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Abstract

Cardiovascular diseases are the third leading cause of death worldwide. The
primitive indication of the possible onset of a cardiovascular disease is atheroscle-
rosis, which is the accumulation of plaque on the arterial wall. To assess
carotid atherosclerosis, non invasive ultrasound imaging modality is preferred
over other invasive methods due to their safer profile and ability to explore
atherosclerosis in its early stages. The intima media thickness (IMT) of the
common carotid artery (CCA) is an early marker of the development of cardio-
vascular disease. The computation of IMT and the delineation of carotid plaque
are significant predictors for the clinical diagnosis of the risk of stroke. How-
ever, manual measurement of the IMT is tedious, error-prone and subjected to
observer variability. Hence, there is a growing interest in the development of
automated software system for the measurement of IMT from the carotid ul-
trasound images. The development of such automated systems is the primary
objective of this research.

The presence of speckle noise in carotid ultrasound image reduces the quality
of image and automatic human interpretation. Carotid ultrasound images have
multiplicative speckle noise and it is difficult to remove as compared to the ad-
ditive noises. The despeckling filters have a greater restriction on preservation
of edges and characteristics. For a robust diagnosis, carotid ultrasound images
must be free from speckle noise. To address this problem, we propose the use
of a Bayesian least square estimation method for the reduction of speckle noise
in logarithmic space. In addition, one of the widely accepted method named
optimized Bayesian non local mean filter is adopted in our work to reduce
the speckle noise in ultrasound images. The traditional denoising techniques
require a significant amount of execution time because of the iterative steps
involved. To overcome this problem, we propose the use of Wiener filtering
in the wavelet domain. Wiener filter smoothens the image while retaining the
edges, and performs region of interest (ROI) extraction significantly faster than
other similar techniques. Further, the state-of-the-art enhancement techniques
are adopted in order to increase the contrast after denoising. Finally, the com-
parative study of edge detection algorithms is done based on the framework of
despeckling carotid ultrasound images.
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In the literature, several edge-based algorithms is proposed for estimating the
IMT. However, accurate segmentation still remains a challenge. Extracting the
ROI prior to the segmentation from carotid ultrasound images has been very
much challenging as it is the basis for further image analysis, interpretation,
and classification. In order to extract ROI of ultrasound images, several types
of morphological functions are applied. The identified region is analysed to
detect the carotid wall boundaries. The ROI extraction must be performed
properly otherwise it leads to a lot of misinterpretation, and false measure-
ment. To address this problem, we present novel approaches for automatic ROI
extraction followed by new segmentation algorithms based on threshold-based
wind driven optimization, support vector machine and structured random for-
est classifier for measurement of the IMT of the CCA. The results obtained
are compared with the state-of-the-art algorithms, and the results show that the
proposed methods outperform the existing techniques in terms of IMT segmen-
tation accuracy and computational speed.

Keywords: Ultrasound Imaging, Common Carotid Artery, Intima Media Thick-
ness, Denoising, Support Vector Machine, Wind Driven Optimization, Struc-
tured Random Forest.
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Chapter 1

INTRODUCTION

The rapid progression of medical image processing techniques has benefited to the mankind
and plays an important role in clinical diagnosis. The current advances in medical imaging
help to view the human body in order to diagnose and monitor medical conditions. The
imaging techniques such as ultrasound (US), magnetic resonance imaging (MRI) and X-ray
imaging give an image information by which the radiologist has to analyse and evaluate
comprehensively in shorter time. Early detection of the cardiovascular diseases (CVDs)
allows the observer to follow up on the subject. Hence, the main objective is to derive better
tools that help to interpret the images.

In this chapter, we present brief review on CVDs which are associated with the com-
mon carotid artery (CCA), and description of the ultrasound imaging. Section 1.1 describes
an introduction for the CVDs and explains how medical image processing helps in the as-
sessment of risk of stroke. Section 1.2 explains about the ultrasound imaging techniques.
Section 1.3 presents the motivation of the research work. Section 1.4 explains about the
problem statement for the research work, followed by research objectives are given in sec-
tion 1.5. In section 1.6, the major contributions of the thesis are explained. Finally, a
conclusive summary of the chapters is presented in section 1.7.

1.1 Background on Cardiovascular Diseases

In a recent survey (WHO (2013)), it was found that approximately 17.5 million people die
owing to CVDs (Approximately 31% of all global deaths). The main cause of cardiovascu-
lar diseases is atherosclerosis (Walker et al. (1995)), which is the accumulation of plaque
on the arterial wall. The incidence of stroke is associated with the rupture of atheroscle-

1



rotic plaques in the common carotid artery (CCA) (Masuda et al. (2013)). Atherosclerosis
disease is characterised by accumulation of proteins, lipids, and cholesterol, which signif-
icantly reduces blood flow (Association et al. (2002)). Carotid arteries are responsible for
supplying blood from heart to the brain and muscle of the face. The carotid arteries are
mainly divided into two parts: right CCA and left CCA. Each of the arteries again divided
into two branches: internal carotid artery (ICA) and external carotid artery (ECA), which
are shown in the Figure 1.1. The ICA supplies oxygenated blood to the brain and ECA

Figure 1.1: Side and front view of common carotid artery (https://wiki/Carotidartery).

supplies oxygenated blood to the skull such as ears and nose. The risk of stroke increases
with the severity of carotid stenosis (narrowing of artery caused due to accumulation of
plaque). The accumulated plaque causes narrowing of the inner surface of the carotid artery
which in turn results in irregularity of the artery (Mughal et al. (2011)). The degree of
luminal narrowing is considered as an indirect measure of stenosis severity due to carotid
atherosclerosis.

