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ABSTRACT 

  

 Structural Optimization is the process of making high performance structures 

by identification and removal of un-necessary elements and material without affecting 

its functional , safety, serviceability and durability requirements. An optimized 

structure naturally leads to savings in cost and time. 

  The present research work is n the direction of devising an optimum structure 

that adopts the best use of material at its best location in its best form under the given 

conditions.  

 Finite Element Method has opened up ways to analyse complicated structures 

subjected to arbitrary  loading with the required amount of accuracy demanded by an 

analyser. Realizing the limitations  of FEM, a technique called Moving Polynomial 

Moving Least Square (MPMLS) has been formulated for smoothing and interpolation 

of stress values at any location in 2D continuum structures subjected to in-plane 

bending. 

 Optimum material disposition is achieved by  relocation of material to its best 

position  by  the assessment of material utilization at any given location and using the 

required quantity to just satisfy the conditions. A novelty called ‘Nodes in Motion’ 

strategy has been conceptualised to facilitate guided movement of under- utilized 

material to its best location in the optimum quantity. 

 The conceptualisation, mathematical formulation, implementation and 

verification have been presented at every milestone of development.  The results 

obtained have shown adoptability of the procedure for the optimum design of  2D 

structures subjected to in-plane bending.    

 The potential uses of the present research findings and scope for future work 

have been presented. 

Keywords : Structural Optimization, Smoothing, Interpolation,2D Continuum, in-

plane Bending , Material Disposition. 
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Chapter 1 

INTRODUCTION 
1.1 GENERAL 

 
  Any manmade object in the world is a result of two important efforts. The 

First and foremost is a vision of the product well in advance and the second, the 

knowledge to make it. While the vision is more related to art, the knowledge is more 

connected to science.  

  Structural Engineering is the art of visualising assemblages of elements to 

satisfy the functional requirement of a user. As science, it is the knowledge of 

predicting its behaviour and proportioning it to satisfy the requirement of stability, 

strength, serviceability and durability. 

    Arriving at a solution that fulfils the foresaid at affordable cost offers 

tremendous scope for optimization which aims at getting the most, expending the 

least. 

 Structural optimization as an area of research interest has attracted the 

attention of investigators to propose means, modes and methods to make the designs 

true to the mantra ‘minimum effort - maximum effect’. 

  Analysis and design are iterative processes seeking better description of a 

system providing direction for searches. The availability of reliable analysis methods 

coupled with ever increasing speed of digital computers has led to remarkable 

progress in development of optimization tools. Enhanced capabilities of computations 

have paved the way to visualisation, conceptualization, formulation and solution of 

optimization problems in structural engineering, never attempted in the past.  

  From single objective formulations like maximizing the strength or 

minimizing the weight, matters have grown to multi-objective optimization routines 

wherein real time lexicographic and adaptive searches are attempted and are being 

exploited. 

1.2   STRUCTURAL OPTIMIZATION PROBLEMS – FORMULATION  

 In general, a structural optimization problem typically involves 

a) The identification of a set of parameters called design variables to describe 
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design alternatives 

b) The selection of an optimality criterion called ‘objective’, as a function of 

design variables, that is being minimized or maximized 

c) The establishment of a set of  predefined  rules called ‘constraints’ as functions 

of design variables which must be satisfied by any acceptable design. 

Constraints are conditions that are to be met like physical, geometric, material, 

mandatory codal clauses, legal, etc. 

d) The knowledge of procedures to determine the values of design variables 

which minimize or maximize the objective while satisfying all the constraints. 

The type of objective function and constraints decide the solution technique.  

  

1.3  MOTIVATION AND PRINCIPAL OBJECTIVE  

 Traditionally, shape was never considered as fundamental variable at the level 

of the structure or the element, though it needed serious consideration. These days, 

shape optimization is being attempted to arrive at the best configuration for the 

structure through which the most efficient load flow can be accomplished. 

 Topology and shape optimization of articulated structures have been 

successfully attempted, methods have been proposed and are being used. Extension of 

these techniques to continuum like plates poses problems associated with geometric 

modelling in FEM. Conventional formulations miserably fail in addressing 

compatibility, high stress and strain gradient issues. 

 Present work is an attempt to overcome these unresolved issues in application 

of FEM in structural engineering. The issue of incompatibility at element edges have 

been addressed by a newly proposed smoothing formulation adopting a newly 

proposed Moving Polynomial Moving Least Square technique.  

 Available literature also suggests that there is tremendous scope to revisit, 

redefine and refine optimization techniques which find application in elastic 

continuum. 

 The present work envisages to propose a novelty called ‘Nodes-in- Motion’ 

which is a strategy that works as an attractor of materials towards highly stressed  

zones from zones where the material does not contribute for structural performance. 
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This works as a self governing adaptive technique.  

The combination of these two approaches ensures right solution to the famous 

Navier’s requirement of satisfaction of equilibrium, compatibility and force-

deformation relationship, combined with the objectives of structural optimization. 

 

1.4 OBJECTIVES OF THE PRESENT STUDY 

The  objective  of the work is to evolve an iterative procedure to arrive at the 

best shape by way of the most efficient material disposition for in-plane plate bending 

problems. 

  The following are the steps identified to accoplish the end objective. 

1. To develop a code in Visual Basic Environment to solve 2D (in-plane) plate 

bending problems using Finite Element Method. 

2. To propose  an efficient  stress smoothing technique.  

3. To formulate a  strategy for appropriate   material  disposition for attainment  

of design objectives 

4. To suggest an adaptive technique to ensure convergence. 
 

1.5 ORGANIZATION OF THE THESIS 

  

 Chapter 1   emphasizes   the need for optimization specific to the field of 

structural engineering,  elaborates the need and motivation for the current work and 

outlines the objectives and scope. 

   An account of structural optimization using mathematical, analytical and 

experimental formulations available in the literature including the recent & ongoing 

developments and advancements is presented in Chapter 2. 

  Chapter 3 explains basic steps followed in a generalized Finite Element 

Analysis ( FEA), theory and  applications of 2D in-plane bending. The finer details of 

the code developed for FEA of 2D in-plane plate bending are explained including the 

verification and validation.    
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  Unresolved issues in stress smoothness with FEA formulation and the need 

improving accuracy of stresses specific to structural optimization are highlighted in 

Chapter 4.   A novel approach ‘Moving Polynomial Moving Least Square Technique’ 

proposed and developed is explained with illustrations. 

  

  Chapter 5 presents the concept of element based and node based evaluations of 

material utilization that has been suggested and developed for shape optimization with 

optimum material disposition.  

 

  The development of an algorithm combining   the Moving Polynomial Moving 

Least Square technique and Nodes-in-Motion strategy for the shape optimization of 

plates subjected to in-plane bending is presented in Chapter 6. Several problems are 

solved , the results are compared and the efficiency of the formulations is  verified. 

    Chapter 7 wraps up the entire research effort carried out so far. Mile stones 

achieved,   results accomplished and the performances of methodologies developed 

are reiterated both individually and as a combination.  The potential of the research 

findings for its use in various fields are highlighted here. The scope for future work in 

this specific area of research is also briefly presented.  

  Appendices are given, containing general derivations, the results of which are 

used in the development of source code. 

  Several documents were referred to for the achievement of objectives. Research 

publications both in journals and online, dissertations, books, conference proceedings 

and course materials that have contributed to this work are listed in References.  
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Chapter 2 

REVIEW OF SELECTED LITERATURE 

 2.1 GENERAL 

 

  The  description of  any design process must contain the recognition of a need 

and a selection of  alternatives. Traditionally, the selection of the “best alternative” is 

the phase of optimization (Schoofs,1993). The increasing  necessity for lightweight, 

high-performance and low-cost structures, drives the considerable current research  in 

the field of structural optimization. 

Plenty of literature is available for reference in the field on methods of 

analysis, solution techniques in generalised and specific areas of structural 

optimization. A few selected works are highlighted here which have contributed to the 

present work in achieving the objectives.  

 

2.2 METHODS FOR STRUCTURAL OPTIMIZATION 

Structural optimization problems have been solved with different objective 

functions and constraints to arrive at optimum shapes. The mathematical formulations 

and solution techniques greatly are influenced by the type of the structure studied and 

the nature of results required. 

 

2.3 STOCHASTIC  ALGORITHMS. 

 The stochastic  algorithms are ,in nature, with probabilistic translation rules. 

These are gaining popularity due to certain properties which the  deterministic 

algorithms do not have. The genetic algorithm (GA) and simulated annealing (SA) 

algorithm are two of the most popular stochastic optimization techniques (Fazil, 2007)  
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2.3.1Genetic Algorithms (GA)  
 
 This technique was developed by John Henry Holland  in the late 1950s and  

in the beginning of  the 1960s (Holland,1992).  

Living organisms evolve the best ways to survive in critical situations.  The 

fittest organisms survive and the others die. Similarly, Genetic algorithms explore   

ways  to survive and move ahead trying to be the fittest every time. The evolution of 

the most optimum solution is attained through an iterative process, each iteration 

being called a generation.  The fitness is usually the value of the objective function 

that needs to be minimised or maximised.  

2.3.2 Simulated Annealing 
 
 Simulated annealing (SA)   (Kirkpatrik, 1982)  works on  the analogy with the 

way molten metals cool and anneal. This method is a heuristic process to solve 

problems with several variables where there is a likelihood of a global optimum 

hidden between local optima.  In this from an initial set of variables, small changes 

are made to find the new objective function. If the solution is not better, the variables 

move in random directions to find a better solution.  Again, at that location, small 

changes are made to the variables to study the possibilities of a better solution, till the 

global optimum solution is obtained. 

 
 2.4 DETERMINISTIC ALGORITHMS. 

 These algorithms  use specific rules for moving one solution to other. These 

algorithms are in use to suite sometimes and have been successfully applied for many 

engineering design problems 

   

 In the present work, deterministic algorithm is proposed using iteration 

procedure to improve quality of results. Some of the procedures and published 

materials in this category and the developments in the related area which have helped 

formulate the concepts of the present work are given here. 
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2.5 SHAPE, TOPOLOGY AND SIZE  OPTIMIZATION 

 

The structural design optimization generally start from a given shape and 

topology and then the search for a best solution under given conditions starts. 

Generally for continuum with complex boundaries Finite Element Method is used to 

determine the deformations and stresses at locations. In pure shape optimization, the 

boundary nodes are shifted to their changed position to give the best solution (Akira, 

1992) keeping the thickness same. 

 Shape optimization attempts to integrate geometrical modeling, structural 

analysis, and optimization into one complete and automated computer-aided design 

process. (Hsu, 1994).  There are many methods, classic and advanced that have been 

formulated, developed, experimented and established by engineers for optimization of 

structures.  The never ending pursuit of optimization  not only has interesting 

theoretical implications in mathematics, mechanics, multi-physics and computer 

science, but also has lead to important practical applications (Rozvany, 2007).  

   Waqas Saleem et. al (2010) described the strategy for optimal configuration 

design of existing structures by topology and shape design and  how shape 

optimization can be achieved through an  iterative procedure  

2.6 EVOLUTIONARY STRUCTURAL OPTIMIZATION (ESO) AND 

RELATED METHODS 

   The optimization was recognised as a material distribution problem in the 

earlier stages of development of  the shape and topology optimization  (Bendsoe, 

1989).Various methods for removal of  material as density reduction were attempted 

by introducing a density function representing the volume of material at any location. 

A general “Layout Optimization” procedure was invented which integrated the Shape, 

Topology and Size optimization of Elastic structures ( Diaz et al, 1993) 

 Evolutionary Structural Optimization (ESO) is based on the simple idea that 

the optimal structure  for maximum stiffness or minimum weight  can be produced by 

gradually removing the ineffectively used material from the design domain (Xie and 

Steven,1993).  
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  The ESO method is   simple to  formulate through  FEA packages and requires 

a relatively small amount of  computer time. In gradual and calculated process, the 

method removes redundant material to evolve cavities, thus reducing the 

consumption. This method has been very popular and paved the way to further 

developments based on the performance of  material at locations in the domain of the 

continuum.  

 There are two options in the classical ESO. At a locations not effective, it hard 

kills the elements, the methodology that need not work always.  Instead of removing 

the non effective elements, “soft kill” methods came into existence where the 

capabilities of the material is nullified using the Young’s  modulus of such elements 

reduced to a small value in executing the next cycle of software solution 

(Papadrakakakis, et. al., 1996) 

  The use of  ESO  is  to be employed with care, where its validity is not 

applicable in every situation. (Zhou et. al, 2001)  Hence newer methods overcoming  

this weakness of  ESO , came to existence. One of them has been to eliminate  the 

element with stress which is lower than threshold  using “deleted element algorithm”  

to restructure the remaining nodes and elements using the re-domain algorithm. Re-

domain produces new elements with smaller size to obtain smooth boundary surface 

(Ismail,et al, 2004) 

 An optimization technique called Morphing Evolutionary Structural 

Optimization  (MESO)  was developed by Hatem et. al (2008) for stiffened plates. 

The method works on the principle of slowly removing the inefficient material 

changing the geometry every time, thus evolving a structure performing better. 

2.7 PERFORMANCE BASED OPTIMIZATION (PBO) 

 The performance-based design is defined as the methodology in which 

structural design criteria are expressed in terms of achieving multiple performance 

objectives.The Performance can be measured in terms of functionality, strength, 

serviceability or cost.  

 A  performance index for topology and shape optimization of plate bending 

problems with displacement constraints  was presented by  Qing Quan Liang (2001)   

in which method was proposed to  keep track of the performance history when 
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inefficient material is gradually removed from the design and to identify optimal 

topologies and shapes from the optimization process. The  PBO  method combines 

modern structural optimization theory with performance-based design concepts to 

produce a powerful technique for use in structural design. Performance levels for 

functionality, strength, serviceability and economy can be defined by the limiting 

values of measurable structural response parameters. 

 
2.8 STRESS BASED OPTIMIZATION METHODS 

 Many mechanical parts are designed  based  methods which  optimize the 

thickness of material used in constituting a component ( Dulyachot , 2006). The 

thickness of material is adjusted inversely proportional to the von Mise’s stress 

developed. During the trimming process , if very thin material is  found at a location, 

it is removed changing the shape of the structure. 

 

 While attempting stress based optimization schemes for material reduction 

based on the force or stress values, at some locations, if the force becomes null, it 

tends to bring the stress values as zero, This is known as stress singularity, which 

leads to instability (Guilherme, 2007). asking for zero area requirement. of the 

material. Hence at many locations, within the design domain, a minimum  density of 

material is assumed.  

 Another  difficulty of stress-based topology optimization is due to the local 

nature of the stress constraint. In a continuum setting, stress constraints should be 

considered at every material point ( Le Chau,2010).  

 Enforcing stress constraints in topology optimization presents some 

challenges. Topology optimization problems typically have a large number of 

elements, so satisfying the stress constraints at multiple points in each element would 

result in a large-scale optimization  problems (Lee,  2012).   

 Extending this further, The research work has proceeded to develop new 

interpolation schemes like a separable stress interpolation (Seung, et. al ,2014 ) which 

allows stress-based topology optimization with multiple materials (STOMM). 
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2.9  SOME  INTERESTING TECHNIQUES 

  An interesting methodology called Element Exchange Method  was 

formulated by Mohamed Rouhi(2009) in an attempt to optimize a continuum.  The 

algorithms initiates a random distribution of solid elements and void elements. Void 

elements are with a minimum density of negligible density value. Finite element 

analysis is performed to find the strain energy in the elements. A specific number of 

the solid elements with low strain energy  are converted to void elements and equal 

volume of  void elements with highest strain energy are converted to soild elements.  

In a sense, this works as  transfer of material from  a less efficient location to a better 

efficient location. 

 Zhan Kang (2005) solved  Optimization problems based on mass moment of 

inertia. The topology optimization problem for minimization of structural compliance 

was formulated under a single constraint on the mass moment of inertia, rather than 

on the material volume. This can be considered as s step towards relating the 

disposition of material , rather than the total quantity of material to assess the capacity 

of  structures in transferring  loads.  

