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ABSTRACT 

 “MeshFree Technique with Adaptive Refinement Strategy for Crack Propagation 

Analysis” is an investigation that has aimed to develop an adaptive refinement scheme 

for EFG based MeshFree method for modeling and simulating high stress gradients in 

plate structures.  

Modelling high stress gradients like crack propagation are still a challenge to 

numerical methods and this has been addressed to a certain extent using MeshFree. 

Crack path follows the edge of the element in case of Finite Element Method (FEM) 

and getting the true path even with remeshing is complicated. Use of special functions 

to model  discontinuity within the element (Extended Finite Element Method) has 

made modelling much simpler by reducing remeshing to a certain extent, but fails to 

arrive at smoother stress distribution. MeshFree method can offer solutions to the 

problems discussed and many researchers have thrown light in this direction.  

This work has focused on development of a MeshFree method that can be of help in 

crack propagation studies.  On the Element-Free Galerkin (EFG) platform with 

Moving Least Square (MLS) technique for shape function construction, Lagrangian 

multipliers for imposition of constraints and satisfaction of Kronecker delta property 

has been attempted successfully. With strain energy release rate as basis, crack 

formation-propagation analysis formulation has been done and strategies for adaptive 

refinement have been suggested. The mathematical formulations have been verified 

and validated. Comparison with traditional FEM to highlight the superiority of 

MeshFree methods in handling high stress gradient problem have been detailed with 

illustrations. 

Key words: Element-Free Galerkin Method, MeshFree Method, Crack Propagation, 

Stress Intensity Factor, Stress Concentration Factor 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 CHAPTER PROLOGUE 

Satisfaction of stability, strength, safety, serviceability and sustainability at affordable 

costs is the hallmark of good design.  Accomplishment of these objectives relies on 

thorough understanding of geometry and material modelling. An overview of Finite 

Element Method (FEM), Extended FEM (XFEM) and MeshFree method in modelling 

structures with high stress gradients, their strengths and weakness have been 

highlighted. Element-Free Galerkin formulations which are the most popular in 

MeshFree methods have been discussed and motivation for “Meshfree Technique 

with Adaptive Refinement Strategy for Crack Propagation Analysis” research, 

objectives and organisation of thesis are presented. 

1.2 MATHEMATICAL MODELLING AND SIMULATION 

Tremendous progress and advancements in FEM has greatly helped modelling and 

simulation of high stress gradients and crack propagation analysis. XFEM and 

MeshFree methods have evolved from FEM, further enhancing modelling and 

simulation in crack formation- propagation studies and the following section presents 

the development. 

1.2.1 Strong and Weak-Form 

Satisfying equilibrium of the structure is essential boundary condition and 

compatibility criterion is non-essential boundary condition. Strong-form solutions 

satisfy both essential and non-essential boundary conditions, at every point with the 

partial differential representation. When it is difficult to arrive at strong-form 

solutions, weak-from approach is adopted, where the differential equations are 

converted to an integral form, which requires lower order of polynomial function as 

solution to the problem. Weak-form satisfies essential boundary conditions and non-

essentials are satisfied on an average sense over the entire problem space. Galerkin’s 
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weighted residual method or Rayleigh-Ritz’s stationary energy principle are the 

popular solution techniques. Wherein polynomial / trigonometric functions, Fourier / 

Taylor series etc. that satisfy the essential boundary conditions are assumed as 

approximate solution to the partial differential equation. The constants involved in 

these assumed approximation functions are determined by making the weighted 

residual or potential energy minimum. 

Complex geometries and satisfaction of essential boundary conditions when are 

difficult, piece-wise polynomial that satisfy partial differential equations within a 

smaller domain is assumed. This is accomplished by discretizing the problem space. 

Discretization is named as finite elements in FEM, grids in finite difference method, 

finite volumes in finite volume method and domains in MeshFree method. 

1.2.2 Finite Element Method 

FEM is one of the very well developed numerical techniques used for solving most of 

the engineering problems. FEM gained its popularity as it is generic and can be 

applied to any kind of problems related to structural mechanics, heat transfer, fluid 

flow or electromagnetic field. In FEM (Robert et al., 2001, Zienkiwicz et al., 2005), 

the whole structure is discretized into finite elements. These elements have regular 

shapes, such as a line in case of 1D, triangle or quadrilateral in case of 2D, 

tetrahedron, pentagon or hexagon shape in case of 3D modelling approaches. These 

elements are interpolated using linear, quadratic or cubic polynomials. Figure 1.1 

shows the different types of linear interpolation finite elements that are popularly used 

to discretize the problem space in structural mechanics. The computed stiffness 

matrices of the elements are assembled to form the global stiffness matrix. The 

loading and boundary conditions are then applied to solve for nodal displacements. 

The strains and stresses are computed from the displacements using strain-

displacement and material matrices. The flow chart of FEM is given in Figure 1.2. 

The method is simple and very effective in solving most of the engineering problems. 
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Figure 1.1 – Different types of linear finite elements used for domain discretization 

 

Figure 1.2 – Flow chart for Finite Element Method 

1.2.3 Extended Finite Element Method 

When discontinuities within the elements like crack propagation have to be modelled, 

the problem space needs to be remeshed at each stage of propagation and reliance on 

an automated remeshing algorithm is inevitable. Automated remeshing in FEM is 

very complex to achieve a pre-defined mesh quality as human intervention is 

necessary. This difficulty has been overcome in XFEM by enriching with 
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discontinuous functions to model cracks. XFEM coupled with FEM helps in 

modelling propagation of crack tip. 

1.2.4 MeshFree Method 

It is well known and understood that analysis results of FEM are heavily influenced 

by the discretization i.e. meshing. MeshFree methods do away with requirement of a 

predefined mesh. In MeshFree techniques shape functions are constructed at points of 

interest using neighbouring nodes during the analysis stage. The MeshFree method 

offers additional advantages and capabilities to enhance compliance, convergence and 

completeness. Computed stresses using neighbouring nodes in MeshFree formulations 

will be much smoother across problem space, which is not accomplished in FEM at 

element boundaries. Further, the method is amenable for automating the nodal 

distribution by triangulation of the problem space. Nodes may be added or deleted as 

and when required to study more comprehensively the stress concentration and crack 

propagation problems. The node based approach of MeshFree methods permit 

employment of polynomials of any order as warranted by the smoothness of the stress 

distribution desired. 

1.3 DIFFERENT METHODS IN MESHFREE TECHNIQUE 

Some of the commonly adopted MeshFree methods are Smoothened Particle 

Hydrodynamics (SPH), Element-Free Galerkin (EFG) method, Meshless Local 

Petrov-Galerkin (MLPG) method, Reproducing Kernel Particle Method (RKPM), 

Point Interpolation Method (PIM), Finite Difference Method (FDM), Natural Element 

(NE). Further, they are also classified on the following basis 

1.3.1 Classification Based on Shape Function Construction 

MeshFree methods get classified to three groups based on shape function 

representation in terms of field variables as integral (SPH, RKPM), series (MLS, 

PIM) and differential (FDM) representations. A good comparison of these methods 

and their application with effect on computation and accuracy are discussed by 

Belytschko et al. (1996). 
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1.3.2 Classification Based on Formulation 

Formulations by both strong and weak-form are available (Liu and Gu 2005). 

Collocation methods are strong-form that do not need background cells and hence are 

truly MeshFree. Notwithstanding their truly MeshFee characteristics, these methods 

pose numerical instabilities and convergence problems. PIM which is a weak-form 

formulation helps reduce numerical instability and permits usage of higher order 

polynomials for better convergence. Weak-strong-form that are combinations of 

strong and weak-forms like SPH, offer combined advantage of both the formulations 

and supress the disadvantages. An extension of weak-form formulations called global 

or local are adopted that help in smoothing of response. EFG, RKPM, MLPG method, 

hp-cloud and partition of unity FEM fall into this form. 

1.3.3 Classification Based on Integration 

Integration required for computation of sub-domain stiffness necessitates employment 

of background cells. In addition to utility in integration to determine stiffness, it 

influences convergence and accuracy. Direct usage of background cells as in EFG, 

node/edge based smoothing techniques as in PIM ranging from very simple to 

sophisticated suggestions for implementation of integration are available. 

1.4 ELEMENT-FREE GALERKIN METHOD 

EFG is the most popular MeshFree method used to address problems related to 

structural mechanics. Belytschko et al. (1994) proposed the development of EFG 

method from diffuse element method which uses MLS for shape function 

construction. The important steps in implementation of EFG method are discussed in 

the sections that follow. 

1.4.1 Discretization of Problem Space 

Discretization includes the distribution of nodes and the arrangement of square 

integration cells in the problem space. The nodes are distributed by triangulation 

scheme, for 2D problem with finite number of triangular cells such that the geometry 

of the problem space is effectively captured. In case of 3D space, tetrahedral cells 
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may be used for the purpose. The vertices of the triangular or tetrahedral space also 

aids in identifying the neighbouring nodes, geometrical free edges and application of 

forces, boundary conditions. There are various algorithms available for triangulation 

schemes such as the Delaunay algorithm and advanced front-end algorithms which 

are commonly adopted in MeshFree methods for nodal distribution. 

Figure 1.3 – Problem space with triangular cells and integration cells 

 

Figure 1.4 – Problem space with integration cells (background cells) 

Further, to carry out numerical integration, square cells are identified using horizontal 

and vertical lines, so as to cover the entire problem space (Figure 1.3). The Gauss 

points (Figure 1.4) lying within the problem space is taken for integration. The 

number of Gauss points considered plays a major role in the accuracy of the solution. 

Liu (2009) gives suitable recommendations for Gauss and node point allocation in 

problem space. 
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1.4.2 Support and Influence Domain 

Some important terms in MeshFree method like node, influence domain, support 

domain, integration point and integration cell are shown in Figure 1.5.  

Node - is a point in the problem space where response characteristics are required.  

Influence domain – is the region of the problem space around a node inquisition 

where response characteristics are interpolated locally. 

Integration point – point in the background cell at which stiffness is determined. 

Support domain – region around an integration point that identifies nodes supporting 

the point for formulation of shape functions. 

 

Figure 1.5 – Problem space in MeshFree method with nodes, point-of-interest, domain 

and integration cells 

The support or influence domain determines the number of nodes to be used for 

approximation of the unit cell’s interpolation function. These can have different 

shapes such as circle, ellipse, square or rectangular. The radius of the domain is 

constructed by taking the average distance to the neighbouring nodes and these nodes 

are chosen by T6 or T2L schemes as discussed by Liu (2009). Further the nodes in the 

domain are assigned with weights, which vanish as they tend to boundary. 

The support domain is centric to the point-of-interest and it works well when the 

nodes are uniformly distributed and the nodes chosen are balanced about the point-of-

interest. When the nodes are non-uniformly distributed the influence domain is 
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advantageous as it is centric to node. Each node in the problem space has a domain of 

influence and the nodes exerting the influence over the point-of-interest are chosen for 

the construction of shape function. Figure 1.5 shows the influence region of support 

and influence domains. 

1.4.3 Formulation of System Equations 

The shape function in EFG method is formulated using MLS technique and the 

integration cells are used to carry out integration of the problem space. The 

integration cell has distributed Gauss points (Figure 1.4) and at each Gauss point 

(point-of-interest/ integration point) the shape function and subsequently the stiffness 

matrix is computed. The shape functions computed using MLS technique generally 

does not satisfy the Kronecker delta property. Therefore, the boundary conditions are 

imposed through Lagrange multipliers. The sequential steps in implementation of 

EFG using MLS are shown in flow chart (Figure 1.6). 