It is assumed that an increased plaque thickness in the carotid artery is a predictor of fu-
ture cardiovascular events such as heart attack and stroke (Group (1994)). A stroke usually
occurs when the blood supply to parts of the brain is suddenly blocked (i.e. Ischemic stroke)
which is shown in Figure 1.2(a). The ischemic stroke caused by artery stenosis, accounts
for approximately 75% of all strokes and blockage, caused by fatty build up, is referred
as atherosclerosis (Christodoulou et al. (2003)). When a blood vessel in the brain bursts,
spilling of blood occurs into the spaces surrounding brain cells and leads to haemorrhagic
stroke. The degree to which the vessel is narrowed as a result of plaque growth (shown in
Figure 1.2(b)), is an indirect measure used to describe the sensitivity of the atherosclerosis,
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(a) (b)

Figure 1.2: (a) Normal and abnormal blood flow in the common carotid artery. (b) Carotid
artery with plaque (https://www.vascularweb.org).

where the presence of a plaque is direct indicator of the risk of stroke (Lamont et al. (2000)).
Hence, monitoring of the changes occurring in the carotid artery via imaging technique may
provide us a new clinical and practical strategy to treat patients with severe cardiovascular
complications.

1.2 Brief review on Ultrasound Imaging

The ultrasound imaging is used for diagnosing cardiac and carotid diseases. Ultrasound is
recognized as a simple and rapid imaging method which allows real time dynamic examina-
tion of the carotid artery. The medical ultrasound referred as an ultrasonography, uses high
frequency sound waves(> 20,000 Hz) for imaging. For diagnosis and assessment of imaging
organs, the ultrasound is popular because of its non invasive nature and high imaging quality.
Figure 1.3 shows the diagnosis of carotid ultrasound imaging in which transducer probe is
kept in to the neck for acquiring carotid B-mode images (see Figure 1.3(b)). The ultrasound
transducer probe generates and receives sound waves using principle called piezoelectric
effect. These sound waves propogate through soft tissue and fluids, it reflected back in the
form of echoes. The echoes are detected by the transducer and displayed as 2D longitudinal
carotid B-mode images (see Figure 1.3(c)). B-mode refers to the brightness mode. The B-
mode ultrasound image displays the acoustic impedance of a two dimensional cross section
of a tissue (Quistgaard (1997)). The intensity of the echo is represented by modulation of
the brightness of the spot and the position of echo is determined from the angular position
of the transducer. B-mode ultrasonography is widely used in carotid imaging because of
its low cost and ability to provide real information about both lumen and vessel wall (Stein
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Figure 1.3: Diagnosis using ultrasound imaging.(a) Common Carotid Artery.(b) Carotid duplex
with ultrasound probe.(c) B-mode longitudinal image. (http://www.biosim. ntua.gr/en)

et al. (2005)). In B-mode, echoes are displayed as a 2D gray scale image. The amplitude of

Figure 1.4: Ultrasound B-mode longitudinal image with manually delineated plaque.

the returning echoes are represented as dots (pixel) of an image with different gray values as
shown in Figure 1.4. The image is constructed by these pixels values line by line. Advances
in B-mode ultrasound have resulted in improved anatomic definition, which has enabled
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plaque characterization. The major drawbacks of the ultrasound imaging are; it has poor
penetration through bone or air, obtained images can be difficult to interpret (Wells (2000)).
However, the ultrasound imaging offers many benefits as follows; ultrasound equipment has
relatively low cost as compared to other imaging devices, it allows safe and relatively quick
examination of the subject.

1.2.1 Plaque characteristics

To validate the atherosclerosis disease, IMT measurement is used in the CCA by ultrasound
imaging. The degree of the artery stenosis is defined as the percentage of the lumen diameter
reduction relative to a reference vessel diameter. It is measured as the difference between
the largest and smallest area of the artery in relation to the largest area and is defined by the
North American Symptomatic Carotid Endarterectomy Trial (NASCET) study as (Ferguson
et al. (1999)),

Degree of artery stenosis = 100[1 −
DICA,min

DICA,distal
] (1.1)

where DICA,min is the minimum lumen diameter in the ICA at the location of maximal steno-
sis and DICA,distal is the lumen diameter in the distal diseased free portion of the ICA. The
plaque characteristics are useful in determining high risk plaques, which are more likely to
cause thromboembolic events leading to stroke (Zarins et al. (2001)). Mainly two types of
plaques are visible in the carotid artery which are homogeneous plaque and heterogeneous
plaque. Homogeneous plaques are characterised by uniform high level echoes, smooth
surface, echogenicity, and are associated with stable plaques. Heterogeneous plaques are
associated with advance stages of carotid plaque lesion, irregular surface, and echolucency.
Echogenic plaques reflect strongly the ultrasound signal, whereas echolucent plaques have
less reflective ability (Ebrahim et al. (1999)).

1.2.2 IMT of the Common Carotid Artery

The carotid artery wall mainly consists of three layers, which is shown in Figure 1.5(a);
Intima: it is the innermost layer which is composed of a layer of endothelial cells, and it is
adjacent to the flowing blood and responsive to change in wall shear stress and stretching.
Media: it is the middle layer which is composed of smooth muscle cells, elastin fibres,
collagen fibres and ground substances. Adventitia: it is the outer layer and composed of
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collagen fibres with smaller amounts of ground substance and fibroblasts.