  

 Many of the optimization problems contain contaminated data showing 

uncertainity (Calafiore and Dabbene, 2007). These problems  have been attempted as 

“in- the- worst- case” or Min-Max approach. 

 

2.10 OPTIMIZATION OF 2D TRUSSES 

    During  the development of  Nodes-in Motions strategy conceptualized in the 

present work, the method has been first illustrated for  2D articulated structures. The 

capability of the procedure has been compared with the optimization solutions 

available in the literature. Hence a review has been carried out to know the 

developments in the field of optimization of  trusses.  

 Tang  et. al (2005)  have developed an  Improved Genetic Algorithm for 

design optimization of truss  structures with sizing, shape and topology variables with 

mixed coding of integer and float types of variables. 
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 A  hybrid real-parameter genetic algorithm  has been developed for trusses  by  

Hwang et. al (2006) to solve optimization problems. The performance of the 

algorithm in discrete sizing variables  and continuous configuration variables, both 

individually and combined has been studied.  

 Sizing, geometry and topology optimization of trusses via force method and 

genetic algorithm has been  introduced by  Rahami et. al (2008)   which used a 

combination of energy and force methods in optimizing the weight of trusses. 

 An  interesting Imperialistic Competitive Algorithm for truss structures has 

been presented by Hadi et. al. (2010)  inspired from social  human phenomenon , in 

which some  empires with lowest cost are considered the best and the rest of the 

countries in the neighbourhood are considered colonies. The power of a country is 

inversely proportional to its cost.  This has been  used as a  function to ultimately 

solve the optimization problem using Genetic Algorithm.  

 Kulkarni et. al (2012), have presented  a mutation-based real-coded genetic 

algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss. 

The standard deviation of design variables has been  used as a key factor in the 

adaptation of mutation operators. The reliability of the algorithm has been   

investigated in  sizing and layout optimization, with both discrete and continuous 

design variables.  

   Pavel  et. al. (2014)  have presented a  method for  the simultaneous topology 

and size optimization of 2D and 3D trusses using  evolutionary structural optimization 

with regard to commonly used topologies.   

2.11  NUMERICAL INSTABILITIES 

 On the route  to the optimum solutions, three types of  numerical instabilities 

have been identified (Sigmund,1998 ,Fuji and Kikuchi  2000 ,Staffen  Johnson ,2013).   

Fujii and Kikuchi have suggested a Sequential Linear Programming technique to 

avoid the occurrences of these instabilities. 
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2.11.1  The Checkerboard Problem :  

 If the material removal is tried based on the efficiencies, the procedure is 

likely to form alternating solid and void elements or create discontinuity in the 

continuum (Sigmund, 1998). Hence the full removal of the ineffective material 

through the creation of voids is to be avoided. The material density could be changed 

or thickness may be trimmed to a minimum   suggesting the presence of the material 

 

2.11.2 Mesh Dependent Solution:  

 The solution may differ based on the type and size of the elements. The same 

problem attempted with a different type and size of element may give a different 

solution. The initial discretization of the continuum plays a huge role as a starting 

point for optimization. The experience of the analyser should help selecting proper 

shape and size of the elements. Finer elements should be deployed at locations of  

expected steep gradient of stresses. 

 

2.11.3  Local Minima:  

The solution obtained may only a localised minimum. There can be a better or more 

optimum solution elsewhere. The methodology adopted should not lead to undulating 

solutions in convergence to a minimum.   

  

2.12 SCATTERED DATA INTERPOLATION (SDI), METHOD OF MOVING 

LEAST SQUARES (MLS)   AND STRESS SMOOTHING 

    In the present work, the analysis of  2D continuum structures has been 

carried out using  Finite Element Method.  Recognizing the limitations of FEM,  like 

discontinuity of stress values  along the element edges, a suitable smoothing 

technique has been formulated.  A review has been made for the smoothing and 

interpolation methods applicable to 2D elastic problems.  

Scattered Data Interpolation and Method of moving least squares (MLS) 

approximation was devised by mathematicians in data fitting and surface 

construction. Since then, this has been the foundation in the field of multi-dimensional 

scattered data interpolation. 
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 The Moving Least Squares (MLS) approximation was devised by 

mathematicians in data fitting and surface construction (Lancaster and Salkausdas 

1981). It can be categorized as a method of series representation of functions.  The 

MLS approximation is now widely used   for constructing   shape functions. 

Beckers ,et.al  (1994) presented a review on  error estimation and adaptivity of 

stress computation methods   for finite element displacement models.  Based on   

optimal stress extrapolation points  , an original stress smoothing method called 

"averaging + extrapolation" was devised   valid for general two dimensional meshes 

composed of  iso-parametric elements of degree up to three.  

 Liyanapathirana ,et.al  (2000) applied   stress smoothing method  to a finite 

element pile driving analysis  considering  the nodes of the finite element mesh as  the 

most important locations for output stresses.  The method shown that accurate nodal 

stresses can be obtained by approximating the stress distribution inside four‐element 

patches by a polynomial with order equal to the order of the shape functions. 

The analytical research in the field of application of MLS in structural analysis and 

development grew leap and bounds in the 21st century, especially in solving problems 

in structural mechanics using meshless methods, to develop methods beyond the 

traditional FEM (Liu and Gu, 2003). The use of polynomials as basis functions, 

selection of polynomial terms using Pascal’s triangle, solution of difficult 

simultaneous equations with singular  

 A method called Approximation Based on Smoothing (ABOS) has been 

devised by Miroslav Dressler (2009) for smoothing and scattered data interpolation. 

Depending upon the configuration of data points, the unwanted oscillations in the 

interpolations have been explained. 

 
 Silveira (2010)  devised a smoothing technique for discontinuous  linear and 

quadratic boundary elements  (BEM) based on least square (LS) fit and obtained 

continuous solution  where the traditional formulations showed discontinuities.  
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As an extension of  meshless procedures, smoothed  point interpolation S-PIM 

( Liu and Zhang, 2013)  has been considered an alternative to the FEM in structural 

mechanics.       

 The MLS method is much more flexible than traditional LS based methods 

and    is a promising method for measurement data processing (Huaiqing Zhang, 

2015). The applicability  and flexibility of the MLS procedure is evident from the 

amount of research work in various fields of engineering with variations in this 

approach. 

 

  

 
 
 
 
 
 
 

 

 

 

 



  

 

Chapter 3 

FINITE ELEMENT ANALYSIS OF 2D PLATES SUBJECTED TO 

IN-PLANE BENDING 
 

3.1 GENERAL 

Under the action of external forces, structures made of solids deform. 

Depending on the material property, this deformation can disappear and initial form 

can be recovered when the external forces are withdrawn. Elasticity is this property of 

a structural material to return to its initial un-deformed form completely after removal 

of external forces acting on it. In this deformation, the rate of displacement at a point 

in the solid is called strain. Internal forces are introduced in the solid, to balance the 

external forces. Magnitude of these forces is defined by their intensities. This intensity 

is called stress.  

Determination of stresses in the material of construction is a very important 

step the analysis and design of any structure. With the advent of digital computers, 

structures of complex shapes and configurations have been attempted with the 

conceptualisation of approaches like Finite Element Method. In this chapter, the basic 

steps involved in the Finite Element Analysis of  plate like structures the development 

of  a generalised code for FEA are discussed. 

 

3.2 PLANE ELASTICITY 

Elasticity theory establishes mathematical model to determine the 

displacement, strain and stress distribution in elastic solids under the action of 

external forces. In many cases, materials display behaviour such that the stress and 

strain vary proportionally up to a limit. This behaviour is called linearly elastic 

behaviour and the limit is called proportionality limit. 

Materials can be anisotropic or isotropic depending on the variation of 

material property with direction. Material displaying direction-dependent properties is 
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called anisotropic. If the material properties are identical in all directions at a point, 

then the material is called isotropic. 

It may not be an efficient way to solve all real problems using governing 

elasticity field equations developed for three-dimensional problems. Simplified 

formulations have been developed taking the advantages related to geometry, loading 

and boundary conditions.  

 Plane elasticity is a special case where a three dimensional problem is 

simplified to one involving two dimensions only. There are two basic cases of plane 

elasticity. One is the plane stress and the other is the plane strain.  

 

3.2.1 Plane Stress Condition 

In structural mechanics, a flat thin sheet of material is called a plate. The 

distance between the plate faces is the thickness, denoted by h. The midplane lies 

halfway between the two faces. The direction normal to the mid-plane is the 

transverse direction. Directions parallel to the mid-plane are called in-plane 

directions. The global axis z is oriented along the transverse direction. Axes x and y 

are placed in the mid-plane, forming a right-handed  rectangular Cartesian coordinate  

system. Thus the equation of the mid-plane is z = 0. The +z axis conventionally 

defines the top surface of the plate as the one that it intersects, whereas the opposite 

surface is called the bottom surface. 

  

If a plate whose thickness in z direction is very small in comparison to the 

dimensions in other directions is loaded by forces acting in the plane of the plate and 

uniformly distributed over the thickness ,  the stresses in z direction are all zero. The 

state of stress is then specified by σx, σy, τxy only and called the plane stress. These 

components are functions of x and y only.  
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3.2.2   Plane Strain Condition 

A similar simplification can be obtained for the state of strain also. Consider 

an infinitely long   prismatic body subjected to the load laterally. Assuming the load 

to be function of x and y only, all the sections experience the same deformation and 

therefore the strain components in the z direction are all zero. This deformation state 

is referred to as plain strain. 

 

  

 
The case of plane strain is not discussed in detail as the work carried out is 

related to plates where the thickness is assumed small in comparison with the 

dimensions in the other two directions. 

 

3.3   PLATES SUBJECTED TO IN-PLANE STRESSES  

Plates have large surface area, compared to the thickness. They are hence, 

considered as 2Dimensional structures. If they are subjected to in-plane forces, the 

Fig 3.1 Plane stress case   
 

Fig 3.2  Idealization of Plain Strain Condition   
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condition leads  to a Plane stress condition and the analysis can be done as plates 

undergoing in-plane bending. 

 

 

 

 

 
  3.4 BEHAVIOURAL ASSUMPTIONS   

 

The proximity of predicted behaviour of a structure to the actual one depends 

on the accuracy and genuineness of assumptions made at every stage of  modelling 

and analysis. Following assumptions are made throughout this work. 

Fig 3.4  Displacements, Strains and Stresses in Plane Stress Condition  
 

Fig 3.3 Idealization of Plane Stress Case 
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1. The material is homogeneous, isotropic and linearly elastic. 

2. All the loads applied on the plate are  in its mid-plane.  The normal and shear stress 

components in the third direction are zero or negligible 

3.  All support conditions are symmetric about the mid-plane. 

4.  In-plane displacements, strains and stresses can be taken to be uniform through the 

thickness 

3.5 PROCEDURE INVOLVED IN  FEA OF PLATES SUBJECTED TO IN-

PLANE BENDING 

 FEA is a method of piecewise approximation by connecting the deformations 

to the stresses by simple functions, each valid for a small region through the process 

of discretization. One of the important facts of FEA lies in the fact that the accuracy 

of results depends on the size of elements that are created during discretization. 

Hence, FEA is used to obtain approximate solutions for values at discrete locations in 

a continuum with complex geometry, material properties, loading and boundary 

conditions. Common to all problems attempted using FEA, there are distinct steps 

involved from physical model to the solution.  

 

 
3.5.1 Discretization  

 The continuum is segmented into pieces called elements, the size of which 

depends on the accuracy of results sought. At locations where more accuracy is 

sought, the size of the element needs to be smaller compared to those at other 

locations. For example, the bracket shown in Fig. 3.5 is divided into smaller segments 

as shown in Fig.3.6. The shape of the element may be chosen as triangular, 

Fig 3.5  A Bracket   
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rectangular or polygonal for which the shape functions connecting the deformations 

anywhere in the region to those at known locations are derived. Detailed derivation of 

formulae and expressions related to triangular elements  used for the FEA of Plates in 

plane stress , which are subsequently used in the development of  code, are  explained 

in Appendix – A. However, some terms, expressions and equations are mentioned 

here to highlight the developmental aspects of the source code. 

  Though the size of elements may vary in a given problem, the shape of the 

element remains the same throughout the structure being analysed. 

 

 
3.5.2 Element Stiffness Matrices 

 These are derived for all elements individually considering the equilibrium of 

individual elements. They connect the stresses developed inside the element to the 

nodal deformations. 

3.5.3 Global Stiffness Matrix. 

 Since the elements are connected at common nodes, considering the 

compatibility of connected elements at the node, a Global Stiffness Matrix is 

assembled which is used to relate the displacement at all nodes to the forces acting on 

the structure, in the form of simultaneous equations. The elements in the global 

stiffness matrix are modified to accommodate the boundary conditions. 

Fig 3.6 Discretization of the Bracket 
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3.5.4 Solution of Simultaneous Equations 

 The simultaneous equations are solved using any of the standard methods to 

obtain nodal displacements. The symmetric nature of the global stiffness matrix may 

be exploited for easy and quick solution 

3.5.5 Recovery of Stresses in the Elements 

 Based on the requirement, the stresses in the elements at some locations are 

found out from the displacement values at the nodal locations. 

 

3.6 TERMINOLOGY 

 The following summarizes the terms used while dealing with the plane stress 

problem. 

 

External Boundary:  This is the limit of attention within which the analysis is done, 

where the material is present. This is always well identified while attempting the 

analysis. The external boundary is defined as a closed polygon with the co-ordinates 

of apexes, as the equation of a closed region or as combinations of lines and arcs 

joined at the ends. 

Internal Boundary: There could be voids, single or multiple, like punched holes, 

within the continuum where the material is not present. They are well defined as in 

the case of external boundary. 

 Thickness: Most plates used as structural components have constant thickness. If the 

thickness does vary, it should do so gradually to maintain the plane stress state. 

Sudden changes in thickness may lead to stress concentrations. 

Material data: This is defined by the properties like elastic properties like Young’s 

Modulus, Poisson’s Ratio, yield stress and  permissible stresses. The values of these 

properties may be different based on the nature of stress developed like tension, 

compression, bending or torsion. Here, it is assumed that the plate material is linearly 

elastic and the properties are same in all directions. 

Specified Interior Forces: These are known forces that act in the interior of the plate. 

There are of two types. Body forces or volume forces are forces specified per unit of 

plate volume.. Face forces act tangentially to the plate faces and are transported to the 
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mid-plane. For example, the friction or drag force on an airplane skin is of this type if 

the skin is modelled to be in plane stress. 

Specified Surface Forces: These are known forces that act on the boundary of the 

plate. In elasticity, they are called surface tractions. In actual applications it is 

important to know whether these forces are specified per unit of surface area or per 

unit length. The former may be converted to the latter by multiplying through the 

appropriate thickness value. 

Displacement Boundary Conditions:  These specify how the plate is supported. 

Points subject to support conditions may be fixed, allowed to move in one direction, 

or subject to multipoint constraints.   If no displacement boundary conditions are 

imposed, the plate is said to be free or floating and will not be in static equilibrium.  

Finite Elements:  In Finite Element Analysis (FEA) of plates, the continuum is 

assumed to be made of so many pieces of smaller triangular, rectangular or polygonal 

units called elements. These elements are connected to one another along the edges 

such that no portion of the continuum is left-out in the analysis. In FEA, the shape of 

all the elements in an analysis remains the same. Each element is assumed to be of 

uniform thickness, while the thicknesses of all the elements need not be the same. 

However, all the elements are assumed to be connected through the mid-plane. Here, 

triangular  (the basic shape in 2D FEA) elements, are used to divide  the plate into 

finer parts. 

Constant Strain Triangle (CST): Generally, an element is analysed assuming the 

strain in a direction remains same throughout its area, though the strain in another 

direction could be different. Such an assumption simplifies the procedure and is well 

justified when the triangular elements are finer. 

Nodes: Similar to the edges of elements that are connected, the corners of elements 

are connected with those of other elements. These meeting points are called nodes. 

External Boundary Nodes: Those nodes along the external boundary are called 

external Nodes.  

