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Abstract

This thesis consists of two parts: �rst part (Chapters 1, 2 and 3 ) deals with

the Cubic Pell's equation and Units of Pure Cubic Fields. We study an algo-

rithm given by Barbeau to compute solutions of a cubic analogue of Pell's equation,

x3 + my3 + m2z3 − 3mxyz = 1. For a pure cubic �eld K = Q( 3
√
m) with ring of

algebraic integers as OK , the above equation arises naturally in connection with the

study of units in OK . Comparisons with other methods like the Jacobi-Perron algo-

rithm are also done. Extensive computations using Python have been carried out

and the tables are compared to those obtained by Wada.

In the second part (Chater 4 & 5 ) we have related elliptic curves, imaginary

quadratic �elds, and Pell surfaces. Let Em be the elliptic curve y2 = x3 −m, where

m > 0 is a squarefree positive integer and −m ≡ 2, 3 (mod 4). Let Cl(K)[3] denote

the 3-torsion subgroup of the ideal class group of the quadratic �eld K = Q(
√
−m).

Let S3 : y2 +mz2 = x3 be the Pell surface. We show that the collection of primitive

integral points on S3 coming from the elliptic curve Em do not form a group with

respect to the binary operation given by Hambleton and Lemmermeyer. We also show

that there is a group homomorphism κ from rational points of Em to Cl(K)[3] using 3-

descent on Em, whose kernel contains 3Em(Q).We also show that our homomorphism

κ, the homomorphism ψ of Hambleton and Lemmermeyer and the homomorphism φ

of Soleng are related.
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Chapter 1

INTRODUCTION

The theory of Diophantine equations deals with the study of integer or rational solu-

tions to polynomial equations f(x1, x2, ..., xs) = 0 with integer coe�cients. The word

Diophantine refers to the Greek algebraist Diophantus of Alexandria. Diophantus

lived sometime between 150 AD and 350 AD and wrote a collection of books on

number theory known as the Arithmetica. These books consist entirely of equations

and particular solutions. The study of Diophantine equations has a long history.

They were studied intensely by ancient Greek, Indian and Chinese mathematicians.

Well known are the methods to solve the linear Diophantine equation, systems of

linear Diophantine equations (Chinese Remainder Theorem) and the Pythagorean

equation x2 + y2 = z2. The study of Diophantine equations has attracted the at-

tention of many gifted mathematicians. In 1637 Fermat scribbled on the margin of

his copy of Arithmetica a problem which is now known as Fermat's last theorem:

the equation xn + yn = zn has no nontrivial integer solutions when n is an integer

≥ 3. This problem remained unsolved for more than 300 years and was �nally solved

by Andrew Wiles in 1995. One of the major issues of Diophantine equation is to

decide whether it is solvable at all. In 1900, David Hilbert posed a question �Devise

a process according to which it can be determined in a �nite number of operations

whether a given Diophantine equation is solvable� as the 10th of his celebrated list of

23 problems. In 1970, Martin Davis, Julia Robinson and Yuri Matiyasevich settled

the problem negatively.
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In this thesis we mainly study two Diophantine equations: namely, Cubic Pell's

equation and Pell Surfaces in connection with pure cubic �elds and quadratic �elds

respectively.

On the other hand, the problem of �nding integer and rational solutions to Dio-

phantine equations takes tools from algebraic number theory that describe the rings

and �elds wherein those solutions lie. In Chapter 2 some de�nitions and back-

ground to algebraic number �elds are given with special focus on quadratic �elds.

Kummer(1810-1893), Kronecker(1823-1891) and Dedekind(1831-1916) may be con-

sidered as inventors of modern number theory. The whole subject of agebraic number

theory came into being through the attempts of mathematicians to prove Fermat's

last theorem.

Let m be a positive squarefree integer. The misnamed Pell equation is an ex-

pression of the form x2 −my2 = 1 where x, y are constrained to be integers. This

very simple equation seems to have been known to mathematicians for over 2000

years. Indeed it was known to Archimedes, as the cattle problem, attributed to him

in antiquity. Even today research involving this equation continues to be very active.

For about a thousand years, mathematicians had various ad hoc methods of solving

such equations, and it slowly became clear that such equations always have positive

integer solutions other than (x, y) = (1, 0). Later it was shown that for any positive

squarefree integer m, the equation has in�nite number of solutions, which can be

expressed in terms of the fundamental solution. It is this puzzle of �nding the funda-

mental solution that is referred to as the problem of solving the Pell equation. Pell's

equation is part of a central area of algebraic number theory that treats quadratic

forms and the structure of the rings of integers in algebraic number �elds.

So far there is no well studied theory for the higher-degree analogues of Pell's

Equation. However a great deal of work was done on the cubic equation by P H

Daus, G B Mathews, A Cayley and E S Selmer in the late nineteenth and early
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twentieth century. The continued fraction method seems to be very special to the

quadratic case and it is very hard to generalize it to higher degree irrationals. Even

at the speci�c level of quadratic Diophantine equations, there are unsolved problems,

and the higher degree analogues of Pell's equation, particularly beyond the third do

not appear to have been well studied. In Chapter 3 we study cubic Pell's equation

in connection with units of pure cubic �elds.

Another Diophantine equation which is studied widely is the equation of elliptic

curves. This occured for the �rst time in the work of Diophantus. Elliptic curves

lie in one of the most vibrant areas of mathematics, at the frontiers of research in

number theory . An elliptic curve can be described by an equation of the form

y2 = x3 + Ax + B where A, B are �xed integers. The theory of elliptic curves is

rich and vast. In 1984 Lenstra found that elliptic curves could be used for factoring

integers. Thereafter it is being used in cryptography, factorization and primality

testing. Fermat's last theorem was also proved using elliptic curves. Thus elliptic

curves have been a center of attraction for many mathematicians. In Chapter 4 we

have given a brief introduction to elliptic curves.

A conic is a plane a�ne curve of degree 2. The conic Q0(y, z) = 1 where Q0(y, z)

is a principal binary quadratic form is called a Pell conic. It is well known that there

is a close analogy between elliptic curves and number �elds. Franz Lemmermeyer

gave a close analogy between elliptic curves and Pell conics. He wrote a series of

articles to give analogy of arithmetic of elliptic curves, such as 2-descent, Selmer and

Tate-Shafarevich groups and even the conjecture of Birch and Swinnerton-Dyer to

Pell conics. Later he and Sam Hambelton studied arithmetics of Pell surfaces: i.e,

equations of the form Q0(y, z) = xn. In Chapter 5 we have shown a connection be-

tween quadratic �elds, elliptic curves and Pell surfaces. Using this relation we have

de�ned a homomorphism between rational points on the elliptic curves and 3- part

of class group of imaginary quadratic �elds.

3



In the last chapter, Chapter 6, we conclude the thesis with some problems that

can be taken for further study and research.
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Chapter 2

NUMBER FIELDS

2.1 INTRODUCTION

The fundamental theorem of arithmetic asserts that every natural number can be

written in a unique way as a product of its prime factors. The theory of algebraic

number �elds has its origin in the generalization of the unique factorization theorem,

quadratic reciprocity law and related questions. The period 1800 - 1870 is considered

an Introductory period. In this period Gauss published "Disquisitiones Arithmeti-

cae". In this book Gauss brings together results in number theory by mathematicians

such as Fermat, Euler, Lagrange, Legendre and adds important new results of his

own such as proofs of the quadratic and biquadratic reciprocity laws. It served as the

starting point for the work of other mathematicians including Kummer, Dirichlet and

Dedekind. Kummer worked on cyclotomic �elds. He restricted his investigations to

algebraic numbers connected with the nth roots of unity. On the other hand, Dirich-

let considered the group of units of the ring generated over Z by an arbitrary integral

algebraic number and determined the structure of this group. It was Dedekind who

understood that the basic notion of the theory is the notion of algebraic number �eld

which was absent in the investigations of his predecessors.

Next period 1871 − 1896 is considered as basic period. In this period the basic no-

tions and theorems were formulated and proved. This was done in three equivalent

ways by Dedekind, Kronecker, and Zolotarev. After discovering that uniqueness of

factorization into irreducibles holds in some rings of integers but not in all, Kummer

and Dedekind took steps to develop more insightful theories. Kummer introduced a

new concept called 'ideal numbers.' Dedekind looked at the same ideas from a di�er-

ent direction, introducing the notion of 'ideals', an approach which is now generally

accepted. Dedekind showed that although unique factorization may fail for numbers,
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an elegant theory of unique factorization can be developed for ideals. This was a

major turning point in the development of algebra.

Many mathematicians like Jacobi, Eisenstein, Kummer and Hilbert were trying to

generalize quadratic reciprocity laws to higher powers. In 1920 Takagi gave the �nish-

ing touches by creating class �eld theory. This period 1897-1930, where development

of class �eld theory began, is considered as heroic period in the development of alge-

braic number theory. An extension is an abelian extension if it is a Galois extension

and the Galois group is abelian. Class �eld theory describes the abelian extensions

of a number �eld in terms of the arithmetic of the �eld. This theory was �rst for-

mulated by D.Hilbert and H. Weber. The Hilbert class �eld of an algebraic number

�eld K was de�ned by Hilbert. It is the largest abelian extension H of K, unrami�ed

at all primes of K (including the in�nite primes); and also G(H/K) ∼= Cl(K) where

Cl(K) is the class group of K. Hilbert conjectured that every ideal in K becomes

principal in the Hilbert class �eld (Principal Ideal Theorem). On the basis of Artin's

reciprocity law in 1930 Furtwangler proved Hilbert's Principal ideal conjecture.

In fact a large part of classical number theory can be expressed in the language

of algebraic numbers. This point of view had an enormous in�uence on the develop-

ment of number theory. As a result, today algebraic number theory is an important

branch of mathematics with applications not only to number theory but also to group

theory, algebraic geometry, topology, and analysis.

Most of the material in this chapter are taken from standard books on algebraic

number theory, especially from [Alaca and Williams, 2004], [Murty and Esmonde,

2005], and [Stewart and Tall, 2002].

2.2 PRELIMINARY CONCEPTS

DEFINITION 2.2.1. A number α in C is called an algebraic number if there

exists a polynomial f(x) = anx
n+an−1x

n−1 + ...+a0 such that, a0, ..., an, not all zero

are in Q and f(α) = 0.

DEFINITION 2.2.2. A number α in C is called an algebraic integer if there

exists a monic polynomial f(x) = xn + an−1x
n−1 + ...+ a0 such that, a0, ..., an−1, are

in Z and f(α) = 0.

6



The complex numbers that are not algebraic are called trascendental numbers,

examples being e and π.

DEFINITION 2.2.3. Let α be an algebraic number. The polynomial p(x) over Q
is said to be the minimal polynomial of α if p(α) = 0, p(x) is monic and has least

degree.

THEOREM 2.2.1. Let α be an algebraic number. Then the minimal polynomial

p(x) ∈ Q[x] of α, is unique and irreducible. Moreover, if f(x) ∈ Q[x] is such that

f(α) = 0 then p(x) divides f(x).

The degree of the minimal polynomial p(x) is called the degree of α. The roots of

p(x) are all distinct and are called conjugate roots or conjugates of α. Thus if deg

p(x) = n then α has n− 1 conjugates.

DEFINITION 2.2.4. A sub�eld K of C is called an algebraic number �eld if its

dimension as a vector space over Q is �nite.

The dimension of K over Q is called the degree of K, and is denoted by [K : Q].

In general any algebraic number �eld K is Q(θ) for some algebraic number θ. The

number �eld K is called a quadratic �eld if degree of extension is 2 and cubic �eld if

degree of extension is 3. The set of all algebraic integers in the algebraic number �eld

K forms a ring called the ring of integers and denoted as OK . This is a �nitely

generated Z- module with rank same as [K : Q]. For any α ∈ K, there exists m ∈ Z
such that mα ∈ OK . Hence a Z - basis of OK is also a Q - basis of K and is called

integral basis of K.

THEOREM 2.2.2. Let K = Q(α) be an algebraic number �eld of degree n. Then

there exist n distinct embeddings σi : K −→ C (i = 1, 2, ..., n), suct that σi(α) = αi

and these are precisely the roots of the minimal polynomial p(x) of α over Q.

The following de�nition is well known:

DEFINITION 2.2.5. Let K be an algebraic number �eld of degree n with {ω1, ω2, ..., ωn}
as integral basis. Let {σi, i = 1, 2, ..., n} be n distinct embeddings of K. The discri-

mininant ∆K of the �eld K is the square of the determinant of the matrix [σi(ωj)].

i.e., ∆K := {det[σi(ωj)]}2.
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Let K be an algebraic number �eld of degree n over Q. Let θ ∈ K be such that

K = Q(θ). Let θ1 = θ, θ2, ..., θn be the conjugates of θ over Q. For α ∈ K there exist

unique rational number c0, c1, ..., cn−1 such that

α = c0 + c1θ + ...+ cn−1θ
n−1.

For k = 1, 2, ..., n set αk = c0 + c1θk + ...+ cn−1θ
n−1
k ∈ Q(θk).

DEFINITION 2.2.6. The collection of algebraic numbers α1 = α, α2, ...., αn as

above are called the K−conjugates of α.

Let α ∈ K, with α = α1, α2, ..., αn as K-conjugates of α. Then the trace and norm

of α is denoted respectively as Tr(α) and N(α) and is de�ned as

Tr(α) = α1 + α2 + ...+ αn,

N(α) = α1α2...αn.

THEOREM 2.2.3. Let K be an algebraic number �eld of degree n. Let α, β ∈ K.
Then

Tr(α + β) = Tr(α) + Tr(β)

N(αβ) = N(α)N(β).

If α ∈ OK then the norm and trace of α are rational integers.

An element α ∈ OK is called a unit if there exists a β ∈ OK such that, αβ = 1.

THEOREM 2.2.4. α ∈ OK is a unit if and only if N(α) = ±1.

The set of all units in OK denoted by U(K) forms a multiplicative subgroup of K∗

where K∗ is the multiplicative group of non zero elements of K.

EXAMPLE 1. (i) For K = Q, OK = Z, then U(K) = {±1}.

(ii) For K = Q(i), OK = Z[i], then U(K) = {±1,±i}.

Structure of the unit group U(K) is given by Dirichlet as follows:

THEOREM 2.2.5. ( Dirichlet's Units Theorem)

Let U(K) be the unit group of K. Let [K : Q] = n, and n = r1 + 2r2 where r1 and

2r2 are respectively, the number of real and nonreal embeddings of K in C. Then

8



there exist fundamental units ε1, ε2, ..., εr, where r = r1 + r2− 1, such that every unit

ε ∈ U(K) can be written uniquely in the form

ε = ζεn1
1 ...ε

nr
r

where n1, ..., nr ∈ Z and ζ is a root of unity in OK . More precisely, if WK is the

subgroup of U(K) consisting of roots of unity, then WK is �nite and cyclic and

U(K) ' WK × Zr.

A nonzero, nonunit element α ∈ K is called an irreducible if α = βγ then either β

or γ is an unit in K. An element y is called an associate of x if x = uy for some

unit u. We list some properties of units, associates and irreducibles.

PROPOSITION 2.2.6. For an integral domain D,

(i) x is a unit if and only if x | 1,

(ii) any two units are associates and any associate of a unit is a unit,

(iii) x, y are associates if and only if x | y and y | x,

(iv) a non zero non unit element x is irreducible if and only if every divisor of x is

an associate of x or a unit,

(v) an associate of an irreducible is irreducible

Proofs follow directly from de�nition.

DEFINITION 2.2.7. An ideal is a nonempty subset a of a commutative ring R

having the following proprties:

• for α, β ∈ a, then α− β ∈ a

• for r ∈ R, and α ∈ a, then rα ∈ a.

DEFINITION 2.2.8. If {α1, ..., αn} is a set of elements in OK then

{ n∑
i=1

riαi : ri ∈ OK

}
is an ideal of OKwhich is generated by {α1, ..., αn} and is denoted as 〈α1, ..., αn〉.
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An ideal a in a commutative ring R is called a principal ideal if there exist some

α ∈ R such that, a = 〈α〉 = {λα : λ ∈ OK}. An integral domain D is a principal

ideal domain (PID) if every ideal of D is a principal ideal.

DEFINITION 2.2.9. The product of the ideals a and b is ab and consists of all

�nite sums
∑l

k=1 xkyk, with l ≥ 1, xk ∈ a and yk ∈ b.

DEFINITION 2.2.10. For ideals a and b in a commutative ring, write a | b if

b = ac for some ideal c.

If a | b then for some ideal c we have b = ac ⊂ a, so a ⊃ b. Thus in a commutative

ring divisibility implies containment.

The converse also holds in the ring of integers of a number �eld, i.e., a | b if and only

if a ⊃ b.

PROPOSITION 2.2.7. In any commutative ring R, an ideal p is prime if and only

if for all ideals a and b in R,

p ⊃ ab⇒ p ⊃ a or p ⊃ b.

PROPOSITION 2.2.8. If a is a nonzero ideal in OK , then a has �nite index in

OK .

DEFINITION 2.2.11. The norm of nonzero ideal in OK is its index in OK , and

it is denoted as N(a).

