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Abstract

Cloud computing enabled by virtualization technology exhibits a revolutionary
change in information technology infrastructure. The hypervisor is a pillar of virtu-
alization and it allows to abstract the host or bare hardware resources to the Virtual
Machines (VMs) which are running on the virtualized environment. As the VMs are
easily available for rent from the Cloud Service Provider (CSP) that are a prime tar-
get for malignant cloud user or an adversary to launch the attacks and to execute
the sophisticated malware by exploiting the identified vulnerability present in it. In
addition, the proliferation of unknown malware exposes the limitations of traditional
and VM-based anti-malware defensive solutions. These motivated the development
of secure hypervisor or Virtual Machine Monitor (VMM) based solutions. The Vir-
tual Machine Introspection (VMI) has emerged as a fine-grained out-of-VM security
solution to detect the malware by introspecting and reconstructing the volatile mem-
ory state of the live guest Operating System (OS) by functioning at VMM. However,
VMM-based introspection solutions present a number of limitations, including the
well-known semantic gap issue.

In this work, as a first proposed work (methodology) we study the limitation of
existing host-based security solution. To address this issue, we proposed Virtual Ma-
chine and hypervisor based Intrusion Detection and Prevention System (VMIDPS)
for virtualized environment to ensure the robust state of the VM by detecting and an-
alyzing the rootkits as well as other attacks on live monitored guest OS. The VMIDPS
leverages cross-view based technique for detection and identification of intrusion at
VM. The experimental results showed that the VMIDPS successfully detected the
Windows based rootkits, and Denial of Service (DoS) attack on Monitored VMs.
However, the main limitation of this approach is that it uses an agent-based solution
on each of the individual Monitored VM to obtain the run state of the guest OS.

In the second proposed work (methodology), we study the limitation of the prior
VMI technique that is not intelligent enough to read precisely the manipulated se-
mantic information on their reconstructed high-level semantic view of the live guest

OS at VMM. To effectively address this issue, we proposed VMI-based real-time



malware detection system called Automated-Internal-External (A-IntExt) system. It
seamlessly introspects the untrustworthy Windows guest OS internal semantic view
(i.e., processes). Further, it checks the detected, hidden as well as running processes
(not hidden) as benign or malicious. The prime component of the A-IntExt system
is the Intelligent Cross-View Analyzer (ICVA) that leverages the novel Time Inter-
val Threshold (TIT) technique for detecting the hidden-state information from the
internally and externally gathered run state information of the Monitored VM. Ex-
perimental results showed that, we can effectively detect and manually analyze the
stealthy hidden activity of the malware and rootkits, including measurement with
Windows benchmark programs.

In the third proposed work (methodology), we have further extended the A-IntExt
system as an advanced VMM-based guest-assisted Automated Multi-level Malware
Detection System (AMMDS) that leverages both VMI and Memory Forensic Analy-
sis (MFA) techniques to predict early symptoms of malware execution by detecting
stealthy hidden processes on a live guest OS. The AMMDS generalize the cyber phys-
ical system application that is functioning at introspected guest OS. More specifically,
the AMMDS detects and classifies the actual running malicious executables from the
semantically reconstructed executables (i.e., .eze) the process view of the guest OS.
The two sub-components of the AMMDS are: Online Malware Detector (OMD) and
Offline Malware Classifier (OFMC). The OMD recognizes whether the running pro-
cesses are benign or malicious using its Local Malware Signature Database (LMSD)
and OMS. The OFMC classifies unknown malware by adopting machine learning tech-
niques at hypervisor. The AMMDS has been evaluated by executing large real-world
malware and benign executables on to the live guest OSs. The evaluation results
achieved full detection accuracy in classifying unknown malware with a considerable
performance overhead.

