
VIRTUAL MACHINE INTROSPECTION

BASED MALWARE DETECTION

APPROACH AT HYPERVISOR FOR

VIRTUALIZED CLOUD COMPUTING

ENVIRONMENT

Thesis

Submitted in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

AJAY KUMARA M.A.

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575025

MARCH, 2018

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled VIRTUAL MACHINE IN-

TROSPECTION BASEDMALWAREDETECTION APPROACHATHY-

PERVISOR FOR VIRTUALIZED CLOUD COMPUTING ENVIRON-

MENT which is being submitted to the National Institute of Technology Kar-

nataka, Surathkal in partial ful�lment of the requirements for the award of the

Degree of Doctor of Philosophy in Information Technology is a bona�de re-

port of the research work carried out by me. The material contained in this Research

Thesis has not been submitted to any University or Institution for the award of any

degree.

(IT13F01, AJAY KUMARA M. A.)

Department of Information Technology

Place: NITK, Surathkal.

Date:

CERTIFICATE

This is to certify that the Research Thesis entitled VIRTUAL MACHINE

INTROSPECTION BASED MALWARE DETECTION APPROACH AT

HYPERVISOR FOR VIRTUALIZED CLOUD COMPUTING ENVIRON-

MENT submitted by AJAY KUMARAM.A, (Register Number: IT13F01) as the

record of the research work carried out by him, is accepted as the Research Thesis sub-

mission in partial ful�lment of the requirements for the award of degree of Doctor

of Philosophy.

Dr. Jaidhar C.D

Research Guide

Prof. G. Ram Mohana Reddy

Chairman - DRPC

Acknowledgment

I would like to thank all those people who have made this research work possible.

First and foremost, I would like to express my sincere thanks to my research guide

Dr. Jaidhar C.D., Information Technology Department, for his guidance, suggestion

throughout my research work.

I express heartfelt thanks to my Research Progress Assessment Committee (RPAC)

members Dr. Pathipati Srihari and Dr. Jidesh P, for their valuable suggestions and

constant encouragement to improve my research work.

I sincerely thank all teaching, technical and administrative sta� of the Information

Technology Department for their help during my research work.

I would like to thank my parents and my brothers Mr. Kumar A, Mr. Shivraj

M. A, and Mr. Shashi kumar A, for their exhaustive support, encouragement and

inspiration. Without them, surely, this research work would not have been possible.

Place: Surathkal Ajay Kumara M.A

Date:

i

Abstract

Cloud computing enabled by virtualization technology exhibits a revolutionary

change in information technology infrastructure. The hypervisor is a pillar of virtu-

alization and it allows to abstract the host or bare hardware resources to the Virtual

Machines (VMs) which are running on the virtualized environment. As the VMs are

easily available for rent from the Cloud Service Provider (CSP) that are a prime tar-

get for malignant cloud user or an adversary to launch the attacks and to execute

the sophisticated malware by exploiting the identi�ed vulnerability present in it. In

addition, the proliferation of unknown malware exposes the limitations of traditional

and VM-based anti-malware defensive solutions. These motivated the development

of secure hypervisor or Virtual Machine Monitor (VMM) based solutions. The Vir-

tual Machine Introspection (VMI) has emerged as a �ne-grained out-of-VM security

solution to detect the malware by introspecting and reconstructing the volatile mem-

ory state of the live guest Operating System (OS) by functioning at VMM. However,

VMM-based introspection solutions present a number of limitations, including the

well-known semantic gap issue.

In this work, as a �rst proposed work (methodology) we study the limitation of

existing host-based security solution. To address this issue, we proposed Virtual Ma-

chine and hypervisor based Intrusion Detection and Prevention System (VMIDPS)

for virtualized environment to ensure the robust state of the VM by detecting and an-

alyzing the rootkits as well as other attacks on live monitored guest OS. The VMIDPS

leverages cross-view based technique for detection and identi�cation of intrusion at

VM. The experimental results showed that the VMIDPS successfully detected the

Windows based rootkits, and Denial of Service (DoS) attack on Monitored VMs.

However, the main limitation of this approach is that it uses an agent-based solution

on each of the individual Monitored VM to obtain the run state of the guest OS.

In the second proposed work (methodology), we study the limitation of the prior

VMI technique that is not intelligent enough to read precisely the manipulated se-

mantic information on their reconstructed high-level semantic view of the live guest

OS at VMM. To e�ectively address this issue, we proposed VMI-based real-time

i

malware detection system called Automated-Internal-External (A-IntExt) system. It

seamlessly introspects the untrustworthy Windows guest OS internal semantic view

(i.e., processes). Further, it checks the detected, hidden as well as running processes

(not hidden) as benign or malicious. The prime component of the A-IntExt system

is the Intelligent Cross-View Analyzer (ICVA) that leverages the novel Time Inter-

val Threshold (TIT) technique for detecting the hidden-state information from the

internally and externally gathered run state information of the Monitored VM. Ex-

perimental results showed that, we can e�ectively detect and manually analyze the

stealthy hidden activity of the malware and rootkits, including measurement with

Windows benchmark programs.

In the third proposed work (methodology), we have further extended the A-IntExt

system as an advanced VMM-based guest-assisted Automated Multi-level Malware

Detection System (AMMDS) that leverages both VMI and Memory Forensic Analy-

sis (MFA) techniques to predict early symptoms of malware execution by detecting

stealthy hidden processes on a live guest OS. The AMMDS generalize the cyber phys-

ical system application that is functioning at introspected guest OS. More speci�cally,

the AMMDS detects and classi�es the actual running malicious executables from the

semantically reconstructed executables (i.e., .exe) the process view of the guest OS.

The two sub-components of the AMMDS are: Online Malware Detector (OMD) and

O�ine Malware Classi�er (OFMC). The OMD recognizes whether the running pro-

cesses are benign or malicious using its Local Malware Signature Database (LMSD)

and OMS. The OFMC classi�es unknown malware by adopting machine learning tech-

niques at hypervisor. The AMMDS has been evaluated by executing large real-world

malware and benign executables on to the live guest OSs. The evaluation results

achieved full detection accuracy in classifying unknown malware with a considerable

performance overhead.

In the fourth proposed work (methodology), we have systematically evaluated

other shortcomings of our proposed A-IntExt system and AMMDS. In this work, we

further extended the A-IntExt system by implementing Hybrid Feature (HF) selection

technique that uses representative instances of other individual feature selection tech-

niques of the corresponding feature set that were extracted from the detected hidden

and dubious executables of infected memory dumps of the introspected guest OSs.

ii

Further, the proposed approach has been validated with other public benchmarked

datasets at VMM. The AMMDS also performs o�ine detection of malware, however,

it fails to address the over-fitting issue that plagues many machine learning tech-

niques. In this work, we precisely address the over-fitting issue by dividing both

generated dataset (VMM level) and benchmarked datasets as training, testing and

validation sets. The evaluation results showed that proposed approach is pro�cient

in detecting unknown malware with high detection accuracy on both generated and

benchmarked datasets.

In the �fth work, the execution time of the MFA tools such as Volatility and

Rekall is measured and compared for the di�erent RAM dump sizes. The motivation

behind this works is that RAM dump capture time and its analysis time in real

time are highly crucial if an IDS depends on data supplied by the MFA tool or VMI

tool. Furthermore, analysis of malware based on the infected memory dump is also a

primary for an IDS. In this context, the evaluation conducted on memory dumps of

both Linux and Windows VMs that are captured using open source VMI tool called

LibVMI.

iii

Contents

List of Abbreviations viii

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Cloud Computing and Virtualization 1

1.2 Hypervisor . 2

1.3 Intrusion Detection and Prevention System 3

1.3.1 Hypervisor-based Intrusion Detection System 3

1.4 Types of Malware and Rootkit . 4

1.5 Virtual Machine Introspection . 5

1.6 Memory Forensic Analysis . 7

1.7 Motivation . 8

1.8 Dissertation Statement and Contributions 9

1.8.1 Research Objectives . 9

1.9 Research Contributions . 10

1.10 Outline of the Thesis . 13

2 Literature Survey 15

2.1 VMM-based Intrusion Detection System 15

2.2 VMI Perspective . 17

2.3 MFA Perspective . 22

2.4 Machine Learning Technique Perspective 25

2.5 Outcome of Literature Survey . 29

iv

3 Hypervisor based Intrusion Detection and Prevention System 31

3.1 System Design . 31

3.1.1 File Integrity Veri�cation . 33

3.1.2 Signature based Intrusion Detection System 34

3.1.3 Anomaly based Intrusion Detection System 34

3.1.4 Cross-View Analysis . 35

3.2 Experimental Setup and Results . 35

3.2.1 Linux rootkits . 36

3.2.2 Windows Rootkit . 38

3.2.3 DoS attack . 40

3.2.4 Port Scanning Attack . 40

3.3 Discussion . 41

3.4 Limitation of the In-and-Out-of-the-Box Virtual Machine Based IDPS 41

3.5 Summary of the Work . 43

4 VMI-based Stealthy Malware and Rootkit Detection System 44

4.1 Introduction . 44

4.2 Assumption and Threat Model . 46

4.3 Overview . 47

4.3.1 GVM-Introspector . 48

4.3.2 Guest Assisted Module . 51

4.3.3 Intelligent Cross-View Analyser 52

4.3.4 Online Malware Scanner . 56

4.4 Experimental Results and Evaluation 56

4.4.1 Experimental Setup . 56

4.4.2 Implementation . 57

4.4.3 Experiments and Results Analysis 57

4.5 Performance Overhead . 61

4.6 Discussion . 62

4.7 Summary of the Work . 62

5 VMM-based Automated Multi-level Malware Detection System 64

5.1 Introduction . 64

v

5.2 Overview of AMMDS . 68

5.2.1 Malware Detector . 70

5.2.2 Executable File Extractor . 70

5.2.3 Online Malware Detector . 70

5.2.4 O�ine Malware Classi�er . 72

5.3 Implementation and Evaluation . 74

5.3.1 Experimental Setup . 74

5.3.2 Implementation . 74

5.3.3 Dataset Creation and Use . 76

5.3.4 Evaluation and Results Discussion 76

5.3.5 Experimental Methods . 81

5.3.6 Evaluation Metrics . 82

5.3.7 Results Analysis . 83

5.3.8 Performance Overhead . 87

5.4 Discussion . 87

5.4.1 Comparison with Existing Work 89

5.5 Summary of the Work . 92

6 Leveraging Machine Learning Techniques to Detect and Characterize

Unknown Malware at VMM 93

6.1 Introduction . 93

6.2 System Design and Implementation 95

6.2.1 Feature Vector Generator . 95

6.3 Experiments and Datasets . 100

6.3.1 Datasets and Dataset Collection 100

6.4 Evaluation . 103

6.4.1 Performance Overhead . 107

6.4.2 Experimental Methods . 108

6.4.3 Evaluation Metrics . 111

6.4.4 Machine Learning Techniques 112

6.5 Analysis of Results . 114

6.5.1 Result Analysis of Generated Dataset 115

vi

6.5.2 Result Analysis of Benchmarked Datasets 124

6.5.3 Comparison of Results . 131

6.6 Discussion . 132

6.6.1 Limitations . 133

6.7 Summary of The Work . 135

7 Execution Time Measurement of Volatile Artifacts Analyzers 137

7.1 Introduction . 137

7.2 Motivation and Overview of HyIDS 138

7.3 Evaluation and Experimental Results 140

7.3.1 Detecting Kernel Level Rootkits 140

7.3.2 Virtual Machine RAM Dump Analysis using Volatility and Rekall142

7.3.3 Summary . 145

8 Conclusion and Future Work 146

Bibliography . 149

References 149

List of Publications 161

vii

List of Abbreviations

BFVT Benign Feature Vector Temporary

EXTpsc External Process Count

INTpsc Internal Process Count

MFVT Malware Feature Vector Temporary

SVM Semantic Value Manipulation

A-IntExt Automated-Internal-and-External System

AMMDS Automated Multi-level Malware Detection System

APT Advanced Persistent Threat

AUC Area Under Curve

AUC Area Under the Curve

BFV Benign Feature Vector

BLINK Backword Link

BNF Benign N-gram Feature

CPS Cyber Physical System

CS Chi-Square

CSP Cloud Service Provider

DKOM Direct Kernel Object Manipulation

DKSM Direct Kernel Structure Manipulation

viii

DLL Dynamic Link Library

DO Descending Order

DoS Denial-of-Service

DP Dubious Process

DPC Dead Process Count

DR Detection Rate

EFE Executable File Extractor

FFV Final Feature Vector

FLINK Forword Link

FN False Negative

FP False Positive

FPR False Positive Rate

FVG Feature Vector Generator

FVM Forensic Virtual Machine

GAM Guest Assisted Module

GVM Guest Virtual Machine

HF Hybrid Feature

HIDS Host based Intrusion Detection System

HP Hidden Process

HPC Hidden Process Count

HTM Hardware Transactional Memory

HyIDS Hypervisor based Intrusion Detection System

ix

IAT Interrupt Address Table

ICVA Intelligent Cross-View Analyzer

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IDT Interrupt Descriptor Table

IG Information Gain

KVM Kernel Virtual Machine

LMSD Local Malware Signature Database

MCC Matthews Correlation Coe�cient

MD5 Message Digest 5

MFA Memory Forensic Analysis

MFV Malware Feature Vector

MNF Malware N-gram Feature

Monitored VM Monitored Virtual Machine

Monitoring VM Monitoring Virtual Machine

N-F Nothing-Found

NF N-gram Frequency

OFMC O�ine Malware Classi�er

OMD Online Malware Detector

OMS Online Malware Scanner

OOB Out-of-Bag

OS Operating System

x

OSSEC Open Source Security Event correlator

P2P Peer-to-Peer

PE Portable Executable

PFR False Positive Rate

PID Process Identi�er

PN Process Name

PoC Proof of Concept

PPID Parent Process Identi�er

PS Process

RMS Root Mean Square

ROC Receiver Operating Curve

SCT System Call Table

SHA-1 Secure Hash Algorithm-1

SHA-256 Secure Hash Algorithm-256

SI-Requester State Information Requester

SIDS Signature based Intrusion Detection System

SMO Sequential Minimal Optimization

SVM Support Vector Machine

TIT Time Interval Threshold

TN True Negative

TP True Positive

TPR True Positive Rate

xi

VM Virtual Machine

VMI Virtual Machine Introspection

VMIDPS Virtual Machine and Hypervisor Independent Intrusion Detection

and Prevention System

VMM Virtual Machine Monitor

xii

List of Figures

1.1 Semantic gap of VMI . 6

3.1 Architecture of the VMIDPS for virtualized environment 32

3.2 KBeast rootkit �le compilation (a), rootkit hides port details (b), OS-

SEC alert message for rootkit injection(c) 37

3.3 Hacker Defender rootkit injection (a) OSSEC alert message for

Hacker Defender rootkit (b) . 39

3.4 OSSEC detected DoS attack as URI too long 40

4.1 The proposed VMI based A-IntExt system 47

4.2 Time interval threshold used by A-IntExt system 49

4.3 Hidden processes (a) dubious processes (b) details of Monitored VM

externally introspected (left side) and internally acquired (right side)

by the A-IntExt system after rootkit and stealthy malware injection on

Windows guest OS . 50

4.4 Simpli�ed _EPROCESS structure of Windows system (Florio 2005) . . 52

4.5 Online malware scanner . 54

4.6 The average time taken by the OMS to compute MD5, SHA-1, and

SHA-256 hashes for di�erent processes (5a). Time taken by OMS to

detect malware by cross-checking with LMD based on it's computed

hashes (5b) . 60

4.7 Performance impact of A-IntExt system on PCMark05 in detecting

hidden and malicious state information of Monitored VM for Windows

guest OS . 61

5.1 The proposed VMI based A-IntExt system 69

xiii

5.2 Flow chart of the AMMDS for detection of malware using OMD and

OFMC components . 71

5.3 The average time consumed by the OMD to generate SHA-256, SHA-

1, and MD5 hash digest for execution of di�erent types of malware

(4a). Time taken by the OMD to identify the known malware by cross-

checking with LMSD based on computed hash digest (4b) 79

5.4 Snapshot of OMD for identi�cation of malicious (not hidden) process

kelihos_dec.exe from OMS . 80

5.5 Snapshot of OMD for the detection of known malware by cross-checking

with LMSD . 80

5.6 Malware detection accuracy achieved by di�erent classi�ers based on

NGL CC and Odds Ratio feature selection techniques for three di�erent

feature length . 84

5.7 Comparison of performance of the classi�er under di�erent performance

metrics for the di�erent feature length recommended by NGL CC and

Odds Ratio feature selection techniques 86

5.8 Performance overhead of the AMMDS on PCMark05 in detecting hid-

den and dubious state information of Monitored VM 87

6.1 4 byte N-gram sequence extraction from an executable 96

6.2 Performance overhead of the A-IntExt system using PCMark05 bench-

mark . 107

6.3 Training phase and prediction phase of the A-IntExt system 109

6.4 OOB error rate comparison with di�erent tree size for HF selection

technique on the validation set of generated dataset 119

6.5 RMS error rate comparison with di�erent tree size for HF selection

technique on the validation set of generated dataset 119

6.6 ROC curves for feature selection techniques used by di�erent classi�ers

for L= 300 on the validation set of generated dataset 122

6.7 A-IntExt system malware detection evaluation using di�erent perfor-

mance metrics for L=300 on the validation set of generated dataset . 123

xiv

6.8 OOB error rate comparison with di�erent tree size for HF selection

technique on the validation set of benchmarked datasets 127

6.9 RMS error rate comparison with di�erent tree size for HF selection

technique on the validation set of benchmarked datasets 127

6.10 ROC curves for feature selection techniques used by di�erent classi�ers

for L= 300 on the validation set of benchmarked datasets 128

6.11 A-IntExt system malware detection evaluation using di�erent perfor-

mance metrics for L=300 on the validation set of benchmarked datasets 131

7.1 High level view of HyIDS architecture for virtualized environment . . 139

7.2 average coder rootkit module hidden at Domu1 VM the same de-

tected by out-of-the-box VMI solution LibVMI 141

7.3 average coder rootkit hidden module extracted by the Volatility

from raw of physical memory dump 142

7.4 AC rootkit infected module extracted by the Rekall from raw of physical

memory dump . 142

7.5 RAM Dump Analysis Time . 144

xv

List of Tables

3.1 Experimental testbed using OSSEC HIDS 35

3.2 List of Windows and Linux rootkits used in this experiments and de-

tected by our proposed approach . 42

3.3 Security attack scenarios experimented and detected by our proposed

approach . 42

4.1 Detection of hidden, dead and DPs by the A-IntExt system for Win-

dows guest OS . 58

4.2 Identifying an actual malicious process from the detected hidden pro-

cesses by the OMS of A-IntExt system on Windows guest OS 59

4.3 Identifying an actual malicious processes from detected and classi�ed

DPs by OMS of A-IntExt system on Windows guest OS 59

4.4 List and functionality of Windows rootkit 60

5.1 Execution of malware and benign executables on live Monitored VM

in di�erent experimental test cases 78

5.2 Identifying an actual malicious process from test-I of detected hidden

processes by the OMD of AMMDS 78

5.3 Identifying an actual malicious process from test-I of detected dubious

executables by the OMD of AMMDS 78

5.4 Confusion matrix . 83

5.5 TPR and FPR of di�erent classi�ers on di�erent feature length 85

5.6 Comparison of AMMDS with previous VMI-based malware detection

approaches . 88

xvi

5.7 Comparison of results with other VMM-based and non-introspection

based malware detection approaches that used machine learning tech-

niques . 90

6.1 Types of malware used in the experiments 101

6.2 The composition of generated dataset 102

6.3 The composition of benchmarked datasets 102

6.4 Execution of benign and malicious executables on live Monitored VMs

in di�erent experimental test cases for generating testing dataset at

VMM . 105

6.5 Execution of benign and malicious executables on live Monitored VMs

in di�erent experimental test cases for generating validation dataset at

VMM . 105

6.6 List of default (D) parameters used by the classi�ers on WEKA. The

Increased (I) values of default parameters are highlighted in bold . . . 115

6.7 Detection accuracy (%) of malware using di�erent feature selection

techniques on both testing and validation sets experiments of generated

dataset . 116

6.8 Experiment results of malware detection with di�erent feature selection

techniques for validation set of generated dataset 120

6.9 Detection accuracy (%) of malware using di�erent feature selection

techniques on both testing and validation sets experiments of bench-

marked datasets . 125

6.10 Experiment results of malware detection with di�erent feature selection

techniques for validation set of benchmarked datasets 129

6.11 Comparison of accuracy (%) for validation sets of generated and bench-

marked datasets for L=300 of HF selection technique 132

7.1 Experimental setup . 140

7.2 Real-world rootkit experiments under VMs 141

7.3 RAM dump analysis time of the Ubuntu VMs 143

7.4 RAM dump analysis time of Windows VMs 143

xvii

Chapter 1

Introduction

1.1 Cloud Computing and Virtualization

Cloud computing improves resource utilization while reducing infrastructural cost. It

is based on existing technologies such as service-oriented architecture, virtualization,

and utility computing. Virtualization is a key underlying technology for cloud com-

puting architecture. It facilitates sharing of physical machine resources such as CPU,

Memory, I/O and Network interface etc., among several VMs running on the same

physical machine using a special software layer called hypervisor or VMM. Sharing

of resources increases the critical security challenges for CSP. Protecting virtualized

resources of guest OS against sophisticated malware such as a virus, spyware, stealthy

rootkit, Trojan, polymorphic and metamorphic variants is a massive challenge for the

CSP (Takabi et al. 2010).

Virtualization technology allows to create and run multiple guest OSs concurrently

using physical hardware of the host system or bare hardware resources in a virtual-

ized infrastructure. Its function is to create virtual resources such as virtual CPU,

virtual network interface card, virtual memory etc., to assign for di�erent dedicated

VMs (Vollmar et al. 2014). Virtualization provides tremendous bene�ts and shar-

ing of hardware resources. However, it increases greater security risk and signi�cant

challenges for the CSP. Ensuring security portfolio among di�erent dedicated VM re-

sources is a massive challenge for CSP. With the advent of virtualization, traditional

security solutions are not designed by keeping virtualization in mind. Most of the

solutions are signature dependent that is not feasible to ensure the complete security

of virtualized resources on a virtualized cloud computing environment (Pearce et al.

2013).

1

The virtualization is classi�ed into two types that are full virtualization and para

virtualization. In case of full virtualization, the virtualization layer completely ab-

stracts VM or guest OS from the underlying hardware. The guest OS is utterly

unaware of its virtualized state and no modi�cations are needed. Further, virtual-

ization of sensitive and privileged instructions do not require hardware assistance as

well as OS assistance. All OS instructions are translated by the hypervisor and cache

them for future usage, whereas user instructions run without any modi�cation at na-

tive speed. It keeps VMs in an isolated environment which ensures security of the

VMs. Examples for full virtualization are VMware vSphere ESXi 6.5 and Microsoft

Virtual Server.

In para virtualization, the guest OS (the one being virtualized) is aware of its

virtualized state. The modi�cation is required at the OS kernel level to replace non-

virtualizable instructions into hyper-calls in order to establish direct communication

with a hypervisor. Interrupt handling and memory management are examples of

kernel operations. The open source Xen project is an example of para virtualization

(Vollmar et al. 2014; Horne 2007).

1.2 Hypervisor

Hypervisor or VMM is a low-level software program that emulates or abstract physical

hardware resources such as CPU, Memory, Disk, Network Interface Card, I/O to

multiple guest OSs in real-time which are running on the same host OS or bare

hardware. The hypervisor has full control over entire virtual resources of the guest

OSs. In general, the hypervisor acts as a bedrock between the VMs and the physical

hardware. The hypervisor broadly classi�ed into two types: Type-1 hypervisor and

Type-2 hypervisor.

The Type-1 hypervisors run directly on the bare system hardware. For example

Xen Hypervisor, VMware vSphere ESXi 6.5, Citrix-Xen Server, Microsoft-Hyper-V

2008 R2 etc. Type-2 hypervisors run on a host OS to emulate host machine hardware

resources to VMs. For example, KVM hypervisor, Oracle Virtual Box and VMWare

Player are Type-2 hypervisors (Vollmar et al. 2014).

2

1.3 Intrusion Detection and Prevention System

The term "Intrusion" can be de�ned as an unauthorized attempts to access or com-

promising con�dentiality, integrity and availability by bypassing the existing security

defenses solution to disrupt normal operation of a computer system or network sys-

tem (Scarfone and Mell 2007). Intrusion Detection System (IDS) is a type of security

measure used to detect intrusions automatically and alert administrators. Intrusion

prevention is also security measure used to prevent the identi�ed intrusion before the

intrusion trespass. Intrusion Detection and Prevention Systems (IDPS) is a process

of continuous monitoring of incoming and outgoing tra�c and events occurring on

an OS or network to detect and prevent security threats, attacks in a timely manner

without human intervention (Modi et al. 2013).

1.3.1 Hypervisor-based Intrusion Detection System

The hypervisor is a software component used to ensure sharing of host system re-

sources in a virtualized environment among VMs. Computing security in hypervisor

provides secure virtualization throughout its life cycle, including development, im-

plementation, provisioning, de-provisioning, and management. Securing hypervisor,

VMs, and virtual switch is an active research area. Recent attempts made in the di-

rection of computing security in hypervisor are discussed in this Section (Patel et al.

2012).

Hypervisor creates VMs as per the speci�cations chosen by the CSP on the host

system. The VMs running on the hypervisor access the hardware resources of host

system via hypervisor in their life time. Communication between any VM with any

other VM in a virtualized environment is also through the hypervisor. Because the

hypervisor has full control over host system resources allocation to VMs and it can

directly access the memory allocated to guest VMs. This enables malicious VMs to

exploit vulnerabilities of the hypervisor to attack the hypervisor or another VM. The

hypervisor vulnerabilities are most dangerous because the malignant user can leverage

the vulnerabilities of the hypervisor to launch an attack or compromise the entire host

system (Jin et al. 2011). By compromising the hypervisor, the malignant user can

directly steal the con�dential data present in the host system or modify the software

3

to disrupt the normal operation of the entire virtualized environment.

1.4 Types of Malware and Rootkit

Due to the propagation of cloud computing, VMs are increasingly becoming attractive

targets for cyber crooks due to easy access from CSP (Pearce et al. 2013). The

current generation of malware uses code obfuscation techniques (Lin and Stamp 2011)

and rootkit functionalities (Goudey 2012b) to subvert most of the existing in-host or

VM-based anti-malware security solutions to gain privileged access to the targeted

machine. With successful penetration, malware operates by leveraging uncovered

vulnerabilities of the guest OS to perform illegitimate activities, and also attack other

VMs running on the same virtualized infrastructure. Preserving the VMs by detecting

such sophisticated malware is a challenging task for the CSP (James 2010). Malware

are classi�ed into several types based on their di�erent behavioral characteristics. The

taxonomy of discriminative malware is classi�ed as follows:

� Trojan horse: It is a piece of the program, which looks legitimate, but is

malicious. Its objective is to install other malicious applications on the victim

computer to be controlled by cyber-crooks to steal con�dential information.

� Virus: A virus is a program, that propagates by interpolating a copy of itself

to another program and becomes a part of it.

� Worm: A worm is a self-replicating malicious program which exploits the vul-

nerabilities on a target system.

� Spyware: It secretly gathers Internet usage and con�dential information from

the victim machine.

� Metamorphic and Polymorphic: Malware writer of these types use multiple

transformation techniques like code permutation, shrinking and renaming, etc.

Once this malware infects the victim machine, it has the ability to change its

code as it propagates.

� Backdoor: Once a backdoor infected, it additionally installs other spyware;

allows an attacker to control the entire victim machine.

4

� Ransomware: It prevents usage of accessing the system from an end user

either by encrypting or holding user con�dential �les for ransom.

� Botnet: Botnet uses rootkit-based threads to hide its presence once installed. It

acts as malware downloader by establishing its own unstructured P2P networks

to perform click fraud activity.

� Stealthy rootkits: Rootkits are one type of malware that runs at highest priv-

ileges access of OS (kernel or ring `0') by exploiting the security weakness of the

system. Rootkits tamper the integrity of the OS by stealthy modifying critical

kernel data structure of the OS. They maintain a persistent and undetectable

presence on the victim system. Stealthy rootkits are able to hide processes or

programs or �les or ports or directories etc., (Sparks and Butler 2005). The

rootkit deviates the normal behavior of the system by injecting malicious code

into an OS or application software. Some of the rootkits hide themselves to

evade the security check of anti-malware solution (Kim et al. 2012).

Rootkits are mainly classi�ed into user-mode rootkits (application-level) and

kernel-mode rootkits (Hwang et al. 2013). The user-mode rootkits modify or

intercept OS critical �les to hide themselves since they unable to modify kernel

structure directly. For instance, executable �les, system libraries, and Dynamic

Link Library (DLL) �le on Windows OS. Kernel-mode rootkits can alter the

code of the core OS i.e. kernel device driver, System Call Table (SCT), kernel

data structure etc. The severity of the kernel-mode rootkits is increasingly high

as compared to user-mode rootkits as they modify OS source code and they are

di�cult to detect due to their hidden existence. Some rootkits achieve Direct

Kernel Structure Manipulation (DKSM) attack (Prakash et al. 2015; Bahram

et al. 2010). They have the capacity to foil or bypass In-the-box solution and

the rootkits are often directly alter the kernel memory using the /dev/kmem

memory device.

1.5 Virtual Machine Introspection

Traditional in-host or VM-based malware defensive solutions are not virtualization-

aware, as these solutions often rely on the signature-based technique, and are vulner-

5

able to unknown malware that uses zero-day exploits. These techniques achieve poor

performance when attempting to identify new or unknown malware. The growing

evasion capability of new and unknown malware needs to be countered by analyzing

the behavior of the malware dynamically to address this issue. The VMI (Gar�nkel

et al. 2003) has evolved as a promising security solution to introspect any untrustwor-

thy guest OS by operating at the VMM. It performs an indirect investigation of the

untrustworthy monitored VM in real-time by operating at the hypervisor in a virtu-

alized cloud environment. The useful isolation and inspection properties of the VMM

ensure that the VMI-based security solutions are secure and tamper resistant. For

example, an isolation property leveraged by the VMI con�rms that the malicious

software running on the introspected VM cannot access or tamper the VMI solution

running on the VMM, even though the malware has completely corrupted the guest

OS. The inspection property facilitates the VMI to examine the entire run state

of the guest OS such as memory, CPUs, registers, I/O, etc., (Zhao et al. 2009).

Figure 1.1: Semantic gap of VMI

When the VMI introspects a guest OS, it intercepts its memory state to recon-

struct the guest OS abstraction from the raw memory. However, intercepting low-level

details of the current run state of the guest OS and converting it into a meaningful

form (e.g., processes, modules, system calls, etc.) presents an obstacle called as the

semantic gap (Dolan-Gavitt et al. 2011; Jain et al. 2014; Fu and Lin 2013). Figure 1.1

shows the semantic gap of the VMI. The existing VMI-based techniques are not e�-

6

cient enough to reconstruct the high-level rich semantic views of the large kernel data

structure (e.g., registry, �le system, kernel object, etc.) of the introspected VM that

is constantly manipulated by the sophisticated malware and rootkits (Prakash et al.

2013). To develop such a pro�cient introspection system, the VMI developer requires

tremendous manual e�ort and an extensive knowledge of the guest OS (Bauman et al.

2015a). The prime function of the VMI is to perform early detection and prediction

of malicious executables so as to prevent it from tampering with other essential data

structures by examining and analyzing memory content of the live Monitored VM.

However, the existing VMI techniques are not intelligent enough to read precisely the

manipulated semantic information on their reconstructed high-level semantic views of

the live Monitored VM.

1.6 Memory Forensic Analysis

The VMI has evolved as a base for various novel methodologies in the �elds of digi-

tal forensics and cyber security (Poore et al. 2013). In digital forensics �eld, digital

investigator prime concern is to detect and analyze the digital artifacts in order to

investigate the damage caused by the unauthorized or malicious activities. Live in-

vestigation and dead investigation are two basic categories of a digital forensics in-

vestigation. Basically, a live investigation is performed on a system while the system

is in running state. Inspecting a system while it is in the active state provides vital

information in light of the proof that is available. For example, data related to opened

�les, active processes, opened ports, network connections statistics, and volatile mal-

ware etc., can be retrieved from a running machine (Poisel et al. 2013). It plays a

crucial role in digital investigations and incident response. Thus, live investigation

(memory forensics) sometimes referred as a live incident response. In addition, it can

also be used to spot remnants of kernel objects. For example, exited processes details

can be extracted even after they have departed from the active process list. Apart

from extracting and analyzing aforesaid artifacts, it can also assist in identifying the

malware, analysis of malware and reverse engineering.

The dead investigation is done while a system is in o� state. It needs an image

of the system storage media to analyze and to extract data from it. Since dead

7

analysis deals with static data it is easier to investigate than a live investigation in

which state of the system constantly running and changing. Dead investigation on

VM image is as same as an investigation of a physical system image. However, the

dead investigation does not provide crucial information like a live investigation. In

our work live investigation techniques such as VMI and Memory Forensics Analysis

(MFA) are employed.

The possibility of leveraging the MFA with the VMI provides more �exibility to

bridge the semantic gap by examining the rich semantic views of the kernel data

structures based on the memory dump of di�erent live guests' OS (Hay and Nance

2008; Dolan-Gavitt et al. 2011). Advantages of using VMI with digital forensics are

described in (Poore et al. 2013; Nance et al. 2009). However, most of the MFA tools re-

quire a memory dump to perform memory forensics. In a virtualization environment,

frequent acquisition of live VM's memory dump, which requires temporary suspen-

sion of the running VM to seize the consistent memory state, leads to performance

degradation. Furthermore, there is a lack of digital evidence on the captured volatile

artifacts, possibly due to malware infection. In addition, one of the main drawbacks

of the MFA-based technique is that it involves extensive manual e�ort for malware

analysis.

1.7 Motivation

The proliferation of modern malware or virulent software like a virus, worms, trojans,

botnets, rootkits etc., are designed by a cyber criminal to perform nefarious tasks in

the normal run state of the computer system by evading traditional in-host based anti-

defensive solution (Srinivasan et al. 2011). Example Agobot variant rootkit contains

spiteful logic to detect and remove more than 105 antivirus (F-Secure 2003). Propa-

gation of these intrusive programs precisely target individuals CSP, governments and

their data to perform disruptive impact on their business by initiating a variety of

attacks such as Distributed Denial of Service attacks (DDoS), code injection attack

etc. A recent survey states that over 500 chief executives and IT managers are hes-

itant to move their business to the cloud due to fear of security threats. Further,

they lose their control of their data once transferred to cloud (Goudey 2012a). In

8

addition, based on the 2016 Symantec threat report (Symantec 2016), Symantec dis-

covered more than 430 million new unique pieces of malware by the end of 2017,

this number has grown up to 36% more from their previous year report. However,

detecting a volume, acceleration of malware and Advanced Persistent Threats (APT)

is ever present challenges in the �eld of information security. Malware writer expose

the vulnerability of the target OS by adopting code obfuscation techniques such as

polymorphism and metamorphism during the development of malicious software.

1.8 Dissertation Statement and Contributions

The goal of this research work is to design, implement, evaluate a real time VMM-

based an advanced VMI system to detect real-world malware and rootkits on the live

introspected system by leveraging MFA techniques and adopting machine learning

techniques at VMM to secure the run state of the VM on virtualized cloud computing

environment.

1.8.1 Research Objectives

� Propose hypervisor and virtual machine dependent intrusion detection and pre-

vention system for detection of rootkits on guest OS.

� Propose a VMI-based stealthy malware and rootkit detection system by analyz-

ing semantic views of the guest OS.

� Propose an automated multi-level malware detection system to detect and clas-

sify unknown malware based on a reconstructed semantic views of the executable

on the live introspected guest OS in a virtualized cloud computing environment.

� Introduce novel VMM-based malware detection system by leveraging machine

learning techniques and measure its pro�ciency by using both generated and

benchmarked malware datasets.

� Measure and compare the execution time of volatile artifacts analyzers (MFA

and VMI) of the live introspected guest OSs.

9

1.9 Research Contributions

Accordingly, the following contributions of this research study are available to the

research community in the form of journal and conference publications.

� Hypervisor based Intrusion Detection and Prevention System (Chap-

ter 3). In this work, we proposed In-and-out-of-the-box Virtual Machine and

hypervisor based Intrusion Detection and Prevention System (VMIDPS) for

virtualized cloud environment to ensure robust state of the VMs by detecting

followed by eradicating rootkits as well as other attacks on the VMs. The main

aim of this approach is to safeguard VMs and hypervisor by detecting and erad-

icating the intrusions at VM level. The proposed approach leverages cross-view

based technique for real-time identi�cation of intrusions by using the �le in-

tegrity veri�cation and signature-based intrusion detection techniques. It uses a

popular open source Host-based Intrusion Detection System (HIDS) called Open

Source Security Event Correlator (OSSEC) (Bray et al. 2008) to detect and an-

alyze the events in real-time. The experiments were conducted by executing

real-world Linux and Windows based rootkits. Denial of Service (DoS) attack

and �les integrity veri�cation tests are successfully detected by the proposed

approach while recording the identi�ed intrusion details onto the log �les.

� VMI-based Stealthy Malware and Rootkit Detection System (Chap-

ter 4). We designed, implemented and evaluated the VMI-based A-IntExt

system for a virtualized environment that address the semantic gap of the VMI.

It seamlessly introspects the untrustworthy Windows guest OS internal seman-

tic views (e.g., processes) to detect the hidden, dead, and malicious processes

on the live introspected guest OSs. Further, it checks the detected, hidden

as well as running processes (not hidden) as benign or malicious. The prime

component of the A-IntExt system is the ICVA, which is responsible for de-

tecting hidden state information from internally and externally gathered state

information of the monitored guest OS. The A-IntExt system has been evalu-

ated by using publicly available Windows malware and real-world rootkits to

measure the detection pro�ciency as well as execution speed. The experimental

results demonstrated that A-IntExt system is e�ective in detecting malicious

10

and hidden state information rapidly with maximum performance overhead of

7.2%.

