VIRTUAL MACHINE INTROSPECTION
BASED MALWARE DETECTION
APPROACH AT HYPERVISOR FOR
VIRTUALIZED CLOUD COMPUTING
ENVIRONMENT

Thesis
Submitted in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
by
AJAY KUMARA M.A.

DEPARTMENT OF INFORMATION TECHNOLOGY
NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,
SURATHKAL, MANGALORE - 575025
MARCH, 2018

DECLARATION
by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled VIRTUAL MACHINE IN-
TROSPECTION BASED MALWARE DETECTION APPROACH AT HY-
PERVISOR FOR VIRTUALIZED CLOUD COMPUTING ENVIRON-
MENT which is being submitted to the National Institute of Technology Kar-
nataka, Surathkal in partial fulfilment of the requirements for the award of the
Degree of Doctor of Philosophy in Information Technology is a bonafide re-
port of the research work carried out by me. The material contained in this Research
Thesis has not been submitted to any University or Institution for the award of any

degree.

(IT13F01, AJAY KUMARA M. A.)

Department of Information Technology

Place: NITK, Surathkal.
Date:

CERTIFICATE

This is to certify that the Research Thesis entitled VIRTUAL MACHINE
INTROSPECTION BASED MALWARE DETECTION APPROACH AT
HYPERVISOR FOR VIRTUALIZED CLOUD COMPUTING ENVIRON-
MENT submitted by AJAY KUMARA M.A, (Register Number: IT13F01) as the
record of the research work carried out by him, is accepted as the Research Thesis sub-

misston in partial fulfilment of the requirements for the award of degree of Doctor

of Philosophy.

Dr. Jaidhar C.D
Research Guide

Prof. G. Ram Mohana Reddy
Chairman - DRPC

Acknowledgment

I would like to thank all those people who have made this research work possible.
First and foremost, I would like to express my sincere thanks to my research guide
Dr. Jaidhar C.D., Information Technology Department, for his guidance, suggestion
throughout my research work.

I express heartfelt thanks to my Research Progress Assessment Committee (RPAC)
members Dr. Pathipati Srihari and Dr. Jidesh P, for their valuable suggestions and
constant encouragement to improve my research work.

I sincerely thank all teaching, technical and administrative staff of the Information
Technology Department for their help during my research work.

I would like to thank my parents and my brothers Mr. Kumar A, Mr. Shivraj
M. A, and Mr. Shashi kumar A, for their exhaustive support, encouragement and

inspiration. Without them, surely, this research work would not have been possible.

Place: Surathkal Ajay Kumara M.A
Date:

Abstract

Cloud computing enabled by virtualization technology exhibits a revolutionary
change in information technology infrastructure. The hypervisor is a pillar of virtu-
alization and it allows to abstract the host or bare hardware resources to the Virtual
Machines (VMs) which are running on the virtualized environment. As the VMs are
easily available for rent from the Cloud Service Provider (CSP) that are a prime tar-
get for malignant cloud user or an adversary to launch the attacks and to execute
the sophisticated malware by exploiting the identified vulnerability present in it. In
addition, the proliferation of unknown malware exposes the limitations of traditional
and VM-based anti-malware defensive solutions. These motivated the development
of secure hypervisor or Virtual Machine Monitor (VMM) based solutions. The Vir-
tual Machine Introspection (VMI) has emerged as a fine-grained out-of-VM security
solution to detect the malware by introspecting and reconstructing the volatile mem-
ory state of the live guest Operating System (OS) by functioning at VMM. However,
VMM-based introspection solutions present a number of limitations, including the
well-known semantic gap issue.

In this work, as a first proposed work (methodology) we study the limitation of
existing host-based security solution. To address this issue, we proposed Virtual Ma-
chine and hypervisor based Intrusion Detection and Prevention System (VMIDPS)
for virtualized environment to ensure the robust state of the VM by detecting and an-
alyzing the rootkits as well as other attacks on live monitored guest OS. The VMIDPS
leverages cross-view based technique for detection and identification of intrusion at
VM. The experimental results showed that the VMIDPS successfully detected the
Windows based rootkits, and Denial of Service (DoS) attack on Monitored VMs.
However, the main limitation of this approach is that it uses an agent-based solution
on each of the individual Monitored VM to obtain the run state of the guest OS.

