 

whereas Fig. 4.10 shows the proposed GA-SVMR model. The codes are written in 

MATLAB 7 Release 14 (Appendix A-6 and A-7). The steps involved in GA for 

selecting SVMs and kernel parameters are as follows: 

 

Step 1. (Initialization): In the present paper initial population of chromosomes is 

generated randomly. Population size is set to 50.  The chromosomes are real coded 

string, consist of SVMs parameters C ,  and kernel parameters ( d and ). 

 

Step 2. (Evaluating fitness): In this step fitness of each chromosome is evaluated. In 

the present paper, a negative normalized mean square error is used as the fitness 
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function, which is defined as: 

 

Fitness Function =  





N

i

ii yd
N 1

2

2

1


             (4.30) 

 

Where,  



N

i

ii dd
N 1

22 1


  

 

N is the total number of data in the test set, id  is the mean of the actual value, id  is 

the actual value, and iy  is the predicted value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3. (New population): In this step new population is created by repeating 

following steps until the new population is complete 

 

i) [Selection]: In the present study, two parent chromosomes from a population are 

Generate Initial Population 

Are Optimization 

Criteria Met? 

Evaluate Objective Function 

 

Best Individuals 

Start 

Result 

YES 

NO 

Selection 

 

Recombination 

 

Mutation 

 

Fig. 4.9 Genetic Algorithm Procedure
 

 

 

 (4.31) 
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selected according to fitness function (Equation 4.30). The roulette wheel selection 

principle (Holland, 1975) is used to select chromosomes for reproduction 

 

ii) [Crossover]: Here with crossover probability crossover of the parents is done to 

form new offspring’s (children). In cross over, chromosomes are paired randomly. 

The intermediate crossover principle is used and offspring’s are produced according 

to the following rule: 

 

Offspring 1parent    12 parentparent              (4.32) 

 

Where   is the scaling factor chosen uniformly at random over an interval [-d, 1+d]. 

In the present study, d is chosen as 0.25. 

 

iii) [Mutation]: After cross over operation is performed the string is subjected to 

mutation operation, this is to prevent falling all solutions of the population into local 

optimum of solved problem. The variable in the string to be mutated is selected 

randomly, where incremental operator is used. The rate of crossover and mutation is 

determined by probabilities. In the present paper, the probabilities of crossover and 

mutation are set to 0.8 and 0.05 respectively. 

 

iv) [Accepting]: Accept and place new offspring in the new population. 

 

Step 4. (Replace): Here new generated population is used for a further run of the 

algorithm. 

 

Step 5. (Stop condition): If the end condition is satisfied, stop, and return the best 

solution in current population. Otherwise, 

 

Step 6. (Loop): Go to step 2. 
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4.6 THE PROPOSED GA-SVMR MODEL 

 

In the present study, MATLAB support vector machine toolbox (Gunn, 1998) is 

interfaced with genetic algorithm to optimize the SVMs and kernel parameters 

simultaneously for better generalization of the proposed GA-SVMR model. Six GA-

SVMR models were developed by using six kernel functions (Table 4.6).  In order to 

study, the performance of each kernel in predicting wave transmission of HIMMFPB, 

GA-SVMR is trained by applying these kernel functions. For training, experimental 

data set is used and is divided in to two groups one for training and other for testing 

(Table 4.7).  

 

 

 

 

 

 

Fig. 4.13 illustrates the proposed GA-SVMR model. In the first stage training input, 

training target, kernel function, and range of kernel and SVM parameters are fed to 

the system. GA generates the initial population that would be used to find optimum 

factors of kernel functions and SVMs. In the second stage, the system performs 

typical SVM process using assigned value of the factors in the chromosomes, and 

calculates the performance of each chromosome. The performance of each 

Model Input Parameters 

Number 

of data 

points 

for 

training 

Number 

of data 

points 

for 

testing 

GA-SVMR (linear) 

 DS ,  LW ,  dH i ,  LH i  2131 813 

GA-SVMR (polynomial) 

GA-SVMR (rbf) 

GA-SVMR (erbf) 

GA-SVMR (spline) 

GA-SVMR (b-spline) 

Table 4.7 Data used for training and testing the GA-SVMR models with input 

parameters 
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chromosome is calculated using fitness function for GAs given in Equation 4.30. In 

the present study, the main goal is to find the best parameters that produce the most 

accurate prediction. If the calculated fitness value satisfies the terminal condition in 

GAs, then the optimal parameters are selected, otherwise, the new generation of the 

population is produced by applying genetic operators, such as, selection, crossover, 

and mutation. After the production of new generation, the training process with 

calculation of the fitness value is performed again. From this point, stage two and 

stage three are iterated again and again until the stopping conditions are satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the stopping condition is satisfied, the genetic search finishes and the 

chromosomes that shows the best performance in the last population is selected as the 
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Fig. 4.10 Flow chart of GA-SVMR 
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result. In the forth and final stage optimized parameters obtained by GA are tested 

with the test data. The final decision about the optimum models is not based on the 

training data, but on the testing data, as illustrated in Fig. 4.10. Once the testing is 

over, the six models with linear, polynomial, rbf, erbf, spline and  b-spline kernels are 

compared based on statistical measures to get the best model. 

 

4.7 SUMMARY 

This chapter describes in detail the research methods used to develop CI models, such 

as, ANN, ANFIS, SVMR and GA-SVMR to predict the wave transmission of 

HIMMFPB. Feed forward back propagation neural network model used in the present 

research work is explained in detail. Mathematical background of Levenberg-

Marquardt algorithm used to train feed forward back propagation neural network is 

also presented. This chapter also describes the ANFIS architecture along with PCA 

procedure to identify the most influential parameters. A basic of SVMR and kernel 

techniques used in present research work is also presented. GAs procedure used to 

optimize the parameters of SVMR and kernels are described. Details of proposed GA 

based SVMR model is explained in detail. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1 GENERAL 

 

The chapter details the performance of ANN, SVMR, ANFIS and GA-SVMR models 

in prediction of wave transmission through HIMMFPB. Data used to train and test 

these models are detailed in chapter 3, whereas, methodology used in developing 

these models are detailed in Chapter 4. Performance of these CI models are based on 

statistical measures, such as, CC, RMSE  and SI . 

 

5.2 PERFORMANCE OF FEED FORWARD BACK-PROPAGATED 

NEURAL NETWORK MODEL  

 

In neural network technique, training of the network plays a very important role and it 

mainly depends upon the updated algorithms to be chosen to train the network. The 

ANN modeling of wave transmission of floating breakwater is carried out for five 

layer pipes with DS /  of 2, 3, 4 and 5. The input parameters of ANN1 model are 

LW / , dH i / , and LH i / . To study over a range of spacing of pipes DS /  on tK , an 

input parameter DS / is added to form ANN2 model. After training and testing of 

both network models, CCs are calculated between desired output and network output 

using Equation 5.1.  
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Where tmiK  and tpiK  represents the measured and predicted wave transmission 

coefficient, respectively, tmK  and tpK  are the mean value of measured and predicted 

observations, N is the number of observations. 

 

In the present research work, updated algorithm, such as Levenberg-Marquardt 

algorithm (Wilamoski, et al, 2001) is used to train the two network models ANN1 and 

ANN2 with 100 and 200 epochs. The trained and tested ANN1 model’s correlation 

coefficients (CC) and mean square error (MSE) of tK
 
for different DS /  values are 

shown in Tables 5.1 to 5.4. This shows that the CC increases with DS / . The trained 

and tested ANN2 model’s correlation coefficients of tK  are shown in Table 5.5. The 

final trained and tested results (CCs) of two network models are shown in Table 5.6 

and Figures 5.1  to 5.5. It is observed that the correlation coefficients obtained are 

above 0.90.  A high correlation coefficient is obtained at epoch equal to 200 with 

hidden nodes equal to 4 for ANN1 model (CCtrain=0.9672, CCtest=0.9649) and 

hidden nodes equal to 5 for ANN2 model (CCtrain=0.9537, CCtest=0.9488). Since all 

DS /  values are considered in ANN2 model, CCs are in general less than that for 

ANN1 model with spacing ratio  DS  of 5.  The highest CC is obtained for ANN1 

model (N-3-4-200) with spacing ratio of 5. 