� VMM-based Automated Multi-level Malware Detection System (AM-

MDS) (Chapter 5). Next, we extended the A-IntExt system as AMMDS to

detect and classify malware on the live introspected system at VMM. The pre-

sented AMMDS considers the Cyber Physical System (CPS) as an application

which is functioning in the virtualized environment (e.g., guest OS) targeted

by malicious executables. In order to secure the critical infrastructure of the

virtualized cloud environment, the AMMDS leverages both the VMI and MFA

techniques to perform three levels of investigation. As the �rst level of investi-

gation, it performs introspection and precisely detects the semantic view of the

hidden and malicious process to estimate the perfect infection state of the live

introspected guest OS. It seizes the execution state of the introspected guest OS

by capturing the memory dump of the monitored guest OS soon after it identi�es

the unusual behavior and then instantly reconstructs and extracts executables

from the acquired memory dump to carry out next level of investigations. As

a second level of investigation, the OMD component of the AMMDS examines

the extracted executables to ascertain the malicious one. The OFMC com-

ponent of the AMMDS analyses the extracted executables in order to identify

unknown or zero-day malware using machine learning techniques as a third level

of the investigation. The AMMDS has been evaluated by using real malware

datasets on the virtualized environment established using the Xen hypervisor.

Our empirical results showed that AMMDS is robust in detecting and classify-

ing unknown malware that can evade VM-based security solution, and it only

incurs the acceptable moderate run-time overhead of 5.8%.

� Leveraging Machine Learning Techniques to Detect and Character-

ize Unknown Malware at VMM (Chapter 6). In this approach, we have

systematically evaluated other shortcomings of our proposed A-IntExt system

and AMMDS. For example, the reconstructed semantic details by the A-IntExt

system are available in a combination of benign and malicious states at the

hypervisor. In order to distinguish between these two states, an extensive man-

11

ual analysis is required by the early A-IntExt system when a large number of

malware infected on the live guest OSs. Even though this issue was tackled by

AMMDS by performing both static online and o�ine malware detection and

classi�cation, AMMDS is inadequate to address the other common issue called

over-�tting that plagues many machine learning techniques that degrade the

detection accuracy of the classi�er. In this approach, we have validated the A-

IntExt system with other tested benchmarked malware datasets not generated

by us. This validation strengthens the trustworthiness and con�rms how well

our proposed A-IntExt system worked on other public benchmarked malware

datasets at VMM. Further, the extended A-IntExt system implemented with

HF selection technique that uses representative instances of other individual

feature selection techniques such as Information Gain (IG), N-gram Frequency

(NF), and Chi-Square (CS). The HF selection technique uses the corresponding

feature set of other individual feature selection techniques that were extracted

from the detected hidden and dubious executables of infected memory dumps of

the introspected guest OSs. Further, we used six well-known machine learning

techniques at VMM from VMI perspective to precisely detect unknown mal-

ware from the semantically reconstructed executables. In addition, we precisely

address over-�tting issue by dividing both generated dataset (VMM level) and

benchmarked datasets as training, testing, and validation sets. The evaluation

results showed that our proposed approach is pro�cient in detecting unknown

malware on both the datasets by achieving the detection accuracy 99.55% with

0.004 False Positive Rate (FPR) on a generated dataset including 6.3% of per-

formance overhead.

� Execution Time Measurement of Volatile Artifacts Analyzers (Chap-

ter 7). The VMI has emerged as a promising approach that monitors run the

state of the VM externally from the hypervisor. However, the main limitation

of the VMI lies with the semantic gap. An open source tool called LibVMI

address the semantic gap. The MFA tool such as Volatility can also be used

to address the semantic gap. But, it needs a memory dump (RAM) as input.

Memory dump acquires time and its analysis time is highly crucial if the IDS

12

depends on the data supplied by the MFA or VMI tool. Furthermore, memory

analyzer accuracy is also a primary for the IDS. Thus, our aim is to 1) Measure

the time required to capture a live VM RAM dump using VMI tool. 2) Mea-

sure the performance of the MFA tool such as Volatility in terms of execution

time elapsed to analyze the RAM dumps of di�erent size. 3) Compare the per-

formance of the Volatility with another open source MFA tool called Rekall in

terms of execution speed. In this work, live VM RAM dump acquires time by

the LibVMI is measured. In addition, memory dump analysis time consumed

by the Volatility is measured and compared with Rekall. Further, Volatility and

Rekall are compared with LibVMI. It is noticed that examining the volatile data

through LibVMI is faster as it eliminates memory dump acquire time.

1.10 Outline of the Thesis

This dissertation is organized into eight chapters, including this introductory chap-

ter. In chapter 2, we present a detailed literature survey of Hypervisor based IDS,

VMI, MFA, and machine learning techniques. Chapter 3 presents Hypervisor based

Intrusion Detection and Prevention System for rootkit detection. In chapter 4, we pre-

sented the design, implementation, and evaluation of the VMI based A-IntExt system

and proposed approach is evaluated using publicly available rootkits and malware.

In chapter 5, we further extended A-IntExt System as AMMDS that performs detec-

tion of malware using both OMD and OFMA using machine learning techniques. In

chapter 6, we further extended A-IntExt system by leveraging machine learning tech-

niques at VMM. In this approach we precisely addressed the over-fitting issues

of machine learning techniques by dividing dataset as training, testing and validation

set. The evaluation of this proposed approach is experimented by executing a large

real-world malware and benign executables at di�erent versions of Windows guest

OS to generate VMM based malware dataset (generated dataset). In addition, the

feasibility of the proposed approach is evaluated with other benchmarked datasets. In

chapter 7, we presented HyIDS framework to perform execution time measurement of

volatile artifacts analyzer for detection and analysis of malware and rootkit. Finally,

we conclude this dissertation and describe future directions of this research work in

13

chapter 8.

14

Chapter 2

Literature Survey

In this chapter, we present a detailed literature survey of proposed approaches speci�c

to the concept of Hypervisor based IDS, VMI, MFA, machine learning techniques for

malware detection.

2.1 VMM-based Intrusion Detection System

The VMs constantly interact with the hypervisor during their life time. This enables

malicious VMs to exploit vulnerabilities of the hypervisor to attack hypervisor or to

attack another VMs. Attacking hypervisor through the direct exploitation of hyper-

visor vulnerabilities is known as hypervisor attacks. In order to detect hypervisor

attack the IDS needed to positioned at hypervisor level to detect targeted attacks

and to safeguard VM at the hypervisor level.

Bharadwaja et al. (2011) proposed collaborative IDS named as Collabra. Malicious

applications running on the VM make use of hyper-call to misuse hyper-call interfaces

to compromise guest OS kernel followed by host OS kernel. It is integrated with VMM

for dynamic �ltering of malicious hyper-calls to defeat sophisticated attacks. Collabra

classi�es the hyper-calls raised by the VM as malicious or non-malicious by performing

integrity check and hypervisor classi�cation mechanism.

Nikolai and Wang (2014) proposed a Hypervisor-based Cloud Intrusion Detection

System (HCIDS) that leverages the virtualization technology at the cloud environ-

ment. The main advantage of this approach is the detection of attacks can be achieved

by monitoring the activities outside the Monitored VM. Moreover, it also e�cient to

detect insider attacks. The HCIDS can be easily integrated with the existing IDSs to

make them advance in security aspects within the cloud environments. The compar-

15

ative analysis justi�ed that the developed architecture does not need any additional

software to examine the state of the VM based on the details accumulated in memory,

registry, and I/O devices.

Wang and Karri (2013) proposed a VMM based prototype called NumChecker. Its

main task is to identify the control-�ow alteration made by the kernel-mode rootkits to

a system call in a guest VMs. It does this task by making use of Hardware Performance

Counters (HPCs). These HPCs are employed to count automatically the number of

speci�c hardware events that occur during system call execution. HPCs reduce the

checking cost and also strengthen the tamper-resistance. NumberCheker prototype

implemented and evaluated on Linux with Kernel based Virtual Machine (KVM)

hypervisor.

Xie andWang (2013) proposed a rootkit detection technique for VMs demonstrates

that extracting signi�cant information and reconstruction of extracted information at

the hypervisor enables the identi�cation of rootkits. Since VMs are managed by the

hypervisor, VM kernel symbol table can directly access from hypervisor which aids in

reconstructing execution state of the VMs. Typical examples of such reconstructed

state information are: active network connections, opened ports, running processes,

and opened �les. Examining the various reconstructed running state information

allows to ascertain both the concealed information as well as the abnormal state.

Similarly, (Schmidt et al. 2011) proposed an another approach that has dual features.

It has been designed and implemented for the malware detection and kernel rootkit

prevention inside the cloud computing environments. The proposed method provides

a safe environment to identify malware during the runtime and thwarts hazard by

not allowing it to get installed in the operating system kernel. However, to detect

the malware system calls are captured in real-time upon e�ciently utilizing the ex-

isting cloud resources associated with di�erent analysis engines. Thus, loading of

unauthorised modules are restrained.

Hwang et al. (2013) proposed out-of-the-box rootkit detection system based on

the hypervisor for cloud computing environments. This approach makes use of vIPS

platform to operate as a virtual security appliance. The detection system can inves-

tigate the rootkits within VM without deteriorating for the liability caused by the

rootkits. The designed method overcomes the drawbacks of in-the-box rootkit detec-

16

tion system. Since it is agent-less, no need to install anything inside the target VM

to identify the rootkits. Rhee et al. (2009) presented a system which e�ciently deals

with the inhibiting dynamic data kernel attacks. This is accomplished by employing

VMM-based monitoring to permit an unauthorized memory accesses on protected ker-

nel data. Further, essential VM introspection techniques were considered to track the

protected data dynamically in real-time. Besides, the QEMU (Quick Emulator) VMM

was also implemented to defeat dynamic data kernel attacks successfully. Therefore

the designed method manifest to have the ability to fortify against the rootkit attacks

without the modi�cation occurred to the under-layered operating system.

CXPInspector monitoring system uses out-of-the-box approach to observe and

analyze the VM state (Willems et al. 2013). It is constructed based on the idea of

Currently eXecutable Pages (CXP), which has the ability to observe the activities of a

program or even an entire OS. CXPInspector has the capacity to analyze the behavior

of both user-mode and kernel-mode rootkits execute on 64-bit processor machine.

Further, it has the ability to provide a performance pro�le of a single program or

a complete OS. CXPInspector leverages EPT technology in order to virtualize the

memory management unit and ensures address space partitioning.

To detect the malicious drivers, a simple static analysis approach has been designed

and evaluated (Musavi and Kharrazi 2014). This method was proposed based on two

observed facts. The �rst fact is that generally, rootkits penetrate into Windows OS

through kernel drivers. The second fact is that usually genuine kernel-level code uses

slight obfuscation techniques as compared to the malicious kernel-level code. The

authors have described the modern developments in implementing the of kernel-level

rootkits. In addition, the authors have proposed a set of features to measure the

kernel drivers malicious behavior.

2.2 VMI Perspective

The VMI was pioneered by Gar�nkel and Rosenblum by developing a prototype called

Liveware (Gar�nkel et al. 2003) for detection of an intrusion by examining the low-

level state of the guest OS from outside the VM. Since then, numerous e�orts have

focused on the signi�cant adoption of the VMI for malware detection and analysis

17

(Dinaburg et al. 2008; Jiang et al. 2007), process monitoring (Srinivasan et al. 2011),

rootkit detection (Rhee et al. 2009), etc.

Several out-of-VM security approaches have also proposed to monitor and ensure

the protection of the introspected system while addressing speci�c security problems of

the guest OS. The Antfarm (Jones et al. 2006) approach tracks and implicitly obtains

the execution of the guest processes' information while functioning at the VMM. It

makes use of the CR3 register of the x86 architecture to store the page table directory

base address that corresponds to currently running process. The content of the CR3

register allows to ascertain process creation, switching, and termination. This binding

o�ers a view of all process dealing with events. The VMM can make use of Antfarm

to address the part of the semantic gap issue. Maximum hypervisor-based process

identi�cation techniques depend on the CR3 register content so that it catches the

fundamental OS-stage object life-cycle such as a process. Since Antfarm resembles

passive monitoring approach, it is incapable to assure interposition on events before

they occur.

Process Implanting is another VM introspection framework (Gu et al. 2011). It

implants a process from the host system into the Monitored VM to tackle the seman-

tic gap. The implanted process does its job stealthily on the guest OS and exits with

negligible negative impact. It uses a number of coordination and protection mecha-

nisms o�ered by the hypervisor to protect the implanted process as a tamper resistant

against the tricks used by the malware. This prototype is implemented and tested in

KVM hypervisor to demonstrate the Proof of Concept (PoC). The major drawback

of Process Implanting is that behavior of the implanted process is limited.

Lycosid (Jones et al. 2008) extended the Antfarm approach aimed to detect and

identify the hidden processes at the VMM based on the obtained trusted and untrusted

views of the guest OS processes. However, the employed cross-view analysis technique

(Wang et al. 2005) by the Lycosid depends on manual analysis that is incapable of

detecting the disguised processes1 that appear due to the malware.

The VMwatcher (Jiang et al. 2007) uses the guest view casting technique to ex-

ternally reconstruct the internal semantics views of the guest OS while functioning

1Disguised processes (Shevchenko 2007): These processes may appear as legitimate (eg,
svchost.exe) by attaching themselves to existing benign processes based on their injected mali-
cious code or by originating from a wrong directory path on the guest OS.

18

at the VMM. It uses the view comparison-based method to detect elusive malware

based on the discrepancy obtained between the internal and external views. However,

the results still do not help in detecting particular variants of the stealthy malware,

which use code obfuscation technique (Saleh et al. 2014).

Three models such as Out-of-Band delivery, In-Band delivery, and Derivation have

been proposed (Pfoh et al. 2009) to bridge the semantic gap. In Out-of-Band delivery

model, view extraction function knows the semantic knowledge prior to VMI begins.

During view generation, there is no need to run the VMs. The main disadvantage is

that it cannot be practically implemented as guest-portable. However, it facilitates

the integration of tools like Volatility that is capable to extract data from the acquired

memory dumps of the Monitored VM. The view-generating function of the In-Band

delivery makes uses of guest OS's knowledge to extract the data internally. The main

disadvantage of the In-Band delivery arises from the components that are vulnerable

to malware based attacks which have compromised the guest OS. Further, it does

not address the semantic gap rather avoids it. In case of derivation, the Monitored

VM data is gathered from the hypervisor by knowing hardware architecture semantic

knowledge. Some semantic knowledge can be gathered by understanding a speci�c

hardware architecture with monitoring the CPU control registers. So, this approach

is guest-portable.

VMI-PL (Westphal et al. 2014) is monitoring language developed to extract guest

OS related data. It is an out-of-the-box approach. In terms of functionality, LibVMI

is inferior as compared to VMI-PL. Even though VMI-PL o�ers extensive features, it

still faces glitches related to performance. Moreover, it does not deliberate e�ective

methods of creating the triggers by which forensically rigorous evidence cannot be

collected. This drawback consequences in the investigation may not be foolproof.

TxIntro is able to o�er timely, concurrent and consistent VM introspection by using

the support provided by the commodity Hardware Transactional Memory (HTM) (Liu

et al. 2014). TxIntro is utterly transparent and it can actively observe critical kernel

data structures updates. This is due to the usage of resilient atomicity provided by

HTM. TxIntro directly accesses guest VM data by leveraging a method called as core

planting that dynamically inserts a stealthy core to the guest VM.

XenAccess (Payne et al. 2007) is a monitoring library used to monitor the mem-

19

ory state as well as disk activities of the Monitored VM. XenAccess makes use of its

capabilities such as disk monitoring and virtual memory introspection to introspect

safely and e�ciently the execution state of the Monitored VM from out of the one

being monitored. Generally XenAccess functions on secure VM and it does not re-

quire any alteration either to the hypervisor or Monitored VM to view or introspect

the execution state of the Monitored VMs running on the same virtualized environ-

ment (VMM). XenAccess architecture has been designed by ful�lling the following

requirements such as 1) No extra alterations to the VMM or to the Monitored VM

or to the guest OS, 2) negligible performance impact, 3) Fast growth of new moni-

toring programs, 4) capable to observe any data on the guest OS and 6) monitoring

code is completely inaccessible to guest OS or Monitored VM. Similarly, patagonix

(Litty et al. 2008) ensure the security of the introspected VM at the hypervisor by

performing manual analysis of the reconstructed semantic view.

From another perspective, a number of VMM-based in-guest monitor techniques

(Gu et al. 2011; Fu et al. 2014) have also been explored to achieve better robustness

while leveraging the security advantages from an out-of-VM security approach.

Lare (Payne et al. 2008) pioneered the active monitoring approach by placing a

hook into an introspected system using the VMM-protected address space. These

hooks trap and analyze the events inside the guest OS and trigger the security ap-

plication of the trusted VM to take suitable action against the attacks. The main

limitation of this approach is its high overhead. In order to intercept particular events

whenever occur on the Monitored VM, it places a hook inside the guest OS that in-

vokes the security tool residing in Monitoring VM (trusted VM). The major drawback

of Lares is that communication cost is high during transfer of an event from one VM

to another via the hypervisor. Thus, Lares is unsuitable for �ne-grained active mon-

itoring.

The processes-out-grafting (Srinivasan et al. 2011) inserts the kernel modules into

the guest OS to relocate the suspect processes from the introspected VM on to a

secure VM, whereby the parallel running VMI tools can access the data structure of

the guest OS without an intervention of the untrusted introspected VM. However, the

proposed approach is limited to out-graft a single process.

The SYRINGE (Carbone et al. 2012) uses a guest-assisted function-call injection

20

technique to implant a function on to the introspected VM along with a localized

shepherding technique to con�rm the execution of the invoked guest code on to the

guest OS. However, this approach does not ensure the integrity of the data delivered

by the infected guest OS that was tampered by kernel-level attacks.

Secure In-VM (SIM) monitoring framework (Sharif et al. 2009) leverages hard-

ware virtualization and memory protection features to o�er same security bene�ts

of out-of-the-box monitoring approach. In other words, it utilizes hardware assisted

feature to place hook or In-VM monitor in a VMM-protected address space to ensure

the security of the Monitored VM while warranting the same level of security at the

VMM. It places a security monitor code inside the hypervisor protected virtual ad-

dress space and this is named as SIM virtual address space. Since SIM is hypervisor

protected, it can view the guest OS address space. However, applications running on

the monitored VM cannot view security monitor address space. The main limitation

of this technique is that it requires manual e�ort for detection of malicious processes

from their reconstructed high-level view.

Malware analysis platform should be transparent and extensible to defeat malware.

The transparent platform is essential so that malware cannot straightforwardly iden-

tify and evade it. The extensible platform is required to provide resilient support for

analysis e�cacy and heavyweight instrumentation. Malware analysis platform that

provides transparency and extensibility has been proposed by combining hardware

virtualization and software emulation (Yan et al. 2012). Hardware virtualization is

used to record the malware execution and software emulation (dynamic binary trans-

lation) is employed to analyze the obtained records. The objective of combining

hardware virtualization with software emulation is to simplify custom �ne-grained

malware analysis. A prototype implementation of this malware analysis platform is

named as V2E and its e�ectiveness is measured by using 14 real-world emulation re-

sistant malware as well as synthetic samples. However, a major limitation of V2E is

that current implementation is restricted only to a single core of guest environment.

Lightweight VMM (Nguyen et al. 2009) for malware analysis (MAVMM) eliminates

unimportant hypervisor modules to make the VMM as lightweight. It retains only

the modules which are necessary to monitor the behavior of malware. A major char-

acteristic of MAVMM are 1) transparent malware analysis system, 2) �xed malware

21

monitoring time and 3) rapidly restore to original status after completion of malware

execution. Even though it o�ers many bene�ts, it is hard to deploy widely in reality

and also it needs additional support from virtual technology.

Usually, shells are designed above an OS kernel. However, hypervisor layer shell

(HYPERSHELL) (Fu et al. 2014) has been proposed to demonstrate that shell can

also be designed below an OS. HYPERSHELL is a practical hypervisor layer guest

OS with centralized management, better automation and uniformity characteristic

Further, it possesses all of the functionality of the traditional shell. It automates the

guest OS management with no user accounts from the guest OS. Reverse System Call

(R-syscall) abstraction has been introduced in HPERSHELL to address the seman-

tic gap problem. Hypervisor programmers can make use of R-syscall abstraction to

improve guest OS management utilities without no semantic gap problem. Its trans-

parency feature straightforwardly permits several legacy utilities to be executed in

HYPERSHELL without any alteration. A major requirement of the HYPERSHELL

is that both guest OS kernel and the init process must be trustworthy. However, it

cannot be used as an e�ective security solution to monitor the critical applications,

especially when the OS kernel gets compromised. Since HYPERSHELL is designed

with a prime intention is to manage the guest OS from the hypervisor in the same

means as In-VM, it cannot consider as stealthy introspection approach. Another de-

mand of the HPERSHELL is that both Monitored VM running in the host OS to

have compatible syscall interface. Syscall Dispatcher of the HYPERSHELL makes

use of dynamic library interposition, and it neglects the syscall policy checking in the

dynamic loader. This results in preventing static linked native utility execution in

HYPERSHELL.

2.3 MFA Perspective

The possibility of incorporating MFA with VMI o�ers a number of advantages such

as, examination of rich semantic views of critical kernel data structure of all VMs

that are manipulated by operating system speci�c rootkits or malware. The use of

MFA at VMM aims to extract and investigate digital artifacts of semantic kernel data

structure of the introspected system. More importantly, it signi�cantly reduces the

22

development of introspection program of large kernel data structure by addressing

the semantic gap problem of VMI (Dolan-Gavitt et al. 2011). However, The forensic

investigation in a cloud environment is a more complex task because cloud forensic

still is in the infancy stage. Cloud computing forensics related problems, challenges,

issues are systematically examined including open challenges and future directions are

summarized in (Zawoad and Hasan 2013). Analysis results suggest that most of the

issues need to solve by the CSPs.

Mini VMs named as Forensic Virtual Machines (FVMs) (Shaw et al. 2014) are

able to analyze the memory space of other guest VMs. These FVMs are named

as lightweight because they consume nominal resources on the Xen virtualization

platform and naturally computationally less expensive to run. The main reason for

this is that they are in small size. FVMs are small VMs with VMI to discover the

symptoms of malware execution occurring on other VMs in real-time. Each FVM is

devoted to recognize only one symptom. Further, easy to inspect manually the vital

part of the code within the FVM because they are trivial in size. To make the FVMs to

communicate with other VM, Xen access control policy has been modi�ed. However,

it highlights the necessity of appropriate access control procedures that regulate VM

to VM access.

Sophisticate malware or kernel-mode rootkits main purpose is to tamper the kernel

data structure or kernel memory data. This questions the credibility of memory

analysis tool. Hence, there is a need of memory analysis tool study, particularly,

closed-source operating systems such as Window OSs. To address this question, an

experiential study conducted thoroughly on memory analysis tools particularly for

Windows OS (Prakash et al. 2015) and obtained empirical results demonstrated that

both signature-based and traversal-based analysis tools are inaccurate in providing

precise evidence even under truthful context. In addition, value equivalence directed

�eld mutation technique has been devised to investigate the manipulation attack

space. Experimental results show that these attacks are practically applicable and

are able to change much semantic values without being detected and cause adverse

consequence on the infected system.

Generally, sophisticated rootkit uses compromise techniques to hide its presence

so that the standard forensic measures cannot detect the hidden rootkit. Such kind

23

of hidden rootkits can only be identi�ed by specially designed hardware or software.

Rootkit or malware that uses various techniques to alter the x86 architecture at

�rmware level has been described and proposed methods to detect the �rmware-

level attacks in the context of memory forensic investigation (Stüttgen et al. 2015).

Experiments were conducted on both physical and virtual environments to measure

the e�ectiveness of the proposed approaches with open-source memory forensic tools

like Rekall and Volatility that have been used to incorporate the proposed tactics.

Kernel data structure can be reconstructed by analyzing memory dump with the

instructions correspond to kernel structure member (Case et al. 2010). The capability

to dynamically reconstruct C structures used within the kernel permits for a great

quantity of information to be acquired and processed. The tool such as RAMPARSER

has this ability and it is able to simulate ps and netstat commands. In addition,

it is also able to reconstruct task_struct, mm_struct, File, Dentry, Qstr,

inet_sock, Sock, and socket kernel data structures. An forensic investigator can

make use of RAMPARSER capabilities to gather signi�cant live forensic evidence from

the target system memory. The collected evidences ensure the state and activities of

the target system at the time of memory acquisition.

A Stealthy and Practical Execution Monitoring System (SPEMS) (Shi et al. 2015)

uses VMI technique to observe the execution state of the Monitored VMs by integrat-

ing various open-source tools. SPEMS is able to perform a number of tasks directly

onto the target VM that includes memory forensics, malware analysis, out-of-box

malware injections and process insertion, VM clone, and program monitoring. Exe-

cution tracing is achieved by using LibVMI and Rekall. Limited trapping of user-level

functions is the drawback of SPEMS.

Digital evidence plays a vital role by providing great implication for governing cy-

bercrime. However, many digital evidence gathering tools are ine�ective in providing

accurate digital evidence due to a number of reasons. Hence, the correctness of their

acquired evidence cannot be assured. To tackle this problem, a virtualization-based

monitoring system for mini intrusive live forensics (VAIL) has been proposed (Zhong

et al. 2015). In order to collect target system digital evidence without interrupting

the execution of the one being monitored, it utilizes hardware assisted virtualization

method. VAIL maintains resistant to attacks from the target system. VAIL has been

24

tested on Windows VM to demonstrate the PoC and is capable to collect various

states of the target system such as CPU state, I/O devices activities and the memory

content.

There have been e�orts to perform live forensic analysis by leveraging virtualiza-

tion extension on a potentially compromised system without modi�cation or termi-

nation of the guest OS state. HyperSleuth framework (Martignoni et al. 2010) uses

virtualization technology to enable secure live forensics analysis of the infected sys-

tems with three forensics applications operate above the HyperSleuth. Four essential

properties of the HyperSleuth ensures that execution environment is trusted: 1) even

if an attacker takes the control of the system with kernel-level privilege, analysis re-

sults cannot tamper. 2) Rebooting the system is not necessary to install HyperSleuth

on the execution system with no volatile data lost. 3) The analysis operation is en-

tirely transparent to both attacker and the OS. 4) regular analysis operation can be

conducted and securely interrupted to restart the system so that system can bring

back to a normal execution state. However, digital forensics involves extensive manual

analysis to acquire empirical evidence of real malicious executables from the infected

memory dump.

2.4 Machine Learning Technique Perspective

Over the past decades, several research works have witnessed the use of machine

learning techniques to detect unknown malware executables. Schultz et al. (2001)

pioneered machine learning for detection of malicious executables by understanding

the features of the malware and benign executables. Generally, there are two kinds of

methods that can be utilized to detect and classify malware, namely, static malware

analysis and dynamic malware analysis.

In static malware analysis, the detection of malware is performed by examining the

malicious executables without its execution. The traditional malware detection and

classi�cation approaches use static properties of malicious executables that include

header details, embedded strings details, packer signature, checksum or MD5 hash,

metadata etc. Sha�q et al. (2009) presented a malware detection framework with the

name PE-Miner that has the potency to extract individual features from a Portable

25

Executable (PE) �les to spot unknown or zero-day malware in real-time. The proposed

approach is based on a three-fold research methodology that consists of identifying

structural features of the PE �le, reduction of feature by pre-processing and classifying

based on the data mining algorithms. The authors experimented with large data

samples and achieved detection rate greater than 99% with less than 0.5% FPR.

Hellal and Romdhane (2016) proposed a graph mining algorithm, called, minimal

contrast frequent subgraph miner that extracts malicious behavioral patterns from

malware executables. It is based on graph mining approach with static malware

analysis. The proposed method is evaluated by considering 1083 malware and 1000

benign Windows executables and achieved highest detection rate with low FPR on

detection of new variants malware and obfuscated malware.

Ahmadi et al. (2016) proposed a malware classi�cation approach. The extraction

of the features was based on the structure and content of the malware samples as

multi-features. The authors used an ensemble based XGBoost learning algorithm to

validate their classi�cation methodologies and achieved 98.80% detection accuracy

on a large malware dataset. A number of classic approaches use Bytecode N-gram

(Kolter and Maloof 2006; Masud et al. 2008; Nissim et al. 2012) and Opcode N-gram

(Santos et al. 2013; Shabtai et al. 2012; Bai and Wang 2016) based feature extraction

techniques to detect and classify malware using the static analysis method. However,

the main limitation of this analysis is that it is susceptible to inaccurate detection of

the malware that uses strong evasion and obfuscation techniques (Moser et al. 2007).

As a consequence, static malware analysis techniques are inadequate to detect unseen

malware (Shan and Wang 2014).

To address the limitations of static malware analysis, dynamic or behavioral analy-

sis based techniques are widely used, it detects and classi�es the malware by observing

the behavior of the malicious executable while it is actually running on the controlled

and monitoring environment. It can use API calls (Willems et al. 2007) or system

call (Rieck et al. 2011) or any other function-based (Menahem et al. 2009) features to

observe the behavior of the executables during their run time on the OS. Therefore,

these approaches are well suited for capturing new and unseen malware variants.

Moskovitch et al. (2008) have proposed an approach for the detection of worm

activity on a monitored computer system. They managed to extract over 323 com-

26

puter features using their developed agent on the monitored system. The obtained

features were reduced by using four feature selection techniques, while four machine

learning classi�ers were used to evaluate the results. The evaluation results showed

99% accuracy for speci�c unknown computer worm activity.

Shahzad et al. (2013) proposed a novel genetic footprint concept by mining in-

formation from the process control block of a process. The footprint consists of the

semantic behavior of each executing process that can be used to discover malicious

processes at run-time. The proposed approach is capable of discovering a malicious

process rapidly (less than 100 ms) and achieved an accuracy of 96% with 0% false

alarm rate. Similarly, Miao et al. (2016) proposed bilayer abstraction method. It uti-

lizes discriminant and stable behavior features from semantic analysis of dynamic API

call sequences that are extracted during execution of samples in a controlled system.

Finally, the authors have experimented using improved version of one-class Support

Vector Machine (SVM) algorithm to detect a new variant of unknown malware with

low FPR.

Rieck et al. (2008) proposed a machine learning-based system for automatic anal-

ysis and classi�cation of unknown malware samples based on API function call moni-

toring from the behavior-based analysis reports generated by the CW sandbox. They

used more than 10000 unique malware samples and split them into training, valida-

tion, and testing partition to validate their proposed methodologies using the SVM

machine learning technique. The proposed system is pro�cient in classifying individ-

ual malware family.

Recently, (David and Netanyahu 2015) presented a DeepSign framework that uses

a novel deep-learning technique for automatic malware signature generation and clas-

si�cation. The behavior feature execution of each sample was obtained based on the

generated report of the Cuckoo sandbox. The proposed approach was able to achieve

96.4% accuracy on unseen tested malware samples. While the behavioral analysis

based methods achieve promising results, they have shortcomings. For example, when

a sophisticated stealthy malware, which uses rootkit functionality, is executed on the

sandbox or VM, the majority of the execution path will not execute or it's hard to

retrieve full execution path and behavior of such malware by the existing dynamic

malware analysis approach (Lengyel et al. 2014; Zhang et al. 2016).

27

Islam et al. (2013) presented classi�cation method that uses static and dynamic

features to classify benign and malware samples. The static feature vector was formed

by extracting a function length frequency and printable string information from each

executable (benign and malware). Similarly, the dynamic features include API func-

tion names and parameters execution of each benign and malware. Finally, these

three features are combined to construct integrated feature vector. Authors have

used four machine learning classi�ers namely, SVM, Random Forest, Decision Trees

and Instance-Based (IB) classi�er to evaluate the classi�cation methodologies and

achieved 97.05% of detection accuracy. Recently, (Kumar et al. 2017) also used an

integrated feature vector that was comprised of each PE �les of header �elds raw

value and derived values. Authors have used various machine learning classi�ers and

achieved 98.4% classi�cation accuracy.

Subsequently, there were many excellent recent studies (Zhang et al. 2016; Ahmadi

et al. 2016) use a multi-feature of malicious executables to achieve high detection ac-

curacy of malware using e�cient ensemble learning techniques on a large scale of

malware datasets. Similarly, (Ozsoy et al. 2016) presented a hardware-based online

malware detector that used low-level information such as architectural events, in-

struction, memory addresses, and branches as multi-features that are collected during

the execution of the executables. The proposed approach used logistic regression and

neural networks for classi�cation purpose and achieved excellent performance towards

the detection of malware with little hardware overhead.

In contrast, very few approaches were concentrated to protect CPS while detect-

ing and performing classi�cation of malware from a VMM perspective. In order to

provide real-time protection of CPS, recently, (Huda et al. 2017) proposed a semi-

supervised approach that protects the CPS against unknown malware attacks. It

uses an automatic malware database update strategy that helpful to extract patterns

of dynamic changes of malware attacks. The proposed approach has been evaluated

against a real-world malware samples of both static and dynamic malware features

by using four supervised machine learning classi�ers such as Random Forest, SVM,

J48, and IB and achieved higher malware detection rate. Recently, one such research

e�ort (Watson et al. 2016) leveraged a one-class SVM technique at the hypervisor

for detection of malware on a live VM. The utilization of the features was at both

28

system and network level. In addition, custom Volatility plugin was used to extract

features from every resident process that impacted on the generating training dataset.

Overall, this approach achieved more than 90% detection accuracy for two types of

malware used in the work.

While the behavioral analysis based method achieves promising results, it has

shortcomings. For example, when a sophisticated stealthy malware, which uses rootkit

functionality, is executed on the sandbox or VM, the majority of execution path will

not execute or it is hard to retrieve full execution path and behavior of such malware

by the existing dynamic malware analysis approach (Lengyel et al. 2014; Zhang et al.

2016).

However, a few research works have concentrated on the VMM perspective to

detect and analyze malicious executables on a live introspected system using machine

learning techniques. Recently, one such research e�ort (Watson et al. 2016) leveraged

a one-class SVM technique at the hypervisor for detection of malware on a live VM.

The utilization of the features was at both system and network level. In addition, the

custom Volatility tool plug-in was used to extract features from every resident process

that impacted on the generated training dataset. Overall, this approach achieved more

than 90% detection accuracy for two types of malware used in the work.

2.5 Outcome of Literature Survey

1. It is observed in the literature that much of the works concentrated to protect

hypervisor against attacks originating from malicious guest OSs. Some work

concentrated to mitigate VM to VM attack. However, only a few works focused

to protect guest OSs from the untrusted hypervisor. More work is needed in

the direction of guest OSs protection from the hypervisor-based security system.

This strengthens the security of entire virtualized environment in real-time.

2. The detection of hidden and malicious processes being executed on a VM us-

ing the VMI, in a virtualized environment, presents three problems. Firstly,

the previous VMI solutions (Jiang et al. 2007) facilitated in reconstructing a

semantic view of the processes on the live introspected guest OS. However, this

29

information was available in dubious forms.2 For example, the proliferation of

the Kelihos (Garnaeva 2012) malware on the guest OS spawned a number

of malicious child processes before exiting from the main process. In such an

instance, manually distinguishing, detecting, and preventing the running ma-

licious processes from hundreds of benign processes is time-consuming for a

security administrator, as it requires a wide knowledge of the malicious exe-

cutables. To address this issue, machine learning techniques prove to be more

promising in the detection of new variants of malware (Kolter and Maloof 2006).

However, the adoption of these scienti�c techniques is di�cult for researchers

due to lack of benchmarked datasets (benign and malware) in a virtualized cloud

environment.

3. The number of running processes on the monitored guest OS may di�er signi�-

cantly from time-to-time, even if there are no hidden processes3 at the moment of

introspection (while checking inside the VM and introspected from the VMM).

This is due to the fact that the number of processes available in the system

are not constant and change frequently due to the dynamic nature of process

creation and destruction. In such cases, it is highly dubious to rely on the

introspected data of the VMI for manual detection of the malware.

4. It is di�cult to accurately estimate the number of hidden, dead, and dubious

processes and to detect the spiteful processes and to identify and analyze the

manipulated semantic information in a timely manner on the introspected guest

OS.

2Dubious Process (DP) is a process that is currently running on a guest OS, and it may or may
not be a malicious process (not hidden).

3The execution of stealthy malware may hide its presence by executing on the user mode (Ring-3)
or kernel mode (Ring-0) of the guest OS, which may conceal other benign processes running on the
guest OS.

30

Chapter 3

Hypervisor based Intrusion Detection
and Prevention System

3.1 System Design

The hypervisor is a pillar for virtualization and allows to abstract bare hardware

resources to VMs. The sharing of resources increases a greater security risk and

challenges for CSP. Once the hypervisor is compromised from an intruder (attacker),

the entire virtual environment is under the control of an attacker. In cloud computing

environment, intrusion may originate from multiple sources such as VM (Bahram et al.

2010), virtual network (Chung et al. 2013), malicious hypervisor (Azab et al. 2010),

etc. The VMs are a prime target for attackers as they are easily available for rent

and VMs are directly accessible to the external world through CSP (Wesley Vollmar

and Green 2014). An Attacker adopts various tricks to uncover VM vulnerabilities so

that exploited vulnerabilities can use as a door to compromise the VM. Once the VM

is under the control of an attacker they can inject malware (Rootkit or Spyware or

Virus or Worms or Trojans etc.) to disorder the normal operation of the VM. Further,

an attacker can trespass the virtualized environment through the compromised VM.

Only anti-malware (malware detection software) is scanty to maintain a healthy state

of the VM all the time. To protect the entire VM against various types of threats and

attacks, IDPS is a prime requirement (Scarfone and Mell 2007). The IDPS should

have the capability of malware detection (Rootkit detection, Spyware detection, Virus,

Worms, Trojan etc.), log analysis, �le integrity checking, incoming tra�c analysis,

active response etc. (Bray et al. 2008). In addition, it should have detection capacity

of unknown attacks as well as known attacks. The only detection is inadequate to

31

Figure 3.1: Architecture of the VMIDPS for virtualized environment

safeguard the virtual environment without prevention.

In this work, In-and-out-of-the-box Virtual machine and hypervisor dependent

intrusion detection and prevention system is proposed for a virtualized environment.