In the second proposed work (methodology), we study the limitation of the prior
VMI technique that is not intelligent enough to read precisely the manipulated se-
mantic information on their reconstructed high-level semantic view of the live guest

OS at VMM. To effectively address this issue, we proposed VMI-based real-time

malware detection system called Automated-Internal-External (A-IntExt) system. It
seamlessly introspects the untrustworthy Windows guest OS internal semantic view
(i.e., processes). Further, it checks the detected, hidden as well as running processes
(not hidden) as benign or malicious. The prime component of the A-IntExt system
is the Intelligent Cross-View Analyzer (ICVA) that leverages the novel Time Inter-
val Threshold (TIT) technique for detecting the hidden-state information from the
internally and externally gathered run state information of the Monitored VM. Ex-
perimental results showed that, we can effectively detect and manually analyze the
stealthy hidden activity of the malware and rootkits, including measurement with
Windows benchmark programs.

In the third proposed work (methodology), we have further extended the A-IntExt
system as an advanced VMM-based guest-assisted Automated Multi-level Malware
Detection System (AMMDS) that leverages both VMI and Memory Forensic Analy-
sis (MFA) techniques to predict early symptoms of malware execution by detecting
stealthy hidden processes on a live guest OS. The AMMDS generalize the cyber phys-
ical system application that is functioning at introspected guest OS. More specifically,
the AMMDS detects and classifies the actual running malicious executables from the
semantically reconstructed executables (i.e., .eze) the process view of the guest OS.
The two sub-components of the AMMDS are: Online Malware Detector (OMD) and
Offline Malware Classifier (OFMC). The OMD recognizes whether the running pro-
cesses are benign or malicious using its Local Malware Signature Database (LMSD)
and OMS. The OFMC classifies unknown malware by adopting machine learning tech-
niques at hypervisor. The AMMDS has been evaluated by executing large real-world
malware and benign executables on to the live guest OSs. The evaluation results
achieved full detection accuracy in classifying unknown malware with a considerable
performance overhead.

In the fourth proposed work (methodology), we have systematically evaluated
other shortcomings of our proposed A-IntExt system and AMMDS. In this work, we
further extended the A-IntExt system by implementing Hybrid Feature (HF) selection
technique that uses representative instances of other individual feature selection tech-
niques of the corresponding feature set that were extracted from the detected hidden

and dubious executables of infected memory dumps of the introspected guest OSs.

il

Further, the proposed approach has been validated with other public benchmarked
datasets at VMM. The AMMDS also performs offline detection of malware, however,
it fails to address the over—-fitting issue that plagues many machine learning tech-
niques. In this work, we precisely address the over—fitting issue by dividing both
generated dataset (VMM level) and benchmarked datasets as training, testing and
validation sets. The evaluation results showed that proposed approach is proficient
in detecting unknown malware with high detection accuracy on both generated and
benchmarked datasets.

In the fifth work, the execution time of the MFA tools such as Volatility and
Rekall is measured and compared for the different RAM dump sizes. The motivation
behind this works is that RAM dump capture time and its analysis time in real
time are highly crucial if an IDS depends on data supplied by the MFA tool or VMI
tool. Furthermore, analysis of malware based on the infected memory dump is also a
primary for an IDS. In this context, the evaluation conducted on memory dumps of
both Linux and Windows VMs that are captured using open source VMI tool called
LibVMI.

il

Contents

List of Abbreviations viii
List of Figures xiii
List of Tables xvi
1 Introduction 1
1.1 Cloud Computing and Virtualization 1
1.2 Hypervisor e 2

1.3 Intrusion Detection and Prevention System 3
1.3.1 Hypervisor-based Intrusion Detection System 3

1.4 Types of Malware and Rootkit 4
1.5 Virtual Machine Introspection 5
1.6 Memory Forensic Analysis 7
1.7 Motivation L 8
1.8 Dissertation Statement and Contributions 9
1.8.1 Research Objectives 9