1.5 CRACK PROPAGATION 

A crack is a structural damage in the form of propagating fracture characterized by 

sharp tip and high ratio of length to width. High stresses during fabrication or service 

are causes for crack formation and propagation. It is one type of damage which many 

times cannot be seen through naked eyes. Cracking can lead to catastrophic failure of 

the structure. Crack formation-propagation studies are being extensively made to 

understand the phenomenon better and to render structures more safe and reliable. 

Primary modes of crack propagations are identified as Mode I (opening mode), where 

tensile load normal to the crack surface is applied, Mode II and Mode III are sliding 

modes which occur when shear force parallel to the crack surface and perpendicular 

to crack front (Mode II) and parallel to crack front (Mode III). Pictorial 

representations of the modes are shown in Figure 1.7. Crack formation and 

propagation patterns usually observed may be of the above type and many a times are 

due to a combination of the types making classification to any one mode impossible. 
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Figure 1.6 - Methodology in MeshFree 
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Figure 1.7– Modes of crack propagation 

1.6 ADAPTIVE REFINEMENT 

In numerical modelling and analysis of any structural system, arriving at the right 

number of nodes and their distribution is not an easy task. Intuitive judgments, past 

experience are of help sometimes. Usually one starts with coarse nodal density in the 

first attempt that gets refined in subsequent attempts by way of increase or decrease of 

nodes and their relocation. This approach though is interactive is a time consuming 

feed forward, feedback technique. Availability of an adaptive refinement algorithm 

greatly enhances understanding of crack formation and propagation studies. This 

approach is gaining popularity.  

1.6.1 Refinement Strategy 

MeshFree method has the advantage of using adaptive techniques in a much simpler 

way because of its ease to introduce, discard or move the nodes within the problem 

space as there is no predefined connectivity between them. There are mainly two 

types of errors that are associated with some numerical methods, namely interpolation 

and integration errors. Interpolation error can be reduced by increasing the order of a 

polynomial or number of nodes in the domain; whereas an integration error is 

minimized by increasing the Gauss points (Liu and Tu, 2002) or integration cells. The 

two important aspects to be considered while using adaptive refinement are error 

estimation and identification of refinement region.  

The popular methods of error estimation are residual method, posterior method and 

smoothing based methods.  Further refinements are carried out by p-refinement and h-
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refinement. In p-refinement the order of the polynomial is increased and in h-

refinement more nodes are added to the problem space. Mesh refinement has three 

types, namely, type one called mesh movement where the number of nodes are fixed 

and based on the errors, the nodes are relocated to minimize errors. Type two is 

known as mesh enrichment, which keeps the original nodes fixed and additional 

nodes are added when and where required. Remeshing is type three refinements 

which generates the new mesh from the previous data. 

 

Figure 1.8 – Voronoi cell for nodal refinement 

Generally remeshing is avoided as this is cumbersome and more of human 

intervention is required that makes coding difficult. Mesh movement can be well 

adapted to MeshFree methods. The mesh enrichment method is more convenient for 

automation. Usually triangular elements are used for the nodal distribution and during 

refinement nodes are placed at the centre of the cell and on the vertices. The same 

strategy can be used in case of quadrilateral elements or Voronoi cells (Figure 1.8) for 

nodal distribution.  

1.7 OBJECTIVES 

1.7.1 Motivation for the Work 

FEM has the advantage of being computationally very efficient, but has unresolved 

issues in capturing the high stress gradients. This difficulty is overcome by MeshFree 

methods which can handle high stress gradients very efficiently. The high 
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computational time demands of MeshFree methods offer tremendous scope for 

refinement and enhancement of capabilities of the technique in crack formation-

propagation studies. Wherein adaptive refinement schemes are a necessity, deserving 

attention and exploitation. 

1.7.2 Objective of the Research Work 

The primary objective of the thesis work is to develop an Adaptive refinement 

scheme for EFG based MeshFree method for modelling and simulating high stress 

gradients in plate structures. The proposed objective has been accomplished by the 

phases as detailed.  

 Mathematical formulation of EFG based MeshFree method for 1D beam 

analysis and its programing in MATLAB
®

 and its verification and 

validation using benchmark problems of beam bending. 

 Algorithm development for analysis of stress concentration effects and its 

extension to crack formation-propagation studies.  

 Development of strain energy based adaptive refinement scheme to 

improve the computational efficacy of the 2D MeshFree analysis code 

considering refinements to node distribution and integration cells and 

demonstration of efficacy of scheme proposed. 

1.8 ORGANISATION OF THE THESIS 

A general introduction to mathematical modelling and simulation in the emerging 

area of MeshFree, FEM and its utility in crack formation-propagation studies has been 

highlighted in Chapter 1. Motivation for the present work, scope and objectives has 

also been outlined. 

Chapter 2 provides an overview of the state-of-art of MeshFree for modelling crack 

propagation and the utility of adaptive refinement techniques in improvement of 

computational efficiency. Comparison of FEM, XFEM and MeshFree methods in 

modelling crack and its propagation has been detailed. Advancements in PIM, EFG 

and other MeshFree methods techniques have been discussed and adaptive refinement 

strategies have been reviewed, highlighting the need for the present work. 



INTRODUCTION 

13 

The formulation of EFG method based on MLS technique has been presented. 

Construction of MLS shape functions using nodal weighting functions has been 

explained. The modelling of 1D and 2D MeshFree formulation, strategies for 

addressing boundary conditions by Lagrange multipliers are elaborated in Chapter 3.  

The verification of the developed code based on the EFG method for both 1D and 2D 

problems are discussed in Chapter 4 with convergence studies that have been carried 

out for 1D beam and 2D beam using EFG method and FEM, and have been verified 

with the closed-form solutions. Comparison of Stress Concentration Factor (SCF) for 

plates having high stress gradients regions by EFG method, FEM and closed-form 

equations has been done to demonstrate the efficacy of the EFG method.  

Chapter 5 explains utility of MeshFree method in crack propagation analysis. The 

superiority of the method in computing the stresses around the crack tip has been 

illustrated. Crack propagation pattern prediction capabilities have been checked and 

verified for mixed mode (mode I and II) loading with results reported in literature 

(Patricio and Mattheij, 2007). Refinement strategy developed based on strain energy 

computed in the integration and triangular cells has been tested and validated.  

Highlights of the current investigation on utility of EFG method in crack formation-

propagation studies has been presented with  details of accomplishments of the 

objectives, contribution to advancement of the current analytical investigation to the 

area of research interest has been elaborated. Suggestions have been made on scope 

for future work in the concluding Chapter 6. 
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CHAPTER 2 

OVERVIEW OF LITERATURE 

2.1 CHAPTER PROLOGUE 

MeshFree methods for modelling crack propagation are becoming popular, with 

adaptive refinement technique. Limitations of FEM in crack propagation studies and 

extension of FEM to XFEM and recognition of potentials of MeshFree methods in 

crack analysis, tremendous need and scope for research in this area discussing the 

state of the art has been presented in the sections that follows. 

2.2 FINITE ELEMENT METHOD 

Tremendous efforts have gone into modelling cracks and simulate its propagation 

through the structure. A crack cannot be numerically initiated.A pre-initiated crack is 

first modelled and then the propagation is simulated. Crack propagation involves 

topological changes and necessitates continuous remeshing in its analysis. Crack 

growth and its direction are derived using the many criteria based on stress. One such 

approach is by using asymptotic FEM (Andrzej, 2002), where analytical constraints of 

asymptotic crack tip field are applied to conform the solution. Here, the quadrilateral 

element having linear or constant stress distribution is converted into triangular 

elements with hyperbolic singularity. With this method, highly discontinuous and 

local phenomenon has been observed. Modelling of cracks involving mixed modes 

has been attempted (Bouchard et al., 2003), where different crack growth and path 

criteria such as maximum energy release and circumferential stress/strain energy 

densities have been considered. This method involves remeshing based on attaining 

the criteria at the end of each iteration step. Further, a scheme based on unfitted FEM 

(Anita and Peter,2004), where the region of crack interface is separated by modelling 

it as a spring type constraint and has been used to model perfectly and imperfectly 

debond conditions. Penalty parameters are used to define the bonding at the interfaces 

and has been arrived at its value based on the interface and mesh conditions. The 

modelling of crack as discontinuity by introducing additional degrees-of-freedom at 
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existing nodes (Mergheim et al. 2005) though similar to XFEM, but cannot be applied 

to explicit problem. The element here is represented by two sets of basis functions, 

one which will be zero on one side of the discontinuity and will take the usual values 

on the other side and vice versa for the other basis function. To further address the 

modelling of stress gradients, Moving Least Square (MLS) technique for shape 

function construction in FEM to solve non-matching mesh has been attempted (Liu et 

al., 2009). This approach becomes very useful when one needs to have a very refined 

model in the place of high stress gradients. Therefore the model will now have 

regions with fine and coarse mesh, which have non-matching boundaries. The 

challenging work of simulating dynamic crack growth using time-integration scheme 

has been reported (Rethore et al., 2004), where the major concern of stabilization of 

scheme and energy from the crack has been highlighted. Various numerical problems 

with different meshing were considered in the study to arrive at the required condition 

for stability and accuracy. Based on this study a theoretical scheme using an energy 

approach had been proposed, which lists the conditions required to guarantee the 

stability and accuracy of time integration step. Further the paper concludes that even 

using a coarse mesh and a large time step, if projections are balanced and time 

integration for the given crack length is stable, then accurate results from the energy 

standpoint can still be obtained. 

As one may understand from the above discussion that in FEM, the shape functions 

are pre-defined for a set of nodes and the stiffness matrices are defined for the regular 

standard shapes. Therefore, in FEM for any given shape of element the stiffness 

matrices are derived by mapping. This mapping procedure is the one that introduces 

the major interpolation errors in FEM and is very severe when the elements are 

distorted. Therefore, in FEM, one follows predefined mesh quality criteria during 

meshing and this requires human intervention. These make FEM computationally 

very expensive for adaptive refinement and modelling crack propagation. 

2.3 EXTENDED FINITE ELEMENT METHOD (XFEM) 

FEM follows the crack edge for the propagation of crack in spite of all the efforts 

made to address crack related problems. In XFEM, the crack tip is enriched using 
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additional degrees-of-freedom and the interpolation is defined using enrichment 

functions. The basic idea of XFEM is that of using discontinuous fields in the 

required region and continuous fields where it is not required. The addition of these 

two gives the actual displacement interpolation in the domain. 

Cracks which are arbitrarily aligned within the mesh are dealt with using the 

enrichment functions which consists of discontinuous displacement fields. 

Enrichment or smoothening is done using some of the special functions such as Haar 

function (Equation 1), Heaveside function (Equation 2) and partition of unity. 
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The enrichment and smoothing functions used to model the crack path and tip has 

been discussed in detail by Belytschko and Black (1999). Studies on enriching the 

displacement approximations by the discontinuous fields to model the crack and 

asymptotic field near crack tip using a partition of unity has been reported by Nicolas 

et al. (1999) and John et al. (2000). Further the use of partition of unity to the 

displacement fields can solve branching and intersecting cracks (Sukumar et al. 2000) 

and demonstration of the procedure by computing Stress Intensity Factor (SIF) using 

different benchmark problems have been addressed in the work. The modelling of 2D 

and 3D cracks in discontinuous displacement fieldusing the partition of unity 

(Sukumar et al., 2003) proved to be efficient without remeshing. 