The architecture of the VMIDPS is as shown in Figure 3.1. The management unit is

one of the signi�cant components of the hypervisor and IDPS core resides on it. The

VMIDPS-Server is an integral part of the components of the IDPS core and it runs

on the hypervisor. The hypervisor informs the management unit to deploy IDPS-

agent onto a new VM whenever the new VM is launched. The IDPS running on the

VM is named as Virtual Machine based Intrusion Detection and Prevention System

(VMIDPS-agent). The VMIDPS-agent scans the entire VM to certify that VM is in

robust as well as the uninfected state. The VM allows for function only if it is certi�ed

as robust system else VMIDPS-agent triggers an alert to take an appropriate action

to bring back the VM to a normal state.

The VMIDPS-agent on each VM continuously monitors and analyses occurring

events to detect and avert malicious events in real-time. Multiple intrusion detection

techniques such as �le integrity veri�cation, signature based intrusion detection and

anomaly based intrusion detection are adopted in VMIDPS-agent to detect various

types of intrusion (Rootkits, Virus, Worms, Ports scan, File alteration and so on).

The VMIDPS-agent periodically sends the entire state of the VM to VMIDPS-Server

32

Algorithm 3.1: File Integrity veri�cation algorithm

1 Notations used in this algorithm are as follows

1. Fi ← Integrity of the ith �le to be checked

2. h() ← One-way Hash function

3. hD' ← Hash digest of �le "Fi" stored in the hash digest database
[h(Fi)← hD′]

4. hD" ← Newly computed hash digest for the �le "Fi" by one-way hash function
h()

5. N ← Number of �les integrity to be checked

Input: File "Fi" integrity to be checked and Hash digest database for the �le
"Fi"

2 begin
3 for i = 1; i ≤ N ; i+ + do
4 Compute hD" and compare it with hD' (hD"==hD')
5 If the comparison is true goto 3
6 else
7 declare �le "Fi" integrity is violated and display both hD" as well as

hD' present in hash digest database ;
8 Send �le "Fi" to signature based intrusion detection module to spot the

malicious content present in it
9 end

10 end

to detect the intrusions that are bypassed at VM level. The VMIDPS-Server utilizes

cross-view analysis based intrusion detection technique to spot the intrusions.

3.1.1 File Integrity Veri�cation

The VMIDPS periodically monitors operating system �les as well as other critical

�les to ensure their integrity. It is achieved by computing and comparing their cryp-

tographic hash digest with the pre-computed cryptographic hash digest. Comparison

mismatch demonstrates �le content alteration. The VMIDPS triggers an alert as and

when �le integrity violation noticed. File integrity veri�cation steps are shown in

algorithm 3.1. However, �le integrity veri�cation does not provide accurate informa-

tion regarding the type of intrusion (what content of the �le modi�ed). Therefore,

�les whose integrity is violated are further analyzed to uncover more details of the

intrusion.

33

3.1.2 Signature based Intrusion Detection System

Signature based Intrusion Detection System (SIDS) is also known as misuse detection.

It detects intrusion by comparing the observed signature with pre-de�ned signatures

present in the database. The operation of the SIDS is as shown in algorithm 3.2. It

detects any kind of known attacks e�ectively. However, it cannot detect new attacks

without the corresponding signature in the signature database. Continuous updation

of the signature database is crucial to detect new attacks. This limitation is overcome

by Anomaly based Intrusion Detection System.

Algorithm 3.2: Signature Based Intrusion Detection

1 Notations used in this algorithm are as follows

1. Fi → File to be checked

2. SD → Signature Database of Fi

3. M → Number of �les to be checked

4. FSDi → Signature of the �le "Fi"

Input: File "Fi" to be checked and Signature database "SD"

2 begin
3 for i = 1; i ≤M ; i+ + do
4 Extract FSDi for the File Fi and compare it with SD.
5 if the comparison is match with one or more entries of the SD then

declare the corresponding attack.
6 end

7 end

3.1.3 Anomaly based Intrusion Detection System

It detects intrusion by comparing observed activities with baseline pro�le without a

signature database. ′Th′i is a threshold for an activity ”i” where i = 1, 2, 3,, N .

Pro�le of the system PS = {Th1, Th2,, ThN}. ASi is an anomaly score of an

activity ′i′ observed for the period of time ′T ′ is

ASi =
∑N

i=1, aci i = 1, 2, 3, ..., N . Where ”aci” is ith observed activity score at

time 'T'.

f(ASi, Thi) =

{
Anomalous, Asi > Thi

Normal, Asi ≤ Thi
(3.1)

34

Table 3.1: Experimental testbed using OSSEC HIDS

Hypervisor Oracle Virtual Box 4.3.16

HIDPS OSSEC 2.8.1

VMs Ubuntu 10.04 and Windows-7

OSSEC 2.8.1 (server, local, agent)

OSSEC2.8.1-sever out-of-the-box IDPS

OSSEC2.8.1-agent In-the-box IDPS (Ubuntu10.04)

OSSEC2.8.1-agent In-the-box IDPS (Windows-7)

Where ′f ′ is a comparison function. The outcome of the comparison is anoma-

lous when observed activities exceed the threshold otherwise legitimate. The major

advantage of Anomaly based Intrusion Detection System is that it can detect new

attacks including zero day attack.

3.1.4 Cross-View Analysis

Each VM periodically sends its entire state information to VMIDPS-Server. Once

the VMIDPS-Server receives the VM information then it requests the hypervisor to

supply actual low-level information of that particular VM. As hypervisor has complete

control on every VM, it supplies requested VM information to VMIDPS-Server. By

comparing information supplied by the hypervisor with the information received from

the VM, it identi�es the intrusion if the comparison result is deviated.

3.2 Experimental Setup and Results

In this work, Oracle Virtual Box (GmbH 2007) was used to setup the virtualized

environment as shown in Table 3.1. The VMs were used to conduct the experiments.

The HIDS such as OSSEC was used as VM based IDS in this experimental work. The

OSSEC supports server, agent, local and hybrid type of installation. A local type of

OSSEC installation was adopted to simulate In-the-box detection approach. In this

method, each VM has its own dedicated IDS which monitors the entire VM events and

triggers an alert as per the conditions set in the con�guration �le. The server type of

installation was followed to simulate out-of-the-box intrusion detection technique. In

35

this approach, the OSSEC-agent is needed on each VM. The OSSEC-agent captures

the events occurring on the VM and sends them to the OSSEC-Server in order to as-

certain the malicious event trace. The OSSEC-Server and OSSEC-agent communicate

securely using the key shared between them. Prevention is achieved by removing the

detected intrusions. In this experimental work, both Linux and Windows based rootk-

its were demonstrated. In addition, DoS attack, and File Integrity veri�cation tests

were conducted on Linux and Windows guest OS using Oracle Virtual Box hypervisor

version 4.3.16.

3.2.1 Linux rootkits

� Kernal Beast (KBeast) Rootkit (Team 1998): The KBeast is a kernel-mode

rootkit, it has the ability to hide LKMs, Process, Ports, Socket, and connec-

tions (netstat, lsof) �les and directory. Anti-kill process, Anti-remove

�les, Anti-delete loadable kernel modules, Local root escalation backdoor and

remote binding backdoor hidden by the kernel-mode rootkit are also features

of KBeast rootkit. In addition, it has the capacity to launch password pro-

tected backdoor. As a proof of experiment Figure 3.2a, the KBeast rootkit

injected onto Ubuntu 10.04 32-bit operating system VM. In order to hide the

port number that needs to be hidden, passwords for backdoor, pre�x of the �les

or directories that are to be hidden are required to set in the con�guration �le

prior to compilation of the rootkit (as shown in Figure 3.2b). Finally, our pro-

posed approach successfully detect KBeast rootkit by generating alert messages

as shown in Figure 3.2c.

� Xingyiquan is a simple Linux OS based kernel-mode rootkit. The major

stealthy functions of this rootkit are escalate root privilege of legitimate, �les/di-

rectories hide, connections hide, module hide, hook kill the process, hook open,

etc. The Xingyiquan rootkit successfully injected onto Ubuntu 12.04 LTS VM

where OSSEC-agent was running. The OSSEC-Server was running on another

Ubuntu 12.04 LTS VM. The OSSEC-Server e�ectively detected the malicious

activity based on the information reported by OSSEC-agent and triggered the

alert message after the detection.

36

(a)

(b)

(c)

Figure 3.2: KBeast rootkit �le compilation (a), rootkit hides port details (b),
OSSEC alert message for rootkit injection(c)

� FK-0.4 Rootkit (Team 1998): This rootkit injected onto Ubuntu 12.04 LTS

VM. It has the capacity to hide listening port, remote ports, processes and back-

door password changing. Con�guration �le"/dev/proc/fuckit/conFig/rkconf"

allows to set the ports to be hidden, the process to be hidden, and password

for the backdoor. The �le "lport" under "/dev/proc/fuckit/conFig/rkconf" is

use to set listening port to be hidden. Similarly other �les such as "rport" and

37

"progs" are used to set the remote port to be hidden and process to hidden

respectively. In addition, the �le "password" is used to set the password for the

backdoor. The rootcheck component of the OSSEC successfully detected the

injected rootkit and the corresponding alert messages are recorded onto log �le

as possible hidden �les including complete path of the �le where the observation

made.

� Average Coder (Team 1998): It is a Linux based kernel-mode rootkit. It uses

the LKM to inject the malicious code into the kernel space during the run time

of the OS. It has the capability to hide itself from lsmod and also hides the

process, TCP connections, ports and logged-in users details. We have tested

this rootkit by injecting onto a Linux distribution of Ubuntu 12.04 VM.

� Jynx2 (Team 1998): It is a Linux based user-mode rootkit. It dynamically

inserts malicious library function into system binaries during runtime. It does

not replace the original binary �les of the system to evade the detection from

digest based detection method. Once Jynx2 rootkit program is executed, the

system checks for shared libraries that are needed to be loaded at run time

by referring /etc/ld.so.conf and /etc/ld.so.preload �les. The LD_PRELOAD is

an environment variable may be used to point to a shared library (added by

Jynx2 rootkit). Using this feature, the Jynx2 rootkit creates a malicious shared

library to hide the �les, processes, and ports. Utility like ps, netstat and

ls loads malicious shared library function onto running process. As a result,

�les, processes, network connections and ports used by malware are hidden.

The malignant user or an attacker can view the processes, �les and network

connections details through a shared library created by the rootkit. Experiment

for this rootkit successfully conducted on Ubuntu 12.04 LTS VM.

3.2.2 Windows Rootkit

� Hacker Defender: It is a persistent user-mode rootkit for Windows sys-

tem. It modi�es the native Application Program Interface (API) function of

Windows system and its major goal is to allow a hacker to hide the process,

�les, registry keys, and system driver. Moreover, it checks open port of the

38

(a)

(b)

Figure 3.3: Hacker Defender rootkit injection (a) OSSEC alert message for
Hacker Defender rootkit (b)

network connections. This rootkit consists of two �les one is executable �le

hxdef100.exe and another one is con�guration �le hxdef100.ini which

is used to set the attributes of the rootkit. This rootkit successfully injected

onto Windows-7 operating system based VM. The injected executable �le cre-

ates a new process that hides the process. Screenshot illustrated in Figure 3.3a

provides the successful execution of Hacker Defender rootkit on Windows-7

VM. Alert message generated by the OSSEC after the rootkit detection is as

shown in Figure 3.3b.

� FU Rootkit (Butler 2005): It is a kernel-mode rootkit and it is based on

Direct Kernel Object Manipulation (DKOM) technique. This rootkit is available

from public malware repository. The FU-rootkit allows an intruder to hide

information of the user as well as a kernel module and it is also able to modify the

39

kernel data structure. FU-rootkit successfully tested on Windows-7 32 bit

OS based VM where OSSEC-agent was running. The OSSEC-Server detected

the injected rootkit e�ect and noti�ed the observed changes by recording an

alert message onto the log �le.

3.2.3 DoS attack

DoS attack intention is to make the computer or network resource unavailable to

legitimate users by �ooding enormous bogus messages. Detecting and preventing DoS

attack is massive challenges for CSP. The attackers may use sophisticated powerful

DoS attack tool to �ood massive number fake requests onto victim machine/server so

that service disruption arises to the legitimate one. LOIC1 (Low Orbit Ion Cannon)

is one such open source tool to launch a massive number of UDP, TCP and HTTP

attack towards target machine. DoS attack successfully initiated from Windows-7 OS

machine as a sending host towards target machine using LOIC. The OSSEC-Server

successfully detected and alerted the identi�ed event by recording onto the log �le.

Figure 3.4 shows the notice triggered by the OSSEC.

Figure 3.4: OSSEC detected DoS attack as URI too long

3.2.4 Port Scanning Attack

Port scanning is the process of identifying exploitable ports or listening ports of the

victim system. In this technique, an attacker tries to gather some speci�c information

from the potentially exploitable target port of the targeted machine. Using this

1https://sourceforge.net/projects/loic/.

40

method an attacker creates a list of potential weaknesses and vulnerabilities in the

open port leading to the exploitation and compromise the machine.

Similarly, an attacker identi�es the opened ports of the VM so that he/she can

compromise the VM through the identi�ed open ports vulnerabilities. In a virtualized

environment, researchers enlisted di�erent types of known method to detect and pre-

vent port scan attack. We have used Nmap2 6.47 tool as the launching pad for port

scanning (intense scan) towards target machine. Port scan successfully detected by

the OSSEC. Table 3.2 depicts Linux and Windows rootkits and the di�erent stealthy

malicious functionality tested in this experimental work and Table 3.3 shows the few

di�erent attack scenario conducted in the empirical tests. The proposed In-and-Out-

of-the-Box VMIDPS is able to detect and prevent intrusions (with admin intervention)

using an open source OSSEC tool.

3.3 Discussion

The proposed hypervisor based Virtual Machine based Intrusion Detection and Pre-

vention System (VMIDS) assumes that the hypervisor (Oracle Virtual Box) is trust-

worthy and is capable to send low level information such as CPU, Memory and Disk

information to the OSSEC-Server. The second assumption is that management unit

of the hypervisor automatically deploys OSSEC IDS onto new VMs as and when they

launched and OSSEC-Server runs on the hypervisor.

3.4 Limitation of the In-and-Out-of-the-Box Virtual

Machine Based IDPS

The proposed in-and-out-of-the-box-hypervisor and Virtual Machine dependent In-

trusion Detection and Prevention System is capable to detect stealthy rootkits and

di�erent types of the intrusions. For example, DoS attack, and port scanning attack

etc. These kinds of intrusions are potentially harmful to virtualization environment

which are originating via VM.

2https://nmap.org

41

Table 3.2: List of Windows and Linux rootkits used in this experiments and detected by our proposed approach

Rootkit Name
Virtual

box 4.3.16

Monitored VM Agent

running
user-mode kernel-mode

Hides

Process

File

Hide

Hides

Port

Privilege

Escalation
Detected

Windows Linux

KBeast
√

×
√ √

×
√ √ √ √ √ √

FK Rootkit
√

×
√ √

×
√ √

× ×
√ √

Xingyiquan
√

×
√ √

×
√ √ √ √ √ √

Average coder
√

×
√ √

×
√ √

× ×
√ √

Jynx2 Rootkit
√

×
√ √ √

×
√ √

×
√ √

Hacker Defender
√ √

×
√

×
√ √ √ √ √ √

Fu-Rootkit
√ √

×
√

×
√ √

× ×
√ √

Table 3.3: Security attack scenarios experimented and detected by our proposed approach

Security Attack Detection results by the proposed approach

DoS Attack Massive number of bogus request reported by proposed approach based on the rule de�ned in URL tag

Port Scanning attack OSSEC detected the port scanning attack by reporting the used tool (ex: Nmap)

42

The architecture of the VMIDPS leverages the Rule-based technique to detect the

intrusions by performing �le integrity veri�cation and we believe that the proposed

approach is capable to detect both known and unknown attack successfully. Further,

it ensures the healthy state of the VM by detecting and eradicating the intrusions in

real-time at VM level only. We have injected and demonstrated 7 both Linux and

Windows real-world rootkits. The proposed VMIDPS with our modi�ed rules applied

in the OSSEC tools is capable to detect real-world rootkits and other attacks with

active response or noti�cation.

The main limitation of the in-the-box Intrusion Detection or agent based Intrusion

Detection solutions is not much e�cient to detect unknown malware or APT in the

virtualized environment. The evolution of the robust malware (e.g. Agobot variant

rootkit) (Jiang et al. 2007) much more sophisticated to bypass even to evade agent

based solution in order to avoid this types of rootkit.

3.5 Summary of the Work

In this paper, In-and-out-of-the-box Virtual Machine and hypervisor dependent In-

trusion Detection and Prevention System is proposed. The main goal of this work

is to detect real-time intrusions including stealthy self-hiding rootkits and DoS at-

tack. These kinds of intrusions are potentially harmful to virtualization environment

those are originating via the VM. The architecture of the VMIDPS leverage cross-view

based technique for real-time identi�cation of the intrusions. File alteration identi�ca-

tion is achieved by integrity checking algorithm. The proposed approach ensures the

healthy state of the VM by detecting and eradicating the intrusions in real-time. The

OSSEC IDS e�ectively utilized as VM based IDS to identify the abnormal activities

of the VM. Experimental results show the detection capability of the VMIDPS. The

same work continues as a future work with VMI technique as out-of-the-box intrusion

detection technique. A number of experiments are planned to conduct for di�erent

attack scenarios (hypervisor and VM based) to measure the e�ciency of the VMI

based detection approach. Di�erent malicious software such as rootkits, malware,

spyware, and worms are planned to test in future work to verify the detection as well

as prevention capability of our proposed approach.

43

Chapter 4

VMI-based Stealthy Malware and
Rootkit Detection System

4.1 Introduction

The VMI is able to gather the run-state information of the Monitored VM without

the consent or knowledge of the one being monitored while functioning at the hyper-

visor or the VMM. However, obtaining meaningful guest OS state information such

as process list, module list, system calls, network connections, etc., from the viewable

raw bytes of the guest OS memory is a challenging task for the VMI and referred

to as the semantic gap (Dolan-Gavitt et al. 2011; Jain et al. 2014). To tackle this

problem, several approaches have evolved over the last few years by considering dif-

ferent constraints of the guest OS (Fu and Lin 2013; Saberi et al. 2014). However, the

current challenges of VMI are: 1) It must have higher scalability features to introspect

the rich semantic views of the live state of the guest OS. To achieve this, it requires

tremendous manual e�ort to build kernel data structure knowledge of large volumes

of guest OS (Bauman et al. 2015b), 2) The VMI solution requires frequent rewriting

of the introspection program due to the dynamic and frequent upgrading of the kernel

version, and 3) The VMI must be built with a robust introspection technique that

would help to reduce the performance overhead and make the VMI automated with

little human e�ort.

On the other hand, many modern families of malware leverage stealthy rootkits

functionality to conceal itself, and to evade detection system to tamper other critical

kernel data structure such as �les, directories, sockets, etc., of the guest OS (Goudey

2012a; Xuan et al. 2009). The best way of detecting it is by identifying the hidden

44

running processes. The process details are a key source of information for any intro-

spection program to spot the existence of malware. A prior attempt, the VMM-based

Lycosid (Jones et al. 2006) is aimed at detecting and identifying only the Hidden

Processes (HP) of the Monitored VM at the VMM. However, the current generation

of evasive malware may create new malicious processes (not hidden) or attach itself

to the existing legitimate running processes. In such cases, Lycosid is inadequate to

detect such a malicious malware process. It does not identify the name or binary

of the process and it is also ine�cient in checking the detected hidden details are

malicious or benign. Moreover, the process visible from the hypervisor may be noisy,

most likely incorrect, and may lead to a false positive. Another approach, named the

Linebacker (Richer et al. 2015), also uses the cross view analysis to investigate the

rootkit running on the guest OS. The e�ciency of the Linebacker has been demon-

strated on the VMware vSphere-based guest OS. However, only the Windows guest

OSs were considered for evaluation.

The signi�cant challenges in detecting the malicious and dead processes, particu-

larly in a virtualized environment are:

� The number of running processes on the monitored guest OS may di�er signi�-

cantly from time-to-time, even if there are no hidden processes1 at the moment of

introspection (while checking inside the VM and introspected from the VMM).

This is due to the fact that the number of processes available in the system

are not constant and change frequently due to the dynamic nature of process

creation and destruction. In such cases, it is highly dubious to rely on the

introspected data of the VMI for manual detection of malware.

� Accurately estimate the number of hidden, dead, and dubious processes and

detect the spiteful processes in a timely manner on the introspected guest OS

is challenging task.

To address above challenges, the VMI-based A-IntExt system for a virtualized

environment is presented. It mainly detects the hidden, dead and malicious processes

1The execution of stealthy malware may hide its presence by executing on the user mode (Ring-3)
or kernel mode (Ring-0) of the guest OS (Florio 2005), which may conceal other benign processes
running on the guest OS.

45

that are invoked by the rootkits or malware by leveraging ICVA for process algorithm

between the externally (VMM-level) captured run-state information and the inter-

nally (In-VM level) acquired execution-state information of the Monitored VM. The

pertinent contributions of the present work are as follows:

� We have designed, implemented, and evaluated a consistent, real-time VMM-

based guest-assisted A-IntExt system that periodically examines the state of

the live introspected system to detect the running of malicious processes from

the forensically reconstructed executables.

� We have implemented a mathematical model of the ICVA algorithm as PoC

and implanted it into the A-IntExt system to intelligently cross-examine the

internally (VM-level) and externally (VMM-level) gathered state information to

detect hidden, dead, and dubious process, and also to predict early symptoms

of malware execution using the novel TIT technique.

� The robustness of the A-IntExt system was evaluated using publicly available

Windows rootkits. In addition, malware were also employed in the experimental

work to make the evaluation comprehensive. The A-IntExt system correctly

detected all of the hidden, dubious and dead processes.

4.2 Assumption and Threat Model

In this work, we �rst assume that both the VMM and the Monitoring VM are to

be trusted and are operating under a trusted computing base (Intel 2016) that suf-

�ciently enforces physical security control, while resisting hardware-based attacks on

the virtualized cloud infrastructure (Wojtczuk and Rutkowska 2009). Secondly, the

malware leverages guest OS vulnerabilities that cannot jeopardize the security of the

A-IntExt system operating in the privileged domain (Dom0) of the Xen hypervisor.

These assumptions are consistently shared by most of the VMM-based previous se-

curity research work (Gar�nkel et al. 2003; Payne et al. 2008; Srinivasan et al. 2011;

Jiang et al. 2007). Thirdly, the established communication channel between the State

Information Requester (SI-Requester) of the A-IntExt system and the Guest Assisted

Module (GAM) is secure during the lifetime of the live introspected VM. It cannot be

46

modi�ed by any kind of attack or security threat. Some previous research work (Wo-

jtczuk 2008) have highlighted the successful compromising of the VMM and Dom0,

but that is beyond the scope of this work.

4.3 Overview

The A-IntExt system is a VMM-based guest-assisted introspection system that ad-

vances the current out-of-VM approach in an automated, isolated, real-time man-

ner, while functioning at the secure Monitoring Virtual Machine (Monitoring VM)

or Dom0. Figure 4.1 shows an overview of the A-IntExt system. It is introduced

to e�ciently investigate and detect any hidden, dead, and dubious processes, while

predicting early infection of malware symptoms by internally gathering and externally

introspecting the volatile memory of the live untrusted Monitored Virtual Machine

(Monitored VM). The A-IntExt system achieves this goal by using the ICVA, which

is an integral component. The major components of the A-IntExt system are the

GVM-Introspector, GAM, ICVA, OMS.

Figure 4.1: The proposed VMI based A-IntExt system

47

4.3.1 GVM-Introspector

The prime function of the GVM-Introspector is to introspect and extract the running

processes information of the Monitored VM. Its sub-components are: SI-Requester,

TIT, VMI introspector, and VMI memory acquisition. To start with, the GVM-

Introspector initiates the procedure of investigation by signaling to both the SI-

Requester and VMI introspector (step 1) to introspect and acquire the current execu-

tion of the process state information of the Monitored VM. The SI-Requester (step 2)

triggers the GAM via a secure communication channel2 to internally enumerate the

executing process state of the Monitored VM. Upon receiving the internally acquired

process state information, the SI-Requester veri�es whether the reply arrived within

TIT. The time interval between the state information request sent and the reply re-

ceived by the SI-Requester from the GAM is known as TIT. If the time gap between

the state information request and the reply lies within the TIT, it continues the opera-

tion. At the same time, the VMI introspector (step 2) introspects and reconstructs the

memory state of the Monitored VM from the hypervisor (externally) to get currently

running process details. The procedure followed by the VMI introspector to recon-

struct and obtain the semantic view of the processes (including hidden processes) by

traversing the _EPROCESS Windows kernel data structure of the introspected VMs

(discussed below). In addition, the TIT, as shown in Figure 4.2, e�ciently addresses

the time synchronization problem, which impacts on the detection of the malicious

processes under the dynamic creation and destroy of processes as discussed in the

second challenge of Section 4.1.

For example: Let T1 be the date and time at which the state information request

is sent to the Monitored VM, and T2 be the date and time at which the reply is

received by the SI-Requester from the GAM. After receiving the state information,

the SI-Requester checks the time interval between T2 and T1; T2 - T1 > ∆T (where ∆T

denotes the prede�ned threshold time that ranges between 2 to 3 sec). Then, the SI-

Requester instantly resends the request (maximum 3 times), if the response is delayed

2A secure communication channel is established between the SI-Requester and the GAM by the
A-IntExt system as soon as the Monitored VM is launched by the VMM. The SI-Requester holds
native information (IP address and Port number) of the Monitored VM and it triggers the GAM
in the form of state information request to receive internally acquired process information of the
Monitored VM.

48

Figure 4.2: Time interval threshold used by A-IntExt system

or not received within the prede�ned ∆T. Then, the A-IntExt system con�rms that

the Monitored VM is in an infected state and immediately informs the VMI memory

acquisition (step 3) to pause and perform memory acquisition (step 4), and then, to

resume running the Monitored VM.

If T2 - T1 ≤ ∆T then, both the SI-Requester and VMI introspector continue

periodic introspections of the Monitored VM by extracting and relocating the process

run-state information to the ICVA (Step 2 and Step 3). Further, the ICVA (will

be shortly introduced) cross-examines the acquired process state information. This

process continues throughout the lifetime of the live Monitored VM. The novel time

synchronization technique, the TIT helps the ICVA to detect hidden and malicious

state information of the Monitored VM. For instance, the processes P1, P2, P3...., PN

currently being run at the Monitored VM and their details are extracted internally

between the time intervals T1 and T
′′
1 . If any process expires or dies after T

′′
1 and before

T2, the process details will not appear in the state information caught externally by

the VMI introspector, but can be found in the internally captured state information,

such processes are treated as dead processes.

In contrast, if a new process, PN+1 is created between T ′′1 and T3, then the process

details will appear only in the externally captured state information and not in the

49

(a)

(b)

Figure 4.3: Hidden processes (a) dubious processes (b) details of Monitored VM
externally introspected (left side) and internally acquired (right side) by the

A-IntExt system after rootkit and stealthy malware injection on Windows guest OS

internally captured state information. As a result, process PN+1 is recognized as a

hidden process, even though process PN+1 is not concealed. Thus, a disparity

emerges between the internally and externally captured state information. Further,

to check the maliciousness of the new process PN+1, the ICVA immediately signals to

the VMI memory acquisition (step 4) to pause and accomplish memory acquisition of

the Monitored VM. The executable �le extractor (shown in Figure 4.5) extracts the

entire executable �le of the corresponding process from the seized memory dump of

the Monitored VM.

Figure 4.3 shows the processes details of the Monitored VM captured internally and

externally after malware and rootkit injection, it includes hidden, dubious processes

information. This is achieved by the well-built isolation property of the hypervisor

which guarantees that the state information captured from the A-IntExt system is

accurate.

Memory state reconstruction: Since the VMM view of the Monitored VM

is available in raw memory state, the A-IntExt system performs memory state re-

construction before it collects and analyzes the process run state information of

the Monitored VM at the VMM. This can be done with the VMI introspector by

leveraging the address translation mechanism (Payne et al. 2007). The use of the

xc_map_foreign_range() function, provided in the Xen Control Library (libxc) helps

50

the VMI introspector of A-IntExt system to understand and reconstruct the volatile

memory artifacts of the live Monitored VM without its consent. Later, the same

function accesses the RAM artifacts, and �nally, converts the page frame number to

memory frame number (Russinovich et al. 2012).

In the Windows system, each process associated with a data structure is called

as _EPROCESS. The Figure 4.4 shows the _EPROCESS structure of Windows sys-

tem, each _EPROCESS has many data �elds including one Forward Link (FLINK)

pointer and one Backward Link (BLINK) pointer. The FLINK contains the ad-

dress of the next _EPROCESS, while the BLINK stores the address of the previous

_EPROCESS. The �rst �eld of the _EPROCESS is a process control block, which

is a structure of the type Kernel Process (KPROCESS). The KPROCESS is used to

provide data related to scheduling and time accounting. The other data �elds of

the _EPROCESS are PID, Parent PID (PPID), exit status, etc., (Russinovich et al.

2012). The �eld position of the PID and the PPID in the _EPROCESS structure may

di�er from one OS to another, and the series of FLINK and BLINK systematizes the

_EPROCESS data structure in a doubly linked list. The Windows symbol, such as

the PsActiveProcessHead (head of the doubly linked list) traverses the whole of

the doubly linked list _EPROCESS from the beginning to the end providing all the

running process details. In order to identify the hidden processes at user and kernel-

mode of the Monitored VMs, our proposed VMI introspector scans the raw memory

by looking at the _EPROCESS structure patterns of the Monitored VM, as similar to

the previous approach (Jiang et al. 2007; Lamps et al. 2014).

4.3.2 Guest Assisted Module

The GAM is a lightweight component that is placed inside the Monitored VM (soon

after the guest OS is created by the VMM). It is controlled and operated by the

SI-Requester on-demand via an established secure communication channel. During

introspection by the A-IntExt system, the GAM will not create its own processes but

will make use of its built-in tasklist command of the native Windows to acquire

the running processes of the live Monitored VM and forward it to the SI-Requester

in the form of a text �le. The GAM can be tampered by malware as it is placed in

the untrustworthy Monitored VM. Under these circumstances, the A-IntExt system

51

Figure 4.4: Simpli�ed _EPROCESS structure of Windows system (Florio 2005)

estimates the symptoms of malware execution when delay or modi�cation occurs,

while forwarding the internally acquired state information by the GAM (see Section

4.3.1).

4.3.3 Intelligent Cross-View Analyser

The ICVA is an integral component of the A-IntExt system and its prime function

is to perform an intelligent examination of the internally captured and externally

introspected execution state information using ICVA algorithm to recognize hidden,

dead, and dubious running processes of the Monitored VM.

The process details captured from the hypervisor (externally) undergo the prepro-

cessing operation, and then stored as EXTps = {PID ‖ PN1, P ID ‖ PN2, P ID ‖

PN3....., P ID ‖ PNm} where m = 1, 2, 3,..., and PID ‖ PNm represent the mth

process. The internally captured process details after the preprocess operation are

represented as INTps = {PID ‖ PN1, P ID ‖ PN2, P ID ‖ PN3....., P ID ‖ PNn}

where n = 1, 2, 3,..., and PID ‖ PNn represent the nth process. The ICVA performs

the preprocessing operation to remove unimportant state information and sort the

elements of both the EXTps and INTps in ascending order, based on the PID.

The total number of EXTps processes is symbolized as EXTpsc

m∑
j=1

PIDj ‖ PNj =

{
PIDj||PNj = 1 if(PID||PNj ∈ EXTps)

PIDj||PNj = 0 else
(4.1)

52

The total number of INTps processes is represented as INTpsc

n∑
k=1

PIDk ‖ PNk =

{
PIDk||PNk = 1 if(PID||PNk ∈ INTps)

PIDk||PNk = 0 else
(4.2)

EXTpsc =
m∑
j=1

PIDj ‖ PNj (4.3)

INTpsc =
n∑

k=1

PIDk ‖ PNk (4.4)

Any inconsistency between EXTpsc and INTpsc i.e. EXTpsc 6= INTpsc indicates an

abnormal state of the Monitor VM. Algorithm 4.1 depicts the procedure followed by

the ICVA to perform the cross-examination between the EXTps and INTps. At the

end of the scrutiny, ICVA provides Hidden Process Count (HPC) and Dead Process

Count (DPC), hidden and dead processes.

ICV A(EXTps, INTps)→ HPC,DPC, hidden, dead process (4.5)

To ascertain the hidden and dead processes, the ICVA compares the EXTps(PID ‖

PNm) with INTps(PID ‖ PNm), where (PID ‖ PNm) is the mth PID and PN.

It treats the examined processes as dubious when they are equal. If they are un-

equal, it checks further to determine whether EXTps(PID ‖ PNm) is greater than

INTps(PID ‖ PNm); if the condition is satis�ed, then the ICVA declares the INTps(P

ID ‖ PNm) as a dead process. It continues the comparison operation EXTps(PID ‖

PNm) with INTps(PID ‖ PNj), where j = m + 1, m + 2,..., until it �nds that

EXTps(PID ‖ PNm) is equal to INTps(PID ‖ PNj), and then declares the processes

from INTps = {PID ‖ PNm,, P ID ‖ PNj−1} as dead processes when the condition

EXTps(PID ‖ PNm) = = INTps(PID ‖ PNj) is satis�ed. If EXTps(PID ‖ PNm)

is less than INTps(PID ‖ PNm), then the ICVA declares the EXTps(PID ‖ PNm)

as a hidden process. The comparison operation between the externally and internally

captured state information is continued until all of the elements are examined.

Case 1: HPC > 0 indicates that some processes are hidden at the Monitored VM.

Equation (4.6) is an indication of malware infection.

((EXTpsc 6= INTpsc) ∧ (HPC > 0)) (4.6)

53

Figure 4.5: Online malware scanner

Case 2: HPC = 0 denotes that the processes viewed externally are the same as

the processes viewed internally. The state of the Monitored VM is dubious state when

equation (4.7) is satis�ed.

((EXTpsc == Intpsc) ∧ (HPC == 0)) (4.7)

Case 3: The dead process count indicates that the number of processes captured

externally is smaller than the number of processes captured internally. This is due to

the dynamic nature of the create and destroy of processes. To overcome this situation,

A-IntExt system �rst captures the state information of the Monitored VM internally,

followed by externally within the TIT.

(EXTpsc < INTpsc) (4.8)

ICVA for processes algorithm has the capacity to recognize hidden, dead and

dubious processes. Further, the A-IntExt system classi�es the introspected processes

as hidden and DPs to ascertain whether the detected hidden process and DPs of

Monitored VM are benign or malicious by performing a cross-examination with the

public OMS.

54

Algorithm 4.1: Intelligent Cross View Analyzer for Process

1 Input
1: Processes details captured externally from hypervisor stored as EXTps.

2: Process details captured and sent by the monitored VM (internally) stored as INTps.

Output

1: Hidden and dead processes details

2: HPC and DPC

1: Pre-process the EXTps and INTps such that their elements are in sorted order based

on PID

2: Assign HPC=0, DPC=0, p=EXTpsc, q=INTpsc, n=1, m=1
3: for all m such that 1 ≤ m ≤ p do
4: if n > q then
5: Break

6: else

7: compare EXTps(PID ‖ PNm) with INTps(PID ‖ PNm)
8: if EXTps(PID ‖ PNm) = INTps(PID ‖ PNm) then
9: m=m+1; n=n+1; goto step 4;

10: else

11: if EXTps(PID ‖ PNm) < INTps(PID ‖ PNm) then

12: store EXTps(PID ‖ PNm) as hidden process into HP.txt

13: m=m+1; HPC = HPC + 1; goto step 4

14: else

15: if EXTps(PID ‖ PNm) > INTps(PID ‖ PNm) then

16: store INTps(PID ‖ PNm) as dead process into DP.txt

17: DPC = DPC +1; n=n+1; goto step 4

18: end if

19: end if

20: end if

21: end if

22: end for

23: if m < p && n > q then

24: Store EXTps(PID ‖ PNm),...,EXTps(PID ‖ PNp) as hidden processes into HP.txt

25: HPC = HPC + (p-m).

26: end if

27: if m > p && n < q then

28: Store INTps(PID ‖ PNn),..., INTps(PID ‖ PNq) as dead processes into DP.txt.

29: DPC=DPC + (q-n)
30: end if

55

4.3.4 Online Malware Scanner

The OMS is another key component of the A-IntExt system and it performs two key

functions. First, from the hypervisor, it extracts the complete binary of the hidden

processes (executable �le) reported by the ICVA. The Figure 4.5 shows the �owchart

of OMS. The OMS accomplishes this by utilizing procdump plugins of an open source

tool3 on the acquired memory dump of Monitored VM. For each executable �le, it

computes three distinct hash digests, such as Message Digest (MD5), Secure Hash

Algorithm-1 (SHA-1), and Secure Hash Algorithm-256 (SHA-256). Further, these

computed hash digests were checked with LMSD4 to identify any types of hash digests

were matched with stored hash digests of known malware types, if not it sends the

computed hash digests to powerful public free OMSs and gets an examination report to

ascertain whether the extracted executable �le is benign or malignant. Similarly, OMS

also extracts other processes' executable �les that are not classi�ed as hidden processes

by the ICVA that are currently being run in the Monitored VM. These processes are

named as dubious processes. Like shrouded processes, the OMS additionally registers

hash digest for non-concealed processes and sends them to OMS to identify whether

the non-concealed process' executable �le is malevolent or benign.

4.4 Experimental Results and Evaluation

4.4.1 Experimental Setup

Experiments were conducted on the host system, which possessed the following speci-

�cations: Intel(R) core(TM) i7-3770 CPU@3.40 GHz, 8 GB RAM, and Ubuntu 14.04

(Trusty Tahr) 64-bit operating system. The popular open-source Xen 4.4 bare metal

hypervisor was utilized to establish a virtualized environment. To introspect the run

state of the live Monitored VM, Windows XP-SP3 32 bit guest OS created as DOMU-

1 under the Xen hypervisor. The guest OS was managed by the trusted VM (DOM-0

i.e. management unit) of the Xen hypervisor. The A-IntExt system was installed on

the DOM-0 VM, and it leveraged the popular VMI tool, namely, the LibVMI ver-

sion 0.10.1 to introspect low-level artifacts of the guest OSs. The LibVMI traps the

3http://www.volatilityfoundation.org/
4LMSD consists of 107520 MD5, SHA-1, and SHA-256 hash digest for all previously identi�ed well-

known families of malware which was obtained by using https://virusshare.com/ malware repository.