1.9 Research Contributions 10
1.10 Outline of the Thesis 13

2 Literature Survey 15
2.1 VMM-based Intrusion Detection System 15
2.2 VMI Perspective 17
2.3 MFA Perspective 22
2.4 Machine Learning Technique Perspective 25
2.5 Outcome of Literature Survey 29

iv

3 Hypervisor based Intrusion Detection and Prevention System

5

3.1 System Design
3.1.1 File Integrity Verification
3.1.2 Signature based Intrusion Detection System
3.1.3 Anomaly based Intrusion Detection System
3.1.4 Cross-View Analysis

3.2 Experimental Setup and Results
3.2.1 Linux rootkitso
3.2.2 Windows Rootkit 0.
3.23 DoSattack L
3.2.4 Port Scanning Attack 0oL

3.3 Discussion

3.4 Limitation of the In-and-Out-of-the-Box Virtual Machine Based IDPS

3.5 Summary of the Work o000

VMI-based Stealthy Malware and Rootkit Detection System
4.1 Introduction L
4.2 Assumption and Threat Model
4.3 Overviewo
4.3.1 GVM-Introspector
4.3.2 Guest Assisted Module 000000
4.3.3 Intelligent Cross-View Analyser
4.3.4 Online Malware Scanner
4.4 Experimental Results and Evaluation
4.4.1 Experimental Setupo
4.4.2 Implementation,
4.4.3 Experiments and Results Analysis
4.5 Performance Overhead
4.6 Discussion e e

4.7 Summary of the Work oo o000

VMM-based Automated Multi-level Malware Detection System

5.1 Introduction

31
31
33
34
34
35
35
36
38
40
40
41
41
43

44
44
46
47
48
o1
52
26
o6
26
57
o7
61
62
62

64

5.2

5.3

5.4

5.5

Overview of AMMDS 68

5.2.1 Malware Detectoro 70
5.2.2 Executable File Extractor 70
5.2.3 Online Malware Detector 70
5.2.4 Offline Malware Classifier 72
Implementation and Evaluation 74
5.3.1 Experimental Setup 74
5.3.2 Implementation 74
5.3.3 Dataset Creation and Use 76
5.3.4 Evaluation and Results Discussion. 76
5.3.5 Experimental Methods 81
5.3.6 Evaluation Metrics 82
5.3.7 Results Analysis 83
5.3.8 Performance Overhead 87
Discussion 87
5.4.1 Comparison with Existing Work 89
Summary of the Work oo 92

Leveraging Machine Learning Techniques to Detect and Characterize

Unknown Malware at VMM 93
6.1 Introduction 93
6.2 System Design and Implementation 95
6.2.1 Feature Vector Generator 95
6.3 Experiments and Datasets 100
6.3.1 Datasets and Dataset Collection 100
6.4 Evaluation 103
6.4.1 Performance Overhead 107
6.4.2 Experimental Methods 108
6.4.3 FEvaluation Metrics oL 111
6.4.4 Machine Learning Techniques 112
6.5 Analysisof Results 114
6.5.1 Result Analysis of Generated Dataset 115

vi

6.5.2 Result Analysis of Benchmarked Datasets 124

6.5.3 Comparison of Results 131

6.6 Discussion e 132
6.6.1 Limitations L o 133

6.7 Summary of The Work 0000 135

7 Execution Time Measurement of Volatile Artifacts Analyzers 137
7.1 Introduction L 137
7.2 Motivation and Overview of HyIDS 138
7.3 Evaluation and Experimental Results 140
7.3.1 Detecting Kernel Level Rootkits 140

7.3.2 Virtual Machine RAM Dump Analysis using Volatility and Rekall142

7.3.3 Summary ... oL e 145

8 Conclusion and Future Work 146
Bibliography 149
References 149
List of Publications 161

vii

List of Abbreviations

BFVyp
EXTy
INT,
MFVry
SVM
A-IntExt
AMMDS
APT
AUC
AUC
BFV
BLINK
BNF
CPS

CS

CSP

DKOM

DKSM

Benign Feature Vector Temporary
External Process Count

Internal Process Count

Malware Feature Vector Temporary
Semantic Value Manipulation
Automated-Internal-and-External System
Automated Multi-level Malware Detection System
Advanced Persistent Threat