Relation between elements and ideal generated by them are as follows:

PROPOSITION 2.2.9. If D is a domain and x, y are non-zero elements of D then

(i) x | y if and only if 〈x〉 ⊇ 〈y〉,

(ii) x and y are associates if and only if 〈x〉 = 〈y〉,

(iii) x is a unit if and only if 〈x〉 = D,

(iv) x is irreducible if and only if 〈x〉 is maximal among the proper principal ideals

of D.

DEFINITION 2.2.12. A ring is called Noetherian if every ascending chain of

ideals I1 ⊂ I2 ⊂ I3 ⊂ .... terminates, i.e., if there exists n such that In = In+k for all

k ≥ 0.

10



THEOREM 2.2.10. For any commutative ring R, the following conditions are

equivalent:

(i) R is Noetherian

(ii) every nonempty set of ideals contains a maximal element.

(iii) every ideal of R is �nitely generated.

THEOREM 2.2.11. If a domain D is Noetherian, then factorization into irre-

ducibles is possible in D.

Any PID is a Noetherian ring. Also in any number �eld K, the ideals in OK are

�nitely generated Z-modules. ThereforeOK is a Noetherian ring. Hence factorization

into irreducibles is possible in OK which may not be unique.

THEOREM 2.2.12. The ring of integers OK of a number �eld K has the following

properties:

(i) It is an integral domain, with �eld of fractions K,

(ii) It is Noetherian,

(iii) If α ∈ K satis�es a monic polynomial equation with coe�cients in OK then

α ∈ OK

(iv) Every non-zero prime ideal of OK is maximal

A domain with the property (iii) of the above theorem is called integrally closed

domain.

DEFINITION 2.2.13. A fractional ideal in K is a nonzero OK-module a ⊂ K

such that for some α ∈ OK − {0}, αa ⊂ OK .

Since αa is an OK-module in OK , hence is an ideal of OK . Let αa = b, then a = 1
α
b.

THEOREM 2.2.13. Any fractional ideal in K is a free Z-module of rank [K : Q].

In comparison with fractional ideals, nonzero ideals in OK are called integral ide-

als. A fractional ideal of the form βOK for β ∈ K× is called principal. When OK

is a PID, all fractional ideals in K are principal.
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DEFINITION 2.2.14. For a fractional ideal a in OK de�ne a−1 by a−1 = {x ∈
K : xa ⊆ OK}.

Then a−1 is a fractional ideal of OK with aa−1 = OK .

THEOREM 2.2.14. The non-zero fractional ideals in K form an abelian group

under multiplication which is freely generated by the nonzero prime ideals in OK .

THEOREM 2.2.15. Every non-zero ideal of OK can be written as a product of

prime ideals, uniquely up to the order of factors.

Since OK has unique factorization of ideals it is possible to de�ne the greatest

common divisor g and the least common multiple l of two non-zero ideals a and b as

follows:

DEFINITION 2.2.15. De�ne d to be the greatest common divisor of a,b if:

(i) d|a and d|b and

(ii) e|a and e|b⇒ e|d.

Similarly, de�ne m to be the least common multiple of a,b if:

(i) a|m and b|m and

(ii) a|n and b|n⇒ m|n.

LEMMA 2.2.16. If a and b are ideals of OK , and g, l are the greatest common

divisor and least common multiple, respectively, of a and b, then

g = a + b, l = a ∩ b.

If a and b are ideals in OK with a+b = 〈1〉, then a and b are said to be relatively

prime.

THEOREM 2.2.17. The ring OK is a unique factorization domain if and only if

it is a principal ideal domain .

DEFINITION 2.2.16. An integral domain D is a Dedekind domain if it satis�es

the following properties:

• D is integrally closed in its quotient �eld.

12



• every nonzero prime ideal of D is maximal .

• D is Noetherian

The ring of algebraic integers in any number �eld is an example of a Dedekind domain.

Also, a principal ideal domain is both a Dedekind domain and a unique factorisation

domain. The converse is also true: a ring that is a UFD and a Dedekind domain is

a PID. One of the important properties of a Dedekind domain is that every nonzero

integral ideal can be expressed uniquely as a product of powers of prime ideals.

2.3 IDEAL CLASS GROUP

Let K be a Dedekind domain .The collection of all fractional ideals IK forms an

abelian group with respect to the ideal multiplication in K. The collection PK of all

principal fractional ideals of K is a subgroup of IK .

DEFINITION 2.3.1. The quotient group IK/PK is called the ideal class group

Cl(K) of K.

Surprisingly we have following result:

THEOREM 2.3.1. The group Cl(K) is a �nite group.

The cardinality of Cl(K) denoted by hK is called the class number of K. This

group measures the extent to which unique factorization fails. Most importantly, K

has unique factorisation into irreducibles if and only if hK = 1.

An element β ∈ K is said to be totally positive if N(β) > 0. Let P+
K be the group

of principal fractional ideals 〈β〉 = βOK where N(β) > 0. The quotient group IK/P
+
K

is called the narrow class group Cl+(K) of K.

For imaginary quadratic �elds, the norm of any nonzero element is always positive,

thus the class group and the narrow class group are identical. A collection of ideal

classes of order dividing 2 in K forms a subgroup of Cl(K) and is called the 2-part

of the ideal class group and is denoted as Cl(K)[2].

DEFINITION 2.3.2. Let K be a number �eld with signature {r1, r2}, discriminant

∆K and of degree n = r1 + 2r2. The value

MK =
n!

nn

( 4

π

)r2√
|∆K |

is called Minkowski bound for K.
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THEOREM 2.3.2. (Minkowski theorem)

Let K be an algebraic number �eld of degree n over Q. Then each ideal class contains

an integral ideal b satisfying

N(b) ≤MK .

The Minkowski bound is used for computing the ideal class group and to show

that class group is �nite.

2.4 QUADRATIC FIELDS

A quadratic �eld K is a number �eld of degree 2. Then K = Q(
√
m) where m 6= 1

is a squarefree rational integer. Every element α ∈ K is of the form x+ y
√
m where

x, y ∈ Q. The �eld K is real if m > 0, otherwise it is an imaginary quadratic �eld.

For any α = x+ y
√
m ∈ K, its conjugate is α = x− y

√
m. Thus Tr(α) = α+α = 2x

and N(α) = αα = x2 −my2. Every α ∈ K is a root of the monic polynomial p(x) of

the form p(x) = x2−Tr(α)x+N(α). Thus an element α ∈ K is an algebraic integer

of K precisely when its trace and norm are in Z.
The ring of algebraic integers of the quadratic �eld K is :

OK =

Z[
√
m], if m 6≡ 1 (mod 4)

Z
[1 +

√
m

2

]
, if m ≡ 1 (mod 4).

Let

ω =


√
m, if m 6≡ 1 (mod 4)

1 +
√
m

2
, if m ≡ 1 (mod 4).

Thus the ring OK = Z[ω] = {a+ bω : a, b ∈ Z}.

THEOREM 2.4.1. For m ∈ Z and α = a+ bω ∈ Z[ω], m | α in Z[ω] if and only

if m | a and m | b in Z.

THEOREM 2.4.2. If α ∈ OK then α ∈ OK.

THEOREM 2.4.3. (a) If m 6≡ 1(mod 4) then K has {1,
√
m} as integral basis.

(b) If m ≡ 1(mod 4) then K has {1, 1+
√
m

2
} as integral basis.

The discriminant of the �eld K is,

∆K =

{
4m, if m 6≡ 1 (mod 4)

4m+ 1, if m ≡ 1 (mod 4).
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Since the discriminants of isomorphic �elds are equal, it follows that for distinct

squarefree m the �elds Q(
√
m) are not isomorphic.

THEOREM 2.4.4. The discriminant uniquely determines a quadratic �eld.

By Dirchlet's units theorem, the unit group of a quadratic �eld K is, U(K) ∼= {±1}×
〈εK〉 where εK is called the fundamental unit.

THEOREM 2.4.5. The group of units U of the imaginary quadratic �eld Q(
√
−m),

for m squarefree positive, is as follows:

(i) For m = 1, U = {±1,±i}

(ii) For m = 3, U = {±1, ± ω, ± ω2} where ω = e2πi/3.

(iii) For all other m, U = {±1}

THEOREM 2.4.6. The group of units of a real quadratic �eld Q(
√
m) is an in�nite

cyclic group.

THEOREM 2.4.7. Every ideal in OK is �nitely generated, with at most two gen-

erators.

THEOREM 2.4.8. Any ideal in OK which has a set of generators from Z is a

principal ideal.

DEFINITION 2.4.1. For an ideal a, its conjugate ideal is a := {α : α ∈ a}.

Clearly a is an ideal.

THEOREM 2.4.9. If a = (α1, ..., αm) then a = (α1, ..., αm). In particular, if a =

〈α〉 is principal then a = 〈α〉 is also principal.

For principal ideals divisibility of ideals is exactly divisibility of the generators as

elements of OK .

THEOREM 2.4.10. For α and β in OK , 〈α〉|〈β〉 if and only if α|β.

THEOREM 2.4.11. For ideals a and b, if a|b then a ⊃ b. In particular, if a | b
and b | a then a = b

THEOREM 2.4.12. If a = 〈α1, ..., αm〉 has m generators then aa is generated by

the m integers (N(α1), ..., N(αm)) and m(m−1)
2

integers Tr(αiαj) where i < j.
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Thus ideal aa has a set of generators from Z. Thus by Theorem 2.4.8 aa is prin-

cipal.

THEOREM 2.4.13. For any ideal a in OK , the product aa is a principal ideal.

Hence for any nonzero ideal a in OK , ideal aa is principal with a generator in Z.
Without loss of generality we may choose generator in Z+.

DEFINITION 2.4.2. Let a be a nonzero ideal in OK . The ideal norm of a denoted

as Na be the positive integer which generates aa :

aa = 〈Na〉, Na ∈ Z+.

THEOREM 2.4.14. If ideal a is principal say a = 〈α〉 then Na =| N(α) | .

Thus for principal ideal, ideal norm is compatible with the element norm.

THEOREM 2.4.15. Let a and b be nonzero ideals then N(ab) = Na Nb.

COROLLARY 2.4.15.1. Let a and b be nonzero ideals, if a | b then Na | Nb in

Z.

DEFINITION 2.4.3. The sum of two ideals a and b is

a + b = {x+ y : x ∈ a, y ∈ b}.

Clearly a + b is an ideal. This is the greatest common divisior of a and b.

THEOREM 2.4.16. Every nonzero prime ideal in OK divides a unique prime num-

ber.

Let p be a prime ideal and p be the unique rational prime such that p | 〈p〉 then
p is called the rational prime lying below p, and ideal p is said to be a prime ideal

lying over p.

COROLLARY 2.4.16.1. Let p be a prime ideal in OK then Np is either p or p2

for some rational prime p.

PROPOSITION 2.4.17. For an odd rational prime p and a quadratic �eld of

discriminant d, the following holds:

• pOK = p2, p prime if and only if
(
d
p

)
= 0

• pOK = pp
′
, p 6= p

′
, p prime if and only if

(
d
p

)
= 1

• pOK = p, p prime if and only if
(
d
p

)
= −1, where (d

p
) is the Legendre symbol.
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Chapter 3

CUBIC PELL'S EQUATION AND UNITS

IN A PURE CUBIC FIELD

3.1 QUADRATIC PELL'S EQUATION

A Diophantine equation of the form x2 −my2 = 1 where m is a squarefree natural

number is known as quadratic Pell's equation. Whenm is a perfect square or negative,

the equation has only trivial solutions. When m is squarefree and positive, the

equation has nontrivial solutions. Observe that if (x, y) is a solution then (±x,±y)

are also solutions. Hence it is su�cient to �nd only positive solutions. Methods

of solving the above equation in positive integers have been studied extensively;

special cases were considered by Greeks. However, Indian mathematicians have given

clear constructive methods of solution. The Indian method was described as the

Chakravala or Cyclic method. Earliest accounts are due to Brahmagupta, Jayadeva

and Bhaskaracharya. This equation should rightly be called as the Brahmagupta-

Bhaskara equation and is now widely acknowledged as such. However, due to an error

by Euler, this equation has been attributed to John Pell. The name has stuck and is

commonly known as Pell's equation. This was �rst posed as a challenge problem to

the British mathematicians by Pierre Fermat. His challenge was taken up in England

by Brouncker and Wallis. Finally Brouncker succeeded in solving it. Brouncker's

method was modi�ed and extended by Euler, who realized that continued fractions

could be used to solve it. The smallest nontrivial solution of Pell's equation is so

unpredictable that its existence is not clear in general. However in 1768 Lagrange

proved that if m is any non square positive integer, x2 − my2 = 1 has nontrivial

solutions. Around 1840, using the �pigeonhole principle�, Dirichlet gave a new proof

of the above result, purely existential. He also proved the existence of a fundamental
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solution from which every other solution can be obtained. There is a close relation

between solutions to Pell's equation and the group of units of quadratic �elds.

3.2 RELATION BETWEEN QUADRATIC PELL'S EQUA-

TION AND QUADRATIC FIELDS

Consider the quadratic �eld F = Q(
√
m) where m is a square free positive integer.

For any α = x+ y
√
m ∈ Q(

√
m), the norm of α is de�ned as N(α) = x2−my2. Let

OF be the ring of integers of F. Then

OF =

Z[
√
m] if m ≡ 2, 3 (mod 4)

Z
[1 +

√
m

2

]
if m ≡ 1 (mod 4)

For m ≡ 2, 3 (mod 4) an element α ∈ OF is a unit i� x2 −my2 = ±1. Thus, Pell's

equation can also be written as N(x + y
√
m) = 1. The collection of units in OF

forms a group with respect to multiplication and is called the unit group, UF , of F.

The structure of the unit group is obtained through Dirichlet's units theorem. It

determines the rank of the group UF . It states that the group of units is �nitely

generated and has rank equal to r = r1 + r2 − 1 where r1 is the number of real

embeddings and r2 is the number of conjugate pairs of complex embeddings. Hence

for F, rank of the unit group is one i.e., there exist unit εm such that UF ' {±1} ×
〈εm〉. All the units in the ring OF can be obtained as powers of εm and εm is called

the fundamental unit. The number of fundamental units of a ring of integers of a

number �eld is 0 or in�nite. Thus, study of integer solutions to Pell's equation gives

an understanding of the group of units in OF for m ≡ 2, 3 (mod 4). [ Eventhough

Dirichlet's theorem enables one to �nd the exact number of fundamental units of OF ,

it is purely existential and not constructive. For quadratic �elds there is a method

of continued fractions using which the fundamental unit of OF can be found, and

hence all solutions to Pell's equation.]
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3.3 CONTINUED FRACTIONS

An expression of the form

b0 +
1

b1 +
1

b2 +
1

b3 + · · ·
where bi ∈ N for i ≥ 1 and b0 ∈ Z is called in�nite simple continued fraction, which

is denoted as [b0, b1, b2, ...]. The bi's are called as partial quotients. If a continued

fraction terminates then it is called a �nite simple continued fraction. Continued

fraction of a real number α is �nite i� α is a rational number. Otherwise it is in�nite.

The continued fraction algorithm for a real number α0 is given by αk = bk+
1

αk+1
, k ≥ 0

where bk = bαkc, αk+1 = 1
αk−bk

(Euclid algorithm for 1 and α).

DEFINITION 3.3.1. The mth convergent of the sequence {bi} is the truncated

continued fraction [b0, b1, b2, ..., bm] which is denoted as Cm.

Consider sequences {pm} and {qm}, m = 0, 1, 2, ..., de�ned as below:

p0 = b0, p1 = b1b0 + 1, pm = bmpm−1 + pm−2 m ≥ 2

q0 = 1, q1 = b1, qm = bmqm−1 + qm−2 m ≥ 2.

Then, the mth convergent of the simple continued fraction [b0, b1, b2, ...] has the value

Cm = pm
qm
, 0 ≤ m (proof is by induction).

DEFINITION 3.3.2. An in�nite continued fractions [b0, b1, b2, ...] is periodic if

there exist l ∈ N, r ≥ 0 such that bk = bk+l for all k ≥ r. If r = 0, then the continued

fraction is said to be purely periodic.

Using continued fractions we can distinguish the set of quadratic irrationals from

other real numbers. Suppose a real number α satis�es a polynomial, f(x) = a0 +

a1x+a2x
2 + · · ·+anx

n of degree n with integral coe�cients a0, a1, a2, ..., an and does

not satisfy any equation of lower degree. Then α is said to be an algebraic number

of degree n. An algebraic number of degree two is called a quadratic irrational.

DEFINITION 3.3.3. The quadratic irrational α is said to be reduced if α > 1

and if its conjugate lies between −1 and 0.

LEMMA 3.3.1. (Galois) The continued fraction of α is purely periodic i� α is a

reduced quadratic irrational.

The above lemma can be used to prove the following,

19



THEOREM 3.3.2. (Euler-Lagrange)

The continued fraction of α is periodic i� α is a quadratic irrational.

Thus, the continued fraction expansion characterizes quadratic irrationals.

Solutions to Pell's Equation

THEOREM 3.3.3. If (p, q) is a positive solution of x2 − my2 = 1, then p
q
is a

convergent of the continued fraction expansion of
√
m.

This is proved using the following theorem;

THEOREM 3.3.4. If l is the length of the period in the continued fraction expansion

of
√
m, then p2

kl−1 −mq2
kl−1 = (−1)kl where k runs through all natural numbers and

pk
qk

is a convergent of the continued fraction of
√
m.