56

hardware events and accesses the vCPU registers, while functioning at the hypervisor.

4.4.2 Implementation

The implementation of A-IntExt system is at three levels: i) it acts as a VMI system

by leveraging a prominent VMI tool to introspect and acquire the guest OS run state

information without human intervention, ii) the ICVA algorithm is implemented as

PoC and induced into the A-IntExt system, wherein the ICVA detects hidden, dead

and dubious processes. In addition, GAM implemented and controlled by A-IntExt

system facilitates the transfer of state information of the Monitored VM to the A-

IntExt system. iii) The A-IntExt system comprises another major component named

OMS (see Section 4.3.4). It is used to identify whether the detected hidden and

detected DP or malicious process are benign or malicious by auxiliary veri�cation

with LMD and large online free public malware scanners5.

4.4.3 Experiments and Results Analysis

To convert the benign Windows guest OS into a malicious one and to perform mali-

cious activities on the Monitored guest OS, two stages of experiments were performed

using a combination of both malware and publically available Windows rootkits. In

the �rst stage, the evasive malware variant called Kelihos was directly collected

from malware repository6 to generate bulk malicious processes. In the second stage

of the experiment, �ve publicly available real-world Windows rootkits that have the

ability to hide the processes were used.

Experiment 1: Kelihos is a Windows malware also known as Hlux. Once it

starts to execute, it generates a number of child processes and then exits from the

main process to conceal its existence. It launches a set of processes in a span of a

short interval, which in�uences the process count. The main function of the generated

child process is to monitor user activities, and then report it to the Command and

Control Server (C&C) to be joined into a botnet. The Kelihos malware was used to

breed a number of processes, and at the same time, the Hacker Defender rootkit

was used to hide the process.

5https://www.virustotal.com/
6http://openmalware.org/

57

Table 4.1: Detection of hidden, dead and DPs by the A-IntExt system for Windows
guest OS

Exp PS used
PS visible

at Monitored VM

PS Introspected

by A-IntExt system

No. of PS classi�ed

by A-IntExt system

Time in

(seconds)

HPC DPC DPs

Test-1 25 20 25 5 0 20 0.22

Test-2 50 45 50 5 0 45 0.41

Test-3 75 70 74 5 1 69 0.63

Test-4 100 95 99 5 1 94 0.82

Test-5 125 120 123 5 2 118 1.03

This test was done to demonstrate the detection pro�ciency of the A-IntExt system

under a dynamic process creation environment. The A-IntExt system extracts the

manipulated semantic kernel data structure details related to the process by walking

through the _EPROCESS data structure (see Section 4.3.1).

The ICVA is a subcomponent of the A-IntExt system and its task is to identify

hidden, dead and dubious processes by performing a comparison operation on the

internally and externally captured state information of the Monitored VM. The per-

formance evaluation tests for both the ICVA and the A-IntExt system were conducted

separately. To measure the execution speed of the ICVA in detecting the hidden and

dead processes, experiments were performed with di�erent numbers of processes, i.e.,

25, 50, 75, 100, and 125. The execution speed denotes the amount of time the ICVA

takes to derive a conclusion as to whether the process is hidden, dead or dubious

processes. The last column of Table 4.1 depicts the average detection time of the

ICVA for di�erent numbers of processes on the Windows guest OS. One can observe

that the detection time of the ICVA for 125 processes is 1.03 seconds.

Twenty-�ve processes were considered in the �rst test; each test was performed

�ve times to derive the average detection time. Prior to the evaluation, �ve processes

were hidden at the Monitored VM and all of them were correctly detected by the A-

IntExt system, including the hidden, dead, and DPs, as shown in Table 4.1. Further,

A-IntExt system precisely addresses the malicious process detection challenges by

leveraging its OMS component (see Section 4.3.4).

As part of the experimental observations, Test-1 of Table 4.1 describes the 25

processes externally introspected by the A-IntExt system, which includes �ve hidden

58

Table 4.2: Identifying an actual malicious process from the detected hidden
processes by the OMS of A-IntExt system on Windows guest OS

Exp
No.of

HP
Computed MD5 hash for classi�ed HP Checked as

PS

name
DR

1 5 55cc1769cef44910bd91b7b73dee1f6c Malicious hxdef073.exe 37/53

be046bab4a23f8db568535aaea565f87 N-F procdump.exe 0/53

6cf0acd321c93eb978c4908deb79b7fb N-F chrome.exe 0/53

bf4177e1ee0290c97dbc796e37d9dc75 N-F explorer.exe 0/53

d068da81e1ab27dc330af91b�d36e6b N-F firefox.exe 0/53

Table 4.3: Identifying an actual malicious processes from detected and classi�ed
DPs by OMS of A-IntExt system on Windows guest OS

Exp
No.of

DPs

Scanned result
Malicous PS reported with MD5 hash Name DR

Benign Malware

1 20 18 2 0bf067750c7406cf3373525dd09c293c EFMTnkT7m.exe �

5fcfe2ca8f6b8d93bda9b7933763002a kelihos_dec.exe 37/55

processes and twenty DPs that are classi�ed by the ICVA; these hidden and DPs

are propagated by the malware. In our experiment-1, we used kelihos malware to

generate malicious processes (not hidden) and perform spiteful activity on Monitored

VM. At the same time, we used Hacker Defender rootkit to hide some processes.

During introspection of the untrustworthy Monitored VM, A-IntExt system precisely

classi�ed the infection activity of the malware processes as hidden and DPs.

Table 4.2 describes that from the �ve detected hidden processes, one process

hxdef073.exe is correctly identi�ed as malicious with Detection Rate (DR) of

37/53 based on the computed hash, and the other four processes such as the procdump

.exe, chrome.exe, explorer.exe, and firefox.exe, which were actually

hidden by the Hacker Defender rootkit, are reported as benign by the OMS.

Similarly, Table 4.3 represents the 20 DPs that were identi�ed by the A-IntExt sys-

tem. Further, those processes were checked with both LMD and OMS based on

the computed hashes. The time taken to compute MD5, SHA-1, SHA-256 hashes

and cross-check with LMD are depicted in Figure 4.6. As a result, one process

(EFMTnkT7m.exe) is identi�ed as malicious by locally checking with LMD (without

forwarding to virustotal) and other advanced malware process (kelihos_dec.exe)

identi�ed as malicous checking with OMS, and the rest were recognized as benign or

Nothing-Found (N-F).

59

(a) (b)

Figure 4.6: The average time taken by the OMS to compute MD5, SHA-1, and
SHA-256 hashes for di�erent processes (5a). Time taken by OMS to detect malware

by cross-checking with LMD based on it's computed hashes (5b)

Table 4.4: List and functionality of Windows rootkit

Rootkit name
User-mode/

Kernel-mode
Target object Hide PS Detected by A-IntExt system

Fu Rootkit Kernel-mode _EPROCESS Yes Yes

HE4Hook Kernel-mode _EPROCESS Yes Yes

Vanquish(0.2.1) User-mode IAT, DLL Yes Yes

Hacker Defender User-mode IAT, DLL Yes Yes

AFX Rootkit User-mode IAT, DLL Yes Yes

IAT: Interrupt Address Table, DLL: Dynamic Link Library

Experiment 2: In the second stage of the experiment, �ve publicly available

Windows rootkits were used as shown in Table 4.4. The third and fourth columns

of Table 4.4 represent target object and complete functionality of the rootkit, re-

spectively. However, in this stage of the experiment, the detection capability of the

A-IntExt system was limited to only the processes. For example, the FU rootkit

leverages the direct kernel object manipulation technique to hide a list of active pro-

cesses by directly unlinking the doubly linked list _EPROCESS data structure. It

contains the fu.exe executable �le and the msdirectx.sys system �le. The

function of hiding the kernel driver module �les is achieved by the msdirectx.sys,

whereas the fu.exe �le is used to con�gure and command the driver. The FU

rootkit is capable of achieving privilege escalation of the running processes and

can also alter the DLL semantic object of the kernel data structure by rewriting the

kernel memory. The HE4Hook is a kernel-mode rootkit and the user-mode rootkits

60

Figure 4.7: Performance impact of A-IntExt system on PCMark05 in detecting
hidden and malicious state information of Monitored VM for Windows guest OS

are Vanquish, Hacker defender, and AFX Rootkit. These rootkits have the

potential to hide the running processes on the Windows system. The �fth column

of Table 4.4 represents the detection of hidden processes performed by the A-IntExt

system.

4.5 Performance Overhead

A series of tests were conducted using Windows system benchmark tools to deter-

mine the performance impact of the A-IntExt system. The benchmark tests were

executed on the Windows guest OS in two di�erent scenarios to evaluate the per-

formance impact of the A-IntExt system. In the �rst scenario, the A-IntExt system

was disabled (not functioning), and in the second scenario, the A-IntExt system was

enabled (running). PCMark05, an industry standard benchmark, was executed on

the Windows guest OS to quantify the performance impact of the A-IntExt system.

Tests such as the CPU, Memory, and HDD of the PCMark05 suite were considered.

These tests were executed separately �ve times on the guest OS. Finally, the results

were considered on an average �ve-time execution of each test.

During hidden, dead and DP detection, tests such as File Decryption, HDD-Text

Startup, and HDD-File-Write induced maximum performance overheads of 6.8%,

7.2%, and 5.6%, respectively. Other tests performance overheads observed is less

than 5.5 %. These were noticed while the A-IntExt system performed process in-

61

trospection traces on the executed malware and rootkits. Figure 4.7 represents the

overall performance of the A-IntExt system in detecting hidden, dead and dubious

processes detection. The main reason for the performance loss is due to direct intro-

spection and the semantic view reconstruction operation performed by the A-IntExt

system. As the ICVA achieves the job o�ine, there is no performance overhead.

4.6 Discussion

The existing VMI techniques facilitate reconstructing a few semantic views of the

Monitored VM by directly intercepting the RAM content of the live Monitored VM

by overcoming the semantic gap problem. However, these techniques are yet to be

intelligent and automated to introspect and accurately detect hidden or malicious se-

mantic state information on their reconstructed high-level semantic view. The design,

implementation, and evolution of the proposed A-IntExt system are signi�ed as an in-

telligent solution to precisely detect the malignant processes running on the Monitored

VM. It acts as a perfect VMI-based malware symptoms detector by logically analyzing

the malicious infection of the operating systems key source information (processes).

The ICVA of the A-IntExt system judiciously performs a cross-examination to detect

the hidden-state information of the guest OS that is manipulated by di�erent types of

evasive malware or stealthy rootkits. Malicious processes (not-hidden) are identi�ed

by the OMS. We believe that the current development of A-IntExt system is pro�cient

in detecting hidden, dead, and malicious processes of any kind of malware or rootkit.

However, detecting and identifying both known and unknown malware processes by

performing cross-examination with both LMD and powerful online malicious content

scanners (virustotal) using its computed hashes (MD5, SHA-1, and SHA-256). The

major limitation in identifying malicious processes by the VirusTotal is that it accepts

only four requests per minute.

4.7 Summary of the Work

In this work, we designed, implemented, and evaluated the A-IntExt system, which

detects hidden, dead and dubious processes by performing an intelligent cross-view

analysis on the internally and externally captured run-state information of the Mon-

62

itored VM. The A-IntExt system abstracts the semantic view (processes) of the live

Windows guest OS externally (VMM-level). It uses an established communication

channel between the Monitoring VM and Monitored VM to receive internally cap-

tured run-state information (at-VM-level). Further, pro�ciently detecting hidden and

malignant state information of the Monitored VM that could be manipulated by so-

phisticated malware or real-world rootkits. The A-IntExt system is intelligent enough

to address the challenges that lie in detecting malicious (not-hidden) processes of the

run state of the Monitored VM using its OMS component. Publicly available evasive

malware, real-world Windows rootkits were used to perform a series of experiments

to accurately measure the hidden-state and malicious detection capability of the A-

IntExt system. The experimental results showed the accuracy of the A-IntExt system

in detecting stealthy processes with a maximum performance overhead of 7.2%.

63

Chapter 5

VMM-based Automated Multi-level
Malware Detection System

5.1 Introduction

In order to ful�ll the requirements like stringent timing restraints and demand on

resources, CPS must deploy on the virtualized environment such as cloud comput-

ing. The CPS has evolved as a most crucial infrastructure that integrates devices like

computation, networking, and physical elements together to facilitate and communi-

cate various applications (Chen et al. 2016). Primary goals of the CPS is to enable

intelligent monitoring as well as controlling of the various applications running on the

computing devices. In other words, CPS main objective is to assist quick extraction of

information, analysis of the data, decision making and data transmission in real-time.

The CPS has been widely adopted in various �elds like robotics, health care, mili-

tary, industrial control, power systems, avionics systems, intelligent building, smart

electrical power grids, smart medical systems, etc., (Ma et al. 2016).

The central processing core of the CPS receives a massive amount of data from

various cyber-enabled devices as well as other physical devices through communication

networks. For example, in a smart and reliable transportation system, a vehicle

equipped with the sensor device sends data to the roadside unit deployed on the

roads which in turn transmits the received data to central processing core of the CPS

over a high-speed network. Since a large number of devices send the data, inbound

tra�c at the central processing core of the CPS is massive. Generally, CPSs are

real-time systems, thus, the signi�cance of computational latency of their critical

components are as same as their correctness of their functional modules. In order to

64

mitigate the loss caused due to the violation of the real-time property of a perilous

function, the best solution is to deploy central processing core of the CPS in the

cloud computing (virtualized) environment. The main aim of development of the

cloud computing is to o�er fast computational speed. Moreover, the cloud computing

can o�er a vast pool of resources to store, process, and analyze the data, which creates

precise data information. Elasticity property of the cloud computing o�ers adequate

amount of resources to central processing core of the CPS as and when the demand

arises (Chaâri et al. 2016). The virtualization enables a number of bene�ts such as

reduced operation and maintenance cost as well as setup cost, easy the procurement

process, more importantly, dependability and availability.

Much of the works have been done in the context of hardware virtualization and

fault-tolerance on virtualization (Nagarajan et al. 2007; Jablkowski and Spinczyk

2015). Recent work (Jablkowski et al. 2017) provides the aspects of integration and

consolidation of CPS with virtualization. Since central processing core of the CPS

frequently communicates with the other systems in the physical world through com-

munication media, malware can be used as a weapon by an attacker or malignant user

who intentionally desire to create havoc (Reddy 2015).

Malware is a malicious program developed with an intention to launch malignant

tasks. Generally, malware uses the stealthy techniques to exploit the system and

network vulnerabilities in order to gain control of the user system to achieve unau-

thorized activities (Reddy 2015). Its prime target is not only restricted to destroy

the single system or group of systems, it also targets to disrupt the normal functions

of the computer networks (Moskovitch et al. 2008). This results in increasing threat

to the information systems that are used in day to day activities. Malware not only

makes use of zero-day exploits to acquire the control of vulnerable machine but also

stealthily achieve its intended job by hiding in an infected system and cause contam-

inations over time. The proliferation of new variants or a particular class of malware

constantly uses code obfuscation technique (Lin and Stamp 2011) or rootkit function-

ality (Goudey 2012a) to subvert most of the existing in-host security solutions to gain

access to the targeted machine.

Since VMs are easily available through the CSP, the virtualized cloud environ-

ment is the prime target by an attacker (Pearce et al. 2013). To protect VMs in

65

which CPSs are functioning against malware-based attacks, malware detection and

mitigation technique is emerging as a highly crucial concern. The traditional VM-

based anti-malware software themselves a potential target for malware-based attack

since they are easily subverted by sophisticated malware. Thus, a reliable and ro-

bust malware monitoring and detection systems are needed to detect and mitigate

rapidly the malware-based cyber-attacks in real-time particularly for a virtualized

environment.

To tackle this issue, VMI (Gar�nkel et al. 2003) has emerged as a promising out-

of-VM security solution that operates at the VMM and facilitates in constructing a

semantic view of the live guest OS in real-time by introspecting low-level details of

the volatile memory state of the introspected guest OS without the consent of one

being monitored.

Other signi�cant challenges in precisely detecting the malicious executables, mainly

in a virtualized environment are:

� In order to provide real-time protection for CPS which is operating within the

guest OS in a virtualized cloud environment, the traditional VM-based security

solutions are inadequate to protect guest OS resources against the sophisticated

malware. Therefore, VMI techniques provide out-of-VM security solution for

the introspected guest OS while operating at VMM. However, introspected in-

formation (e.g., processes) was available in dubious forms1. For example, the

proliferation of the Kelihos malware on the guest OS spawned a number of

malicious child processes before exiting from the main process (Garnaeva 2012).

In such an instance, manually distinguishing, detecting, and preventing the run-

ning malicious processes from hundreds of benign processes was time-consuming

for a security administrator, as it required a wide knowledge of the malicious

executables.

� The CPS functioning on the virtualized environment (e.g., guest OS) is targeted

by malicious executables use the code obfuscation techniques (Sharif et al. 2009;

Bayer et al. 2009) and other stealthy malware attacks (Jiang et al. 2007). Hence,

1Dubious process is a process that is currently running on a guest OS, and it may or may not be
a malicious process (not hidden).

66

performing early symptoms of malware execution and accurately estimating the

stealthy hidden, dead and dubious malicious processes under the dynamic nature

of the process creation and expire on introspected live guest OS is challenging

task.

To address the aforementioned challenges, we propose an intelligent and guest-

assisted AMMDS that leverages both the VMI and MFA techniques to perform three

levels of the investigation to secure the critical infrastructure of the virtualized cloud

environment. As a �rst level of investigation, it performs introspection and precisely

detects the semantic view of the hidden and malicious processes to estimate the perfect

infection state of the live introspected guest OS. It seizes the execution state of the

introspected guest OS by capturing the memory dump of the monitored guest OS soon

after it identi�es the unusual behavior and then instantly reconstructs and extracts

executables from the acquired memory dump to carry out next level of investigations.

As a second level of investigation, the OMD component of the AMMDS examines

the extracted executables to ascertain the malicious one. The OFMC component of

AMMDS analyses the extracted executables in order to identify unknown or zero-

day malware using machine learning techniques as a third level of investigation. The

AMMDS is evaluated by using real malware datasets on the virtualized environment

established using Xen hypervisor. Our empirical results show that AMMDS is robust

in detecting and classifying unknown malware that can evade VM-based security

solution, and it only incurs acceptable moderate run-time overhead.

The key contributions of the present work are as follows:

1. We have designed, implemented, and evaluated a consistent, real-time VMM-

based guest-assisted AMMDS that periodically examines the state of the live

guest OS system while defending the CPS to detect the running malicious pro-

cesses from the forensically reconstructed executables.

2. OMD and OFMC are two prime sub-components of the AMMDS. These are

practically implemented and implanted into AMMDS to distinguish an actual

malware from semantic view processes that are reconstructed as dubious exe-

cutables at VMM. The OMD performs a malicious check on hidden and dubi-

ous processes by cross-verifying with its LMSD and OMD. On the other hand,

67

OFMC uses the extracted features recommended by feature selection techniques

in the form of Final Feature Vector (FFV) to perform malware analysis in o�ine.

3. To the best of our knowledge, our proposed AMMDS is the �rst to adopt ma-

chine learning techniques from a VMI perspective at the VMM, and to perform

runtime detection of unknown malware from the introspected and forensically

extracted executables of the introspected guest OS. This idea opens the door

for researchers to leverage other scienti�c techniques at the VMM to perform

automatic detection of malware.

4. The robustness of the AMMDS was practically evaluated by injecting large sam-

ples of real-world Windows malware and rootkits on a live Windows guest OS.

The OMD of the AMMDS is powerful enough to distinguish between malicious

and benign executables. Similarly, the OFMC achieved malware detection rate

of 100%, and 0% FPR with maximum performance overhead of 5.8%.

5.2 Overview of AMMDS

The AMMDS is a VMM-based guest-assisted introspection system that advances the

current out-of-VM security approach in an automated, isolated, real-time, scienti�c

manner, while functioning at the secure Monitoring VM or Dom0. Figure 4.1 shows

an overview of the AMMDS, its major components are: Guest Virtual Machine In-

trospector (GVM-Introspector), ICVA, and Malware detector. It is introduced to

e�ciently investigate and detect any hidden, dead, and dubious processes, while pre-

dicting early infection of the malware symptoms by internally gathering and externally

introspecting the volatile memory of the live untrusted Monitored VM. The AMMDS

achieves this goal by using its integral component called ICVA. Furthermore, Malware

detector of the AMMDS consisting of two subcomponents that are OMD and OFMC.

The OMD identi�es whether the detected hidden and dubious process is malicious

or benign by cross-comparing with its LMSD and OMS based on the computed hash

digest for each of the extracted dubious executables. The OFMC leverages a practical

machine learning techniques to classify the execution of the unknown malware from

the reconstructed dubious semantic view of the processes (i.e., noticed from a VMI

68

Figure 5.1: The proposed VMI based A-IntExt system

perspective) forensically extracted as executables from the seized live memory dump

of the introspected guest OS.

The ICVA conducts the preprocessing operation while removing unimportant state

information and sorts the elements of both the EXTps and INTps in ascending or-

der based on the PID. The total number of processes gathered from the EXTps are

symbolized as EXTpsc

EXTpsc =| EXTps | (5.1)

Similarly, the total number of processes gathered from INTps are symbolized as

INTpsc

INTpsc =| INTps | (5.2)

where, | INTps | and | EXTps | represent the cardinality of INTps and EXTps,

respectively. The cardinality of INTps, EXTps is the total number of elements (pro-

cesses) in the INTps and EXTps.

The ICVA pro�ciently detects the hidden, dead, and dubious running processes

and predicts the symptoms of the malware execution on the Monitored VM based on

the decision function as follows:

69

ICV A(EXTps, INTps) =


Hidden if (PID/PN ∈ EXTps and PID/PN 6∈ INTps)
Dead if (PID/PN 6∈ EXTps and PID/PN ∈ INTps)
Dubious if (PID/PN ∈ EXTps and PID/PN ∈ INTps)

(5.3)

However, at the end of the scrutiny, it is not feasible for the ICVA to check whether

these processes are malicious or not. To resolve this ambiguity, it commands (on con-

�rmation of Equation 5.3) the VMI memory acquisition (step 4) to pause and perform

memory acquisition of the Monitored VM. At the same time, the executable �le ex-

tractor (step 5) component extracts all the hidden and active dubious executables

(.exe).

5.2.1 Malware Detector

The Malware detector of the AMMDS consists of three sub-components that are

Executable �le extractor, OMD, and OFMC.

5.2.2 Executable File Extractor

The major function of the executable �le extractor is to extract complete executables

that correspond to detected hidden and dubious processes as indicated by the ICVA.

The executable �le extractor accomplishes this task by utilizing the procdump plugin

of an open source Volatility tool2 based on the consistent state of seized memory dump

of the Monitored VM. The executable �le reconstruction is achieved by parsing the PE

header data structure (Pietrek 1994; Ligh et al. 2014) from the obtained VM memory

dump. Once the hidden and dubious executables are extracted, the OMD and OFMC

investigate them individually to ascertain any malicious substance is present in the

reconstructed executables.

5.2.3 Online Malware Detector

The OMD computes a hash digest for the extracted executables soon after receiving

the con�rmation from the executable �le extractor. The OMD computes three distinct

hash digests such as SHA-256, SHA-1, and MD5, for each of the extracted executables.

2http://www.volatilityfoundation.org/

70

Figure 5.2: Flow chart of the AMMDS for detection of malware using OMD and
OFMC components

Further, these computed hash digests checked with LMSD3 to identify the malware

which are known in the digital world. If the OMD does not �nd any match, then it

sends the generated hash digests to powerful publicly available free online malware

scanner4 to obtain an analysis report of the examination that provides whether the

tested executable �le is malware or benign. The left side of the Figure 5.2 depicts

the sequence of operations followed by the OMD to check maliciousness of the given

input executables. However, the main limitation of the OMS is that it is unable to

detect the new variants of malware due to unavailability of a new malware signature

in its database. Meanwhile, malware detector uses the OFMC to detect and classify

unknown malware using machine learning techniques.

3LMSD consists of 107520 MD5, SHA1, and SHA256 hash digests for known malware which were
downloaded from https://virusshare.com/ malware repository.

4https://www.virustotal.com/

71

5.2.4 O�ine Malware Classi�er

The OFMC is another important subcomponent of the malware detector and it ad-

dresses the limitation of the OMD, while accurately classifying any kind of executa-

bles as benign or malware by employing machine learning techniques. For any ma-

chine learning based malware detection approach, �rst, the classi�er model should

be trained with a su�cient number of benign and malware executables so that the

classi�er model can easily and quickly distinguish malware executables from benign

executables. The training phase of OFMC comprises of feature extraction and fea-

ture selection techniques (will be shortly introduced) and FFV generation which in

turn needed to perform malware classi�cation. In the evaluation phase, we perform

detection of unknown malware which is forensically reconstructed as detected hidden

and dubious executables based on the trained classi�er. In this evaluation phase, the

OFMC functions on the reconstructed executables by extracting N-grams as features

and then prepares the testing �le by using FFV with extracted N-grams of an exe-

cutable �le to be veri�ed. The right side of the Figure 5.2 depicts the steps followed

by the OFMC to identify the given test input executables as benign and malicious.

Feature extraction technique: The executables are used as input �les in the

�rst step of feature extraction to extract the hexadecimal dump, and then pre-process

the hexadecimal dump to remove any irrelevant information. After the pre-processing

operation, only the byte sequences that represent a snippet of the machine code of

the executable received. The extracted byte sequences are grouped in the form of N-

gram (Reddy and Pujari 2006), which represents contiguous bytes sequences, where

N represents the number of bytes. In this work, we have chosen N-gram of size 4 byte

for the OFMC experimental analysis to achieve best malware detection rate. The

steps involved to obtain the N-grams from the executables is shown in Algorithm 5.1.

Each individual N-gram is considered as a feature and all N-grams of all executables

in the training dataset are treated as an original feature vector.

The N-gram based technique produces a large number of N-grams that include

duplicate N-grams. All the N-grams cannot be used as �nal features to generate a

training �le as well as a testing �le as needed by the classi�er because it may result

in memory consumption and performance overhead. In addition, it may also reduce

72

Algorithm 5.1: Feature extraction

Input : Binary �les (.exe) F = {f1, f2, f3, ... ,fM}
Output: N-gram �les fN = {fN1 , fN2 , ... ,fNM

}

1 foreach �le fi ∈ F do
2 Extract hexadump, N-grams
3 hdi ←− hexadump(fi) // hd - hexadecimal dump
4 gi ←− preprocess(hdi) // g - temporary �le
5 Create N-gram �le fNi

6 while not EOF(gi) do
7 N-gram ←− N-gram (gi)
8 fNi

.append(N-gram)

9 end

10 end
11 fN = {fN1 , fN2 , ... ,fNM

}

the predictive performance of the classi�er with more FPR. In order to address these

issues, the feature selection technique is employed.

Feature selection technique: The approach for selecting the best features from

the original feature vector plays an imperative role in classifying the input �les ac-

curately. The feature selection step identi�es which features are highly crucial and

which are noisy from the original feature vector by generating a score for each feature.

The noisy features are ignored because they degrade the predictive accuracy of the

classi�er. In this work, OFMC comprising of two statistical techniques such as NGL

Correlation Coe�cient (CC) and Odds Ratio to rank each feature individually and

recommend the prominent features based the procedure described in Algorithm 5.2.

a) NGL Correlation Coe�cient (NGL CC): it is a variant of the chi-square

test (Dave 2011). It selects the features (N-grams) that are correlate with class Ci and

does not select features that are correlated with other classes. The NGL CC score for

a given N-gram of class Ci is computed as follows:

NGL(N-gram, Ci) =

√
N(PS −RQ)√

(P +R)(Q+ S)(P +Q)(R+ S)
(5.4)

Where, N represents the total number of N-gram �les in the dataset, P indicates

the number of N-gram �les in class Ci that contains N-gram, Q is the number of

N-gram �les other than class Ci that contains N-gram, R is the number of N-gram

�les in class Ci that does not contain the N-gram, and S is the number of N-gram

�les that does not contain the N-gram, other than class Ci. The class Ci = {benign,

73

malware}.

b) Odds ratio: It is one of the popular feature selection techniques. A positive

score of Odds Ratio indicates that the given N-gram often appears in a given class as

compared to other class. A negative score represents that the given N-gram presence

is more in the other class. Odds Ratio for binary classi�cation is de�ned as follows

(Mladenic and Grobelnik 1999):

OddsRatio(N-gram, Ci) = log
P (N-gram | benign)(1− P (N-gram | malware))

P (N-gram | malware)(1− P (N-gram | benign))
(5.5)

P(N-gram | benign) is the probability of occurrence of N-gram in benign class.

Similarly, P(N-gram| malware) is the probability of occurrence N-gram in malware

class. The class Ci = {benign, malware}.

5.3 Implementation and Evaluation

5.3.1 Experimental Setup

To evaluate the e�ciency of our proposed AMMDS, the host system that had the

following speci�cations: Ubuntu 14.04 (Trusty Tahr) 64-bit operating system, 8 GB

RAM, Intel(R) core(TM) i7-3770 CPU@3.40 GHz, was utilized to conduct experi-

ments. The popular open-source bare metal hypervisor such as Xen 4.4.l was used to

set-up a virtualized environment. The Windows XP SP3 32 bit Monitored VM was

created as DomU to act as CPS and it was controlled by the Monitoring VM (Dom0)

of the Xen hypervisor. The AMMDS was installed on the Monitoring VM and the

popular open source VMI introspection toll, such as the LibVMI version 0.10.1 to

acquire the RAM dump of the Monitored VM. An open source memory forensics

analyzer such as Volatility was applied to construct executables from the acquired

infected memory dump. The machine learning algorithms' suite such as WEKA (Hall

et al. 2009) was employed to achieve o�ine malware detection and classi�cation at

VMM level.

5.3.2 Implementation

Our proposed AMMDS is implemented using the Python programming language and

its implementation was structured at three levels: i) the AMMDS functions as an

74

Algorithm 5.2: Feature selection

Input : 4 = {B = {fNB1
, fNB2

, ... ,fNBM
} ∪ M = {fNM1

, fNM2
, ... ,fNMM

} }
Output: Selected features (N-grams)

1 Create �les BOR, MOR, BNGL and MNGL
2 // B(M)OR - benign (malware) Odds Ratio
3 // B(M)NGL - benign (malware) NGL
4 foreach �le fNi

∈ 4 do
5 foreach N-gram ∈ fNi

do
6 Compute Odds-Ratio as per equation(5)
7 OR_score ←− Odds-Ratio(N-gram)
8 if (fNi

∈ B) then
9 Store N-gram and OR_score into a �le
10 BOR.append(N-gram, OR_score)
11 else

12 MOR.append(N-gram, OR_score)

13 end
14 Compute NGL score as per equation(4)
15 NGL_score ←− NGL(N-gram)
16 if (fNi

∈ B) then
17 Store N-gram and NGL_score into a �le
18 BNGL.append(N-gram, NGL_score)
19 else

20 MNGL.append(N-gram, NGL_score)

21 end

22 end

23 end
24 Sort BOR and MOR in descending order based on OR_score
25 Sort BNGL and MNGL in descending order based on NGL_score
26 Select top 'L' number of N-grams from BOR and MOR separately
27 Select top 'L' number of N-grams from BNGL and MNGL separately

advanced automated VMI-based security solution by using open source VMI tool to

introspect semantic view of run state of the Monitored VM. Further, it is also acquir-

ing the memory dump of the Monitored VM when symptoms of malware are detected

at the introspected guest OS without the knowledge of one being monitored. ii) ICVA

is implemented as PoC and induced into the AMMDS, which detects hidden, dead,

and dubious processes. iii) Implementation of the malware detection component in-

cludes both OMD and OFMC. The OMD checks the detected hidden and dubious

process as benign and malware by cross-comparing with both LMSD and online mal-

ware scanner. At the same time, implementation of OFMC uses feature extraction

and feature selection techniques (see Algorithm 5.1 and 5.2) facilitate to construct

75

FFV in order to detect actual unknown malware from introspection-cum-forensically

extracted hidden and dubious executables using trained machine learning classi�ers

at VMM.

5.3.3 Dataset Creation and Use

About 3375 Windows malware samples (executables) were collected from the VX

Heaven5 malware repository by directly connecting the Windows Monitored VM to

an external network. In addition, 675 Windows benign executables were also col-

lected from a freshly installed Windows Monitored VM along with other data source6

that included both Windows native utilities and application executables. These ex-

ecutables were invoked by our developed program on the Windows Monitored VM

with di�erent experimental scenarios, including the installation of 2 rootkits such as

Hacker Defender and FU Rootkit. These rootkits used to explicitly hide the

running benign and malware processes on the guest OS. The experimental results de-

picted in Table 5.1 illustrate the execution of di�erent categories of malware samples

on a live Monitored VM.

5.3.4 Evaluation and Results Discussion

In this section, we discussed the evaluation and results analysis of our proposed ap-

proach based on VMM-based generated dataset that was generated by executing be-

nign and malicious executables on live Monitored VM. In order to prepare the training

and testing �les that are required to evaluate the performance of the OFMC, the col-

lected malware, and benign executables were divided into two parts: Set-A and Set-B.

The Set-A consisted of 60% of total samples and these were used to train the classi�er

and the remaining 40% of samples were grouped into Set-B. In the testing phase, mal-

ware and benign samples from Set-B were executed on live Windows XP Monitored

VM in di�erent experimental cases (as shown in Table 5.1) while measuring the detec-

tion pro�ciency of the AMMDS to detect hidden, dead and dubious processes. Finally,

the semantic views of these detected processes were forensically reconstructed as ex-

ecutables from the infected memory dump of the guest OS. These injected malware

5http://vxheaven.org/
6http://download.cnet.com/windows/, accessed on July 2016

76

and benign samples were forensically extracted in the form of dubious executables to

detect actual malicious executables by following the procedure discussed in Section

4.3.1.

The experiments were performed at di�erent stages to evaluate the malware de-

tection pro�ciency of the AMMDS. The procedure employed by the OMD to detect

whether the extracted executables is malware or benign is discussed in Section 5.2.3.

As part of the experimental observations, we have performed six di�erent tests using

di�erent types of malware and benign executables on a freshly installed Windows

Monitored VM for each test as shown in Table 5.1. More precisely, in test I, we

executed 160 Trojan and 45 benign �les, totaling 205 executables on a clean live

Windows guest OS. Once all the executables were injected, some Trojan executables

hid or disappeared on the Windows guest OS. At the same time, we also injected a

Hacker Defender user-mode rootkit to explicitly hide two benign (explore.exe

and chrome.exe) and one malware (Trojan.Win32.exe) process running on the

Monitored VM. These experiments lasted 4 minutes. A periodic introspection of the

AMMDS system helped in identifying the symptoms of malware execution by recog-

nizing the disparity of the processes that emerged between the internal and external

views of the processes state information of the Monitored VM (see Section 4.3.3).

As seen in test I of Table 5.1, the AMMDS system ascertained and counted the in-

trospected processes, namely, internal, external, hidden, dead, and dubious processes

as 221, 225, 5, 1, and 220, respectively. However, there were variations in the detected

processes counted on the internally captured and externally introspected process state

information including 21 (additional) running default processes of the clean Windows

guest OS.

More speci�cally, the internal view of the total processes visible is 221, i.e., from

the 205 total injected malicious and benign executables, 5 processes (3 were self-hidden

by the Trojan and rootkit and 2 were benign processes that are explore.exe and

chrome.exe explicitly hidden by the Hacker Defender rootkit) are hidden at

77

Table 5.1: Execution of malware and benign executables on live Monitored VM in di�erent experimental test cases

Test #. Malware types
Executables used # PS visible

by internal view

PS introspected

from external view

PS detected by AMMDS

Malware Benign Total Hidden Dead Dubious Time (in seconds)

I Trojan 160 45 205 221 225 5 1 220 2.45

II Backdoor 185 45 230 249 250 2 1 248 2.25

III Worm 210 45 255 273 274 3 2 271 2.81

IV Virus 230 45 275 292 294 4 2 290 2.55

V Adware 270 45 315 333 345 3 1 342 2.62

VI Spyware 295 45 340 357 358 4 3 354 2.75

Total # of executables 1350 270 21 1725

Table 5.2: Identifying an actual malicious process from test-I of detected hidden processes by the OMD of AMMDS

Malware

type

No. of hidden process to

be checked
MD5 hash digest for classi�ed hidden process Predicted as PS name Detection Rate

Trojan 5 55cc1769cef44910bd91b7b73dee1f6c Malicious hxdef073.exe 51/53

6cf0acd321c93eb978c4908deb79b7fb Benign chrome.exe 0/53

bf4177e1ee0290c97dbc796e37d9dc75 Benign explore.exe 0/53

1338dfc088a24a477dd3c6d65fe71b9b Malicious stubd.exe 33/43

5fcfe2ca8f6b8d93bda9b7933763002a Malicious kelihos dec.exe 36/54

Table 5.3: Identifying an actual malicious process from test-I of detected dubious executables by the OMD of AMMDS

Malware

type

No. of dubious process

to be checked

MD5 hash digest for

classi�ed dubious process
Predicted as PS name

Trojan 220
0bf067750c7406cf3373525dd09c293c Known malware EFMTnkTm-216.exe
376121485bee9e8885d879d5407388c3 Known malware Win32.Hidedoor.exe

78

(a) (b)

Figure 5.3: The average time consumed by the OMD to generate SHA-256, SHA-1,
and MD5 hash digest for execution of di�erent types of malware (4a). Time taken
by the OMD to identify the known malware by cross-checking with LMSD based on

computed hash digest (4b)

the guest OS and 21 are native running processes of the guest OS. Finally, 221 are

internally gathered processes. Note that these 5 hidden processes are not gathered by

the GAM (i.e., internal view of guest OS) as it does not appear in the tasklist com-

mand of the GAM (see Section 4.3.2). Finally, the VMI introspector of the AMMDS

externally (i.e., VMM level) introspect and ascertain these 5 hidden processes.

Similarly, in the II experiment, we injected 185 Backdoor and 45 benign �les,

totaling 230 executables on the clean Windows guest OS. Meanwhile, in this test

we have injected DKOM based kernel-mode, FU Rootkit to explicitly hide a few

benign and malware running processes by directly removing or unlinking it from

the _EPROCESS data structure of the process list at the kernel-mode. Finally, the

disparity of the processes is identi�ed by the ICVA of the AMMDS similar to test I.