Internal Boundary Nodes: Those nodes falling along the internal boundaries are 

called internal boundary nodes. 
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Internal Nodes: All the other nodes which are inside the continuum are called 

internal nodes. At the internal nodes, material will be present all around. 

Support Nodes: These are nodes at which the plate is supported or at which the 

displacement restrictions called boundary conditions are specified. 

Displacements: These are in-plane deformations at nodes to be found out , due to the 

action of forces. They could be translations or rotation. In this analysis, the 

translational deformations are considered while the rotational movements at the nodes 

are neglected. The in-plane displacement field is defined by two components: u (x,y) 

and v (x,y) both in plane in x & y directions respectively 

Degrees of Freedom: The basis of analysis depends of the number of movements 

expected per node. Here, each node is expected to be of 2 degrees of freedom, the 

translations in the direction of two global principal axes. 

3.7 DEVELOPMENT OF GENERAL PURPOSE FEA CODE 

A code has been developed for the FEA of plates in plane stress conditions , using 

triangular elements.  Important steps  used  in the development of  source code are 

stated here. 

3.7.1 General Notations used 

Following general notations are used in the derivations. 
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3.7.2  Sign Convensions Followed 

 Unless otherwise specifically mentioned, the following notations and sign 

conventions are followed through out the work . Stresses are considered as positive in 

the directions shown in Fig.3.7. 

 

 
3.7.3 Relationship between Element Stress and Element Strain 

 The direct and shear stresses in an element are related to the constant strain 

through Poisson’s ratio using the following relation. 

 

 
Where  

 

 
3.7.4 Element Displacement Matrix.  

Fig 3.7 Notations and Sign Conventions 

----- (3.1) 

----- (3.2) 

----- (3.3) 
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 For a triangular element, it is assumed that there are 6 independent 

displacements  possible, with two translations  at every corner.  

 

 
Thus, the element displacement vector q is defined as  

 
In a structure with many elements,the corner displacement values are common to all 

the elements connected at the node. Hence, it is necessary to develop generalised 

notations for the displacements for an element with  the corners   i , j and k  

 

 

 

Fig 3.9   Displacements at Nodes of Generalised Element   

Fig 3.8  Degrees of Freedom for a Triangular Element 

----- (3.4) 
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3.7.5 Area of Triangular Element.  

In the sequence of development of stiffness matrix for an element, the shape 

function mainly depends on the co-ordinates of the corners.    

 

 
Area of the traingular element is given by 

 

Ae= 0.5  x [ (x2y3-x3y2)+(x3y1-x1y3)+x1y2-x2y1)] 

 

3.7.6 Relationship  between Element Strain and Corner displacement 

The strain vector for an element  is connected to the local displacement vector  using 

the formula 

 

 
Where, as a generalised  rule, 

x ij= xi - xj  
and  

yij= yi - yj 

Fig 3.10   Nodal Co-ordinates of an Element 

 ----- (3.5) 

----- (3.6) 

----- (3.7) 

  ----- (3.8) 

 ----- (3.9) 
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3.7.7 Element Stiffness Matrix 

The Element stiffness Matrix  ke  of the order 6 X 6  is assembled as  

 

Where te is the thickness and Ae is the  area of the element respectively. 

3.7.8 Global Stiffness Matrix 

 The members of the element stiffness matrix are added into the global stiffness 

matrix K  as decided by the node numbers of the triangular element.   

 

 
3.7.9 Solution of Global Euilibrium Equation 

The equilibrium equation for the entire continuum is formed as   

 
Where K is the global stiffness matrix, Q is the global displacement vextor and F is 

the global force vector.  

Fig 3.11  Assembly of Global Stiffness Matrix 

----- (3.10) 

----- (3.11) 
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The boundary conditions consisting of displacement restrictions are 

incorporated at this stage. There are many ways of incorporating these conditions. A 

popular method is to force the corresponding member in the global displacement 

vector to negligible quantity by multiplying corresponding diagonal member in the 

stiffness matrix by a very high value before the solution of simultaneous equations is 

attempted. 

The next step is to solve the system of simultaneous equations by any popular 

method. The symmetric  and sparce properties  of  the global stiffness matrix may be 

exploited to store it in banded format saving the storage space and the time required 

for solution.   Solving   equation (3.11) , we get the global displacement vector  Q.  

3.7.10 Element Stress Recovery  

 Extracting the displacement at the three nodes, the stresses in the individual 

elements can be obtained as 

 s = DBq 

 
 

3.8 CALCULATION OF PRINCIPAL STRESSES AND VON -MISE’ S 

STRESSES 

The FEA Code developed has been extended to calculate the principal stresses and 

von Mise’s stresses in the elements.  

The Principal Stresses are given by 

 

----- (3.12) 

----- (3.13) 

----- (3.14) 
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The von Mise’s Stress is calculated from the Principal Stresses as  

 

 

 3.9  FLOWCHART FOR A GENERALISED CODE FOR FEA OF PLATES 

 

 Fig 3.12 shows the flowchart used for development of the generalised code for 

the FEA of plates subjected to in-plane bending.  

 The input data consists of the description of geometry of the plate as a set of 

triangular elements connected at the nodes, material properties like Young’s Modulus, 

Poisson’s Ratio, yield stress. The magnitude of loads, positions and direction of their 

application, location of supports and movements allowed, initial thickness of elements 

and the permitted limits to the movement of individual nodes  are specified. 

 The output data consists of the displacements at the nodes, the direct and shear 

stresses, Principal stresses, von Mise’s stress developed in the elements, the utility 

ratio of material and the reactions at the support. 

  

----- (3.15) 

----- (3.16) 



30 

 

 

 

 

Fig 3.12  Flowchart for the FEA Code Development 
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3.10  VERIFICATION OF THE FEA PROGRAM DEVELOPED 

 A problem solved in the FEM Course material by Prof. Green Lee (2010) , 

University of  New Mexico is solved to verify the source code developed for FEA of 

plates.  

3.10.1  Illustrative Benchmark Problem :  

 

 

To find the stresses in the plate 3 in X 2 in ( 75 mm X 50 mm) subjected to a  

load of 1000 lbs (4448.22 N)  as given in the Fig.  3.13.  The Values of Young’s 

Modulus and Poisson’s ratio have been taken as 30 x 10 6 Psi (6.895  x 10 6 Mpa ) 

and 0.25 respectively. 

3.10.2 Solution Using FEA code Developed 

 

NUMBER OF JOINTS               = 4            NUMBER OF PLATES                  =  2  

NUMBER OF MATERIALS      = 1            NUMBER OF SUPPORT JOINTS = 3  

NUMBER OF LOADED JOINTS  = 1  

 

 

 

 

 

Fig 3.13  The Benchmark Problem 
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MATERIAL    E ,        Poisson,    permissible stress,    uwt   

 1               3E+07         0.25                  120                    1000 

                     

 
LOADED JOINT, XLOAD,YLOAD 

 2             0            -1000  

Joint  to   ELEMENT Connection Details   

Joint  No.     No. Connected          ELEMENTS  

    1          1             1    

    2          2             1  2    

    3          1             2    

    4          2             1  2    

  Joint  No.     Nos Connected      Joints  

     1                           2             2   4     

     2                           3             1   4   3     

     3                           2             2   4     

     4                           3             1   2   3     

STRESS (psi ) in ELEMENTS ------RESULTS. 

 Plate No.  N 1  N 2  N 3    AREA    Thk      Vol       Sigx          Sigy       Touxy   

       1           1      2      4        3.000     .500    1.500   -0093.12  -1135.59  -0062.08 

       2           2      3      4        3.000     .500    1.500     0093.12   0023.28   -0296.62 

  

 

 

MEMBER NO., node1 , node2 , 

node 3  

   1                1         2         4  

   2                2         3         4  

JOINT AND CO-ORDINATES 

 1             3             0  

 2             3             2  

 3             0             2  

 4             0             0  

Plate, Thk, Material 

   1                0.5       1  

   2                0.5       1  

 

SUPPORTS, XRELEASE,YRELEASE 

    1               0         1  

    3               1         1  

    4               1         1 
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  REACTIONS ( lbs) AT THE SUPPORTS  

     NODE            Rx             Ry  

      1              0.0000          820.6510 

      3            -269.0235       165.7685 

      4             269.0235         13.5805 

 

3.10.3 Stresses and Principal  Stresses (psi ) in Plates – Output 

 

Plate No.       Sigx           Sigy               Txy              Sig1              Sig2               Tmax  

        1      -0093.12       -1135.59       -0062.08       -0084.87       -1143.84       0529.49 

        2        0093.12       0023.28        -0296.62       0157.66        -0041.25       0099.46 

 

3.10.4 Joint   Deformations (in) 

  

    NODE            DELTA X           DELTA Y  

      1           0.000019077            0. 

     2           0.00000873       -0.0000742 

     3           0.                               0. 

     4           0.                               0. 

3.10.5 Solution Given In the Reference 

 
3.10.6  Inference 

   

  The output given by the FEA code developed for the analysis of plates is in 

agreement with the solution in the reference, verifying the correctness of the code 

developed. 
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3.11 APPLICATION OF THE FEA CODE  

  The FEA Code developed is a generalised one and can be used for the solution   

for the plates subjected to in-plane bending. This code has been used to determine 

stresses in plate material during the formulation of methodology related to 

optimization of plates, further discussed in Chapter 6. 



  Chapter 4 

STRESS SMOOTHING 

4.1 GENERAL 

  There are situations when a region of study is split into segments, for better 

accuracy of results. But when the results are coined together for all these segments to 

project the same for the whole region, there is a likelihood of discontinuities at the 

junctions in an expected continuous behaviour. Smoothing means removing sharp 

irregularities at boundaries of segments making them follow a regular pattern. 

 

 

 
 In   FEA, the given region is split into a number of smaller segments called 

elements as shown in Fig 4.1. The joining point of several elements is called a ‘node’. 

In a 2D continuum, with triangular or rectangular elements, the boundaries of the 

elements meet along lines called ‘edges’. The main aim of FEA is to formulate a 

system of equilibrium equations to solve for the displacements at the nodes.  The 

accuracy of displacement values is highly dependent on the size of the element.  As 

the stresses in the elements  are obtained from these nodal displacements, stress 

becomes derived quantity. The stress thus obtained is assumed to be uniform 

throughout the entire element. This gives rise to disparities along the edges of 

elements where the value of  stress computed from two sides of the edge differ. 

Fig. 4.1   Elements, Nodes and Edges in FEA 
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This leads to the stress being  not single -valued across element interfaces as shown in 

Fig 4.2 , though the fact being the finer the elements- the less the disparity. 

4.2 SMOOTHING 

  Removing such stress irregularities and ensuring a smooth variation along the 

element interfaces, at the same time honouring the stresses in the elements, is known 

as stress smoothing, depicted by a smooth curve shown in Fig. 4.3  

 

 

 
 Similarly at nodes, where the corners of elements meet, the FEA stress values 

differ when computed from different directions.   

 

In many problems, like in node based structural optimization, the investigator is 

interested in knowing the stress levels at a node, based on the stress values in 

elements connected to it.  Hence smoothing is applied, usually, as a post processing 

technique at the end of FEA procedure to determine the value of field variable at a 

point of interest, in relation to those at a number of points in its neighbourhood.  

 

 

Fig. 4.3   Stress Smoothing 

Fig. 4.2   Discontinuity of Stress values at the Boundaries of Elements 
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4.3 CURVE AND SURFACE FITTING   

 In the mathematical field of numerical analysis, interpolation is a method of 

constructing new data points within the range of a discrete set of known data points in 

the vicinity. Fitting a function satisfying all the data points can predict the variables 

within the range assuming a smooth variation. 

 

 In 1D problems, with a given set of values y1,y2, ....yn  are known at locations 

x1,x2..., xn respectively, arriving at a relationship  of the form  

y = f(x) 

is called curve fitting. 

 In 2D, finding a relationship of the form  

z = f(x,y) 

 that can be used to used to obtain value of field variable  z at any point,  using a set of 

known values of   z at known points (x1,y1), ( x2,y2)....(xn,yn) in the vicinity,  is 

known as surface fitting. 

 In both 1D and 2D, these functions may be polynomial, exponential, 

logarithmic or trigonometric.  

 4.4 MOVING LEAST SQUARES METHOD  

Various methods are available to find or to predict the value of field variable at 

a point of interest in a domain from the obtained values in a sub-domain near the 

point. Collocation Method, Least square Method are some popular methods used for 

interpolation. Moving Least Square (MLS) Method is a modified version of Least 

Square (LS) Method in which continuous functions are reconstructed from a set of 

unorganized point samples via the calculation of a weighted least squares measure 

biased towards the region around the point at which the reconstructed value is 

requested.    

In MLS, a field variable like deflection, can be approximated by  

 

-----(4.1) 

-----(4.2) 

-----(4.3) f (x) 
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Where f(x) is the approximate value  of the field variable at the location, 

 1, 2, . . . , ݉, are called  basis functions, ݉ is the number of terms in = ݅ ,(x)݅݌

basis functions, and  ܽ݅(x)  are the coefficients. 

 

4.5 THE BASIS FUNCTIONS 

 are  polynomials of variable x and  use  a vector consisting  (x)݉݌ , . . . ,(x)2݌ ,(x)1݌   

of monomials of the lowest orders to ensure minimum completeness.   

 {  1    x     x2   ..... xm } = (x)܂ܘ
For example, the basis functions of one-dimensional polynomials have the following 

forms:  

linear basis as  

pܶ(ݔ) = {ݔ ,1 }, ݉ = 2  

and quadratic basis as  

pܶ(ݔ) = {2ݔ ,ݔ ,1}, ݉ = 3 

  In Moving Least Square Method, The coefficients  given by  

 
vary with x, the location of the point of interest in the sub-domain. Assembling the 

basis function values for all the points in the vicinity , we get 

  
Here, P is known as the moment matrix. 

 

{a} 

-----(4.8) 

-----(4.4) 

-----(4.5) 

-----(4.6) 

-----(4.7) 



39 

 

   The basis functions can be simple polynomials, Legrange polynomials, 

Trigonometric Functions, Radial Basis Functions, and so forth( Liu,2003).   

 The essence of MLS is the concept of a moving window (influence domain) 

inside the full domain, but concentrating only on the data visible through the window. 

The method uses a polynomial of certain degree, the value of which will be equal or 

very near to those at the data points. The main difference between the MLS and LS is 

in the nature of coefficients in the polynomials. The coefficients remain same   for the 

entire domain in LS , where as they get a different set of values , based on the 

movement of the window, in MLS.   

4.6 ILLUSTRATION OF MLS IN 1D 

 The Moving Least Square ( MLS) Method  may be explained considering a set 

of scattered data in 1D  shown in  Table 4.1.  

 

  

 
   The points in an x-y plot  are  shown in Fig. 4.4. We can fit a Least Square (LS) 

function in the form  

y = a0 + a1 x+ a2 x2  

as  

y = 172.3 + 374.2 x + 23.48 x2 

Fig. 4.4   Scattered  Data Points for Illustration 

Table   4.1 

-----(4.9) 

-----(4.10) 
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 A plot  for this trend line is shown in Fig 4.5. It may be observed that the fitted 

line does not pass perfectly through any of the data points though it is a best fit line 

with an overall minimum deviation. 

 If  the whole range is split into 3 regions, 1 <= x < 4,  4 <=  x < 8,  and 8 <=  x 

<= 10   trying to make a LS fit for each region, we can fit functions for individual 

regions  as given in Table 4.2 and plotted as shown in Fig 4.6 

 
No.  Range of   x  Function  

1  1 <= x < 4  y = 137.5+ 477.5  x -12.5  x 2      

2  4 <=  x < 8  y = - 1917.14 + 1134.29 x - 42.86  x  2       

3  8 <=  x <= 10  y = – 41900+ 9800  x -500  x  2     

         

                       
Fig. 4.6   Fitting Using Method of Moving Least Squares 

Table 4.2     MLS Fit  Functions 

Fig.4.5  Curve Fitting Using Method of Least Squares 

-----(4.11) 

-----(4.12) 

-----(4.13) 
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Here too, it may be observed that the lines do not pass exactly through the data points, 

though the individual fitting lines show less deviations. 