Lumen

Intima

Media

Adventitia

Transverse view

(a)

Lumen

Intima
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Media
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Far Wall
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MA
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LI MA
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(b)

Figure 1.5: Illustration of the common carotid artery in longitudinal and transverse projection.

Figure 1.5(b) illustrates a longitudinal B-mode ultrasound images of the CCA. In the
longitudinal view, the CCA can be seen as a dark portion constituting the lumen, which is
bound at the top by the near wall and at the bottom by the far wall (Illustrated in Figure
1.5). The intima layer is not adequately visible and is often seen with the adventitia layer
owing to the poor difference in the acoustic impedance between the two adjacent interfaces.
The adventitia layer normally appears as bright gray (highly echogenic), whereas the media
layer appears as dark gray. The image consists of two semi-parallel traces that constitute the
lumen intima (LI) and media adventitia (MA). The distance between LI and MA is called
intima media thickness (IMT) which is the key marker of cardiovascular risk. Generally,
the IMT measurement < 1mm are considered as normal whereas > 1mm as abnormal. The
increase in IMT is linearly related to the progression of stroke, which is observed more in
the elderly (Bots et al. (1997), Lamont et al. (2000)). Segmentation of the IMC in CCA is
one of the most important challenges in computer aided clinical applications.

1.3 Motivation

The World Health Organization reported that stroke is one of the common causes of mor-
bidity and mortality worldwide. In a recent survey (WHO (2013)), it was found that 31% of
the mortality around the world is due to cardiovascular diseases. Among them, around 6.9
million people were dead owing to stroke and it accounts for some modifiable risk factors
such as diabetes, alcohol consumption, smoking and hypertension etc. It is estimated that,
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by 2030, over 23 million people will die from CVDs each year since most of the low to
middle income countries are seriously affected by CVDs. For current lifestyle, prevention
is the key to decreasing the occurrence of CVDs and thus the number of global deaths.
Therefore, an early marker of the increased risk of CVD is a significant predictor for clin-
ical diagnoses. The expert performs diagnosis of a CVD based on several factors such as
medical test results, clinical history and acquisition of medical images. In certain cases, the
diagnosis becomes more difficult for an expert to analyse a large amount of data in shorter
time. The advancement of medical imaging techniques and computer softwares are used to
aid the experts for identification and interpretation of the disease in short duration. These
softwares provide an assessment of the disease using image based information alone. In
fact, developing software tool for radiological image processing is one of the challenging
problems in the medical domain. Since accurate diagnosis of a disease depends on both
image acquisition and interpretation, modern diagnostic systems are built by incorporating
the cutting edge computing and data processing technologies. Even though computer based
diagnostic systems are commercially available, fully automated approaches have not yet
been completely formalized in the literature. This deficiency has led to difficulty in their
use for diagnostic purpose.

1.4 Problem Statement

The earliest appearance of the possible attack of CVD is atherosclerosis. The atheroscle-
rosis process affects the size and shape of the carotid wall and leads to major cause of
stroke. In the past decade, a number of studies have investigated the predictive measures
for carotid atherosclerosis based on different imaging techniques. Among all, ultrasound
imaging technique is non-invasive and considered as a reliable technique to measure IMT
for CCA. The disadvantage of the ultrasound imaging include poor quality of image due to
speckle noise. Hence, the expert takes considerable effort to extract significant information
about carotid wall and possible existence of plaque layers. This task requires highly skilled
experts. However, manual tracing of intima media complex (IMC) generates a result that is
not reproducible. Thus, computer based fully automatic detection of carotid wall leads to
more effective treatment.
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1.5 Research Objectives

The main goal of this work is to develop automated algorithms that assist in patient risk
prediction in atherosclerosis subjects from ultrasound images. The objectives of this work
are;

• To develop image despeckling techniques to enhance the carotid ultrasound images.
• To conduct comparative study of edge detection algorithms in the framework of de-

speckling carotid ultrasound images.
• To develop novel approaches for fully automatic ROI extraction of the carotid ultra-

sound images.
• To develop efficient algorithms for the segmentation of intima media complex (IMC)

of the common carotid artery.

1.6 Major Contribution

This section refers the research contributions that are carried out in our research work to
achieve our research objectives;

• Initially a systematic literature survey is carried out on denoising techniques and IMC
segmentation for CCA.

• We propose the use of a Bayesian least square estimation algorithm for denoising the
carotid ultrasound images.

• The key contribution of the thesis is to propose novel approaches for fully automatic
ROI extraction of the carotid ultrasound images.

• We present automatic segmentation of IMC in carotid ultrasound images for estima-
tion of the IMT using support vector machine.

• A fully automated threshold-based wind driven optimization technique is developed
for segmentation of the CCA from longitudinal ultrasound images.

• The measurement accuracy and high computational speed are further improved by
using pre-trained structured random classifier for handling curved carotid ultrasound
images.
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1.7 Organization of the Thesis

The remaining part of thesis is organised as follows: chapter 2 presents a literature survey
on despeckling filters and IMT segmentation methods for the CCA images. The survey
describes various techniques for carotid wall segmentation in ultrasound images. The theo-
retical background of different techniques is furthermore explained.

Chapter 3 introduces a state-of-the-art denoising and enhancement techniques for carotid
ultrasound images. The denoising filters are used to reduce the speckle noise, followed by
an enhancement techniques are used to improve the robustness of carotid ultrasound im-
ages. Further, comparative study of edge detection algorithms is presented based on the
framework of despeckling the carotid ultrasound images.