Likewise, experiment III, IV, V, and, VI were conducted by executing other types of

malware and benign executables on the guest OS. Finally, six di�erent experimental

test cases, the AMMDS reconstructed over 21 hidden and 1725 dubious executable

as VMM-based generated malware dataset from six infected memory dumps of the

guest OS at VMM as shown in Table 5.1.

In each test cases, the OMD computes hashes digest for all the reconstructed exe-

cutables from the captured memory dump and then performed cross-examination with

LMSD and OMS based on the computed hash digest. The time elapsed to generate

79

Figure 5.4: Snapshot of OMD for identi�cation of malicious (not hidden) process
kelihos_dec.exe from OMS

Figure 5.5: Snapshot of OMD for the detection of known malware by cross-checking
with LMSD

the hash digest for malware of di�erent types malware and benign (i.e., reconstructed

executables of all six test cases) is shown in Figure 5.3a. Similarly, the time taken

by the OMD to detect the known malware by cross-comparing with LMSD (based

on computed hashes) is shown in Figure 5.3b. Table 5.2 represents the results of

80

OMS for the detected 5 hidden processes that included 1 rootkit self-hidden process

(hxdef073.exe), 2 explicitly hidden benign processes by the Hacker Defender

rootkit (chrome.exe and explore.exe), and other 2 are self-hidden by the Trojan

malware on the monitored VM. The Figure 5.4 represents the snapshot of execution of

the Kelihos dec.exe malware (not hidden) detected by the OMS with a detection

rate of 37/55. Table 5.3 represents the AMMDS classi�ed 220 as dubious executables

and cross-compared with both LMSD and OMS to detect any known malware. Fi-

nally, Figure 5.5 represents a snapshot of OMD detected the known malware named

EFMTnkT7m-216.exe by cross-checking with LMSD.

5.3.5 Experimental Methods

The prime aim of the OFMC is to explore the accurate detection and classi�cation

of malicious executables that are semantically reconstructed as hidden and dubious

executables on live Monitored VMs using machine learning techniques. It has been

seen in many researches (Kolter and Maloof 2006; Sharif et al. 2009; Shabtai et al.

2012; Bai and Wang 2016; Watson et al. 2016; Valipour 2016) that the overall pro-

cess of classifying unknown executables as benign or malware using machine learning

techniques consists of two phases, training, and testing phase. In training phase, 60%

of the benign and malware samples of the training set (i.e., Set-A) are used to prepare

a training �le. The �rst step in the training phase is to pre-process the training sam-

ples to derive the N-gram features using the approaches explained in Section 5.2.4.

It has been seen in previous researches that N-gram feature of size 4 byte exhibits

promising results (Kolter and Maloof 2006; Masud et al. 2008). Therefore, we have

decided to perform feature construction using N-gram of size 4 bytes during the eval-

uation of our proposed approach. Since the constructed features size is quite large, it

is impractical to use all the extracted features to prepare a training �le required to

train the classi�er to attain the real-time detection of the malware. Therefore, only

the crucial topmost features were selected on the basis of the rank assigned by the

feature selection techniques (as discussed in Algorithm 5.2). For each of the features,

two separate feature score (rank) are computed using two di�erent feature selection

techniques namely NGL CC and Odds Ratio. Based on the highest feature score,

the length (L) of the topmost features 250, 500, and 750 are selected to verify which

81

feature length achieves more accuracy. The symbol L represents the number of top-

most features selected based on the highest feature score from each class separately

used to generate FFV. Finally, a training �le is built using the FFV with the N-gram

�les corresponding to the training samples. Lastly, the classi�er is trained using the

constructed training �le.

Next, during the testing phase, executables excluded from the training set are

used to construct a testing �le. To evaluate the testing phase, binary �les belong

to Set-B are executed on a live Windows Monitored VM in di�erent experimental

scenarios for each type of malware and benign samples, and �nally, those executables

are semantically detected (VMI perspective) and forensically extracted at the VMM

level are in dubious form (as discussed in Section 4.3.1). The reconstructed hidden

and dubious executables are �rst parsed and then a representative feature vector is

extracted as a training instance. Based on this feature vector, the classi�er categorizes

the testing �le instances as either benign or malware in real-time at the hypervisor.

The overall malware detection rate of the OFMC is measured in the testing phase

by following the K/N-fold cross-validation approach. Here, the independent dataset

is randomly divided into N equal-sized subparts (samples). Out of these N subparts, a

single subpart is retained as validation data, and the remaining N-1 subparts are used

as training data. The cross-validation process is reiterated N times (i.e., N-folds) and

the �nal results are presented as an average of all the folds. This approach helps in

systematically evaluating the robustness of our OFMC to detect and classify unknown

malware from extracted executables.

5.3.6 Evaluation Metrics

The classi�er detection performance can be measured by computing the di�erence

between the predicted class for a given input and the actual class that the input

belongs to. For instance, if the test input data is of the benign class and the classi�er

predicts it as benign, then, it is a correct classi�cation. To quantify the detection

performance of the classi�er, the 2 × 2 confusion matrix is used (shown in Table 5.4)

as it provides all the possible outcomes of a prediction and has the form TP, TN, FP,

and FN of the classi�er. The detection of the classi�er is considered as TP when a

malware �le is properly identi�ed as a malware otherwise, it is treated as FN. Any

82

Table 5.4: Confusion matrix

Class Predicted malware Predicted benign

Malware True Positive(TP) False Negative(FN)

Benign False Positive(FP) True Negative(TN)

benign �le classi�ed as malware is treated as FP otherwise, it is measured as TN.

Six performance metrics such as True Positive Rate (TPR), FPR, Precision, Recall,

Accuracy, and F-measure were used in this work to measure the performance of the

classi�er as shown in equations below. Finally, the weighted average result of the

performance metrics was considered.

TPR =
TP

(TP + FN)
FPR =

FP

(FP + TN)

Precision =
TP

(TP + FP)
Recall =

TP

(TP + FN)

Accuracy =
TP + TN

(TP + TN + FP + FN)
F −Measure = 2 ∗

(
Precision ∗Recall

Precision+Recall

)

5.3.7 Results Analysis

Six popular machine learning techniques such as such as Logistic Regression, Random

Forest, Naives Bayes, Random Tree, and Sequential Minimal Optimization (SMO),

and, J48 were used to measure the e�ectiveness of the proposed approach individually.

All the chosen classi�ers were initially trained with the default parameters available in

the WEKA. Next, during the evaluation of each classi�er, we selected three di�erent

FFV of length L=250, L=500, and L=750 from the training set to train the classi�er.

The evaluation performed by following the 10-fold cross-validation. It randomly splits

the original input �le into 10 equal subparts, where 9 subparts are used as the training

dataset and the remaining 1 subpart is used as the validation data to measure the

detection e�ciency of the classi�er. The cross-validation process is reiterated 10

times (the folds) for every combination with the condition that each subpart is used

once as testing data. Finally, the outcome of each fold is averaged to estimate the

overall e�ciency of the classi�er. The same steps are repeated separately for di�erent

FFVs of di�erent sizes from two di�erent feature selection techniques. This approach

helps in systematically evaluate the feasibility of our proposed OFMC of the AMMDS

83

(a) L=250 (b) L=500

(c) L=750

Figure 5.6: Malware detection accuracy achieved by di�erent classi�ers based on
NGL CC and Odds Ratio feature selection techniques for three di�erent feature

length

to measure detection and the classi�cation accuracy of malware from semantically

reconstructed dubious executables at the VMM.

In the initial experiments, we observed that the Random Forest classi�er achieved

the highest accuracy on all three di�erent L for two feature selection techniques,

as compared to the other classi�ers. Figure 5.6 and Table 5.5 provides details of the

malware detection accuracy and TPR and FPR achieved by di�erent classi�ers for 10-

fold cross-validation evaluation. In particular, the Random Forest classi�er achieved

an accuracy of 99.75% with 0.003 FPR, 99.83% with 0.002 FPR, and 100% with 0

FPR for L=250, L=500 and L=750 features, respectively for suggested features of

NGL feature selection technique. Similarly, the same classi�er performs pretty well

on the features that are suggested by Odds Ratio feature selection technique while

yielding an accuracy of 99.78% with 0.002 FPR, 99.87% with 0.001 FPR and, 100%

with 0 FPR for L= 250, L=500, and L=750, respectively.

84

Table 5.5: TPR and FPR of di�erent classi�ers on di�erent feature length

Feature Length L= 250 L= 500 L= 750

Classi�er Metrics NGL CC Odds Ratio NGL CC Odds Ratio NGL CC Odds Ratio

Logistic Regression
TPR 0.998 0.995 0.998 0.998 0.998 0.998

FPR 0.002 0.005 0.002 0.002 0.002 0.002

Random Forest
TPR 0.998 0.997 0.998 0.998 1 1

FPR 0.003 0.002 0.002 0.001 0 0

Naives Bayes
TPR 0.995 0.995 0.995 0.995 0.995 0.998

FPR 0.005 0.005 0.005 0.005 0.005 0.002

Random Tree
TPR 0.995 0.988 0.995 0.99 0.995 0.993

FPR 0.005 0.012 0.005 0.01 0.005 0.007

SMO
TPR 0.995 0.995 0.995 0.995 0.995 0.998

FPR 0.005 0.005 0.005 0.005 0.005 0.002

J48
TPR 0.978 0.975 0.985 0.975 0.985 0.975

FPR 0.022 0.025 0.015 0.025 0.015 0.025

The main reason to achieve better accuracy by the Random Forest classi�er is that,

it uses multiple decision trees that are randomly chosen to vote for overall classi�cation

of the given input �le, where each decision tree classi�es the new instance of features

with a majority of the vote (Oshiro et al. 2012). In this work, the Random Forest

classi�er achieved the highest accuracy under the default parameters (tree size, T=10),

where, T represents the number of decision trees in the ensemble.

It can also be seen from Figure 5.6 is that the second highest accuracy yielded is by

Logistic regression classi�er ranging from 99.71% to 99.82% followed by Navies Bayes,

Random Tree, SMO and J48 classi�ers for L= 250, L= 500 and L=750 features of NGL

based feature selection techniques. Similarly, for Odds Ratio based feature selection

technique, Navies Bayes achieved second highest accuracy ranging from 99.55% to

99.75% followed by Logistic Regression, SMO, Random Tree, and J48 classi�ers for

L=250, L=500, and L=750, respectively.

The performance of the each classi�er was also evaluated using other performance

metrics such as Precision, Recall, F-Measure, and Receiver Operating Curve (ROC)

area separately for the both the feature section techniques. Figure 5.7 (a), (b), and

(c) represents di�erent performance metric results for three di�erent feature lengths

250, 500, and 750, which are selected based on the highest feature score recommended

by NGL CC selection technique. We notice that the maximum detection pro�ciency

of the malware was achieved by Random Forest classi�er for L=750 with 0.998, 0.999,

1, 1 of Precision, Recall, F-Measure and ROC respectively. Similarly, Figure 5.7

85

(a) L=250 (b) L=500

(c) L=750 (d) L=250

(e) L=500 (f) L=750

Figure 5.7: Comparison of performance of the classi�er under di�erent performance
metrics for the di�erent feature length recommended by NGL CC and Odds Ratio

feature selection techniques

(d), (e), and (f) represents performance metric results of all classi�er for L= 250,

L=500, and L=750 as recommended by the Odds Ratio feature selection technique.

86

Figure 5.8: Performance overhead of the AMMDS on PCMark05 in detecting hidden
and dubious state information of Monitored VM

It can also be notice that, for L=750 of Odds Ratio feature selection techniques

the same Random Forest classi�er yielded 0.998, 1, 0.999, 1 of Precision, Recall, F-

Measure, and ROC, respectively. Furthermore, the malware detection performance

of all other classi�ers are depicted in Figure 5.7 with appropriate feature lengths of

feature selection techniques. The J48 classi�er shows lower accuracy for di�erent

feature length of both NGL CC and Odds Ratio feature selection techniques.

5.3.8 Performance Overhead

The performance overhead of the AMMDS is evaluated by following the series of

test using PCMark Benchmark suite as discussed in the Section 4.5. Figure 5.8

represents the overall performance overhead caused by the AMMDS. Tests such as File

Decryption, HDD-Text-startup, and HDD-File-Write induced maximum performance

overheads of 4.9%, 5.8%, and 4.6%, while other test performance overheads were

less than 4.5% on the Windows XP SP3 Monitored VM. These were noticed when the

AMMDS abstracted the process semantic view during explicit detection of the hidden,

dead, and dubious processes and pause and perform acquisition of the memory dump

of the live Monitored VM.

5.4 Discussion

The current development of the proposed AMMDS included extended functionalities

for detection and estimation of the symptoms of malware execution on the live Moni-

87

Table 5.6: Comparison of AMMDS with previous VMI-based malware detection
approaches

Functionality Ly
co
sid
e
(J
on
es
et
al
. 2
00
8)

La
re
(P
ay
ne
et
al
. 2
00
8)

V
M
wa
tc
he
r (
Ji
an
g
et
al
. 2
00
7)

Pr
oc
es
s-
ou
t-g
ra
fti
ng
(S
rin
iv
as
an
et
al
. 2
01
1)

SY
R
IN
G
E
(C
ar
bo
ne
et
al
. 2
01
2)

A
M
M
D
S

Hidden process detection
√

�
√

� �
√

Time synchronization × × × × ×
√

Incorporation of MFA × × × × ×
√

Malicious check on

hidden and dubious process × × × × ×
√

Guest-assisted ×
√

×
√ √ √

Manual analysis
√

�
√

� � ×
Fully automated × × × × �

√

Machine learning techniques × × × × ×
√

Performance overhead 6% Varied � Varied Varied 5.8%

�: Information are not explicitly mentioned in the previous work

tored VM. In addition, the incorporation of machine learning techniques emphasized

as the �rst scienti�c in-guest assisted VMI introspection technique to precisely detect

and classify the running processes on the Monitored VM as benign or malicious at

the VMM. The AMMDS performed this task from the semantically reconstructed ex-

ecutables that were introspected and forensically extracted at the VMM. The current

demonstration of this approach is speci�c to the Windows guest OS to automati-

cally detect the execution of large malware on the live Monitored VM by eliminating

manual analysis.

The di�erent categories of real world malware executables used in this work include

self-hidden behavior malware, which hides on execution on the guest OS. In addition,

we also used both user-mode and kernel-mode rootkits to explicitly hide some be-

nign and malicious running processes to test the detection feasibility of our proposed

AMMDS. We practically con�rmed that VMI introspector of the AMMDS as being

pro�cient in detecting hidden and malicious processes caused by stealthy malware and

88

rootkits by traversing the semantic view of the _EPROCESS data structure of the live

Monitored VMs.

5.4.1 Comparison with Existing Work

In order to highlight the signi�cance of our proposed AMMDS, a comparison was un-

dertaken in two phases. In the �rst phase, the extended functionality of the AMMDS

was compared with other previous in-guest assisted and out-of-VM VMM-based mal-

ware detection techniques. Table 5.6 we can see that the AMMDS is able to detect

and estimate the symptoms of malware with enhanced functionality, which was not

addressed in previous approaches. Furthermore, functionalities such as the incorpo-

ration of MFA with VMI, malicious check on detected hidden and dubious process

at the VMM, and fully automated and leveraging machine learning techniques for

detection of known and unknown malware were not presented in any of the previous

VMI-based relevant approaches.

In the second phase, the systematic evaluation of the proposed AMMDS was com-

pared with other VMM-based introspection and non-introspection malware detection

and classi�cation approaches that used machine learning techniques. Table 5.7 sum-

marizes the comparison of the AMMDS with other related works. To the best of

our knowledge, except (Watson et al. 2016), none of the VMM-based malware detec-

tion approaches used machine learning techniques to detect malware. In particular,

none of the VMI-based malware detection approaches used the machine learning tech-

niques to detect and classify malware on semantically reconstructed high-level state

information of the live introspected system from VMI perspective.

Authors (Watson et al. 2016) proposed VMM-based malware detection and classi-

�cation system using one-class SVM machine learning technique. The vectorial (fea-

ture) representation of this approach not only considered the features related to the

processes, but also the network activity of the introspected VM as statistical meta-

features. In addition, this was not compared with any of the public benchmarked

datasets to quantify the classi�cation accuracy of their system. Maximum malware

detection accuracy of this work was highlighted as more than 90%. Our proposed

AMMDS achieved upto an accuracy of 100% with 0 FPR on the generated dataset at

VMM-level.

89

Table 5.7: Comparison of results with other VMM-based and non-introspection based malware detection approaches that used
machine learning techniques

Related work Feature types Approaches Accuracy FPR VMM

Masud et al. 2008 N-gram SVM, Boosted J48 96.88% � ×
Shabtai et al. 2012 opcode SVM, LR, RF, ANN, DT, BDT, NB, BNB >96% 0.02 ×

Bai and Wang 2016
Byte N-gram + opcode N-gram

+ Format feature
J48, RF, AdboostM1(J48), Bagging(J48) 99% 0% ×

Zhang et al. 2016 Multi-feature XGBoost, ExtraTreeClassi�er, GradientBoost 99.72% � ×
Bai and Wang 2016 N-gram, opcode J48, RF, AdboostM1(J48), Bagging(J48) 99% 0% ×
Huda et al. 2017 String feature RF, SVM, J48, NB and IB 100% 0 ×
Watson et al. 2016 Statistical meta-features one-class SVM >90% �

√

Our proposed work N-gram LR, RF, NB, RT, SMO, J48 100% 0
√

Logistic Regression (LR), Random Forest (RF), Arti�cial Neural Networks (ANN), Decision Trees (DT), Boosted Decision Trees (BDT)

Naive Bayes (NB), Boosted Naive Bayes (BNB), Random Tree (RT), �: indicates information not available in the previous work.

90

To substantiate the e�ectiveness of the results, the proposed AMMDS was also

compared with non-VMM or non-introspection based malware detection approaches.

As a number of static and dynamic (non-introspection) based works are presented in

the literature, we have chosen a relevant research with principal targets as feature

extraction type and 96% or above accuracy and FPR. Masud et al. (2008) proposed

hybrid feature selection technique to detect malicious executables. The construction of

the hybrid feature set was based on the N-grams of the executables features, assembly

instructions, and a dynamic link library. Overall, this approach achieved 96.88%

accuracy.

Additionally, (Shabtai et al. 2012) used an opcode based feature extraction meth-

ods to detect unknown malware using several machine learning classi�ers. Their ap-

proach was evaluated by considering a large number of benign and malware datasets

and achieved greater than 96% of detection accuracy. Recently, in (Bai and Wang

2016) authors used Bytecode N-gram, opcode N-gram, and format features as multi-

view features to detect unseen malware using three ensemble learning methods. They

used two static malware datasets to validate the proposed classi�cation methodologies

with 0% false alarm rate.

Similarly, (Zhang et al. 2016) have proposed a lightweight malware classi�cation

system using ensemble tree-based XGBoost, ExtraTree, and GradientBoost as ma-

chine learning classi�cation algorithms to detect new and real-world malware. They

combined multiple categories of features that were extracted from malicious executa-

bles whereby the proposed approach would work even on obfuscated and packed mal-

ware of di�erent families. The authors experimented their approach with Microsoft

provided "Kaggle" malware challenge dataset and achieved 99.72% detection accuracy

of malware.

In order to protect CPS against new malware variants recently, (Huda et al. 2017)

proposed semi-supervised approach. They have used four supervised machine learning

classi�ers based on the static and dynamic (run-time) malware executables feature

to evaluate classi�cation methodologies. Finally, this approach yielded up to 100%

accuracy with zero FPR as similar to our proposed approach. Some of the non-

introspection based related work mentioned in Table 5.7 achieved equivalent accuracy

than our proposed AMMDS. However, our approach is unique for the detection of

91

unknown malware from a VMI perspective at the VMM with 100% detection accuracy.

5.5 Summary of the Work

In this work, we have presented the design, implementation, and evaluation of the

AMMDS as an advanced VMI-based guest assisted out-of-VM security solution that

leverages both VMI and MFA techniques to estimate symptoms of malware execution

and also able to accurately detect unknown malware (malicious executables) running

on the CPS-based Monitored VM. The OMD of the AMMDS is able to recognize

known malware whereas the OFMC is capable of detecting and classifying unknown

malware by using machine learning techniques. The proposed AMMDS extensively

reduces the manual e�ort required to accurately identify the malware from the se-

mantically reconstructed and forensically extracted executables as compared to other

existing VMI and MFA based out-of-VM approaches. Finally, the AMMDS was eval-

uated against a large number of real-world Windows malware as well as benign exe-

cutables to measure the malware detection rate. Our empirical results demonstrate

that AMMDS is capable of recognizing malware with an accuracy of 100%. Further,

the observed experimental results showed that the maximum performance overhead

induced by the AMMDS is 5.8% under evaluation of the Windows benchmark suite.

92

Chapter 6

Leveraging Machine Learning
Techniques to Detect and
Characterize Unknown Malware at
VMM

6.1 Introduction

In this approach, we have extended both A-IntExt system and AMMDS while ad-

dressing its limitations that are discussed in Section 1.9, research contribution 4. The

prime aim of this work is to explore the accurate detection of both known and un-

known (signature-less) malicious executables that are semantically reconstructed as

hidden and dubious executables on live monitored VMs using machine learning tech-

niques. It has been seen in many research works (Kolter and Maloof 2006) that the

overall process of detecting unknown executables as benign or malware using machine

learning techniques consists of two phases, the training phase and the testing phase.

Our early proposed AMMDS performs the detection accuracy of malware based on

the train-and-test splitting of the dataset at VMM. However, the approach of follow-

ing the train-and-test evaluation has two limitations. First, the split of each class

dataset samples used for the creation of the training model is not the same as the

creation used for testing or prediction of the model leading to the deceptive error rate.

Second, a model that is chosen for its accuracy on the preparation of training dataset

as not same as its accuracy, or likely have lower accuracy on the independent test

set (i.e., predicting unknown malware). These two problems are often referred to as

over-fitting in machine learning (Domingos and Pazzani 1997). Over-fitting

93

is a general problem that plagues many machine learning techniques. It occurs when

a machine learning techniques report a low error on the training set and high error

on the testing set. Also, when a model starts to "remember" the training data, in-

stead of "learning" to generalize from the pattern. In order to combat over-�tting,

cross-validation, and regularization, Bayesian priors techniques were widely used in

previous research (Kearns et al. 1997).

In this work, the over-fitting issue was addressed by dividing the original

dataset into three separate datasets such as the training, testing, and validation sets

on both the generated and benchmarked datasets, respectively. In order to validate

the malware detection pro�ciency of the A-IntExt system, we used two datasets: gen-

erated dataset (generated at VMM) and benchmarked datasets. Six popular machine

learning techniques were used to measure the e�ectiveness of the proposed approach

individually. To measure the generalization capacity of each classi�er, we performed

a comprehensive set of evaluations by following a common experimental procedure on

both the generated and benchmarked datasets. The A-IntExt system was evaluated

using the testing set and the validation set, and the obtained results were compared

with the standard 10-fold cross-validation test results of the validation set.

Other additional and signi�cant contribution of proposed A-IntExt are:

� We have implemented HF selection technique that uses representative instances

of other individual feature selection techniques of the corresponding feature

set that were extracted from the detected hidden and dubious executables of

memory dumps of the introspected guest OSs.

� Our proposed A-IntExt system uses machine learning techniques from a VMI

perspective at the VMM and performs runtime analysis on the introspected

and forensically extracted executables of the Monitored VM to detect unknown

malware. Further, it gathers the evidence related to identi�ed malware. The

A-IntExt system is not tailored to spot a particular malware rather than it is

able to detect di�erent types of malware.

� The robustness of the A-IntExt system was empirically evaluated by considering

over 3750 di�erent types of real-world malware and 4500 benign executables.

Our proposed A-IntExt system achieved 99.55% accuracy and 0.004 FPR on the

94

10-fold cross-validation for the generated dataset at the VMM. In addition, the

obtained results were compared with other benchmarked malware datasets that

consisted of 3800 malware and 3930 benign executables. Further, the proposed

A-IntExt system was compared with the existing malware detection approaches

that use machine learning techniques.

6.2 System Design and Implementation

The working functionality and the overview of the A-IntExt system are described

in Section 4.3 of chapter-3. In addition, the feature vector generator is on another

extended component that A-IntExt (as part of this chapter contribution). Once Ex-

ecutable �le extractor 5.2.2 of the A-IntExt system forensically reconstruct the exe-

cutable �les from infected memory dumps, the feature vector generator function as

discussed below.

6.2.1 Feature Vector Generator

The prime function of the Feature Vector Generator (FVG) is to generate an attribute-

relation �le format during the training phase of the classi�er. The FVG prepare a

testing �le by utilizing the feature extraction and feature selection techniques. First,

it extracts the features (number of N-grams) from the reconstructed executables by

using the feature extraction technique, and then uses the FFV and the extracted

unique N-gram features of all the test cases to prepare a testing �le.

In order to demonstrate which feature selection technique facilitates in improving

classi�er accuracy, the FVG generates four distinct testing �les of prede�ned top

features' length. Each testing �le corresponds to di�erent feature selection techniques

such as IG, NF, CS, and HF.

Feature extraction method: In this work, the most popular feature extraction

technique called N-gram (Abou-Assaleh et al. 2004) is used to extract the features

from each of the executables (binary �les) that have been forensically extracted from

the infected memory dump of the Monitored VM. The extracted executables include

semantically detected hidden and dubious processes by the A-IntExt system on the

live monitored guest OS. Once all the executables are extracted at the VMM, these

95

are provided as input to the UNIX hexdump utility of the Dom0 OS to acquire the

`hexdump' �le for each of the extracted executables. The obtained hexdump is further

processed to attain byte sequences that represent a snippet of the machine code of

the executable. From each hexdump �le, a byte sequence is extracted in terms of

prede�ned N-gram size using the N-gram feature extraction technique. The procedure

followed to obtain N-gram features of size 4 bytes (N-gram technique, where N = 4)

from the executable is shown in Figure 6.1. Finally, these extracted byte sequences are

grouped in the form of N-grams, which represent contiguous bytes sequences, where

N represents the number of �xed bytes. Each individual N-gram is considered as a

feature and all N-grams are treated as an original feature vector.

Many research works have demonstrated that N-gram based methods show great

promise in detecting unknown malware (Abou-Assaleh et al. 2004; Kolter and Maloof

2006; Reddy et al. 2006; Reddy and Pujari 2006; Perdisci et al. 2008; Bai and Wang

2016; Ra� et al. 2016; Ahmadi et al. 2016). However, the N-gram-based technique

produces many N-grams that include duplicates, and all of them cannot be used as

�nal features to generate a training �le as well as a testing �le. This results in sub-

stantial memory consumption during the training phase and also leads to performance

degradation at runtime detection of malware. Furthermore, it also encourages more

FPR, while decreasing the accuracy of the classi�ers. This issue can be addressed by

using feature selection techniques.

Feature selection techniques : In order to detect unknown malware using

Figure 6.1: 4 byte N-gram sequence extraction from an executable

96

machine learning techniques, the feature selection technique plays a crucial step in

detecting unknown malware from a number of other benign programs (Blum and

Langley 1997; Dash and Liu 1997; Shabtai et al. 2009). Feature selection techniques

operate according to �lter-based approach (Mitchellet al. 1997), in which a measure

is calculated to quantify the correlation of each feature (i.e., presence) with the class

(benign and malware) to predict its anticipated results of the classi�cation techniques.

In our work, the A-IntExt system extracted a number of N-gram features from the

executables (i.e., forensically extracted from infected memory dump of the Monitored

VMs) at VMM. Typically, many of the N-gram features generated for each executable

are not important for machine learning techniques to perform detection of malware.

To address these issues, the feature selection step helps to identify an optimal set of

features while eliminating other irrelevant and redundant features from the original

feature vector, because redundant features reduce the predictive performance of the

classi�er (Kwak and Choi 2002). Since feature selection methods facilitate to reduce

the dimensionality of the original feature vector, it allows the machine learning tech-

niques to function more e�ciently and rapidly on the given input set of features in

the training phase. Additionally, selecting the most relevant features from the mas-

sive number of generated N-gram features on large-scale datasets increases accurate

results from the classi�cation techniques (Langleyet al. 1994).

In this work, the A-IntExt system is implemented by considering popular statistical-

based feature selection techniques such as IG, NF, CS, and HF. Each feature obtains

a score from individual and HF selection techniques and selects the topmost (sorted

in descending order based on the score) and recommends the best feature to the clas-

si�cation techniques. Finally, the performance of various machine learning techniques

is compared based on the prede�ned top feature length of the individual feature se-

lection technique. The following sections provide the details of each feature selection

technique.

� Information gain: The IG (Yang and Pedersen 1997; Quinlan 1986) is a com-

monly used feature selection approach in machine learning for the detection of

malware. For a given ith N-gram (Ngi), the IG score is calculated using equation

97

below:

IG(Ngi, Ck) =
1∑

Ngi=0

∑
Ck∈(B,M)

P (Ngi, Ck) log
P (Ngi, Ck)

P (Ngi)P (Ck)
(6.1)

The symbol Ck takes one of the two classes, benign or malware, i.e., K ∈ {Benign

(B), Malware (M)} and Ngi takes a value either 1 or 0 based on its presence or

absence in the N-gram �le; P(Ngi, CK) is a proportion of N-gram �les in which

Ngi takes a value to the total number of N-gram �les in the Ck; P(Ngi) is the

ratio of the number of N-gram �les in the dataset in which Ngi takes a value to

the total number of N-gram �les in the dataset, and Ck is the ratio of the class

to the total number of classes.

� N-gram frequency: The NF (Yang and Pedersen 1997; Reddy and Pujari

2006) provides an integer count that demonstrates the given Ngi is present in

how many N-gram �les in a certain class CK . Class-wise NF score for Ngi is

computed using Equation (6.2).

FNgi, CK =
N∑
j=1

Ngi,j, CK (6.2)

Ngi,j, CK =

{
1, if Ngi ∈ fj
0, otherwise

Ngi, Ck =

{
Select, if FNgi, Ck ≥ δk

Ignore, otherwise

The term CK represents theKth class and K ∈ {benign, malware}, Ngi,j denotes

ith Ngi of j
th N-gram �le (fj), and N designates the number of N-gram �les in

class CK . If the value of FNgi, Ck is greater than or equal to the prede�ned

threshold δk, then it considers Ngi as the best feature.

� Chi-Square (χ̃2): The CS test (Yang and Pedersen 1997) is one of the popular

feature selection techniques, used to measure the lack of dependence of two

98

variables such as feature Ngi and class Ck. Higher CS score represents that the

variables have a close relation. The Chi-Square formula is as follows:

χ̃2(Ngi, Ck) =
N [PS −QR]2

(P +R)(Q+ S)(P +Q)(R + S)
(6.3)

Where, N is the total number of N-gram �les in the training set, P is the number

of N-gram �les present in the CK containing Ngi, R is the number of N-gram

�les not in the CK containing Ngi, Q is the number of N-grams �les in the

Ck not containing Ngi, and S is the number of N-gram �les not in the Ck not

containing Ngi.

� Hybrid feature selection: In order to select the best N-gram features, our

proposed HF selection technique follows the ensemble strategy (Rokach et al.

2007), which combines features that are recommended by other feature selection

techniques. The HF selection technique computes the score for the ith Ngi using

the equation (6.4) (Moskovitch et al. 2008):

HF (Ngi) =
3∑

j=1

scorej(Ngi) (6.4)

The scorej(Ngi) denotes the Ngi score given by the jth feature selection tech-

nique. The procedure followed by the HF selection technique to generate FFV is

described in Algorithm 6.1. It computes the score for each N-gram as per Equa-

tion (6.4) and selects the topmost N-grams on the basis of the highest score.

This computation (BFVT −MFVT) helps to derive unique features that repre-

sent the benign class. Similarly, (MFVT − BFVT) provides unique features for

the malware class. The union of (BFVT −MFVT) ∪ (MFVT −BFVT) provides

a unique FFV that represents unique benign class features and unique malware

class features.

99

Algorithm 6.1: Hybrid feature selection

Input : Dataset (∆) contains malware and benign N-gram �les (fi)
Output: FFV

1 begin
2 Create empty �les BFV, BFVT , BNF, MNF, MFV, MFVT
3 foreach fi ∈ ∆ do
4 if (fi ∈ Benign class) then
5 BNF ←− BNF ∪ fi
6 else

7 MNF ←−MNF ∪ fi
8 end

9 end
10 Remove duplicate N-gram from BNF and MNF separately
11 foreach N-gram Ngi ∈ BNF do
12 compute HF score as per Equation (6.4)
13 store N-gram and its HF score into a �le.
14 BFV ←− BFV ∪ {N-gram, HF score}

15 end
16 sort BFV in DO based on the HF score
17 select topmost `L' number of N-grams
18 for j=1 to L do
19 BFVT ←− BFVT ∪BFV (N − gramj)
20 end
21 foreach N-gram Ngi ∈ MNF do
22 compute HF score as per Equation (6.4)
23 store N-gram and its HF score into a �le
24 MFV ←−MFV ∪ {N-gram, HF score}

25 end
26 sort MFV in DO based on the HF score
27 select topmost `L' number of N-grams from MFV
28 for j=1 to L do
29 MFVT ←−MFVT ∪MFV (N − gramj)
30 end
31 Compute FFV = {[BFVT −MFVT] ∪ [MFVT −BFVT]}
32 end

6.3 Experiments and Datasets

6.3.1 Datasets and Dataset Collection

In order to validate the malware detection pro�ciency of the A-IntExt system, we

used two datasets: Generated dataset and Benchmarked datasets. The creation of

generated dataset consists of a collection and in-execution of real-world known and

unknown malware and benign executables on two Monitored VMs semantically recon-

structed in the form of executables at the VMM. The benchmarked dataset consists

100

of both static benign and malware executables. Both the generated and benchmarked

datasets are divided into training, testing, and validation sets in 60%: 20%: 20%

ratio similar to previous approaches (Rieck et al. 2008; Ozsoy et al. 2016). We have

utilized an imbalanced training set that comprises of more numbers of benign and

fewer numbers of malware executables.

Table 6.1: Types of malware used in the experiments

Types of malware Quantity % Min. size Max. size

1 Backdoor 700 19% 10KB 0795KB

2 Zeus botnet 690 19% 15KB 0855KB

3 Ransomware 715 20% 08KB 1038KB

4 Trojan horse 700 19% 12KB 0565KB

5 Spyware 695 19% 12KB 1125KB

6
Polymorphic &

Metamorphic
250 4% 08KB 0856KB

Total # malware used 3750 100%

Generated dataset: In this section, we explain the collection of real-world mal-

ware and benign executables that were used and dynamically executed onto the Mon-

itored VMs in di�erent experimental test cases in order create a generated dataset at

the VMM. Over 3625 di�erent Windows malware executables (samples) were collected

from the VX Heaven1 malware repository by directly connecting the Dom0 OS to an

external network. During the collection of these samples, we disabled the security

mechanisms of the Dom0 OS when it was connected to the network of the malware

repository. Additionally, we used two families (Win32 Mydoom and Beagle) of 125

viruses (obtained from http://vxheaven.org) in the next generation virus creation kit

(version 0.45 Beta obtained from http://vxheaven.org) to generate some non-signature

based unknown malware. We generated 125 additional unknown malware. For each

generating virus, we applied junk code insertion, encryption, and obfuscation tech-

niques by following the procedure described in a previous work (Sung et al. 2004).

Once all the 125 unknown (signature-less) malicious executables were generated, we

examined these executables (.exe) on the VirusTotal2 website, where each generated

1http://vxheaven.org/, last accessed in March 2017.
2https://www.virustotal.com/, last accessed in March 2017.

101

Table 6.2: The composition of generated dataset

Generated dataset Split % # Malware # Benign

Training set 60% 2250 2700

Testing set 20% 750 900

Validation set 20% 750 900

Total # samples 100% 3750 4500

Table 6.3: The composition of benchmarked datasets

Benchmarked dataset Split % # Malware # Benign

Training set 60% 2280 2358

Testing set 20% 760 786

Validation set 20% 760 786

Total # samples 100% 3800 3930

malware sample was checked with 59 anti-virus engines (up-to-date). From the Virus-

Total generated report of each sample, we con�rmed that none of these samples were

malicious. But in reality, these were unknown malware with no signature that was

generated by us. Finally, total 250 (i.e., 125 obtained and 125 generated) polymorphic

and metamorphic malware were used. Table 6.1 illustrates the constitution of 3750

di�erent categories of obtained and generated real-world malware used in this work.

In addition, 4500 benign executables were collected from various sources, including

the freshly installed various versions of the Windows VMs, popular software down-

loader website,3 and other data sources.45 These benign executables included the

Windows native software (notepad++, paint, etc.), system software (Adobe, OpenOf-

�ce, etc.), browser extension (Newz tools, WebReader, etc.), multimedia tools (video

player, music, etc.), games, popular browsers, �le utilities, management software, �le

archiver, image and video editors, etc. To ensure that the downloaded benign exe-

cutables did not contain any malicious code, we checked with VirusTotal. Table 6.2

illustrates the composition of the generated dataset.

Benchmarked datasets: The main reason for including benchmarked datasets

was to con�rm and validate how well our proposed A-IntExt system worked on other

tested benchmarked malware datasets not generated by us. This strengthens the

3http://software.informer.com/software/, last accessed in March 2017.
4http://download.cnet.com/windows/, last accessed in March 2017.
5https://sourceforge.net/, last accessed in March 2017.

102

trustworthiness of our proposed approach, which was tested on a public benchmarked

malware datasets. We collected 3800 recent malware samples from another public

malware repository6 that included some common and di�erent families of malware

(Backdoors, Worms, Exploit, Torjan.Zbot-1433, Torjan-Zbot-1023, Torjan.Kelihos-5,

and Trojan.Kelihos-4, etc.). For the benign executables, we gathered 3930 legitimate

benign executables from a clean installation of the various versions of Windows guest

OSs and another software downloader website (http://sourceforge.net). The obtained

benign executables included system software, games, application software, multimedia

utilities, downloaders, etc. Further, these were con�rmed via VirusTotal malware clas-

si�cation interface, to identify the di�erent types of malware and benign executables.