By generalizing the above theorem we get

THEOREM 3.3.5. Let pk
qk

be the convergents of the continued fraction expansion

of
√
m, and let l be the period length of the expansion,

(i) If l is even, then all positive solutions of x2 − my2 = 1 are given by x =

pkl−1, y = qkl−1, k=1,2,3....

(ii) If l is odd, then all positive solutions of x2 − my2 = 1 are given by x =

p2kl−1, y = q2kl−1, k=1,2,3,...

Thus, the fundamental solution to Pell's equation can be obtained by using method of

continued fractions. The continued fractions method was the undisputed method for

solving a given Pell equation and only recently faster methods have been developed

which is given in [Lenstra Jr, 2008].

Rational Approximation to Real Numbers

LEMMA 3.3.6. Let pm
qm

be the mth convergent of the continued fraction representing

the irrational number α. If a and b are integers, with 1 ≤ b < qm+1, then |qmα−pm| ≤
|bα− a|.

Using the above lemma we have
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THEOREM 3.3.7. If 1 ≤ b ≤ qm, the rational number a
b
satis�es

|α− pm
qm
| ≤ |α− a

b
|

THEOREM 3.3.8. Let α be an arbitrary irrational number. If the rational number
a
b
, where b ≥ 1 and gcd(a,b) = 1, satis�es |α− a

b
| < 1

2b2
then a

b
is one of the convergents

pm
qm

in the continued fraction representation of α.

This shows that the convergents Cm of in�nite continued fractions gives the best

approximations to irrational numbers. Later, Hurwitz proved that for every irrational

α there are in�nitely many p, q ∈ Z such that |α− p
q
| < 1√

5q2
. Moreover, Thue, Siegel,

and Roth proved that for algebraic irrationals, the exponent 2 is the best possible.

3.4 CUBIC PELL'S EQUATION

Pell's equation can be generalized in many ways. One such generalization is

x3 +my3 +m2z3 − 3mxyz = 1 (3.1)

where m is cubefree integer, which is known as the cubic analogue of Pell's equation.

Let m be a positive integer, not a perfect cube. The equation x3 − m = 0 has

three roots: ω, ρω, ρ2ω where ω = 3
√
m, and ρ is the imaginary primitive cube root

of unity. Then K = Q( 3
√
m) = {x+ yω + zω2 | x, y, z ∈ Q} is a pure cubic �eld.

It is a non-Galois algebraic number �eld with one real embedding and two complex

embeddings. Hence it has signature (1,1).

DEFINITION 3.4.1. Let Kbe an algebraic number �eld.A basis for OK is called

an integral basis for K.

DEFINITION 3.4.2. Let K be an algebraic number �eld of degree 3. If there exist

an element θ ∈ OK such that OK = Z[θ]. The powers of such an element constitute

an integral basis called a power integral basis, i.e., {1, θ, θ2} is a power integral

basis.

Let 1 6= m ∈ N be cube free and let m = ab2 where ab is square free. If

m 6≡ ±1(mod 9) then K is said to be of the �rst kind, otherwise it is said to be of

the second kind. Let OK denote the ring of algebraic integers ofK. It is well known

that K has a power integral basis if and only if m is square free and m 6≡ ±1(mod 9).
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In this case the norm of an element α = x+ yω + zω2 ∈ K is,

N
(
x+ yω + zω2

)
=
(
x+ yω + zω2

) (
x+ yωρ+ zρ2ω2

) (
x+ yρ2ω + z

(
ρ2ω
)2
)

On simpli�cation we get a homogeneous polynomial of degree three in x, y and z

N
(
x+ yω + zω2

)
= x3 +my3 +m2z3 − 3mxyz, x, y, z ∈ Q (3.2)

Also,

x3 +my3 +m2z3 − 3mxyz = (x+ yω + zω2)[(x2 − yzm) + (z2m− xy)ω + (y2 − xz)ω2]

=
1

2
(x+ yω + zω2)[(x− yω)2 + (y − zω)2(ω)2 + (zω2 − x)2].

(3.3)

An element α ∈ OK is a unit if and only if x3 +my3 +m2z3 − 3mxyz = ±1.

Thus units of K are nontrivial integer solutions to (3.1). An important property of

the norm is that it is multiplicative: i.e.,

N(αβ) = N(α)N(β).

Hence it follows that N(α−1) = (N(α))−1. Thus N (αn) = [N (α)]n for every n ∈ Z.
Hence if α = x+yω+zω2 is a solution of (3.1) then αn, n ∈ Z is also a solution. As in

the quadratic case, using the pigeon hole principle one can show that ifm is a positive

cube free integer then the corresponding cubic Pell's equation has nontrivial integer

solutions. Indeed much more is true, one can show that there is a fundamental

solution, say εm, from which all other solutions can be obtained. So, it is natural

to expect an algorithm that computes all integer solutions to (3.1). It is rather

surprising that unlike the usual quadratic Pell's equation where there are de�nite and

constructive methods of solution like the continued fraction algorithm (for quadratic

irrationals), there is no such technique for the cubic Pell's equation which works for

all m. If m is the discriminant of a pure cubic �eld, then Voronoi's algorithm, which

is a continued fraction algorithm, will solve the Diophantine equation (3.1) for every

such m. By Dirichlet's units theorem, the unit group of OK has rank 1 and is a

cyclic group generated by a fundamental unit. The fundamental unit of OK can be

found by solving a Pell like equation but it does not always correspond directly to

the fundamental solution of cubic Pell's equation itself. If we could express εm in

terms of m then we get all solutions to (3.1). There is no method as yet to �nd εm

that works for all m. Many authors tried to �nd formula for εm by putting some
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constraint on m. The Jacobi- Perron Algorithm is one of the well-known methods to

�nd εm for some m. Till now there is no algorithm to �nd εm for all m.

3.4.1 JACOBI-PERRON ALGORITHM

In 1848 Charles Hermite wrote a letter to Carl Gustav Jacob Jacobi asking Jacobi

to �nd an algorithm to develop irrationals of any degree into periodic sequences.

This is known as the Hermite problem. Jacobi in 1869 extended the continued

fractions method to represent some cubic irrationals by means of periodic sequences.

He proposed an algorithm for pairs of numbers in cubic �elds with the hope that his

algorithm will become eventually periodic. Jacobi found some examples, but he could

not show that Lagrange's theorem is true for this algorithm always. In 1907, Perron

generalized the work of Jacobi. This generalization is known as the Jacobi-Perron

algorithm (JPA) which proceeds as follows:

Let a(0) be a vector in Rn−1; then the sequence 〈a(v)〉 is called the JPA, if for a(v) =

(a
(v)
1 , a

(v)
2 , ..., a

(v)
n−1) where v = 0, 1, 2...

a(v+1) =
1

a
(v)
1 − b

(v)
1

(a
(v)
2 − b

(v)
2 , ..., a

(v)
n−1 − b

(v)
n−1, 1)

(b
(v)
1 6= a

(v)
1 : v = 0, 1...) and b

(v)
i = f(a

(v)
i ) where i = 1, 2, ..., n−1; v = 0, 1, ... for some

transformation f on Rn−1. The JPA of a point a(0) ∈ Rn−1 is completely characterized

by its transformation function f . The JPA is said to be periodic, if there exist two

rational integers L and M, L ≥ 0,M ≥ 1, such that a(M+L) = a(L) . If min L = l,

min M = m, then the sequence of vectors a(0), a(1), ..., a(L−1) is called the primitive

pre-period of the Jacobi-Perron algorithm, and the vectors a(L), a(L+1), ..., a(L+M−1)

is called primitive period. The l and m are called respectively the lengths of the

primitive preperiod and period. If l = 0, the algorithm is said to be purely periodic.

Perron proved that if the JPA of a vector a(0) = (a
(0)
1 , a

(0)
2 , ..., a

(0)
n−1) becomes periodic,

then the components a
(0)
1 , a

(0)
2 ..., a

(0)
n−1 belong to an algebraic number �eld of degree

≤ n, and if they are linearly independent, the degree of that �eld is exactly n.

The converse of the above, i.e., whether the JPA of a vector a(0) whose components

belong to an algebraic number �eld of degree ≤ n always becomes periodic, is still

challengingly open. Leon Bernstein has stated a few classes of in�nitely many real

algebraic number �elds, for which the Jacobi-Perron algorithm of a properly chosen

vector a(0) becomes periodic. One of the applications of periodic JPA is calculation of

units in the corresponding �elds. The following result is due to Hasse and Bernstein
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(Bernstein, 1971):

THEOREM 3.4.1. Let the JPA of a(0) be periodic with L as the length of its prim-

itive preperiod, M the length of its primitive period then ε =
L+M−1∏
i=L

a
(i)
n−1 is a unit in

the �eld generated by the components of a(0) over Q.

By applying the above theorem to the periodic JPA , Bernstein found;

COROLLARY 3.4.1.1. [Bernstein, 1971] Let D, k, n be natural numbers n ≥ 2

with α = n
√
Dn ± k then ε = (α−D)n

αn−Dn is a unit in Q(α) for the following values of k,

i) k = drD or dr, d | D r = 0, 1, 2, ..., n− 1

ii) n = pv (p prime, v=1,2,...), k = pdrD or pdr, d | D

Bernstein conjectured that e = (α−D)n

αn−Dn in the �eld Q(w) where w = n
√
Dn ± k

are always fundamental units, with at most a �nite number of exceptions. A major

progress in the problem of �nding fudamental unit of a cubic, not totally real �eld,

with one fundamental unit, has been achieved by H.J. Stender for the following cases;

i) w = 3
√
D3 + d, d|D

ii) w = 3
√
D3 + 3d, d|D, 3d ≤ D

iii) w = 3
√
D3 + 3D,D ≥ 2

iv) w = 3
√
D3 − d, d|D, 4d ≤ D

v) w = 3
√
D3 − 3d, d|D, 12d ≤ D

THEOREM 3.4.2. In the �eld Q(w), w from (i) to (v) above, the unit e = (w−D)n

wn−Dn ,

|w3 − D3|> 1 is always fundamental, with the only exception in (i) for D = d =

2, w = 3
√

10, where 1
3
(−7− w + 2w2) =

√
e is the fundamental unit.

The results of Stender have been extended and the following result is proved;

THEOREM 3.4.3. Let a = D3 + d, where a,D, d ∈ Z, with a,D > 0, |d|> 1,

and a cubefree. Then ε = (ω−D)3

d
, where ω = 3

√
a, is a unit of K = Q(ω) if and

only if d|3D2. Moreover, in this case ε = η, the fundamental unit of K, except for

(D, d) = (2,−6), (1, 3), (2, 2) (3, 1) and (5,−25), where ε = η2, and (2,−4),

where ε = η3.
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Since JPA becomes periodic very rarely, calculating a unit using above formula is not

easy. But in, [Bernstein, 1975] it is shown that the JPA can be used to �nd units of

in�nitely many algebraic number �elds, without the JPA being periodic.

THEOREM 3.4.4. Let w be a real root of an nth degree polynomial and Q(w) the

algebraic number �eld generated by adjunction of w to Q; let

a(0) = (a
(0)
1 (w), a

(0)
2 (w), ..., a

(0)
n−1(w))

be a vector whose components a
(0)
i (w) (i = 1, 2, 3, ...) in the JPA of a(0) be rationalized,

i.e.,

a
(0)
i (ω) =

C
(v)
0,i + C

(v)
1,i w + ...+ Cv

n−1,iw
n−1

Mv

;

Mv ∈ N, C(v)
j,i ∈ Z (j = 0, 1, ..., n− 1; i = 1, ..., n− 1).

If, for a certain v > 1, Mv = 1, then

e =
v∏
i=1

a
(i)
n−1 = A

(v)
0 + a

(v)
1 A

(v+1)
0 + a

(v)
2 A

(v+2)
0 + ...+ a

(v)
n−1A

(v+n−1)
0 ,

where the A
(v)
0 are obtained from the recursion formula

A
(0)
0 = 1; A

(1)
0 = A

(2)
0 = ... = A

(n−1)
0 = 0;

A
(v+n)
0 = A

(v)
0 + b

(v)
1 A

(v+1)
0 + ...+ b

(v)
n−1A

(v+n−1)
0 (v = 0, 1, 2, ...)

is a unit in Q(w).

When the above theorem is applied for a cubic �eld, we �nd that successive vectors

a(v) of a(0) = (w,w2) are of the form

a
(v)
1 =

pw2 + qw + r

αw2 + βw + γ

a
(v)
2 =

1

αw2 + βw + γ

After rationalising the denominators, we get

a
(v)
1 =

αvw
2 + βvw + γv
Mv

a
(v)
2 =

avw
2 + bvw + cv
Mv

(v = 0, 1, 2....)
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The coe�cients of their corresponding components with rationalized denominators

are related by the equations

β2
v − αv(γv −Mvb

(v)
1 ) = Mvav+1

mα2
v − βv(αv −Mvb

(v)
1 ) = Mvbv+1

(γv −Mvb
(v)
1 )2 −mαvβv = Mvcv+1

m(αvbv+1 + βvav+1) + (γv −Mvb
(v)
1 )cv+1 = MvMv+1

avcv+1 + bvbv+1 + (cv −Mvb
(v)
2 )av+1 = Mvαv+1

mavav+1 + bvcv+1 + (cv −Mvb
(v)
2 )bv+1 = Mvβv+1

m(avbv+1 + bvav+1) + (cv −Mvb
(v)
2 )cv+1 = Mvγv+1

Convergents of the Jacobi Perron Algorithm are given by
A

(v)
1

A
(v)
0

and
A

(v)
2

A
(v)
0

.

We implemented this algorithm in Python and found units in various cubic �elds.

It is shown that for m = (n3 + 1)(n3 + 2) where n ∈ N, the fundamental unit is given

by εm = 1 − 3n(n3 + 1)ω + 3n2ω2. Delone and Nagell also restricted their study to

the equation with z = 0, i.e., x3 +my3 = 1 x, y ∈ Z. The following is proved [Delone

and Faddeev, 1964]:

THEOREM 3.4.5. (Delone-Nagell)

Let Q( 3
√
m) be a pure cubic �eld with ring of integers OK . Then the equation

x3 +my3 = 1 (3.4)

has atmost one solution. If x1, y1 with y1 6= 0 is a solution, then x1 + y1
3
√
m is either

the fundamental unit of OK or its square.

When does the equation (3.4) have nontrivial solution is still an open problem. We

next consider a method of solving cubic Pell's equation.

An Algorithm that Sometimes Works (Barbeau's algorithm)

In this section we will explain an algorithm outlined in [Barbeau, 2003] to calculate a

solution to (3.1). There is no mathematical certanity that this algorithm will always

give the fundamental solution.

Barbeau's algorithm is given as follows;
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(i) Let θ = ( 3
√
m). Consider p = bθc, q = bpθc and r = b(p+ 1)θc

(ii) Construct a table as follows.

Table 3.4.1: First Four Steps

(x, y, z) sign (x3 −my3) sign (y3 −mz3) value(x3 +my3m2z3 − 3mxyz)
(q, p, 1) − − ...

(q + 1, p, 1) + − ...
(r, p+ 1, 1) − + ...

(r + 1, p+ 1, 1) + + ...

(iii) Let (u, v, w) be the last entry in the above table. Let (u1, v1, w1) be that among

the previous entries for which u3 −mv3 and u3
1 −mv3

1 have opposite signs as

well as v3 −mw3 and v3
1 −mw3

1 have opposite signs.

(iv) Then next entry in the table is (u+ u1, v + v1, w + w1)

(v) Continue the above process until we get x3 +my3 +m2z3 − 3mxyz = 1

If (3.1) has solution triple consisting of large positive x, y and z values and ω =
3
√
m ∈ R, then by (3.1)

x3 +my3 +m2z3− 3mxyz =
1

2
(x+ yω+ zω2)[(x− yω)2 + (y− zω)2(ω)2 + (zω2−x)2]

the factor x + yω + zω2 → ∞ and so the other factor approaches 0. Thus, the

terms (x − yω)2, (y − zω)2 and (zω2 − x)2 will be close to zero. This implies

x− yω −→ 0, y − zω −→ 0 & zω2 − x −→ 0. Hence x
y
, and y

z
approximate ω.

Hence, in the algorithm, by considering opposite signs of x3−my3 and y3−mz3 and

applying intermediate value property we get a solution to equation (3.1).

This algorithm always gives a solution to (3.1) but not the fundamental solution.

Even when it gives the fundamental solution, it will not give all its powers. Using

Python code we implemented above algorithm for cube free integers 2 ≤ m ≤ 300

and compared with table of units given in [Wada et al., 1970] and those obtained

through PARI/GP.
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Table 3.4.2: Algorithm for m = 15

(x, y, z) sign(x3 − 15y3) sign (y3 − 15z3) x3 + 15y3 + 225z3−
45xyz

(4, 2, 1) − − 49

(5, 2, 1) + − 20

(7, 3, 1) − + 28

(8, 3, 1) + + 62

(12, 5, 2) − + 3

(17, 7, 3) − − 68

(91, 37, 15) − + 16

(170, 69, 28) − − 35

... ... ... ...