Area Under Curve

Area Under the Curve

Benign Feature Vector

Backword Link

Benign N-gram Feature

Cyber Physical System

Chi-Square

Cloud Service Provider

Direct Kernel Object Manipulation
Direct Kernel Structure Manipulation

viii

DLL
DO
DoS
DP
DPC
DR
EFE
FFV
FLINK
FN
FP
FPR
FVG
FVM
GAM
GVM
HF
HIDS
HP
HPC
HTM

HyIDS

Dynamic Link Library
Descending Order
Denial-of-Service

Dubious Process

Dead Process Count
Detection Rate
Executable File Extractor
Final Feature Vector
Forword Link

False Negative

False Positive

False Positive Rate
Feature Vector Generator
Forensic Virtual Machine
Guest Assisted Module
Guest Virtual Machine
Hybrid Feature

Host based Intrusion Detection System
Hidden Process

Hidden Process Count
Hardware Transactional Memory

Hypervisor based Intrusion Detection System

X

[AT
ICVA
IDPS
IDS
IDT
IG
KVM
LMSD
MCC
MD5
MFA
MFV
MNF
Monitored VM
Monitoring VM
N-F
NF
OFMC
OMD
OMS
00B

OS

Interrupt Address Table
Intelligent Cross-View Analyzer
Intrusion Detection and Prevention System
Intrusion Detection System
Interrupt Descriptor Table
Information Gain

Kernel Virtual Machine

Local Malware Signature Database
Matthews Correlation Coefficient
Message Digest 5

Memory Forensic Analysis
Malware Feature Vector
Malware N-gram Feature
Monitored Virtual Machine
Monitoring Virtual Machine
Nothing-Found

N-gram Frequency

Offline Malware Classifier

Online Malware Detector

Online Malware Scanner
Out-of-Bag

Operating System

OSSEC Open Source Security Event correlator

pP2p Peer-to-Peer

PE Portable Executable

PFR False Positive Rate

PID Process Identifier

PN Process Name

PoC Proof of Concept

PPID Parent Process Identifier

PS Process

RMS Root Mean Square

ROC Receiver Operating Curve
SCT System Call Table

SHA-1 Secure Hash Algorithm-1
SHA-256 Secure Hash Algorithm-256
SI-Requester State Information Requester
SIDS Signature based Intrusion Detection System
SMO Sequential Minimal Optimization
SVM Support Vector Machine
TIT Time Interval Threshold
TN True Negative

TP True Positive

TPR True Positive Rate

x1

VM Virtual Machine
VMI Virtual Machine Introspection

VMIDPS Virtual Machine and Hypervisor Independent Intrusion Detection

and Prevention System

VMM Virtual Machine Monitor

xii

List of Figures

1.1

3.1
3.2

3.3

3.4

4.1
4.2
4.3

4.4
4.5
4.6

4.7

5.1

Semantic gap of VMI Lo

Architecture of the VMIDPS for virtualized environment

KBeast rootkit file compilation (a), rootkit hides port details (b), OS-

SEC alert message for rootkit injection(c)

Hacker Defender rootkit injection (a) OSSEC alert message for
Hacker Defender rootkit (b)

OSSEC detected DoS attack as URI too long

The proposed VMI based A-IntExt system
Time interval threshold used by A-IntExt system
Hidden processes (a) dubious processes (b) details of Monitored VM
externally introspected (left side) and internally acquired (right side)
by the A-IntExt system after rootkit and stealthy malware injection on
Windows guest OS L
Simplified _EPROCESS structure of Windows system (Florio 2005) . .
Online malware scanner
The average time taken by the OMS to compute MD5, SHA-1, and
SHA-256 hashes for different processes (5a). Time taken by OMS to
detect malware by cross-checking with LMD based on it’s computed
hashes (5b)
Performance impact of A-IntExt system on PCMark05 in detecting

hidden and malicious state information of Monitored VM for Windows

The proposed VMI based A-IntExt system

xiil

37

39

40

47
49

20
52
o4

60

5.2

2.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3
6.4

6.5

6.6

6.7

Flow chart of the AMMDS for detection of malware using OMD and
OFMC components

The average time consumed by the OMD to generate SHA-256, SHA-
1, and MD5 hash digest for execution of different types of malware