Chapter 4 describes novel approaches for automatic ROI extraction using morphological
functions and edge detection methods. Further, proposed methods based on support vector
machine, threshold based wind driven optimization and structured random forest algorithms
are applied to the extracted ROI for segmentation of IMC of the CCA. Later, experimental
results are presented and compared with the results obtained using state-of-the-art algo-
rithms.

Finally, chapter 5 concludes with the brief discussion on the findings of this work along
with the future work suggestions.
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Chapter 2

COMMON CAROTID ARTERY
SEGMENTATION APPROACHES

In this chapter, the theoretical background of despeckling filters and carotid artery segmen-
tation methods for carotid ultrasound images are presented. Section 2.1 presents the general
framework for carotid wall segmentation approaches, in which, we discuss the despeckling
filters, ROI extraction methods and different types of segmentation approaches which are
used for quantifying the IMT. The challenges during carotid wall segmentation are explored
in the Section 2.2. Finally, A few important evaluation metrics for evaluating the despeck-
ling and segmentation methods are presented in section 2.3.

2.1 General frame work for carotid wall segmentation

The IMT of CCA measured from B-mode ultrasound images can be considered as a surro-
gate marker for risk of CVDs. The carotid ultrasound images allow for easy visualization
and quantification of anatomical structures. The ultrasound images can be acquired in real
time, thus providing instantaneous visual guidance for many interventional procedures. A
large number of image segmentation studies have used high resolution ultrasonography to
investigate the determinants of atherosclerosis disease, because of its ability to identify
atherosclerosis lesions at all stages of developments. Usually, delineation of the CCA is
performed manually by medical experts using calipers (Nicolaides et al. (2003)), but it was
shown that this process is tedious, prone to error and has large observer variability. To
address this issue, semi or fully automated ROI extraction, gradient-based segmentation,
threshold-based segmentation, and learning-based segmentation algorithms for the mea-
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surement of IMT in ultrasound images have been introduced. However, automated methods
are required for accurate and reliable delineation of the CCA from ultrasound images. Fig-
ure 2.1 shows the general flow diagram for segmentation of IMT of the CCA. Each block
in this flow diagram is explained below in detail;

Carotid Ultrasound 

Image

Gradient Based 

Segmentation

Threshold Based 

Segmentation

Learning Based 

Segmentation

Region of Interest

Despeckling

Extraction of LI 

and MA Boundaries

IMT Measurement

Figure 2.1: General flow diagram for segmentation of IMT of the CCA.

2.1.1 Despeckling filters

The pre-processing stage helps in improving the quality of image in ways that increase the
accuracy of segmentation. Speckle noise and artefacts cause image degradation in several
ultrasound image modalities. Different image modalities exhibit distinct types of degra-
dation. Image degradation can have a significant impact on image quality and thus affect
human interpretation and the accuracy of computer-assisted methods. Poor image quality
often makes feature extraction, analysis, recognition, and quantitative measurements prob-
lematic and unreliable. In literature, several methods have been developed for reducing the
speckle noise in the ultrasound image (Solbo and Eltoft (2004)). The overview of despeck-
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ling filters are tabulated in the Table.2.1. In a carotid ultrasound image, speckle noise is a
multiplicative noise that degrades the image quality by concealing the fine structures. Us-
ing Gaussian filters, the amount of smoothing is usually controlled by the standard deviation
(σ), which must be large enough to reduce the noise. However, if the σ is too large, the
CCA walls may be completely blurred.

2.1.2 Region of Interest (ROI)

Usually, ROI extraction involves edge detection from an image. Commonly, the far wall
of the CCA is considered as the reference boundary for cropping the ROI. Hence, once the
ROI is extracted, we have limited search area for the measurement of IMT. Since, the lumen
region can be considered as the dark region that is located between the two bright adventitia
layers of the CCA, this might be the best approximation for the ROI. In the most of the
literature, pre-processing stage is done prior to the ROI selection. This is to increase the
effectiveness of the segmentation algorithm and to avoid false measurement of IMT. Seg-
mentation is the next step after ROI extraction. In the literature, several algorithms involving
the use of gradient-based segmentation, threshold-based segmentation, and learning-based
segmentation techniques have been presented for segmenting the IMC of the carotid ultra-
sound images. The overview of ultrasound IMT segmentation techniques is tabulated in the
Table 2.2. Further, the advantages and limitations of the segmentation algorithms are listed
in Table 2.3. Each of the segmentation techniques is explained below.

2.1.3 Gradient-based Segmentation

In the past two decades, several algorithms have been presented to segment the IMC in
ultrasound images. The dynamic programming has been introduced for the automatic iden-
tification of echo interfaces, which are used for measuring the boundary continuity, intensity
of echo, and gradient (Wendelhag et al. (1997)).Li et al. (2014) presented the improved and
efficient measurement of the IMT of CCA by adjusting the LI and MA boundaries using
the dynamic programming technique. Faita et al. (2008) presented a maximum-gradient
technique for detecting the relative variation of the gray levels in an image. Rafati et al.

(2015) introduced the combination of the dynamic programming and maximum-gradient
methods for detecting instantaneous changes in the distribution of the IMT in the carotid
ultrasound images. The Hough transform was introduced for determining the dominant
lines and circles corresponding to the LI and MA interfaces in the longitudinal carotid ul-
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Table 2.1: Overview of despeckle filtering Techniques

Author Speckle Reduction meth-
ods

Description

Frost et al.
(1982)

Frost filter It is based on the coefficient of variation of the adap-
tive averaging filter, which is the ratio of local standard
deviation to local mean of the degraded image.