(2153, 873, 354) − − 62

(2518, 1021, 414) − − 7

(2883, 1169, 474) − + 12

(2962, 1201, 487) + − 88

(5845, 2370, 961) + − 100

... ... ... ...

Table 3.4.3: Algorithm for m = 3

(x, y, z) sign(x3 − 3y3) sign (y3 − 3z3) x3+3y3+9z3−9xyz

(1, 1, 1) − − 4

(2, 1, 1) + − 2

(2, 2, 1) − + 5

(3, 2, 1) + + 6

(23, 16, 11) − + 2

(29, 20, 14) + − 5

· · · · · · · · · · · ·
(52, 36, 25) + − 1

(75, 52, 36) + + 3

... ... ... ...

(3584, 2485, 1723) + + 2

(3871, 2684, 1861) + − 16
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In the case m = 15, the fundamental solution is (5401, 2190, 888), but this is not

picked up by the algorithm; but form = 3 smallest positive solution (4, 3, 2) is picked

up. Similarly when m = 16, the smallest positive solution is (16001, 6350, 2520) and

this too is not picked up by the algorithm. Even when it gives fundamental solution

it will not give all its powers.

In the following table we have listed those cubefree values of m, 2 < m ≤ 300 for

which the algorithm does not give the fundamental solution.

Table 3.4.4: Cube-free values of m for which algorithm does not pickup the funda-
mental solution

m 6≡ ±1
(mod9)

Prime

Factors

m 6≡ ±1
(mod9)

Prime Factors m ≡
±1(mod9)

Prime Fac-

tors

15 3× 5 187 11× 17 17 17× 1
20 22 × 5 191 191× 1 19 19× 1
23 23× 1 193 193× 1 53 53× 1
28 23× 1 201 3× 67 82 2× 41
47 47× 1 204 22 × 3× 17 89 89× 1
89 89× 1 212 22 × 53 116 22 × 29
90 2× 32 × 1 220 22 × 5× 11 118 2× 59
101 101× 1 221 13× 17 134 2× 67
102 2× 3× 17 223 223× 1 143 11× 13
148 22 × 37 263 263× 1 179 179× 1
150 2× 3× 52 265 53× 5 181 181× 1
151 151× 1 266 2× 7× 19 190 2× 5× 19
155 3× 5 273 3× 7× 13 199 199× 1
156 22 × 3× 13 275 52 × 11 262 2× 131
165 3× 5× 11 292 22 × 73
166 2× 83 294 2× 3× 72

167 1× 167 295 5× 59
173 173× 1 300 22 × 3× 52

175 52 × 7 186 2× 3× 31
182 2× 7× 13 183 3× 61

Samples of observations obtained by both algorithms are tabulated below for m in

1 6 m < 60. We denote by f.s. the fundamental solution and f.u. the fundamental

unit.
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Table 3.4.5: Fundamental solution obtained from above Algorithm

m fundamental unit ε Barbeau's

algo-

rithm

JPA comparison Fundamental

unit ?

2 1 + θ + θ2 ε ε both give f.s. yes

3 4 + 3θ + 2θ2 ε ε both give f.s. yes

5 41 + 24θ + 14θ2 ε ε both give f.s. yes

6 109 + 60θ + 33θ2 ε ε both give f.s. yes

7 4 + 2θ + θ2 ε ε both give f.s. yes

10 (23 + 11θ + 5θ2)/3 ε2 ε2 both give f.s. No

11 89 + 40θ + 18θ2 ε ε both give f.s. yes

12 (110 + 48θ + 21θ2)/2 ε2 ε2 both give f.s. No

13 94 + 40θ + 17θ2 ε ε both give f. s. yes

14 29 + 12θ + 5θ2 ε ε both give f.s. yes

15 5401 + 2190θ + 888θ2 ε5 ε only JPA gives f.s. only JPA

gives f.u

17 324 + 126θ + 49θ2 ε2 ε4 both do not give

f.s.

No

19 (14 + 5θ + 2θ2)/3 ε4 ε2 only JPA gives f.s No

20 (22 + 8θ + 3θ2)/2 ε4 ε2 both do not give f.

s

No

21 1705 + 618θ + 224θ2 ε ε both give f.s. yes

22 793 + 283θ + 101θ2 ε ε both give f.s yes

23 2166673601 +
761875860θ +
267901370θ2

ε2 ε2 both do not give

f.s.

No

26 9 + 3θ + θ2 ε ε both give f.s. yes

28 (10 + 4θ + θ2)/6 ε2 ε2 both give f.s. No

30 811 + 261θ + 84θ2 ε ε both give f.s. yes

31 101209 + 32218θ +
10256θ2

ε ε both give f.s. yes

33 15270674074129 +
4760876269140θ +
1484279131362θ2

ε − JPA does not give

any solution

Barbeau's

algorithm

gives f.u.

34 334153 + 103146θ +
31839θ2

ε − JPA does not give

any solution

Barbeau's

algorithm

gives f.u.

35 (278 + 85θ + 26θ2)/3 ε2 ε2 both give f.s. No

37 100 + 30θ + 9θ2 ε ε both give f.s. yes

38 29071 + 8647θ + 2572θ2 ε ε both give f.s. yes

39 529 + 156θ + 46θ2 ε ε both give f.s. yes

41 93119709578189758
7447729 +
2700517487345
25954034260θ +
78316338533401657636358θ2

ε − JPA do not give

solution

Barbeau's

algorithm

gives f.u.
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42
21169 + 6090θ + 1752θ2 ε ε both give f.s. yes

43 49 + 14θ + 4θ2 ε ε both give f.s. yes

44 (8014 + 2270θ + 643θ2)/6 ε2 − JPA does not give

f.s. but Barbeau's

algorithm gives f.s

no

45 1477441+415374θ+116780θ2 ε ε both give f.s. yes

52 209 + 56θ + 15θ2 ε ε both give f.s. yes

53 113015453598 +
30087022392θ+8009779969θ2

ε4 ε4 both do not give

f.s.

No

55 32947340560201 +
8663621462574θ +
2278130361072θ2

ε ε both give f.s. Yes

57 1460968 + 379620θ + 98641θ2 ε ε both give f.s. yes

58 929 + 240θ + 62θ2 ε ε both give f.s. yes

59 21618361237973511050873 +
5553141829215933501576θ +
14264441155632242954θ2

ε − JPA does not

give any solution

but Barbeau's

algorithm gives

f.s.

Barbeau's

algorithm

gives f.u.

In the following table we have listed those cubefree values of m, 2 ≤ m ≤ 200 for

which the algorithm does not give the fundamental unit. In these cases we have

found the smallest unit obtained by the algorithm as power of fundamental unit.
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m
fundamental unit ε smallest unit ob-

tained through Bar-

beau's algorithm as

power of f.u ε

10 (23 + 11ω + 5ω2)/3 ε2

12 (110 + 48ω + 21ω2)/2 ε2

15 5401 + 2190ω + 888ω2 ε5

17 324 + 126ω + 49ω2 ε2

19 (14 + 5ω + 2ω2)/3 ε4

20 (22 + 8ω + 3ω2)/2 ε4

23 2166673601 + 761875860ω +
267901370ω2

ε2

28 (10 + 4ω + ω2)/6 ε2

35 (278 + 85ω + 26ω2)/3 ε2

44 (8014 + 2270ω + 643ω2)/6 ε2

47 562944292769 +
155990973316ω +
43224852030ω2

ε2

53 113015453598 + 30087022392ω+
8009779969ω2

ε4

82 (7644966923903 +
1759696053245θ +
405041673905θ2)/3

ε4

84 (332642 + 75954θ + 17343θ2)/2 ε2

89∗ (112410587 + 251773807θ +
56391530θ2)/3

ε10

90 58321 + 13014θ + 2904θ2 ε15

92 (214312438 + 47473520θ +
10516119θ2)/2

ε2

102 86538093769 + 18521405235θ +
3964062957θ2

ε3

107 (113247787855207200198554 +
23854398394735212748450θ +
5024666119768108586783θ2)/3

ε2

116 (16628482262 + 3409572648θ +
699112851θ2)/2

118 (698690155699793 +
142448305839101θ +
29042229478826θ2)/3

ε4

133 4593394 + 899877θ + 176292θ2 ε2

134 (62652683111 + 12243476209θ +
239259840θ2)/3

ε4

143 (7305401975 + 1397007610θ +
267148922θ2)/3

ε6

148 1878269 + 3550789θ + 67130θ2 ε2

150 (1355 + 255θ + 48θ2)/5 ε20
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151
58886554777961 + 11058354219854θ +
2076657371328θ2

ε2

154 (2155235855 + 402088109θ + 75014921θ2)/3 ε2

155 807243088561096721 + 150277433472159724θ +
27975844365832758θ2

ε2

156 (3789756830 + 703995384θ + 130776069θ2)/2 ε2

165 130681 + 23826θ + 4344θ2 ε4

166 1767569 + 321618θ + 58520θ2 ε4

167 2070166880101044205370118762758521169120
82628917805324424938907510989327
909593678542437176000329 +
37592383784303870520580149553992944609761757
86237429132766935800446953722
7749284245814885920536θ +
682644154039125269466796648093864988591615740
08451266422311959445280755162
96200936950484198110θ2

ε2

172 (117310 + 21094θ + 3793θ2)/6 ε2

175 (378005 + 67580θ + 12082θ2)/5 ε2

179 15658821424198623844708
56245195930911194 + 27784850288638860094224
7003648177715976θ + 49301150108848866524
199807763681342081θ2

ε2

181 (16966724329842756278 +
2999428257712544915θ +
530247895720239530θ2)/3

ε4

182 289 + 51θ + 9θ2 ε2

183 42335040310393343023158904
52620079552467606161001 +
745675054088764429586069
727215344121157283327710θ +
1313406771822005060363
11403064866045202757322400θ2

ε7

186 2152107793 + 377015934θ + 66047349θ2 ε2

187 317918976327167993137
411436881 + 555950232082072
30924300971516θ +
9721994708300693348196450546θ2

ε2

188 (829001404477710769250 +
144711368281529982102θ +
25260970604876278431θ2)/2

ε2
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204
(5510 + 936θ + 159θ2)/2 ε2

223 290403613332741389389409 +
47888775020014619589782θ +
7897060048939189665372θ4

ε4

190 (72361501175463503 + 12587023246682465θ +
2189467488082553θ6)/3

ε6

193 310748091322658101526700649 +
53771980623158197557987634θ +
9304726178141044079043680θ2

ε2

197 32607673372238124198043171656460053404341532
0035464220797168 +
56039949683817422135451445856527678
879031271436671660719670θ +
9631094879767045845289157130803107
138502912631297689022961θ2

ε8

199 (29927 + 5126θ + 878θ2)/3 ε2

199 (29927 + 5126θ + 878θ2)/3 ε2

201 282914974686875109517742143969 +
48297418257891394288011264918θ +
8245023484385805591032095740θ2

ε2

204 (5510 + 936θ + 159θ2)/2 ε2

206 (5808269975 + 983462311θ + 166520861θ2)/3 ε2

212 (51518 + 8640θ + 1449θ2)/2 ε34

220 (53462 + 8856θ + 1467θ2)/2 ε6

221 3581449162473160275053095200699362120441 +
592372241916916996898572116020362358424θ +
97978459856556500620606683613369693274θ2

ε2

3.5 DIOPHANTINE APPROXIMATION

The above method is partially based on the rational approximation of 3
√
m. Also, a

solution (x, y, z) of the Cubic Pell's equation with large positive x, y and z will

give rational approximations x
y
and y

z
to 3
√
m.

EXAMPLE 2. Consider the cubic Pell's equation x3+7y3+49z3−21xyz = 1 then al-

gorithm gives (41, 24, 14), (5041, 2948, 1724), (619921, 362532, 212010), (1152906139441,

674223600444, 394288353444), ect as units.

Let us consider the rational approximation to 3
√

7 :

(i)
xy − 3

√
7
 =

41
24
− 3
√

7
 ≈ 0.0016426133.yz − 3

√
7
 =

24
14
− 3
√

7
 ≈ 0.00595238095.

(ii)
xy − 3

√
7
 =

5041
2948
− 3
√

7
 ≈ 3.0837187592× 10−6.
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yz − 3
√

7
 =

2948
1724
− 3
√

7
 ≈ 8.514671547832364× 10−7.

(iii)
xy − 3

√
7
 =

1152906139441
674223600444

− 3
√

7
 ≈ 2.220446049250313× 10−16.yz − 3

√
7
 =

674223600444
394288353444

− 3
√

7
 ≈ 2.220446049250313× 10−16.

3.6 CONCLUSION

It is not known for which values of m Barbeau's algorithm gives the fundamental

unit. From above table it is clear that JPA does not always give a solution. Our

computations so far have shown that Barbeau's algorithm always produces a solu-

tion to (3.1), though not the fundamental solution in some cases. Thus, the question

arises whether one can prove that this is true.
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Chapter 4

ELLIPTIC CURVES

Let f(x, y) = 0 be a Diophantine equation in two variables. The set of all real

solutions to this equation forms a curve in the xy plane and is called an algebraic

curve. Linear and quadratic equations in two variables de�ne curves of genus zero.

The arithmetic of such curves are fairly well understood. The next simplest case

is cubic equations in two variables. They are curves of genus one. In contrast to

linear and quadratic equations, the rational and integer solutions to cubic equations

of the form y2 = f(x) where f(x) is a cubic polynomial in one variable are still not

completely understood. The real solutions to these equations are called cubic curves

or elliptic curves. Currently there is no general method to answer whether such

equations have (i) rational solution? (ii) in�nitely many rational solutions? In 1922

L J Mordell proved that there exists �nite set of rational solutions which generates

all other rational solutions. Eventhough Mordell's theorem gives a procedure which

works often to �nd a �nite generating set for the set of rational solutions it is only

conjectured that his method always yields a generating set.

Over the last two or three decades, elliptic curves have been playing an increasingly

important role both in number theory and in related �elds such as cryptography.

In the 1980s, elliptic curves were used in cryptography, factorization and primality

testing. In 1990s, elliptic curves played an important role in the proof of Fermat's

Last Theorem.

Most of the results stated in this chapter are well known and can be found in the

standard books, such as [Silverman and Tate, 1992], [Silverman, 2009] and [Cohen,

2008].

Let K be a �xed �eld with an algebraic closure K. The Weierstrass form of the

equation for an elliptic curve is given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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with an extra point O = [0, 1, 0] called the point at in�nity. If a1, ..., a6 ∈ K, then
E is said to be de�ned over K and is denoted by E/K. This form of equation is

useful when working with �elds of characteristic 2 and characteristic 3.

If char(K) 6= 2, then we can divide by 2 and complete the square:

(
y +

a1x

2
+
a3

2

)2

= x3 +
(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x+

(a2
3

4
+ a6

)
,

This can be written as

y2
1 = x3 + a

′

2x
2 + a

′

4x+ a
′

6,

with y1 = y + a1x
2

+ a3
2
and a

′
2 =

(
a2 +

a21
4

)
, a
′
4 =

(
a4 + a1a3

2

)
, a
′
6 =

(
a23
4

+ a6

)
.

If char(K) 6= 3 then the substitution x1 = x+
a
′
2

3
eliminates the x2 term yielding the

simpler equation as

E : y2
1 = x3

1 + Ax1 +B

for some constants A,B.

Since we are working over �elds K of char(K) = 0 this allows us to consider the

equation as E : y2 = x3 + Ax+B where A,B ∈ K.

DEFINITION 4.0.1. A point P is a singular point of the curve C : g(x, y) = 0

if
∂g

∂x
(P ) =

∂g

∂y
(P ) = 0.

Otherwise it is a nonsingular point.

A curve C is a non-singular curve (or smooth curve) if every point of C is non-

singular.

Let F (x, y) = y2−f(x) = 0 where f(x) = x3 +Ax+B. By taking partial derivatives,

we get,
∂F

∂x
= −f ′(x),

∂F

∂y
= 2y.

If these partial derivatives vanish simultaneously at a point (x0, y0) then y0 = 0 and

f(x) and f
′
(x) have a common root at x0. Conversely, if f has a multiple root at x0

then (x0, 0) is a singular point. Thus the curve F (x, y) = 0 is non-singular i� f(x)

has distinct roots.

DEFINITION 4.0.2. (Discriminant of a polynomial)

Let f(x) = x3 + ax2 + bx + c ∈ K[x]. Let α1, α2, α3 ∈ K be the roots of f(x).

Then the discriminant of f(x) is D = (α1 − α2)2(α1 − α3)2(α2 − α3)2 ∈ K. On
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simpli�cation, we get

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

If a = 0 then D = −4b3 − 27c2. It is clear that f(x) has distinct roots i� D 6= 0.

DEFINITION 4.0.3. The j-invariant of an elliptic curve E : y2 = x3 +Ax+B

is de�ned to be j(E) = 1728 4A3

4A3+27B2 .

Let E/K be an elliptic curve given by the Weierstrass equation y2 = x3 + Ax + B.

Consider the collection

E(K) = {(x, y) ∈ K ×K : y2 = x3 + Ax+B} ∪ {O}.

One nice property of this elliptic curve is that E(K) can be equipped with a group

structure, where the addition law is de�ned geometrically via the chord and tangent

method as explained below:

4.0.1 THE GROUP LAW

Let E be an elliptic curve given by the Weierstrass equation. Let L be a line. By

applying special case of Bezout's theorem, the number of intersecting points of E

and L taken with multiplicities consists of exactly three points, say P, Q, R, not

necessarily distinct.