(4a). Time taken by the OMD to identify the known malware by cross-
checking with LMSD based on computed hash digest (4b)

Snapshot of OMD for identification of malicious (not hidden) process

kelihos _dec.exe from OMS

Snapshot of OMD for the detection of known malware by cross-checking

with LMSD o

Malware detection accuracy achieved by different classifiers based on
NGL CC and Odds Ratio feature selection techniques for three different

feature lengtho

Comparison of performance of the classifier under different performance
metrics for the different feature length recommended by NGL CC and

Odds Ratio feature selection techniques

Performance overhead of the AMMDS on PCMark05 in detecting hid-

den and dubious state information of Monitored VM

4 byte N-gram sequence extraction from an executable

Performance overhead of the A-IntExt system using PCMark05 bench-

Training phase and prediction phase of the A-IntExt system

OOB error rate comparison with different tree size for HF selection

technique on the validation set of generated dataset

RMS error rate comparison with different tree size for HF selection

technique on the validation set of generated dataset

ROC curves for feature selection techniques used by different classifiers

for L= 300 on the validation set of generated dataset

A-IntExt system malware detection evaluation using different perfor-

mance metrics for L=300 on the validation set of generated dataset

xiv

71

79

80

80

84

86

87

96

107

109

119

119

122

123

6.8 OOB error rate comparison with different tree size for HF selection
technique on the validation set of benchmarked datasets
6.9 RMS error rate comparison with different tree size for HF selection
technique on the validation set of benchmarked datasets
6.10 ROC curves for feature selection techniques used by different classifiers
for L= 300 on the validation set of benchmarked datasets

6.11 A-IntExt system malware detection evaluation using different perfor-

127

127

128

mance metrics for L=300 on the validation set of benchmarked datasets 131

7.1 High level view of HyIDS architecture for virtualized environment . .
7.2 average coder rootkit module hidden at Domul VM the same de-
tected by out-of-the-box VMI solution LibVMI
7.3 average coder rootkit hidden module extracted by the Volatility
from raw of physical memory dump
7.4 AC rootkit infected module extracted by the Rekall from raw of physical
memory dump Lo

7.5 RAM Dump Analysis Time

XV

139

List of Tables

3.1

3.2

3.3

4.1

4.2

4.3

4.4

5.1

5.2

2.3

5.4
5.5

5.6

Experimental testbed using OSSEC HIDS

List of Windows and Linux rootkits used in this experiments and de-

tected by our proposed approach

Security attack scenarios experimented and detected by our proposed

approach

Detection of hidden, dead and DPs by the A-IntExt system for Win-

dows guest OS L

Identifying an actual malicious process from the detected hidden pro-

cesses by the OMS of A-IntExt system on Windows guest OS

Identifying an actual malicious processes from detected and classified

DPs by OMS of A-IntExt system on Windows guest OS.

List and functionality of Windows rootkit

Execution of malware and benign executables on live Monitored VM

in different experimental test cases

Identifying an actual malicious process from test-I of detected hidden

processes by the OMD of AMMDS

Identifying an actual malicious process from test-I of detected dubious

executables by the OMD of AMMDS
Confusion matrix
TPR and FPR of different classifiers on different feature length
Comparison of AMMDS with previous VMI-based malware detection

approaches

xXvi

42

42

28

29

29

60

78

78

78

83

89

5.7

6.1
6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

7.1
7.2
7.3
7.4

Comparison of results with other VMM-based and non-introspection
based malware detection approaches that used machine learning tech-