The composition of the benign and malware samples of the benchmarked datasets is

shown in Table 6.3. About 60% of the samples were grouped into the training set,

which consisted of 2280 malware and 2358 benign samples. The remaining 40% of the

samples were equally partitioned into testing set (20%) and validation set (20%).

6.4 Evaluation

In this section, we discuss the procedure for generating a realistic dataset by using a

large number of benign and malicious executables by considering the real-world sce-

nario. We perform in-execution of real-world known and unknown malware on both

the Windows XP SP3 and Windows 7 guest OSs in di�erent experimental scenarios,

while measuring the detection pro�ciency of the A-IntExt system. Finally, the seman-

tic view of these detected processes is forensically reconstructed as executables from

the infected memory dump of both the guest OSs. In order to prepare the training,

testing, and validation �les for the classi�er, the total collection of malware and be-

nign executables were divided into three parts: training, testing, and validation sets

(as shown in Table 6.2). The training set consisted of 60% of the samples and these

were used in the training phase (before being executed on the Monitored VMs) to

train the classi�er. The remaining 40% of the samples were equally divided into the

testing and validation sets as 20% of each set. This grouping of executables was done

to ensure that there was no overlapping of samples in the sets. In the testing set, 20%

6http://www.o�ensivecomputing.net/last accessed in March 2017.

103

of these malware and benign samples excluded from the training set were divided into

three groups (i.e., I-III) that consisted of 250 (malware) and 300 (benign) samples in

each group. Similarly, in the validation set, remaining 20% of the benign and malware

executables excluded from the training and testing sets were also equally divided into

three groups (i.e., IV-VI) and each group comprised of 250 malware and 300 benign

samples.

Later, the �rst three groups (i.e., I-III) of the testing set malware and benign

executables were invoked by a program on both the Windows guest OSs with di�erent

experimental scenarios as shown in Table 6.4. Meanwhile, simultaneously installed

the user-mode and kernel-mode rootkits on the Windows XP SP3 32-bit Monitored

VM. Through the injected rootkits, we explicitly performed hidden activity of benign

and malicious running process on the guest OS.

Later, these executables with di�erent test cases were introspected and forensically

extracted in the form of dubious executables (as discussed in 4.3.1), including detected

hidden processes at the VMM as shown in the prediction phase of Figure 6.3. Finally,

for all the three di�erent experimental tests, the A-IntExt system was successfully

detected and semantically reconstructed over 1705 hidden and dubious executables

(.exe) as a testing generated dataset from three infected memory dumps of the two

guest OSs at VMM as shown in Table 6.4.

Similar to the testing set, the next three groups (i.e., IV-VI) of the validation

set malware and benign executables was invoked by a program on freshly installed

di�erent Windows guest OSs as shown in Table 6.5. For example, in the IV test, we ex-

ecuted 250 Trojan horse and 300 benign executables, i.e., a total of 550 executables on

a clean live Windows XP SP3 32-bit guest OS. Once all the executables were injected,

some Trojan horse executables hid or disappeared on the Windows XP SP3 guest OS.

At the same time, we also injected a Hacker Defender user-mode rootkit to ex-

plicitly hide one benign (explore.exe) and one malware (Trojan.Win32.exe)

process running on the Monitored VM. These experiments lasted 4 minutes. A pe-

riodic introspection of the A-IntExt system helped in identifying the symptoms of

malware execution by recognizing the disparity of the processes that emerged between

the internal and external views of the processes state information of the Monitored

VM (see Equation 5.3).

104

Table 6.4: Execution of benign and malicious executables on live Monitored VMs in di�erent experimental test cases for generating
testing dataset at VMM

Test #. Malware types Guest OS
Executables �le used # PS visible

by internal view

PS introspected

from external view

PS detected by the A-IntExt system

Malware Benign Total Hidden Dead Dubious Time (in seconds)

I Backdoor Windows XP SP3 250 300 550 564 568 7 3 561 2.45

II Zeus botnet Windows XP SP3 250 300 550 560 568 11 3 557 2.25

III Ransomware Windows 7 250 300 550 563 569 8 2 561 2.55

Total # of executables 750 900 26 1679

Table 6.5: Execution of benign and malicious executables on live Monitored VMs in di�erent experimental test cases for generating
validation dataset at VMM

Test #. Malware types Guest OS
Executables �le used # PS visible

by internal view

PS introspected

from external view

PS detected by the A-IntExt system

Malware Benign Total Hidden Dead Dubious Time (in seconds)

IV Trojan horse Windows XP SP3 250 300 550 562 568 9 3 559 2.81

V Spyware Windows 7 250 300 550 561 568 10 3 558 2.62

VI
Polymorphic &

Metamorphic
Windows 7 250 300 550 560 567 11 4 556 2.75

Total # of executables 750 900 30 1673

105

As seen in test IV of Table 6.5, the A-IntExt system ascertained and counted

these introspected processes, namely, internal, external, hidden, dead, and dubious

processes as 562, 568, 9, 3, and 559, respectively. However, there were variations in

the detected processes count on the internally captured and externally introspected

process state information including 21 (additional) running default processes of the

clean Windows XP SP3 32-bit guest OS. More speci�cally, the internal view of the

total process visible is 562, i.e., from the 550 total injected malicious and benign

executables, 9 (7 self-hidden by the Trojan horse and 2 were explicitly hidden by the

Hacker Defender rootkit) processes are hidden at the guest OS, and 21 are native

running processes of the guest OS. Finally, 562 are internally gathered processes. Note

that these 9 hidden processes were not gathered by the GAM (i.e., internal-view of

guest OS) as it does not appear in the tasklist command of the GAM (see Section

4.3.2). Finally, the VMI introspector of the A-IntExt system externally (i.e., VMM

level) introspected and ascertained these 9 hidden processes.

Similarly, in the experiment V, we injected 250 spyware and 300 benign �les, to-

taling 550 executables on the clean Windows XP SP3 32-bit guest OS. Meanwhile,

in this test we injected DKOM based kernel-mode, FU Rootkit to explicitly hide a

few benign and malware running processes by directly removing or unlinking it from

the _EPROCESS data structure of the process list at the kernel-mode. Finally, the

disparity of the processes was identi�ed by the ICVA of the A-IntExt system simi-

lar to test IV. Likewise, experiment VI was conducted by executing other types of

malware and benign executables on both the guests' OS. Finally, from three di�erent

experimental test cases, the A-IntExt system reconstructed over 1703 hidden and du-

bious executables as validation generated dataset from another three infected memory

dumps of two guests' OS at the VMM as shown in Table 6.5.

From the experimental analysis results of both testing and validation sets, we

observed that the A-IntExt system was pro�cient in estimating the abnormality of

the introspected system by detecting the hidden and disguised processes' activity

on the execution of malware. The time taken by the A-IntExt system to detect

and categorize the hidden, dead, and dubious processes for each experimental test is

shown in the last column of both Table 6.4 and Table 6.5. However, at this stage, it

is not feasible for the A-IntExt system to check the detected processes benign, known

106

Figure 6.2: Performance overhead of the A-IntExt system using PCMark05
benchmark

or unknown malware. This issue was tackled by using machine learning techniques

based on the features vector.

6.4.1 Performance Overhead

In order to measure the performance overhead induced by the A-IntExt system, a

series of tests were performed by running the PCMark05 industry standard bench-

mark suite on both, Windows XP SP3 and Windows 7 Monitored VMs. Figure 6.2

demonstrates the overall performance overhead incurred by the A-IntExt system for

both the Monitored VMs during the experimental analysis of this work.

Tests such as the HDD-Text Startup, File Decryption, and HDD-File-Write showed

maximum performance overheads of 6.1%, 5.7%, and 5.3%, respectively, while other

tests performance overheads observed was less than or equal to 4.8% on the Windows

XP SP3 guest OS. These were noticed when the A-IntExt system abstracted the

process semantic view during explicit detection of the hidden, dead, and dubious

processes, and the pause and perform acquisition of the memory dump of the live

Monitored VM. The same tests were executed while performing a similar operation for

the Windows 7 guest OS. The HDD-File-Write, HDD-Application, and File decryption

reported maximum performance overheads of 5.8%, 6.2%, and 6.3% respectively, and

the other tests overhead were less than or equal to 5.6%. Finally, the A-IntExt system

introduced maximum performance overhead of 6.3%, for introspection of the Windows

7 guest OS.

107

6.4.2 Experimental Methods

The prime aim of this work is to explore the accurate detection of both known and

unknown (signature-less) malicious executables which are semantically reconstructed

as hidden and dubious executables from infected memory dump of live Monitored

VMs. It has been seen in many research works (Kolter and Maloof 2006; Sharif et al.

2009; Shabtai et al. 2012; Bai and Wang 2016; Watson et al. 2016) that the overall

process of detecting unknown executables as benign or malware using machine learn-

ing techniques consists of two phases, the training and the testing phase. However,

the approach of following the train-and-test evaluation has two limitations. First, the

split of each class dataset samples used for the creation of the training model is not

the same as the creation used for testing or prediction of the model leading to the

deceptive error rate. Second, a model that is chosen for its accuracy on the prepa-

ration of training dataset as not same as its accuracy, or likely have lower accuracy

on the independent test set (i.e., predicting unknown malware). These two problems

are often referred to as over-�tting in machine learning (Domingos and Pazzani 1997).

Over-fitting is a general problem that plagues many machine learning techniques.

It occurs when a machine learning technique reports a low error on the training set

and high error on the testing set. Also, when a model starts to "remember" the

training data, instead of "learning" to generalize from the pattern. In order to com-

bat over-fitting, cross-validation, and regularization, Bayesian priors techniques

were widely used in previous research (Kearns et al. 1997).

In this work, the over-�tting issue was addressed by dividing the original dataset

into three separate datasets such as the training, testing, and validation sets on both

the generated and benchmarked datasets as discussed in Sections 6.3.1, and 6.4 respec-

tively. In the training phase, a su�cient number of imbalanced benign and malware

executables of the training set are used. To prepare a training �le, which is used to

train the classi�er, executables of the training set are parsed to extract the relevant

features.

Next, during the testing phase, executables excluded from the training set are

used to construct a testing �le. These are �rst parsed and a representative vector

is extracted as a training instance. Based on this vector, the classi�er categorizes

108

Figure 6.3: Training phase and prediction phase of the A-IntExt system

the testing �le as either benign or malware. The purpose of the testing phase is to

measure the performance of the chosen machine learning classi�er in terms of standard

accuracy on unknown malware.

Finally, in the validation phase, the performance of the trained classi�er is vali-

dated using a new collection of �les. This is because the training process guarantees

that the accuracy of the classi�er for the training data is generally high and the clas-

si�er is speci�cally well-matched to the �les of the training set. In order to measure

a more accurate estimation of how the trained classi�er would categorize the unseen

data, a validation set is used. The classi�er measures the discrepancy between the

authentic observed class and the predicted class of the observation to �gure out the

error in prediction and this is used to quantify the overall accuracy of the trained

classi�er.

In this work, in order to have a fair comparison and evaluation of both the testing

and validation datasets, the evaluation results of an independent testing set were

presented along with the accuracy and FPR metrics. The validation set included

complete results presented based on the 10-fold cross-validation (Ng 1997) evaluation

by considering di�erent performance metrics. This facilitated in showing the actual

performance predicted by the chosen machine learning classi�ers for our proposed

feature selection methodologies of the A-IntExt system.

The overall evaluation of our proposed approach on both the generated and bench-

marked datasets are as follows:

109

Training model: The �rst step in the training phase is to pre-process the train-

ing samples to derive the N-gram features using the approaches explained in Sections

6.2.1. It has been seen in previous research work that N-gram features of size 4 byte

exhibits promising results (Kolter and Maloof 2006; Masud et al. 2008). Therefore,

we have decided to perform feature construction using N-gram of size 4 byte dur-

ing the evaluation of our proposed approach. The total number of distinct 4-byte

N-gram features constructed were 203,485,680 and 198,691,840 for the generated and

benchmarked datasets, respectively, for both benign and malware class. Since the

constructed features size is quite large, it is impractical to use all the extracted fea-

tures to prepare a training �le. Therefore, only the crucial topmost features were

selected on the basis of the score assigned by the feature selection techniques (as

discussed in Section 6.2.1). The FVG component of the A-IntExt system constructs

the FFV that consists of the uppermost features recommended by the HF selection

technique (Algorithm 6.1) described in Section 6.2.1(Feature Vector Generator). In

other words, the top features endorsed by three di�erent feature selection techniques,

namely, the IG, NF, and CS are used to generate an FFV of HF selection technique.

To demonstrate the e�ciency of the HF selection technique, the FVG also constructs

three other feature sets and each one consists of features suggested by individual fea-

ture selection technique such as the IG, NF, and CS. Finally, a training �le is built

using the FFV with the N-gram �les corresponding to the training samples. Lastly,

the classi�er is trained using the constructed training �le.

The experiments are repeated for di�erent feature lengths (L) such as 100, 200,

and 300, where, L represents the number of topmost features selected based on the

highest feature score from each class separately. The obtained results corresponding

to the HF selection technique is compared with individual feature selection techniques

such as the IG, NF, and CS. Finally, the results are shown separately for each feature

selection technique and HF selection technique for the recommended feature length

of 300 features (which achieved the highest accuracy) on both the generated and

benchmarked datasets.

Testing model: In the testing phase, the partitioned executables of the testing set

as shown in Table 6.2 and discussed in Section 6.3.1 and Section 6.2.1 are executed one

at a time in real-time onto the Monitored VMs in di�erent experimental test scenarios

110

as shown in Table 6.4. The A-IntExt system performs the initial screening using the

ICVA, and then, reconstructs the executables corresponding to the detected hidden

and dubious processes from the infected guest OSs. Table 6.4 depicts the total number

of the semantically reconstructed hidden and dubious executables. Further, each of

these reconstructed executables of the generated testing set undergoes pre-processing

steps similar to the training phase as shown in the prediction phases of Figure 6.3.

The steps used to generate a testing �le from the reconstructed executables of the

generated dataset is discussed in Section 6.2.1.

Similarly, on the benchmarked datasets, the testing �le was prepared by consider-

ing the testing set (see Section 6.3.1). Finally, the generated testing �le was sent to

the trained classi�er to verify whether the reconstructed executable �le is benign or

malware. The classi�er examines the testing �le and declares it as malware when it

ascertains the presence of maliciousness, otherwise, it declares it as benign.

Validation model: In the validation phase, similar to the testing model, the par-

titioned executables of the validation set as shown in Table 6.2 were used to perform

in-execution on the Monitored VMs, and later semantically reconstructed as validation

generated set executables as shown in Table 6.5. Similarly, for benchmarked datasets,

the partitioned executables of the testing set (shown in Table 6.3) were considered to

generate validation test �le. The evaluation of validation partitioned sets of both the

generated and benchmarked datasets generally follows the K/N-fold cross-validation

approach. Here, the independent dataset is randomly divided into N equal-sized sub-

parts. Out of these N subparts, a single subpart is retained as validation data, and

the remaining N-1 subparts are used as training data. The cross-validation process is

reiterated N times (i.e., N-folds) and the �nal results are presented as an average of

all the folds. The main aim of this N-fold cross-validation approach is to tackle the

over-fitting issue during the evaluation of our proposed approach on both the

generated and benchmarked datasets.

6.4.3 Evaluation Metrics

The list of evaluation matrices used in this approach were discussed in section 5.3.6.

the In addition, the Matthew Correlation Coe�cient (MCC) (Matthews 1975) Equa-

tion 6.5, which is a combination of Accuracy and FPR, takes the data imbalance into

111

account of the generated and benchmarked datasets by using the amount of classi�ed

and misclassi�ed �les.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6.5)

6.4.4 Machine Learning Techniques

In this work, six di�erent widely used supervised machine learning techniques (imple-

mented in WEKA) were considered. These included Naive Bayes, SVM or Sequential

Minimal Optimization (SMO), Simple Logistic, Random Forest, Random Tree, and

J48 as they belong to the most popular categories, Bayes, Function, and Trees. The

response of the classi�er represents the detection accuracy of malware on both the

generated and benchmarked datasets. The working procedure of each classi�er is

described below in brief:

Navie Bayes (Domingos and Pazzani 1997) is a well-known probabilistic method.

Its classi�cation is based on the Bayes' theorem with the assumption that all features

in the training set are independent of each other. It classi�es by calculating the

maximum probability of attributes, which belong to a speci�c class.

SVM (SMO) (Platt 1999) technique is implemented (Witten and Frank 2005)

as a support vector machine in the WEKA as a fast and e�cient classi�er to solve

huge quadratic programming problems. It achieves high detection accuracy, while

minimizing true error rate. During classi�cation, it computes the probability of each

class by maximizing the width of the margin. This maximization is calculated by

dividing the problem into a series of sub-problems. Each possible sub-problem consists

of two multipliers that are used to maximize and minimize the solution. This classi�er

uses the normalized polynomial kernel to map the input data. The SMO is a pro�cient

classi�er in the function category used to classify malware and benign executables

based on the input FFV.

Simple Logistic (Han et al. 2011) is an ensemble-based classi�er, which uses the

LogitBoost (Witten and Frank 2005) algorithm to perform additive logistic regression.

The main advantage of Simple Logistic is that it has a built-in feature selection

function, when cross-validated, which leads to automatic attribute selection. It takes

more time to build for fast classi�cations.

112

Random Forest (Ho 1998; Breiman 2001) is an ensemble-based technique for clas-

si�cation. It is computationally e�cient in achieving the predictive performance of

the detection of real-world malware prediction task. The Random Forest classi�er

generates many individual learners (decision trees) and makes predictions by aggre-

gating the results of individual learners. Each decision tree in the Random Forest is

a classi�er that outputs the class by an individual tree, based on the value that oc-

curs most frequently in the class of datasets. The Random Forest classi�er combines

such decision trees with a `bagging' approach. In bagging, each decision tree is built

separately by working with `bootstrap' sample messages of the input training set. All

bootstrap messages are chosen by repeated random sub-sampling with the replace-

ment of the original training set, while matching the size of the bootstrap samples

with the training set of the input data (Alam and Vuong 2013). When construct-

ing a decision tree in the Random Forest classi�er, each node in the decision tree is

made of features that are randomly selected, and it helps to minimize interdependence

(correlation) between the feature attributes and makes the results less susceptible to

noise.

In Random Forest classi�er, training variables such as the number of decision

trees and number of features are randomly selected from the input �le. The selection

of features per decision tree at each node decides the error rate of the classi�er.

According to Breiman (Breiman 2001), the error rate of the Random Forest classi�er

is estimated by Out-of-Bag (OOB) error rate. The OOB error rate indicates the

true prediction error of the Random Forest classi�er. Since each tree uses a di�erent

bootstrap sample from the original training dataset, some observations end up in the

bootstrap sample more than once, while others are not used in the training set (i.e.,

OOB). In the Random Forest classi�er, about one-third of the bootstrap samples are

left out for building kth tree from the bootstrap sample of each tree (Breiman and

Cutler 2017). Thus, the error rate of the Random Forest classi�er depends on the

interdependence between two trees and the classi�cation strength of each decision

tree (Alam and Vuong 2013). Finally, the estimation of the Random Forest classi�er

error rate is based on the aggregation of the OOB prediction. In this study, the

Random Forest classi�er achieved remarkably high accuracy on both the generated

and benchmarked datasets than any other classi�ers under the default and increased

113

parameter setting of the WEKA. The complete experimental results' analysis of the

Random Forest classi�er is discussed in Section 6.5.

Random Tree technique takes the given input FFV by classifying each tree in the

forest. The output of the labelled class is an indication of the received majority of

the votes. All the trees in the training set are trained with the same parameter using

the bootstrap procedure.

J48 is based on the C4.5 decision tree implementation algorithm (Salzberg 1994).

It builds a decision tree based on the attribute values present in the testing data to

classify new instances using the concept of information entropy. This technique creates

a node for each decision tree by splitting the dataset into subsets. The attribute which

tops the normalized IG score is used to make the decision of the classi�er.

6.5 Analysis of Results

Six popular machine learning techniques (discussed in Section 6.4.4) were used to

measure the e�ectiveness of the proposed approach individually. To measure the gen-

eralization capacity of each classi�er, we performed a comprehensive set of evaluation

runs by following a common experimental procedure on the both the generated and

benchmarked datasets. Each dataset has a di�erent training set, testing set, and val-

idation set �le. For each feature selection technique, three separate training, testing,

and validation �les were constructed and each of the three training �les is of di�erent

feature lengths L=100, L=200, and L=300. Similarly, each of the three testing �les

and validation �les is of di�erent feature lengths L=100, L=200, and L=300. The

A-IntExt system was evaluated using the testing set and the validation set, and the

obtained results were compared with the standard 10-fold cross-validation test results

of the validation set. This was repeated ten times and the observed mean of the

results was recorded. All the chosen classi�ers were initially trained with the default

parameters available in the WEKA. Table 6.6 provides the details of the parameters

used by each classi�er during the experiment on both the generated and benchmarked

datasets.

114

Table 6.6: List of default (D) parameters used by the classi�ers on WEKA. The
Increased (I) values of default parameters are highlighted in bold

Classi�er name Chosen parameters

Random Forest -I 10 -K 0 -S 1, -I 80 -K 0 -S 1 (HF)

Naive Bayes not answered in WEKA 3

SVM(SMO)
-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K "weka.classi�ers.functions.

supportVector.PolyKernel -C 250007 -E 1.0"

Random Tree -K 0 -M 1.0 -S 1

Simple Logistic -I 0 -M 500 -H 50 -W 0.0

J48 C 0.25 -M 2

6.5.1 Result Analysis of Generated Dataset

We performed two experiments (Experiment-I and Experiment-II) that correspond

to the evaluation results of the testing set and the 10-fold cross-validation of the

validation set. The aim of these experimentations was to examine the e�ectiveness

of the proposed feature vector generation method of the A-IntExt system on the

generated dataset at the VMM. It represents the real-world scenario of a virtualized

environment when an unknown malware infects the Monitored VMs. Experiment-

I: In the testing phase, each classi�er was evaluated individually with the topmost

features selected based on the score assigned by the HF and three feature selection

techniques such as the CS, NF, and IG. Each classi�er performance was then measured

separately with three di�erent topmost feature lengths of L=100, L=200, and L=300.

Each time we select the topmost features of lengths L=100, L=200, and L=300 from

the training set, the same feature length is used for the testing set generated by an

appropriate feature selection technique. Thus, we run all the product combination of

twelve training �les and twelve testing �les for each classi�er.

In the evaluation of the testing set experiments, it can be observed that the Ran-

dom Forest classi�er achieved the highest accuracy of 96.86% with 0.031 FPR for L=

300 on the HF selection technique as shown in Table 6.7. Further, it also achieved

a pretty good accuracy on two di�erent L=100 and L=200 FFVs of other three fea-

ture selection techniques as compared to other classi�ers. Interestingly, the accuracy

results reported by all the classi�ers with HF selection technique based FFV is signi�-

cantly more than the other individual feature selection techniques even under di�erent

115

Table 6.7: Detection accuracy (%) of malware using di�erent feature selection techniques on both testing and validation sets
experiments of generated dataset

Feature

selection

technique

Classi�ers

Feature length of testing set Feature length of validation set

L=100 L=200 L=300 L=100 L=200 L=300

ACC FPR ACC FPR ACC FPR ACC FPR ACC FPR ACC FPR

IG Naive Bayes 79.33 0.207 82.00 0.180 83.11 0.169 82.88 0.171 84.66 0.153 85.11 0.149

SVM(SMO) 80.66 0.193 83.55 0.164 86.00 0.140 83.14 0.169 85.55 0.144 86.66 0.133

Simple Logistic 82.44 0.176 84.22 0.158 85.11 0.149 81.11 0.189 82.44 0.176 84.88 0.151

Random Forest 82.66 0.173 84.88 0.151 86.66 0.133 85.77 0.142 86.44 0.136 87.11 0.129

Random Tree 80.22 0.198 82.88 0.171 83.33 0.167 80.22 0.198 83.55 0.164 84.15 0.158

J48 78.22 0.218 79.10 0.209 81.33 0.187 79.11 0.209 80.22 0.198 81.33 0.187

NF Naive Bayes 81.55 0.184 82.44 0.176 84.22 0.158 80.44 0.196 81.55 0.184 82.22 0.178

SVM(SMO) 81.15 0.189 84.22 0.158 85.77 0.142 83.14 0.169 84.01 0.161 85.11 0.149

Simple Logistic 85.11 0.149 86.22 0.138 86.88 0.131 85.11 0.149 86.22 0.138 87.11 0.129

Random Forest 84.22 0.158 86.22 0.138 87.77 0.122 86.66 0.133 87.11 0.129 88.22 0.118

Random Tree 80.00 0.200 81.11 0.189 83.03 0.170 81.33 0.817 82.88 0.171 84.44 0.156

J48 80.66 0.193 81.77 0.182 82.00 0.180 80.22 0.182 81.33 0.187 82.22 0.178

CS Naive Bayes 81.77 0.182 82.22 0.178 84.22 0.158 83.14 0.169 84.88 0.151 85.11 0.149

SVM(SMO) 83.11 0.169 83.77 0.162 84.00 0.160 84.25 0.157 85.33 0.147 85.52 0.145

Simple Logistic 83.77 0.162 84.88 0.151 85.11 0.149 84.66 0.153 85.71 0.143 86.22 0.138

Random Forest 86.66 0.133 87.33 0.127 88.88 0.111 87.11 0.129 88.22 0.118 89.33 0.107

Random Tree 81.33 0.187 82.22 0.178 83.55 0.164 82.36 0.176 83.55 0.165 84.22 0.158

J48 81.77 0.182 82.00 0.180 82.66 0.173 81.77 0.182 82.36 0.176 83.07 0.169

HF Naive Bayes 92.00 0.080 93.11 0.069 94.00 0.060 91.33 0.087 94.66 0.053 95.14 0.048

SVM(SMO) 91.55 0.084 94.00 0.060 95.14 0.048 94.63 0.054 95.33 0.047 96.22 0.038

Simple Logistic 92.22 0.078 93.42 0.066 94.88 0.051 94.44 0.056 95.78 0.042 96.44 0.036

Random Forest (D) 94.22 0.058 95.33 0.047 96.86 0.031 96.44 0.036 97.11 0.029 98.00 0.020

Random Forest (I) 95.55 0.044 96.22 0.038 97.11 0.029 96.88 0.031 97.55 0.024 99.55 0.004

Random Tree 92.92 0.071 93.77 0.062 95.77 0.042 93.63 0.063 94.00 0.060 95.14 0.048

J48 90.66 0.093 91.53 0.085 93.33 0.067 92.22 0.078 93.55 0.064 94.22 0.058

116

feature lengths. The overall performance in terms of accuracy of the four classi�ers

such as Navies Bayes, SVM (SMO), Simple Logistic and Random Tree was greater

than 91.55%. The J48 classi�er reported the lowest accuracy ranging from 90.66% to

93.33% for L= 100, 200, and 300 with the HF selection technique.

Since the Random Forest classi�er achieved the highest accuracy, we further devi-

ated its default parameter by increasing the number of decision trees up to 80 until we

noticed stable accuracy. Finally, the Random Forest classi�er (I) reported the stable

accuracy of 95.55% with 0.044 FPR, 96.22% with 0.038 FPR, and 97.11% with 0.029

FPR for L=100, 200, and 300, respectively, as shown in Table 6.7.

Experiment-II: In order to examine the stability of the proposed A-IntExt sys-

tem and to avoid over-fitting, the 10-fold cross-validation approach was applied

and the experimental evaluation results are presented in Table 6.7. Next, during

the evaluation of each classi�er, we selected three di�erent FFV of lengths L=100,

L=200, and 300 from the training set to train the classi�er and same feature length

from the validation set by following the procedure discussed in Section 6.4.2. Further,

these validation set �les were used to check the actual maliciousness of the detected

processes in terms of detection accuracy.

The evaluation process of the validation set was evaluated by using the 10-fold

cross-validation. It randomly splits the original input �le into 10 equal subparts,

where 9 subparts are used as the training dataset and the remaining 1 subpart is used

as the validation data to measure the detection e�ciency of the classi�er. The cross-

validation process is reiterated 10 times (the folds) for every combination with the

condition that each subpart is used once as the validation data. Finally, the outcome

of each fold is averaged to estimate the overall e�ciency of the tested model. In this

way, we evaluated the cross-validation phase, and the same steps were repeated sepa-

rately for di�erent FFVs of di�erent sizes from di�erent feature selection techniques.

This approach helps in systematically evaluating the feasibility of our proposed A-

IntExt system to measure the detection accuracy of malware from the semantically

reconstructed hidden and dubious executables at the VMM.

The evaluation process of all the six classi�ers were evaluated with topmost fea-

tures selected based on the score assigned by the feature selection techniques. In the

initial experiments, we observed that the Random Forest classi�er achieved the high-

117

est accuracy on all three di�erent L for all feature selection techniques, as compared

to the other classi�ers. The right side of Table 6.7 provides details of the malware

detection accuracy achieved by di�erent classi�ers for 10-fold cross-validation results

of the validation set. In particular, the Random Forest classi�er achieved an accuracy

of 98.00% with 0.020 FPR for L=300 features suggested by the HF selection technique

under the default parameters (tree size, T=10), where, T represents the number of

decision trees in the ensemble.

Based on this observation, additional experimental work was carried out to inves-

tigate the impact of the number of decision trees on the detection accuracy of the

Random Forest classi�er. By setting default parameters with 80 decision trees for

the Random Forest (I) classi�er, we noticed that the HF selection technique based

FFV encouraged it to achieve maximum accuracy of 96.88% with 0.031 FPR, 97.55%

with 0.024 FPR, and 99.55% with 0.004 FPR for L=100, L=200, and L=300 features,

respectively. This is due to the following reasons: 1) The FFV of the HF selection

technique consists of features recommended by three di�erent popular feature selec-

tion techniques as discussed in Section 6.2.1. These unique features in�uence the

classi�er decision; and 2) The Random Forest classi�er uses multiple decision trees

that are randomly chosen to vote for overall detection performance of the given input

�le, where each decision tree classi�es the new instance of features with a majority of

the vote (Oshiro et al. 2012).

For the generated dataset, the Random Forest classi�er achieved the highest accu-

racy of 99.55% with L= 300 features of the HF selection technique, for increased size

of the decision trees from 10 to 80. Further, there was no signi�cant improvement in

the Random Forest classi�er accuracy after 80 decision trees. Another common obser-

vation is that the same Random Forest classi�er reasonably achieved good accuracy

for the IG, NF, and CS feature selection techniques with di�erent feature lengths as

compared to the other classi�ers.

Since the Random Forest classi�er yielded the highest accuracy on default and

increased parameter settings, the predictive performance of this classi�er was also

evaluated while noticing the error rate when decision trees size increased from 10 to

80. Figure 6.4 depicts that lower OOB error rate was achieved at increased trees of

30 for L=200 and L=300 features. Similarly, for L=100 features, lower OOB error

118

Figure 6.4: OOB error rate comparison with di�erent tree size for HF selection
technique on the validation set of generated dataset

Figure 6.5: RMS error rate comparison with di�erent tree size for HF selection
technique on the validation set of generated dataset

rate was achieved at 40 decision trees. The �nal inference is that, if L is low then,

maximum decision trees are required to stabilize the OOB error rate and vice versa.

In this experiment, the error rate stabilized after reporting minimum OOB error rate

as 0.0155 at 50 trees, 0.0134 at 40 trees, and 0.0119 at 40 trees for L of 100, 200, and

300 features, respectively.

Additionally, for the Random Forest classi�er, we measured the best Root Mean

Square (RMS) error rate. It can be seen from Figure 6.5 that the error rate of 0.0999

was reported for 20 trees with L= 300 features. In addition, the stable value of the

observed RMS error rate was 0.1017 at 40 trees, 0.0982 at 40 trees, and 0.0951 at 30

trees for L=100, L=200, and L=300 features, respectively.

119

Table 6.8: Experiment results of malware detection with di�erent feature selection techniques for validation set of generated dataset

Feature length L=100 L=200 L=300

Classi�er Metrics IG NF CS HF IG NF CS HF IG NF CS HF

Naive Bayes TPR 0.829 0.804 0.831 0.913 0.847 0.816 0.849 0.947 0.851 0.822 0.851 0.951

AUC 0.819 0.809 0.853 0.913 0.825 0.812 0.877 0.924 0.839 0.829 0.889 0.938

MCC 0.658 0.609 0.663 0.827 0.693 0.631 0.698 0.893 0.702 0.645 0.702 0.903

SVM (SMO) TPR 0.831 0.831 0.843 0.946 0.856 0.841 0.853 0.953 0.867 0.851 0.855 0.962

AUC 0.823 0.848 0.879 0.925 0.863 0.862 0.891 0.932 0.889 0.868 0.912 0.967

MCC 0.663 0.663 0.685 0.893 0.711 0.681 0.707 0.907 0.733 0.702 0.710 0.924

Simple Logistic TPR 0.811 0.851 0.847 0.944 0.824 0.862 0.857 0.958 0.849 0.871 0.862 0.964

AUC 0.832 0.848 0.869 0.929 0.839 0.838 0.857 0.938 0.857 0.869 0.876 0.948

MCC 0.622 0.703 0.693 0.889 0.649 0.725 0.714 0.916 0.698 0.742 0.725 0.929

Random Forest (I) TPR 0.858 0.867 0.871 0.969 0.864 0.871 0.882 0.976 0.871 0.882 0.893 0.996

AUC 0.838 0.856 0.874 0.938 0.845 0.876 0.898 0.946 0.863 0.896 0.928 0.995

MCC 0.716 0.733 0.742 0.938 0.729 0.742 0.765 0.951 0.742 0.765 0.787 0.991

Random Tree TPR 0.802 0.813 0.824 0.936 0.836 0.829 0.836 0.940 0.842 0.844 0.842 0.951

AUC 0.826 0.835 0.869 0.924 0.839 0.841 0.876 0.937 0.858 0.867 0.883 0.943

MCC 0.604 0.627 0.648 0.903 0.671 0.658 0.671 0.916 0.683 0.689 0.685 0.926

J48 TPR 0.791 0.802 0.818 0.922 0.802 0.813 0.824 0.936 0.813 0.822 0.831 0.942

AUC 0.797 0.825 0.819 0.916 0.856 0.868 0.886 0.928 0.857 0.876 0.899 0.936

MMC 0.582 0.605 0.636 0.845 0.604 0.627 0.648 0.871 0.627 0.645 0.662 0.884

120

It can also be seen from Table 6.7 that other classi�ers such as SVM (SMO),

Simple Logistic, Random Tree, and J48 delivered accuracy ranging from 92.22% to

95.14% for L=100 to L=300 and the accuracy produced by the Navies Bayes classi�er

was the poorest, at 91.33% for L=100 of the this technique. The obtained results of

this technique were compared with the other three feature selection techniques (i.e.,

IG, NF, and CS) of di�erent feature lengths. The Random Forest classi�er attained

an accuracy of 87.11% with 0.129 FPR, 88.22% with 0.118 FPR and 89.33% with

0.107 FPR for L=300 features of IG, NF, and CS, respectively. In comparison, other

classi�ers produced the least accuracy of 79.11% and best accuracy of 87.11% for

various feature lengths of IG, NF, and CS, which is signi�cantly lesser than the HF

selection technique of a similar feature length.

The malware recognition pro�ciency of di�erent classi�ers measured with di�erent

evaluation metrics such as TPR, Area Under the Curve (AUC), and MCC is shown

in Table 6.8. The TPR represents the correct detection of positive instances (i.e.,

feature vectors of malicious executables) by the classi�er and the MCC considers

data imbalance even though the classes are of di�erent sizes by using the amount of

correctly and incorrectly classi�ed features (instances) based on -1 (if wrong prediction

of the model) and +1 (model prediction is perfect) of model prediction.

The ROC curve represents the trade-o� between the TPR and the FPR. The

point (0, 1) indicates that the classi�er is ideal since it correctly classi�es all the

negative samples as negative and the positive samples as positive with zero FPR. The

performance of each classi�er is evaluated separately by plotting the ROC curves for

each chosen classi�er as shown in Figure 6.6. The AUC metric is utilized to measure

the ROC curves. All data points lying on the upper left corner of each ROC curve

indicates the detection rate of the classi�er as high with low FPR, i.e., optimal high-

performance (Egan 1975). The higher value of the AUC denotes better accuracy of

the classi�er.

Each sub-�gure of Figure 6.6 represents the ROC curve of individual classi�ers

such as Navie Bayes, SVM (SMO), Simple Logistic, Random Forest, Random Tree,

and J48 for L= 300 features. Each ROC curve of the classi�er corresponds to a

separate feature selection technique.

Figure 6.6 and Table 6.8 show the AUC value of all the classi�ers. The AUC

121

(a) Naive Bayes (b) SVM (SMO)

(c) Simple Logistic (d) Random Forest

(e) Random Tree (f) J48

Figure 6.6: ROC curves for feature selection techniques used by di�erent classi�ers
for L= 300 on the validation set of generated dataset

value of the HF selection technique is superior as compared to other feature selection

techniques such as IG, NF, and CS. The Random Forest classi�er (I) in particular

achieved the highest AUC of 0.995, while J48 reported the lowest value of AUC with

0.936 for L=300 features of the HF selection technique. Other classi�ers such as Naive

Bayes, SVM (SMO), Simple Logistic, and Random Tree achieved AUC of 0.938, 0.967,

0.948, and 0.943, respectively. Furthermore, it can also be observed from Table 6.8,

122

(a) Accuracy (b) Precision

(c) Recall (d) F-Measure

Figure 6.7: A-IntExt system malware detection evaluation using di�erent
performance metrics for L=300 on the validation set of generated dataset

that the Random Forest classi�er reasonably produces a higher value of AUC for

IG, NF, and CS based feature selection techniques with di�erent feature lengths as

compared to other classi�ers.

The analysis of results for each of the chosen machine learning classi�ers is mea-

sured by other performance metrics such as Accuracy, Precision, Recall, and F-

measure as shown in Figure 6.7. The classi�ers' performance was evaluated sepa-

rately for individual feature selection technique and HF selection technique with L=

300 features. The HF selection technique performed exceptionally well as compared

to other feature selection techniques on all the performance metrics. We notice that

the Random Forest classi�er outperformed other classi�ers and achieved an accu-

racy of 99.55% with perfect Precision of 0.996, high Recall of 0.996, and F-measure

value equal to 0.997. The minimum performance shown by the classi�er for HF se-

lection approach is J48 with accuracy 94.22%, Precision=0.942, Recall=0.942, and

F-Measure=0.943.