 4.7 CONCEPT OF MOVING POLYNOMIAL MLS FOR  FITTING  DATA 

 The accuracy of fitting increases at the data points if higher degree 

polynomials are used for fitting. But the number of terms in the polynomial can be 

selected to the maximum of  number of data points available in the vicinity. Thus 

selecting polynomials of 4 terms, 5terms and 3 terms for the regions 1,2 and 3 

respectively, we get new fitting functions for the regions.  These fitting functions are 

shown in Table 4.3,depicting , as we move from one region to the next, the number of 

terms in the polynomial may change.  Hence this is called as  Moving Polynomial 

MLS (MPMLS). 

       
Region No Range of x              Function 

1 1 <= x <  4          y = 1800 - 2166.667 x + 1175 x2 -
158.333 x3 ( 4 Terms) 

2 4 <=  x < 8 y= - 100500 + 68158.33 x- 16679.16 x2 

+ 1791.66   x3 -70.83 x4   ( 5 Terms) 
3 8 <=  x <= 10 y = – 41900+ 9800  x - 500  x  2  ( 3 

Terms) 

 

   

Fig. 4.7   Fitting Using Method of  Moving Polynomial Moving Least Squares 

 Table 4.3.   Moving Polynomial MLS Fit  Functions 

-----(4.16) 

-----(4.15) 

-----(4.14) 
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  It can now be seen that individual fitting functions almost exactly pass through 

the data points in the region of attention.  

  MPMLS gains its importance in situations where the fitting curve has to 

necessarily pass through the data points and at the same time be continuous in a given 

region while attention is focussed in the region. 

4.8  MLS METHOD  IN  2D PROBLEMS 

4.8.1 Basis Functions 

In 2D problems, The basis function p(x) is often built using monomials from the 

Pascal triangle given in Fig 4.8,  to ensure minimum completeness . In the polynomial 

selected, equal participation is required from the x and y terms in their degrees to 

ensure  a un-biased representation.  

 
   In some special problems, enhancement  functions can, however, be added to 

the basis to improve the performance of the MLS approximation.  

 Usually, the type of polynomial selected remains the same through out the 

domain, though values of the coefficients keep changing on the move. In finite 

element method or meshfree methods with  a minimum of 3 scattered points 

guaranteed in the neighbourhood, a polynomial of the form 

     p  = a1+a2 x+ a3 y                                         

is selected, which remains the same style, though set of values of coefficients a1, a2 

and a3 keep changing.  

-----(4.17) 

----- (4.18) 
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 Assembling the basis polynomial function values for all the data points in the 

vicinity, the Moment matrix P is given by  

 
Or, generalising the terms as functions of  x and y,  

    
 Where (x1,y1), (x2,y2), (x3,y3),..., (xn,yn)  are the co –ordinates of n number of 

data points.  

Thus, 

 [P] {a} = {s}                                                                                          

Where {a} is a vector of unknown coefficients of  ‘m’ numbers of terms in the 

polynomial and {s} is the vector of known field variables at ‘n’ number points in the 

vicinity.   

Fig. 4.8  Pascal Triangle used for the Formulation of Basis Function. 

-----(4.19) 

-----(4.20) 

-----(4.21) 
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4.8.2 Solution Techniques 

 In MLS method , a Polynomial Function containing ‘m’ number of terms  is 

fitted to pass through the function values at each of the given ‘n’ number of scattered 

points. The polynomial may contain exactly the same number of terms as the number 

of scattered  points.   

If    , the solution would have been very simple in the form 

{a} = [P] -1 {s}                                                                                                           

 Though the solution looks simple, it suffers from an inherent property of a 

possible singularity of [P] which makes [P] -1 non-existent. The existence of [P] -1 
 

depends on the distribution of the influencing points scattered in the vicinity. For a set 

of arbitrarily selected points, if x or y co-ordinates are the same, [P] may turn out to 

be singular and the method  will not work straight away.  

 Moreover,  if  m  ≠ n , the method fails ,  as  the inverse of a non square matrix 

does not exist. 

 There are no chances that  a polynomial is selected with terms more in number 

than the number of data points. Hence a case of m > n does not exist. 

 When m<n , P is a non square matrix with an order n x m. The solution needs 

to be obtained for n number of simultaneous equations to find the values of m number 

of coefficients represented by {a}. 

Multiplying both the sides of equation  (4.21) by  [P]T 

[P]T [P] {a} = [P]T {s}                                     

 [P]T [P] is a square matrix of order m x m  and we can obtain inverse of this.   

{a} = ( [P]T [P])-1   [P]T {s}                                   

 It can be proved that,  the matrix will be singular, only if the columns in  [P]  

are linearly dependent. The moment matrix is dependent only on the co-ordinates of 

-----(4.22) 

-----(4.23) 

-----(4.24) 
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the data points. Columns can be linearly dependent in cases where all the points are 

on global x axis  or on global y axis or fall on a straight line or when two points 

merge. There are various methods suggested  to avoid the singularity of the matrix. 

(Liu et al ,2003,2013). In these, rotation of local axes is a simple but very efficient 

method. 

4.8.3 Local Co-ordinate and Rotation of   Local Axes 

  In this methodology, singularity is avoided by rotating the local co-ordinates 

system of a sub-domain by an angle such that the data points possess new co-ordinate 

values and the moment matrix gets modified ( Liu, 2003, 2013) 

 

 
 

Shifting the co-ordinate system to the point of interest q (xq,yq) we get 

lx = x - xq 

ly = y - yq 

where (lx,ly) is the new co-ordinate for a point with respect to the local axes. 

Performing rotation of the local axes by an angle  ϕ as shown in Fig. 4.9, 
rlx=   lx  cos ϕ   - ly  sin ϕ 

rly = -lx sin ϕ +  ly  cos ϕ 

where (rlx,rly) is the co-ordinate of the data point with respect to the rotated local 

axes. Obtaining rlx and rly, corresponding global co-ordinates can be calculated as 

Fig. 4.9 Rotation of Local Axes 

-----(4.25) 

-----(4.26) 

-----(4.27) 

-----(4.28) 
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xnew= xq + (rlx cos ϕ - rly sin ϕ) 

ynew= yq + ( rlx sin ϕ + rly cos ϕ) 

where (xnew,ynew) is the new location of the data point with respect to the global co-

ordinates. However, since the location of point of interest with respect to the data 

points is not changed, the interpolated value at q (xq,yq) and the function fitted for the 

region do not get affected . 

 Where ever the moment matrix turns out to be singular, such rotations by a 

small angle may be performed. If the rotated co-ordinates still give rise to moment 

matrix being singular, rotation in the reverse direction or by another angle needs to be 

tried. 

 

 
 In the presentwork, this methodology has been adopted with a trial of rotaion 

by an angle one dgree , incremented everytime till singularity does not occur. Such 

rotations may be necessary at many locations where the data points form singular 

moment matrix, as shown in Fig. 4.10. 

4.8.4 Weight Function 

 The measured values closest to the prediction location have more influence on 

the predicted value than those farther away.  Hence while predicting a value based on 

a given set of data in the neighbourhood, more ‘weightage’ should be given to the 

data available near the point of prediction. One of the ways to implementation of 

Fig. 4.10 Rotation of Local Axes in different Sub Domains 

-----(4.29) 
-----(4.30) 
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weightages  is through the use of weight functions.  The value of weight functions 

decays with increasing distance to the data point. 

 A ‘weight function’ is a mathematical device used when performing a sum, 

integral, or average to give some elements more "weight" or influence on the result 

than other elements in the same set. They occur frequently in statistics and analysis, 

and are closely related to the concept of a measure. Weight functions can be 

employed in both discrete and continuous settings.  

4.8.5 Types of Weight Functions 

  There are various types of weight functions used in weighted MLS Methods. 

The cubic spline weight function,  the quartic spline weight function, the exponential 

weight function, new quartic spline weight function by Liu et. al. ( 2002) are some of 

them. 

Basically, W   = f (x-xi)  

and is represented as W(x-xi). 

The Weight Function W  is always chosen to have the following properties. 

1. W ( x-xi)  > 0 within the support domain 

2. W ( x-xi)  = 0 outside the support domain 

3. W ( x-xi)      monotonically decreases from the point of  interest at x 

4. W ( x-xi)    is sufficient smooth, especially on the boundary of the domain 

 

4.8.5.1 The Cubic Spline Weight Function 

 
4.8.5.2 The Quartic Spline Weight Function 

 

-----(4.31) 

-----(4.32) 

-----(4.33) 
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4.8.5.3 The Exponential Weight Function 

 
4.8.5.4 The New Quartic Spline Weight Function by Liu et al ( 2002) 

 
Where 

  

and   rw  is the size of the support domain 

 

 
 Fig 4.11 Shows the plot of weight functions where W1 , W2, W3 and W4 are 

the function plots as per the equations  (4.32 ) to ( 4.35) respectively.  

 The choice of the weight function is more or less arbitrary as long as the above 

requirements are met. The exponential function and spline functions are often used in 

Fig. 4.11  Plots for Various Types of Weighting Functions 

-----(4.34) 

-----(4.35) 

-----(4.36) 
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practice. Among them, the most commonly used weight function is the cubic spline 

weightfunction  W1 . This   has been used in the present work. 

In 2D problems (Liu,2003),  

Wx = W ( x - xi) 

Wy = W ( y - yi) 

Where  (x,y) is the point of interest and  (xi,yi) is  i th the data point. 

The net weightage to be given is  

W = Wx . Wy 

  The weighted MLS function for the sub-domain thus becomes  

W P a  = W s  

where W(x)  is a diagonal matrix of the form 

 
 

4.9 SOLUTION FOR COEFFICIENTS 

 It  is evident that  W, P and a are dependent on the co-ordinates of the data 

points. In these expressions,  W is of the order nxn , P is of the order nxm, a is of the 

order mx1 and s is of the order nx1 

 PTW P a  = PTW s  

a = (PTW P) -1 (PTW) s 

or 

a = Q-1 R s 

where  

Q = (PTW P) 

and  

R = (PTW) 

-----(4.37) 

-----(4.38) 

-----(4.39) 

-----(4.40) 

-----(4.41) 

-----(4.42) 

-----(4.43) 

-----(4.44) 

-----(4.45) 

-----(4.46) 
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 Solution of equation (4.44)  yields the coefficient matrix a that can be used  in 

the polynomial function to fit  the given data points 

 

4.10 MOVING POINT MLS IN 2D 

 In situations where the smooth fitting function has to necessarily pass through 

the data points, the accuracy of fitting will be better, if the number of terms and 

degree of polynomial are more. It is obvious  that a relatively large support domain 

means more data points  are involved in calculation. Similarly, the number of such 

data points  vary from sub-domain to sub-domain. This means, there is a scope for  

using a different number of terms in the  polynomial basis functions for  every 

subdomain, every time  selecting the number of terms in the polynomial equal to  the 

number of data points available, ie .,  m = n. This will involve reconstruction of 

polynomial , not only for a different set of coefficients, but also for number of terms 

and coefficients. This will exploit  the advantages of  MLS  method leading to 

MPMLS in 2D. 

4.11 SELECTION OF BASIS FUNCTIONS IN MPMLS IN 2D 

    The process of selection of basis function is done as per the number of data 

points available in the vicinity, containing unbiased representation of   x and y. Based 

on the principle that the equal representation from both the co-ordinate directions and 

un-biased selection of degrees of x and y, The Basis functions are selected as shown 

in Fig. 4.12 to 4.20, for number of terms varying from 3 to 11, respectively, for the 

sub-domains containing 3 to 11 data points. For the domains containing more data 

points, basis functions can be selected in similar lines. 
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Fig. 4.16 Polynomial for 7 
data points 

Fig.  4.15 Polynomial for 6 data 
points 

Fig. 4.14  Polynomial for 5 
data points 

Fig. 4.13  Polynomial for 4 data 
points 

Fig.  4.12   Polynomial for 3 data 
points 

Fig. 4.17  Polynomial for 8 
data points 
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   The usage of these basis functions and their relative advantages have been 

analysed  through an illustration. 

 4.12  ILLUSTRATION ON STRESS SMOOTHING BY MPMLS METHOD  

 In this illustration, The use of polynomial basis function with different number 

of terms is studied by varying number of terms in weighted MLS solution. 

Stress values, in MPa,  s1, s2, s3,.....s11  are given at 11 locations in a sub-

domain containing 11 scattered points, shown in Fig.4.21. The stress value at a point 

‘q’ is needed. 

 

Fig. 4.20  Polynomial for 11 
data points 

Fig. 4.18  Polynomial for 9 
data points 

Fig. 4.19  Polynomial for 
10 data points 
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  In a typical FEA, a 3- term polynomial basis function is assumed for all sub 

domains, since, for all sub-domains, minimum 3 points will be available for 

interpolation in triangulated FEM Domain.   

  
 

 

 At this location, since there are 11 data points available and there is a 

possibility of using a polynomial basis function containing upto 11 terms. Thus 

polynomial fits are made with number of terms varying from 3 to 11, using weighted 

MLS, taking an intermediate point q ( 54.64 ,34.21)  as the point interest. 

Surface development of the boundary with the stress values as the ordinates is 

shown in Fig. 4.22. The aim is to fit a curve, as smooth as possible, which will 

represent the stress values along the boundary. 

 
Fig. 4.22    Aim  of   Stress Smoothing Function   

Fig. 4.21    Illustrative Stress Smoothing Problem 
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  The solution is attempted with MLS method using a weighting function W1, 

given by equation (4.32)  taking different number of terms in the polynomial . Here, 

since the data at 11 Points are available. Fitting functions are obtained as 

 

 

With m = 3  f(x,y) = + 36.27649579   + 0.01333471 x - 0.03391594 y                        

 

With m = 4 

f(x,y) = + 9.69427425   + 0.50269835 x + 0.73547957 y  

- 0.01409307 xy                  

With m = 5  

f(x,y) = + 9.94349894   + 0.52431659 x + 0.35839655 y 

 - 0.00014034 x2y   + 0.00001402 xy2 

With m = 6 

f(x,y) = + 2.65382519   + 0.88630415 x + 0.53115039 y  

- 0.01456376 xy  -0 .00337254 x2 + 0.00337921 y2 

 

With m = 7 

f(x,y) = + 8.15389141   + 0.78449483 x - 0.00066074 y  

- 0.00385764 x2   +0 .00982873 y2 - 0.00003325 x2y  

- 0.00015986 xy2 

 

With m = 8 

f(x,y) = + 5.96838814   +0.85847356 x + 0.07994093 y  

- 0.00233641 xy -0 .00444588 x2 + 0.00929419 y2  

- 0.00001779 x2y - 0.00015067 xy2 

 

With m = 9 

f(x,y) = + 15.06050144   + 1.54728324 x - 0.81649742 y 

 - 0.03406718 x2 + 0.02957575 y2 + 0.00033269 x3  

-0.00038384 y3 - 0.00042707 x2y +0.00044562 xy2 

-----(4.47) 

-----(4.48) 

-----(4.49) 

-----(4.50) 

-----(4.51) 

-----(4.52) 

-----(4.53) 
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With m = 10 

f(x,y) = - 86.54307967   + 5.40179595 x + 4.07009625 y  

- 0.08882328 xy - 0.08537555 x2 - 0.06932155 y2  

+ 0.0005373 x3 + 0.00052654 y3 + 0.00023539 x2y  

+ 0.00070261 xy2 

With m = 11  

f(x,y) = - 78.96361915   + 5.32852763 x + 1.71967145 y 

 - 0.08770937 x2 +0 .01153016 y2 + 0.00055228 x3  

- 0.0004538 y3 - 0.00098959 x2y  - 0.00129275 xy2  

+ 0.00000897 x3y + 0.00002512 xy3 

  

 The  fitting function  equations  (4. 47)  to ( 4.55)  have been used to compute 

the stresses at the data points  and these computed stresses values are compared with 

given stress values , in Table 4.4  The Variance is computed as given in equation 

(4.56) and tabulated. It is obvious that as the number of terms increases, the error 

decreases. 