In literature, the level set Method has been used to track the interface motion. If the 

interface which has to be captured is set to zero, then the order of the space is taken 

1D more than the interface, i.e. if the crack is 2D, then space should be 3D. Level set 

theory with FEM has been used to update discontinuities on the surfaces by 

Belytschko et al. (2001) and signed distance functions have been used to represent the 

discontinuous functions. In XFEM with level set method, where the mesh remains 
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same with the growth of the crack has been attempted (Stolarska et al. 2001). Signed 

distance functions are used to model the enrichments and these satisfy partition of 

unity property in the entire problem space and have been used by Goangseup and 

Belytschko (2003). One type of enrichment function is sufficient and it is applied on 

three and six nodded triangular elements. The Newton - Raphson method has been 

adopted to solve the equilibrium equation to obtain field variables. Curved cracks 

with higher order enrichments applied to static cohesive cracks has been demonstrated 

by the authors. A detailed review on various problems dealing with modelling 

individual crack, representing crack in level set method and also various enrichment 

techniques have been reported by Karihaloo and Xiao (2003). The stress fields similar 

to that of the analytical solution are combined with the FE shape function; to arrive at 

the partition of unity around the crack tip has been attempted by Fan et al. (2004). 

Further, Goangseupet al. (2004) attempted to capture multiple cracks using step and 

tip enrichment functions. Improved techniques in crack tip enrichment and use of 

asymptotic function has been addressed by Yazid and Abdelmadjid (2008). The 

authors have also discussed on methods to deal with calculation of stresses, SIF and 

various convergence techniques. Adaptation of this method using ABAQUS
®

 

software has been discussed by Giner et al. (2009), where the software uses Heaviside 

function for the enrichment of the region around the crack. Some of the problems 

dealing with jumps, kink cracks, singularities are solved using XFEM and has been 

reviewed by Thomas and Belytschko (2010). They have discussed on various 

methodologies in XFEM, which deals with the application of boundary condition, 

blending of elements with different shape function, use of higher order polynomials, 

time integration and integration errors. In spite of incorporation of above mentioned 

advancements, XFEM has limitations in computing smoother stresses in the high 

stress gradient regions and this has led to the need for development of MeshFree 

methods. 

2.4 MESHFREE METHOD 

FEM is an element based method, whereas MeshFree (Antonio et al., 2004) is a node 

based technique. In MeshFree method, the stiffness matrix is derived for a given 

point-of-interest by constructing shape function using neighbouring nodes. This 
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approach of shape function construction ensures smoother interpolation of field 

variables and its derivatives throughout the problem space. The stress distribution, 

thus computed will be smoother and will not have a stress/strain jump at the same 

node as seen in FEM. The following are some of the methods that are adopted for 

construction of shape function in MeshFree methods, namely Kernel approximation, 

radial basis function and Moving Least Square (MLS) (Lancaster and Salkauskas, 

1981) method. A good comparison of these methods(VinhPhu et al. 2008) and its 

application with its effect on computation and accuracy has been discussed by 

Belytschko et al. (1996). 

2.4.1 Element-Free Galerkin (EFG) Method 

In the EFG method, arriving at an appropriate size of the domain is very critical as 

this plays the role of coupling the neighbouring nodes. Krysl and Belytschko (1999) 

have studied the influence of choosing the domain size, where they have arrived at a 

size of 3.9 times the nodal spacing. Small domain of influence improves local 

resolution and increases sparsity of the stiffness matrix. EFG based modelling 

schemes for 1D beam and 2D plate structures have been discussed by Dolbow and 

Belytschko (1998). Even the EFG method undergoes volumetric locking when the 

size of the domain is small. In case of large domains, more nodes contribute to the 

approximation resulting in no volumetric locking. Linear approximations will not 

satisfy the incompressibility constraint and do not match the deformation field 

resulting in the deterioration of accuracy and rate of convergence. Reduced 

integration has been adopted to overcome locking by John and Belytschko (1999a). 

Further, John and Belytschko (1999b) have discussed on the alignment of the support 

domain with background cells in order to reduce integration error. A bounding box 

technique for numerical integration that is the use of the intersected area for the 

integration has improved the rate of convergence. Modal analyses have been carried 

out to study the locking effect (Antonio and Sonia, 2001). 

Studies on the initiation and propagation of cracks have been carried out based on the 

different stress criteria; some of them are strain gradients, SIF, Rankine criterion 

(principal tensile stress reaches the uniaxial tensile strength at a node) and Loss of 
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hyperbolicity criterion. The arbitrary crack growth in static problems without much 

remeshing has been attempted by Belytschko et al. (1995a). EFG has proved to be 

effective without any enrichment of the displacement field near a crack tip and crack 

growth has been modelled without remeshing. In this work (Belytschko et al. 1995a) 

penalty method has been adopted to impose boundary conditions, which has 

advantages of arriving at banded positive definite stiffness matrix. The authors 

(Belytschko et al. 1995a) have validated EFG method using some of the numerical 

problems such as hole and edge crack in an infinite plate to obtain the SIF and it has 

been proved to be near to the exact solution. Crack propagation has been studied by 

considering different patterns of node distribution in the domain, of which radial 

pattern is proven to be effective. They have also thrown light on the studies of 

dynamic crack propagation. Modelling of growing cracks has been carried out without 

remeshing, just by extending its surfaces. Moving mesh technique in which nodes are 

fixed and have been moved till equilibrium is maintained. But the method has the 

difficulty in propagating cracks in arbitrary directions. Belytschko and Tabbara 

(1996) have addressed the problems related to arbitrary crack growth in anisotropic 

materials and also nonlinear problems. 

In linear elastic problems, EFG method has been adopted by Mark (1997) using 

enrichment techniques. The two methods of enriching the field approximation in EFG 

method, namely intrinsic and extrinsic enrichments have been discussed. The crack 

contact analysis algorithm has been presented that simulate cracks in sliding contact. 

Problems involving fatigue and quasi-static crack propagation have been solved to 

demonstrate the efficiency of EFG. Fleming et al. (1997) have extended the same 

work on curved cracks. Modelling of crack in 2D and 3D modelshave been discussed 

by Petrand Belytschko (1999). As the crack propagates, shape functions are 

approximated without remeshing the region. Star shaped nodal arrangement around 

the tip and regular nodal distribution elsewhere to simulate arbitrary dynamic cracks 

in the elastic model has been suggested by Belytschko et al. (2000).  

The use of the level set method for the studies on crack propagation has been carried 

out using nodal data by Ventura (2002). Crack approximation using a jump function 

that accounts for displacement continuity and Westergard's solution for enrichment at 
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crack tip has been presented. Further studies on stationary crack in 2D functionally 

graded materials of arbitrary geometry have been carried out by Rao and Rahman 

(2003). Problems dealing with first mode and mixed mode for calculating SIF and 

validating with other numerical techniques have been illustrated. Further, the authors 

have suggested on the study of multiple cracks as a scope for future work. Rabczuk 

and Belytschko (2003) presented a scheme to model cracks, where the discontinuity 

introduced due to crack has been brought in through the discrete crack model. The 

plasticity in the model is applied till the region (where crack is to be introduced) 

reaches the threshold stress value, after which the discrete crack has been introduced; 

numerical results were verified with experimental data. Further Rabczuk and 

Belytschko (2004) modelled arbitrarily oriented cracks by use of local enrichment 

sign functions. MLS method for the construction of shape function by Huerta et al. 

(2004) has shown increased accuracy and convergence without the problem of 

locking. 

The jump in the displacement field has been used to represent the crack, which is 

defined by discontinuous function and the closing of the crack tip by crack front 

function. Extended MeshFree method based on local partition of unity for cohesive 

crack has been presented by Timon et al. (2007), Goangseup et al. (2007) and Timon 

and Goangseup (2007).  In the second paper instead of crack front function, 

Lagrangian multiplier has been used to achieve the same. In the last paper 3D 

MeshFree methods with non-linear material models for crack (with crack tip in 

influence domain) initiation and propagation have been discussed.Numerical results 

have been presented for several quasi static and dynamic crack propagation problems. 

Further comparisons have been made with the available analytical and experimental 

results. 

Extended EFG method for modelling crack initiation, propagation and branching have 

been discussed by Bordas et al. (2008). The intrinsic and extrinsic approaches of 

modelling crack have been discussed; where the intrinsic approach can model only 

straight crack. The former uses discontinuous enrichment along with a Lagrange 

multiplier to close the crack front. Non-linearity has been introduced in crack 

propagation by Arun et al. (2010); this problem was tackled using EFG and Newton-
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Raphson algorithm. The aspects such as the effect of initial crack, its growth and its 

effect on structural responses have been discussed. The concept of Bordas et al. 

(2008) has been extended by Pant et al. (2013) by introducing modifications to the 

intrinsic approach for modelling kinked cracks and discussions about the successful 

implementation of simulating quasi-static crack growth have been presented. 

EFG method for modelling crack without surface creation has been attempted by 

Wang and Wang (2010). In this work, local enrichment of the trial function (sine 

function) for modelling and the effect of discontinuity on the influence domain of the 

node have been studied. Application of partition of unity in EFG method improved 

the rate of convergence and also accuracy as shown by Eigel et al. (2010). Pinkang 

and Dongdong (2012) have reported that the EFG method is more accurate compared 

to FEM and its workability is tested on rod and beam elements. The MeshFree 

methods being computationally expensive, a decomposition method has been 

proposed by Metsis and Papadrakakis (2012) known as the dual domain 

decomposition Finite Element Tearing and Interconnect (FETI) family method. The 

MeshFree method is subdivided into several overlapping sub-domains and the non-

overlapping sub-domains by modifying the required displacement compatibility 

conditions. The results obtained and efficiency of the formulated method has been 

presented. 

2.4.2 Point Interpolation and Other Methods 

Point Interpolation Method (PIM) is an extension of EFG method, in which the shape 

functions satisfy the Kronecker delta property. In this method the shape functions are 

defined based on the approach followed in FEM, i.e., the assumed polynomial 

consists of constants equal to the number of nodes. The studies such as locally 

smoothing the strain field using triangular background meshes have been discussed by 

Xu et al. (2010). This method assures good convergence and also solutions obtained 

are bound from both sides. But in this method, problem of singularities has been 

observed and hence in order to overcome this issue radial basis functions have been 

adopted by Chen et al. (2010) and Cui et al. (2011). In Chen et al. (2010), different 

types of smoothing operations and their advantages have been discussed. In Cui et al. 
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(2011), edge based strain smoothing with linear interpolation technique, which 

provides computational efficiency has been discussed. This method has proved to be 

more accurate than the traditional FEM and PIM. Ferreira and Roque (2011) have 

presented the formulation of global unsymmetrical collocation radial basis functions 

based method to compute elliptic operators.  