 

Table 5.1 Correlation coefficient of tK  for ANN1 model with DS / =2 

Hidden Nodes CCtrain CCtest MSEtrain Epochs 

2 0.9377 0.9312 0.00342 100 

3 0.9449 0.9400 0.00303 100 

4 0.9495 0.9426 0.00279 100 

2 0.9376 0.9302 0.00342 200 

3 0.9488 0.9430 0.00282 200 

4 0.9552 0.9504 0.00248 200 
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Table 5.2 Correlation coefficient of tK  for ANN1 model with DS / =3 

Hidden Nodes CCtrain CCtest MSEtrain Epochs 

2 0.9310 0.9205 0.00230703 100 

3 0.9382 0.9260 0.00207239 100 

4 0.9419 0.9328 0.0019508 100 

2 0.9263 0.9126 0.0024562 200 

3 0.9469 0.9368 0.00178878 200 

4 0.9506 0.9404 0.00166577 200 

 

 

Table 5.3 Correlation coefficient of tK  for ANN1 model with DS / = 4 

Hidden Nodes CCtrain CCtest MSEtrain Epochs 

2 0.9490 0.9447 0.00164663 100 

3 0.9620 0.9562 0.00122984 100 

4 0.9647 0.9563 0.00114397 100 

2 0.9551 0.9534 0.00144801 200 

3 0.9619 0.9569 0.00123356 200 

4 0.9642 0.9601 0.0011579 200 

 

 

Table 5.4 Correlation coefficient of tK  for ANN1 model with DS / = 5 

Hidden Nodes CCtrain CCtest MSEtrain Epochs 

2 0.939 0.937 0.00286544 100 

3 0.9508 0.9488 0.00232692 100 

4 0.9654 0.9642 0.00164658 100 

2 0.9401 0.9369 0.00281679 200 

3 0.9586 0.9567 0.00196222 200 

4 0.9672 0.9649 0.00156346 200 
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(a) Train Data 

 

(b) Test Data 

 

Fig. 5.1 Comparison of predicted and measured tK  for ANN1 model with 

DS / = 2 
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(a) Train Data 

 

(b) Test Data 

 

Fig 5.2 Comparison of predicted and measured tK  for ANN1 model with 

DS / = 3 
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(a) Train Data 

 

(b) Test Data 

 

Fig 5.3 Comparison of predicted and measured tK  for ANN1 model with 

DS /  = 4 
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(a) Train Data 

 

(b) Test Data 

 

Fig 5.4 Comparison of predicted and measured tK  for ANN1 model with 

DS /  = 5 
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(a) Train Data 

 

(b) Test Data 

 

Fig 5.5 Comparison of predicted and measured tK  for ANN2 model  
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Table 5.5 Correlation coefficient of tK  for ANN2 model 

Hidden Nodes CCtrain CCtest MSEtrain Epochs 

2 0.9102 0.9003 0.00444906 100 

3 0.9353 0.9286 0.00325118 100 

4 0.9467 0.9414 0.00269082 100 

5 0.9508 0.9473 0.00248828 100 

2 0.9294 0.9237 0.00353477 200 

3 0.9372 0.9345 0.00315484 200 

4 0.9453 0.9421 0.00276019 200 

5 0.9537 0.9488 0.00234973 200 

 

 

Table 5.6 Correlation coefficients of tK  for two network models 

Model 
Network 

(Input nodes - Hidden nodes - Epochs) 
CCtrain CCtest 

ANN1 3-4-200 0.9672 0.9649 

ANN2 4-5-200 0.9537 0.9488 

 

5.2.1 Estimation of tK  by ANN2 Model 

The ANN2 structure constructed for estimating tK  of HIMMFPB is shown in Fig. 

5.6. The structure consists of four input nodes, five hidden nodes, and one output 

node. After training the network model, weights and biases of the network are fixed. 

These fixed weight and bias values are shown in Fig. 5.6. Here each input value is 

multiplied with the weight and adds with bias value, total sum is then the input at each 

hidden node, which is pass through a transfer function as defined in equation 5.2. 

Further the output from hidden node get multiplied with the weight and adds with the 

bias value, and then the total sum is passed through purelin  as shown in equation 5.2.   

The wave transmission  tK  is estimated using following formulations: 
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Transfer function iF  = 
  











1

2exp1

2

iN
                                  (5.2) 

 

where i 1 to 5, iN  are values of hidden nodes and iF  are the transfer functions of 

hidden node i . 

For ANN model, the trained hidden nodes and its transfer functions are 

 

        7113.14858.162203.26525.0061688.01  LHdHLWDSN ii  

        28667.064689.036001.021875.0023903.02  LHdHLWDSN ii  

        9858.35453.734849.039512.04946.13  LHdHLWDSN ii  

        4167.11498.164551.263925.0032214.04  LHdHLWDSN ii  

        5445.11578.218797.271574.00085584.05  LHdHLWDSN ii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 ANN2 structure with weights and biases 
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   12exp12 11  NF  

   12exp12 22  NF  

   12exp12 33  NF  

   12exp12 44  NF  

   12exp12 55  NF  

 

1N  to 5N  and 1F  to 5F  , represents summation function and transfer function at each 

hidden node respectively.  

 

The tK  is computed as: 

 

          9345.23685.38189.31657.01511.468521.0 54321  FFFFFKt  (5.3)

                                                   

Equation 5.3 provides trained ANN2 model for estimating wave transmission  tK of 

HIMMFPB. 

 

5.3 PERFORMANCE OF SUPPORT VECTOR MACHINE REGRESSION 

MODEL (SVMR) 

 

To study the effectiveness of the approach, statistical comparison of measured and 

predicted values of tK , CC is used. Apart from this, other statistical measures 

computed are root-mean-square error ( RMSE ), and scatter index ( SI ). These are 

defined as: 

 

RMSE  =  



N

i

tpitmi KK
N 1

21
                (5.4) 
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SI  = 
tmK

RMSE
                     (5.5) 

 

Statistical measures computed using train and test data for SVMR are shown in Table 

5.7. Train and test data are used to compare the models results. The trained and test 

results (CCs) of six models are shown in Table 5.7 and Fig. 5.7-5.12.  

 

 

 

Model 
CC 

Train 

CC 

Test 

Train Data Test Data 

RMSE  SI  RMSE  SI  

SVMR (linear) 

 

0.8964 0.8924 0.07072 0.12375 0.07245 0.12925 

 
SVMR (polynomial) 0.9474 0.9437 0.05105 0.08933 0.05312 0.09477 

SVMR (rbf) 0.9557 0.9475 0.04694 0.08214 0.05138 0.09166 

SVMR (erbf) 0.9431 0.9383 0.05307 

 

0.09287 

 

0.05556 

 

0.09923 

 
SVMR (spline) 0.9596 0.9523 0.04490 0.07857 0.04905 0.08751 

SVMR (b-spline) 0.9779 0.9685 0.03335 0.05837 0.03993 0.07125 

 

 

Performance of SVMR depends on the good setting of SVM and kernel parameters. In 

developing SVMR models these parameters are randomly selected initially by a 

coarse grain search (i.e. for C =100, 500, 1000;   =1, 2; d  and  = 1, 2, 3) to 

identify the near optimal values, and then a fine grain search (i.e. for C = 10, 20, 30; 

  = 0.001, 0.01, 0.1, 1; d  and  = 0.001, 0.01, 0.1, 1) is done to identify the final 

optimal values. Final optimal values obtained are presented in Table 5.8. Number of 

support vectors for all SVMR models are 100%, which indicates that there is no noise 

in the data set. Compared to all SVMR models linear kernel function shows poor 

generalization performance in predicting wave transmission through HIMMFPB (CC 

Table 5.7 SVMR models with statistical measures 
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Train = 0.8964 and CC test = 0.8924).  RMSE   and  SI   is very high in case of 

SVMR model with linear kernel function, whereas SVMR with bspline kernel 

function has low RMSE and SI   (Table 5.7). A b-spline kernel function has better 

generalization performance with CC Train = 0.9779 and CC Test = 0.9685. In case of 

SVMR with b-spline kernel, optimal C is 20 and    = 0.001.  