Additionally, the performance of each classi�er was measured with other feature

123

selection techniques such as IG, NF, and CS based FFVs. Since, all the classi�ers

remarkably produced the best accuracy for L=300 in all feature selection techniques,

the obtained accuracy, Precision, Recall, and F-Measure results are depicted in the

graphs of Figure 6.7. Overall, the classi�ers performed well for the HF selection tech-

nique based FFV and produced the best accuracy, Precision, Recall, and F-Measure

results as compared to other individual feature selection techniques.

6.5.2 Result Analysis of Benchmarked Datasets

In order to validate the detection ability of the proposed A-IntExt system, we also

considered independent public benchmarked malware datasets in this work and exten-

sive experimental analysis was performed. The obtained results are presented similar

to the generated dataset. The distribution of the dataset used in this evaluation is

discussed in Section 6.3.1. The obtained dataset consists of a maximum number of

benign and considerable amount of malicious executables that represents a real world

situation and the same dataset was used to validate our proposed A-IntExt system.

Since the obtained dataset is static in nature, we generated a separate FFV for each

feature selection technique such as CS, NF, IG, and HF. Each individual feature se-

lection technique was evaluated with three di�erent feature lengths L=100, L=200,

and L=300. The six classi�ers, which were also used in the generated dataset experi-

ments, were used in this experimental work with default parameters setting of WEKA

as shown in Table 6.6.

Experiment-I: In the testing set evaluation, the distribution of the samples as

shown in Table 6.3 were used and these were excluded from the training set. As

the testing phase represents the real-time scenario of unknown malware detection, we

conducted comprehensive tests. Table 6.9 provides the experimental results obtained

by the testing set evaluation of all the six classi�ers with di�erent feature selection

techniques. The Random Forest classi�er yielded the best accuracy of 93.77% with

0.062 FPR, 94.88% with 0.051 FPR, and 96.00% with 0.040 FPR for feature length of

100, 200, and 300 of the HF selection technique. Similarly, under increased decision

tree size of 80, the Random Forest (I) produced a maximum accuracy of 95.11% with

0.049 FPR, 96.22% with 0.038 FPR, and 97.77% with 0.22 FPR for L=100, L=200,

and L=300. In addition, it also produced the best accuracy on other feature selection

124

Table 6.9: Detection accuracy (%) of malware using di�erent feature selection techniques on both testing and validation sets
experiments of benchmarked datasets

Feature

selection

technique

Classi�ers

Feature length of testing set Feature length of validation set

L=100 L=200 L=300 L=100 L=200 L=300

ACC FPR ACC FPR ACC FPR ACC FPR ACC FPR ACC FPR

IG Naive Bayes 78.66 0.217 79.11 0.209 80.22 0.198 80.22 0.198 82.00 0.180 82.66 0.173

SVM(SMO) 80.88 0.191 82.66 0.173 84.00 0.160 81.77 0.182 83.33 0.167 85.55 0.144

Simple Logistic 81.33 0.187 82.22 0.178 83.77 0.162 82.22 0.178 84.03 0.160 84.22 0.158

Random Forest 82.22 0.178 83.33 0.167 84.88 0.151 83.11 0.169 84.22 0.158 86.22 0.138

Random Tree 77.11 0.229 78.66 0.213 80.22 0.198 78.22 0.218 80.22 0.198 82.81 0.172

J48 78.22 0.218 78.88 0.211 80.00 0.200 78.22 0.218 80.04 0.200 81.77 0.182

NF Naive Bayes 78.00 0.220 78.46 0.215 80.22 0.198 79.11 0.209 80.22 0.198 81.77 0.182

SVM(SMO) 81.77 0.182 82.88 0.171 83.33 0.167 82.22 0.178 83.33 0.167 84.44 0.156

Simple Logistic 83.77 0.162 84.22 0.158 85.58 0.144 84.44 0.156 85.33 0.147 86.44 0.136

Random Forest 84.00 0.160 84.88 0.151 85.87 0.141 84.88 0.151 85.77 0.142 86.88 0.131

Random Tree 79.55 0.206 80.88 0.191 82.88 0.171 80.22 0.198 82.81 0.172 83.33 0.167

J48 81.33 0.187 82.66 0.173 83.77 0.162 80.66 0.193 81.33 0.187 82.22 0.178

CS Naive Bayes 81.11 0.189 82.22 0.178 83.77 0.162 82.22 0.178 83.11 0.169 84.03 0.160

SVM(SMO) 82.66 0.173 83.11 0.169 84.00 0.160 83.11 0.169 84.22 0.158 84.88 0.151

Simple Logistic 82.88 0.172 83.55 0.164 84.44 0.156 83.77 0.162 84.66 0.153 85.11 0.149

Random Forest 85.11 0.149 86.00 0.140 87.11 0.129 86.00 0.140 87.11 0.129 88.22 0.118

Random Tree 80.00 0.200 81.77 0.182 82.88 0.171 81.11 0.189 82.22 0.178 83.11 0.169

J48 79.77 0.202 80.22 0.198 81.55 0.184 80.00 0.200 81.33 0.187 82.66 0.173

HF Naive Bayes 91.11 0.089 92.66 0.073 93.33 0.067 92.88 0.071 93.97 0.060 94.00 0.060

SVM(SMO) 92.22 0.078 93.33 0.067 94.22 0.058 93.11 0.069 94.66 0.053 95.31 0.047

Simple Logistic 93.55 0.064 94.22 0.058 95.77 0.042 94.22 0.058 95.11 0.049 96.66 0.033

Random Forest (D) 93.77 0.062 94.88 0.051 96.00 0.040 95.11 0.049 96.00 0.040 97.11 0.029

Random Forest (I) 95.11 0.049 96.22 0.038 97.77 0.022 96.88 0.031 97.33 0.027 98.88 0.011

Random Tree 92.33 0.078 93.11 0.069 93.77 0.062 92.22 0.078 93.55 0.064 94.22 0.058

J48 91.33 0.087 92.66 0.073 93.77 0.062 92.00 0.080 93.11 0.069 94.12 0.058

125

techniques with di�erent feature lengths. Other �ve classi�ers also attained maxi-

mum accuracy in the range of 91.11% to 95.77% on di�erent feature lengths with the

HF selection technique. While evaluating these �ve classi�ers with the FFV of IG,

NF, and CS, the maximum accuracy range reported was 78.22% to 84.88% for IG,

78.00% to 85.58% for NF, and 79.77% to 84.44% for CS.

Experiment-II: For validation set, we conducted the 10-fold cross-validation ex-

periments. Each classi�er performance was evaluated independently with three dif-

ferent feature lengths L=100, L=200, and L=300 features and the obtained results

are depicted in Table 6.9.

It can be seen that the accuracy of the Random Forest classi�er outperformed all

the other classi�ers for all the four feature selection techniques. In particular, for HF

selection based features, it performed exceptionally well by producing a very good

accuracy of 95.11% with 0.049 FPR, 96.00% with 0.040 FPR, and 97.11% with 0.029

FPR for feature length of 100, 200, and 300 features, respectively. The obtained high

accuracy results of the Random Forest classi�er signi�es that the A-IntExt system is

competent enough in correctly identifying the benchmarked datasets malware also.

Similar to the generated dataset experiments, we increased the number of decision

trees in steps of 10 trees in each experiment and �xed the maximum number as 80

trees. From the obtained experimental results, we noticed that the maximum stable

accuracy achieved by the Random Forest classi�er was 96.88% with 0.031 FPR, and

97.33 with 0.027 FPR for L=100 and L=200, respectively. Speci�cally for L= 300

features, the Random Forest classi�er achieved 98.88% accuracy and 0.011 FPR.

At the same time, we also measured the error rate of this classi�er. Figure 6.8

depicts the estimation of the OOB error rate of the Random Forest classi�er for

HF selection techniques on the benchmarked datasets. Based on the experimental

observations, lower OOB rate was achieved when the number of trees equaled to 40,

30, and 30 with L=100, L=200, and L=300 features, respectively. Further, the OOB

error rate of this classi�er stabilized by reporting error rate of 0.0178 at 50 trees,

0.0155 at 40 trees, and 0.0131 at 40 trees with L=100, L=200, and L=300 features,

respectively. At the same time, the RMS error rate of this classi�er stabilized (as

shown in Figure 6.9) when the value of the error reached 0.1032 at 40 trees, 0.1002 at

30 trees, and 0.0972 at 30 trees for L=100, L=200, and L=300 features, respectively.

126

Figure 6.8: OOB error rate comparison with di�erent tree size for HF selection
technique on the validation set of benchmarked datasets

Figure 6.9: RMS error rate comparison with di�erent tree size for HF selection
technique on the validation set of benchmarked datasets

The other �ve classi�ers also achieved accuracy greater than 92.00% for di�erent

L, but less than that of the Random Forest classi�er. As seen in Table 6.9, for HF

selection technique the second highest accuracy was yielded by the Simple Logistic

classi�er ranging from 94.22% to 96.66%, followed by SVM (SMO) with 93.11% to

95.31%, Random Tree with 92.22% to 94.22%, Navies Bayes with 92.88% to 94.00%,

while the J48 classi�er yielded lowest accuracy of 92.00% to 94.12% for L=100, L=200,

and L=300. The overall performance of these classi�ers was also evaluated based on

the features recommended by the other three individual feature selection techniques

and compared with the HF selection technique. The accuracy yielded by these classi-

�ers for corresponding individual feature selection techniques is outlined in Table 6.9.

127

(a) Naive Bayes (b) SVM (SMO)

(c) Simple Logistic (d) Random Forest

(e) Random Tree (f) J48

Figure 6.10: ROC curves for feature selection techniques used by di�erent classi�ers
for L= 300 on the validation set of benchmarked datasets

128

Table 6.10: Experiment results of malware detection with di�erent feature selection techniques for validation set of benchmarked
datasets

Feature length L=100 L=200 L=300

Classi�er Metrics IG NF CS HF IG NF CS HF IG NF CS HF

Naive Bayes TPR 0.802 0.791 0.822 0.929 0.820 0.802 0.831 0.929 0.827 0.818 0.840 0.940

AUC 0.810 0.792 0.821 0.905 0.821 0.834 0.841 0.916 0.829 0.845 0.853 0.928

MCC 0.605 0.582 0.645 0.858 0.640 0.604 0.663 0.858 0.654 0.636 0.681 0.880

SVM(SMO) TPR 0.818 0.822 0.831 0.931 0.833 0.833 0.842 0.947 0.856 0.844 0.849 0.947

AUC 0.814 0.822 0.839 0.915 0.825 0.836 0.856 0.923 0.835 0.845 0.865 0.936

MCC 0.636 0.644 0.662 0.862 0.667 0.667 0.685 0.893 0.711 0.692 0.698 0.893

Simple Logistic TPR 0.822 0.844 0.838 0.942 0.840 0.853 0.847 0.951 0.842 0.864 0.851 0.951

AUC 0.825 0.868 0.857 0.926 0.837 0.875 0.869 0.938 0.859 0.886 0.878 0.945

MCC 0.645 0.689 0.676 0.884 0.681 0.707 0.693 0.902 0.684 0.729 0.702 0.902

Random Forest (I) TPR 0.831 0.849 0.860 0.951 0.842 0.858 0.871 0.973 0.862 0.869 0.882 0.960

AUC 0.819 0.826 0.840 0.921 0.823 0.837 0.857 0.932 0.839 0.859 0.905 0.985

MCC 0.662 0.698 0.720 0.902 0.684 0.716 0.742 0.947 0.724 0.738 0.764 0.920

Random Tree TPR 0.782 0.802 0.811 0.922 0.802 0.828 0.822 0.936 0.828 0.833 0.831 0.936

AUC 0.798 0.824 0.842 0.915 0.815 0.835 0.856 0.926 0.826 0.849 0.869 0.941

MCC 0.564 0.604 0.622 0.845 0.604 0.656 0.644 0.871 0.656 0.667 0.662 0.871

J48 TPR 0.782 0.807 0.800 0.920 0.800 0.813 0.813 0.931 0.818 0.822 0.827 0.931

AUC 0.795 0.819 0.826 0.912 0.816 0.825 0.836 0.926 0.845 0.836 0.854 0.937

MMC 0.564 0.613 0.600 0.840 0.601 0.627 0.627 0.862 0.636 0.644 0.653 0.862

129

Furthermore, the performance of each classi�er was compared in terms of the

obtained AUC value by plotting separate ROC graphs for each chosen classi�er. From

Figure 6.10, it can be observed that the obtained value of AUC for the HF selection

technique performed well as compared to other feature selection techniques with L=

300 features. Additionally, from Table 6.10, it can be seen that the Random Forest

classi�er attained the highest AUC value with 0.985 when L=300 features of the

HF selection technique. This is due to the fact that, the more number of decision

trees (i.e., T=80), help the Random Forest classi�er to produce a better prediction.

The other classi�ers such as the Naive Bayes with 0.928, SVM (SMO) with 0.936,

Simple Logistic with 0.945, Random Tree with 0.941, and J48 with 0.937 predicted

excellent AUC for L=300 as well. Overall, the AUC value and ROC curves of all the

classi�ers con�rmed that the A-IntExt system provided compelling results for feature

length of 300 features of the HF selection technique. In addition, the Random Forest

classi�er moderately produced good AUC as compared to the other classi�ers for

top features recommendation by individual feature selection technique. The averages

results of the TPR and MCC yielded by each classi�er with features recommended by

di�erent feature selection technique is illustrated in Table 6.10. The Random Forest

(I) performed best with TPR value of 0.960 for L=300 of the HF selection technique.

Finally, Figure 6.11 shows the evaluation results of other performance metrics

such as Accuracy, Precision, Recall, and F-Measure for di�erent classi�ers for feature

length 300 features. It can be seen from Figure 6.11 (a) that, the accuracy of all

the classi�ers for the HF selection technique signi�cantly outperformed other feature

selection techniques for 300 features. Consecutively, other performance metrics such

as Precision, Recall, and F-Measure performed well for L=300 features of the HF

selection technique. As per the overall observations, the best performance is shown

by Random Forest classi�er (I) includes 98.88% accuracy, 0.989 highest Precision,

and 0.989 and 0.990 Recall and F-Measure, respectively. The lowest performance was

reported by Naive Bayes with 94% accuracy and 0.940, 0.940, and 0.942 of Precision,

Recall, and F-Measure, respectively.

Similarly, the performance of the chosen classi�ers were evaluated for other feature

selection techniques such as IG, NF, and CS with feature length of 300 features.

Finally, the obtained values of Precision, Recall, and F-Measure are illustrated in

130

(a) Accuracy (b) Precision

(c) Recall (d) F-Measure

Figure 6.11: A-IntExt system malware detection evaluation using di�erent
performance metrics for L=300 on the validation set of benchmarked datasets

Figure 6.11 (b), (c), and (d), respectively.

6.5.3 Comparison of Results

The analysis of results on both the generated and benchmarked datasets show that

the proposed A-IntExt system performs well on the generated dataset in terms of

achieving higher accuracy as compared to the benchmarked datasets by most of the

selected classi�ers. The last column of Table 6.11 illustrates the di�erence in accuracy

obtained in comparison of both the generated and benchmarked datasets for L= 300 of

the HF selection technique. The Navies Bayes performs well on the generated dataset

by attaining +1.14% greater accuracy than the benchmarked datasets, followed by

the Random Tree with +0.92%, SVM (SMO) with +0.91%, Random Forest (I) with

+0.67%, and J48 with 0.10%. Surprisingly, the Simple Logistic failed to perform well

in the generated dataset as it attained -0.22% low accuracy compared to the bench-

marked datasets. With these comparative results, we can argue that the proposed HF

feature selection technique of our A-IntExt system is signi�cant in detecting known

and unknown (signature-less) malware for the semantically introspected and foren-

131

Table 6.11: Comparison of accuracy (%) for validation sets of generated and
benchmarked datasets for L=300 of HF selection technique

Classi�er
Generated

dataset

Benchmarked

datasets
Di�erence

Naive Bayes 95.14 94.00 +1.14

SVM(SMO) 96.22 95.31 +0.91

Simple Logistic 96.44 96.66 -0.22

Random Forest (I) 99.55 98.88 +0.67

Random Tree 95.14 94.22 +0.92

J48 94.22 94.12 +0.10

sically recreated executables (i.e., generated dataset) at the VMM. Further, it also

works for other benchmarked datasets with good accuracy of 98.88%.

Finally, we would like to highlight the various observations made from the ex-

periments of both the datasets. Firstly, the Random Forest classi�er with the HF

selection technique under feature length of 300 attained overall best results on test-

ing and validation sets of both the datasets. The Random Forest classi�er has a

long history in producing good accuracy on text classi�cation and it achieved similar

performance in this domain too. Secondly, the Simple Logistic classi�er also showed

favorable performance but was lesser as compared to the Random Forest classi�er

with the HF selection technique on both the datasets. All other classi�ers showed

satisfactory performance with the HF feature selection technique by producing accu-

racy ranging from 95.14% to 96.22% on the generated dataset and 94.00% to 94.22%

on the benchmarked datasets. Finally, the performance of the J48 classi�er was poor

as compared to the other classi�ers on both the datasets.

6.6 Discussion

The current development of the proposed A-IntExt system included extended func-

tionalities for detection and estimation of the symptoms of malware execution on the

live Monitored VM. In addition, the incorporation of machine learning techniques

was emphasized as the �rst scienti�c in-guest assisted VMI introspection technique

to precisely detect and classify the running processes on the Monitored VM as benign

or malicious at the VMM. The A-IntExt system performed this task from the seman-

132

tically reconstructed executables that were introspected and forensically extracted

at the VMM. The current demonstration of this approach is speci�c to the Windows

guest OS to automatically detect the execution of large malware on the live Monitored

VM by eliminating manual analysis.

The di�erent categories of real world malware executables used in this work in-

cluded self-hidden behavior malware, which hid on execution on the guest OS. In

addition, we used both user-mode and kernel-mode rootkits to explicitly hide some

benign and malicious running processes to test the detection feasibility of our pro-

posed A-IntExt system. We practically con�rmed the modi�ed functionality of the

VMI introspector of the A-IntExt system as being pro�cient in detecting hidden and

malicious processes caused by stealthy malware and rootkits by traversing the seman-

tic view of the _EPROCESS data structure of the live Monitored VMs.

In this study, the Random Forest classi�er achieved high accuracy on both the

generated and benchmarked datasets. The other chosen classi�ers also achieved good

accuracy, but it was marginally less as compared to the Random Forest classi�er.

The main reason to choose and increase the Random Forest classi�er parameter was

that under the default parameters it constantly produced the highest accuracy for

dissimilar L of 100, 200, and 300 features. Keeping this in mind and in order to

evaluate maximum detection accuracy of our feature selection methodologies, the

Random Forest classi�er was preferred in this work.

From the overall analysis of both the generated and benchmarked datasets' results,

we can argue that the detection pro�ciency of the proposed A-IntExt system is e�cient

enough to produce better accuracy even with other classi�er techniques. Finally,

the systematic design and implementation of the proposed A-IntExt system were

signi�ed as a promising VMI-based malware detection system for a virtualized cloud

environment.

6.6.1 Limitations

Like several techniques that depend on machine learning techniques for detection of

malware, our proposed A-IntExt system has few shortcomings. Since malware au-

thors have created a new class of malware called VM-aware malware (Ferrie 2007;

Ra�etseder et al. 2007), which is more prevalent in virtualized environments by ex-

133

ploiting some software or hardware artifacts provided by the virtualization layer be-

tween the live guest OS and bare hardware. Some malware samples of this type

may not run in a virtualized environment or even run, but it performs a mysterious

activity to foil the existing VM-based defensive solution. The VM-aware malware

was created by adopting various tricks and techniques called primitive or simplistic

(Liston and Skoudis 2006) to reluctant malware not to execute on the virtual en-

vironments. In addition, malware of this type disguises itself by going dormant or

exhibiting non-malignant acts on the targeted guest OS. In this work, we considered

the malware executables that run and its �le access permission are not being denied

by the Monitored guest OSs during evaluation of the A-IntExt system.

Another limitation of the proposed work is that during periodic introspection, the

A-IntExt system does not assume that the proliferation of malware may hide another

legitimate process either in user-mode or kernel-mode of the guest OS. In addition,

the malware may also perform DKOM attack (Sparks and Butler 2005) by explicitly

hiding process details at the kernel-mode of the guest OS. In such an instance, the

extended functionality of the A-IntExt system is pro�cient in detecting the process

hidden by the rootkit on the Monitored VMs. But, in order to explicitly test and

evaluate the running processes hidden by the rootkit on Windows 7 Monitored VM,

we did not �nd any publicly available rootkits, which would work for a Windows 7

Monitored VM. One such available futo rootkit (Butler and Silberman 2006) failed

to execute on the Windows 7 guest OS. Due to this, the evaluation of the proposed

A-IntExt system, particularly for Windows 7 guest OS was restricted to detect the

execution of both known and unknown malware as shown in Table 6.1. However, the

detection of such user-mode and kernel-mode rootkits based hidden processes on the

Windows 7 guest OS and investigation of the malicious check on the detected one can

be achieved by the executable �le extractor and FVG components of the proposed

A-IntExt system by leveraging machine learning techniques.

Since our proposed approach performs detection of malware from forensically ex-

tracted executables, it is certainly possible that malware that uses code obfuscation

and stealth techniques would be susceptible to binary code features (Alazab et al.

2011; Liangboonprakong and Sornil 2013) where other types of malware would not.

In such cases, the proposed approach may not contribute highest detection accuracy

134

for the generated features of this particular family of malware. However, it is pro-

�cient in reconstructing a consistent active run state of such executables from the

infected memory dump of the guest OS. As a consequence, our proposed approach

achieved 99.95% of maximum detection accuracy for forensically reconstructed exe-

cutables when performing an evaluation of this malware with other types that were

partitioned as validation set of the generated dataset at the VMM.

Finally, in this work, the MFA involved extracting executable process information

of the live infected memory dump of the Monitored VMs at the VMM. However, the

possibility of virtualization-based malware or semantic value attack such as Subvert

(King and Chen 2006), Blue Pill (Rutkowska 2006; Rutkowska and Tereshkin 2008),

direct kernel structure manipulation attack (Bahram et al. 2010) shows the successful

compromise of the virtualized environment. In such cases, the extraction of executa-

bles or binary semantic information of the infected memory dump may not be assumed

to be legitimate. Moreover, in this work, we emphasize this kind of attacks as related

to a theoretical discussion than practice.

6.7 Summary of The Work

In this work, we have presented the design, implementation, and evaluation of the

A-IntExt system as an advanced in-guest assisted VMI-based security solution. It

periodically scrutinizes the state of the introspected system in order to detect hidden,

dead, and dubious processes on the Monitored VM. The intelligent decision function-

ality of the ICVA precisely estimates the symptoms of malware execution by cross

examine the internally and externally gathered processes semantic view of the guest

OS, while performing perfect memory acquisition of the Monitored VM. The A-IntExt

system reconstructs the executables correspond to identi�ed hidden and dubious pro-

cesses from the digital artifacts of the Monitored VM. These executables are further

analyzed using machine learning techniques to ascertain malicious executables. The

A-IntExt system extensively reduces the manual e�ort required to analyze and identify

the malware from the reconstructed semantic view of the executables at the VMM.

Our empirical results show that the A-IntExt system is capable of providing digi-

tal evidence related to identi�ed malware which helps the cyber security practitioner,

135

forensics investigator or system administrator. Its detection pro�ciency was evaluated

by executing large real-world malware and benign executables on the Monitored VMs.

The obtained high accuracy of 99.55% with 0.004 FPR on the generated dataset was

compared with other benchmarked malware datasets. The experimental results' anal-

ysis signi�ed that the A-IntExt system is robust in real-time and practically feasible

to work on any public benchmarked datasets with performance overhead of 6.3% over

the Windows benchmark suite.

136

Chapter 7

Execution Time Measurement of
Volatile Artifacts Analyzers

7.1 Introduction

Due to a rapid revaluation in a virtualization environment, VMs are a target point

for an attacker to gain privileged access of the virtual infrastructure. The APTs such

as malware, rootkit, spyware, etc. are more potent to bypass the existing defense

mechanisms designed for VM (Jiang et al. 2007). To address this issue, VMI (Gar�nkel

et al. 2003) emerged as a promising approach that monitors run state of the VM

externally from the hypervisor. The main purpose of the VMI is to monitor the

true state of the VM without compromising the performance as well as without the

knowledge of the VM is an active research topic. Many proposed solutions have

adopted the VMI to identify the malignant activities of the VM (Fu and Lin 2013).

The LibVMI is able to provide run state of the live VM and also capable to acquire

live VM RAM dump. However, the main limitation of the VMI lies with the semantic

gap. An open source tool called LibVMI address the semantic gap.

The MFA tool such as Volatility (Ligh et al. 2014) can also be used to address

the semantic gap. But, it needs memory dump (RAM) as input. RAM dump capture

time and its analysis time in real time are highly crucial if an IDS depends on the

data supplied by the MFA tool or VMI tool. Furthermore, memory analyzer accuracy

is also a primary for IDS. Thus, our aim is to 1) Measure the time required to capture

a live VM RAM dump of the VMI tool. 2) Measure the performance of the MFA tool

such as Volatility in terms of execution time elapsed to analyze the RAM dumps of

di�erent size. 3) Compare the performance of the Volatility with another open source

137

MFA tool called Rekall in terms of execution speed. 4) Inject real world rootkits onto

the VM in real-time, view the internal shape of the VM using VMI tool, capture the

RAM dump and analyze them using Volatility and Rekall separately to appraise the

detection accuracy.

In this work, the live VM RAM dump acquire time of LibVMI is measured. In

addition, acquired memory dump analysis time consumed by the Volatility is mea-

sured and compared with another memory analyzer such as Rekall (Cohen 2014). It

is observed through experimental results that, Rekall takes more execution time as

compared to Volatility for most of the plugins. Further, Volatility and Rekall are

compared with an open source VMI tool called LibVMI (Payne and Bryan 2008). It

is noticed that examining the volatile data through LibVMI is faster as it eliminates

memory dump acquire time.

7.2 Motivation and Overview of HyIDS

Once the kernel-mode rootkit or advanced persistent malware penetrates into the core

of the operating system kernel, they can change the behavior of the legitimate system

by arbitrarily modifying the SCT or Interrupt Descriptor Table (IDT) or any other

critical kernel code and data structure. It is very di�cult to detect such changes if

they occur during the run time of the system. Some advanced rootkits or malware are

competent enough to bypass or disable the host-based anti-malware defensive solution

to evade the detection. One best solution to catch abnormality of the system is by

analyzing the RAM content as it provides accurate state of the system. For example,

process list, loaded driver modules, SCT, IDT details etc.

In a virtualized environment, one of the best ways of examining the RAM content

of the VM is via VMI tool. For example, LibVMI is pro�cient to provide the internal

shape of the target VM like the active process list, module list, event details, etc.

In addition, it supports to capture the RAM dump. However, LibVMI is not rich

enough to provide more kernel information due to its limited functionalities as on

today. The sophisticated DKOM and Semantic Value Manipulation (SVM) attacks

based rootkits are more potent to alter the guest kernel data structure. Another way

of viewing semantic information of the VM is by analyzing its RAM dump using MFA

138

Figure 7.1: High level view of HyIDS architecture for virtualized environment

tool.

Without IDS, only viewing the internal state of the VM either through VMI

tool or MFA tool is inadequate to classify the system state as normal or abnormal.

Furthermore, without IDS, it is impractical to safeguard the virtualized environment

against malware attack or other types of attacks. The prime requirement to safeguard

the virtualized environment round the clock is IDS. However, HIDS is an ine�ective

solution for virtualized environments to thwart advanced malware attacks. Thus,

our proposed architectural Hypervisor based Intrusion Detection System (HyIDS)

framework is the supreme solution to uncover abnormality of the VM by inspecting

volatile data. The HyIDS needs state of the VM to classify the system state as normal

or abnormal. If HyIDS depends on the data supplied by the VMI tool or MFA tool,

the time needed to fetch the state of the system by the VMI tool or MFA tool plays an

important role. Figure 7.1 shows the high-level architectural framework of the HyIDS

for a virtualized environment.

The HyIDS receives true state of the VM either by MFA tool or VMI tool. In this

scenario, the time required to fetch the real state of the VM by reading volatile data

is highly crucial. With this motive in this work, we have measured and compared the

execution time of Volatility with Rekall. Further, the speed of LibVMI is compared

139

with Volatility and Rekall. Finally, we �gure-out which is the best feasible solution

to secure the virtualized environment while addressing so called semantic gap.

7.3 Evaluation and Experimental Results

We have evaluated the execution time of Volatility and Rekall for the di�erent RAM

dump size of 1GB, 2GB, and 3GB. Memory dump of both Ubuntu and Windows

VMs have captured using LibVMI. The experiments are conducted on the host system

which posses the speci�cations as shown in Table 7.1.

Table 7.1: Experimental setup

Host operating system Intel (R) core(TM) i7-3770 CPU@ 3.40GHz, 20GB
RAM,Ubuntu 14.04 (Trusty tahr) (64-bit)

Hypervisor Xen 4.4 bare metal hypervisor

Virtual machines Ubuntu 12.04.3-LTS as Domu1

Windows-7SP0-64x as Domu2

VMI introspection tools LibVMI version 0.10.1 (Introspect and Capture RAM
dumps)

LibVMI trap the hardware events and access the vCPU reg-
isters

MFA tools Volatility version 2.4 and Rekall version 1.3.2 (dammastack)
employed to examine the captured RAM dump

7.3.1 Detecting Kernel Level Rootkits

To evaluate trustworthiness of live VMI and MFA tools, we have injected real world

rootkits on both Windows and Ubuntu guest VMs. We have used seven Linux kernel-

mode rootkits such as Simple rootkit(SR), average coder(AC), Kbeast

(KB), chkrootkit-0.50(CK), adore-ng (AD-ng), open-hijack (OH),

getpid-hijack (GH). Windows operating system based kernel-mode rootkits called

FU rootkit(FU) and Hacker Defender(HD) injected onto Windows-7 VM. Ta-

ble 7.2 provides rootkits explored in this work with the guest OS on which they

were injected. We practically explored that the LibVMI is capable to detect injected

rootkits (malicious process ID, hidden modules, etc) on the live running VM. A more

semantic information extracted by the Volatility and Rekall on the captured RAM

dump of both Windows and Ubuntu monitored guest OS.

140

Table 7.2: Real-world rootkit experiments under VMs

Rootkits OS Functionalities Behavior

SR, AC, KB Ubuntu 12.04 lsmod, sys-call, ps, hf DKSM/SVM

CK, AD-ng Ubuntu 12.04 Sys-call, ps, mod, strg DKSM/SVM

OH, GH Ubuntu 12.04 Sys-call, PID-hijak, ps DKSM/SVM

HD, FU Windows-7 Sys-call-hijack, ps, � DKSM/SVM

As a �rst step of rootkit detection, a true run state of the VM viewed using

module-list plugin of the LibVMI, while working at hypervisor (Dom0). As a

proof of experimental results, we have mentioned a snapshot of average coder

rootkit in the Figure 7.2. The injected rootkit module successfully detected by the

LibVMI whereas the same module was unable to view against inspection carried at

the VM through lsmod command. In Figure 7.2 the background screenshot on the

right side shows the output of module-list plugin of the LibVM in which inserted

rootkit module rootkit is visible whereas same rootkit module is completely hidden

against the inspection executed at the infected VM (Domu1) through lsmod utility

see foreground screenshot on the left side.

Figure 7.2: average coder rootkit module hidden at Domu1 VM the same
detected by out-of-the-box VMI solution LibVMI

From Figure 7.3 and Figure 7.4, we can observe that both Volatility and Rekall

are capable to report correctly the hidden kernel module of the average coder

rootkit from RAM dump. The extraction speed of the LibVMI, Volatility and Rekall

for pslist and module-list plugins are tabulated in Table 7.3 and Table 7.4. We

can observe that the LibVMI fetching speed is faster as compared to Volatility and

Rekall.

141

Figure 7.3: average coder rootkit hidden module extracted by the Volatility
from raw of physical memory dump

Figure 7.4: AC rootkit infected module extracted by the Rekall from raw of physical
memory dump

7.3.2 Virtual Machine RAM Dump Analysis using Volatility

and Rekall

Volatility is one of the most widely used open source memory forensic tools used to

extract digital artifacts from volatile memory (RAM) dumps. It o�ers a vast number

of built-in plugins to investigate di�erent operating system memory dumps. This

makes the Volatility to use extensively as a �rst choice for digital investigation of RAM

dumps. OS kernel data structure details are used during analysis time and the details

made available to Volatility through the pro�le. Windows operating system pro�les

are inbuilt including recent Windows-8.1. In case of Linux based operating systems,

Volatility requires the user to create the pro�le of the respective Linux distribution

before the RAM dump analysis. This is due to continuous updation of Linux kernel

version.

We have created a pro�le for Ubuntu 12.04 VM and used the same pro�le during

the experiments. Live Ubuntu 12.04 VM RAM dump of size 1GB, 2GB and 3GB have

acquired using LibVMI. The captured RAM dumps have analyzed using the Volatil-

142

Table 7.3: RAM dump analysis time of the Ubuntu VMs

RAM

Dump

Size

LibVMI

Ubuntu 12.04

(guest OS)

Volatility

Ubuntu 12.04

(guest OS)

Rekall

Ubuntu 12.04

(guest OS)

Process

List

Module

List

Process

List

Module

List

Process

List

Module

List

1GB 0.30s 0.22s 3.31s 3.69s 5.10s 4.19s

2GB 0.32s 0.29s 3.24s 3.85s 5.85s 4.89s

3GB 0.34s 0.34s 3.98s 4.12s 7.85s 5.01s

Table 7.4: RAM dump analysis time of Windows VMs

RAM

Dump

Size

LibVMI

Windows-7

(guest OS)

Volatility

Windows-7

(guest OS)

Rekall

Windows-7

(guest OS)

Process

List

Module

List

Process

List

Module

List

Process

List

Module

List

1GB 0.32s 0.26s 2.25s 2.23s 8.76s 2.92s

2GB 0.38s 0.45s 2.58s 2.64s 10.97s 3.07s

3GB 0.41s 0.58s 2.68s 3.29s 11.80s 7.84s

ity Linux plugins such as Linux_pslist, Linux_lsmode, Linux_arp, Linux_psaux,

Linux_cpuinfo, Linux_dmesg, Linux_iomem, Linux_lsof, Linux_netstat, Linux_pst-

ree, Linux_pslist_calhe, Linux_check_idt. The same, RAM dumps have also ana-

lyzed by another memory analyzer called Rekall. Linux plugins name of Rekall are as

same as Volatility Linux plugins name.

We have compared Volatility Linux plugins execution time with Reakll Linux

plugins execution time to evaluate the performance in terms of processing time.

Figure 7.5a, Figure 7.5b and Figure 7.5c depict execution time taken by Volatil-

ity and Rekall for 1GB, 2GB and 3GB RAM dump, respectively. From the ex-

perimental results, it is observed that Rekall execution time is more for the follow-

ing plugins Linux_pslist, Linux_lsmode, Linux_arp, Linux_cpuinfo, Linux_dmesg,

Linux_iomem, Linux_netstat, Linux_psaux, Linux_pslist_calhe, Linux_pstree, as

compared to Volatility However, Rekall processing time is faster for Linux_check_idt,

Linux_lsof, Linux_psview plugins as compared to Volatility.

Some of the most common Windows plugins of Volatility and Rekall are tested

on Windows-7 VM memory dump of size 1GB, 2GB and 3GB to conduct the exper-

iments. Figure 7.5d, Figure 7.5e and Figure 7.5f depict an execution time taken by

143

(a) Analysis of Ubuntu 12.04 VM-1GB RAM

Dump

(b) Analysis of Ubuntu 12.04 VM-2GB RAM

Dump

(c) Analysis of Ubuntu 12.04 VM-3GB RAM

Dump

(d) Analysis of Windows-7SP0-1GB RAM

Dump

(e) Analysis of Windows-7SP0-2GB RAM

Dump

(f) Analysis of Windows-7SP0-3GB RAM

Dump

Figure 7.5: RAM Dump Analysis Time

144

Volatility and Rekall for 1GB, 2GB and 3GB RAM dumps, respectively. Our experi-

mental results demonstrate that Rekall takes more time to execute for the following

plugins pslist, dlllist, eventhooks, handles, ldmodules, mal�nd, modules, multiscan,

netscan, psscan, pstree, ssdt as compared to Volatility. Another major observation,

we found that Volatility reported time for the following plugins Linux_Syscall (110s),

Linux_lsof (85s) and Linux_mem(88s) is high compared to other plugins. But, for

the same plugins, execution time is drastically reduced in Rekall.

7.3.3 Summary

One way to spot malicious activities of the VM is through viewing run state of the

live VM using LibVMI. An alternate way is by analyzing RAM dump of the VM

using MFA tool. In this work, the execution speed of the Volatility is measured

and compared with Rekall. It is noticed that the Rekall execution speed is slow

for most of the plugins as compared to Volatility. Both Volatility and Rekall are

capable to address the semantic gap by providing readable information from RAM

dump. However, they need memory dump to initiate the analysis. The live VM state

information extraction through Volatility and Rekall is slower as compared to LibVMI.

However, LibVMI is not matured enough to provide more semantic state information.

In other words, currently, LibVMI possessing is limited to few plugins. As there is no

memory dump acquire time involved in VMI based approach (LibVMI), the speed of

retrieving the data from volatile memory is faster as compared to memory dump based

approach (Volatility and Rekall). In this context, the HyIDS gets state information

quickly, which helps in determining the intrusions rapidly. As future work, we plan

to develop more program module for an existing LibVMI tool to detect intrusions or

malware that strengthen virtualized environment.

145

Chapter 8

Conclusion and Future Work

In this work, we presented VMIDPS and three di�erent malware detection approaches

that work at VMM to detect and perform analysis of malware on live introspected

guest OS on virtualized cloud computing environment. In the �rst methodology,

the hypervisor and VM dependent based IDPS presented to perform the detection

of both Windows and Linux rootkits and other security attacks on Monitored VM.