Thomas and Hermann (2004) elaborate MeshFree methods that have been based on 

the boundary element method, collocation method and RKPM. They have also 

discussed different types of integrations carried out, like direct nodal integration, 

background cell integration and integration over the support domain. Finite 

Difference Method (FDM) is one of the traditional strong-form methods; similarly 

collocation methods are MeshFree strong-form method. Point collocation method to 

model interface problems and intrinsic wedge enrichment is added to the basis 

function of the MLS. Numerical results have been presented to show its application to 

straight and curved boundaries. Use of localized radial basis approximation for the 

shape function construction in Chen et al. (2011b) proved to be accurate, though it is 

unstable. In order to obtain stability, Mohamed et al. (2012) have adopted shape 

function construction by using a linear interpolation function using MLS and radial 

basis function. This method has been proved to be efficient for the boundary value 

problem. 

Integration is dependent on the overlapping domains and partition of unity has been 

used to solve the problem. Gu (2005) has discussed the development of MeshFree 

methods with respect to construction of shape functions and the quality of the 

interpolation. Further Marjan and Roman (2008) used the MLPG method to arrive at 

the constant number of nodes in the domain for shape function construction to a 

particular domain size. The line element method has been developed by Paola et al. 

(2008) and has adopted harmonic polynomials (Laurent Series) which satisfy the field 

variables in the entire domain. System equations have been solved using weak-form 

criteria that the square net fluxes are minimum across the border. 
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2.4.3 Coupling MeshFree Methods 

Combinations of some of the MeshFree methods have been considered in order to 

increase the efficiency by decreasing the computational time. Hence methods like 

EFG, SPH, RKPM, MLPG, PIM and NE are coupled with each other to address some 

of the special issues. One such combination has been adopted by Chinesta et al. 

(2007), where enrichment to RKPM has been provided, but the method did not result 

in efficient results. Later MLS has been adopted to obtain the shape functions for NE 

method and this has been fused with the RKPM enrichment. This method has been 

adopted for several numerical examples and they have proved to be efficient. The 

section has also discussed on the advancements of the old techniques which aids in 

improving the accuracy and computational efficiency of the method. 

A new weight function has been proposed by Thomas and Christian (2005), using 

which the boundary conditions have been imposed directly on to the nodes. It has also 

been found that with this method more stable results for varying size of the influence 

radius have been obtained. Zan et al. (2009) has derived the EFG method using 

weighted orthogonal basis function and has termed it as Improved EFG (IEFG) 

method. With this orthogonality property, the coefficients in improved MLS will be 

lesser than the MLS approximations and therefore will be more computationally 

efficient. Further new integration approach using the support domain unlike in 

traditional method where integration cells have been used is presented by Yan and 

Belytschko (2010). 

In recent years, development of different materials has led to the demand for 

developing efficient numerical technique for their analysis. Composites and 

functionally graded materials are efficiently modelled using MeshFree methods which 

otherwise are difficult using FEM. Liew et al. (2011) have reviewed on different types 

of analysis used for such materials and the authors have mentioned the scope for 

development of these methods in 3D problems. 

The other advancement in MeshFree methods with different shape for influence 

domain has been presented. Usually influence domains are circular or rectangle; they 

have suggested arbitrary convex polygon shape. This approach helps in reducing the 

bandwidth of stiffness matrix and also boundary condition implementation has been 
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made easy. Change in shape of influence domain has shown accurate results with 

lesser computational time. Use of elliptical shape functions instead of linear, quadratic 

functions and MLS method with penalty function by Hae et al. (2012) has been 

proved to be efficient. Higher order polynomials are used and this function has been 

efficient when applied to different shapes of plate under different loading and 

boundary conditions. Xiaoying et al. (2012) discussed on the discretization error 

control in EFG method, as in MeshFree methods the errors cannot be categorized as 

errors due to insufficient nodes or insufficient basis function. Further, it has also been 

highlighted that arbitrarily setting the size of nodal supports can severely affect the 

error control and solution accuracy. 

2.5 HYBRID NUMERICAL METHODS 

Hence, from the previous section, it has been clear that, the capabilities of FEM or 

MeshFree method can greatly be improved by combining two techniques or adopting 

extended features such as discontinuous functions and asymptotic crack tip function. 

The hybrid of XFEM and FEM gives much more accurate results without much re-

meshing. But it is difficult to adopt in case of complex geometries. Similarly, hybrid 

of FEM and MeshFree methods are also discussed which proves to be efficient in 

some cases. 

2.5.1 Hybrid of FEM and XFEM 

Modelling cracks in finite element framework by enriching displacement function by 

discontinuous field and near tip asymptotic field has been presented by John and 

Belytschko (1999b). The same idea was extended by Sukumar et al. (2003) to solve 

3D crack propagation problems, coupled with fast marching method. Quasi-static 

analysis of 3D crack propagation studies has been carried out by Pedro and 

Belytschko (2005). The authors have combined XFEM with FEM and have used 

linear tetrahedral elements for modelling. The method allows closed-form integration 

and the damage has been introduced when a consecutive model loses its stability. 

Further, studies have been carried out on the different shapes of cracks such as 

elliptical and circular. SIF has been computed numerically and these results have 
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shown good agreement with the theoretical solutions.With smoothened enrichment, 

the accuracy increased with the rate of convergence. Mapping is another disadvantage 

while modelling in FEM. Using XFEM mapping of solution between the mesh is 

avoided so it is advantageous to use it in a nonlinear and time dependent problems. 

Armando et al. (2007) have studied on 3D problems without mapping and have given 

good correlation with the experimental results. Orthotropic crack propagation has 

been studied by Asadpoure and Mohammadi (2007). 

2.5.2 Hybrid of FEM and MeshFree Method 

MeshFree methods have proved their ability in giving accurate results, but lacks 

computational efficiency. Therefore, researchers have put their effort to adopt FEM 

and combine it with the MeshFree method in order to get the full advantage of these 

methods of minimizing their disadvantages. FEM has been used in the entire structure 

and in the sub-domain where meshes play a major role can be replaced with MeshFree 

methods.  

FEM and EFG method have been combined together to obtain continuity and 

consistency between interface elements. Belytschko et al. (1995b) have implemented 

this on 1Dcantilever beam and wave propagation problem for elasto-static and elasto-

dynamic problems. Though the accuracy has improved, it lacks faster convergence 

due to the errors. But in case of fracture problems it proved to be efficient with 

reduced computational cost. Application of Dirichlet boundary condition has been 

carried out by Yury (1996). He has adopted a method where the whole problem space 

has been modelled using weighted Meshless methods and on the boundary FEM has 

been implemented. Rao and Rahman (2001) adopted FEM to model the region away 

from cracks whereas near the cracks EFG method has been used. This showed 

accurate results when compared with the fully MeshFree method. In the interface 

nodes, shape functions from both the methods have been used, the crack region or the 

domain of interest is modelled only by nodal points. This method has given accurate 

result with significant reduction in computational time. Huerta et al. (2004) improved 

the same idea by adopting different interpolation methods in various regions and 

further in place of transition, linear interpolation has been carried out. Bridging scale 
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and continuous blending techniques have been discussed in this paper, which 

addressed various approaches for nodal interpolation and convergence. Further 

Rabczuk and Eibl (2004) modelled pre-stressed concrete beam, where concrete is 

modelled as particles and steel as beam elements. The bond forces between concrete 

and steel are applied in tangential and normal to both particles and beam elements. It 

is difficult to model large changes in thickness for failure model assuming plane stress 

condition in this method. Rabczuk et al. (2006) coupled FEM with RKPM using 

different coupling techniques and suggested that each technique holds good for some 

kind of problems. 

Linearly conforming PIM and FEM to obtain the upper bound solution have been 

adopted by Liu and Zhang (2008). Shape functions have been constructed using PIM 

either using polynomial functions or radial basis functions. Triangular elements have 

been used as background mesh; linear interpolation is same as in case of FEM. 

Quadratic interpolation discretizes the cells as interior and exterior cells. Interior cells 

will not have any edges of the problem space unlike exterior cells. The limit analysis 

of structures puts emphasis on the numerical discretization strategy adopted and on 

the computational limit analysis procedure. Xiao (2012) has demonstrated the 

procedures with one based on FEM and the other based on EFG method. The 

resulting discretized formulation is then solved using Second-Order Cone 

Programming (SOCP). 

Hellinger–Reissnervariational principle which is similar to that of Galerkin weak-

form has been derived to solve the system equations by Liu et al. (2009). The method 

aids in the convergence from both bounds. Thomas and Belytschko (2010) presented 

crack tip modelled by MeshFree method and crack path by XFEM.  The Edge-based 

Smoothed Finite Element Method (ES-FEM), where triangular elements have been 

used to generate the mesh quiet easily for any complicated domains has been 

presented by Chen et al. (2011c). The features of ES-FEM are utilized to generate the 

energy error estimate. The assigned scaling factors to nodes that define the local nodal 

density are then refined to control the nodal density. The refinement approach is 

demonstrated on an automobile part that has shown the effectiveness and efficiency of 

the proposed method. 
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Material Point Method (MPM) is one of the MeshFree methods which have been used 

for modelling the extreme deformation without element mapping. While modelling 

problem of small deformation, FEM is more efficient than MPM. Lian et al. (2012) 

have combined FEM and MPM for problems with large deformation. Eulerian particle 

has been used for background meshing and Lagrangian is used to represent state 

variables of particles in the material domain. Further, the authors have verified this 

method using numerical problems and have obtained results which are agreeable with 

the experimental data. Another MeshFree technique RKPM has been coupled with 

FEM by Wu et al. (2013) in order to avoid the transition at the interface. Unique 

domain and nodal integrations have been performed for both the methods and state 

variables are stored directly at the nodal points. This method has been tested for 

different loading conditions such as quasi-static, impact and blast loading, and 

realistic results have been obtained. A coupled FEM and MeshFree method is used for 

numerical analysis by Ullah et al. (2013). The problem domain is first modelled using 

FEM and the corresponding region, which requires adaptive refinement have been 

modelled by MeshFree method. In these MeshFree regions local maximum entropy 

shape functions and FEM for straightforward implementation of essential boundary 

conditions have been used. 

2.6 ADAPTIVE REFINEMENT 

Gradient based methods are most commonly adopted for the error estimate as it does 

not need any special formulations.  Haussler and Korn (1998) eliminated interpolation 

error by refining the nodes in the region of high strain gradients. Nodes have been 

placed at the centre of each triangular cell, which have been used for the distribution 

of nodes. Taylor’s series has been adopted by Gavete et al. (2002) for the construction 

of shape function using the MLS technique. Further strain energy gradient has been 

used for the refinement of background cells to reduce integration error. The relative 

strain energy gradient has been adopted as criteria for refinement by Luo and Combe 

(2003) and nodes have been increased to reduce the relative error. 

The refinements of nodes based on the difference between the projected and actual 

stress values have been discussed by Gye-Hee et al., (2003) and the nodes have been 
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increased in the region of computed higher difference of stresses. Error estimate based 

on Zienkiewicz-Zhu developed by Lee and Zhou (2004a) and Rodrigo and Marcelo 

(2005), in which exact stresses have been replaced by the recovery stress field. Lee 

and Zhou (2004a) used Moving Least Square Stationary Least Square (MLS-SLS) for 

the construction of shape function.  MLS-SLS are compared with Belytschko’s 

recovery scheme which adopted field variables obtained from the MLS (Liu and 

Bernard, 2005). MLS-SLS are largely affected by the smoothing and these problems 

are much more accurate than the non-smoothened method. As discussed earlier, 

boundary condition application is quite difficult in MeshFree method. Hence Lee and 

Zhou (2004b) extended the previous work by coupling it with FEM, where boundary 

condition has been applied through FEM. Further stress recovery in tandem with 

stabilized nodal integration has been carried out (Yvonnet et al., 2006). 