 

 

 

Kernel nsv  C      d  

linear 2131 100 0.001 - - 

polynomial 2131 100 0.001 - 4 

rbf 2131 100 0.001 0.3 - 

erbf 2131 100 0.001 0.3 - 

spline 2131 100 0.001 - - 

b-spline 2131 20 0.001 - 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8 Optimal parameters for SVMR models with different kernels 
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Fig. 5.7 Comparison of predicted and measured tK  for SVMR (linear) model 

 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.8 Comparison of predicted and measured tK  for SVMR (polynomial) model 

 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.9 Comparison of predicted and measured tK  for SVMR (rbf) model 

 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.10 Comparison of predicted and measured tK  for SVMR (erbf) model 

 

(a) Train Data 

 

(b) Test Data 

 



Results and Discussion 

 

 
Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                      

  108 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured Kt

P
re

d
ic

te
d

 K
t

CC Train = 0.9596

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured Kt

P
re

d
ic

te
d

 K
t

CC Test = 0.9523

 

 

 

 

Fig. 5.11 Comparison of predicted and measured tK  for SVMR (spline) model 

 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.12 Comparison of predicted and measured tK  for SVMR (b-spline) model 

 

(b) Test Data 

 

(a) Train Data 
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5.4 PERFORMANCE OF ADAPTIVE NEURO FUZZY INFERENCE 

SYSTEM MODEL (ANFIS) 

 

As the training process takes place values of a ,b  and c  change, the bell shaped 

function vary accordingly, thus exhibiting various forms of membership functions on 

linguistic attributes iA . Fig. 5.13 shows the final membership function after training 

for ANFIS5 model. Table 5.9 lists the linguistic attributes iA  and the corresponding 

premise parameters for ANFIS5 model. The hybrid learning algorithm that combines  
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(a)  DS /  (b) LW /  

(c) dH i /  (d) LH i /  

Fig. 5.13 Final membership functions of input parameters (x-axis) 

for ANFIS5 model 
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least square method with gradient descent method is used to adjust the parameters of 

membership function. Trained ANFIS1, ANFIS2, ANFIS3 and ANFIS4 model 

consists of 27 rules and 3 generalized bell membership function. These membership 

functions are associated with 3 inputs LW / , dH i /
 
and LH i / . Whereas, the trained 

ANFIS5 model consists of 81 fuzzy rules and 3 generalized bell membership 

function. These are associated with 4 inputs DS / , LW / , dH i /
 
and  LH i / . Fig. 

5.14 shows the fuzzy rule architecture for ANFIS5 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fuzzy THENIF   rules for ANFIS4 model after training are shown in Table 5.10 

 

   

Rule1: If LW / is Low and dH i /  is Low and LH i /  is Low then,  

 

 

tK  = Xc


.1                    (5.6) 

 

Where, X


= [ LW / , dH i / , LH i / , 1] and ic


 is the thi row of the consequent 

parameter matrix C  (equation 5.7 ).  

 

f(u) 

81 

(Sugeno) 

Anfis 

Hi/L 

Hi/d 

   W/L 

Kt 

 S/D 

Fig. 5.14 Fuzzy rule architecture of the generalized bell membership function 

for ANFIS5 model 
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iA  
ia  ib  ic  

Low1 0.7534 1.9998 2.0027 

Medium1 0.7492 2.0001 3.5021 

High1 0.7465 2.0003 5.0025 

Low2 0.5635 1.9998 0.3999 

Medium2 0.5655 1.9998 1.5219 

High2 0.5680 1.9997 2.6477 

Low3 0.0311 2.0016 0.0645 

Medium3 0.1087 2.0017 0.2110 

High3 0.1425 1.9989 0.4232 

Low4 0.0122 0.0007 0.0000 

Medium4 0.0118 1.9994 0.0449 

High4 0.0405 1.9992 0.0874 

 

                                                                                                

To study effectiveness of the approach, statistical comparison of measured and 

predicted values of tK ,  CC, RMSE  and SI   is used. Statistical measures computed 

using trained and test data are shown in Table 5.11, trained and test data are used to 

compare the models results, all ANFIS models have shown CCs  higher than 0.9600 

for trained data, whereas in case of test data it is more than 0.9500. RMSE  is less 

than or equal to 0.044187 for training data and 0.051074 for test data, whereas the SI  

is less than or equal to 0.087728 for train data and 0.102296 for test data. The trained 

and test results (CCs) of all ANFIS models are shown in Table 5.11 and Figs. 5.15 to 

5.20. tK  is better with increase in DS /  values, but it is noticed that the CCs between  

Table 5.9 Premise parameters for ANFIS5 model 
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-0.1971-6.22253.66930.1326-

-0.44602.63072.00680.9720-

-5.59730.1986-0.97027.1512

-1.3002-4.15976.42880.0532

0.7510-2.46106.37360.5506-

4.09872.1870-1.25612.1517-

4.63690.08171.22836.8129

-1.1065-12.453114.90030.0299-

3.1411-16.1056-18.83560.3445-

0.4715-2.44690.82930.1456-

0.065317.9905-2.08540.3424

5.709424.370110.69477.2845-

-0.500312.2483-0.13350.0506

0.7287-20.66454.09680.2997-

2.009782.7353-15.08190.0706-

8.6854-0.4962-17.54334.0613

-0.98579.3327-2.51810.6096

1.539126.72732.61890.6248-

-0.03112.48402.25970.5679-

1.440124.0908-4.86970.0590-

-12.9159-12.181747.16442.8564-

-1.316929.4500-2.56860.8873

1.2034-14.40432.09670.7276-

1.1323-0.08680.88940.3117

0.61220.7491-4.54676.9865

-1.1623-66.738030.46730.0301-

1.917329.4654-9.69060.2681-

C
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Rule W/L H i/d H i/L tK  

1 Low Low Low Xc


.1  

2 Low Low Medium Xc


.2  

3 Low Low High Xc


.3  

4 Low Medium Low Xc


.4  

5 Low Medium Medium Xc


.5  

6 Low Medium High Xc


.6  

7 Low High Low Xc


.7  

8 Low High Medium Xc


.8  

9 Low High High Xc


.9  

10 Medium Low Low Xc


.10  

11 Medium Low Medium Xc


.11  

12 Medium Low High Xc


.12  

13 Medium Medium Low Xc


.13  

14 Medium Medium Medium Xc


.14  

15 Medium Medium High Xc


.15  

16 Medium High Low Xc


.16  

17 Medium High Medium Xc


.17  

18 Medium High High Xc


.18  

19 High Low Low Xc


.19  

20 High Low Medium Xc


.20  

21 High Low High Xc


.21  

22 High Medium Low Xc


.22  

23 High Medium Medium Xc


.23  

24 High Medium High Xc


.24  

25 High High Low Xc


.25  

26 High High Medium Xc


.26  

27 High High High Xc


.27  

 

 

Table 5.10  Fuzzy THENIF  rules after training for ANFIS4 model 
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measured and predicted  tK   increases with DS /  for ANFIS1, ANFIS2  and 

ANFIS3  models, wheras it is not true in case of ANFIS4  model. Even though there 

is an improve relation with increase of DS /  as seen from ANFIS1, ANFIS2, and 

ANFIS3 (Table 5.11). An ANFIS4 shows marginally lower values of CCs. This also 

indicates that ANFIS3 model shows optimal tK  prediction in the present study. The 

highest Correlation Coefficient (CC Train = 0.9786, CC Test = 0.9698) is obtained for 

ANFIS3 model. Increase or decrease in DS /  ratio does not show a clear relation in 

an increase or decrease of CCs, RMSE  and SI estimated for train and test data. To 

study over a range of DS /  on tK
,
 an input parameter DS /  is added to form 

ANFIS5 model. 