Lee (1986) Lee filter It performs noise filtering using first order local statis-
tics from the neighborhood of a specified pixel and it
smooths the area having lower variances.

Kuan et al.
(1987)

Kuan filter It is a local linear minimum square error filter based on
multiplicative model.

Hu and Hu
(1994)

Median filter It removes the spike value by replacing the middle
pixel value with the median value of neighborhood
window.

Yu and Acton
(2002)

Speckle Reduction Anisotropic
Diffusion (SRAD) filter

It is used for preserving the edges by suppressing the
speckle noise.

(Pižurica et al.
(2003))

Wavelet based filter It is a multi resolution decomposition based on wavelet
coefficients, which exploits the correlation of signifi-
cant feature of the image.

Vese and Osher
(2003)

Total Variation It is effective for preserving the edges and smooths in
the flat regions.

Buades et al.
(2005)

Non Local Mean (NLM) filter It performs nonlocal averaging of all pixels in the im-
age. The pixels in the image are highly correlated and
noise is identically distributed then averaging of these
pixels results a noise suppression thereby yields a pixel
similar to original value.

(Coupé et al.
(2009))

Optimised Bayesian Non Local
Mean (OBNLM) filter

It is an adaptation of non-local mean filter and amount
of image smoothing is determined directly by noise
variance.

Chao and Tsai
(2010)

Detail Preserving Anisotropic
Diffusion (DPAD) filter

It simultaneously preserves fine details and edges
while noise filtering in the diffusion process.

Zhang et al.
(2015)

Wavelet based bilateral filter For the noise free signal, the wavelet coefficients
are modeled as generalized Laplace distribution and
speckle noise takes the form of Gaussian distribution.

Li et al. (2016b) Curvelet based orientation se-
lective filter

It processes the curvelet coefficients by orientations
unlike the conventional methods based on curvelet
transform which considers only magnitude.

Sagheer and
George (2017)

Noise reduction based on low
rank approximation

The low rank approximation is used to reduce the
speckle noise based on weighted nuclear norm mini-
mization.

Farouj et al.
(2017)

Hyperbolic wavelet Fisz trans-
formation

This method computes the hyperbolic wavelet trans-
form of the image, before applying a multi scale vari-
ance stabilization technique based on Fisz transforma-
tion
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trasound images (Golemati et al. (2007) Golemati et al. (2004)). Loizou et al. introduced
the snake energy function for segmenting the IMT of CCA by integrating the internal and
external forces (Loizou et al. (2007), Loizou et al. (2009), Loizou et al. (2013), Loizou
et al. (2015)). The majority of the active contour algorithm adopted the traditional for-
mulation of the snake as presented by Williams and Shah (1992). The combination of the
dynamic programming and geometric snakes methods is used for the segmentation of the
IMC in the carotid wall (Rocha et al. (2010)). Molinari et al. proposed the use of automatic
multi-resolution edge snapper for the quantification of the IMT of CCA (Molinari et al.

(2012)). The frequency-domain-based active contours have been proposed for providing
soft final contours, which are computationally faster than other contour methods (Bastida-
Jumilla et al. (2015)). The ROI is composed of plaque, the vessel lumen, and adventitia
of the artery wall in carotid ultrasound images modelled by mixture of Nakagmai distribu-
tions, which yielded the likelihood of a Bayesian segmentation model (Destrempes et al.

(2009)). The model-based approach has been used for the automated segmentation of the
IMC, and it deals with the irregularity in presence of the IMC over the cardiac cycle (Ilea
et al. (2009),Ilea et al. (2013a)).

2.1.4 Threshold-based Segmentation

The edge based techniques make use of function values and derivatives (Yang (2014)) but
do not perform effectively for smooth unimodal problems. In addition, the edge based
methods show poor performance due to inconsistencies in the function values. Hence, the
non-gradient-based algorithms are preferred because they depend only on function values
not the derivatives. The non-gradient techniques include mainly the thresholding methods
which are used for segmentation of images (Akay (2013)). Essentially, thresholding utilizes
distribution of gray levels to distinguish object from image background. Both the bi-level
and multi-level thresholding techniques require an optimum threshold value to segment
the object of interest from their background (Huang and Wang (2009)). Threshold-based
segmentation is the simplest method of image segmentation and is an effective method
for partitioning the foreground and background regions. The objective function presented
for the threshold-based segmentation in the literature was a non-convex optimization prob-
lem. The use of gradient-based methods might result in a local minimum or a local max-
imum. Hence, nongradient-based methods, such as particle swarm optimization (Eberhart
and Kennedy (1995)), cuckoo search (Yang (2014)), and wind driven optimization (Bayrak-
tar et al. (2013)) are preferred for solving the objective function. Li et al. proposed an
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ant colony method combined with Otsu thresholding for the segmentation of IMT, and the
snake model is employed for smoothing the boundaries (Li et al. (2016a)).

Table 2.2: Overview of ultrasound IMT segmentation techniques

Author IMT segmentation Tech-

niques

Still/

Video

Patients/

Images

IMTmean

mm
Processing

time

Cohen

(1991)

Balloon snake segmentation Still 3 Patients - -

Gustavsson

et al. (1997)

Dynamic programming Still 1 Patients - -

Wendelhag

et al. (1997)

Dynamic programming with

cost function optimization

Still 50 Patients 0.92 -

Mojsilović

et al. (1997)

Texture based approach Still 29 Patients 0.68 -

Sonka and

Fitzpatrick

(2000)

Optical graph searching Still 1 Patients - -

Abolmaesumi

et al. (2000)

Star Kalman filter Still - - -

Liang et al.