In the fourth proposed work (methodology), we have systematically evaluated
other shortcomings of our proposed A-IntExt system and AMMDS. In this work, we
further extended the A-IntExt system by implementing Hybrid Feature (HF) selection
technique that uses representative instances of other individual feature selection tech-
niques of the corresponding feature set that were extracted from the detected hidden

and dubious executables of infected memory dumps of the introspected guest OSs.

il



Further, the proposed approach has been validated with other public benchmarked
datasets at VMM. The AMMDS also performs offline detection of malware, however,
it fails to address the over—-fitting issue that plagues many machine learning tech-
niques. In this work, we precisely address the over—fitting issue by dividing both
generated dataset (VMM level) and benchmarked datasets as training, testing and
validation sets. The evaluation results showed that proposed approach is proficient
in detecting unknown malware with high detection accuracy on both generated and
benchmarked datasets.

In the fifth work, the execution time of the MFA tools such as Volatility and
Rekall is measured and compared for the different RAM dump sizes. The motivation
behind this works is that RAM dump capture time and its analysis time in real
time are highly crucial if an IDS depends on data supplied by the MFA tool or VMI
tool. Furthermore, analysis of malware based on the infected memory dump is also a
primary for an IDS. In this context, the evaluation conducted on memory dumps of
both Linux and Windows VMs that are captured using open source VMI tool called
LibVMI.

il
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Chapter 1

Introduction

1.1 Cloud Computing and Virtualization

Cloud computing improves resource utilization while reducing infrastructural cost. Tt
is based on existing technologies such as service-oriented architecture, virtualization,
and utility computing. Virtualization is a key underlying technology for cloud com-
puting architecture. It facilitates sharing of physical machine resources such as CPU,
Memory, I/O and Network interface etc., among several VMs running on the same
physical machine using a special software layer called hypervisor or VMM. Sharing
of resources increases the critical security challenges for CSP. Protecting virtualized
resources of guest OS against sophisticated malware such as a virus, spyware, stealthy
rootkit, Trojan, polymorphic and metamorphic variants is a massive challenge for the
CSP (Takabi et al. 2010).

Virtualization technology allows to create and run multiple guest OSs concurrently
using physical hardware of the host system or bare hardware resources in a virtual-
ized infrastructure. Its function is to create virtual resources such as virtual CPU,
virtual network interface card, virtual memory etc., to assign for different dedicated
VMs (Vollmar et al. 2014). Virtualization provides tremendous benefits and shar-
ing of hardware resources. However, it increases greater security risk and significant
challenges for the CSP. Ensuring security portfolio among different dedicated VM re-
sources is a massive challenge for CSP. With the advent of virtualization, traditional
security solutions are not designed by keeping virtualization in mind. Most of the
solutions are signature dependent that is not feasible to ensure the complete security

of virtualized resources on a virtualized cloud computing environment (Pearce et al.

2013).



The virtualization is classified into two types that are full virtualization and para
virtualization. In case of full virtualization, the virtualization layer completely ab-
stracts VM or guest OS from the underlying hardware. The guest OS is utterly
unaware of its virtualized state and no modifications are needed. Further, virtual-
ization of sensitive and privileged instructions do not require hardware assistance as
well as OS assistance. All OS instructions are translated by the hypervisor and cache
them for future usage, whereas user instructions run without any modification at na-
tive speed. It keeps VMs in an isolated environment which ensures security of the
VMs. Examples for full virtualization are VMware vSphere ESXi 6.5 and Microsoft

Virtual Server.

In para virtualization, the guest OS (the one being virtualized) is aware of its
virtualized state. The modification is required at the OS kernel level to replace non-
virtualizable instructions into hyper-calls in order to establish direct communication
with a hypervisor. Interrupt handling and memory management are examples of
kernel operations. The open source Xen project is an example of para virtualization

(Vollmar et al. 2014; Horne 2007).

1.2 Hypervisor

Hypervisor or VMM is a low-level software program that emulates or abstract physical
hardware resources such as CPU, Memory, Disk, Network Interface Card, I/O to
multiple guest OSs in real-time which are running on the same host OS or bare
hardware. The hypervisor has full control over entire virtual resources of the guest
OSs. In general, the hypervisor acts as a bedrock between the VMs and the physical
hardware. The hypervisor broadly classified into two types: Type-1 hypervisor and
Type-2 hypervisor.