 

After conducting computer simulation on trained and test data of ANFIS5 model, CCs 

are calculated between measured and predicted tK  are shown in Table 5.11 and Fig. 

5.19. An ANFIS5 model predictions are very realistic when compared with the 

measured values (CC Train = 0.9723, CC Test = 0.9635), whereas the RMSE  and SI  

are 0.037269 and 0.065217 for train data, and 0.043068 and 0.076833 for test data, 

respectively. An ANFIS5 model performed better than ANFIS1 and ANFIS2 models, 

whereas the performance is almost same when compared with ANFIS3 and ANFIS4 

models. Performance of an ANFIS model depends upon the input parameters chosen 

to train the model.  Considering an DS /  as an input parameter, there is a better CC 

between measured and predicted tK  when compared with ANFIS1 and ANFIS2. This 

clearly proves that an DS /  plays an important role to train ANFIS5 model to map an 

input-output relation.  

 

From ANFIS5 and ANFIS6, CCs of tK  show very little variation, as LH i /  is the 

least influential parameter. The same data set has been used for estimating tK  using 

ANN and SVMR model. CCs of tK  are shown in Table 5.12. From Tables 5.11 and 

5.12,  it is observed that the ANFIS models yield higher CCs as compared to that of 

ANN models, whereas the performance is poor when compared with SVMR (b-
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spline). SVMR with linear kernel function has shown poor generalization 

performance in predicting wave transmission through HIMMFPB when compared 

with ANN and ANFIS models. 

 

 

 

 

 

 

Model S/D Ratio CC Train CC Test 

ANN1 2 0.9552 0.9504 

ANN2 3 0.9506 0.9404 

ANN3 4 0.9642 0.9601 

ANN4 5 0.9672 0.9649 

ANN5 

Total 

0.9537 0.9488 

SVMR (linear) 

 

0.8964 0.8924 

SVMR (polynomial) 0.9474 0.9437 

SVMR (rbf) 0.9557 0.9475 

SVMR (erbf) 0.9431 0.9383 

SVMR (spline) 0.9596 0.9523 

SVMR (b-spline) 0.9779 0.9685 

Model CC Train CC Test 
Train Data Test Data 

 RMSE   SI   RMSE   SI  

ANFIS1  0.9649 0.9510 0.044187 

 

0.087728 

 

0.051074 

 

0.102296 

 ANFIS2 0.9706 0.9528 0.031676 

 

0.059149 

 

0.038682 

 

0.072278 

 ANFIS3 0.9786 0.9698 0.026438 

 

0.044892 

 

0.030780 

 

0.053178 

 ANFIS4  0.9776 0.9674 0.032783 

 

0.049827 

 

0.039505 

 

0.060767 

 ANFIS5  0.9723 0.9635 0.037269 

 

0.065217 

 

0.043068 

 

0.076833 

 ANFIS6 0.9469 0.9378 0.05127 

 

0.089716 

 

0.055775 

 

0.099503 

 

Table 5.11 ANFIS models with statistical measures for train and test data 

 

Table 5.12 ANN and SVMR models with correlation coefficients of tK  
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Fig. 5.15 Comparison of predicted and measured tK  for ANFIS1 model 

 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.16 Comparison of predicted and measured tK  for ANFIS2 model 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.17 Comparison of predicted and measured tK  for ANFIS3 model 

 

(a) Train Data 

 

(b) Test Data 
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Fig. 5.18 Comparison of predicted and measured tK  for ANFIS4 model 

(a) Train Data 

 

(b) Test Data 

 



Results and Discussion 

 

 
Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                      

  121 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured Kt

P
re

d
ic

te
d

 K
t

CC Train = 0.9723

 

 

  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured Kt

P
re

d
ic

te
d

 K
t

CC Test = 0.9635

 
 

Fig. 5.19 Comparison of predicted and measured tK  for ANFIS5 model 

 

(a) Train Data 

 

(b) Test Data 

 



Results and Discussion 

 

 
Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., PhD Thesis, 2012, NITK, Surathkal, India.                      

  122 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured Kt

P
e

d
ic

te
d

 K
t

CC Train = 0.9469

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measured Kt

P
re

d
ic

te
d

 K
t

CC Test = 0.9378

 
 

 

Fig. 5.20 Comparison of predicted and measured tK  for ANFIS6 Model 

 

(a) Train Data 

 

(b) Test Data 
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5.5 PERFORMANCE OF GENETIC ALGORITHM BASED SUPPORT 

VECTOR MACHINE REGRESSION (GA-SVMR) 

 

To study the effectiveness of the approach, statistical comparison of measured and 

predicted values of tK , CC, RMSE   and SI  is used. Train and test data are used to 

compare the models results. The trained and test results (CCs) of six models are 

shown in Table 5.13 and Fig. 5.21 -5.26.  

 

 

 

 

Model 
CC 

Train 

CC 

Test 

Train Data Test Data 

RMSE  SI  RMSE  SI  

GA-SVMR (linear) 

 

0.8964 0.8924 0.07072 0.12375 0.07245 0.12925 

 
GA-SVMR (polynomial) 0.9568 0.9513 0.04638 0.08116 0.04946 0.08824 

HGASVMR (rbf) 0.9563 0.9478 0.04662 0.08157 0.05119 0.09133 

HGASVMR (erbf) 0.9640 0.9416 0.04253 

 

0.07443 

 

0.05412 

 

0.09655 

 HGASVMR (spline) 0.9834 0.9735 0.02896 0.05068 0.03671 0.06549 

GA-SVMR (b-spline) 0.9897 0.9741 0.02286 0.03900 0.03629 0.06474 

 

 

 

 

Kernel nsv  C      d  

linear 2131 100 0.001 - - 

polynomial 2131 96 0.001 - 6 

rbf 2131 150 0.001 0.3 - 

erbf 2131 6 0.001 1 - 

spline 2131 40000 0.05 - - 

b-spline 2131 15 0.05 - 2 

 

Table 5.13  GA-SVMR models with statistical measures 

 

Table 5.14 Optimal parameters for GA-SVMR models with different kernels 
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In comparison to all models, linear kernel function shows poor generalization 

performance (CC Train = 0.8964 and CC Test = 0.8924) in prediction of tK
 
for 

HIMMFPB with SI , 0.12375 and 0.12925 for train and test data respectively. SVMR 

models with linear kernel function also shows similar trend. Number of support 

vectors used in GA-SVMR with linear kernel function is 2131, which is 100%. 

Similarly, GA-SVMR with non-linear kernel functions also used 100% of support 

vectors, which indicates that every training input is utilized as support vector. This 

clearly proves that, there is no noise in the training data set, but there is non-linearity 

and complexity associated in mapping input and output parameters of HIMMFPB. 

Increasing the C  will disturb the solution, but it can be helpful for other kernels like 

spline kernel, where C is 40000 as shown in Table 5.14. In case of b-spline kernel 

C is 15, whereas for erbf it is 6. For polynomial and linear kernel it is 96 and 100 

respectively. A b-spline kernel function has better generalization performance with 

RMSE  0.02286 and 0.03629 for train and test data respectively. Whereas, similar 

trend is shown by spline kernel function with slightly higher RMSE  0.02896 and 

0.03671 for train and test data respectively. 