(2000)

Multiscale dynamic program-

ming

Still 50 Images 0.92 42sec

Mao et al.

(2000)

Discrete dynamic contour Still 7 Patients - -

Ladak et al.

(2001)

Discrete dynamic Contour Video 4 Patients 0.75 -

Liguori et al.

(2001)

Pattern recognition and edge

detection

Still 30 Images - -

Selzer et al.

(2001)

Dynamic edge detection seg-

mentation

Video 24 Patients 0.78 15sec

Xiao et al.

(2002)

Morphology operators Still 2 Patients - -

Cheng et al.

(2002)

Snakes based segmentation Still 32 Patients 0.65 -

Gutierrez

et al. (2002)

Multiresolution active con-

tours

Still 30 Patients 0.72 31sec
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Stein et al.

(2005)

Gradient based approach Still 50 Patients 0.67 -

Faita et al.

(2008)

First order absolute moment

edge detector

Still 42 Patients 0.56 -

Golemati

et al. (2007)

Hough Transform Still 10 Patients 0.61 -

Delsanto

et al. (2007)

Fuzzy C means and snakes Still 120 Images 0.71 -

Ilea et al.

(2009)

Spatially continuous vascular

model

Still 49 Images - 8sec

Destrempes

et al. (2009)

Mixture of Nakagami distri-

bution

Video 30 Images 0.81 24sec

Loizou et al.

(2009)

Snake based segmentation Still 100 Images 0.68 27sec

Freire et al.

(2009)

Gradient based approach Still 43 Patients 0.53 2.52sec

Rocha et al.

(2010)

Hybrid dynamic program-

ming based active contour

Still 24 Patients - -

Molinari

et al.

(2010b)

Integrated approach using

fuzzy K means classification

Still 200 Images - -

Molinari

et al. (2012)

Multi resolution edge detec-

tion segmentation

Still 365 Images 0.91 15sec

Ilea et al.

(2013a)

Adaptive Normalized Corre-

lation

Video 40Sequences 0.60 80sec

Loizou et al.

(2013)

Snake segmentation Still 20 Patients 0.93 28sec

Li et al.

(2014)

Dynamic programming Still 100 images - -

Rafati et al.

(2015)

Maximum gradient and Dy-

namic programming

Video 30 Patients 0.57 -

Loizou et al.

(2015)

Snake segmentation Still 300 Images - 35sec
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Li et al.

(2016a)

Ant colony optimization Still 224 Images - -

2.1.5 Learning-based Segmentation

Recently, fast edge detection using a learning-based classifier has been receiving increasing
attention. In the past few years, several methods have been implemented using a learning-
based technique for the detection of edges (Mairal et al. (2008)). The boosted classifier
is used to label each pixel independently based on its neighbourhood image patch as an
input (Dollar et al. (2006a)). Arbelaez et al. (2011) improved this result by computing the
gradient across the learned sparse codes of the patch gradients (Xiaofeng and Bo (2012)).
Zheng et al. (2010) proposed the use of a learning-based approach for the detection of object
boundaries and demonstrated results of specific object detection. Lim et al. proposed the
use of sketch tokens using supervised mid-level information for edge detection in the form
of hand-labeled images (Lim et al. (2013)). A robust spatial c-means method has been
proposed by Hassan et al. for the segmentation of the IMT in carotid ultrasound images
based on the information gain (Hassan et al. (2014) Hassan et al. (2012)). Menchón-Lara
et al. (2014) used the neural network algorithm for performing a binary classification for
estimating the IMC contours based on multi-layer perceptrons. Araki et al. proposed the use
of a stroke risk stratification using ultrasonic echolucent carotid plaque morphology based
on machine learning (Araki et al. (2017)).

Table 2.3: Advantages and limitation of carotid wall segmentation methods

Author Segmentation
Techniques

Advantages Limitations

Pignoli and Longo
(1987), Touboul et al.
(1992), Liguori et al.
(2001), Stein et al.
(2005), Faita et al.
(2008)

Edge detection and gra-
dient based method

• Suited for real time implementa-
tion.
• Operator can have immediate
feedback on the quality of the im-
age.

• Lack of automation.
• No robustness with noise.

Wendelhag et al.
(1997), Liang et al.
(2000), Liu (2008),
Holdfeldt et al.
(2008), Cheng et al.
(2002)

Dynamic Programming
based on multiscale anal-
ysis

• Fully Automated.
• Low computation complexity.
• Suitable for clinical purposes.

• Initial human setting and training
required.
• Fails for slanting IMC with weak
boundaries.
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Golemati et al. (2007)
Stoitsis et.al(2008),
Xu et al. (2012)
Petroudi et.al(2010)
Matsakou et.al(2011)

Segmentation based on
Hough Transform

• It is less likely to be effected by
noise.
• Compensate the holes or missing
boundaries.

• The method work fine for early
thickening of IMC but fails for ir-
regular boundaries in the presence
of plaques and eliminates minor de-
tails.

Williams and Shah
(1992), Cheng et al.
(2002), Delsanto
et al. (2007), Molinari
et al. (2010a), Loizou
et al. (2007), Loizou
et al. (2013), Loizou
(2014), Loizou et al.
(2015)

Active contours (Snake )
based segmentation

• It works well for noisy images
• doesn’t require any user interac-
tion

• Dependence on the initialization
of the snake points.
• Need for optimization of the pa-
rameter
• Sensitivity to noise

Destrempes et al.
(2009)

Segmentation based on
mixture of nakagami dis-
tributions and Stochastic
Optimization

• Lowest tracing error for LI and
MA.
• Method is not sensitive to the de-
gree of stenosis.