DEFINITION 4.0.4. (Composition Law)

Let P = (x1, y1), Q = (x2, y2) be two points on an elliptic curve E. Let L be the

line through P and Q (If P = Q, let L be the tangent line to E at P ). Let R be the

third point of intersection of L with E. Let L
′
be the line through R and O. Then L′

intersects E at R, O and a third point. Denote the third point as P +Q.

PROPOSITION 4.0.1. The above composition law has the following properties:

(a) If a line L intersects E at the points P, Q, R then (P +Q) +R = O.

(b) P +O = P for all P ∈ E.

(c) P +Q = Q+ P for all P, Q ∈ E.
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Figure 4.0.1: when P 6= Q Figure 4.0.2: when P = Q

(d) Let P ∈ E. There is a point of E, denoted by −P, satisfying

P + (−P ) = O.

(e) Let P, Q, R ∈ E. Then (P +Q) +R = P + (Q+R).

Thus the composition law makes E(K) into an abelian group with identity element

as O, i.e.,
E(K) = {(x, y) ∈ K2 : y2 = x3 + Ax+B} ∪ {O}

is an abelian group.

EXPLICIT FORMULAS FOR THE GROUP OPERATION

Let E be an elliptic curve given by Weierstrass equation E : y2 = x3 + Ax + B. Let

P1 = (x1, y1) and P2 = (x2, y2) be points on E with P1, P2 6= O. De�ne P1 + P2 =

P3 = (x3, y3) as follows:

(a) Let P1 = (x1, y1). Then −P1 = (x1,−y1).

(b) If x1 6= x2, then x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m = y2−y1
x2−x1 .

(c) If P1 = P2 and y1 6= 0, then x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, where

m =
3x21+A

2y1
.
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(d) If P1 = P2 and y1 = 0, then P1 + P2 = O.

For m ∈ Z and P ∈ E(K), we have [m]P =

m terms if m > 0︷ ︸︸ ︷
P + ...+ P , [m]P =

|m| terms if m < 0︷ ︸︸ ︷
−P + ...− P

DEFINITION 4.0.5. An element P ∈ E(K) is said to have order m if [m]P = O,
but [n]P 6= O for all integers 1 ≤ n < m.

If such an m exists, then P has �nite order and is called a torsion point.

Otherwise P is of in�nite order.

DEFINITION 4.0.6. Let E be an elliptic curve over K and m ∈ Z with m ≥ 1.

The m- torsion subgroup of E, denoted by E[m], is the set of points of E of order

m,

E[m] = {P ∈ E(K) : [m]P = O}.

We then de�ne the torsion subgroup of E(K) denoted by Etors(K) to be the set of

all points of �nite order:

Etors(K) = {P ∈ E(K) : [m]P = O for some m ∈ Z}.

The structure of Etors(K) depends on the �eld upon which the points are considered.

4.1 ELLIPTIC CURVES OVER FINITE FIELDS

Let Fq be a �nite �eld with q elements. Let E/Fq be an elliptic curve de�ned over a

�nite �eld. As the number of pairs (x, y) with x, y ∈ Fq is �nite, the number of points
in E(Fq) denoted as Nq is one more than the number of solutions to the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with (x, y) ∈ F2

q.

As each value of x yields at most two values of y, a trivial upper bound is

Nq ≤ 2q + 1.

The following theorem provides a sharp bound for Nq. This result was conjectured

by Emil Artin and was proved by Helmut Hasse in the 1930's:

THEOREM 4.1.1. (Hasse)
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Let E/Fq be an elliptic curve de�ned over a �nite �eld. Then

| Nq − q − 1 |≤ 2
√
q.

THEOREM 4.1.2. ([Washington, 2008])

Let E be an elliptic curve over the �nite �eld Fq and Zn is additive cyclic group of

order n. Then

E(Fq) ' Zn or Zn1 ⊕ Zn2

for some integer n ≥ 1, or for some integers n1, n2 ≥ 1 with n1 dividing n2.

4.2 ELLIPTIC CURVES OVER THE FIELD OF RATIO-

NALS

For an elliptic curve E over Q , it is relatively easy to determine the Etors(Q) using

the Lutz and Nagell theorem. This was proved independently by Lutz and Nagell in

the 1930's.

THEOREM 4.2.1. (Nagell-Lutz Theorem)([Silverman, 2009])

Let E/Q be an elliptic curve with Weierstrass equation

y2 = x3 + Ax+B, A, B ∈ Z.

Let P ∈ E(Q) be a torsion point.

(i) x(P ), y(P ) ∈ Z.

(ii) Either [2]P = O or else y(P )2 divides 4A3 + 27B2.

COROLLARY 4.2.1.1. Let E be an elliptic curve over Q. Then the torsion sub-

group of E(Q) is �nite.

Sometimes application of the Nagell-Lutz theorem would be lengthier and much

more tedious, in that situation we can apply following theorem which gives the con-

nection between Np and E(Q).

PROPOSITION 4.2.2. Let E/Q be an elliptic curve, p a prime number and m a

natural number, not divisible by p. Suppose that E/Q has good reduction at p. Then

the reduction map modulo p :

E(Q)[m] −→ E(Fp)
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is an injective homomorphism of abelian groups. In particular, the number of ele-

ments of E(Q)[m] divides the number of elements of E(Fp).

Eventhough the torsion subgroup of a given elliptic curve is relatively easy to

compute, the study of all possible structures of torsion subgroups for elliptic curves

over Q was a di�cult problem. This problem was solved only in 1977 by Mazur.

The following theorem due to Mazur for K = Q provides the characterization of the

torsion subgroup Etors(Q):

THEOREM 4.2.3. (Mazur's Theorem)([Silverman, 2009])

Let E/Q be an elliptic curve. Then the torsion subgroup Etors(Q) of E(Q) is iso-

morphic to one of the following groups :

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z⊕ Z/2NZ with 1 ≤ N ≤ 4.

In particular, its cardinality is at most 16.

Mazur's theorem was generalized to number �elds of degree up to 14 by Kamienny

and others. This result was further generalized to all number �elds by Merel.

THEOREM 4.2.4. (Merel)([Silverman, 2009])

Let d ≥ 1 be an integer. Then there exists a constant N(d) such that for every elliptic

curve E/K, where K is a number �eld of degree atmost d, the following holds:

|Etors(K)|≤ N(d).

4.3 MAPS BETWEEN ELLIPTIC CURVES

In this section we shall study maps between elliptic curves.

DEFINITION 4.3.1. Let E1 and E2 be two elliptic curves. An isogeny from

E1 to E2 is a nonconstant homomorphism φ : E1(K) −→ E2(K) that is given by

rational functions, i.e., φ(P + Q) = φ(P ) + φ(Q) for all P, Q ∈ E1(K) and

there exist rational functions R1(x, y) and R2(x, y) with coe�cients in K such that

φ(x, y) = (R1(x, y), R2(x, y)) for all (x, y) ∈ E1(K).

We can write φ in the form

φ(x, y) = (r1(x), yr2(x))
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where r1(x), r2(x) are rational functions. Write

r1(x) = p(x)/q(x)

with polynomials p(x) and q(x) that do not have a common factor. If the coe�cients

of r1(x), r2(x) lie in K, then φ is de�ned over K.

DEFINITION 4.3.2. The degree of φ is de�ned to be

deg(φ) = Max{deg(p(x)), deg(q(x))}.

where p(x) and q(x) as de�ned above.

If the derivative r
′
1(x) is not identically 0, then φ is said to be separable.

PROPOSITION 4.3.1. ([Washington, 2008])

Let φ : E1 → E2 be an isogeny. If φ is separable, then

deg(φ) = ]Ker(φ).

If φ is not separable,then

deg(φ) > ]Ker(φ).

Thus kernel of an isogeny is a �nite subgroup of E1(K).

DEFINITION 4.3.3. An endomorphism of E is a homomorphism ψ : E(K)→
E(K) that is given by rational functions.

When E1(K) = E2(K), an isogeny is just a nonzero endomorphism.

An important map of an elliptic curve E is multiplication by m, de�ned as below:

For each m ∈ Z we de�ne the multiplication-by-m

[m] : E → E

in the natural way as follows:

[m](P ) =


P + P + ...+ P if m > 0

[−m](−P ) if m < 0

O if m = 0

This is an endomorphism of E.
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THEOREM 4.3.2. Let E be an elliptic curve de�ned over a �eld K, and let m be

a positive integer. Then the endomorphism of E given by map [m] (multiplication by

m) has degree m2.

PROPOSITION 4.3.3. ([Washington, 2008])

Let E1 and E2 be two elliptic curves with identity elements O and O′ respectively,
and let φ : E1(K) −→ E2(K) be a nonconstant map given by rational functions. If

φ(O) = O′ , then φ is a homomorphism, and therefore an isogeny.

A very important property of isogenies is the existence of dual isogenies.

THEOREM 4.3.4. ([Washington, 2008])

Let φ : E → Ê be an isogeny of elliptic curves. Then there exists a dual isogeny

φ̂ : Ê → E such that φ̂ ◦ φ is the multiplication map by deg(φ) on E.

The map φ̂ is unique, its degree is deg(φ), and φ ◦ φ̂ is the multiplication map by

deg(φ) on Ê.

THEOREM 4.3.5. ([Washington, 2008])

Let φ : E1 −→ E2 be an isogeny. Then φ : E1(K)→ E2(K) is surjective.

EXAMPLE 3. Let E : y2 = x3 + ax2 + bx and Ê : y2 = x3− 2ax2 + (a2− 4b)x be

elliptic curves over a �eld of characteristic di�erent from 2 where we assume that

b and a2 − 4b are both non-zero. Then the map φ : E → Ê given by (x, y) 7−→(
y2

x2
, y(x2−b)

x2

)
is an isogeny of degree 2 with dual isogeny as φ̂ : Ê → E given by

(x̂, ŷ) 7−→
(
ŷ2

4x̂2
, ŷ(x̂2−b̂)

8x̂2

)
.

The collection of all endomorphisms forms a ring denoted as End(E). The maps

[m] are elements of End(E). Usually they are the only distinct endomorphisms on E,

i.e., End(E) ' Z. Sometimes it may so happen that End(E) is larger than Z.

DEFINITION 4.3.4. The elliptic curve E is said to have complex multiplication

if End(E) contains elements other than [m], i.e., if as a ring End(E) is strictly larger

than Z.

EXAMPLE 4. (i) Let char(K) 6= 2 and let i ∈ K be primitive fourth root of

unity. The elliptic curves E : y2 = x3 − ax has End(E) strictly larger than Z,
since it contains a map [i], given by

[i] : (x, y)→ (−x, iy).

Thus Z[i] ⊂ End(E).
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(ii) Similarly the curves E : y2 = x3−m also have complex multiplication by Z[ρ],

where ρ is a primitive cube root of unity the map is given by [ρ] : (x, y) →
(ρx, y).

The two elliptic curves E1 and E2 are isomorphic over K if and only if they both

have the same j- invariant.

DEFINITION 4.3.5. If two di�erent elliptic curves de�ned over a �eld K have the

same j-invariant, then the two curves are said to be twists of each other.

The only change of variables �xing the point at in�nity and preserving above Weier-

strass form is given by

x = µ2x1, y = µ3y1,

where µ ∈ K∗. Then we obtain

E
′
: y2

1 = x3
1 + A1x1 +B1

where A = µ4A1, B = µ6B1.

This change of variables leaves the j- value unchanged, i.e., j(E) = j(E
′
).

Conversely, let E and E
′
be elliptic curves with the same j-invariant, say E1 : y2 =

x3 + Ax+B and E2 : y2
1 = x3

1 + A1x1 +B1. Since j(E) = j(E
′
), we have

4A3

4A3 + 27B2
=

4A3
1

4A3
1 + 27B2

1

,

and on simplifying,

A3B2
1 = A3

1B
2.

We want an isomorphism of the form (x, y) = (µ2x1, µ
3y1) and hence the following

three cases arise;

Case 1. Consider A = 0 then j = 0 and B 6= 0, since ∆ 6= 0. Thus A1 = 0, and by

taking µ = (B/B1)1/6 we obtain an isomorphism.

Case 2. Consider B = 0. Then j = 1728 and A 6= 0. So, B1 = 0, and µ = (A/A1)1/4

gives an isomorphism.

Case 3. Consider AB 6= 0, (j 6= 0, 1728). Then A1B1 6= 0 and µ = (BA1/AB1)1/2 gives

an isomorphism .
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Twists may not be isomorphic over K, but they are always isomorphic over some

extension �eld of K. This degree of extension determines the degree of the twist.

There are twists of degree 1, in which case E and E
′
are K-isomorphic. A quadratic

twist of an elliptic curve is a twist of degree ≤ 2.

Given a squarefree d in K consider the quadratic twist of E : y2 = x3 + Ax + B

given by curve Ed : y2 = x3 + d2Ax + d3B. These two elliptic curves have the same

j invariant. However, they are not isomorphic over K, but over the �eld extension

K(
√
d) they are isomorphic.

For curves with j = 0, or 1728, higher degree twists are possible and for all the other

curves only quadratic twist is possible. By Case 1, it is clear that curves with j = 0

will have quadratic, cubic as well as sextic twists and for j = 1728 only quadratic

and quartic twists are possible.

4.4 MORDELL-WEIL THEOREM

For Diophantine aspects of elliptic curves studying these curves over Q is more in-

teresting. The situation in this case and in more general number �elds is much more

di�cult.

THEOREM 4.4.1. (Mordell-Weil) Let E : y2 = x3 + Ax + B be an elliptic curve

with A,B ∈ Z. If P = (x, y) ∈ E(Q) be an a�ne rational point then there exist

integers r, s, t such that

x =
r

t2
, y =

s

t3
, with gcd(r, t) = gcd(s, t) = 1.

In 1922 Mordell proved a conjecture on elliptic curves over Q due to Henri Poincare.

Later Andre Weil generalized this theorem to number �elds. Now this theorem is

known as the Mordell-Weil theorem, stated below:

THEOREM 4.4.2. Let E/Q be an elliptic curve. Then the Mordell- Weil group

E(Q) is �nitely generated, i.e.,

E(Q) ' Etors(Q)⊕ Zr

where r ≥ 0.

DEFINITION 4.4.1. The nonnegative integer r in the above theorem is called the

rank of E(Q).
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The rank r of the given elliptic curve is, in general, di�cult to compute. The rank r

is much more mysterious, in general there is no known procedure that is guaranteed

to yield the rank of the curve. Even the simple question whether the curve has a

�nite or an in�nite number of rational points is still not fully solved. This is the

subject of active research. There are very few general facts known concerning the

rank of elliptic curves, but there are a large number of fascinating conjectures. One

of the conjectures is:

CONJECTURE 4.4.1. ([Silverman, 2009]) There exist elliptic curves E/Q of ar-

bitrarily large rank.

Many people have worked in this direction. Neron constructed an in�nite family

of elliptic curves over Q having rank at least 10. Elkies has produced an elliptic

curve with rank E(Q) ≥ 28. However there is a method, known as method of descent,

which is used in the proof of the Mordell-Weil theorem which facilititates the search of

points of in�nite order in E(Q). Unfortunately, this method is not always successful.

The proof of the Mordell-Weil theorem relies on proving the following two important

theorems:

THEOREM 4.4.3. (Weak Mordell-Weil Theorem)([Silverman, 2009])

Let E/Q be an elliptic curve, and let m ≥ 2 be an integer. Then E(Q)/mE(Q) is a

�nite group.

THEOREM 4.4.4. (Descent Theorem)([Silverman, 2009])

Suppose there there exists a function

h : E(Q)→ R

with the following three properties:

(i) Let Q ∈ E(Q). There is a constant C1, depending on E(Q), and Q such that

h(P +Q) ≤ 2h(P ) + C1 for all P ∈ E(Q).

(ii) There is an integer m ≥ 2 and a constant C2 such that

h(mP ) ≥ m2h(P )− C2 for all P ∈ E(Q)

(iii) For every constant C3, the set {P ∈ E(Q) : h(P ) ≤ C3} is a �nite set

. Suppose further that for the integerm in (ii), the quotient group E(Q)/mE(Q)

is �nite. Then E(Q) is �nitely generated.
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Proof. Choose points P1, ..., Pr ∈ E(Q) to represent the �nitely many cosets in

E(Q)/3E(Q). Let R ∈ E(Q) be an arbitrary point. Write

R = mR1 + Pi1 for some 1 ≤ i1 ≤ r.

continuing in this fashion

R = mR1 + Pi1 ,

R1 = mR2 + Pi2 ,
...

Rn−1 = mRn + Pin

For any index j, we have

h(Rj) ≤ 1
m2 [h(mRj) + C2], from (ii)

= 1
m2 [h(Rj−1 − Pij) + C2]

≤ 1
m2 [2h(Rj−1 + C

′
1 + C2] from(i)

where C
′
1 is the maximum of the constants from (i) for P ∈ {−P1, ...,−Pr}. Note

that C
′
1 and C2 do not depend on R.