The Type-1 hypervisors run directly on the bare system hardware. For example
Xen Hypervisor, VMware vSphere ESXi 6.5, Citrix-Xen Server, Microsoft-Hyper-V
2008 R2 etc. Type-2 hypervisors run on a host OS to emulate host machine hardware
resources to VMs. For example, KVM hypervisor, Oracle Virtual Box and VMWare
Player are Type-2 hypervisors (Vollmar et al. 2014).



1.3 Intrusion Detection and Prevention System

The term "Intrusion" can be defined as an unauthorized attempts to access or com-
promising confidentiality, integrity and availability by bypassing the existing security
defenses solution to disrupt normal operation of a computer system or network sys-
tem (Scarfone and Mell 2007). Intrusion Detection System (IDS) is a type of security
measure used to detect intrusions automatically and alert administrators. Intrusion
prevention is also security measure used to prevent the identified intrusion before the
intrusion trespass. Intrusion Detection and Prevention Systems (IDPS) is a process
of continuous monitoring of incoming and outgoing traffic and events occurring on
an OS or network to detect and prevent security threats, attacks in a timely manner

without human intervention (Modi et al. 2013).

1.3.1 Hypervisor-based Intrusion Detection System

The hypervisor is a software component used to ensure sharing of host system re-
sources in a virtualized environment among VMs. Computing security in hypervisor
provides secure virtualization throughout its life cycle, including development, im-
plementation, provisioning, de-provisioning, and management. Securing hypervisor,
VMs, and virtual switch is an active research area. Recent attempts made in the di-
rection of computing security in hypervisor are discussed in this Section (Patel et al.
2012).

Hypervisor creates VMs as per the specifications chosen by the CSP on the host
system. The VMs running on the hypervisor access the hardware resources of host
system via hypervisor in their life time. Communication between any VM with any
other VM in a virtualized environment is also through the hypervisor. Because the
hypervisor has full control over host system resources allocation to VMs and it can
directly access the memory allocated to guest VMs. This enables malicious VMs to
exploit vulnerabilities of the hypervisor to attack the hypervisor or another VM. The
hypervisor vulnerabilities are most dangerous because the malignant user can leverage
the vulnerabilities of the hypervisor to launch an attack or compromise the entire host
system (Jin et al. 2011). By compromising the hypervisor, the malignant user can

directly steal the confidential data present in the host system or modify the software



to disrupt the normal operation of the entire virtualized environment.

1.4 Types of Malware and Rootkit

Due to the propagation of cloud computing, VMs are increasingly becoming attractive
targets for cyber crooks due to easy access from CSP (Pearce et al. 2013). The
current generation of malware uses code obfuscation techniques (Lin and Stamp 2011)
and rootkit functionalities (Goudey 2012b) to subvert most of the existing in-host or
VM-based anti-malware security solutions to gain privileged access to the targeted
machine. With successful penetration, malware operates by leveraging uncovered
vulnerabilities of the guest OS to perform illegitimate activities, and also attack other
VMs running on the same virtualized infrastructure. Preserving the VMs by detecting
such sophisticated malware is a challenging task for the CSP (James 2010). Malware
are classified into several types based on their different behavioral characteristics. The

taxonomy of discriminative malware is classified as follows:

e Trojan horse: It is a piece of the program, which looks legitimate, but is
malicious. Its objective is to install other malicious applications on the victim

computer to be controlled by cyber-crooks to steal confidential information.

e Virus: A virus is a program, that propagates by interpolating a copy of itself

to another program and becomes a part of it.

e Worm: A worm is a self-replicating malicious program which exploits the vul-

nerabilities on a target system.

e Spyware: It secretly gathers Internet usage and confidential information from

the victim machine.

e Metamorphic and Polymorphic: Malware writer of these types use multiple
transformation techniques like code permutation, shrinking and renaming, etc.
Once this malware infects the victim machine, it has the ability to change its

code as it propagates.

e Backdoor: Once a backdoor infected, it additionally installs other spyware;

allows an attacker to control the entire victim machine.



e Ransomware: It prevents usage of accessing the system from an end user

either by encrypting or holding user confidential files for ransom.

e Botnet: Botnet uses rootkit-based threads to hide its presence once installed. It
acts as malware downloader by establishing its own unstructured P2P networks

to perform click fraud activity.

e Stealthy rootkits: Rootkit