 

Correlation coefficient of GA-SVMR (b-spline) model (CC Train = 0.9897 and                         

CC Test = 0.9741) is slightly better than GA-SVMR (spline) model, but considerably 

better than GA-SVMR (linear) model, whereas the performance of GA-SVMR 

(polynomial) model is better than GA-SVMR (rbf) and GA-SVMR (erbf) models with 

SI  0.08824 for test data, whereas, for rbf and erbf kernels it is 0.09133 and 0.09655 

respectively.  In comparison to GA-SVMR model with b-spline and spline kernel 

functions, SI  and RMSE  is very high for GA-SVMR models with linear and erbf 

kernel function for test data (Table 5.13). It is noticed that the performance of these 

models depends on the better selection of SVM and kernel parameters. In case of 

polynomial kernel, the degree of the function d , when low; the function estimation is 

very bad, however, for higher d , performance is good. The optimal value of d in case 

of polynomial kernel function obtained by GAs is 6 and for b-spline kernel function it 

is 2. The optimal width (  ) obtained by GAs in case of rbf and erbf kernel functions 
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are 0.3 and 1 respectively. Kernel and SVM parameters obtained by GA (Table 5.14) 

is tested by using test data sets, which show better generalization performance with 

highest CC Test = 0.9741 for GA-SVMR (b-spline) model. By hybridizing GA with 

SVMR generalization performance of GA-SVMR shows improvement in terms of 

CC, SI  and RMSE over SVMR models (Table 5.7 and 5.13). 

 

The same data set has been used for estimating tK using ANN2, ANFIS5 and SVMR 

(b-spline). CCs, SI  and RMSE  of tK  are shown in Table 5.15. From Tables 5.13 

and 5.15, it is observed that the GA-SVMR (b-spline) model yields higher CCs as 

compared to that of ANN, SVMR and ANFIS models, whereas RMSE  and SI  

values are higher in ANN and ANFIS models as compared to GA-SVMR (b-spline) 

model. However, the GA-SVMR model with linear kernel function has shown poor 

generalization, whereas, ANFIS model perform better than GA-SVMR models with 

polynomial, rbf and erbf kernel functions.  

 

 

 

 

 

In SVM regression, the solution is unique for specific loss function, kernel type, and 

SVM and kernel parameters. If we run the same program, the results will be exactly 

the same. The model is much more complex and cannot be used in other 

implementations, whereas the results will not be same in case of ANN and ANFIS 

models.  

 

 

Model CC 

Train 

CC 

Test 

Train Data Test Data 

RMSE  SI  RMSE  SI  

ANN2 0.9537 0.9488 0.05176 

 

0.09058 

 

0.05395 

 

0.09625 

 SVMR (b-spline) 0.9779 0.9685 0.03335 0.05837 0.03993 0.07125 

ANFIS5  0.9723 0.9635 0.03727 0.06522 0.04307 0.07683 

Table 5.15 ANN and ANFIS models with statistical measures 
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(b) Test Data 

 

 

 

 

(b) Test Data 

 

(a) Train Data 

 

Fig. 5.21 Comparison of predicted and measured tK  for GA-SVMR (linear) 

model 
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(b) Test Data 

 

(a) Train Data 

 

Fig. 5.22 Comparison of predicted and measured tK  for GA-SVMR 

(polynomial) model 
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(b) Test Data 

 

(a) Train Data 

 

Fig. 5.23 Comparison of predicted and measured tK  for GA-SVMR (rbf) 

model 
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(b) Test Data 

 

(a) Train Data 

 

Fig. 5.24 Comparison of predicted and measured tK  for GA-SVMR (erbf) 

model  
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(b) Test Data 

 

(a) Train Data 

 

Fig. 5.25 Comparison of predicted and measured tK  for GA-SVMR (spline) 

model 
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(b) Test Data 

 

(a) Train Data 

 

Fig. 5.26 Comparison of predicted and measured Kt for GA-SVMR          

(b-spline) model 
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5.6 SUMMARY 

 

In the present research work, An Artificial Neural Network (ANN) method has been 

applied for wave transmission prediction of multilayer floating breakwater. Two 

neural network models are constructed based on the parameters, which influence the 

wave transmission of floating breakwater. Training and testing of the network models 

are carried out for different hidden nodes and epochs. The results of network models 

are compared with the measured values. To study the performance of SVMR, six 

models were constructed. Effectiveness of these models are estimated using statistical 

measures such as CC, SI  and RMSE . Further, six ANFIS models were developed to 

improve the results of ANN models. it is observed that there is an improvement in 

prediction of wave transmission through HIMMFPB over ANN models. Performance 

of SVMR models depends on the good settings of SVM and Kernel parameters. To 

optimize these parameters GA is hybridized with SVMR. Efficiency GA-SVMR with 

b-spline kernel function is excellent compared to ANN, ANFIS and SVMR.  
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CHAPTER 6 

 

CONCLUSIONS 

 

6.1 GENERAL 

 

To solve real-world problems, like hydrodynamic performance of prediction of 

HIMMFPB by considering all the boundary conditions and extracting knowledge 

from large amount of experimental or in-situ data is extremely difficult as they are 

typically ill-defined systems and complex to model. In such cases, precise models are 

impractical, too expensive, or non-existent. Furthermore, the relevant available 

information is usually in the form of empirical prior knowledge and input-output data 

representing instances of the system's behavior. Therefore, we need an approximate 

reasoning system capable of handling such imperfect information. In this context CI 

models are developed, such as, ANN, ANFIS, SVMR and GA-SVMR. Each of these 

technologies provides us with complementary reasoning and searching methods to 

solve complex, real-world problems like wave transmission through HIMMFPB.  

 

6.2 CONCLUSIONS 

 

Based on the results of the present investigations and discussion thereon, following 

conclusions are arrived at: 

 

 A high correlation coefficient (CC) is obtained at epoch equal to 200 with 

hidden nodes equal to four for ANN1 model with optimal DS  equal to five, 

whereas, ANN2 model has shown the similar trend with hidden nodes equal to 

five. In both models, non-linear transfer function tansig and linear transfer 

function purelin are used. 
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 tK
 
is better with increase in DS  values. ANN models show same trend. 

However, it is noticed that the CCs between measured and predicted tK  

increase with DS for ANFIS1, ANFIS2  and ANFIS3  models, wheras it is 

not true in case of ANFIS4  model. Increase or decrease in DS  ratio does not 

show a clear relation in increase or decrease of CCs while developing ANFIS 

models. 

 

 Considering DS  as an input parameter there is a better CC between measured 

and predicted tK . Compared with ANFIS1 and ANFIS2, DS plays an 

important role as observed from ANFIS5. ANFIS5 model predictions are very 

realistic when compared with the measured values. 

 

 Based on the PCA study, it is observed that DS and LW  are the most 

significant parameters. Whereas, LH i
 is the least influencing parameter and 

variation of correlations coefficients (ANFIS5 and ANFIS6) is negligible.  It is 

also concluded that DS and LW  play an important role as inputs for training 

ANFIS.  

 

 It is observed that hybrid models, such as ANFIS and GA-SVMR perform 

better than ANN and SVMR.  

 

 Results also revealed that the efficiency of the ANFIS models depends on the 

number of membership functions associated with each input data. Highest 

correlation coefficient was obtained using the three bell shaped membership 

function. 

 

 The performance of GA-SVMR appears to be highly influenced by the choice 

of its kernel function, and the good setting of kernel and SVM parameters. The 

b-spline kernel function performed superior than other kernel. It is also 

concluded that parameter selection in the case of GA-SVMR has a significant 
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effect on the performance of the model. 

 

 GA-SVMR with b-spline kernel function performs better than ANN, SVMR 

and ANFIS models. Hence, it can replace the ANN, SVMR and ANFIS for 

wave transmission prediction of HIMMFPB. 

 

 GA-SVMR can be utilized to provide a fast and reliable solution in prediction 

of the wave transmission for HIMMFPB, thereby making GA-SVMR as an 

alternate approach to map the wave structure interactions of HIMMFPB. 

 

6.3 SUGGESTIONS FOR FUTURE WORK 

 

There is scope for carrying out further research in developing computational 

intelligence models for designing the HIMMFPB. In this regard, the following 

suggestions may be considered for further study. 

 

 Performance characteristics of Horizontal Interlaced Multi-layer Moored 

Floating Pipe Breakwaters with random waves may be studied. 