We use this inequality repeatedly, starting fromRn and working back toR. This yields

h(Rn) ≤ ( 2
m2 )nh(R) + [ 1

m2 + 2
m2 + 4

m2 + ...+ 2n−1

m2 ](C
′
1 + C2),

< ( 2
m2 )nh(R) +

C
′
1+C2

m2−2

≤ 1
2n
h(R) + 1

2
(C
′
1 + C2) since m ≥ 2

It follows that if n is su�ciently large, then

h(Rn) ≤ 1 +
1

2
(C
′

1 + C2).

Since R is a linear combination of Rn and P1, ..., Pr,

R = mnRn +
n∑
j=1

mj−1Pij ,
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it follows that every R in E(Q) is a linear combination of points in the set

{P1, ..., Pr} ∪ {P ∈ E(Q) : h(P ) ≤ 1 +
1

2
(C
′

1 + C2)}.

Property (iii) of the function h tells us that this is a �nite set. Hence E(Q) is �nitely

generated.

An important consequence of this method is that once E(Q)/mE(Q) is known to

be �nite for some m, obtaining a system of generators for E(Q) is completely algo-

rithmic. Thus the only obstruction to the existence of an algorithm to compute E(Q)

lies in the computation of the �nite group E(Q)/mE(Q) for some m. Unfortunately,

at present there is no known procedure that is guaranteed to give generators for

E(Q)/mE(Q). In this chapter we explain elementary 3- descent with 3-isogenies for

elliptic curves which has rational 3-torsion subgroup and apply it to prove our result

in next chapter. The existence of rational 3-torsion subgroup means there exists a

subgroup of order 3 that is invariant under the action of galois conjugation, but not

necessarily contains three rational points.

4.5 DESCRIPTION OF 3- DESCENT WITH 3-ISOGENIES

In this section we explain 3- descent with 3-isogenies for elliptic curves. This method

is applicable for curves with rational 3-torsion subgroup. A number of authors have

studied various aspects of 3-descent [Top, 1991], [Cohen and Pazuki, 2009]. In [Cohen

and Pazuki, 2009] authors have given explicit formulas for performing 3-descent on

elliptic curves E/Q which admit a Q-rational isogeny.

DEFINITION 4.5.1. [Cohen, 2008] Let E be an elliptic curve de�ned over K, and

let T be a �nite subgroup of E(L) for some extension L/K, which without loss of

generality we may assume to be �nite and galois. We say that T is a K− rational

subgroup of E if it is globally stable by σ ∈ Gal(L/K), i.e., if T ∈ T implies that

σ(T ) ∈ T .

EXAMPLE 5. Let E : y2 = x3 − m, L = Q(
√
−m) and K = Q. Consider the

subgroup T = {O, T, − T} where T = (0, −
√
−m), of E(L) then T is a Q−

rational subgroup of order 3.

PROPOSITION 4.5.1. [Cohen, 2008] Let E be an elliptic curve de�ned over a K

and having a K-rational subgroup of order 3, of the form T = {O, T, − T} then,
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(i) The abscissa x(T ) of T is in K.

(ii) Up to a change of x into x−x0 for some x0 ∈ K the equation of E is y2 =

x3 +D(ax+ 1)2 for some D ∈ K∗ and a ∈ K, and then T = (0,
√
D).

(iii) If in addition E has a K-rational point T of order 3, up to the same change

the equation of E is y2 = x3 + (ax + b)2 for some a ∈ K and b ∈ K∗,
and then T = (0, b).

Remark: When E has a K-rational subgroup of order 3 then it can be written in

the form y2 = x3 + D(ax + b)2. Conversely whenever E is of this form then there is

a K-rational subgroup of order 3 generated by T = (0, b
√
D).

Let E be an elliptic curve de�ned over Q with a rational subgroup of order 3. Up to

translation of the x − cordinate assume that E is of the form y2 = x3 + D(ax + b)2

with rational 3-torsion subgroup {O, T,−T} where T = (0, b
√
D). Now consider

another elliptic curve Ê de�ned by the equation y2 = x3 + D̂(âx + b̂)2, where D̂ =

−3D, â = a, b̂ = 27b−4a3D
9

. Then it also has a rational subgroup of order 3 generated

by T̂ =
(

0, 27b−4a3D
9

√
−3D

)
.

PROPOSITION 4.5.2. [Cohen, 2008] Consider a map φ : E −→ Ê as

φ(P ) = (x̂, ŷ) =

(
x3 + 4D[(a2/3)x2 + abx+ b2]

x2
,
y(x3 − 4Db(ax+ 2b))

x3

)

for P = (x, y) 6= ±T or O and φ(T ) = φ(−T ) = φ(O) = Ô. Then φ is a group

homomorphism with kernel as {O,T,−T}.
Dually, there exists a homomorphism φ̂ : Ê −→ E de�ned as

φ̂(P̂ ) = (x, y) =

(
x̂3 + 4D̂((â2/3)x̂2 + âb̂x̂+ b̂2)

9x̂2
,
ŷ(x̂3 − 4D̂b̂(âx̂+ 2b̂))

27x̂3

)

for P = (x̂, ŷ) 6= ±T̂ or Ô and by φ̂(T̂ ) = φ̂(−T̂ ) = φ̂(Ô) = O.
Furthermore, for all P ∈ E we have φ̂ ◦ φ(P ) = 3P, and for all P̂ ∈ Ê we have

φ ◦ φ̂(P̂ ) = 3P̂ .

It follows from the de�nition that φ is an isogeny from E to Ê, and that φ̂ is its

dual isogeny. Since φ is separable and kernels have three elements, these maps are

called 3-isogenies.

By Theorem 4.3.5, clearly φ̂ : Ê(Q) → E(Q) is surjective. But when φ̂ is restricted

to Ê(Q) the image φ̂(Ê(Q)) is as follows:
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PROPOSITION 4.5.3. [Cohen, 2008] Let I = φ̂(Ê(Q)) be the image of Ê(Q)

in E(Q) under the map φ̂, then,

(i) O ∈ I, and ±T ∈ I if and only if D is a square and D/(2b) is a cube in Q∗.

(ii) a general point P = (x, y) ∈ E(Q) di�erent from ±T belongs to I if and

only if there exists β ∈ K = Q(
√
D) such that β3 = y − (ax+ b)

√
D.

4.6 THE 3-DESCENT MAP

Let K = Q(
√
D) where D is a squarefree integer be a quadratic �eld. Then the

3-torsion point T = (0, b
√
D) ∈ K. The image of φ̂ restricted to Ê(Q) consists of

points (x, y) ∈ E(Q) such that y− (ax+ b)
√
D is a cube in K. Hence we can de�ne

a map from E(Q) to K∗/K∗3 as follows:

DEFINITION 4.6.1. The 3-descent map α from the group E(Q) to the multiplica-

tive group K∗/K∗3 where T /∈ E(Q) is as follows:

α(P ) =

{
(y − (ax+ b)

√
D) K∗3, if P = (x, y)

K∗3, if P = O.

The properties of the α map is given in the following proposition:

PROPOSITION 4.6.1. [Cohen, 2008]

(i) The 3-descent map α is a group homomorphism.

(ii) The kernel of α is equal to φ̂(Ê(Q)).

(iii) The map α induces an injective group homomorphism from E(Q)/φ̂(Ê(Q)) to

the subgroup of K∗/K∗3 of elements whose norm is trivial in Q∗/Q∗3 when√
D /∈ Q.

Proof. (i) If P = (x, y), then α(P ) = α((x,−y)) = −y − (ax + b)
√
DK∗3. Thus

α(P )α(−P ) = −(y2−D(ax+b)2)K∗3 = (−x)3 ∈ Q∗3. So, α sends inverses to inverses.

Thus it is sa�cient to show that if P1 +P2 +P3 = O, then α(P1)α(P2)α(P3) ∈ K∗3.
This is because once we know this, then α(P1 + P2) = α(−P3) = [α(P3)]−1 =

α(P1)α(P2).

If one of the Pi is O case is already treated. Let us consider the general case where

none of the Pi's are equal to O. Let y = kx + n be the equation of the line passing
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through the points Pi = (xi, yi). Then xi are the three roots of the polynomial

f(x) = x3 +D(ax+ b)2 − (kx+ n)2. Thus

α(P1)α(P2)α(P3) =
∏
i

(yi−(axi+b)
√
D) =

∏
i

(kxi+n−(axi+b)
√
D) = (n−b

√
D)3 ∈ K3.

Hence α is a group homomorphism.

(ii) By de�nition, clearly O is in the kernel of α. A point P = (x, y) 6= O, T is in

the kernel of α if and only if there exists γ ∈ K∗ such that, y − (ax + b)
√
D = γ3

hence by Proposition 4.5.3 if and only if P ∈ I.
(iii)As α is a group homomorphism with kerα as φ̂(Ê(Q)). Thus we have an injective

map α from E(Q)/φ̂(Ê(Q)) to K∗/K∗3. If T /∈ E(Q) and for P = (x, y) 6= O ∈
E(Q) we have N(α(P )) = x3 is a cube in Q∗.

Now to prove the weak Mordell-Weil theorem we require following lemma:

LEMMA 4.6.2. Let A and B be abelian groups with respect to addition. Let φ

from A to B and φ̂ from B to A be two group homomorphisms. Suppose the indices

[B : φ(A)] and [A : φ̂(B)] are �nite. Then the index [A : φ̂ ◦ φ(A)] is also �nite, and

[A : φ̂ ◦ φ(A)] | [A : φ̂(B)][B : φ(A)].

PROPOSITION 4.6.3. [Cohen and Pazuki, 2009] Let E : y2 = x3 + D(ax + b)2

and Ê : y2 = x3− 3D(ax+ (27b− 4a3D)/9)2 be 3- isogenous elliptic curves as above,

and let α and α̂ be the corresponding 3-descent maps. Then |Im(α)||Im(α̂)|= 3r+δ,

where r is the rank of E (and of Ê), and δ = 1 if D = 1 or D = −3 and δ = 0

otherwise.

Applying Lemma 4.6.2 with A = E(Q), B = Ê(Q), φ and φ̂ as in Proposi-

tion 4.5.2 we get φ̂ ◦ φ(E(Q)) = 3E(Q). Also, [E(Q) : φ̂(Ê(Q))] =| Im(α) | and
[Ê(Q) : φ(E(Q))] =| Im(α̂) | . Both are �nite by Proposition 4.6.3. Hence by Lemma

4.6.2 we have E(Q)/3E(Q) is �nite.

In order to apply the descent theorem we need to de�ne height function on E(Q),

given below:

DEFINITION 4.6.2. Let a = u/v ∈ Q be a rational number with gcd(u, v) = 1.

Then the height of a, denoted by H(a), is de�ned by

H(a) = max(| u |, | v |)
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DEFINITION 4.6.3. Let E be an elliptic curve over Q. The height function on

E(Q) is de�ned as

h : E(Q) −→ R,

h(P ) =

{
logH(x(P )) if P = (x, y) 6= O

0, if P = O.

This is the height function which will satisfy all the properties of the descent

Theorem 4.4.4. Thus, by the above proposition it is clear that to compute the rank

it is su�cient to compute the cardinality of Im(α) and of Im(α̂).

As in the case of 2-descent there is no algorithm to �nd Im(α) and Im(α̂) as there

is obstruction due to nontrivial 3-part of the Tate-Shafarevich group of E. But the

method works in many cases. For the proof of the above proposition as well as for

the method to �nd the cardinality of Im(α) and of Im(α̂) we refer to [Cohen and

Pazuki, 2009].

54



Chapter 5

RELATION BETWEEN IMAGINARY

QUADRATIC FIELDS AND ELLIPTIC

CURVES VIA 3-DESCENT

5.1 INTRODUCTION

The arithmetic of elliptic curves is well known and there is a well known analogy

between elliptic curve and number �elds. In this analogy, the group of K-rational

points on an elliptic curve corresponds to the unit group of the number �eld K, and

the Tate-Shafarevich group is the analog of the ideal class group of K. A conic is a

plane a�ne curve of degree 2. The conic P : Q0(y, z) = 1 associated to the principal

quadratic form of discriminant ∆,

Q0(y, z) =


y2 − ∆

4
z2, if ∆ ≡ 0 (mod 4)

y2 + yz +
1−∆

4
z2, if ∆ ≡ 1 (mod 4)

is called the Pell conic of discriminant ∆. Franz Lemmermeyer gave an extremely close

analogy between the arithmetic of Pell conics and of elliptic curves. In particular he

has considered conics as group of integral points in the a�ne curve Q0(y, z) = 1. He

has proved many general results of elliptic curves such as theory of 2-descent, Selmer

and Tate-Shafarevich group, Birch and Swinnerton-Dyer conjecture to Pell conics.

For further reading refer to series of articles in [Lemmermeyer, 2003b][Lemmermeyer,

2003a]. Later in [Hambleton and Lemmermeyer, 2011] he and Sam Hambleton gen-

eralized their study to the arithmetics of Pell surfaces: Q0(y, z) = xn.

Let m be a cubefree integer, let K = Q(ω) with ω3 = m denote the pure cubic
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�eld. Let Em denote the elliptic curve y2 = x3 − m. Let Em(Q) be the group

of rational points on Em. Any element in Em(Q) is of the form ( r
t2
, s
t3

) where

gcd(r, t) = gcd(s, t) = 1. Let Cl(K)[2] be the group of ideal classes of order di-

viding 2 in K. A method to obtain a quadratic unrami�ed extension of K where m

is of the form a3 + 3, with a ≡ 2 (mod 4) just by using rational points on Em

is given in [Lemmermeyer, 2012] and [Lemmermeyer, 2013]. Also in [Lemmermeyer,

2013] using class �eld theory, he explained why the class number of K is even when

m = 8b3 + 3 and b is odd.

While proving the above result he observed following interesting result:

If P = ( r
t2
, s
t3

) , such that gcd(r, t) = 1 is a rational point on the elliptic curve Em,

withm 6≡ 0,±1(mod 9), then the ideal (r−t2ω) is the square of an ideal, say (r−t2ω)

=a2 and the map κ : Em(Q)→ Cl(K)[2] such that P 7−→ [a] is a homomorphism.

Later in [Lemmermeyer, 2012], the above result is proved.

In the same paper, following interesting questions are posed:

• Let P = (x, y) with y = s/t3 is a rational point on the elliptic curve Em : y2 =

x3 −m. Is the map sending P to the ideal class [b], where 〈s + t3
√
−m〉 = b3

a homomorphism from Em(Q) to the 3- part of the class group Cl(F )[3] of the

quadratic �eld F = Q(
√
−m)?

• Is there any relation between above map with the homomorphism given in

[Soleng, 1994] from group of rational points on elliptic curves to the class groups

of certain quadratic number �elds?

• How is this map related to the group structure on Pell surfaces y2 +mz2 = x3

studied in [Hambleton and Lemmermeyer, 2011].

In this Chapter we have answered the above questions.

Let Sn : y2 + mz2 = xn with n ≥ 2, a �xed integer, be a Pell surface. In an

interesting paper [Hambleton and Lemmermeyer, 2011] it is shown that with respect

to a binary operation de�ned on the primitive integral points of Sn, denoted by

Sn(Z), it forms an abelian group. They have also shown that there is a surjective

homomorphism ψ : Sn(Z) −→ Cl+(F )[n], the n-torsion subgroup of the narrow class

group of the quadratic �eld F = Q(
√

∆), where ∆ is a fundamental discriminant,

more generally Sn : y2 +σyz+ σ−∆
4
z2 = xn and σ is the remainder of the discriminant

∆ modulo 4. In the case we study σ = 0 and ∆ < 0.

On the other hand some questions about the class number of a quadratic �eld are
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related to solutions of Diophantine equations. For example it is well known that the

study of integer solutions to the Diophantine equation

X2 −∆Y 2 = 4Zn, gcd(X,Z) = 1, ∆ = a fundamental discriminant, (5.1)

gives rise to a quadratic number �eld with class number divisible by n. For each

integral point (X, Y, Z), there is a corresponding ideal a = 〈X+Y
√

∆
2

, Z〉 in the ring of

integers of Q(
√

∆) such that an = 〈X+Y
√

∆
2
〉. Hence it generates an ideal class of order

dividing n. Likewise several authors have related rational points on elliptic curves and

ideal classes of quadratic �elds, see [Buell, 1976], [Buell, 1977] and [Soleng, 1994].

5.2 QUADRATIC FIELDS

Let m be a squarefree positive integer and −m ≡ 2, 3(mod 4). Let K = Q(
√
−m) be

an imaginary quadratic �eld. Any element of this �eld is of the form a + bω, where

ω =
√
−m, a, b ∈ Q and its norm is N(a+ bω) = a2 +mb2. Let OK denote the ring

of algebraic integers of K. An element α ∈ OK is primitive if p - α for every rational

prime p ∈ N.

5.3 ELLIPTIC CURVES

Let Em : y2 = x3−m be the associated elliptic curve. Such a curve has discriminant

∆(E) = −2433m2, j-invariant j(E) = 0 and has complex multiplication by the ring

of integers of Q(1+
√
−3

2
). It is well known that the set of rational points on it forms

a �nitely generated abelian group denoted as Em(Q). Any rational point on Em is

of the form
(
r
t2
, s
t3

)
where r, s, t ∈ Z with gcd(r, t) = gcd(s, t) = 1. For standard

de�nitions and results on elliptic curves,we refer to [Silverman and Tate, 1992] and

[Silverman, 2009].