However, this approach uses an agent based solution which functions at each VM

that is targeted by the sophisticated rootkit and malware. The limitation of this ap-

proach motivated to develop other three VMM-based guest-assisted VM introspection

systems which use MFA techniques to perform detection and analysis of malware on

live introspected guest OS at VMM. In the second approach, we proposed A-IntExt

system that identi�es the symptoms of malware execution by scrutinizing the run

state information of the of Monitored VMs. The experimental results indicate that

proposed approach is pro�cient in detecting hidden, dead, and malicious processes of

any kind of malware or rootkit. Further, it detects and identi�es both known and un-

known malware processes by performing cross-examination with both local malware

database and powerful online malicious content scanners (Virustotal) using computed

hashes (MD5, SHA-1, and SHA-256). Since the proposed approach involves static

local and online malware check it is infeasible to perform a rapid detection of un-

known malware. To address this limitation we further extended the A-IntExt system

as AMMDS as the third methodology that performs multilevel-detection of malware

by leveraging machine learning techniques at VMM. The OMD and OFMC are two

important key components of the AMMDS that perform multi level detection on se-

mantically reconstructed executables. The OFMC implemented with both Odds-ratio

146

and NGL-Correlation Coe�cient feature selection techniques. The experiments result

demonstrated that AMMDS achieved 100% detection accuracy of malware.

In the fourth methodology, we validated the proposed A-IntExt system by consid-

ering larger malware dataset. Since the reconstructed large executables details at the

VMM is in dubious form, in order to detect actual malicious executables from the other

benign executables, we systematically evaluated the proposed system by generating a

dataset of di�erent experimental scenarios at VMM. Further, we have validated the

A-IntExt system by considering other public benchmarked malware datasets. In ad-

dition, this approach address the over-fitting issue by dividing the dataset into

training, testing, and validation sets on both generated and benchmarked datasets.

The A-IntExt system is implemented by considering popular statistical-based feature

selection techniques such as IG, NF, CS, and our HF selection technique. Each feature

obtains a score from individual and HF selection technique and selects the topmost

best features to the classi�cation techniques. Six machine learning techniques are

compared based on the prede�ned top feature length of the individual feature selec-

tion technique. Finally, the Random Forest classi�er achieved 99.55% accuracy with

0.004 FPR on the generated dataset. The experimental results' analysis signi�ed that

the A-IntExt system is robust in real-time and practically feasible to work on any

public benchmarked datasets with performance overhead of 6.3% over the Windows

benchmark suite.

As a �fth contribution, the execution speed of Volatility is measured and compared

with Rekall. It is noticed that the Rekall execution speed is slow for most of the plugins

as compared to Volatility. Both Volatility and Rekall are capable of addressing the

semantic gap by providing readable information from RAM dump. Since there is no

memory dump acquire time involved in VMI based approach (LibVMI), the speed of

retrieving the data from volatile memory is faster as compared to memory dump based

approach (Volatility and Rekall). In this context, the HyIDS gets state information

quickly, which helps in determining the intrusions rapidly.

In future work, we plan to perform analysis and classi�cation on a group of mal-

ware and its related families, which will help the security administrator and forensics

analysts to see whether a new malware sample is related to previously known malware

and its families. Further, the MFA also facilitates to provide other related artifacts

147

(e.g, registry, API call, �les and network details etc.) from the memory dump of

the Monitored VM that are most commonly manipulated by sophisticated advanced

malware and rootkit. In addition, the obtained artifacts from the introspected live

VM memory dump could be used as features to generate a feature vector model to

measure the classi�cation of related families of malware using other advanced ma-

chine learning techniques. Further, we intend to evaluate the detection pro�ciency

of the A-IntExt systems on other recent versions of Windows OS and Linux-based

guest OS in order to measure the detection rate of the proposed approach against the

propagation of new variants of malware on speci�c guest OS.

148

References

Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. (2004). "detection of new
malicious code using n-grams signatures". In PST, 193�196.

Ahmadi, M., Ulyanov, D., Semenov, S., Tro�mov, M., and Giacinto, G. (2016). "novel
feature extraction, selection and fusion for e�ective malware family classi�cation".
In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, 183�194. ACM.

Alam, M. S. and Vuong, S. T. (2013). "random forest classi�cation for detecting
android malware". In Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference
on and IEEE Cyber, Physical and Social Computing, 663�669. IEEE.

Alazab, M., Venkatraman, S., Watters, P., and Alazab, M. (2011). "zero-day malware
detection based on supervised learning algorithms of api call signatures". In Pro-
ceedings of the Ninth Australasian Data Mining Conference-Volume 121, 171�182.
Australian Computer Society, Inc.

Azab, A. M., Ning, P., Wang, Z., Jiang, X., Zhang, X., and Skalsky, N. C. (2010).
"hypersentry: enabling stealthy in-context measurement of hypervisor integrity". In
Proceedings of the 17th ACM conference on Computer and communications security,
38�49. ACM.

Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D., Rhee, J., and Xu,
D. (2010). "dksm: Subverting virtual machine introspection for fun and pro�t". In
Reliable Distributed Systems, 2010 29th IEEE Symposium on, 82�91. IEEE.

Bai, J. and Wang, J. (2016). "improving malware detection using multi-view ensemble
learning". Security and Communication Networks, 9 (17), 4227�4241.

Bauman, E., Ayoade, G., and Lin, Z. (2015a). A survey on hypervisor based moni-
toring: Approaches, applications, and evolutions. ACM Computing Surveys, 48 (1),
10:1�10:33.

Bauman, E., Ayoade, G., and Lin, Z. (2015b). A survey on hypervisor-based monitor-
ing: approaches, applications, and evolutions. ACM Computing Surveys (CSUR),
48 (1), 10.

Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., and Kruegel, C. (2009). "a view on
current malware behaviors". In LEET.

149

Bharadwaja, S., Sun, W., Niamat, M., and Shen, F. (2011). Collabra: a xen hypervisor
based collaborative intrusion detection system. In Information technology: New
generations (ITNG), 2011 eighth international conference on, 695�700. IEEE.

Blum, A. L. and Langley, P. (1997). "selection of relevant features and examples in
machine learning". Arti�cial intelligence, 97 (1), 245�271.

Bray, R., Cid, D., and Hay, A. (2008). "ossec host-based intrusion detection". https:
//ossec.github.io/.

Breiman, L. (2001). "random forests". Machine learning, 45 (1), 5�32.

Breiman, L. and Cutler, A. (2017). Random forests [internet].

Butler, J. (2005). Fu rootkit.

Butler, J. and Silberman, P. (2006). "raide: Rootkit analysis identi�cation elimina-
tion". Black Hat USA, 47.

Carbone, M., Conover, M., Montague, B., and Lee, W. (2012). "secure and robust
monitoring of virtual machines through guest-assisted introspection". In Interna-
tional Workshop on Recent Advances in Intrusion Detection, 22�41. Springer.

Case, A., Marziale, L., and Richard, G. G. (2010). "dynamic recreation of kernel data
structures for live forensics". Digital Investigation, 7, S32�S40.

Chaâri, R., Ellouze, F., Koubâa, A., Qureshi, B., Pereira, N., Youssef, H., and Tovar,
E. (2016). "cyber-physical systems clouds: A survey". Computer Networks, 108,
260�278.

Chen, Z., Xu, G., Mahalingam, V., Ge, L., Nguyen, J., Yu, W., and Lu, C. (2016). "a
cloud computing based network monitoring and threat detection system for critical
infrastructures". Big Data Research, 3, 10�23.

Chung, C.-J., Khatkar, P., Xing, T., Lee, J., and Huang, D. (2013). "nice: Network
intrusion detection and countermeasure selection in virtual network systems". IEEE
transactions on dependable and secure computing, 10 (4), 198�211.

Cohen, M. (2014). "rekall memory forensics framework". DFIR Prague.

Dash, M. and Liu, H. (1997). "feature selection for classi�cation". Intelligent data
analysis, 1 (1-4), 131�156.

Dave, K. (2011). "study of feature selection algorithms for text-categorization".

David, O. E. and Netanyahu, N. S. (2015). Deepsign: Deep learning for automatic
malware signature generation and classi�cation. In Neural Networks (IJCNN), 2015
International Joint Conference on, 1�8. IEEE.

Dinaburg, A., Royal, P., Sharif, M., and Lee, W. (2008). "ether: malware analysis via
hardware virtualization extensions". In Proceedings of the 15th ACM conference on
Computer and communications security, 51�62. ACM.

150

https://ossec.github.io/
https://ossec.github.io/

Dolan-Gavitt, B., Leek, T., Zhivich, M., Gi�n, J., and Lee, W. (2011). "virtuoso:
Narrowing the semantic gap in virtual machine introspection". In 2011 IEEE Sym-
posium on Security and Privacy, 297�312. IEEE.

Dolan-Gavitt, B., Payne, B., and Lee, W. (2011). "leveraging forensic tools for virtual
machine introspection".

Domingos, P. and Pazzani, M. (1997). "on the optimality of the simple bayesian
classi�er under zero-one loss". Machine learning, 29 (2-3), 103�130.

Egan, J. P. (1975). "signal detection theory and roc analysis".

F-Secure (2003). F-secure. f-secure virus descriptions: Agobot.

Ferrie, P. (2007). "attacks on more virtual machine emulators", 1�13.

Florio, E. (2005). "when malware meets rootkits". Virus Bulletin, 12.

Fu, Y. and Lin, Z. (2013). "bridging the semantic gap in virtual machine introspection
via online kernel data redirection". ACM Transactions on Information and System
Security (TISSEC), 16 (2), 7.

Fu, Y., Zeng, J., and Lin, Z. (2014). "hypershell: a practical hypervisor layer guest
os shell for automated in-vm management". In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), 85�96.

Gar�nkel, T., Rosenblum, M., et al. (2003). "a virtual machine introspection based
architecture for intrusion detection". In NDSS, volume 3, 191�206.

Garnaeva, M. (2012). "kelihos/hlux botnet returns with new techniques".
Securelist, http://www. securelist. com/en/blog/655/Kelihos_Hlux_botnet_ re-
turns_with_new_techniques.

GmbH, I. (2007). "oracle vm virtual box". https://www.virtualbox.org/.

Goudey (2012a). "threat report: Rootkits".

Goudey, H. (2012b). Microsoft malware protection center, threat report: Rootkits.
Technical report, Tech. rep., Microsoft Corporation, June 2012. http://www. mi-
crosoft. com/en-us/download/con�rmation. aspx.

Gu, Z., Deng, Z., Xu, D., and Jiang, X. (2011). "process implanting: A new active in-
trospection framework for virtualization". In Reliable Distributed Systems (SRDS),
2011 30th IEEE Symposium on, 147�156. IEEE.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). "the weka data mining software: an update". ACM SIGKDD explorations
newsletter, 11 (1), 10�18.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques.
Elsevier.

Hay, B. and Nance, K. (2008). "forensics examination of volatile system data using

151

https://www.virtualbox.org/

virtual introspection". ACM SIGOPS Operating Systems Review, 42 (3), 74�82.

Hellal, A. and Romdhane, L. B. (2016). "minimal contrast frequent pattern mining
for malware detection". Computers & Security, 62, 19�32.

Ho, T. K. (1998). "the random subspace method for constructing decision forests".
IEEE transactions on pattern analysis and machine intelligence, 20 (8), 832�844.

Horne, C. (2007). Understanding full virtualization, paravirtualization and hardware
assist. White paper, VMware Inc.

Huda, S., Miah, S., Hassan, M. M., Islam, R., Yearwood, J., Alrubaian, M., and
Almogren, A. (2017). "defending unknown attacks on cyber-physical systems by
semi-supervised approach and available unlabeled data". Information Sciences,
379, 211�228.

Hwang, T., Shin, Y., Son, K., and Park, H. (2013). Design of a hypervisor-based
rootkit detection method for virtualized systems in cloud computing environments.
In Proceedings of the 2013 AASRI Winter International Conference on Engineering
and Technology, 27�32.

Intel (2016). "intel trusted exceution technology". In Accessed on September 2016.

Islam, R., Tian, R., Batten, L. M., and Versteeg, S. (2013). "classi�cation of mal-
ware based on integrated static and dynamic features". Journal of Network and
Computer Applications, 36 (2), 646�656.

Jablkowski, B., Gabor, U. T., and Spinczyk, O. (2017). "evolutionary planning of
virtualized cyber-physical compute and control clusters". Journal of Systems Ar-
chitecture, 73, 17�27.

Jablkowski, B. and Spinczyk, O. (2015). "cps-xen: A virtual execution environment
for cyber-physical applications". In International Conference on Architecture of
Computing Systems, 108�119. Springer.

Jain, B., Baig, M. B., Zhang, D., Porter, D. E., and Sion, R. (2014). "sok: Introspec-
tions on trust and the semantic gap". In 2014 IEEE Symposium on Security and
Privacy, 605�620. IEEE.

James, b. (2010). Security and privacy challenges in cloud computing environments.

Jiang, X., Wang, X., and Xu, D. (2007). "stealthy malware detection through vmm-
based out-of-the-box semantic view reconstruction". In Proceedings of the 14th
ACM conference on Computer and communications security, 128�138. ACM.

Jin, S., Ahn, J., Cha, S., and Huh, J. (2011). Architectural support for secure
virtualization under a vulnerable hypervisor. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, 272�283. ACM.

Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. (2006). "antfarm:
Tracking processes in a virtual machine environmen". In USENIX Annual Technical
Conference, General Track, 1�14.

152

Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. (2008). "vmm-
based hidden process detection and identi�cation using lycosid". In Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, 91�100. ACM.

Kearns, M., Mansour, Y., Ng, A. Y., and Ron, D. (1997). "an experimental and
theoretical comparison of model selection methods". Machine Learning, 27 (1),
7�50.

Kim, S., Park, J., Lee, K., You, I., and Yim, K. (2012). A brief survey on rootkit
techniques in malicious codes. J. Internet Serv. Inf. Secur., 2 (3/4), 134�147.

King, S. T. and Chen, P. M. (2006). "subvirt: Implementing malware with virtual
machines". In 2006 IEEE Symposium on Security and Privacy (S&P'06), 14�pp.
IEEE.

Kolter, J. Z. and Maloof, M. A. (2006). "learning to detect and classify malicious
executables in the wild". Journal of Machine Learning Research, 7 (Dec), 2721�
2744.

Kumar, A., Kuppusamy, K., and Aghila, G. (2017). "a learning model to detect
maliciousness of portable executable using integrated feature set". Journal of King
Saud University-Computer and Information Sciences.

Kwak, N. and Choi, C.-H. (2002). "input feature selection for classi�cation problems".
IEEE Transactions on Neural Networks, 13 (1), 143�159.

Lamps, J., Palmer, I., and Sprabery, R. (2014). "winwizard: Expanding xen with a
libvmi intrusion detection tool". In Cloud Computing (CLOUD), 2014 IEEE 7th
International Conference on, 849�856. IEEE.

Langley, P. et al. (1994). "selection of relevant features in machine learning". In
Proceedings of the AAAI Fall symposium on relevance, volume 184, 245�271.

Lengyel, T. K., Maresca, S., Payne, B. D., Webster, G. D., Vogl, S., and Kiayias,
A. (2014). "scalability, �delity and stealth in the drakvuf dynamic malware anal-
ysis system". In Proceedings of the 30th Annual Computer Security Applications
Conference, 386�395. ACM.

Liangboonprakong, C. and Sornil, O. (2013). "classi�cation of malware families based
on n-grams sequential pattern features". In Industrial Electronics and Applications
(ICIEA), 2013 8th IEEE Conference on, 777�782. IEEE.

Ligh, M. H., Case, A., Levy, J., and Walters, A. (2014). "The art of memory forensics:
detecting malware and threats in Windows, Linux, and Mac memory". John Wiley
& Sons.

Lin, D. and Stamp, M. (2011). "hunting for undetectable metamorphic viruses".
Journal in computer virology, 7 (3), 201�214.

Liston, T. and Skoudis, E. (2006). "on the cutting edge: Thwarting virtual machine

153

detection".

Litty, L., Lagar-Cavilla, H. A., and Lie, D. (2008). "hypervisor support for identifying
covertly executing binaries". In USENIX Security Symposium, 243�258.

Liu, Y., Xia, Y., Guan, H., Zang, B., and Chen, H. (2014). Concurrent and consistent
virtual machine introspection with hardware transactional memory. In High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE 20th International Symposium
on, 416�427. IEEE.

Ma, J., Choo, K.-K. R., Hsu, H.-h., Jin, Q., Liu, W., Wang, K., Wang, Y., and Zhou,
X. (2016). "perspectives on cyber science and technology for cyberization and cyber-
enabled worlds". In Dependable, Autonomic and Secure Computing, 14th Intl Conf
on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/PiCom/Dat-
aCom/CyberSciTech), 1�9. IEEE.

Martignoni, L., Fattori, A., Paleari, R., and Cavallaro, L. (2010). "live and trustwor-
thy forensic analysis of commodity production systems". In International Workshop
on Recent Advances in Intrusion Detection, 297�316. Springer.

Masud, M. M., Khan, L., and Thuraisingham, B. (2008). "a scalable multi-level
feature extraction technique to detect malicious executables". Information Systems
Frontiers, 10 (1), 33�45.

Matthews, B. W. (1975). "comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme". Biochimica et Biophysica Acta (BBA)-Protein Struc-
ture, 405 (2), 442�451.

Menahem, E., Shabtai, A., Rokach, L., and Elovici, Y. (2009). "improving malware
detection by applying multi-inducer ensemble". Computational Statistics & Data
Analysis, 53 (4), 1483�1494.

Miao, Q., Liu, J., Cao, Y., and Song, J. (2016). "malware detection using bilayer be-
havior abstraction and improved one-class support vector machines". International
Journal of Information Security, 15 (4), 361�379.

Mitchell, T. et al. (1997). "machine learning. wcb".

Mladenic, D. and Grobelnik, M. (1999). "feature selection for unbalanced class dis-
tribution and naive bayes". In ICML, volume 99, 258�267.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., and Rajarajan, M. (2013). A
survey of intrusion detection techniques in cloud. Journal of Network and Computer
Applications, 36 (1), 42�57.

Moser, A., Kruegel, C., and Kirda, E. (2007). "limits of static analysis for mal-
ware detection". In Computer security applications conference, 2007. ACSAC 2007.
Twenty-third annual, 421�430. IEEE.

Moskovitch, R., Elovici, Y., and Rokach, L. (2008). "detection of unknown computer

154

worms based on behavioral classi�cation of the host". Computational Statistics &
Data Analysis, 52 (9), 4544�4566.

Musavi, S. A. and Kharrazi, M. (2014). Back to static analysis for kernel-level rootkit
detection. IEEE Transactions on Information Forensics and Security, 9 (9), 1465�
1476.

Nagarajan, A. B., Mueller, F., Engelmann, C., and Scott, S. L. (2007). "proactive
fault tolerance for hpc with xen virtualization". In Proceedings of the 21st annual
international conference on Supercomputing, 23�32. ACM.

Nance, K., Bishop, M., and Hay, B. (2009). Investigating the implications of virtual
machine introspection for digital forensics. In Availability, Reliability and Security,
2009. ARES'09. International Conference on, 1024�1029. IEEE.

Ng, A. Y. (1997). "preventing over�tting of cross-validation data". In ICML, vol-
ume 97, 245�253.

Nguyen, A. M., Schear, N., Jung, H., Godiyal, A., King, S. T., and Nguyen, H. D.
(2009). Mavmm: Lightweight and purpose built vmm for malware analysis. In
Computer Security Applications Conference, 2009. ACSAC'09. Annual, 441�450.
IEEE.

Nikolai, J. and Wang, Y. (2014). Hypervisor-based cloud intrusion detection sys-
tem. In Computing, Networking and Communications (ICNC), 2014 International
Conference on, 989�993. IEEE.

Nissim, N., Moskovitch, R., Rokach, L., and Elovici, Y. (2012). "detecting unknown
computer worm activity via support vector machines and active learning". Pattern
Analysis and Applications, 15 (4), 459�475.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. (2012). "how many trees in a
random forest". In International Workshop on Machine Learning and Data Mining
in Pattern Recognition, 154�168. Springer.

Ozsoy, M., Khasawneh, K. N., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., and Pono-
marev, D. (2016). "hardware-based malware detection using low-level architectural
features". IEEE Transactions on Computers, 65 (11), 3332�3344.

Patel, A., Taghavi, M., Bakhtiyari, K., and Júnior, J. C. (2012). Taxonomy and
proposed architecture of intrusion detection and prevention systems for cloud com-
puting. In CSS, 441�458. Springer.

Payne and Bryan (2008). "libvmi introduction: Vmitools, an introduction to libvmi".
http://libvmi.com/.

Payne, B. D., Carbone, M., Sharif, M., and Lee, W. (2008). "lares: An architecture
for secure active monitoring using virtualization". In 2008 IEEE Symposium on
Security and Privacy (sp 2008), 233�247. IEEE.

Payne, B. D., De Carbone, M., and Lee, W. (2007). "secure and �exible monitoring of

155

http://libvmi.com/

virtual machines". In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, 385�397. IEEE.

Pearce, M., Zeadally, S., and Hunt, R. (2013). Virtualization: Issues, security threats,
and solutions. ACM Computing Surveys (CSUR), 45 (2), 17.

Perdisci, R., Lanzi, A., and Lee, W. (2008). "mcboost: Boosting scalability in malware
collection and analysis using statistical classi�cation of executables". In Computer
Security Applications Conference, 2008. ACSAC 2008. Annual, 301�310. IEEE.

Pfoh, J., Schneider, C., and Eckert, C. (2009). A formal model for virtual machine
introspection. In Proceedings of the 1st ACM workshop on Virtual machine security,
1�10. ACM.

Pietrek, M. (1994). "peering inside the pe: a tour of the win32 (r) portable executable
�le format". Microsoft Systems Journal-US Edition, 15�38.

Platt, J. C. (1999). "12 fast training of support vector machines using sequential
minimal optimization". Advances in kernel methods, 185�208.

Poisel, R., Malzer, E., and Tjoa, S. (2013). "evidence and cloud computing: The
virtual machine introspection approach". JoWUA, 4 (1), 135�152.

Poore, J., Flores, J. C., and Atkison, T. (2013). Evolution of digital forensics in
virtualization by using virtual machine introspection. In Proceedings of the 51st
ACM Southeast Conference, 30. ACM.

Prakash, A., Venkataramani, E., Yin, H., and Lin, Z. (2013). Manipulating semantic
values in kernel data structures: Attack assessments and implications. In Depend-
able Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International
Conference on, 1�12. IEEE.

Prakash, A., Venkataramani, E., Yin, H., and Lin, Z. (2015). On the trustworthiness
of memory analysis-an empirical study from the perspective of binary execution.
IEEE Transactions on Dependable and Secure Computing, 12 (5), 557�570.

Quinlan, J. R. (1986). "induction of decision trees". Machine learning, 1 (1), 81�106.

Ra�, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., Tracy, A., McLean,
M., and Nicholas, C. (2016). "an investigation of byte n-gram features for malware
classi�cation". Journal of Computer Virology and Hacking Techniques, 1�20.

Ra�etseder, T., Kruegel, C., and Kirda, E. (2007). "detecting system emulators". In
International Conference on Information Security, 1�18. Springer.

Reddy, D. K. S., Dash, S. K., and Pujari, A. K. (2006). "new malicious code detec-
tion using variable length n-grams". In International Conference on Information
Systems Security, 276�288. Springer.

Reddy, D. K. S. and Pujari, A. K. (2006). "n-gram analysis for computer virus
detection". Journal in Computer Virology, 2 (3), 231�239.

156

Reddy, Y. B. (2015). "security and design challenges in cyber-physical systems". In
Information Technology-New Generations (ITNG), 2015 12th International Con-
ference on, 200�205. IEEE.

Rhee, J., Riley, R., Xu, D., and Jiang, X. (2009). "defeating dynamic data kernel
rootkit attacks via vmm-based guest-transparent monitoring". In Availability, Re-
liability and Security, 2009. ARES'09. International Conference on, 74�81. IEEE.

Richer, T. J., Neale, G., and Osborne, G. (2015). "on the e�ectiveness of virtuali-
sation assisted view comparison for rootkit detection". In Proceedings of the 13th
Australasian Information Security Conference (AISC 2015), volume 27, 30.

Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. (2008). "learning and
classi�cation of malware behavior". In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 108�125. Springer.

Rieck, K., Trinius, P., Willems, C., and Holz, T. (2011). "automatic analysis of
malware behavior using machine learning". Journal of Computer Security, 19 (4),
639�668.

Rokach, L., Chizi, B., and Maimon, O. (2007). "a methodology for improving the per-
formance of non-ranker feature selection �lters". International Journal of Pattern
Recognition and Arti�cial Intelligence, 21 (05), 809�830.

Russinovich, M. E., Solomon, D. A., and Ionescu, A. (2012). "Windows internals".
Pearson Education.

Rutkowska, J. (2006). "introducing blue pill". The o�cial blog of the invisiblethings.
org, 22.

Rutkowska, J. and Tereshkin, A. (2008). "bluepilling the xen hypervisor". Black Hat
USA.

Saberi, A., Fu, Y., and Lin, Z. (2014). "hybrid-bridge: E�ciently bridging the se-
mantic gap in virtual machine introspection via decoupled execution and training
memoization". In Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS'14).

Saleh, M., Ratazzi, E. P., and Xu, S. (2014). "instructions-based detection of so-
phisticated obfuscation and packing". In 2014 IEEE Military Communications
Conference, 1�6. IEEE.

Salzberg, S. L. (1994). "c4. 5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993". Machine Learning, 16 (3), 235�240.

Santos, I., Brezo, F., Ugarte-Pedrero, X., and Bringas, P. G. (2013). "opcode se-
quences as representation of executables for data-mining-based unknown malware
detection". Information Sciences, 231, 64�82.

Scarfone, K. and Mell, P. (2007). "guide to intrusion detection and prevention systems
(idps)". NIST special publication, 800 (2007), 94.

157

Schmidt, M., Baumgartner, L., Graubner, P., Bock, D., and Freisleben, B. (2011).
Malware detection and kernel rootkit prevention in cloud computing environments.
In Parallel, Distributed and Network-Based Processing (PDP), 2011 19th Euromicro
International Conference on, 603�610. IEEE.

Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2001). "data mining methods
for detection of new malicious executables". In Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on, 38�49. IEEE.

Shabtai, A., Moskovitch, R., Elovici, Y., and Glezer, C. (2009). "detection of malicious
code by applying machine learning classi�ers on static features: A state-of-the-art
survey". information security technical report, 14 (1), 16�29.

Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., and Elovici, Y. (2012). "detecting
unknown malicious code by applying classi�cation techniques on opcode patterns".
Security Informatics, 1 (1), 1.

Sha�q, M. Z., Tabish, S. M., Mirza, F., and Farooq, M. (2009). "pe-miner: Mining
structural information to detect malicious executables in realtime". In International
Workshop on Recent Advances in Intrusion Detection, 121�141. Springer.

Shahzad, F., Shahzad, M., and Farooq, M. (2013). "in-execution dynamic malware
analysis and detection by mining information in process control blocks of linux os".
Information Sciences, 231, 45�63.

Shan, Z. and Wang, X. (2014). "growing grapes in your computer to defend against
malware". IEEE Transactions on Information Forensics and Security, 9 (2), 196�
207.

Sharif, M., Lanzi, A., Gi�n, J., and Lee, W. (2009). "automatic reverse engineering
of malware emulators". In Security and Privacy, 2009 30th IEEE Symposium on,
94�109. IEEE.

Sharif, M. I., Lee, W., Cui, W., and Lanzi, A. (2009). "secure in-vm monitoring using
hardware virtualization". In Proceedings of the 16th ACM conference on Computer
and communications security, 477�487. ACM.

Shaw, A. L., Bordbar, B., Saxon, J., Harrison, K., and Dalton, C. I. (2014). Foren-
sic virtual machines: dynamic defence in the cloud via introspection. In Cloud
Engineering (IC2E), 2014 IEEE International Conference on, 303�310. IEEE.

Shevchenko, A. (2007). "the evolution of self-defense technologies in malware". Avail-
able from webpage: http://www. viruslist. com/analysis.

Shi, J., Yang, Y., Li, C., and Wang, X. (2015). Spems: A stealthy and practical
execution monitoring system based on vmi. In International Conference on Cloud
Computing and Security, 380�389. Springer.

Sparks, S. and Butler, J. (2005). "shadow walker: Raising the bar for rootkit detec-
tion". Black Hat Japan, 11 (63), 504�533.

158

Srinivasan, D., Wang, Z., Jiang, X., and Xu, D. (2011). "process out-grafting: an
e�cient out-of-vm approach for �ne-grained process execution monitoring". In
Proceedings of the 18th ACM conference on Computer and communications security,
363�374. ACM.

Stüttgen, J., Vömel, S., and Denzel, M. (2015). Acquisition and analysis of compro-
mised �rmware using memory forensics. Digital Investigation, 12, S50�S60.

Sung, A. H., Xu, J., Chavez, P., and Mukkamala, S. (2004). "static analyzer of
vicious executables (save)". In Computer Security Applications Conference, 2004.
20th Annual, 326�334. IEEE.

Symantec (2016). Internet security threat report.

Takabi, H., Joshi, J. B., and Ahn, G.-J. (2010). Security and privacy challenges in
cloud computing environments. IEEE Security & Privacy, 8 (6), 24�31.

Team, T. P. S. (1998). "packet storm security". https://packetstormsecurity.

com/.

Valipour, M. (2016). "optimization of neural networks for precipitation analysis in a
humid region to detect drought and wet year alarms". Meteorological Applications,
23 (1), 91�100.

Vollmar, W., Harris, T., Long, L., and Green, R. (2014). Hypervisor security in cloud
computing systems. ACM Comput. Surv, 1�22.

Wang, X. and Karri, R. (2013). Numchecker: Detecting kernel control-�ow modifying
rootkits by using hardware performance counters. In Proceedings of the 50th Annual
Design Automation Conference, 79. ACM.

Wang, Y.-M., Beck, D., Vo, B., Roussev, R., and Verbowski, C. (2005). "detecting
stealth software with strider ghostbuster". In 2005 International Conference on
Dependable Systems and Networks (DSN'05), 368�377. IEEE.

Watson, M. R., Marnerides, A. K., Mauthe, A., Hutchison, D., et al. (2016). "malware
detection in cloud computing infrastructures". IEEE Transactions on Dependable
and Secure Computing, 13 (2), 192�205.

Wesley Vollmar, Thomas Harris, L. L. J. and Green, R. (2014). "hypervisor security
in cloud computing systems". ACM Computing Surveys, 1�22.

Westphal, F., Axelsson, S., Neuhaus, C., and Polze, A. (2014). Vmi-pl: A moni-
toring language for virtual platforms using virtual machine introspection. Digital
Investigation, 11, S85�S94.

Willems, C., Holz, T., and Freiling, F. (2007). "toward automated dynamic malware
analysis using cwsandbox". IEEE Security & Privacy, 5 (2).

Willems, C., Hund, R., and Holz, T. (2013). Cxpinspector: Hypervisor-based,
hardware-assisted system monitoring. Ruhr-Universitat Bochum, Tech. Rep, 12.

159

https://packetstormsecurity.com/
https://packetstormsecurity.com/

Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann.

Wojtczuk, R. (2008). "subverting the xen hypervisor". Black Hat USA, 2008.

Wojtczuk, R. and Rutkowska, J. (2009). "attacking intel trusted execution technol-
ogy". Black Hat DC, 2009.

Xie, X. and Wang, W. (2013). Rootkit detection on virtual machines through deep in-
formation extraction at hypervisor-level. In Communications and Network Security
(CNS), 2013 IEEE Conference on, 498�503. IEEE.

Xuan, C., Copeland, J. A., and Beyah, R. A. (2009). "toward revealing kernel malware
behavior in virtual execution environments". In RAID, volume 9, 304�325. Springer.

Yan, L.-K., Jayachandra, M., Zhang, M., and Yin, H. (2012). V2e: combining hard-
ware virtualization and softwareemulation for transparent and extensible malware
analysis. ACM Sigplan Notices, 47 (7), 227�238.

Yang, Y. and Pedersen, J. O. (1997). "a comparative study on feature selection in
text categorization". In ICML, volume 97, 412�420.

Zawoad, S. and Hasan, R. (2013). Cloud forensics: a meta-study of challenges, ap-
proaches, and open problems. arXiv preprint arXiv:1302.6312.

Zhang, Y., Huang, Q., Ma, X., Yang, Z., and Jiang, J. (2016). "using multi-features
and ensemble learning method for imbalanced malware classi�cation". In Trust-
com/BigDataSE/ISPA, 2016 IEEE, 965�973. IEEE.

Zhao, X., Borders, K., and Prakash, A. (2009). Virtual machine security systems.
Advances in Computer Science and Engineering, 1, 339�365.

Zhong, X., Xiang, C., Yu, M., Qi, Z., and Guan, H. (2015). A virtualization based
monitoring system for mini-intrusive live forensics. International Journal of Parallel
Programming, 43 (3), 455�471.

160

List of Publications Based on Dissertation

Journals

1. Ajay Kumara. M.A, and Jaidhar C.D., "Automated Multi-level Malware Detection

System based on Reconstructed Semantic View of Executables using Machine Learning

Techniques at VMM". The International Journal of Future Generation Computer

Systems, Elsevier, Volume 79, Part 1, Pages 431-446, February 2018.

2. Ajay Kumara. M.A, and Jaidhar C.D., "Leveraging virtual machine introspection

with memory forensics to detect and characterize unknown malware using machine

learning techniques at hypervisor". The international journal of Digital investiga-

tion, Elsevier, Volume 23, Pages 99-123, December 2017.

Conferences

1. Ajay Kumara M.A and Jaidhar.C.D., "Hypervisor and Virtual Machine Depen-

dent Intrusion Detection and Prevention System for Virtualized Cloud Comput-

ing Environment". In proceedings of the 1st IEEE International Conference on

Telematics and Future Generation Network (TAFGEN-2015) University Tech-

nology Malaysia, Pages 28-33.

2. Ajay Kumara M.A and Jaidhar.C.D., "Virtual Machine Introspection based

Spurious Process Detection in Virtualized Cloud Computing Environment". In

proceedings of the 1st International Conference on Futuristic Trends on Compu-

tational Analysis and Knowledge Management, Feb 25-27, 2015. Pages 309-315.

3. Ajay Kumara M.A and Jaidhar.C.D., "VMI Based Automated Real-Time Mal-

ware Detector for Virtualized Cloud Environment". In proceedings of the 6th

International Conference on Security, Privacy, and Applied Cryptography En-

gineering (SPACE-2016). Pages 281-300.

4. Ajay Kumara M.A and Jaidhar.C.D., "Execution Time Measurement of Virtual

Machine Volatile Artifacts Analyzers". In proceedings of the 21st IEEE Interna-

tional Conference on Parallel and Distributed Systems (ICPADS 2015). Pages

314-319.

161

Brief Bio-Data

AJAY KUMARA M.A

Full-Time Ph.D Research Scholar,

Department of Information Technology

National Institute of Technology Karnataka, Surathkal

P.O. Srinivasnagar

Mangalore, 575025

Email: ajaykumar.ak99@gmail.com

Permanent Address

Ajay Kumara M.A. S/O Annaiah

Makanahalli (Village), Periyapattana (Taluk)

Mysore District

Karnataka State, India

Mangalore, 571108

Quali�cation

M. Tech. Computer Science and Engineering, Visvesvaraya Technological University,

Belgaum, Karnataka, 2012.

B. E. Computer Science and Engineering,Visvesvaraya Technological University, Bel-

gaum, Karnataka, 2005.

162

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Cloud Computing and Virtualization
	Hypervisor
	Intrusion Detection and Prevention System
	Hypervisor-based Intrusion Detection System

	Types of Malware and Rootkit
	Virtual Machine Introspection
	Memory Forensic Analysis
	Motivation
	Dissertation Statement and Contributions
	Research Objectives

	Research Contributions
	Outline of the Thesis

	Literature Survey
	VMM-based Intrusion Detection System
	VMI Perspective
	MFA Perspective
	Machine Learning Technique Perspective
	Outcome of Literature Survey

	Hypervisor based Intrusion Detection and Prevention System
	System Design
	File Integrity Verification
	Signature based Intrusion Detection System
	Anomaly based Intrusion Detection System
	Cross-View Analysis

	Experimental Setup and Results
	Linux rootkits
	Windows Rootkit
	DoS attack
	Port Scanning Attack

	Discussion
	Limitation of the In-and-Out-of-the-Box Virtual Machine Based IDPS
	Summary of the Work

	VMI-based Stealthy Malware and Rootkit Detection System
	Introduction
	Assumption and Threat Model
	Overview
	GVM-Introspector
	Guest Assisted Module
	Intelligent Cross-View Analyser
	Online Malware Scanner

	Experimental Results and Evaluation
	Experimental Setup
	Implementation
	Experiments and Results Analysis

	Performance Overhead
	Discussion
	Summary of the Work

	VMM-based Automated Multi-level Malware Detection System
	Introduction
	Overview of AMMDS
	Malware Detector
	Executable File Extractor
	Online Malware Detector
	Offline Malware Classifier

	Implementation and Evaluation
	Experimental Setup
	Implementation
	Dataset Creation and Use
	Evaluation and Results Discussion
	Experimental Methods
	Evaluation Metrics
	Results Analysis
	Performance Overhead

	Discussion
	Comparison with Existing Work

	Summary of the Work

	Leveraging Machine Learning Techniques to Detect and Characterize Unknown Malware at VMM
	Introduction
	System Design and Implementation
	Feature Vector Generator

	Experiments and Datasets
	Datasets and Dataset Collection

	Evaluation
	Performance Overhead
	Experimental Methods
	Evaluation Metrics
	Machine Learning Techniques

	Analysis of Results
	Result Analysis of Generated Dataset
	Result Analysis of Benchmarked Datasets
	Comparison of Results

	Discussion
	Limitations

	Summary of The Work

	Execution Time Measurement of Volatile Artifacts Analyzers
	Introduction
	Motivation and Overview of HyIDS
	Evaluation and Experimental Results
	Detecting Kernel Level Rootkits
	Virtual Machine RAM Dump Analysis using Volatility and Rekall
	Summary

	Conclusion and Future Work
	Bibliography

	References
	List of Publications