NIQUES + + v o v o e e e e e e e e e e e e e

Types of malware used in the experiments
The composition of generated dataset
The composition of benchmarked datasets
Execution of benign and malicious executables on live Monitored VMs
in different experimental test cases for generating testing dataset at
VMM .
Execution of benign and malicious executables on live Monitored VMs
in different experimental test cases for generating validation dataset at
VMM .
List of default (D) parameters used by the classifiers on WEKA. The
Increased (I) values of default parameters are highlighted in bold . . .
Detection accuracy (%) of malware using different feature selection
techniques on both testing and validation sets experiments of generated
dataset
Experiment results of malware detection with different feature selection
techniques for validation set of generated dataset
Detection accuracy (%) of malware using different feature selection
techniques on both testing and validation sets experiments of bench-
marked datasets Lo
Experiment results of malware detection with different feature selection
techniques for validation set of benchmarked datasets
Comparison of accuracy (%) for validation sets of generated and bench-

marked datasets for L=300 of HF selection technique

Experimental setup
Real-world rootkit experiments under VMs
RAM dump analysis time of the Ubuntu VMs
RAM dump analysis time of Windows VMs

xXvii

90

101
102
102

105

105

115

116

120

125

129

132

140
141
143
143

Chapter 1

Introduction

1.1 Cloud Computing and Virtualization

Cloud computing improves resource utilization while reducing infrastructural cost. Tt
is based on existing technologies such as service-oriented architecture, virtualization,
and utility computing. Virtualization is a key underlying technology for cloud com-
puting architecture. It facilitates sharing of physical machine resources such as CPU,
Memory, I/O and Network interface etc., among several VMs running on the same
physical machine using a special software layer called hypervisor or VMM. Sharing
of resources increases the critical security challenges for CSP. Protecting virtualized
resources of guest OS against sophisticated malware such as a virus, spyware, stealthy
rootkit, Trojan, polymorphic and metamorphic variants is a massive challenge for the
CSP (Takabi et al. 2010).

Virtualization technology allows to create and run multiple guest OSs concurrently
using physical hardware of the host system or bare hardware resources in a virtual-
ized infrastructure. Its function is to create virtual resources such as virtual CPU,
virtual network interface card, virtual memory etc., to assign for different dedicated
VMs (Vollmar et al. 2014). Virtualization provides tremendous benefits and shar-
ing of hardware resources. However, it increases greater security risk and significant
challenges for the CSP. Ensuring security portfolio among different dedicated VM re-
sources is a massive challenge for CSP. With the advent of virtualization, traditional
security solutions are not designed by keeping virtualization in mind. Most of the
solutions are signature dependent that is not feasible to ensure the complete security

of virtualized resources on a virtualized cloud computing environment (Pearce et al.

2013).

The virtualization is classified into two types that are full virtualization and para
virtualization. In case of full virtualization, the virtualization layer completely ab-
stracts VM or guest OS from the underlying hardware. The guest OS is utterly
unaware of its virtualized state and no modifications are needed. Further, virtual-
ization of sensitive and privileged instructions do not require hardware assistance as
well as OS assistance. All OS instructions are translated by the hypervisor and cache
them for future usage, whereas user instructions run without any modification at na-
tive speed. It keeps VMs in an isolated environment which ensures security of the
VMs. Examples for full virtualization are VMware vSphere ESXi 6.5 and Microsoft

Virtual Server.

In para virtualization, the guest OS (the one being virtualized) is aware of its
virtualized state. The modification is required at the OS kernel level to replace non-
virtualizable instructions into hyper-calls in order to establish direct communication
with a hypervisor. Interrupt handling and memory management are examples of
kernel operations. The open source Xen project is an example of para virtualization

(Vollmar et al. 2014; Horne 2007).

1.2 Hypervisor

Hypervisor or VMM is a low-level software program that emulates or abstract physical
hardware resources such as CPU, Memory, Disk, Network Interface Card, I/O to
multiple guest OSs in real-time which are running on the same host OS or bare
hardware. The hypervisor has full control over entire virtual resources of the guest
OSs. In general, the hypervisor acts as a bedrock between the VMs and the physical
hardware. The hypervisor broadly classified into two types: Type-1 hypervisor and
Type-2 hypervisor.

The Type-1 hypervisors run directly on the bare system hardware. For example
Xen Hypervisor, VMware vSphere ESXi 6.5, Citrix-Xen Server, Microsoft-Hyper-V
2008 R2 etc. Type-2 hypervisors run on a host OS to emulate host machine hardware
resources to VMs. For example, KVM hypervisor, Oracle Virtual Box and VMWare
Player are Type-2 hypervisors (Vollmar et al. 2014).