5.4 BINARY QUADRATIC FORMS

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables

given by Q0(y, z) = ay2 + byz + cz2. If the coe�cients a, b, c are integers, then it is

called an integral binary quadratic form. The quadratic form Q0(y, z) is said to be

primitive if gcd(a, b, c) = 1. Binary quadratic forms come naturally from quadratic
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�elds. Let F = Q(
√

∆) be any quadratic �eld of discriminant ∆. Then

Q0(y, z) =


y2 − ∆

4
z2, if ∆ ≡ 0 (mod 4)

y2 + yz +
1−∆

4
z2, if ∆ ≡ 1 (mod 4)

is the canonical principal binary quadratic form associated with F.

Let K = Q(
√
−m) with m > 0, −m ≡ 2, 3 (mod 4), discriminant :−4m, m squarefree.

(F)

From here on we will always use K to mean a quadratic �eld satisfying the conditions

of (F) Thus, the binary quadratic form associated with the quadratic �eld K is

Q0(y, z) = y2 +mz2.

5.5 PELL SURFACES

An equation of the form Sn : Q0(y, z) = xn with n ≥ 2, a �xed integer, de�nes a

Pell Surface. The Pell surface associated with the quadratic �eld K will be denoted

as Sn : y2 + mz2 = xn, and we are interested in the Pell surfaces with n = 3, i.e.,

S3 : y2 +mz2 = x3.

Let

Em : y2 = x3 −m (5.2)

be the associated elliptic curve of K. From now Em denotes the elliptic curve (5.2).

An integral point (x, y, z) satisfying Sn : Q0(y, z) = xn is said to be primitive if

x, y, z ∈ Z with gcd(y, z) = 1. The set Sn(Z) denotes the primitive integral points

of the surface Sn. A correspondence between integral points in Sn(Z) and integral

solutions to the Diophantine equation (5.1) which in fact is a bijection, is given in

[Hambleton and Lemmermeyer, 2011]:

(X, Y, Z) =

{
(2y, z, x), if ∆ = 4m

(2y + z, z, x), if ∆ = 4m+ 1

LetO∗K denote the nonzero elements of the ring of integersOK ofK. For the quadratic

�eld K an algebraic integer may be written as y+ z
√
−m and there is a natural map

π0 : Sn(Z) → O∗K de�ned by π0(x, y, z) = y + z
√
−m. Let Nn = {αn | α ∈ N}.

Then the set O∗K/Nn forms a group with respect to coset multiplication: the identity
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element is 1Nn, the inverse of αNn is 1
α
| N(α) |n Nn. The norm map induces a group

homomorphism N : O∗K/Nn −→ Z∗/Z∗n de�ned as N(αNn) = N(α)Z∗n, where Z∗n

denotes the set of nonzero integer n-th powers. As we make use of some results from

[Hambleton and Lemmermeyer, 2011] in the course of proving our results they are

stated below for the sake of clarity and completeness.

LEMMA 5.5.1. Let α ∈ O∗K . If N(α) = an for some n ≥ 2, then α is primitive if

and only if 〈α〉+ 〈α′〉 = 〈1〉.

LEMMA 5.5.2. Let α be a primitive element. If αNn ∈ Ker N, then 〈α〉 = an is

an nth ideal power.

THEOREM 5.5.3. The cosets of primitive elements in the kernel of the norm map

N : O∗K/Nn −→ Z∗/Z∗n form a subgroup Πn of O∗K/Nn.

THEOREM 5.5.4. The map π : Sn(Z) −→ Πn de�ned by π(x, y, z) = (y +

z
√
−m)Nn is bijective; thus Sn(Z) becomes an abelian group by transport of structure.

DEFINITION 5.5.1. For (x1, y1, z1), (x2, y2, z2) ∈ Sn(Z) the group law on Sn(Z)

de�ned as (x1, y1, z1)⊕ (x2, y2, z2) = (x3, y3, z3) where

(x3, y3, z3) =
(x1x2

e2
,
y1y2 + ∆−σ

4
z1z2

en
,
y1z2 + y2z1 + σz1z2

en

)
and

gcd
(
y1y2+

∆− σ
4

z1z2, y1z2+y2z1+σz1z2

)
= en, σ ∈ {0, 1}is de�ned as ∆ = 4m+σ.

In the case ∆ = −4m, the group law is

(x3, y3, z3) =
(x1x2

e2
,
y1y2 −mz1z2

en
,
y1z2 + y2z1

en

)
and σ = 0,

where

gcd(y1y2 −mz1z2, y1z2 + y2z1) = en.

PROPOSITION 5.5.5. The map ψ : Sn(Z)→ Cl+(F )[n] given by ψ(x, y, z) = [a]

where 〈y + zω〉 = an is a surjective group homomorphism where ω = σ+
√

∆
2

and

σ ∈ {0, 1}.

For proofs see [Hambleton and Lemmermeyer, 2011] .
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5.6 RELATION BETWEEN QUADRATIC FIELDS, ELLIP-

TIC CURVES AND PELL SURFACES

As before Em denotes the elliptic curve

y2 = x3 −m. (5.3)

On the elliptic curve Em, points
(
r
t2
, s
t3

)
and

(
r

(−t)2 ,
−s

(−t)3

)
are the same and similarly

the points
(
r
t2
, −s
t3

)
and

(
r

(−t)2 ,
s

(−t)3

)
are also identical. So, by taking s > 0, we see

that all rational points on Em are considered. Hence

Em(Q) =
{( r

t2
,
s

t3

)
such that r, t, s ∈ Z, s > 0, gcd(r, t) = gcd(s, t) = 1

}
∪
{
O
}

where O is the point at in�nity.

On substituting
(
r
t2
, s
t3

)
in Em we get,

s2 +mt6 = r3. (5.4)

On the Pell surface S3 : y2 + mz2 = x3 when z = 1, we obtain integer points of the

elliptic curve Em. The set of all primitive integral points on S3 will be denoted by

S3(Z). Comparing with equation (5.4), we see that points on the elliptic curve Em

correspond to integral points on the Pell surface S3 in a natural way, by the map

f : Em(Q) −→ S3(Z)

f(P ) =

(1, 1, 0), if P = O

(r, s, t3), if P =
( r
t2
,
s

t3

) (♠)

It is clear that this map is well-de�ned. As gcd(s, t) = 1, integral points (r, s, t3) on

S3 coming from the elliptic curve are all primitive integral points. Denote the image,

f(Em(Q)), as SE3 (Z). Clearly SE3 (Z) ⊆ S3(Z). Also, any point (r, s, t3) ∈ SE3 (Z) gives

an integral solution (2s, t3, r) of (5.1) with n = 3.

Again from (5.4) we note that r3 = Norm of (s+ t3
√
−m) in OK . So, it is natural to

consider the map g : Em(Q) −→ OK de�ned by

g(P ) =

1, if P = O

s+ t3
√
−m, if P =

( r
t2
,
s

t3

)
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As discussed earlier, by considering s > 0, the map g is also well de�ned. Denote

g(Em(Q)) as HE.

Now we prove that elements in HE are all primitive in OK . For this it is su�cient

to show that for α ∈ HE, ideals 〈α〉 and 〈α′〉 are coprime in OK where α
′
is the

conjugate of α. Then, by Lemma 5.5.1, elements in HE are primitive. We prove this

below:

LEMMA 5.6.1. Let P =
(
r
t2
, s
t3

)
be a rational point on Em for a squarefree positive

integer m, and −m 6≡ 1(mod 4). Assume, as before, gcd(r, t) = gcd(s, t) = 1. Then

the ideals 〈α〉 and 〈α′〉 are co-prime in O∗K , where α = g(P ) = s + t3
√
−m and

α
′
= g(−P ) = s− t3

√
−m.

Proof. Let α = s+ t3
√
−m and α

′
= s− t3

√
−m. Let p be a prime ideal such that

p|〈s+ t3
√
−m〉, p|〈s− t3

√
−m〉.

Hence

s+ t3
√
−m ∈ p, s− t3

√
−m ∈ p.

Thus p divides the sum 2s. This implies p|2 or p|s. Also,

2t3
√
−m = (s+ t3

√
−m)− (s− t3

√
−m) ∈ p

and so

2t3(−m) =
√
−m(2t3

√
−m) ∈ p.

If p|s, as gcd(s, t) = 1, p must divide 2m. Suppose p divides m and s; then it also

divides r, as s2 + t6m = r3. Also norm of p divides both r and s. Hence the square

of the norm divides r3 − s2 = mt6. As gcd(s, t) = 1, the square of the norm divides

m, a contradiction since m is squarefree.

So, the only possibility for the prime ideal p is either it is above 2 or p = 〈1〉. Suppose
p is an ideal above 2, then p|N(α) = r3. Thus 2|r.We have s2 ≡ 0, 1 (mod 4), −m ≡
2, 3 (mod 4). This implies r3 = s2 − (−m)t6 ≡ 1, 2, 3 (mod 4). But r3 ≡ 1, 3 (mod 4)

⇒ r ≡ 1 (mod 2). Thus r is odd, a contradiction. Hence 〈α〉 and 〈α′〉 are coprime.

Now we show that α ∈ HE has an interesting property by using Lemma 5.5.2 :

〈α〉 is a cube of an ideal in OK .

THEOREM 5.6.2. Let m be a squarefree positive integer with −m 6≡ 1(mod 4). Let

K = Q(
√
−m) and Em : y2 = x3 −m be the corresponding elliptic curve. For any
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P =
(
r
t2
, s
t3

)
∈ Em(Q) \O, with gcd(r, t) = gcd(s, t) = 1, the ideal 〈s+ t3

√
−m〉 is the

cube of an ideal, i.e., 〈s+ t3
√
−m〉 = a3.

Proof. Let α = s + t3
√
−m ∈ HE. Then N(α) = r3 by equation (5.4). As before

the norm map induces a group homomorphism N : O∗K/N3 −→ Z∗/Z∗3 de�ned as

N(αN3) = N(α)Z∗3. The kernel of this map is

ker N = {αN3 such that N(α)Z∗3 = Z∗3},
= {αN3 such that N(α) ∈ Z∗3}.

Let ΠE
3 = {αN3 such that α ∈ HE}. Clearly ΠE

3 ⊆ ker N. Also by Lemmas 5.6.1

and 5.5.1, α is primitive, and so by Lemma 5.5.2, the ideal 〈α〉 = a3 is the cube of

an ideal.

In [Hambleton and Lemmermeyer, 2011] it is shown that S3(Z) is an abelian group

with respect to the binary operation given in De�nition 5.5.1. Observe that the

neutral element of S3(Z) is (1, 1, 0). Similarly the inverse of (x, y, z) ∈ S3(Z) is given

as

−(x, y, z) =

{
(x, y,−z), if x > 0

(x,−y, z), if x < 0.

In fact, the identity (1, 1, 0) ∈ SE3 (Z) as this corresponds to the point at in�nity on

the elliptic curve Em. Also, for (r, s, t3) ∈ SE3 (Z), the inverse point is (r, s, − t3),

since we must have r > 0, because s2 = r3 − mt6 > 0 and m > 0. This coincides

with the inverse
(
r
t2
, s
−t3
)
of the point

(
r
t2
, s
t3

)
of Em(Q). Thus, the set SE3 (Z) has the

identity, and every element in it has an inverse with respect to the binary operation

⊕ of S3(Z). However, with this binary operation the set SE3 (Z) is not a group. We

illustrate it with the following example:

EXAMPLE 6. For m = 26, E26 : y2 = x3 − 26. The two points P = (3, 1) and

Q = (35, 207) on E26 correspond to (3, 1, 1) and (35, 207, 1) respectively in SE3 (Z).

The discriminant of K = Q(
√
−26) is equal to −104. Thus the group law on the Pell

surface S3 corresponding to this discriminant is

(x1, y1, z1)⊕ (x2, y2, z2) =
(x1x2

e2
,
y1y2 − 26z1z2

e3
,
y1z2 + y2z1

e3

)
where

gcd(y1y2 − 26z1z2, y1z2 + y2z1) = e3.
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Therefore

(3, 1, 1)⊕ (35, 207, 1) =
(

3×35
e2
, 1×207−26×1×1

e3
, 1×1+207×1

e3

)
= (105, 181, 208) since gcd(181, 208) = 1.

This shows that SE3 (Z) is not closed under the binary operation ⊕ of S3(Z). Clearly

(105, 181, 208) ∈ S3(Z) but (105, 181, 208) /∈ SE3 (Z). Hence SE3 (Z) ( S3(Z).

Let F be any quadratic �eld. An element β ∈ F is said to be totally positive if

N(β) > 0. Let P+
F be the group of principal fractional ideals 〈β〉 = βOF where

N(β) > 0. The quotient group IF/P
+
F is called the narrow class group Cl+(F ) of F.

For imaginary quadratic �elds, the norm of any element is positive, thus the class

group and the narrow class group are identical. The collection of ideal classes of

order dividing n in F forms a subgroup of Cl(F ) and is called the n−part of the
ideal class group, denoted as Cl(F )[n].

By applying Proposition 5.5.5 to S3(Z) and the �eld K we get a surjective homo-

morphism ψ from S3(Z) to Cl(K)[3].

Consider the diagram

Em(Q)

S3(Z) Cl(K)[3]

f

ψ

Here f is as de�ned in (♠) and ψ is the surjective homomorphism de�ned in �2

(Proposition 5.5.5). We note that f is injective but not a homomorphism since

f(Em(Q)) = SE3 (Z) is not a subgroup of S3(Z). Also, the image of f is not equal to

the kernel of ψ. The following example illustrates it.

EXAMPLE 7. Let K = Q(
√
−53) and E53 : y2 = x3 − 53, where −53 6≡ 1(mod 4).

Let P = (29, 156) ∈ E53(Q). Then f(P ) = (29, 156, 1) ∈ f(E53(Q)). However,

ψ(f(P )) = 〈156 +
√
−53〉 = b3, where b = 〈29, 11 +

√
−53〉. We show that the

ideal 〈29, 11 +
√
−53〉 in OK is not a principal ideal. Say 〈29, 11 +

√
−53〉 = 〈β〉.

Then, since 29 ∈ 〈29, 11+
√
−53〉 we have 29 ∈ 〈β〉, so β|29 in OK .Writting 29 = βγ

in OK and taking norms, we have 841 = 292 = N(β)N(γ) in Z. So, N(β)|841 in Z.
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Similarly, since 11 +
√
−53 ∈ 〈β〉 we get N(β)|174 in Z. Thus N(β) is a common

divisor of 841 and 174 = 29 · 6 in Z. So, N(β) is 1 or 29. Since N(β) = a2 + 53b2

where a, b are in Z, N(β) 6= 29. Therefore N(β) = 1, so β is a unit and 〈1〉 = 〈β〉.
Thus 1 ∈ 〈β〉. Hence there exist α and δ in OK such that 29α + (11 +

√
−53)δ = 1.

Multiplying both sides by 11−
√
−53, we have 29{(11−

√
−53)α+ 6δ} = 11−

√
−53,

so that 29 divides 11−
√
−53 in OK . Thus N(29) = 841 divides N(11−

√
−53) = 174

which is a contradiction. So, 〈29, 11 +
√
−53〉 is not a principal ideal in OK . Hence

f(P ) is not in the kernel of ψ.

5.7 A GROUP LAW ON SE3 (Z) FROM Em(Q)

By using the binary operation on Em(Q) we de�ne a binary operation on SE3 (Z)

with respect to which SE3 (Z) becomes an abelian group. We recall that Em(Q) is an

abelian group with respect to the group law given by the following formulae:-

Let P1 = (x1, y1) and P2 = (x2, y2) be rational points on Em and de�ne λ as

λ =


y2 − y1

x2 − x1

, if P1 6= P2

3x2
1

2y1

, if P1 = P2

Then P3 = P1 + P2 = (x3, y3) with x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1.

The map f : Em(Q) −→ SE3 (Z) is as de�ned in (♠) and is given by

f(P ) =

(1, 1, 0), if P = O

(r, s, t3), if P =
( r
t2
,
s

t3

)
This is indeed a bijection. Thus, by transporting the group structure of Em(Q)

to SE3 (Z), the set SE3 (Z) becomes an abelian group. We now de�ne the binary

operation on SE3 (Z): Let ui = (ri, si, t
3
i ) (i = 1, 2) be elements in SE3 (Z). These

elements correspond to Pi = ( ri
t2i
, si
t3i

) on the elliptic curve Em. We show that the sum

P3 = P1 + P2 corresponds to an element u3 ∈ SE3 (Z), with u3 = u1 ∗ u2 where ∗ is
de�ned using the group law on elliptic curves as follows :

Case I : r1
t22
6= r2

t22
, and λ =

(
s2
t32
− s1

t31

)
/( r2

t22
− r1

t21
). Hence

x3 = λ2 − r1

t21
− r2

t22
=

(
s2t

3
1 − s1t

3
2

t1t2(r2t21 − r1t22)

)2

− r1

t21
− r2

t22
,

y3 = λ(x1 − x3)− y1 =
s2t

3
1 − s1t

3
2

t1t2(r2t21 − r1t22)

(
r1

t21
− x3

)
− s1

t31
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This enables one to �nd u3 ∈ SE3 (Z).