•Method suitable for healthy arter-
ies.
• Extensive tuning and training so
computational cost is high.

Ilea et al. (2013a),
Kanber et al. (2013)
, Destrempes et al.
(2009)

Model based, Adaptive
Normalised Correlation
algorithm, Block Match-
ing.

• Robust to the estimation proce-
dure..

• Computation time is high.

Li et al. (2016b) Ant colony optimization
technique

• Can estimate the missing LI inter-
face boundaries.

• This method is intended for seg-
menting nearly parallel boundaries,
which may limit its use for plaque.

2.2 Challenges during Segmentation

The segmentation of IMC of the CCA is a challenging process, whereas developing a fully
automated system is even harder in practice. One must take advantage of the knowledge
in ultrasound image reconstruction in the segmentation process. The images may have
scanned with different hardware settings (frequency, depth, gain etc.) and different posi-
tioning of the probe. The challenges for segmentation vary with quality of image data and
view due to the anisotropy of ultrasound image acquisition. There are several challenges
for the automated carotid wall segmentation from ultrasound images. The shape and size
of the carotid artery, presence of plaque and curvature in arteries make the segmentation
process harder (Nicolaides et al. (2003)). Characteristics of artefacts such as attenuation,
speckle noise, acoustic shadowing and signal drop-out may complicate the segmentation
task (Golemati et al. (2007)). Sensitivity to ultrasound vibrations at each depth of the body
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is different due to which the imaging suffer from signal loss. In the ultrasound image, at-
tenuation is the amplitude of ultrasound beam as a function of distance through the imaging
medium. Accounting for the attenuation effects in ultrasound is important as reduced signal
amplitude can affect the quality of image produced. Acoustic shadowing in an ultrasound
image is characterised by a signal void behind structures that strongly absorb or reflect ul-
trasonic waves. This happens most frequently with solid structures, as sound conducts most
rapidly in areas where molecules are closely packed, as in bone or stones. The direct effect
of acoustic shadowing or echo attenuations in the segmentation task is that some boundary
segments may be missing which may lead to edge leaking at the far LI interfaces. The major
issue related to the segmentation is poor visibility of the carotid ultrasound image owing to
the patient variation with respect to the structure and mechanical properties of the arterial
wall, speckle noise and irregularity associated with the LI and MA boundaries caused by
variation of the ultrasound probe during the image acquisition. To address these problems
which are common in the analysis of CCA ultrasound data, we propose novel segmentation
approaches for quantification of IMT in longitudinal ultrasound images.

2.3 Performance metrics for despeckling and IMT mea-
surement

2.3.1 Performance metrics for despeckling filters

The performance metrics for a carotid ultrasound image of size R×C are defined as follows:

• Signal to noise ratio (SNR)

SNR is the ratio between signal power to noise power and is expressed as (Srivastava
et al. (2010)) ,

S NR = 10log10(
σ2

s

σ2
n
), (2.1)

where σ2
s is the signal variance and σ2

n is the noise variance of the image.

• Peak signal to noise ratio (PSNR)

PSNR is computed as the ratio of maximum power of signal to the noise level and is
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described as (Srivastava et al. (2010)) ,

PS NR = 10log10(
255
√

MS E
), (2.2)

where MS E = 1
RC

∑R
i=1

∑C
j=1(Ui, j − U

′

i, j)
2 is the mean square error.

• Root mean square error (RMSE)

RMSE is used to measure the differences between original value and the filtered value,
and is defined as the square root of mean square error (Srivastava et al. (2010)),

RMS E =

√√√
1

RC

R∑
i=1

C∑
j=1

(Ui, j − U ′

i, j)2, (2.3)

where Ui, j is the original image without speckle noise and U
′

i, j is the filtered image of
size R×C.

• Structure similarity map (SSIM)

SSIM are mainly used to compare contrast, luminance and structure of two different
images. The SSIM value must be closer to unity for optimal measure of similarity and is
expressed as (Srivastava et al. (2010)) ,

S S IM(U,U
′

) =
(2µUµU′ + k1)(2σUU′ ) + k2)

(µ2
U + µ2

U′
+ k1)(σ2

U + σ2
U′

+ k2)
, (2.4)

where µU is the mean intensity of original image, µU′ is the mean intensity of filtered image,
σ2

U is variance of the original image, σ2
U′

is variance of the filtered image, ki (i=1 or 2) is the
constant to avoid instability when µ2

U + µ2
U′

is very close to zero and is defined as ki=(ci.L2)
in which ci < 1 (By default, c1=0.01 and c2=0.03) and L is the dynamic range of pixel
values. µUµU′ is covariance of the original image and filtered image.

• Coefficient of correlation (CoC)

CoC measures the edge preservation in the denoised image and it has the value between
0 and 1 for uncorrelated and identical images respectively. The CoC is defined as (Sivaku-
mar et al. (2010)) ,
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CoC =

∑R
i=1

∑C
j=1(U

′

i, j − U
′

i, j)(Ui, j − U i, j)√∑R
i=1

∑C
j=1(U ′

i, j − U
′

i, j)2 ∑R
i=1

∑C
j=1(Ui, j − U i, j)2

(2.5)

where Ui, j is the original image without speckle noise and U
′

i, j is the filtered image of size
R×C.