Voronoi cell is an alternative method used for triangular cells for the distribution of 

nodes; it has an advantage of forming the cell for a given set of nodes. Liu and Kee 

(2005) considered MLS shape function and strong-form radial collocation method for 

solving system equations. Nodes have been introduced into Voronoi cells to reduce 

interpolation error. Rabczuk and Belytschko (2007) formulated the shape function 

using mixed Lagrangian-Euler Kernel method which can be extended to 3D structure 

as well. Additional particles have been introduced into the constructed Voronoi cells 

in the region of large strain gradients. Chen et al. (2011a) have adopted the Edge-

based Smoothed Point Interpolation Method (ES-PIM). The error in the strain energy 

has been computed for the triangular background cells using the smoothed strains of 

the edges of the triangular cell. Each node in the domain has been assigned a scaling 

factor that controls the local nodal density. 

Error estimate based on the residuals for KRPM has been carried out by Belytschko et 

al. (1998). In this method wavelet is used to divide the high and low scale components 

and these high scale components have been used as an error indicator for refinement. 

Rabczuk and Belytschko (2005) calculated error based on the displacement field. The 

error of each node has been calculated and the node which crosses certain criteria, 

refinement has been carried out around that node. The nodes are present in the corner 

of the pixels and these pixels are made sure to coincide with the background 
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integration cells. For refinement the node of large error is further divided into 4 

pixels. The method has been much suited for solid models and not for shell models. 

Collocated Discrete Least Squares (CDLS) method has been adopted by Afshar and 

Lashckarbolok (2008) to estimate errors directly from the least squares. Nodes have 

been placed in the domain such that the error is distributed in the domain evenly. All 

the nodes have been connected by a spring and these nodes are moved till all nodes 

are in equilibrium. Mesh movement in case of FEM leads to the distortion of the 

elements, whereas in MeshFree methods it will not. Afshar et al. (2011) has extended 

the same work for MLS technique and have proved to be efficient for both the 

methods of shape function construction. 

Least square function has been used by Perazzo et al. (2008) for construction of shape 

function as well as error estimation. Delaunay technique has been commonly adopted 

for the nodal distribution, i.e.  nodes are placed at the centre and the vertices of the 

triangular cell used for nodal distribution. Rabczuk and Samaniego (2008) modelled 

shear bands as a jump in displacements at discrete positions and loss of stability has 

been considered as a criterion for refinement.  

Error estimation has been carried out using Taylor’s expansion technique in the 

computed displacement fields by Canh et al. (2010). Using smoothened values of 

displacement derivatives error density has been estimated. Further Afshar et al. (2012) 

used Discrete Least Square (DLS) MeshFree method to evaluate the functional values 

at nodal points. Both the methods have used Voronoi cells for the nodal refinement. If 

the error exceeds the tolerance limit, nodes have been introduced on the vertices or at 

the centre of the Voronoi cells. The Galerkin boundary node method in which 

vibrational boundary integral has been combined with the MLS approximation to get 

trial and the test functions have been discussed by Xiaolin (2011). The error is 

estimated using two successive nodal arrangements and refinement has been carried 

out to achieve faster convergence. 

Node-based Smoothed Point Interpolation Method (NS-PIM) to solve an adaptive 

refinement problem has been proposed by Tanga et al. (2011). The NS-PIM has been 

formulated using a simple four-node tetrahedral mesh. The displacement-based FEM 

will provide the lower bound solutions and then the upper bound solutions are 
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obtained using the NS-PIM, and thus the energy error estimate has been computed. 

The tetrahedral cells with higher energy error estimates have then been refined that 

can effectively capture the high stress concentrations. Ullah and Augarde (2013) 

suggested adaptive refinement technique for modelling elasto-plastic deformation and 

used stress recovery based method for error estimation. 

Mixed Discrete Least Squares (MDLS) meshless method has been able to compute 

displacements and stresses simultaneously without using the second order differential 

(Amani et al.,2014). An error has been estimated based on the least square residual 

and both node movement and node enrichment methods have been adopted. Voronoi 

cells are used to identify the neighbouring nodes.  MDLS is better and has faster 

convergence than DLS which has been discussed earlier. A node-based energy error 

estimate has been presented by Yiqian et al. (2014). The smooth shape functions in 

MeshFree methods may lead to spurious oscillation away from the region containing 

the error, which may result in unnecessary nodes. Therefore, to address this 

shortcoming a double refined technique has been presented. An adaptive numerical 

integration in EFG method has been carried out by Grand et al. (2015). In the existing 

integration methods, the integration locations are fixed and are based on the number 

of integration points used. In the present paper, an adaptive procedure to distribute the 

integration points within the problem domain has been reported. The method allows 

control over the accuracy of the integration and also reduces the number of integration 

points required. 

Based on the thorough literature survey, the need for development of effective 

adaptive refinement scheme in MeshFree platform has been necessitated. The same 

have been addressed in the present work. 
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CHAPTER 3 

FORMULATION OF EFG METHOD 

3.1 CHAPTER PROLOGUE 

Utility of MeshFree methods in structural mechanics with emphasis to crack studies 

has been elaborated in the preceding chapters. EFG method based on MLS technique 

for shape functions construction using nodal weighting functions for modelling of 1D 

and 2D problems has been presented with Lagrange multipliers for addressing 

boundary conditions as a precursor to extension of the method for crack analysis.  

3.2 SHAPE FUNCTION BY MOVING LEAST SQUARE METHOD 

Shape function or interpolation of field variables decide the accuracy of the results 

obtained in any numerical methods. ( , )u   is the functions of field variable defined in 

the 2D domain and the approximation of ( , )u   at a point can be given as discussed 

by Lancaster and Salkauskas (1981), 
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number of nodes chosen for the construction of shape function at the point-of-interest, 

W is the weighting function and has been discussed in Section 3.3 

Similarly, Equation 3.1 may be reduced to 1D case, 
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where, 
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The shape function and its derivatives at a point-of-interest in a plate with circular 

cut-out using an exponential weighting function are as shown in Figures 3.1-3.3. 

 

Figure 3.1 – Shape function at point-of-interest in a plate with circular cut-out 

 

Figure 3.2 – First-order differential of the shape function w.r.t  on the plate 

 

Figure 3.3 – First-order differential of the shape function w.r.t   on the plate 
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3.3 WEIGHTING FUNCTIONS 

Galerkin’s method is a method of weighted residuals, where the sum of the weighted 

errors gets minimized. Many suggestions for weighting function have been made in 

literature and a few popular are presented here. Choosing an appropriate weighting 

function is the most crucial step in MeshFree method. The most commonly used 

weighting functions are of exponential, cubic spline, quartic spline and quartic forms. 

These functions in a 1D space defined by the variable  are shown in Equations 3.3-

3.6 (Liu, 2009), respectively. 
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where,  is a constant taken as 0.3, /I wd d   ;   is any point in the 1D space, I

is the point/node whose weight is computed and wd is the smoothing length of the 

domain. 

The compromise between the accuracy and smoothness of stress distribution lies in 

choosing the dw value, as lower value of dw leads to higher accuracy of stresses with 

coarser distribution and higher values will have opposite effect.  
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Figure 3.4 – Distribution of weights in the weight function for  = -1 to 1 

The weighting functions (Eqs. 3.4-3.6) and its derivatives are drawn in Figures 3.4-

3.6, where the domain size is varied from -1 to 1. It can be clearly seen in the Figures 

3.4-3.6 that the exponential weight function gives higher importance to neighbouring 

nodes, which will be important in locating the high stress point in the problems such 

as crack initiation and propagation. Also, the first and second-order differential of the 

exponential weight function follows continuity in the domain which aids in smoother 

interpolation of stresses. Hence the thesis work carried out adopts the exponential 

weighting function for the construction of MLS shape function and has discussed in 

detail by taking a case of 2D weighting function. 

From Equation 3.3, the exponential weight function for a 2D space defined by  ,   

coordinates and can be written in the form, 
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where
 

d  and
 

d  
can be written as

 
I
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
 respectively. ( ,  ) is 

any point in the domain, ( I , I )
 
 is the point/node whose weight is computed, 

wd 
and 

wd 
 are the smoothing lengths of the domain in the directions  ,  . 

 

Figure 3.5 – First-order differential of the weighting functions for  = -1 to 1 

 

Figure 3.6 – Second-order differential of the weighting functions for = -1 to 1 
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The first differential of d  and
 
d are, 
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Now differentiating the weighting function w.r.t.   and
 

we get, 
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The weight distribution of the Equation 3.7 is shown in Figure 3.7 and the distribution 

of first-order differential of Equation 3.7 in  coordinates are shown in Figures 3.8 

and 3.9, respectively. 

 

Figure 3.7 - Exponential weight function in 2D space for , = -1 to 1  
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Figure 3.8 – First-order differential of the 2D exponential weight function w.r.t.   

 

Figure 3.9 – First-order differential of the 2D exponential weight function w.r.t.   

For a 1D space defined by , the first-order differential of the weighting function from 

Equation 3.8,  can be written as, 
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3.4 2D PLATE FORMULATION 

The plate formulation involves the derivation of stress-strain relation, kinematic 

relation, strain-displacement matrix and finally the stiffness matrix. To start with, an 

unit cell is shown to define the coordinate system, and the stresses in Figure 3.10.  
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Figure 3.10 – Stress orientation in a unit cell 

Based on this unit cell which is defined in an x, y rectangular coordinate system, the 

constitutive relation (Timoshenko and Goodier, 1970) for an isotropic material is 

defined, 
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where, xx ,
yy and zz are the normal stresses; 

yz , xz and
xy are the shear stresses; xx

, 
yy and zz  are the normal strains; 

yz , xz  and 
xy are the shear strains; 11C  and 12C

are the material constants. 

For a plane stress problem, by applying plane stress condition, Equation 3.13 may be 

written in the form, 
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The kinematic relation for the 2D plate is written as, 
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where, 0u , 0v and 0w are mid-plane displacements of the plate along x, y and z axis, 

respectively. x and 
y are the mid-plane rotations along x, y axis, respectively. These 

detailed representations in the graphical form is shown in Figure 3.11 

 

Figure 3.11 – Displacements and rotations about the mid-surface in plate formulation 

By differentiating the kinematics relations shown in Equation 3.15, we get the strain 

relation. 
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in-plane shear strain; 
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y x
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 

 
   are the curvature 

strains. 

From Equations 3.1 and 3.16, the strain-displacement relation may be written as, 
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The relation between the forces and moments with stresses can be expressed as, 
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where, xN , yN and xyN are the forces, xM , xM and xM are the moments, 
xQ and yQ  

are the shear forces and b , h  are the cross-sectional dimensions of the plate. 

Substituting Equations 3.14, 3.16 in 3.18 and integrating, we get 
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Then from Equations 3.17 and 3.19, the stiffness matrix of the domain is, 
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 and xI and yI are the coordinates of the nodes in the 

domain for construction of shape function. The problem space is integrated using the 

integration cells, which is defined using the natural coordinates . 