  
Thus, it can be seen that , the errors are minimum when higher degree polynomials 

are used in the basis functions.  Fig. 4.23  shows surface development of boundary 

stresses at data points for m=3, m=7, m=11 and that for given stress values. Fig 4.24 

shows these plots for all the fitting functions. 

It has been demonstrated that the accuracy of fitting  will be better with a 

polymial function containing a number of terms as equal as the number of data points 

available in the viscinity.   

 

 

 

-----(4.54) 

-----(4.55) 

-----(4.56) 
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It may be seen that the plot for fitting function with m=3 has stress predictions 

much deviating from the given values at the data points. As the value of m increases, 

the function does justification of the fit by predicting accurate values at the data 

points, as shown in Fig. 4.24. The variance for fitted values of stress is represented in 

Fig.4.25 for increase in values of m=3 to m=11. 

Fig. 4.23.    Comparison of Stress Values 

Table 4.4     Comparison of Stress Values at  Data Points 
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4.13 USE OF FITTING FUNCTION  

 The fitting functions of higher order truly ‘honour’ the values at the data 

points and represent smooth variation of stresses between the data points. Hence these 

can be used to smooth out the stresses across element edges and to predict the stress 

values all along the polygonal boundary, in a region containing the data points.  

The surface plots corresponding to the fitting functions are given in Fig.4. 26. 

 The applicability of these functions for the local interpolation to determine the 

value of stress at an internal point depends not only on the  number of sample points 

Fig. 4.25     Comparison of Variance 

Fig. 4.24   Surface Development of Boundary Stress Values 
Values 
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but also on the location of these sample points. If the location of samples points are 

not indicative of the surface trend , showing  local peaks and valleys , scattered data 

interpolation by any method can lead to gross errors (O’ Sullivan, et.al ,2002). 

 As seen in Table 4.5  the surface plots, the  fitting function may not be directly 

used to evaluate the stress values  at the intermediate point q, within the boundary, as 

the trend of variation of stress from outside the boundary to inside is not known. 

 

   
Fig. 4.26    Surface Plots for Fitting Functions 



59 

 

 

 
  

 Table 4.5 shows that the  fitting functions  will have to be used with caution as 

an interpolation function, if  a sample data point  at  a location indicative of trend of 

surface is not available. Under these circumstances, a suitable deterministic  

interpolation tool like Inverse Distance Weighting Method or Averaging Method may  

be employed for interpolation. 

  

 However, if any data point is available within such boundary, which indicates 

the trend of stress variation, the fitting function may be used for internal interpolation 

too. Similarly, for a small region with closely and irregularly spaced data points, the 

fitting function can predict the stress values valid throughout the region. 

 

 4.14 LOCAL INTERPOLATION USING INVERSE DISTANCE WEIGHTING 

METHOD  

 The  concept behind interpolation by Inverse Distance Weighting (IDW)  

method  is expressed in by Tobler in 1970 as the first law of geography which states  

"All places are related, but nearby places are more related than distant places" 

(O’Sullivan, 2002). 

 The influence of neighbours decreases with increase in distances , meaning 

farther neighbour has less influence.  

Table  4.5 Stress Values Computed at the Intermediate Point 

Using Fitting Functions 



60 

 

 Inverse distance weighting is a deterministic, nonlinear interpolation technique 

that uses a weighted average of the attribute (i.e., phenomenon) values from nearby 

sample points to estimate the magnitude of that attribute at interior non-sampled 

locations  (Adrienne , 2014) . 

 
  

 Where zi is the attribute at the ith location. z is the attribute at the location of 

interest where interpolated value is required and wi is the weighting added which 

decreases with the increase in distance of the i th data point from the location of 

interest.  

 

wi  is generally of the form   

 

Where di is the distance to the ith point and p indicates the power to which the 

distance effect is enhanced. With p = 2, the above equation reduces to the form 

  
 

 Using the Given data points, if the interpolation is attempted using IDW, the 

interpolated value at ‘q’ is found as 35.22 MPa. as  shown in Table 4.6. 

 

 

-----(4.57) 

-----(4.58) 

-----(4.59) 
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4.15  CREATION OF  ADDITIONAL DATA POINTS USING SMOOTH FIT 

FUNCTIONS 

 It can be seen that  a smooth surface which passes through the data points will 

be a good representative for the stress values along the boundary. Thus the fitting 

function can be used to create additional points along the boundary. These data points, 

in addition to the given ones, are useful in a suitable local interpolation method for the 

determination of stresses at an internal location as shown in Fig. 4.27.  

 

 
 Additional data points  A,B,C,...., K  are generated using the fitting function 

corresponding to m=11. The stress values at the original and generated points are 

Table 4.6 Stress Values Computed based on 
Originally Available Data 

Fig. 4.27     Intermediate Data Points Generated Using Fitting Function 



62 

 

tabulated in Table 4.7. Using these 22 points, IDW improves the quality of 

interpolated stress value at q as 34.67 MPa as all stresses at these locations are 

estimated by a fitting function which is not only smooth, but also passing through the 

data points. 

 

 
 The effective combination of smoothing using the Moving Point Moving Least 

Square (MPMLS) method conceptualized and subsequent use of Inverse Distance 

Weighting (IDW) Method for interpolation has been used as the backbone for the 

stress recovery at nodal points, further extended to the formulation of  Nodes- in -

Motion -Strategy  for the optimum material disposition in plates, detailed in Chapter 

6. 

  

Table  4.7 Stress Values Computed based  Data Generated 
Using Fitting Function 



Chapter  5 

STRUCTURAL OPTIMIZATION 

BY NODES  -  IN - MOTION STRATEGY 
 
5.1  GENERAL 

  Structural optimization, in its simplest sense, means the process of 

proportioning  a structure for its best performance under given conditions. Depending 

upon the performance criterion, it could mean optimization for minimum material 

cost, for minimum manufacturing cost, for minimum overall cost, for minimum 

deflection,  etc.   

 Based on the approach followed, structure optimized behaviour of the system 

and the objective, structural optimization has been further classified. A node based 

strategy is conceptualised and illustrated in the following sections. 

 

5.2 TOPOLOGY OPTIMIZATION 

 The   load transfer system, planned at the early phase, is of  the paramount 

importance for the successful design of any structure. The conceptualisation of 

method of analysis and its mathematical implementation are dependent on this load 

transfer system and the initial configuration adopted for the structure. Explicit 

objectives like maximizing the stiffness or minimizing the compliance can be attained 

under a single or multiple load cases.  

 

 Topology optimization is some times referred to as layout optimization. 

Topological variables define the pattern of connected elements, regions of element 

removal or addition.  In skeletal structures, topology optimization means to add some 

members where they are required, remove ones that are  ineffective. This gives a new 

layout for the skeleton different from the old one. The member connectivity is revised 

and number of members changed. In this sense, ‘topology optimization’ is a term 

more used in skeletal structures. 
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5.3 SHAPE OPTIMIZATION 

  Shape is defined as the form of an object. The external configuration of any 

structure gives it a form.  

Structures perform better if a proper shape is selected. The shape of a structure 

is defined by means of geometrical bounds containing the entire structure. These 

geometrical bounds are defined as co-ordinates in multi-dimensions and the change in 

the co-ordinates of bounds reflects are change in shape. 

In shape optimization, boundaries of the component geometry are modified 

seeking better performance. Hence the co-ordinates of the bounds are treated as 

variables, while the connectivity among geometric sub domains remains constant. The 

basic concept of shape optimization  is to achieve the minimum shape that satisfies all 

the necessary functional requirements  such as stability, strength and  stiffness.   

  An optimum shape for any structure depends on the location of supports 

externally applied  loads, performance of materials in compression, tension or in 

shear. 

5.4 SIZING OPTIMIZATION 

  In the case of skeletal structures, one may be forced to maintain the shape and  

topology   but optimize the cross section of members, minimising the cost. The term 

‘Size Optimization’, has more meaning in skeletal structures than  in 2D and 3D 

continuum.  

5.5 OPTIMUM MATERIAL DISPOSITION   

Generally, the optimized solutions of plate like structures are attempted as a    

material disposition optimization. Optimum material disposition means the removing 

material from locations where it is not efficiently used and shifting/ increasing the 

material where it is best used.  The methodology evolved in this research work for 

optimization of  a continuum  in covered in detail in subsequent chapters. 

5.6  CLASSIFICATION BASED ON MODE OF BEHAVIOUR 

In this classification structures are identified by the mode of behaviour under 

consideration.   
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5.6.1 Static Optimization  

 In this type of classification the structure is subjected to static external loads. 

Here the goal of structural optimization is to carry the applied loads safely and 

economically. 

 

5.6.2 Dynamic Optimization 

  In this case, the structure is subjected to dynamic forces. The aim of 

optimizing structures not only in terms of strength,  but also to avoid resonance. This 

can be achieved by increasing the difference between the forcing frequency and the 

natural frequencies of the structure. In certain cases the objective will be to match the 

frequencies with a predetermined set of values.  

 

5.7 OPTIMIZATION PROBLEM DEFINITION 

 

5.7.1  Mathematical Description of Optimization problem 

 Structural optimization problems are generally characterized by different 

objectives and constraints which are generally non linear functions of design 

variables. All optimization  problems can be mathematically expressed as   

Minimize (or maximize): F(x)    

Subject to constraints   

gj(x)≤ 0 j=1,…….m   

hk(x)=0 k=1,……..l   

xi 1 ≤ xi ≤ xiu i=1,……..,nd    

 

in which, x is the vector of design variables, F(x) is the objective function to 

be minimized (or maximized), gj(x) and hk(x) are the behaviour constraints. xil and 

xiu are lower and upper bounds on a typical design variable xi. 
5.7.2 Objective function 

To select the best design, a criterion is  to be chosen for comparing the 

different alternative acceptable designs.  This is known as the objective function. 

-----(5.1) 

-----(5.2) 

-----(5.3) 

-----(5.4) 
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Mathematically, it is an expression that depends on design vector x which quantifies 

(in a mathematical sense) the worth of any design. The selection of the objective 

function depends on the nature of the problem. Depending upon the choice of the 

objective function, the optimization becomes either maximization or minimization. In 

structural optimization problems, the objective functions generally considered are 

minimizing the weight or volume of the structure, minimizing the strain energy, or 

minimizing the error in calculations.   

 

5.7.3  Design Variables 

 

The design variables largely depend on the problem at hand. Typical design 

variables can be coordinates of key points or thickness at key locations etc. Each 

individual design variable is denoted by xi and the set of design variables is grouped 

into the design vector x. In case of skeletal structures, the co-ordinates of joints, cross 

sectional areas of members are generally considered as design variables. In FEA 

based optimization problems of  2D or 3D continuum , the co-ordinates of all the 

nodal locations, thickness of individual elements are considered as  design variables.   

 

5.7.4  Constraints 

In many practical design problems, the values of design variables are chosen 

so as to satisfy functional, geometrical and other requirements. The restrictions that 

must be satisfied in order to produce an acceptable design are called constraints. They 

can be further classified based on the situation or locations they are applied to. 

 

5.7.4.1 Geometric Constraints 

The constraints which represent physical limitations on the geometric design 

variables such as maintaining a shape, maintaining the loading points, limiting the 

movement of certain boundaries, maintaining minimum sizes  at certain locations, 

locations of supports  fall  in this category.. 

 

 



 67   

 

5.7.4.2 Material Constraints 

In optimization problems where selection is allowed from a variety of 

materials, the set of  properties for a material needs to be maintained thorough out the 

solution. Similarly, from time to time, location to location,  the availability of 

materials, ability to fabricate or assemble  may also play as constraints. In this 

research work, the stress in any element is constrained to be within the  maximum 

allowable stress. 

5.7.4.3 Behavioural Constraints  

 The constraints which represent limitations on the behaviour or the 

performance of the system are called behaviour or functional constraints. It could be 

defined as maximum deflection permitted, limiting frequency of vibration, minimum 

stiffness constraints, etc. 

5.7.4.4 Miscellaneous Constraints  

There can be many other constraints imposed by the user while the process of 

optimization is on.  It could be in the form of maintaining the locations of lower 

boundary nodes purely horizontal, allowing hole of constant size move within the 

shape, allowing a node to move relative to another node or nodes, maintaining one 

side of the plate vertical, etc. These conditions are checked at every stage of  working 

towards betterment. 

 

5.8    GENERAL NATURE OF PROCEDURE  FOR  OPTIMIZATION OF  

STRUCTURES 

 The procedure for optimization of  any structure  starts with an initial 

geometry of  the  structure based on  the load  transfer system suggested, loading & 

conditions assumed , material selected and objective of optimization defined.  

 The conceptualization and mathematical implementation of the analysis 

procedure follows and the internal forces developed in the structure are obtained to 

arrive at the stresses developed in the material of construction. Ensuring the stability, 

safety and serviceability conditions of the structure,  a trial is made to modify the 
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shape or thickness of the whole structure or size of its parts as an attempt  to improve 

its performance towards betterment of objective function. 

 The remodelled structure is analysed again to determine its performance 

satisfying all the conditions.   The whole procedure is repeated till  the objective is 

attained to the level of satisfaction. 

 The procedure of optimization of any structure is repetitive in nature. 

5.9  DEVELOPMENT OF  A NODE BASED STRATEGY FOR 2D TRUSSES 

   

  

 

A truss is a structure composed of  linear members assembled  together at their 

end points. The interconnectivity of the joints and their relative disposition define the 

shape and topology of  a truss.  A truss forms an efficient structure capable of 

transferring   loads expected on it  to a supporting structure by virtue of its shape, 

topology and size of  a group of straight members of varying lengths. Two 

dimensional trusses are basic and commonly used form of construction. They are 

treated as assemblages of 1D or Beam elements in FEM as idealized in Fig. 5.1. 

 

 

Fig.5.1  Idealization of  Truss System 
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5.9.1  Analysis and Design of  Trusses  

Analysis of a  truss involves,  sequentially,  the initialization of  the problem 

with nodal positions, member sizing, connectivity, support conditions  and external 

loads. In a Standard Direct Stiffness Matrix Method, a global stiffness matrix is 

assembled from individual element stiffness matrices. support conditions are imposed 

by manipulation of  corresponding  elements in global stiffness matrix. With  the 

force vector on the right hand side, simultaneous equations are solved to get 

displacements at nodes and  forces in members. Stresses in the material are 

determined to check the adequacy of  cross sectional areas  provided for all the  

members. The Direct Stiffness Matrix Method used for the analysis of trusses which 

yields the forces in the members is outlined in Appendix B. 

 

5.9.2  Objective Function 

The Objective of  the optimization  problem related to the truss design is to reduce the 

whole weight, WT,  of the whole  truss to a minimum.   For a truss with uniform 

material, it reduces to  

       

m is the total number of members,  Ai is  cross sectional area and li is the length , r i 

is the unit weight of material of  the i th member 

 5.9.3 Strength Constraints 

 These  are the limits  imposed on the  stresses  S developed in the materials of 

cross section of members. 

                                 Sactual  <=  S permissible                                                               -----(5.6) 

-----(5.5) 
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 Permissible limits on the stresses would also depend on the type of force 

developed on the member. For the sake of development of strategy, here it is assumed 

that the permissible stresses are the same in tension as well as in compression.  

5.9. 4  Design  

Since the areas of cross-sections are initially assumed, the axial stresses in the 

material of  section for every  member can easily be computed. 

  

                                                Si   =     Fi / Ai                                                  

 

Where Fi is the force developed in the ith member. The stress thus calculated is 

compared with the permissible stress in the material of every member.  

The permissible values  of  stresses is generally dependent on the yield stress 

of material, limiting it well within the linear range of the stress –strain relationship.  If 

the calculated actual stress exceed beyond the permitted values, the cross sections of 

such members are insufficient and need to be revised upwards and a final safe design 

to be ensured. 

 

5.9.5  Re- analysis and Design 

The change effected in the cross sections of the members will result in 

changes the element stiffness matrices earlier computed for analysis and design of the 

truss. Hence it is customary that we repeat the procedure of analysis and design to 

ensure a safe deign without any more requirement of area enhancement.  