 

 Studies on the influence of pipe diameter and spacing between the pipes on the 

performance characteristics of Horizontal Interlaced Multi-layer Moored 

Floating Pipe Breakwaters may be carried out. 

 

 Studies on hybridizing latest computational intelligence techniques, such as, 

swarm intelligence, kernel principal component analysis, genetic 

programming etc., could be carried out for predicting the wave transmission of 

Horizontal Interlaced Multi-layer Moored Floating Pipe Breakwater.  
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6.4 SUMMARY 

 

In this chapter, conclusions have been drawn regarding the performance of CI 

techniques in predicting wave transmission through HIMMFPB Every care is taken to 

bring out all the conclusions that can be possibly drawn. 
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APPENDIX  

 

MATLAB CODES FOR DEVELOPING CI MODELS 

(In the present work MATLAB 7 Release 14 was used to write the codes) 

A-1 PROGRAM TO DEVELOP THE NETWORK MODEL ANN1 (ANN 3-4-1) 

 

 % Code for predicting tK
 
using network model 1 

 

% (ANN 3-4-1) for N = 5 and DS / = 5  

 

% Loading train data 

Load E:\NITK\data\N5SD5\train\HID.txt 

Load E:\NITK\data\N5SD5\train\HIL.txt 

Load E:\NITK\data\N5SD5\train\WL.txt 

Load E:\NITK\data\N5SD5\train\KT.txt 

 

% Loading test data 

Load E:\NITK\data\N5SD5\test\THID.txt 

Load E:\NITK\data\N5SD5\test\THIL.txt 

Load E:\NITK\data\N5SD5\test\TWL.txt 

Load E:\NITK\data\N5SD5\test\TKT.txt 

 

% Loading the ranges for train and test data 

Load E:\NITK\data\N5SD5\range\RHID.txt 

Load E:\NITK\data\N5SD5\range\RHIL.txt 

Load E:\NITK\data\N5SD5\range\RWL.txt 

 

% Train input vector 

TRAIN_INPUT = [HID’; HIL’; WL’]; 

 

% Train output vector 

TRAIN_OUTPUT = KT’; 
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% Test input vector 

TEST_INPUT = [THID’; THIL’; TWL’]; 

 

% Range matrix 

RANGE = [RHID; RHIL; RWL]; 

 

% Creating a feedforward network 

NET = newff (RANGE, [4,1], {‘tansig’, ‘purelin’}, ‘trainlm’); 

 

% Network parameters 

NET.trainparam.show = 5; 

NET. trainparam.epochs = 200; 

NET. Trainparam.min_grd = 1.0e-3; 

NET. Trainparam.goal = 1.0e-3; 

 

%Training of network 

NET = train (NET, TRAIN_INPUT, TRAIN_OUTPUT); 

 

%Simulate the network with train data 

SIMULATED_TRAINED_OUTPUT = sim(NET, TRAIN_INPUT); 

 

%Simulate the network with test data 

SIMULATED_TEST_OUTPUT = sim(NET, TEST_INPUT); 

 

% Coefficient  of correlation for training 

ctrain = corrcoef (SIMULATED_TRAINED_OUTPUT’,TRAIN_OUTPUT) 

cTRAIN = ctrain (1,2) 

 

% Coefficient  of correlation for testing 

ctest = corrcoef (SIMULATED_TEST_OUTPUT’,TKT) 

cTEST = ctest (1,2) 
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A-2 PROGRAM TO DEVELOP THE NETWORK MODEL ANN2 (ANN 4-5-1) 

 

 % Code for predicting tK
 
using network model 2 

 

% (ANN 4-5-1) for N = 5 with combined data for DS /  ratio 2, 3, 4 and 5. 

 

% Loading train data 

Load E:\NITK\data\N5SD5\train\SD.txt 

Load E:\NITK\data\N5SD5\train\HID.txt 

Load E:\NITK\data\N5SD5\train\HIL.txt 

Load E:\NITK\data\N5SD5\train\WL.txt 

Load E:\NITK\data\N5SD5\train\KT.txt 

 

% Loading test data 

Load E:\NITK\data\N5SD5\test\TSD.txt 

Load E:\NITK\data\N5SD5\test\THID.txt 

Load E:\NITK\data\N5SD5\test\THIL.txt 

Load E:\NITK\data\N5SD5\test\TWL.txt 

Load E:\NITK\data\N5SD5\test\TKT.txt 

 

% Loading the ranges for train and test data 

Load E:\NITK\data\N5SD5\range\RSD.txt 

Load E:\NITK\data\N5SD5\range\RHID.txt 

Load E:\NITK\data\N5SD5\range\RHIL.txt 

Load E:\NITK\data\N5SD5\range\RWL.txt 

 

% Train input vector 

TRAIN_INPUT = [SD’; HID’; HIL’; WL’]; 

 

% Train output vector 

TRAIN_OUTPUT = KT’; 
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% Test input vector 

TEST_INPUT = [TSD’; THID’; THIL’; TWL’]; 

 

% Range matrix 

RANGE = [RSD’; RHID; RHIL; RWL]; 

 

% Creating a feedforward network 

NET = newff (RANGE, [5,1], {‘tansig’, ‘purelin’}, ‘trainlm’); 

 

% Network parameters 

NET.trainparam.show = 5; 

NET. trainparam.epochs = 200; 

NET. Trainparam.min_grd = 1.0e-3; 

NET. Trainparam.goal = 1.0e-3; 

 

%Training of network 

NET = train (NET, TRAIN_INPUT, TRAIN_OUTPUT); 

 

%Simulate the network with train data 

SIMULATED_TRAINED_OUTPUT = sim (NET, TRAIN_INPUT); 

 

%Simulate the network with test data 

SIMULATED_TEST_OUTPUT = sim (NET, TEST_INPUT); 

 

% Coefficient of correlation for training 

ctrain = corrcoef (SIMULATED_TRAINED_OUTPUT’,TRAIN_OUTPUT) 

cTRAIN = ctrain (1,2) 

 

% Coefficient  of correlation for testing 

ctest = corrcoef (SIMULATED_TEST_OUTPUT’,TKT) 

cTEST = ctest (1,2) 
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A-3 PROGRAM TO PLOT CORRELATION COEFFICIENT GRAPHS FOR 

‘KT’ 

 

% program to plot test CC graph for ‘measured versus predicted’ data 

 

X = TKT;      % Measures Kt 

Y= SIMULATED_TEST_OUTPUT;   % Predicted Kt 

 

% Plots the measured values on the ‘y’ axis and the predicted on the ‘x’ axis 

Plot (X, Y, ‘r.’); 

hold on 

% Plot a 45 degree line 

Plot ( [0:1], [0:1], ‘b’); 

 

% axis ([xmin xmax ymin ymax] ) 

% Sets the limits for the x and y axis of the current axes. 

axix( [0 1 0 1])  

 

% Label on the X-axis 

XLABLE (‘Measured Kt’) 

 

% Label on the Y-axis 

YLABLE (‘Predicted Kt’) 

 

% Title for the Graph 

title (‘Correlation Coefficient between Predicted and Measured Kt’) 

 

% Display legend on the graph (CC % should be entered accordingly) 

Legend (‘CC test = xx.xx%’); 
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% program to plot train CC graph for ‘measured versus predicted’ data 

 

X = TKT;       % Measures Kt 

Y= SIMULATED_TRAINED_OUTPUT;   % Predicted Kt 

 

% Plots the measured values on the ‘y’ axis and the predicted on the ‘x’ axis 

Plot (X, Y, ‘r.’); 

hold on 

% Plot a 45 degree line 

Plot ( [0:1], [0:1], ‘b’); 

 

% axis ( [xmin xmax ymin ymax] ) 

% Sets the limits for the x and y axis of the current axes. 

axix( [0 1 0 1])  

 

% Label on the X-axis 

XLABLE (‘Measured Kt’) 

 

% Label on the Y-axis 

YLABLE (‘Predicted Kt’) 

 

% Title for the Graph 

title (‘Correlation Coefficient between Predicted and Measured Kt’) 

 

% Display legend on the graph (CC % should be entered accordingly) 

Legend (‘CC train = xx.xx%’); 
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% Plot of actual and measured Kt along x axis for training 

% where x axis contains the number of data sets 

 

 %datasets should be set to total data sets minus one 

Datasets = 2131 

 

% Plot of Actual Kt along X axix 

Plot ( [0 : Datasets], KT, ‘b x’); 

hold on 

% Plot of Predicted Kt along X axis 

Plot ( [0 : Datasets], SIMULATED_TRAINED_OUTPUT, ‘r.’) 