Equation 3.20 is numerically integrated by applying Gaussian quadrature, which is 

represented in terms of Gauss points and Gauss weights as, 

      
11

, , ,
g gm n

T

i j j j ji i i

ji

K w w B Mat B J   


    … 3.21 

where, 
gm and 

gn  are the number of Gauss points along x and y coordinates. 

3.5 1D BEAM FORMULATION 

The stress-strain relation for an isotropic material in 1D (Figure 3.12) can be obtained 

from Equation 3.13, 
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Figure 3.12 - Stress resultants on 1D beam 

Similarly, the kinematic relations are, 
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where, 0u and 0v  are mid-plane displacements along x and y directions respectively, 

and z is the mid-plane rotation as shown in Figure 3.13 

 

Figure 3.13 – Displacements and rotation on 1D beam 

For an 1D beam, the strains obtained from the kinematic relation (Equation 3.23) in 

the form, 

0

0

xx xx x

xy z

u
y

x

vu v

y x x

  

 

 
    


 

   
   

  … 3.24 

where, 00 u
xx x





  is the in-plane strain; z

x x







   is the curvature strain 

The strain-displacement matrix is obtained by substituting the shape functions derived 

from Equation 3.2, 
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The relation of forces and moment with stresses is, 
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where, xN , xM and
xQ  are force, moment and shear force respectively, and b , h  are 

the cross-sectional dimensions of the plate. 
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Substituting Equation 3.22 and 3.24 in Equation 3.26, we get 
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where, E is the Young’s modulus, I is area moment of interia and AC is the cross-

sectional area. 

Then the stiffness matrix can be derived, 
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where, 
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 and Ix  is the co-ordinate of the nodes in the domain 

Equation 3.28 is numerically integrated by applying Gaussian quadrature, which is 

represented in terms of Gauss points and weights as, 
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where, 
gn  is the total number of Gauss points in the problem space.  

3.6 APPLICATION OF BOUNDARY CONDITION  AND TRACTION 

FORCE 

As the MLS shape functions does not satisfy Kornecker delta property, boundary 

condition cannot be applied directly using Gauss elimination. Hence Lagrange 

multipliers are used for boundary condition application and the same is detailed in 

Section 3.6.1. Further the uniformly distributed load along the plate edges are 

discussed in Section 3.6.2.  

3.6.1 Application of Boundary Condition by Lagrange Multipliers 

The boundary condition application using Lagrange multipliers can be written as, 
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where G  is the Lagrange multiplier matrix,  is the Lagrange multiplier, and F is 

applied force. 

The G matrix consists of multi-point constraint that applies the required boundary 

constraints in the problem space. If  is the one-dimensional domain along which the 

boundary constraints to be imposed, then the matrix G  may be written as, 
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where, N is the shape function that interpolates  along the domain , L is the 

length of the domain and n is the number of Gauss points along the domain  

required for numerical integration and   is the natural coordinate in 1D that defines 

the boundary domain. 

For a 1D beam formulation, the boundary condition is applied at a point and therefore 

simply reduces to the form, 

 iG N     … 3.32 

3.6.2 Application of Traction Force along a Line in Problem Space 

If p is the one-dimensional domain along which the uniform pressure load is to be 

applied and it can be represented as shown, 
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where P is the applied pressure along the domain p, Lp is the length domain p and np 

is the number of Gauss points along the domain p. 

For a 1D beam formulation, Equation 3.33 simply reduces to the form, 

 l

if P N    … 3.34 
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where P
l
 simply becomes a point load. 

3.7 DISPLACEMENTS, STRAINS AND STRESSES 

The displacement of the field variables and the constraint forces are computed as, 
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Then the displacement at any point-of-interest is obtained from the above equation 

using shape function as, 
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… 3.36

 

The normal, curvature and out-of-plane strain at a given point-of-interest are 

computed using the strain-displacement equation as, 
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Subsequently, the stresses are computed, 

0

0

11 12 0

12 11

44

55

66

1 0 0 0 0 0 00 0 0

0 1 0 0 0 0 00 0 0

0 0 1 0 0 0 00 0 0 0

0 0 0 0 0 0 1 00 0 0 0

0 0 0 0 0 0 0 10 0 0 0

xx

yy

xx

xy
xx

xxy

y
yz

xy
xz

yz

xz

zC C

zC C

zC

C

C


















 
 
 
      
      
         

      
      
      
         

 
 
 
 

 

 … 3.38 

where, z is the coordinate in thickness and varies bottom to top surface of the plate 

from –h/2 to h/2. 
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From the above equation, the principal (Equation 3.39) and von Mises (Equation 

3.40) stresses are computed and the same has been followed in 1D beam formulation 

as well. 
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CHAPTER 4 

EFG CODE FOR BEAMS AND PLATES - TESTING AND 

VERIFICATION 

4.1 CHAPTER PROLOGUE 

The EFG code for 1D beam bending and 2D plate analysis has been verified using 

standard benchmark problems available in beam bending and axially loaded plate 

structures with high stress concentrations. Convergence studies have also been 

presented to show the efficacy of the developed procedure by comparison with FEM 

and closed-form solutions. Capability of MeshFree method in high stress gradient 

computation has also been tested and superiority of EFG over FEM has been 

highlighted. 

4.2 VERIFICATION USING 1D BEAM STRUCTURES 

In this study, two simple beam structures are considered. The first beam is a cantilever 

with vertical point load at the free end and the second beam is simply supported at 

ends and centrally loaded. The representations of these two cases are shown in 

Figures 4.1 and 4.2, respectively. In Table 4.1, the material properties used in the 

structural models throughout the thesis is shown. Section properties (breadth and 

depth) for 1D beam are taken as 100mm. 

 

Figure 4.1 – Cantilever beam with vertical tip load 
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Figure 4.2 – Simply-supported beam with vertical centre load 

Table 4.1 – Material properties of mild steel used in the thesis 

Properties Value 

Modulus of Elasticity 210GPa
 

Poisson’s Ratio 0.33 

The displacements and stresses are computed using MeshFree method, and 

comparisons are made with beam theories and FEM solution (Table 4.2). MeshFree 

solutions match with the closed-form solutions. Figures 4.3 and 4.4 show the 

convergence of displacement for cantilever and simply-supported beams respectively. 

In both the cases, it can be seen that convergence of EFG is better with lesser number 

of nodes than FEM. Also as seen in Figures 4.5 and 4.6, displacements along the 

length are given. Finally, the stress values presented in Figures 4.7 and 4.8 indicate 

stresses obtained by EFG compare more smoothly than FEM. 

Table 4.2 – Displacement and stress in the considered 1D beams 

Beam 

Type 

Maximum Displacement (mm) Bending Stress (MPa) 

Euler 

Bernoulli 

Timoshenko FEM MFree 
Exact 

solution 

FEM MFree 

Cantilever 9.52 9.61 9.61 9.61 300 298 300 

Simply-

supported 
2.38 2.47 2.47 2.47 300 297 300 
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Figure 4.3 – Displacement convergence in cantilever beam 

 

Figure 4.4 – Displacement convergence in simply-supported beam 
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Figure 4.5 – Displacement distribution along the length of cantilever beam 

 

Figure 4.6 – Displacement distribution along the length of simply-supported beam 
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Figure 4.7 – Stress distribution along the length of cantilever beam 

  

Figure 4.8 – Stress distribution along the length of simply-supported beam 
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4.3 VERIFICATION USING 2D STRUCTURES 

In this section, analysis carried out on a simple beam structure for displacement 

convergence studies and computations of SCF for punctured rectangular plates have 

been presented. 

4.3.1 A Simple 2D Beam 

The one end of the 2D beam (2mm thick) is constrained to have zero displacements 

and the other end is axially loaded with uniformly distributed loads as shown in 

Figure 4.9. Axially loaded beams arrive at the exact solution with much lesser nodes 

compared to that of transverse loading, as seen in Figure 4.10, for EFG and FEM 

convergence. 

 

Figure 4.9 – A simple 2D beam structure 

 

Figure 4.10 – Displacement convergence in 2D beam structure 
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Displacement and stress distribution for coarse and fine nodal density have been 

presented in Figures 4.11 and 4.12 respectively. Coarse and fine nodal densities 

adopted are around 100 and 700 in both FEM and MeshFree methods. Smoother 

stress distribution of EFG results is clearly observed. 

 

Figure 4.11 – Displacement plot for coarse and fine nodal density in 2D beam   

 

Figure 4.12 – Von Mises stress plot for coarse and fine nodal density in 2D beam 

4.3.2 Rectangular Plates with Geometrically Induced Stress Concentrations 

Applicability of EFG method in computation of SCF have been presented and 

explained. Three rectangular plates one with centre circular cut-out and the other two 

with semi-circular and V-notches at opposite edges as detailed in Figures 4.13-4.15 
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have been investigated. These plates are constrained with zero displacement at the 

shorter left edge and on the right edge uniformly distributed axial load is applied. 

Table 4.3 gives the comparison of results of investigation with closed-form solutions. 

Plate thickness of 2mm is considered throughout.  

 

Figure 4.13 – Geometry of plate with centre circular cut-out (Plate 1) 

 

Figure 4.14 – Geometry of plate with two semi-circular notches (Plate 2) 
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Figure 4.15 – Geometry of plate with two V-notches (Plate 3) 

Table 4.3 – SCF values from different methods 

Plate 

Type 

Min. Area 

for load 

transfer 

mm
2 

Nominal 

Stress 

MPa 

Stress Concentration Factor (SCF) 

Exact FEM MFree 

Plate 1 200 100 2.15 1.96 2.37 

Plate 2 300 66.66 2.26 2.01 2.22 

Plate 3 133.32 133.32 2.73 1.95 2.58 

In both the methods, the SCF is calculated for fine nodal density. Tabulated results 

shows the better approximation of the SCF values by EFG method compared to that 

of FEM. For plate with centre circular cut-out, though the difference is well within 

10% in both the cases, MeshFree has given values higher than the closed-form 

solutions. This is attributed to over smoothing of nodes and enhanced proximity to 

closed-form solutions is possible with increase in number of Gauss points. In case of 

plates with two semi-circular notches and two V-notches at opposite edges, 

respectively EFG method has shown difference of 2% and 6% on the lower side 

compared to 11% and 29% obtained from FEM. The miss match in SCF is more in 
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FEM than EFG method for V-notched plate owing to the failure of FEM to address 

high stress gradients associated with sudden change in the geometry. Hence it is 

evident that EFG is superior to FEM in addressing situations where high stress 

gradients have to be handled.  