5.9.6  Utility Ratio 

The efficiency of material in any member can be assessed by the percentage 

exploitation of the capacity of the material. The ratio of actual stress developed  to the 

permissible stress in the material at  a cross section of a member is called  utility ratio,  

U of that member.   

Thus, if U=1 the capacity is fully exploited, if  U <1, the capacity  is partially 

exploited and  If U > 1 the stress exceeds the permissible limits indicating  the 

member is unsafe.  

-----(5.7) 
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Referring to Fig. 5.2, at a typical node, let   there are ‘ m’ number of members 

connected to it. Let the cross sectional areas be A1, A2, A3,……Am  and lengths be l1 , 

l2, l3,….lm .    

Performing the analysis and getting a safe design, need not achieve an 

optimum design.  Let  the utility ratios of the members be U1,U2,U3,…Um, all of them 

being less than unity for a safe design.   

Changing the areas of the members as  ‘just required’ to make the utility ratio 

nearing unity will optimize the size of members for the given shape and topology. But 

this need not necessarily be optimum for the whole structure in terms of minimum 

weight to transfer the applied loads under specified support conditions.  There could 

be a better shape or topology to serve the purpose with lesser weight. Hence, the 

effort is required to attempt shape, topology and size optimization simultaneously, in 

search of an optimum solution for the structure. This is accomplished  through the 

following criteria. 

5.9.7 Criteria Leading to Optimum Design of Trusses 

 Criterion-1   :  For a given configuration, cross sectional properties, loading and 

support conditions, the members connected to a typical node, shown in Fig. 5.2, 

though all safe, need not have utility ratios equal to unity.  

 The shift of the node to another location, keeping the connectivity, and re-

analysing the structure, modifies the utility ratios of members.  The node may be 

moved such that the members with modified area are  safe, at the same time, perform 

better. Successive modifying cross sectional areas, re-analysing, moving the 

connecting node for better performance of members will bring a situation where all 

the members attain utility ratios equal or very near to unity  with a set of cross 

sectional areas, lengths. as shown in Fig. 5.3. The movement of nodes effect the shape 

and topology of the truss. 

Criterion-2   :   If a node can be moved to a new position such that all the members 

connected to it reach the utility ratios very close to unity simultaneously, then that 
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position is deemed to be  the  perfect position  for the node and hence a Nodes-in-

Motion strategy would be formulated to find a perfect position for every node.  

  These conditions, when satisfied for all the nodes will result in all the 

members of the truss reaching utility ratios nearing unity. 

  In sizing optimization, the cross sectional areas modified, depending on the forces in 

members.  Some of the members may end up with negligible cross sectional areas en-

route the adaptive search for perfect nodal positions. This possibility is well addressed 

in Criterion -3 in the following section.   

 

 

Criterion-3 :   In the search process, if  a  member  area demanded is  miniscule 

(negligible cross sectional area),   the indication is that such members are ineffective 

and  the truss can perform without that member in question, as a part of  the current 

configuration. Adaptive search may also encounter a situation where all the members 

at a node are ineffective. To tackle this situation, Criterion -4 is formulated. 

Fig. 5.3    Perfect position of   Node Fig. 5.2  Initial  Position of   Node 
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Criterion-4:    If all the members at  a  node are ineffective,  then the truss can survive   

without that  node, indicating it can be collapsed to any other node it is linked to. 

This  gives us an opportunity to remove such nodes from the truss and end up with a 

better topology.  

5.9.8  Movement of Nodes 

The multi objective optimization of  trusses with same material can now be 

viewed as  finding out the perfect nodal positions such that  all the members of the 

truss, subjected to given set of constraints 

a) have non negligible cross sectional areas 

b) have utility ratios equal to unity (ideal situation) 

c) have a set of cross sections and lengths such that  total weight of the truss WT, is 

minimum  

Movement of node changes the lengths of members connected to the node.  

The reverse is also true. The change in lengths of members connected to a node, 

moves the node.  

To achieve the minimum,  the problem is approached from  three angles, 

simultaneously, for a member. 

i. Reduce the length, if cross sectional area is to remain the same  

ii. Reduce the cross sectional areas if the lengths is to remain  the same. 

Fig. 5.4  Criterion for  Removal   
a Member 

Fig. 5.5  Criterion for  Removal 
of  a Node 
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iii. Increase the effectiveness 

We can fix the maximum permitted change in any iteration, for the length of a 

member as ratio of its original length  , in the  iterative procedure to  get a minimum 

weight. This ratio of change in length is termed as Modification Factor, MF. 

 

Eg., If we can allow upto 10 % of change in length for a member, MF =0.10. 

5.9.9  Weightage factors 

The extend of movement of a node depends on the contribution of change in 

lengths of every member connected to that node. At the same time, an effective 

member should see that its effectiveness is maintained by not allowing the end nodes 

move much. 

Similarly, a stronger member should have a relatively more say in controlling 

the movement of the node. 

With these in mind, the lengths of members connected at a node are changed 

based on their relative qualifications.  At a node , where  ‘m’  number of  members 

are connected, for every member  three factors are identified which are dependent on 

its weight, cross sectional area and utility ratio.  

a) Factor  for weight consideration  ( C1 ) 

       C1i =  wi  / sum of  ( wi )                       
                  i = 1 to m ,    where wi   is  the weight of the i th member   

 b) Factor  for area consideration  ( C2 ) 

                 C2i =  Ai / sum of  ( Ai )                         
            i = 1 to m,       where Ai is  cross sectional area of the i th member  

-----(5.9) 

-----(5.10) 

-----(5.8) 



 75   

 

 c)  Factor  for   inefficiency   ( C3 ) 

                  C3i =   1 -  Ui                                  

           where  Ui   is  utility ratio  of the i th member   

          Total forced change in length of  ith  member ,dl  in the direction of member  

                      dli  =    MF   .   C1i    . C2i    .  C3i   .  li              

           where MF is the desired maximum  modification desired per iteration  

 

 
When the member length changes by dl   , the node will be moved with 

respect to its original position by dxl in the global X axis and dyl in the Global Y 

axis.  

                                Xnew = X old + sum of (dxl)    for all the members        
                                Ynew = Y old + sum of (dyl)  for all the members          

The factor C2, defined for the area of a member becomes negligible if  the 

member is ineffective.  The factor C3 , which is meant for the inefficiency of a 

member,  reduces to zero, when utility ratio is unity. This means , the length of a 

member is not altered in both the cases. If all the members at a node  are efficient, the 

node is not moved. This ensures the convergence of the solution for optimization. 

Fig.  5.6 Forced Change  in Length of  a  Member 

-----(5.12) 

-----(5.11) 

  

-----(5.13) 
-----(5.14) 
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On the other hand, if all of them are non-zero, the node will be forced to move 

relatively when every member is subjected to a forced change in length,  every time 

checking the node position for a possible set of  movement restrictions specified in the 

problem. This is repeated for all the nodes and the changed configuration of the truss 

is recorded. 

5.9.10 Iterative Procedure 

The optimum nodal position search method is an iterative procedure with 

distinct loops for sizing and shape optimization. Topology optimization is achieved 

during the course of  shape optimization.  Starting with the initial geometry, member 

properties, loading and support conditions and constraints, solution is obtained for the 

stresses. Cross-sectional areas are increased or decreased iteratively to obtain a safe 

sizing optimization for the shape and  topology, till the utility ratios  stabilized. This is 

named as the sizing loop. Member lengths are modified as per eq. (5.12)  to effect 

change in nodal positions and the whole procedure  is repeated to get another set of 

stabilized utility ratios. 

 The procedure is repeated till we get a stabilized set of  utility ratios of 

all effective members equal to unity. While iterative loop in progress, some of the 

members of the truss are identified ineffective and Young’s modulus values  of such 

members are considered negligible  for the consecutive loop.  The final shape of the 

truss without these ineffective members is the optimum topology.  

 Fig. 5.7 shows the flowchart for the implementation of the nodes-in-motion 

strategy for 2D trusses. 
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   Fig. 5.7    Flowchart for   Nodes -in -Motion Strategy for 2D Trusses 
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5.9.11 Illustrative Example 

 The  15 bar truss problem, shown in Fig.5.8 , solved by many researchers 

[Tang, et. al (2005),  Rahami  et al (2008), Gholisadeh (2012), Kulkarni et.al, 2012)]  

has been treated as benchmark  to check the efficiency of the optimum nodal position 

search algorithm. The optimum design is to be achieved with the properties and 

movement restrictions stated in Table 5.1 

 

 

              
Additional Conditions :     X6 = X2,   X7 =X3,  X8 = X4 = 360 

  Table 5.2  shows  the set of  length, Area  and utility ratio for  every member 

at the instance of optimum design. It is noted  that   Nodes in Motion Strategy  clearly 

identifies member numbers 3,7,8,9  and 15 as ineffective. The optimum topology 

evolved is shown in Fig. 5.9.  The positional changes of the nodes for the optimum 

Fig. 5.8.  Benchmark Problem 

Table 5.1.  Constraints for Nodal Movements 
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configuration have been affected only on the foundation of utility ratio wherein  

permissible stresses both in tension and compression remain the same, as stated in the 

benchmark problem 

 

 

 

 
 5.9.12  Comparison 

Table 5.3  shows the sizing and layout variables obtained by this method   in 

comparison  with the results given in references. It is seen that the results obtained are 

in agreement and  are showing a comparable results  in optimum design. 

5.9.13 Convergence 

Fig. 5.10 shows the weight reduction of the truss corresponding to iterations 

performed. 

Table 5.2.    Final Cross Sectional Areas and Utility Ratios 

Fig 5.9.  Configuration for  Minimum Weight  
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.  

 

 

Fig 5.10   Graph Showing  Weight reduction of  Truss 

Table 5.3.  Comparison of  Results for Benchmark Problem. 



 81   

 

 

5.9.14   The effectiveness of the method for 2D Trusses 

 

The Nodes-in-Motion Strategy formulised for 2D trusses presented and 

demonstrated clearly has an edge over other techniques discussed. The method is 

appealing as   convergence is faster   and the search for optimum shape, topology and 

member sizing is accomplished simultaneously. Suitable modifications to element 

stiffness matrix, extends its usage potential to 3D trusses too. 

5.10  USE  OF  NODES – IN - MOTION STRATEGY  TO 2D ELASTIC 

CONTINUUM 

A  Plate is a continuum for which one dimension is very small compared to 

the other two dimensions. It is a surface with a small thickness. The Finite Element 

Analysis of Plates, has been dealt  in depth   in  Chapter 3.  Though  both the 2D 

Truss and plate are dealt as 2 Dimensional,  the analysis & design  of plates  varies 

distinctly from that  of trusses in the following manner. 

A truss is a frame work of linear members. The geometry of a truss is well 

defined with  one dimensional members  connected to nodes known as joints.  The 

member connectivity is well defined in the problem itself. There is no need of 

‘discretization’ of the structure further for analysis and the results of the analysis are 

accurate. There are distinct paths of transfer of forces from the loading points to the 

supports. The direction of forces acting at a joint are well defined and solution can 

directly obtained with equation of equilibrium applied at the joints.   

  A Plate is a 2-Dimensional  continuum. It is defined by an external boundary 

with optional definition of holes punched in it. There is no well defined system of 

elements and node definitions before the analysis is attempted and hence 

discretization is a must. Such discretization will lead to two dimensional elements, the 

size ( big, small or tiny) and configuration (triangular,  rectangular or polygonal )  are 

left to the discretion of the problem solver.   
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 Though there is difference in concept, analysis and implementation , the   

Nodes- in -Motion Strategy has been identified as a fast converging and efficient 

technique with a great potential applicable to all types of structures.  Thus, this node 

based methodology has been extended to 2D elastic continuum like plate, detailed in 

Chapter 6. 

  



Chapter 6 

STRUCTURAL OPTIMIZATION OF PLATES  – COUPLING  

MPMLS METHOD  AND NODES-IN-MOTION STRATEGY   

 6.1 GENERAL 

 Moving Polynomial Moving Least Square Method for Stress smoothing   and 

Nodes – in - Motion strategy  for optimization  have been highlighted in the earlier 

Chapters 4 and 5 respectively. A synthesis of these two has been formulated and 

extended as an optimization tool for 2D elastic continuum, details of which are 

presented in the sections that follow. 

6.2 PROBLEM FORMULATION 

   The objective of optimization procedure in plates is to minimize the weight 

of the plate  for a  given set of loading  and boundary conditions, by allowing changes 

in shape and material disposition 

6.2.1  Objective Function 

 The objective of optimization  is to reduce the weight of the plate  to a 

minimum, subjected to the given constraints. Search for a plate configuration of 

minimum volume, subject to stress constraints, is attempted. 

6.2.2  Design Variables and Constraints 

 Thicknesses at various locations and nodal coordinates are treated as design variables  

 Constraints are :  

a) The stresses in material at any location in the plate should be within the permitted 

limits 

     b)The movement of node,support ,boundary or load points is unrestricted or may 

be restricted to limits prescribed. 
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6.2.3 Mathematical Representation 

Minimize   

 W , Total weight  of the plate, subjected to 

 vms   < = g x y       

Where    g is the level permitted to be attained. 

and  xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, for all points (x,y)    
                   

6.2.4  Implementation of Objectives 

The objective are attained in step by step procedure through the development 

of 

 1.  A generalised procedure for the analytical solution for stresses for  a  any  

structure  with given geometry, loading and support conditions 

2.    An algorithm to assess the utility ratio of the material used, based on theories of 

failure   

3.  Trials for the reduction of material consumption based on established  strategies 

4.  Re-defining the geometry of the system and  repeating the procedure to refine 

the stresses. 

5.  A pre-defined criterion clearly dictating the termination of the repetition of the 

procedure. 

 

6.3 STRUCTURAL ANALYSIS 

6.3.1 Importance of Structural Analysis 

Structural analysis is the vital part of the overall design optimization task because 

one needs to predict the structural behaviour for various trial designs in order to guide 

and improve the design process.  

While the overall concept of design of a structure is a complex process related to 

creativity and vision, structural analysis is related to the knowledge of science and 

established mathematical formulations. The significant progress in structural 

optimization research is a parallel process in the field of structural analysis, 

mathematical programming, geometrical modelling and the ever increasing speed of 

------ ( 6.1) 
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computational capabilities of digital computations. Methods and formulations have 

been developed to assess and verify the capabilities of materials as a part of a 

structural system for their optimum use. 

6.3.2 Structural Analysis of  2D Plates as a part of Optimization Process 

  Since the efficiency of a plate is measured in terms of the exploited capacity of 

material used, it is necessary to determine the actual stresses developed in the material 

and compare it with the maximum permitted as per theories of failure. The generalized 

FEA procedure to obtain the maximum stresses in triangular elements in  plates 

subjected to in in-plane bending has been outlined in Chapter 3.  

 

 

 
6.3.3  Utility Ratio 

       To evaluate the utility of material, we define a factor called utility ratio 

defined as 

 Utility ratio U = vms  / (gx y )                                             

Thus utility ratio U, is the ratio  of the actual von Mise’s stress developed to the 

maximum permitted . The utility ratio acts as a measure of efficiency of material at a 

location and acts as the guiding factor is removing a part of material or depositing 

additional material at the location.  

 

Fig. 6.1  The descritization of   Plate into Elements and Nodes 

------ ( 6.2) 
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 If  the von Mise’s stress developed in the material equals the permissible stress 

at a location, then the capacity of  the material is said to be fully exploited. Hence 

utility ratio at a location acts as measure of utility of material.  

 Thus  

Utility ratio < 1, the material is under exploited 

Utility ratio = 1, the material is fully exploited 

Utility ratio > 1, the material is stressed beyond the limits and it is unsafe. 

6.4 CONCEPT OF OPTIMUM DISPOSITION OF MATERIAL 

Generally, the optimized solutions of plate like structures are attempted as a    

material disposition optimization. Optimum material disposition means the removing 

material from locations where it is not efficiently used and shifting/ increasing the 

material where it is best used. The quantity of material at a location may be increased 

by expanding the boundaries or depositing  the material. Similarly, it can be decreased 

by shrinking the boundaries or removing the material at that location. 