1.3 Intrusion Detection and Prevention System

The term "Intrusion" can be defined as an unauthorized attempts to access or com-
promising confidentiality, integrity and availability by bypassing the existing security
defenses solution to disrupt normal operation of a computer system or network sys-
tem (Scarfone and Mell 2007). Intrusion Detection System (IDS) is a type of security
measure used to detect intrusions automatically and alert administrators. Intrusion
prevention is also security measure used to prevent the identified intrusion before the
intrusion trespass. Intrusion Detection and Prevention Systems (IDPS) is a process
of continuous monitoring of incoming and outgoing traffic and events occurring on
an OS or network to detect and prevent security threats, attacks in a timely manner

without human intervention (Modi et al. 2013).

1.3.1 Hypervisor-based Intrusion Detection System

The hypervisor is a software component used to ensure sharing of host system re-
sources in a virtualized environment among VMs. Computing security in hypervisor
provides secure virtualization throughout its life cycle, including development, im-
plementation, provisioning, de-provisioning, and management. Securing hypervisor,
VMs, and virtual switch is an active research area. Recent attempts made in the di-
rection of computing security in hypervisor are discussed in this Section (Patel et al.
2012).

Hypervisor creates VMs as per the specifications chosen by the CSP on the host
system. The VMs running on the hypervisor access the hardware resources of host
system via hypervisor in their life time. Communication between any VM with any
other VM in a virtualized environment is also through the hypervisor. Because the
hypervisor has full control over host system resources allocation to VMs and it can
directly access the memory allocated to guest VMs. This enables malicious VMs to
exploit vulnerabilities of the hypervisor to attack the hypervisor or another VM. The
hypervisor vulnerabilities are most dangerous because the malignant user can leverage
the vulnerabilities of the hypervisor to launch an attack or compromise the entire host
system (Jin et al. 2011). By compromising the hypervisor, the malignant user can

directly steal the confidential data present in the host system or modify the software

to disrupt the normal operation of the entire virtualized environment.

1.4 Types of Malware and Rootkit

Due to the propagation of cloud computing, VMs are increasingly becoming attractive
targets for cyber crooks due to easy access from CSP (Pearce et al. 2013). The
current generation of malware uses code obfuscation techniques (Lin and Stamp 2011)
and rootkit functionalities (Goudey 2012b) to subvert most of the existing in-host or
VM-based anti-malware security solutions to gain privileged access to the targeted
machine. With successful penetration, malware operates by leveraging uncovered
vulnerabilities of the guest OS to perform illegitimate activities, and also attack other
VMs running on the same virtualized infrastructure. Preserving the VMs by detecting
such sophisticated malware is a challenging task for the CSP (James 2010). Malware
are classified into several types based on their different behavioral characteristics. The

taxonomy of discriminative malware is classified as follows:

e Trojan horse: It is a piece of the program, which looks legitimate, but is
malicious. Its objective is to install other malicious applications on the victim

computer to be controlled by cyber-crooks to steal confidential information.

e Virus: A virus is a program, that propagates by interpolating a copy of itself

to another program and becomes a part of it.

e Worm: A worm is a self-replicating malicious program which exploits the vul-

nerabilities on a target system.

e Spyware: It secretly gathers Internet usage and confidential information from

the victim machine.

e Metamorphic and Polymorphic: Malware writer of these types use multiple
transformation techniques like code permutation, shrinking and renaming, etc.
Once this malware infects the victim machine, it has the ability to change its

code as it propagates.

e Backdoor: Once a backdoor infected, it additionally installs other spyware;

allows an attacker to control the entire victim machine.

e Ransomware: It prevents usage of accessing the system from an end user

either by encrypting or holding user confidential files for ransom.

e Botnet: Botnet uses rootkit-based threads to hide its presence once installed. It
acts as malware downloader by establishing its own unstructured P2P networks

to perform click fraud activity.

e Stealthy rootkits: Rootkit