Displacement distributions are shown in Figures 4.16-4.18, for the three plate 

structures. These figures include the coarse and fine distribution of nodes in FEM and 

MeshFree methods. In coarse nodal density, 250 nodes are present whereas in fine 

nodal density there are 3500 nodes. Von Mises stress distribution for all three cases 

are shown in Figures 4.19-4.21. Smoother stress distribution can be observed in EFG 

method for both coarse and fine nodal densities. Further Table 4.4 gives the maximum 

displacements and stresses (xx), which aids in calculation of SCF values for both the 

method. (Formulae for the closed-form SCF calculation are detailed in Appendix I) 

 

Figure 4.16 – Displacement plot for fine and coarse nodal density in Plate 1 
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Figure 4.17 – Displacement plot for fine and coarse nodal density in Plate 2

 

Figure 4.18 – Displacement plot for coarse and fine nodal density in Plate 3 
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Figure 4.19 – Von Mises stress plot for coarse and fine nodal density in Plate 1 

 

Figure 4.20 – Von Mises stress plot for coarse and fine nodal density in Plate 2 
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Figure 4.21 – Von Mises stress plot for coarse and fine nodal density in Plate 3 

Table 4.4 – Computed displacements and stresses 

Beam 

Type 

Nodal 

density 

Maximum Displacement 

(mm) 
Maximum Stress (MPa) 

FEM MFree FEM MFree 

Plate 1 

Coarse 0.130 0.136 152.5 207.36 

Fine 0.135 0.137 200 237.45 

Plate 2 

Coarse 0.100 0.102 89.18 124.65 

Fine 0.101 0.102 134.3 148.01 

Plate 3 

Coarse 0.134 0.142 132.1 202.02 

Fine 0.142 0.147 293.8 387.87 
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CHAPTER 5 

EFG IN CRACK PROPAGATION ANALYSIS 

5.1 CHAPTER PROLOGUE 

Usage potential of EFG in addressing high stress gradients and its superiority over 

FEM has been demonstrated in the preceding chapter. Its utility in crack propagation 

analysis has been presented in the sections that follow. Computation of SIF 

employing strain energy release rate has been explained and is adopted for crack 

propagation identification. Results of the investigation have been compared, verified 

and validated with the study reported by Patrıcio and Mattheij, (2007). Enhancement 

to computational capabilities by way of strain energy based refinement of integration 

and triangular cells have been proposed with illustration to demonstrate efficacy of 

the technique. 

5.2 FORMULATION FOR MODELLING CRACK PROPAGATION 

The propagation path of the crack is directed by the intensity of stress defined by SIF 

(KI, KII and KIII) at the crack tip. When material crosses a critical value of SIF, the 

cracks starts and continues to propagate to failure or to a point where SIF drops below 

critical SIF value. 

5.2.1 SIF from Strain Energy Release Rate 

The SIF can be computed by measuring the strain energy release rate around the crack 

tip using J-integral. The crack considered is as shown in Figure 5.1, where a is the 

assumed incremental length of the crack, ahead of the crack tip, r is the length that 

varies from 0 to a, 1 and 2 is the amount by which the crack opens on application 

of load and is measured behind the crack tip at r along the local axis 1 and 2, 

respectively, and 22, 12 are the normal and shear stresses measured ahead of the 

crack tip at r in the local axis (123). Then the strain energy release rate for mode I and 

mode II crack opening is represented using the integral (Chow and Atluri, 1995), 
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In terms of normal coordinates, in order to evaluate the integral in Equations 5.1 and 

5.2, the strain energy release rate is represented in the numerical integration form, 
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Figure 5.1 – Crack Tip 

From the energy release rate, the SIF for mode I and mode II crack opening is written 

as, 

I IK G E  … 5.5 

II IIK G E  … 5.6 

5.2.2 Stresses and Displacements in Arbitrarily Orientated Crack 

If the crack is arbitrarily oriented at angle , then the global stresses and 

displacements in xyz coordinate is transformed to the local 123 coordinates by using 

the following stress and displacement transformation equations, 
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xx yy xx yy
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 
    … 5.7 

   12 sin 2 cos 2
2
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xy

 
   


   … 5.8 

   1 cos sinx y       … 5.9 

   2 sin cosx y       … 5.10 

5.2.3 SIF Condition for Crack Growth 

The crack grows when the SIF crosses the critical SIF. This condition for crack to 

grow, when subjected to pure mode I loading is, 

I IcK K  … 5.11 

For a mixed mode, i.e. when the crack is subjected to mode I and mode II loading, for 

the crack to grow the following condition needs to satisfied given by (Patrıcio and 

Mattheij, 2007), 

 
 

3 2 2

3/2
2 2 2 2

4 2 3 8

12 8

II I I II

Ic

I II I I II

K K K K
K

K K K K K

 


  

 … 5.12 

For a mild steel material, the critical SIF (KIc) is 4427 N/mm
1.5

. 

5.2.4 Crack Propagation Angle under Combined Mode I, Mode II Loading 

If the crack propagates, then its propagation angle is measured from the SIF using the 

following equation (Patrıcio and Mattheij, 2007), 

2

1 1
2 tan 8

4

I I
c

II II

K K

K K
 

  
          

  

 …5.13 

where c is the crack propagation angle, which is measured w.r.t. to the local axis 1 

and is anti-clockwise in the plane 12. 

The iterative process involved in the propagation of crack is as shown in Figure 5.2. 
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Figure 5.2 – Iterative process involved in crack propagation 

5.3 NUMERICAL DEMONSTRATION OF CRACK PROPAGATION 

ANALYSIS 

5.3.1 Verification of SIF Computation 

To verify the SIF computation, a plate fixed on one of its shorter edges and uniformly 

loaded on the other is considered for the analysis. A pre-initiated vertical crack at the 

centre of the plate with length 100mm has been created in the geometric model and 

determination of SIF has been attempted to arrive at nodal density and distribution for 

convergence and accuracy. Assumed step length (a) dictates prediction of crack path 

and as reported in literature should be small enough to yield better approximation. 

The plate analysed is shown in Figure 5.3 with a step length (a) of 2.5mm has been 

considered and Figures 5.4 and 5.5 gives analysis results for displacements and von 
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Mises stresses. The smooth distribution of result is clearly evident and SIF value is in 

good agreement with closed-form. In order to verify SIF obtained by EFG method, 

closed-form solution (Equation is in Appendix I) available for the stated problem is 

used. The material properties (Refer to Chapter 4 Table 4.1) and plate thickness is 

taken as 2mm. 

 

Figure 5.3 – Geometry of the plate with centre vertical crack 

 

Figure 5.4 – Node and displacement distribution in plate with centre vertical crack 

 

Figure 5.5 – Von Mises stress distribution in plate with centre vertical crack 
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Table 5.1 – Computed results for plate with centre crack  

Displacement 

(mm) 
Stress (MPa) 

SIF (N/mm
1.5

) 

Closed-form MFree 

0.119 516.31 680 673 

5.3.2 Crack Propagation in a Plate With Inclined Edge Crack 

Crack propagation path identification attempted by Patrıcio and Mattheij (2007) using 

XFEM has been considered for investigation by proposed technique. The geometry of 

the plate is shown in Figure 5.6, where the crack is inclined at an angle of 67.5deg to 

the edge of the plate. One of the shorter edges of the plate is constrained and on the 

other end uniformly distributed loaded is applied. Under this configuration of plate 

and loading, the crack tip will be subjected to both mode I and mode II loading. 

The crack propagation has been simulated and SIF for crack growth (Equation 5.12) 

has been computed and shown in Table 5.2. Crack growth is indicated by SIF being 

higher than critical SIF (KIc). The displacement and von Mises stress distribution in 

the plate at different iteration step of the crack growth are presented in Figures 5.7 and 

5.8. Crack propagation obtained has been compared with the results reported by 

Patrıcio and Mattheij (2007) and is presented in Figure 5.9. 

 

Figure 5.6 – Geometry of the plate with inclined edge crack 
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Figure 5.7 – Displacement and node distribution for plate with inclined edge crack 

 

Figure 5.8 – Von Mises stress distribution for plate with inclined edge crack 
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Figure 5.9– Crack path as shown in literature for plate with inclined crack 

Table 5.2 – Displacement, stress and SIF for plate with inclined edge crack 

Iteration 

No. 

Displacement 

(mm) 

Stress 

(MPa) 

SIF* 

(N/mm
1.5

) 
Indication Inclination 

1 0.938 2972.6 5373 propagates
 

21.56
o
 

2 1.241 3820.5 7379 propagates  0
o
 

3 1.795 5817.1 10727 propagates 0
o
 

4 2.795 7753.7 14527 propagates 0
o
 

5 4.341 10094 19714 
continues till 

breakage 
0

o
 

*
For steel critical SIF =4427 N/mm

1.5
and if it exceeds critical crack propagates. 

5.3.3 Crack Propagation in a Punctured Plate With Edge Crack 

The geometry of the plate (steel) is shown in Figure 5.10, with one of the shorter edge 

fixed and the other subjected to uniformly distributed load. The computed SIF for 

crack growth at various steps are tabulated in Table 5.3. SIF value increases or 

decreases based on the crack path taken and if it falls below critical SIF (KIC), ceases 

to propagate. The displacement and von Mises stress plot at different iteration step 

can be seen in Figure 5.11 and 5.12, respectively. 
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Figure 5.10 – Geometry of the punctured plate with edge crack 

Table 5.3 – Displacement, stress and SIF for punctured plate with edge crack 

Iteration 

No. 

Displacement 

(mm) 

Stress 

(MPa) 

SIF 

(N/mm
1.5

) 
Indication Inclination 

1 1.086 2077 4662.9 propagates 
 

4.76
o
 

2 1.288 3701.2 7186.1 propagates  1.94
o
 

3 1.532 4500.3 8939.7 propagates  11.64
o
 

4 1.815 5154.9 9368.4 propagates  16.53
o
 

5 1.873 5573.6 4798.6 propagates 28.78
o
 

6 2.451 6360.3 5079.1 propagates  19.49
o
 

7 2.808 6244 9461.6 propagates  55.61
o
 

8 3.012 7001 0 
negative energy 

release rate 
- 
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Figure 5.11 – Displacement and node distribution in punctured plate with edge crack 

 

Figure 5.12 – Von Mises stress distribution for punctured plate with edge crack 
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5.4 DEVELOPED METHODOLOGY FOR ADAPTIVE REFINEMENT 

Stain energy density computations is necessary and forms the basis for reassessment 

and reallocation of nodes. Computation details are as under. 

5.4.1 Strain Energy Density in Integration Cell 

The strain energy density in integration cell is computed for the i
th

 cell, 

( )

( )

( )

( )

1( )

( ) ( )

1

1

2 i
c

i
c

T i
nc T i

j j jV ji

IC ni i
c jj

V

dV
t w J

S
dV t w J

 
 





 

 


 … 5.14 

where Vc is the volume of the i
th

 cell;   and   are the stresses and strains; n is the 

number of Gauss points in the integration cell, wj is Gauss weight in the numerical 

integration of the cell energy. 

5.4.2 Cell Refinement Based on Strain Energy 

Stain energy density computed as in the preceding section is employed in cell 

refinement, wherein cell with high strain energy density above the set threshold value 

is chosen and refined by dividing one cell into four cells (Figure 5.13). The process is 

continued till the energy density in all the cells is below the set threshold value. 

 

Figure 5.13 – Refinement of integration cells by sub-dividing each cell into four cells 

5.4.3 Strain Energy Density in Triangular Cell 

The strain energy density in the triangular cell is computed from the strain energy of 

integration cells based on the area contributed by them to each of the triangular cell. 

This is mathematically represented for the i
th

 triangular cell, 
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 … 5.15 

where n is the number of integration cells that overlaps a given i
th

 triangular cell; TCA

is the area common to the j
th

 integration cell and the i
th

 triangular cell. 

5.4.4 Node Refinement Based on Strain Energy 

The nodal refinement is achieved using the following three steps: 

1. The triangular cells with high strain energy densities above the set threshold 

are identified (Equation 5.15) for refinement 

2. Each of these identified triangular cells are subdivided into four triangular 

cells thus adding additional nodes on the vertices of the triangle in the region 

of refinement. 