 

Shrinking or expanding the element  directly affects the shape of the plate 

depositing or removing the material affect the thickness at the location. Hence by 

aiming optimum disposition is a simultaneous shape and thickness optimization of 

plates. This method leads to the best geometry  of the plate for perfect load path and 

best surface profile  for the material utility. In this work, this double edged approach 

is used to optimize plates subjected to a given set of loads and support conditions. 

 The   optimization procedure involves successive remodelling of the structure 

based on strategies decided. Nodes are moved towards relatively more stressed areas 

thus redefining the geometry giving rise to a more optimum shape in every iteration. 

This also gives rise to finer meshes at heavily stressed areas, for more accurate 

analysis in the successive iterations. 

6.5  DETERMINATION OF STRESSES AT NODES 

 Determination of stress values at the nodes is an important step in the guiding 

movement of nodes. The stress at the nodes are obtained based on the stresses in  the 

neighbouring elements using fitting and interpolating functions.  The newly 
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developed Moving Polynomial Moving Least Square ( MPMLS) method , detailed in 

chapter 4 , is used here for stress smoothing along the boundary of influence area of 

the nodes and at nodes. 

 

 
 von Mises Stress values obtained for every  element from FEA , is uniform 

throughout the element  and  is assumed  to be prevailing at the centroid of the 

element. Centroids of all neighbouring elements of a node are the data points in 2D, 

with stress values available, to smoothen.  

 

   

 

 
Fig. 6.5  Smoothing along Polygonal Boundary 

Fig. 6.4  Influence boundary of a Node         Fig. 6.3  Neighboring Elements         

Fig. 6.2   Centroid of a Triangular Element 
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  A polynomial is fitted with number of terms equal to the number of 

neighbouring elements using weighted  Moving Least Square method and compute 

the stress values along the boundary. Use weighted average to find the stress at the 

node.  

 

 

 

 

  The process is repeated  till the  von Mise’s stresses are computed at all the 

nodes in the entire domain.  These stresses are used to evaluate the worthiness of the 

material at the location. 

Fig. 6.6   Creation of additional data points for Interpolation         

Fig. 6.7   Determination of  von Mise’s Stress at  Nodes 
Nodes 
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  Smoothing functions  are generated only for the internal node locations. The 

external boundary and internal boundary nodes are likely have neighbouring elements 

less than 3 as polynomial  in 2D MLS has minimum 3 terms and 3 coefficients. At 

these nodes, simple averaging is done to get the stresses . 

6.6  RELOCATION OF NODES 

 Relative movements of nodes change the global co-ordinates of the nodes and 

affect the size and orientation of elements.   

 

If  a node Nj (xj,yj)  is moved with respect to Ni (xi,yi)  by an amount dL, a fraction 

of the total distance L between them,  

 
Where MF is the Modification Factor depicting the fraction of movement. . At a time, 

a  relative movement  upto 10 % of the distance between the nodes is considered for 

the problems attempted. 

Referring to Fig. 6.8, 

 
   

 

Fig. 6.8  Relative Locations of Nodes         Fig. 6.9   Movement of  Nodes         

------ ( 6.3) 

------ ( 6.4) 

------ ( 6.5) 

------ ( 6.6) 
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 Similarly, The amount of push or pull is to be decided based on the difference 

between the utility ratios. The more the difference, the more should be the movement.  

 

 Hence the equations (6.5) and (6.6)  are modified to accommodate the 

direction of moment and the amount of  movement of node Nj as  

 

 
Where  

 
The coefficient C1  determines the direction as well as the amount of relative 

movement of Nj with respect to Ni. 

The New Co-ordinates of Nj are now obtained as  

 
 The possibility of movement of the new location is checked with respect to the 

constraints  dictated in the problem definition. If the location is feasible, the node Nj 

is moved to the new location.  

6.7    MATERIAL RE-ALLOCATION 

 The Principle of optimum disposition of material operates on the premise of 

material re-allocation to zones where it is most effective. From initial configuration, 

based on utility ratios, the routine decides material shift direction for accomplishment 

of maximum utility ratios. Element size expands or contracts based utility ratios at 

nodes and thickness swells or shrinks element location. It is the location that matters 

and Utility ratio of the element decides its fate. 

6.7.1 Location of Ineffective Zones Based on Utility Ratio of Elements. 

  The von Mise’s stress determined for the element is assumed to be prevailing 

at the centroid of the element and the corner nodes are moved based on the utility 

ratio Ue at the centroid of element. The thickness of the elements in which the 

material is not exploited, is reduced based on Ue. The more the value of Ue, near to 

------ ( 6.7) 

------ ( 6.8) 

------ ( 6.9) 

------ ( 6.10) 

------ ( 6.11) 
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unity, the less is the reduction. However, it is worth to note that no element will 

develop a Ue > 1 as the routine developed will always ensure a safe design before 

optimization is attempted.  

 Extending this concept further, if the area nearby too is less efficient, the 

element may be extended to this region too, before reducing the thickness, thus 

enhancing the efficiency of the formulation. 

 

  
 If  interpolated utility ratio at a corner of  an element is relatively very less 

compared to the utility ratio at the centroid of the element, it is quite likely that the 

effectiveness of the zone is reducing in the direction of that corner.  Hence the zone of 

removal of material may be extended in that direction.   

 This is accomplished by moving the corner nodes with respect to the centroid 

of the element, based on the relative values of the Utility ratio of the corners with 

respect to the  utility ratio at the centroid as shown in Fig 6.11. Thus, if Ucorner < Ue 

then   the corner  is pushed out otherwise, the corner is pulled in. 

 

6.7.2  Location of Ineffective Zones Based on Utility Ratio at Nodes. 

 The utility ratios at the nodes are indicators of  effectiveness of zones. Increase 

and decrease of effective and ineffective zones can be accomplished by relative 

movement of neighboring nodes. Referring to Fig . 6.12,  where Node Ni with a 

utility ratio Ui has 6 neighboring Nodes  N1,N2,....N6 with Utility Ratios U1,U2,...U6 

Fig.  6.11   Movement of Corner 
Nodes          

Fig. 6.10   Nodes of a Triangular 
Element          
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respectively,  the neighboring nodes can be pulled or pushed with respect to Ni to 

reduce or increase the zones, based on the utility ratios. 

  
 

 

 The  push or pull is decided by the relative values of utility ratios Ui and Uj 

with j varying from 1 to 6.  Nj is pulled in if  Ui < Uj and pushed out if Ui > Uj. 

 

6.7.3  Thickness Reduction at Ineffective Zones 

 Thickness of an element is revised on the following formula, if we try to 

achieve at least 90 % efficiency through thickness reduction. 

If  1 > =Ue > = 0.9  then tnew= told 

Else 

tnew= told - (0.9- Ue )* told 

eg., if  ttold = 6 mm, Ue = 0.6 , 

tnew =6- (0.9- 0.6)* 6 

tnew =6- (0.9- 0.6)* 6 = 4.2 mm 

 

6.8  SOLUTION TECHNIQUE 

  The following step by step procedure is adopted to achieve the optimized 

shape and material disposition of material in the plate 

 

------ ( 6.12) 

------ ( 6.13) 

Fig. 6.13   Relative Movement of 
Neighboring Nodes          

Fig. 6.12  Interior Node and Its 
Neighboring Nodes          
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Step 1: The geometry of the plate, Details of co-ordinates of nodes, triangular 

elements and their connectivity are given 

Step2: The thickness of elements, loading , support conditions and material properties 

are given.  

Step 3: The thickness given is treated as the intial thickness of elements to start with. 

Step 4 : Do a Finite Element Analysis to compute the von Mise’s stresses  and the  

utility ratios  of the elements as Stated in Chapter 3, moduled as in Fig. 6.14. 

 

 
Step 5:    The thickness of  elements  are revised to safer  limits if the stresses exceed 

the given values and procedure is repeated from  step 4 till a safe design is achieved. 

Step 6 :  The weight of the plate is computed. 

Step 7:  Stress smoothing is carried out to compute the von Mise’s stresses and utility 

ratios at all the nodal positions by  Moving Polynomial Moving Least Square 

technique developed in Chapter 4. The module as shown in Fig. 6.15 

Fig. 6.14   Flowchart for  Von Mise’s Stress Module          
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Step 8:  Every node  is relocated  as per the relative values of utility ratios such that  it 

attains a new position towards a better utility ratio as discussed in Chapter 5. This 

module is shown in Fig. 6.16. 

 

 
Step 9:  Procedure is repeated from Step 3 ,till the  decrease in weight is less than or 

equal to 2% of the earlier weight or the number of iterations specified  by the user are 

completed. The overall flow chart, combining all the modules in given in Fig.6.17 

Fig.  6.16  Flowchart for Optimum Material Disposition          

Fig. 6.15   Flow Chart for Stress Smoothing Using MPMLS         
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6.9  ILLUSTRATIVE EXAMPLES 

 A few problems have been solved to verify the efficiency of the methodology 

developed. 

6.9.1 Illustrative Example 1.: A plate, simply supported,  subjected to  a 

concentrated load at the centre. (Kim.H, 2000). In the reference, this problem has 

Fig. 6.17   Combined  Flowchart  for  Optimum Material Disposition  of 
Plates with MPMLS Method and  Nodes- in Motion Strategy 
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been solved using an Evolutionaly Structural Optimization Method ( ESO) named 

Intelligent Cavity Creation ( ICC). This problem has been solved  with an intention to 

verify the evolution of  an optimum shape called Michell Truss,(Fig. 6.19) considered 

to be the most optimum topology for the problem.   

 

 

Solution:  

 The methodlogy developed  in the current research work has been employed 

by segmenting the plate into 60 Finite Elements with 44 Nodes as shown in Fig. 6.20 .  

 

 The results obtained at various phases have been presented in  Figures from 

6.21 to 6.24 and they show the agreement of the shape refinement with that reported 

in Literature in Fig. 6.19 ( Kim H, 2000). 

 

Fig.6.20  FEA Analysis of the Problem    

Fig.6.19  Michell Truss  Solution for 
Most Optimum topology for 
the Plate ( Kim. H, 2000) 

Fig.6.18  Simply Supported Plate with a 
Concentrated  Load at Mid 
Span ( Kim H, 2000)    
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6.9.2 Illustrative  Example 2: A Cantilever beam made of plate is subjected to  a 

concentrated load at the free end. (Helio,2014).  

 

 

 

 In the reference, this problem has 

been solved using a novel procedure called Smooth  Evolutionary Structural 

Optimization (SESO) Method (Helio,2014). 

 
 
 

 

 

 

Fig.6.21   After 5 Iterations    

Fig.6.22  After 15 Iterations    

Fig.6.23  After 45 Iterations    

Fig.6.24 After 75 Iterations    

Fig.6.25 Cantilever Beam Subjected 
to   Concentrated Load  at 
the free end. 

Fig. 6.26 Solution in the reference. 
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Solution:  

The domain is divided into 32 triangular elements with 25 Nodes As shown in Fig. 
6.27 

  
 

 

 

 
 
 
 
 
 

 
 

 
 The Solution obtained adopting MPMLS and the Nodes-in- Motion strategy 

has been compared to the one obtained in reference (Heli, 2014) as in Fig. 6.26 The 

re-allocation of material to zones where it is most effective is clearly evident from the 

results at the end of various iterations presented in Fig. 6.28.    

6.9.3 Illustrative Example 3.  

   Arriving at the best shape and material disposition for a spanner to apply 5000 

N with an initial plate geometry assumed in Fig. 6.29 has been attempted and the 

results of shape optimization are presented in Fig.6.31 to 6.35. 

a) 5 Iterations 

Fig. 6.28   Solution to Cantilever Problem 

Fig.6.27 Discretization of the  
Cantilever Plate 

b) 30  Iterations 

d) 90 Iterations c) 50 Iterations 
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 Solution  
 
 
 
 
 
 
 
 
 
 

 
 The permitted von Mise’s stress is assumed as 0.6 times yield stress, as 150 

MPa. The solution is attempted with an initial geometry as shown in Fig. 6.29. A 

uniform thickness of 8 mm is assumed to start with the procedure of optimization. 

The Initial weight of the spanner is 12.65 N 

 

 

 

Fig. 6.30  Modelling of Spanner - Initial Weight 12.65 N 

Fig.  6.29   Initial Geometry Assumed  for the Design of Spanner 

Fig. 6.31  5 Iterations - 
Weight 10.54  N 
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 Convergence criteria with less than 2% variation in the weight compared to 

that of the earlier iteration has terminated the process of optimization in 102 

iterations. Fig. 6.36 shows the details of weight reduction accomplished. 

  It is evident from the trend that drastic reduction is weight has happened in the 

earlier iterations as indicated by the steep slope of the graph and the drop in the 

steepness of the curve with increased number of iterations. The graph almost becomes 

flat as the termination criterion approaches indicating that the formulation is stable 

and converging. 

Fig. 6.32  15 Iterations - 
Weight 8.06  N 

Fig. 6.33  30  Iterations - 
Weight 6.26  N 

Fig. 6.34   50  Iterations - 
Weight 5.05 N 

Fig. 6.35   102  Iterations - 
Weight 3.65 N 
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The iterative procedure carries out continuous refinement of shape of plate 

through shift of nodal positions, as shown in Fig.6.37, keeping the loading points and 

support points unmoved. The concept of relative utility ratios of elements moves the 

underutilised material.  

In the process of optimization, the sizes and thickness of  element No. 108 

marked in the Fig 6.38 , as an example , automatically get refined as per the stress 

gradient. It also undergoes refinement in terms of location of corner nodes. As the 

solution reaches convergence, the element utility ratio converges to Unity, indicating 

Fig. 6.37    Material  Movement   through  Movement of  Nodes 

Fig. 6.36   Convergence to the Minimum Weight 

Inefficient 
Elements shrink in 
size and thickness Boundary Gets 

Modified for the 
Optimum Shape 

Loading and 
Support Positions 

Un-altered 
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the optimum material requirement at the location and its spread denoted by the 

location and area of the element. 

 

 

  

 
The convergence of the properties of  element 108 is tabulated in Table 6.1and  Figure 

Nos 6.39, 6.40, 6.41 and 6.42  show the convergence graphs for the Area, Stress, 

Utility Ratio and Thickness, respectively of the element  through the iterations. It may 

be noticed that the permitted stress value of 150 MPa is attained for the element in 

Fig. 6.38    Dynamic  Mesh  Refinement  

Collapse of Nodes 

Element No. 108 

Adaptive Mesh 
Refinement 

Table 6.1    Refinement of  Element 108  
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nearly 100 iterations. Likewise, the material moves to strategic locations based on the 

stress demand. As the element attains its best location, material is brought into this 

location, increasing its thickness. 

 

 

 

 

 
Fig. 6.40    Refinement of  von Mise’s Stress  in Element 108 

Fig. 6.39    Refinement of  Area of  Element 108 
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6.10   INFERENCE 

 The numerical stability, convergence and desired level of accuracy have been 

demonstrated through illustrations. The mile stones which led to the motivation, 

conceptualisation, formulation and successful implementation of the Nodes-in- 

Motion strategy for optimum material disposition in plates are discussed and the 

accomplishments are discussed in the succeeding Chapter 7. 

 

 

Fig. 6.42    Refinement of  Thickness of  Element 108 

Fig. 6.41    Refinement of   Utility Ratio of   Element 108  



Chapter 7 

RESULTS ,  DISCUSSIONS AND CONCLUSIONS 

 
7.1  GENERAL 

  The objective of the present research work has been to conceptualize, develop,  

implement and illustrate a comprehensive procedure for the optimum material 

distribution in plates subjected to in-plane bending.  

 The motivation behind taking up this area of research, the objective and scope 

of present work have been highlighted in the beginning of this report.  A summary of  

conceptualisation of methodology , step by step achievement of milestones towards 

the objective,  investigations carried out, results obtained, discussion on the results, 

accomplishments and scope for future developments in the area of research are 

presented in this Chapter. 