De�ne S− = s2t
3
1 − s1t

3
2, R− = r2t

2
1 − r1t

2
2, R+ = r2t

2
1 + r1t

2
2 and T = t1t2.

On simpli�cation and by using above notations we get

x3 =
S2
− −R+R

2
−

R2
−T

2

y3 =
R2
−R+S− + T 2R2

−(s2r1t1 − s1r2t2)− S3
−

R3
−T

3

Hence (r3, s3, t
3
3) is given by

r3 = S2
− −R+R

2
−

s3 = R2
−R+S− + T 2R2

−(s2r1t1 − s1r2t2)− S3
−

t33 = R3
−T

3,

Case II : r1
t22

= r2
t22

= r
t2
, and P = ( r

t2
, s
t3

), λ = 3r2

2st
.

Hence

x3 =
9r4

4s2t2
− 2r

t2
=

9r4 − 8rs2

4s2t2

y3 =
3r2

2st

(
r

t2
− 9r4 − 8rs2

4s2t2

)
− s

t3
=

36r3s2 − 27r6 − 8s4

8s3t3

Thus for u1 = u2 = (r, s, t3) we have (r3, s3, t
3
3) where

r3 = 9r4 − 8rs2

s3 = 36r3s2 − 27r6 − 8s4

t33 = (2st)3.

In both the cases, certainly (r3, s3, t
3
3) satis�es the equation of the Pell surface S3,

but it need not be primitive.

Now, if (x, y, z) is any primitive point on the Pell surface S3 then (x
′
, y
′
, z
′
) =

(d2x, d3y, d3z) will also lie on S3 for any integer d. Thus, if (x, y, z) is not a prim-

itive point, then gcd(x, z) = d2 and gcd(y, z) = d3 for some integer d ≥ 1. Let

(r4, s4, t
3
4) = (r3/d

2, s3/d
3, t33/d

3). De�ne u3 = (r4, s4, t
3
4).

With this binary operation, SE3 (Z) is an abelian group: the identity element is

(1, 1, 0), the inverse of (r, s, t3) is (r, s,−t3). We illustrate it with an example:

EXAMPLE 8. Let E26 : y2 = x3 − 26, u1 = (3, 1, 1) and u2 = (35, 207, 1) be in

SE3 (Z), which correspond to the elements P = (3, 1) and Q = (35, 207) respectively
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in E26(Q). Thus, we have r1 = 3, s1 = 1, t1 = 1, r2 = 35, s2 = 207, t2 = 1, and

S− = 206, T = 1, R− = 32, R+ = 38. Hence r3 = 3524 = 881 · 22, s3 = −125880 =

−23 · 3 · 5 · 1049, t33 = 32768 = 215. As (r3, s3, t
3
3) is not a primitive point, we consider

u3 = (r4, s4, t
3
4) = (r3/d

2, s3/d
3, t33/d

3) = (881,−15735, 4096). Clearly u3 ∈ SE3 (Z).

Also u3 corresponds to the rational point P3 =
(

881
256
, −15735

4096

)
∈ E26.

Similarly for u1 = u2 = (3, 1, 1) we get r3 = 705 = 3 ·4 ·47, s3 = −18719, t33 = 23. As

(r3, s3, t
3
3) is a primitive point, u3 = (r3, s3, t

3
3) = (705,−18719, 8). This corresponds

to
(

705
4
, −18719

8

)
= 2P ∈ E26(Q), where P = (3, 1).

It is easy to see that the 3-torsion subgroup of Em(Q) contains the cyclic subgroup

T = {O, (0,
√
m), (0,−

√
m)} which is invariant under the action of Gal

(
Q/Q

)
.

Then there exists a curve Ê and an isogeny φ : E −→ Ê, both de�ned over Q,
such that Ker (φ) = T . Explicitly we have Ê : ŷ2 = x̂3 + 27m and φ(x, y) =(
x3−4m
x2

, y(x3+8m)
x3

)
.

5.8 A HOMOMORPHISM FROM Em(Q) TO Cl(K)[3]

In this section we give a group homomorphism from Em(Q) to Cl(K)[3] using 3-

descent on Em(Q). There is a natural norm map N : K∗ −→ Q∗ given by N(a +

b
√
−m) = a2+b2m for a, b ∈ Q. This induces a homomorphism: K∗/K∗3 −→ Q∗/Q∗3,

which will also be denoted by N. Let G3 = {γK∗3 such that N(γ) = t3, t ∈ Q∗}.
Then ker N = G3. Since Em : y2 = x3 −m is of the form y2 = x3 +D(ax+ b)2 with

a = 0, b = −1 and D = −m, it has the rational 3-torsion subgroup T = {O, T,−T}
where T = (0,−

√
−m). Let Êm : ŷ2 = x̂3 + 27m, then by Proposition 4.5.2 we get a

3-isogeny between Em and Êm de�ned by

φ(P ) = (x̂, ŷ) =


(x3 − 4m

x2
,
y(x3 + 8m)

x3

)
, if P = (x, y)

O, if P = O, T,−T.

with dual 3-isogeny as,

φ̂(P ) = (x, y) =


( x̂3 + 108m

9x̂2
,
ŷ(x̂3 − 216m)

27x̂3

)
, if P = (x, y)

O, if P = O.

Now applying 3− descent map with 3-isogeny to Em as given in the section 4.6 we

get:
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LEMMA 5.8.1. Let m be a squarefree positive integer with −m 6≡ 1(mod 4). Let

K = Q(
√
−m) and let Em : y2 = x3−m be the corresponding elliptic curve. Let P =

( r
t2
, s
t3

) ∈ Em(Q), with gcd(r, t) = gcd(s, t) = 1, and G3 = {γK∗3 such that N(γ) =

t3, t ∈ Q∗}. The map

α : Em(Q) −→ K∗/K∗3, α :
( r
t2
,
s

t3

)
7−→ (s+ t3

√
−m)K∗3

is a group homomorphism.

Proof. The 3-descent map, given in De�nition 4.6.1 applied to the elliptic curve Em

is:

δ : Em(Q) −→ K∗/K∗3

δ(P ) =

{
(y +

√
−m)K∗3, if P = (x, y)

K∗3, if P = O.

Observe that (s+ t3
√
−m)K∗3 = ( s

t3
+
√
−m)K∗3 = (y+

√
−m)K∗3. By Proposi-

tion 4.6.1 the 3-descent map δ is a group homomorphism, it follows that α is a group

homomorphism.

Let Em : y2 = x3−m and Êm : ŷ2 = x̂3 + 27m. Then there exists a 3-isogeny map

φ between Em and Êm given by φ : (x, y) 7−→ (x
3−4m
x2

, y(x3+8m)
x3

) with dual isogeny as

φ̂ : Êm −→ Em given by φ̂ : (x̂, ŷ) 7−→
( x̂3 + 108m

9x̂2
,
ŷ(x̂3 − 216m)

27x̂3

)
.

LEMMA 5.8.2. Let m be a squarefree positive integer with −m 6≡ 1(mod 4), let

K = Q(
√
−m), Em : y2 = x3−m, and Êm : ŷ2 = x̂3 +27m. Let P = ( r

t2
, s
t3

) ∈ Em(Q)

with gcd(r, t) = gcd(s, t) = 1. There is an exact sequence of group homomorphisms

1 φ̂(Êm(Q)) Em(Q)
K∗

K∗3
Q∗

Q∗3
α N

where α : P 7−→ (s + t3
√
−m)K∗3 and φ̂ : (x̂, ŷ) 7−→

( x̂3 + 108m

9x̂2
,
ŷ(x̂3 − 216m)

27x̂3

)
with 3Em(Q) as a proper subgroup of φ̂(Êm(Q)).

Proof. Clearly there is an exact sequence of group homomorphisms:

1 φ̂(Êm(Q)) Em(Q)
K∗

K∗3
Q∗

Q∗3
α N
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where, Êm : ŷ2 = x̂3 + 27m and φ̂ is as given in [Cohen, 2008] (pp. 558-559),

φ̂(P̂ ) =
( x̂3 + 108m

9x̂2
,
ŷ(x̂3 − 216m)

27x̂3

)
.

This point satis�es y2 = x3 − m since when we replace x with x̂3+108m
9x̂2

and y with
ŷ(x̂3−216m)

27x̂3
in y2 − x3 +m = 0 and factorize the result, we obtain

(ŷ2 − x̂3 − 27m)(x̂3 − 216m)2

729x̂6
= 0.

Let us compute 3P on Em, where P = (x, y) and 3P 6= O.

3P = (x, y) +
(x4 + 8mx

4y2
,
x6 − 20mx3 − 8m2

8y3

)
,

=
(
λ2 − x− x4 + 8mx

4y2
, λ(x− x3)− y

)
, where

λ =

x6−20mx3−8m2

8y3
− y

x4+8mx
4y2

− x
,

λ =

x6−20mx3−8m2

8y3
− y

x4+8mx
4y2

− x
,

=

x6−20mx3−8m2−8y4

8y3

x4+8mx−4xy2

4y2

,

=
x6 − 20mx3 − 8m2 − 8y4

2y(x4 + 8mx− 4xy2)
,

=
x6 − 20mx3 − 8m2 − 8(x3 −m)2

2y(x4 + 8mx− 4x(x3 −m))
,

=
x6 − 20mx3 − 8m2 − 8x6 + 16mx3 − 8m2

2y(x4 + 8mx− 4x4 + 4mx)
,

=
7x6 + 4mx3 + 16m2

6xy(x3 − 4m)
.

68



Therefore

3P = (x, y) +
(x4 + 8mx

4y2
,
x6 − 20mx3 − 8m2

8y3

)
,

=
(
λ2 − x− x4 + 8mx

4y2
, λ(x− x3)− y

)
,

=
(x9 + 96mx6 + 48m2x3 − 64m3

9x2(x3 − 4m)2
,
y(x3 + 8m)(x9 − 228mx6 + 48m2x3 − 64m3)

27x3(x3 − 4m)3

)
,

=
(p3 + 108m

9p2
,
q(p3 − 216m)

27p3

)
, where

(p, q) =
(x3 − 4m

x2
,
y(x3 + 8m)

x3

)
∈ Êm(Q), see Cohen [2008].

Since

ker α = φ̂(Êm(Q))

=
{
P =

( x̂3 + 108m

9x̂2
,
ŷ(x̂3 − 216m)

27x̂3

)
∈ Em(Q) : ŷ2 = x̂3 + 27m

}
,

This shows that 3Em(Q) ⊆ ker α.

Conversely, let P = (x, y) ∈ ker α. Then there exist p, q ∈ Q satisfying q2 = p3 +27m

and

x =
p3 + 108m

9p2
,

y =
q(p3 − 216m)

27p3
.

However if we try to solve for p, q we do not get (p, q) =
(
x3−4m
x2

, y(x3+8m)
x3

)
. This

shows that 3Em(Q) 6= ker α.

THEOREM 5.8.3. Let m be a squarefree positive integer with −m 6≡ 1(mod 4).

Let K = Q(
√
−m), and Em : y2 = x3 −m be the corresponding elliptic curve. Let

P = ( r
t2
, s
t3

) ∈ Em(Q) \ O, with gcd(r, t) = gcd(s, t) = 1 , then 〈s + t3
√
−m〉 is the

cube of an ideal, i.e., 〈s + t3
√
−m〉 = a3, where a = 〈r, s + t3

√
−m〉. There is a

group homomorphism κ : Em(Q) −→ Cl(K)[3] de�ned as κ(P ) = [a], whose kernel

contains 3Em(Q).

Proof. The �rst part is already proved in Theorem 5.6.2, i.e., 〈s+ t3
√
−m〉 = a3.

Now, let us prove that the map κ is a group homomorphism. Let yP1 = s1/t
3
1, yP2 =

s2/t
3
2 and yP3 = s3/t

3
3 for P1, P2, P3 ∈ Em(Q). Let 〈s1 + t31ω〉 = a3, 〈s2 + t32ω〉 = b3 and

〈s3 + t33ω〉 = c3, where ω =
√
−m. Then κ(P1) = [a], κ(P2) = [b] and κ(P3) = [c]. To
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show κ is a homomorphism we need to prove κ(P1 +P2) = [ab] = [a][b] = κ(P1)κ(P2).

This is equivalent to proving κ(P1)κ(P2)κ(P3) = 〈1〉 for collinear rational points

P1, P2, P3 ∈ Em(Q). We know by Lemma 5.8.1 that the map α : Em(Q) −→ K∗/K∗3

is a homomorphism. Hence, α(P1)α(P2)α(P3) ∈ K∗3, i.e., (s1+t31ω)(s2+t32ω)(s3+t33ω)

is a cube in K∗. Hence, (s1 + t31ω)(s2 + t32ω)(s3 + t33ω) = β3(say). This gives, a3b3c3 =

〈β〉3. This implies abc = 〈β〉. Hence κ(P1)κ(P2)κ(P3) = 〈β〉, a principal ideal, the

identity of Cl(K)[3].

We know that 3P ∈ ker α. Thus, α(3P ) is a cube, say γ3 for some γ ∈ K∗. Hence for
any P ∈ Em(Q), κ(3P ) = [b] where b is the principal ideal generated by γ. Hence

3Em(Q) ⊆ ker κ.

EXAMPLE 9. Let K = Q(
√
−79) and E79 : y2 = x3 − 79, where −m ≡ 1(mod 4).

Then E79(Q) is generated by P = (20, 89). The ideal 〈89 +
√
−79〉 = p1p2q

3, where

〈2〉 = p1p2 and q is a prime ideal above 5. This shows that the condition −m 6≡
1(mod 4) in the above theorem cannot be dropped.

EXAMPLE 10. Let K = Q(
√
−26) and E26 : y2 = x3 − 26, where −m 6≡

1(mod 4). Then E26(Q) is generated by P = (3, 1) and Q = (35, 207). Also P +

Q = (881/256,−15735/4096). Then we have 〈1 +
√
−26〉 = p3

3, 〈207 +
√
−26〉 =

a3, 〈−15735 + 4096
√
−26〉 = p3

881. The ideals p3 = 〈(3,
√
−26 + 1)〉 and p881 =

〈(881,
√
−26+624)〉 generate ideal classes of order 3, whereas the ideal a = 〈

√
−26−3〉

is principal.

5.9 RELATION BETWEEN THE MAPS φ, κ AND ψ

Soleng's homomorphism given in [Soleng, 1994] applied to Em(Q) is φ :
(
r
t2
, s
t3

)
7→

[〈r,−ks+
√
−m〉], where kt3 + lr = 1. Let a = 〈r, s+ t3

√
−m〉, b = 〈r,−ks+

√
−m〉

and c = 〈r,−ks−
√
−m〉. Then c ⊆ a since

−ks−
√
−m = −l

√
−m(r)− k(s+ t3

√
−m).

Also since s + t3
√
−m = ls(r) − t3(−ks −

√
−m), a ⊆ c. It follows that a = c. To

show that bc is principal, observe that the conjugate ideal c̄ = ā of c = a is equal

to b. It follows that ab = 〈Na〉, the principal ideal generated by the norm of a, see

[conrad2014factoring]. It follows that the classes of the ideals a and b are inverses

in the ideal class group of K. This means that the homomorphism κ and Soleng's

homomorphism φ are quite similar. The precise relationship, when Soleng's elliptic
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curve is Em, is

κ(P ) = (φ(P ))−1.

But Soleng did not show that when the elliptic curve is Em, the image of φ belongs

to Cl(K)[3].

Similarly there is a relation between the homomorphism ψ given by Hambelton

and Lemmermeyer and the homomorphism κ which is given in the following diagram:

Em(Q) Cl(K)[3]

f(Em(Q)) = SE3 (Z) S3(Z)

κ

ψ
f

As shown towards the end of �3, f is not a homomorphism. However, the diagram

commutes, i.e., ψ ◦ f = κ.

All computations were done using Sage.
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Chapter 6

CONCLUSION

In this thesis we have given a relation between imaginary quadratic �elds, rational

points on elliptic curves and Pell surfaces. We have shown that the collection of

primitive integral points on S3 : y2 + mz2 = x3 coming from the elliptic curve

Em : y2 = x3 −m do not form a group with respect to the binary operation given

in [Hambleton and Lemmermeyer, 2011].The main result is: we have given a group

homomorphism κ from the rational points of Em to Cl(K)[3]. This is done using 3-

descent on Em.

Future Work

Let m be a cubefree integer, let K = Q( 3
√
m) be the pure cubic �eld. Let Em(Q)

be the group of rational points on Em. In [Lemmermeyer, 2013] and [Lemmermeyer,

2012] the Hilbert class �eld of the pure cubic �eld K and rational points on Em are

related. A method to obtain a quadratic unrami�ed extension of K where m is of

the form a3 + 3, with a ≡ 2 (mod 4) just by using rational points on Em is also

described. He has also explained why the class number of K is even whenm = 8b3 +3

and b is odd. It is well known that K = Q( 3
√
m) has class number divisible by 3

when m = p2q for primes p ≡ q ≡ 2(mod 3) such that p2q 6≡ ±1(mod 9). We would

like to work on the following question posed by him:

Is it possible to construct the 3− class group of a pure cubic �eld K of the above

type from k− rational points on the elliptic curves x3 + y3 = m, where k = Q(
√
−3),

the �eld of cube roots of unity.
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