3. Further, the triangular cells are redefined such that no free edges exist in the 

refined region. 

The detailed steps of nodal refinement are shown in Figure 5.14. The threshold is 

taken in this work as the convergence of the stress value, i.e. if the stresses from the 

previous iteration do not deviate by more than 10% difference then the further 

refinement is terminated. Higher levels of accuracy are possible at the expense of 

computation time and efforts. The procedure is detailed in Figure 5.15. 

 

Figure 5.14 – Refinement of nodes by sub-dividing each triangular cell into four cells 



EFG IN CRACK PROPAGATION ANALYSIS 

75 

 

Figure 5.15 – Adaptive refinement of integration cells and nodal density 
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5.5 ILLUSTRATION OF ADAPTIVE REFINEMENT 

5.5.1 Adaptive Refinement on Rectangular Plate with Semi-Circular Notches  

The strategy for adaptive refinement is detailed in this section. In the first iteration, 

the displacements and stresses are computed with very coarse nodal and integration 

cell density (Table 5.4). In each iteration, the cells that lie in the top 20% of the strain 

energy levels are subjected to refinement. Table 5.4 shows the refinement iterations 

followed and the number of nodes and cells obtained in each step. 

In Figures 5.16 and 5.17, the strain energy distribution of integration and triangular 

cells are shown, respectively, where refinement is seen to occur around the high stress 

regions. As the iterations increase, the computed stress values saturate and the 

refinement is stopped when the computed stress difference is less than 10%. A drastic 

reduction of about 86% of nodes with acceptable accuracy has been observed. 

Displacement distribution along with the refined nodes and von Mises stress 

distributions are shown in Figures 5.18 and 5.19 respectively. 

Table 5.4 – Adaptive refinement iterations in plate with semi-circular notches 

Refinement of No. of Cells No. of Nodes 
Displacement 

(mm) 
Stress (MPa) 

None 50 261 0.101 116.86 

Cell 74 261 0.101 120.14 

Node 74 367 0.102 151.1 

Cell 146 367 0.102 157.51 

Node 146 485 0.102 164.8 

fine nodal density 

(Uniform 

Distribution) 

200 3580 0.102 148.01 
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Figure 5.16 – Strain energy in integration cells of plate with semi-circular notches 

 

Figure 5.17 – Strain energy in triangular cells of plate with semi-circular notches 



EFG IN CRACK PROPAGATION ANALYSIS 

78 

 

Figure 5.18 – Displacement plot of adaptively refined plate with semi-circular notches 

 

Figure 5.19 – Von Mises stress of adaptively refined plate with semi-circular notches 
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5.5.2 Adaptive Refinement on Rectangular Plate with Angled Edge Crack 

The displacements and stresses computed for very coarse density of nodes and 

integration cells in the initial iteration are as shown in Table 5.5. This has been 

followed by the refinement of top 20% of the strain energy levels. Number of 

iterations and the number of nodes and cells obtained as results for each step are 

presented in Table 5.5. 

The refinement of integration and triangular cells around the crack tip occurs after 

every iteration and the strain energy distribution for the same can be observed in 

Figures 5.20 and 5.21 respectively. About 75% reduction of nodes can be observed 

with acceptable accuracy. Further Displacement distributions along with the refined 

nodes (Figure 5.22) and von Mises stress distributions (Figure 5.23) are presented. 

Table 5.5 – Adaptive refinement iterations in plate with inclined edge crack 

Refinement of No. of Cells No. of Nodes 
Displacement 

(mm) 

Stress 

(MPa) 

None 40 96 0.852 1036.8 

Cell 67 96 0.853 1036.5 

Node 67 183 0.994 2874.5 

Cell 91 183 0.995 2886.8 

Node 91 291 1.03 2978.8 

With fine nodal 

density (uniform 

distribution) 

208 1211 0.938 2972.6 
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Figure 5.20 – Strain energy in integration cells for plate with inclined edge crack 

 

Figure 5.21 – Strain energy in triangular cells for plate with inclined edge crack 



EFG IN CRACK PROPAGATION ANALYSIS 

81 

 

Figure 5.22 – Displacement plot of adaptively refined plate with inclined edge crack 

 

Figure 5.23 – Von Mises stress of adaptively refined plate with inclined edge crack 
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CHAPTER 6 

CONCLUSIONS 

6.1 BRIEF SUMMARY OF THE WORK  

Detailed literature survey carried out helped in recognising the fact that MeshFree 

methods have tremendous application in addressing unresolved issues in high stress 

gradient problems. EFG was identified as the most suitable technique and analysis 

code was developed with adaptive refinement strategy. Several sequential and logical 

steps in the development of Adaptive refinement scheme for EFG based MeshFree 

method for modelling and simulating high stress gradients in plate structures which 

finds application in crack formation-propagation analysis have been summarized. 

 The EFG based MeshFree method for analysis of 1D beam and 2D plate 

structures has been formulated. MLS technique has been employed for 

deriving shape function and issue of violation of Kronecker delta property has 

been addressed by adopting Lagrange multipliers.  

 MATLAB
®

 code developed has been tested for stability, convergence and 

accuracy. 1D and 2D analysis in comparison with traditional FEM has also 

been made. 

  Adaptive refinement scheme for EFG based MeshFree method for modelling 

and simulating high stress gradients in plate structures has been conceived, 

mathematically represented, calibrated, verified and validated. 

6.2 CONCLUSIONS 

The need for current investigation has been clearly spelt out. The mode and method 

for Adaptive refinement scheme for EFG based MeshFree method for modelling 

and simulating high stress gradients in plate structures which is of great utility in 

crack analysis has been elaborated. Encouraging results obtained from the study leads 

to the following conclusion 

1. 1D beam analysis for convergence, displacement and stress distribution 
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 MeshFree method has shown better and faster convergence of 

displacement with minimum of 11 nodes whereas FEM has taken 

about 30 nodes 

 Both MeshFree and FEM have shown smother distribution of 

displacements along the length of the beam. However MeshFree yields 

much smoother stress distribution. 

2. 2D plate analysis, the displacement and stress analysis on plates with 

geometrically induced stress  concentrations  

 The computed SCF’s for the three plates, i.e. plates with centre circular 

cut-out, two semi-circular notches on opposite edges and two V-

notches on opposite edges, respectively have shown +10%, -2% and -

6% difference in EFG method. Whereas FEM has yielded -10%, -11% 

and -29% errors As indicated by the proximity of the results with 

closed-form solutions it is evident, from the result of V-notch case that 

EFG method is more capable of capturing sudden change in gradients 

than FEM. 

3. Crack propagation analysis, the computation of SIF’s and propagation paths  

 SIF computed in case of plate with centre vertical crack is in very close 

agreement with the closed-form solution, the difference being just 2%. 

 The crack propagation analysis in plate with angled edge crack has 

yielded results that are in very close agreement with that reported in 

literature (Patricio and Mattheij, 2007). 

4. The efficacy of adaptive refinement scheme  

 Reduction of 86% and 76% of node numbers and 27% and 56% of 

integration cell numbers on the two illustrated problems has been 

accomplished by the scheme suggested and adopted which greatly 

reduce the computational efforts without compromising on stability, 

convergence and accuracy  

Hence Adaptive refinement scheme for EFG based MeshFree method for modelling 

and simulating high stress gradients in plate structures can find application potential 

as a valid decision making tool in real time monitoring of structures and components. 
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6.3 SCOPE FOR FUTURE WORK 

Capabilities of Adaptive refinement scheme for EFG based MeshFree method for 

modelling and simulating high stress gradients in plate structures can be enhanced 

by 

1. Employment of order reduction techniques like static condensation or 

component mode synthesis for handling the models with large number of 

degrees of freedom. 

2. Extensions to 3D problems may be attempted. 
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APPENDIX I 

The closed-form solutions used for verification of the developed code for the 

problems considered are given here. 

I.1 CLOSED FORM SOLUTION FOR BEAM UNDER TRANSVERSE 

LOADING 

The displacement along the length of cantilever beam (Figure 4.1) Euler-Bernoulli 

(Equation I.1) and Timoshenko (Equation I.2) beam is given by following equations, 

 2 3

6

lP x l x
U

EI


  ...I.1 

 3 2 3

3 2 6

ll P l xP l xl x
U

EI kAG

 
    

 
 ...I.2 

where k = 2/3 is the shear correction factor E modulus of elasticity, 
1

E
G


  is the 

shear modulus, A is the cross-sectional area , I is the area moment of inertia,  l is the 

length of the beam, P
l
 is the applied load, and the maximum displacement is obtained 

by substituting x = l in Equations (I.1) and (I.2). 

Also, for simply-supported beam (Figure 4.2), the displacement using Euler-Bernoulli 

(I.3) and Timoshenko (I.4) beam theories, the displacement is computed as, 

 
2

2 23 4
48

lP x
U l x

EI
   ...I.3 

3 2

2
1 3.9

48

lP l h
U

EI l

 
  

 
 ...I.4 

where the maximum displacement is obtained by substituting x=l/2 in Equation (I.3). 

The stresses along the length can be computed, 

M
y

I
   ...I.5 
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where, the moment 
lM P x  for cantilever beam and 

2

lP x
M 

 
for simply-supported 

beam 

I.2 ANALYTICALLY COMPUTED SCF FOR PLATES 

For a plate with centre circular cut-out (Figure 4.13), the nominal stress (Equation I.6) 

and SCF (Equation I.7) is written as follows, 

( )
nom l

F

h b b
 


 ...I.6 

2 3

3.00 3.140 3.667 1.527
l l l

t

b b b
K

b b b

     
        

     
 ...I.7 

where t is the thickness of the plate. 

For a plate with two semi-circular notches on opposite edges (Figure 4.14), the 

nominal stress (Equation I.8) and SCF (Equation I.9) is written, 

nom l

F

hb
   ...I.8 

     
2 3

2 2 2
3.065 3.472 1.009 0.405

l l l

t

b b b b b b
K

b b b

       
        
     
     

...I.9 

For a plate with two V-notches on opposite edges (Figure 4.15), the nominal stress 

(Equation I.8) and SCF (Equation I.9) is, 

nom l

F

hb
   ...I.10 

1 2 3t tu tuK C C K C K    ...I.11 

where,  

2

1 10.01 0.1534 0.000647C     
, 

2

2 13.60 0.2140 0.000973C    
, 

2

3 3.781 0.07873 0.000392C     
,      

2 3
2 2 2

1 2 3 4

l l lb b b
tu tu tu tu tub b b

K C C C C    , 
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 1 1.037 1.991 0.002
l lb b

tu r r
C    ,  2 1.886 2.181 0.048

l lb b
tu r r

C     , 

 3 0.649 1.086 0.142
l lb b

tu r r
C    , 4 1.218 0.922 0.086

l l

tu

b b
C

r r

 
    

   

I.3 ANALYTICALLY COMPUTED SIF FOR PLATES 

The SIF for plate with centre vertical crack shown in Figure 5.3 is given as, 

2 3 4

5 6 7

1 0.043 0.491 7.2125 28.403

59.583 65.278 29.762

I

a a a a

b b b b
K a

a a a

b b b



        
           

         
 

             
       

 ...I.12 
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