7.2  METHODOLOGY 

7.2.1 Structural Analysis  

 Structural Analysis gives an insight into the behaviour of a structure under 

given loading and support conditions. It is a tool to predict the performance  of a 

structure before it is actually built. Hence any attempt to optimize a structure can not 

be fulfilled without an efficient and established Structural Analysis procedure. 

 The plane elasticity theory  behind the Finite Element Analysis ( FEA)  of  2D 

elastic continuum structures  in general and stress analysis of plates subjected to in-

plane bending has been  discussed in detail in Chapter 3. It has culminated in the 

development of an efficient code for the determination of stresses in plates. The code 

has been  tested for its accuracy comparing the results  given by it against established 

solutions. The problem of a plane structure given in Fig 3.13 (Green Lee,2010) has 

been solved and the results have been compared, shown in Table 7.1 
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Joint No 

DISPLACEMENTS X- direction  
( in inches) 

RESULTS FROM CODE 
DEVELOPED 

SOLUTION IN 
REFERENCE 

1 1.9077 1.9080 
2 0.8730 0.8730 
3 0.0000 0.0000 
4 0 0 

 
Joint No 

DISPLACEMENTS Y- direction 
( in inches) 

RESULTS FROM CODE 
DEVELOPED 

SOLUTION IN 
REFERENCE 

1 0.0000 0.0000 
2 -0.7420 -0.7415 
3 0.0000 0.0000 
4 0.0000 0.0000 

ST
R

ES
SE

S 

Element 
No 

DIRECT STRESSES X- direction 
( psi) 

RESULTS FROM CODE 
DEVELOPED 

SOLUTION IN 
REFERENCE 

1 -93.12 -93.00 
2 93.12 93.00 

Element 
No 

DIRECT STRESSES Y- direction 
( psi) 

RESULTS FROM CODE 
DEVELOPED 

SOLUTION IN 
REFERENCE 

1 -1135.59 -1136.00 
2 23.28 -23.00 

Element 
No 

SHEAR STRESSES X- direction 
( psi) 

RESULTS FROM CODE 
DEVELOPED 

SOLUTION IN 
REFERENCE 

1 -62.08 -62.00 
2 -296.62 -297.00 

The close agreement of results of the current formulation with that reported in the 

literature , which has been utilized as the benchmark for comparison  , suggests that 

the code developed works for addressing the objectives of the current investigation.  

7.2.2 Stress Recovery at  Locations  of Interest 

 During the course towards attaining the objectives, , the importance of 

determination of stresses at points of interest has been identified.  The correctness and 

Table  7.1 Verification of FEA Code 
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accuracy of  stress value at locations play a very important role in assessing the utility 

of material at that location.  

 The basic drawback of FEA in terms of  lack of compatibility at the element 

interfaces has been overcome by a novel technique of smoothing called Moving 

Polynomial Moving Least Square (MPMLS) ,which guarantees accurate interpolation 

based on stress values at surrounding scattered data points. The conceptualization of 

this technique , the methodology of selection of polynomial terms and  techniques to 

overcome singularity of moment Matrices have  been covered in Chapter 4. The 

increase in accuracy of interpolation has been demonstrated using an illustration for 

interpolation for stress value using that available at 11 points scattered around it. The 

variance of smoothed fitting curve reproduced here as Fig. 7.1 has demonstrated the 

accuracy of predicted stresses along the polygonal boundaries and its use in creation 

of additional data points for better quality interpolated value at point of interest.  

 

 
7.2.3 Nodes – in - Motion Strategy for Optimization 

 In order that an optimum configuration is achieved in node based structures, 

criteria have been conceived  to obtain a perfect position of a node from the basic 

principles of structural mechanics. The mathematical formulations for the guided and 

controlled movement of nodes have been established in Chapter 5. The methodology 

Fig. 7.1     Comparison of Variance 
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has been used to solve a classic 15-bar truss problem attempted by many researchers. 

The results have been tabulated in Table 7.2, an extract from Table 5.3 

 

 
 The comparison shows that the current formulation of Nodes in Motion 

strategy is as efficient as those reported in the literature.   

7.2.4   Synthesis of  FEA, MPMLS  and Nodes- in- Motion Strategies for 

Optimum Material Disposition in Plates 

 A combination of independently established facts related to the analysis, 

smoothing and Nodes- in-Motion strategies has culminated in an efficient formulation 

for the optimum disposition of material in plates. The relevance of earlier works in 

Chapters 3, 4 and 5 have been put into use in Chapter 6,  as shown in Fig. 7.2 , to 

analyse for stresses, extract stress values at required locations and to move material 

for its best performance, respectively.  

 The combination of all the individual modules developed have been put 

together to act in unison as an end to end solution to the problems related the  in -

plane bending of plates. Results obtained for the optimum configuration of a simply 

supported plate with concentrated load at the centre, a cantilever plate with a 

concentrated load at the  free end have been worked out in Chapter 6 and have been 

compared with  those in the references (Kim H, 2000) and (Helio,2014).  The 

solutions obtained for the configurations are in agreement .  

 The Code developed has been employed to arrive at the best shape and 

material disposition for a spanner. The results obtained very closely resembles the 

shape and material disposition of a spanner in regular use. Optimization has been 

attempted with the structural requirements and not functional.  

Table  7.2 Verification of Nodes in Motion Strategy 
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7.3  ACCOMPLISHMENTS 
 

 A  general purpose code for FEA of 2D elastic continuum structures has been 

developed, tested, verified and validated.   

Concept of Moving Polynomial MLS Method has been introduced and its use in 

stress interpolation at  any point of interest has  been demonstrated. The analytical 

work conducted shows the adaptability of this method in any generalised smoothing. 

  The suggested Nodes- in-Motion strategy has proven to be a very efficient tool 

in formulation-solution of shape optimization problems.   

Iterations leading to the desired level objective can either be in terms of number 

of iterations or based on the relative change in the weight   in two consecutive 

iterations. In the problems solved, a 2% accuracy in the weight reduction is assumed 

as the termination criterion. It depends on the level of precision demanded by the 

designer. Similarly, the user can impose thickness constraints and minimum and 

Fig. 7.2     Synthesis of  Analysis, Smoothing and Nodes-in- Motion Strategy 
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maximum bounds for the shape of the plate. Irrespective of any starting thickness 

assigned, the program generates the same unique, safe and optimum configuration, 

satisfying the conditions of numerical stability, convergence and accuracy at the 

desired level. 

The code developed terminates normally within expected accuracy level 

demanded by the industry. If the user demands unreasonable amount of accuracy 

levels, like 0.0001 mm thickness, the program may enter into an endless loop. 

  The Graphics User Interface developed gives a visual effect of morphing of  

original geometry into the optimized one. The interface optionally displays various 

parameters related to the optimization like, mesh sizes , stresses at nodes, utility ratios 

at locations and  optimized thickness at various locations. It also generates a detailed 

output file showing results of each iteration. 

 

7.4  POTENTIAL APPLICATIONS  AND USE OF THE RESEARCH 

FINDINGS 

7.4.1  In Construction Industry 

  In Construction Industry, the formulation can  used in the design of plate like 

structures, connections, stiffeners, gussets, splices and in a variety of shapes and help 

cost cutting and savings. 

7.4.2  In Component and Tool Manufacturing  Industry 

 Components subjected to a known set of loads and support conditions can be 

designed for the best shape and thicknesses combination. This will be helpful in the 

Automobile, Mechanical Equipment  and Tool manufacturing industry.  

7.4.3  In Biomedical Implants  

 The work presented, thus, can be very useful in the field of bio-mechanics and 

in industries involved in the design and manufacture of  orthopedic implants. 

7.4.4  In Research Laboratories   

 In the research centres engaged in materials and manufacturing of plate like 

components, many samples are prepared for destructive testing purposes,  the work 

presented here can make substantial savings in time and resources. 

 



111 

 

7.5  CONCLUSIONS  

 

   The objective of the research work has been accomplished through the 

conceptualisation, formulation, implementation and verification of the methodology 

of Moving Polynomial Moving Least Square method and Nodes-in- Motion Strategy 

for the optimum material disposition in plates subjected to in-plane bending. 

 

7.6 SCOPE FOR FUTURE WORK 

 
  The Moving Polynomial Moving Least Square Technique for stress smoothing 

and Nodes-in- Motion strategy for optimum material disposition is worth  extended to 

3D structures. 

  The FEA module developed can be extended to address the stress 

concentration factors , crack formation, and stress intensity factors of at crack tips and 

propagation of cracks, which will find application in Fracture Mechanics and Health 

Monitoring. 

   



 

 

Appendix – A 

FEM  FORMULATION USING TRIANGULAR ELEMENTS 

 

 Considering a small element of material which undergoes deformation u and v 

in the directions x and y respectively, equations for plane elasticity can be derived. 

Considering an infenitecimal element shown in Fig. A.1 

 

 
  

Representing  displacements in matrix form, 

 
The stress components in vector notation are expressed as  

 
The strain components in vector notation expressed as 

 
 The strain-displacement relationships can be written as 

 
or in matrix notation 

------ ( A.1) 

------(A.2) 

------ (A.3) 

------  ( A.4) 

Fig. A.1 The deformations of a small element 
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where the differential operator L is expressed as 

 
Thus the strain is expressed in terms of deformation. 

 
Using the general Expression 

 
For an elastic material subjected to stresses in perpandicular direction 

 
The expressions for direct strains and shear strain can be obtained rearranging the 

above equation as  

 

 

Fig. A.2  Notations for Stresses  
 

------  (A.5) 

------  (A.6) 

------  (A.7) 

------  (A.8) 

------  (A.9) 

------ (A.10) 
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Substituting the value of sy from eq. A.   In eq.    

 

 

 
Similarly, 

 

 
In matrix form, this can be expressed as 

 
Thus, the linear stress-strain relationship in the matrix notation is expressed as  

 
where matrix D for isotropic material with a Poisson’s ratio  u in the plane stress 

case is given by 

 
We know the  strain enery stored in a material is given by 

      ------(A.11) 

       ------(A.12) 

       ------( A.13) 

       ------(A.14) 

------(A.15) 

       ------(A.16) 

      ------( A.17) 

       ------( A.18) 

       ------(A.19) 
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Substituting the stress in terms of strain, 

 
For a triangular with two displacement components at each corner  

The displacement vector q may be expressed as 

 

 

 
The next step is to derive general expression for the displacement components in the 

triangular portion in terms of the nodal displacements. Dividing the element into three 

parts,  as shown in Fig. A.4, 

Fig. A.3      Displacements at the nodal Points of a Triangular 
Element  

 

------(A.20) 

------(A.21) 

  ------(A.22) 
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The total area A is given by 

 
Introducing ratios N1,N2,N3 as  

 

 

 
We know that the influence of individual components at the corners on u and v will 

depend on the proximity of the point to the corner. The proximity is can be assessed 

by the relative fraction of area of the traingle opposite that corner. 

 
We also know that 

 
expressing 

 

 

 

Fig. A.4    The division of  Element Area  by an Internal Point 
 

------(A.23) 

------(A.24) 

------(A.25) 

------(A.26) 

------(A.27) 

------(A.28) 

   ------(A.29) 

------(A.30) 

------(A.31) 

------(A.32) 
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 Similar to the deformation components, the cor-ordinates of the point may be 

expressed in terms of co-ordinates of the corners as 

 

 

 

 
As per the Chain Rule in partial differentiation, 

 

 

 

 

Fig. A.5    Co-ordinates of Corners of a Triangular Element 
 

------(A.33) 

------(A.34) 

------(A.35) 

------(A.36) 

------(A.37) 

------(A.38) 

------(A.39) 

------(A.40) 

------(A.41) 

------(A.42) 
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or 

 
But we know   

 

 

 

 
If  

 

 

------(A.43) 

------(A.44) 

------(A.45) 

------(A.46) 

------(A.47) 

------(A.48) 

------(A.49) 

------(A.50) 

------(A.51) 

------(A.52) 
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------(A.53) 

------(A.55) 

------(A.56) 

------(A.57) 

------(A.58) 

------(A.59) 

------(A.60) 

------(A.61) 

------(A.62) 

------(A.54) 

------(A.63) 
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------(A.65) 

------(A.66) 

  ------(A.67) 

  ------(A.68) 

------(A.69) 

------(A.70) 

------(A.71) 

------(A.72) 

------(A.73) 

------(A.64) 
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Thus for the  

 

 

 

 

 
The Total strain energy in the entire plate is given by summation of all energies of 

individual elements. 

 
or 

 
Where K is the Global Stiffness Matrix, Q the Global displacement vector. With the 

Global Force vector F, 

  

------(A.74) 

------ (A.75) 

------  (A.76) 

------(A.77) 

------(A.78) 

------(A.79) 

------(A.80) 

------(A.81) 

------(A.82) 

------(A.83) 

------(A.84) 
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In this K matrix will be the order 2n X 2n, Q will be   of the order 2n X 1 and  F will 

be of the order 2n X 1 

Solving this simultaneous equation, we get the Global displacement vector. From this, 

for every element, we can compute the element strain and stress using the equations  

 

 
or 

 

The Principal Stresses are given by 

 

 
The Von Mise’s Stress is calculated from the Principal Stresses as  

 
 The intermediate formulae  derived in this Appendix - A are directly used in 

the code developed for the FEA of 2D plates subjected to in-plane bending, detailed 

in  Chapter 3. 

------  (A.85) 

------(A.86) 

------(A.87) 

------(A.88) 

------(A.89) 

------(A.90) 



 Appendix –B 

DIRECT STIFFNESS MATRIX METHOD FOR ANALYSIS OF 

TRUSSES 
B.1 GENERAL 
 

Stiffness Matrix Method of  Analysis of a truss is a systematic procedure 

involving basic principles of force displacement relationship and conditions of 

equilibrium and compatibility. Following procedure is adopted  

B.2  TRUSS MEMBER CONSIDERED AS A BEAM ELEMENT 
 

 Consider a truss member with  cross sectional area A, Length L made with a 

material having a Young’s Modulus E, subjected to end forces F1 and F2, undergoing 

a deformation x1,x2 respectively at end nodes N1 and N2, as given in Fig B.1 

 

 

 
K=EA/ L 
 
Where K is known as the stiffness of the member. 
 
The relationship between the end forces and displacement can be written as 
 

 
or 

 

Fig. B.1  Force – Displacement Relationship 
for a truss member 

----- (B.1) 

----- (B.2) 

----- (B.3) 
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B.3  LOCAL STIFFNESS MATRIX FOR AN INCLINED MEMBER 
 
 

 

 

The relationship between the displacements in local directions and the forces in local 

axes is given by    

 

B.4  ASSEMBLY OF GLOBAL STIFFNESS MATRIX 
 

If the axis of the member is inclined with respect to the Global axes, with an 

inclination ‘Q’ made with the X axis, the displacements in the global directions are 

related to those in the local directions  as given in  Eq. B.7  and  Eq. B.8 

Fig. B.3  Force – Displacement Relationship in 
Local Co-ordinates 

 

Q Q 

----- ( B.4) 
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Similarly, Force components  in the global directions are related to those in the 

local directions and  can be computed as given in  Eq. B.9 and representing Global 

Force components in terms of global displacements, we get global stiffness matrix, 

given in equation (B.10) 
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----- ( B.5) 

----- ( B.6) 

----- ( B.7) 

----- ( B.8) 

----- ( B.9) 

----- ( B.10) 
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The members  of the stiffness matrix  for every member is assembled at the 

required locations in the global stiffness matrix . 

The displacement vector  in the Global directions is  connected to the global 

force vector through the relation 

 
                   [ g K] {g D}   =     { g F} 
 

B.5 SOLUTION OF SIMULTANEOUS EQUATIONS FOR NODAL 

DISPLACEMENTS 

 
The group of simultaneous equations is solved   for displacements using  

matrix inversion, decomposition or iteratively.  

 
B.6  EXTRACTION OF MEMBER FORCES AND STRESSES  
 

Once the displacements are obtained, axial forces in the individual members 

are computed from end displacements. Since  the areas of cross-sections are initially 

available, the axial stresses in the material of  section for every  member can easily be 

computed. 

 

  

 

----- ( B.11) 
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