 

%axis ([xmin xmax ymin ymax]) 

%Sets the limits for the x and y axix of the current axes. 

axis ([0 Datasets 0 1]) 

 

%Lable on the Y-axis 

YLABLE (‘y-axis’) 

 

%Lable on the X-axis 

XLABLE (‘x-axis’) 

 

%Display legend on the graph 

Legend (‘Predicted kt’, ‘Actual kt’); 
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% Plot of actual and measured Kt along x axis for testing 

% where x axis contains the number of data sets 

 

 %datasets should be set to total data sets minus one 

Datasets = 812; 

 

% Plot of Actual Kt along X axix 

Plot ( [0 : Datasets], KT, ‘b x’); 

hold on 

% Plot of Predicted Kt along X axis 

Plot ( [0 : Datasets], SIMULATED_TEST_OUTPUT, ‘r.’) 

 

%axis ([xmin xmax ymin ymax]) 

%Sets the limits for the x and y axix of the current axes. 

axis ([0 Datasets 0 1]) 

 

%Lable on the Y-axis 

YLABLE (‘y-axis’) 

 

%Lable on the X-axis 

XLABLE (‘x-axis’) 

 

%Display legend on the graph 

Legend (‘Predicted kt’, ‘Actual kt’); 
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A-4 PROGRAM TO DEVELOP ANFIS 1-5  MODELS  

 

% Code for predicting tK
 

using ANFIS1 (Same program is used for ANFIS2, 

ANFIS3, ANFIS4 by changing DS / = 3, 4 and 5 respectively and taking DS / = 

Total 

 

% (ANFIS1) for N = 5 and DS / = 2 

% (ANFIS2) for N = 5 and DS / = 3 

% (ANFIS3) for N = 5 and DS / = 4 

% (ANFIS4) for N = 5 and DS / = 5 

% (ANFIS5) for N = 5 and DS / = Total 

 

% Loading train data 

Load E:\NITK\data\N5SD5\train\HID.txt 

Load E:\NITK\data\N5SD5\train\HIL.txt 

Load E:\NITK\data\N5SD5\train\WL.txt 

Load E:\NITK\data\N5SD5\train\KT.txt 

 

% Loading test data 

Load E:\NITK\data\N5SD5\test\THID.txt 

Load E:\NITK\data\N5SD5\test\THIL.txt 

Load E:\NITK\data\N5SD5\test\TWL.txt 

Load E:\NITK\data\N5SD5\test\TKT.txt 

 

% Train input vector 

Train1 = [HID’; HIL’; WL’ ‘KT’]; 

Train2 = [HID’; HIL’; WL’]; 

 

% Train output vector 

mtrainoutput = KT’; 

 

% Test input vector 
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Test2 = [HID’; HIL’; WL’]; 

 

% Test output vector 

mtestoutput = KT’; 

 

 

% anfis uses a hybrid learning algorithm to identify parameters of Sugeno-type fuzzy 

inference systems. It applies a combination of the least-squares method and the   

back- propagation gradient descent method for training FIS membership function 

parameters to emulate a given training data set. 

 

%Number of Membership Functions and epochs are assigned to anfis function 

% Here 3 is the number of membership function and 200 is the number of Epochs 

% membership function and epochs vary depending on problem 

 

anfis1=anfis (train1, 3,200,[0,0,0,0]);     

 

% output1 is the predicted testoutput 

output1=evalfis (test2, anfis1); 

 

% Correlation coefficient between predicted test output and mtestoutput 

cctest=corrcoef(output1,mtestoutput); 

 

% output2 is the predicted train output 

output2=evalfis(train2,anfis1); 

 

% Correlation coefficient between predicted train output and mtrainoutput 

cctrain=corrcoef(output2,mtrainoutput); 

 

% plot of membership function for SD 

plotmf (anfis1,'input',SD); 
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% plot of membership function for WL 

plotmf (anfis1,'input',WL); 

 

% plot of membership function for HID 

plotmf (anfis1,'input',HID); 

% plot of membership function for HIL 

plotmf (anfis1,'input',HIL); 

 

% Surface graph  

gensurf(anfis1,[SD WL],KT); 

gensurf(anfis1,[SD HIL],KT); 

gensurf (anfis1,[SD HID],KT); 

gensurf (anfis1,[WL HIL],KT); 

gensurf (anfis1,[WL HID],KT); 

gensurf (anfis1,[HIL HID],KT); 

 

% Plot of predicted Kt versus Actual Kt for test  and train data 

plot (cctest, 'DisplayName','cctest', 'YDataSource', 'cctest'); figure(gcf) 

plot (mtrainoutput,output2,'r.'); 

hold on 

plot ([0:1],[0:1],'b'); 

plot (mtestoutput,output1,'r.'); 

hold on 

plot([0:1],[0:1],'b'); 
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A-5 PROGRAM TO DEVELOP ANFIS 6  MODELS  

 

% Code for predicting tK
 
using ANFIS6  with DS / = Total 

% (ANFIS5) for N = 5 and DS / = Total 

 

% Loading train data 

Load E:\NITK\data\N5SD5\train\HID.txt 

Load E:\NITK\data\N5SD5\train\WL.txt 

Load E:\NITK\data\N5SD5\train\KT.txt 

 

% Loading test data 

Load E:\NITK\data\N5SD5\test\THID.txt 

Load E:\NITK\data\N5SD5\test\TWL.txt 

Load E:\NITK\data\N5SD5\test\TKT.txt 

 

% Train input vector 

Train1 = [HID’; WL’ ‘KT’]; 

Train2 = [HID’; WL’]; 

 

% Train output vector 

mtrainoutput = KT’; 

 

% Test input vector 

Test2 = [HID’; WL’]; 

 

% Test output vector 

mtestoutput = KT’; 

 

% anfis uses a hybrid learning algorithm to identify parameters of Sugeno-type fuzzy 

inference systems. It applies a combination of the least-squares method and the   

back- propagation gradient descent method for training FIS membership function 

parameters to emulate a given training data set. 
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%Number of Membership Functions and epochs are assigned to anfis function 

% Here 3 is the number of membership function and 200 is the number of Epochs 

% membership function and epochs vary depending on problem 

anfis1=anfis (train1, 3, 200,[0,0,0,0]);     

 

% output1 is the predicted testoutput 

output1=evalfis (test2, anfis1); 

 

% Correlation coefficient between predicted test output and mtestoutput 

cctest=corrcoef(output1,mtestoutput); 

 

% output2 is the predicted train output 

output2=evalfis(train2,anfis1); 

 

% Correlation coefficient between predicted train output and mtrainoutput 

cctrain=corrcoef(output2,mtrainoutput); 

 

% Plot of predicted Kt versus Actual Kt for test  and train data 

plot (cctest, 'DisplayName','cctest', 'YDataSource', 'cctest'); figure(gcf) 

plot (mtrainoutput,output2,'r.'); 

hold on 

plot ([0:1],[0:1],'b'); 

plot (mtestoutput,output1,'r.'); 

hold on 

plot([0:1],[0:1],'b'); 

 

 

 

 

 



 

Appendix  

 

  
Computational Intelligence in Prediction of Wave Transmission for Horizontally Interlaced 

Multilayer Moored Floating Pipe Breakwater., Ph.D Thesis, 2011, NITK, Surathkal, India. 

 150 

A-6 PROGRAM TO DEVELOP SVMR MODEL  

 

% Code for predicting tK
 
using SVMR DS / = Total 

 

% (ANFIS1) for N = 5 and DS / = 2 

 

% Loading train data 

Load E:\NITK\data\N5SD5\train\HID.txt 

Load E:\NITK\data\N5SD5\train\HIL.txt 

Load E:\NITK\data\N5SD5\train\WL.txt 

Load E:\NITK\data\N5SD5\train\KT.txt 

 

% Loading test data 

Load E:\NITK\data\N5SD5\test\THID.txt 

Load E:\NITK\data\N5SD5\test\THIL.txt 

Load E:\NITK\data\N5SD5\test\TWL.txt 

Load E:\NITK\data\N5SD5\test\TKT.txt 

 

% Train input vector 

Train1 = [HID’; HIL’; WL’ ‘KT’]; 

Train2 = [HID’; HIL’; WL’]; 

 

% Train output vector 

mtrainoutput = KT’; 

 

% Test input vector 

Test2 = [HID’; HIL’; WL’]; 

 

% Test output vector 

mtestoutput = KT’; 
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% Initially assign the kernel function that is used, we have experimented with six      

% kernel functions 

ker='bspline'; 

 

% Here the kernel parameters are assigned 

global p1 p2; 

p1=2; 

 

%SVR Support Vector Regression, here 15 is capacity factor, and 0.001 is error tube 

% Performance of SVMR depends on good setting of SVM and Kernel parameters 

[nsv, beta, bias] = svr (train1, mtrainoutput, ker, 15,'quadratic', 0.001); 

 

% SVMR model give the predicted test output 

ptestoutput = svroutput (train1, test2, ker, beta, bias); 

 

% SVMR model give the predicted test output 

ptrainoutput = svroutput (train1, train1, ker, beta,bias); 

 

% Plot of predicted Kt versus Actual Kt for test  and train data 

plot (cctest, 'DisplayName','cctest', 'YDataSource', 'cctest'); figure(gcf) 

plot (mtrainoutput, ptrainoutput,'r.'); 

hold on 

plot ([0:1],[0:1],'b'); 

plot (mtestoutput,ptestoutput,'r.'); 

hold on 

plot([0:1],[0:1],'b'); 
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A-7 PROGRAM TO DEVELOP GA-SVMR MODEL  

Clear 

% assign the range of SVM and kernel parameters with lower and upper lilits 

dl=10; du=25; el=0; eu=1; fit_sum=0; prob_cross=0.8; prob_mut=0.1; incri=1;  

gbest_obj=100000; 

gen_no=input('Enter the number of generations   '); 

pop_size=input('Enter the population size         '); 

%nvar=input('Enter number of variables          '); 

  

%Initialization  

d=round(dl+(du-dl)*rand(pop_size,1)); 

e=round(el+(eu-el)*rand(pop_size,1)); 

init_pop=[d,e]; 

pop=init_pop; 

for i=1:gen_no;         % Generation loop 

 

%Fuction Evaluation  

for i=1:pop_size, 

   for j=1:2, 

    ker='bspline'; 

    global p1 p2; 

    p1=2; 

    d1=pop(i,1); 

    e1=pop(i,2); 

 

%SVR Support Vector Regression 

    [nsv, beta, bias] = svr(train1,mtrainoutput,ker,d1,'quadratic',e1); 

    ptestoutput = svroutput(train1,test1,ker,beta,bias); 

    cctest=corrcoef(ptestoutput,mtestoutput); 

    c(i)=mtestoutput-ptestoutput; 

   end 

end 
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%Best solutions (pbest) 

[pbest_obj,idx]=min(c); 

pbest_a=pop(idx); 

pbest_b=pop(idx,2); 

 

%gbest 

if pbest_obj<gbest_obj; 

    gbest_obj=pbest_obj; 

    gbest_a=pop(idx); 

    gbest_b=pop(idx,2); 

else  

end 

 

% Visualization  

   %Fitness Evaluation 

for i=1:pop_size, 

    fit(i)=c(i); 

end 

 

%Calculation of Probability of selection 

for i=1:pop_size, 

    fit_sum=fit_sum+fit(i); 

end 

for i=1:pop_size, 

    prob_sel(i)=fit(i)/fit_sum; 

end 

cum_prob=cumsum(prob_sel); 

 

%Selection 

rand_no=rand(pop_size,1); 

for i=1:pop_size, 

    for j=1:pop_size, 
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        if rand_no(i)<cum_prob(j); 

            m=j-1; 

            if m>0; 

                n=m; 

            else  

                n=1; 

            end  

            mat_pool(i,1)=pop(n,1); 

            mat_pool(i,2)=pop(n,2); 

            break 

        else  

             

        end 

         

    end 

end 

 

%Crossover 

rand_no=rand(pop_size,1); 

for i=1:pop_size, 

    for j=1:2,      %Number of variables has to be used  

        m=i; 

        n=i+1; 

        o=mod(n,2); 

            if o==1; 

                p=n-2; 

            else 

                p=n; 

            end 

        if rand_no(i)<prob_cross; 

            scal_fact=rand(pop_size,1)/10; 
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             off_spri(m,j)=round(mat_pool(m,j)+scal_fact(m)*(mat_pool(m,j)-

mat_pool(p,j))); 

        else  

            off_spri(i,j)=mat_pool(i,j); 

        end 

    end  

end  

 

%Check for constraints  

buffer=off_spri; 

for i=1:pop_size, 

    if (buffer(i,1)>=al)&(buffer(i,1)<=au); 

        off_spri(i,1)=buffer(i,1); 

    else 

        off_spri(i,1)=mat_pool(i,1); 

    end 

    if (buffer(i,2)>=bl)&(buffer(i,2)<=bu); 

        off_spri(i,2)=buffer(i,2); 

    else 

        off_spri(i,2)=mat_pool(i,2); 

    end 

end 

 

% Mutation  

rand_no=rand(pop_size,1); 

for i=1:pop_size, 

    for j=1:2, 

    if rand_no(i)<prob_mut; 

      mut_site=randint(1,1,[1,2]); 

      rand_sign=rand(); 

      if j==mut_site; 

            if rand_sign<0.5; 
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                pop(i,mut_site)=round(off_spri(i,mut_site)+incri); 

            else  

                pop(i,mut_site)=round(off_spri(i,mut_site)-incri); 

            end 

      else  

          pop(i,j)=off_spri(i,j); 

      end  

    else  

        pop(i,j)=off_spri(i,j); 

    end 

    end  

end 

 

%Check for constraints  

buffer=pop; 

for i=1:pop_size, 

    if (buffer(i,1)>=al)&(buffer(i,1)<=au); 

        pop(i,1)=buffer(i,1); 

    else 

        pop(i,1)=off_spri(i,1); 

    end 

    if (buffer(i,2)>=bl)&(buffer(i,2)<=bu); 

        pop(i,2)=buffer(i,2); 

    else 

        pop(i,2)=off_spri(i,2); 

    end 

end 

end  

gbest_obj 

gbest_a 

gbest_b 
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A-8 PROGRAM TO PERFORM PCA FOR A GIVEN DATA SET  

 

function [signals, PC,V] = pca1(data) 

% PCA1: Perform PCA using covariance. 

% data - MxN matrix of input data 

% (M dimensions, N trials) 

% signals - MxN matrix of projected data 

% PC - each column is a PC 

% V - Mx1 matrix of variances 

[M,N] = size (data); 

 

% subtract off the mean for each dimension 

mn = mean(data,2); 

data = data - repmat(mn,1,N); 

 

% calculate the covariance matrix 

covariance = 1 / (N-1) * data * data’; 

 

% find the eigenvectors and eigenvalues 

[PC, V] = eig(covariance); 

 

% extract diagonal of matrix as vector 

V = diag(V); 

 

% sort the variances in decreasing order 

[junk, rindices] = sort(-1*V); 

V = V(rindices); 

PC = PC(:,rindices); 

 

% project the original data set 

signals = PC’ * data; 
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