• Image quality index (IQI)

IQI measures the degree of distortion in terms of loss of correlation, variance distortion
and mean distortion. The dynamic range of IQI lies between -1 to 1 and IQI is expressed as
(Wang et al. (2004)) ,

IQI =
4σUU′ .UU

′

[σ2
U + σ2

U′][U
2

+ U′
2
]

(2.6)

where Ui, j is the original image without speckle noise and U
′

i, j is the filtered image, σ2
U

is variance of the original image, and σ2
U′

is variance of the filtered image.

2.3.2 Validation metrics for IMT measurement

An automated carotid artery segmentation system can be evaluated in two ways. They
include simple visual inspection and computer aided measurement. However, computer
measurements are used to analyse the system quantitatively using metrics and compared
against the manual expert tracings which are considered as ground truth (GT). Further, it
is mandatory for an automated medical system to compare and validate against manual
tracings in order to be accepted in the clinical domain. Different evaluation metrics are used
for evaluating the performance of carotid artery segmentation algorithms. The following
are some popular performance metrics found in the literature.;
•Mean Absolute Distance (MAD) metric:

The IMC lies horizontally in the carotid ultrasound images. The detected boundaries of
the LI and MA interfaces of the IMC have same number of points. The IMT is estimated
by measuring the MAD between the detected LI and the MA boundaries and it is defined as
(Molinari et al. (2010b)):

IMTmean =
1
N

N∑
u=1

|MAu − LIu| (2.7)
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where, N represents the number of points present in the LI and MA boundaries. The
variable u represents the index spanning the columns of image. The minimum and maxi-
mum values of |MAu − LIu|, for 1 < u < N can be used to check whether the detected IMT
is reasonable. Generally, this evaluation metric is more effective when the artery wall is
straight and horizontal in the image. In our experiments, MAD evaluation metrics is used
(as in Eq.(2.7)) to estimate the IMT as most of the ultrasound images in our database have
horizontal carotid wall boundaries.
• Polyline Distance (PD) Metric:

PD metric is used to measure the IMT mean of the CCA. It measures the changes of the
contours of the LI and MA interfaces. The first contour used is the LI interface and denoted
by B1. A point on the first contour B1 is chosen as the reference point (x0,y0). The nearest
point at the second contour (MA interface), B2 was found using the Euclidean distance. This
is the 1st point (x1,y1) to be evaluated and the 2nd point (x2,y2) is established as the point
next to the 1st point on the second contour. The two points actually form a line segment l.
The distance d(v, l) was obtained which is the distance between the reference point, v(x0,y0)
and the line segment formed by the 1st point and 2nd point.

The distance between the 1st point to the reference point is called d1 whereas the 2nd

point to the reference point is called d2. Another term used in the process towards finding
d(v, s) is λ which is the distance along the vector of the segment s. The perpendicular
distance between the line segment and the reference point v, is given by d⊥. The formulas
to calculate λ and d⊥ are given below (Molinari et al. (2010b));

λ =
(y2 − y1)(y0 − y1) + (x2 − x1)(x0 − x1)

(x2 − x1)2 + (y2 − y1)2

d⊥ =
(y2 − y1)(y0 − y1) + (x2 − x1)(x0 − x1)√

(x2 − x1)2 + (y2 − y1)2

Therefore, d(v, s) is obtained using the following equation (Molinari et al. (2010b));

d(v, s) =

min(d1, d2), λ < 0 or λ > 1

|d⊥|, 0 ≤ λ ≤ 1

The process to obtain d(v, s) is repeated for the rest of the contour B1 and is given by:

d(B1, B2) =

n∑
i=1

d(vi, S B2),
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where n is the number of points in contour B1 and S B2 is the segment on contour B2.
Secondly, the algorithm above is repeated, where B2 now becomes the reference contour
and B1 becomes the segment contour S B1. The reverse can be represented by d(B2, B1).
Lastly, combining both d(B1, B2) and d(B2, B1) will yield the equation below which is the
PD metric (Zahalka and Fenster (2001));

Ds(B1 : B2) =
d(B1, B2) + d(B2, B1)

(#vertices ∈ B1 + #vertices ∈ B2)
(2.8)

• Correlation coefficient (R):
The correlation coefficient R for two sets of IMT values is given by the expression

(Garren (1998)):

R =

∑s
k=1(AS (k) − asmean)(GT (k) − gtmean)√
(AS (k) − asmean)2

√
(GT (k) − gtmean)2

, (2.9)

where s is the number of data pairs for the IMT measurement, AS (k) and GT (k) are the
automated and the ground truth IMT values for the kth case, respectively; and asmean and
gtmean are the mean IMT values of the two sets respectively.
• Co-efficient of Variation(CV):

The co-efficient of variation(CV) can be estimated from the expression as (Huang et al.

(2004)):

CV =
IOE

IMTmean
× 100, (2.10)

where, inter observer error(IOE) with standard deviation was calculated for each image
measurement as (Delsanto et al. (2007)):

IOE =
σIMT
√

2
(2.11)

2.4 Summary

We have presented recent literature on different methods for despeckling and segmentation
of CCA of ultrasound images. The general framework for the segmentation of IMC of the
CCA has been presented and the various challenges during segmentation have been dis-
cussed. A few important evaluation metrics are shortlisted from the literature and used for
assessing the performance of despeckling filters and segmentation techniques. The global
trend is now towards the complete automation of the segmentation and measurement pro-
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cess, which can assist the clinician. The use of computer aided measurement techniques has
potential benefit of increased accuracy with less computational complexity and less subjec-
tivity. However, more validation studies will be required to establish the state-of-the-art on
performance of the segmentation.
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Chapter 3

DENOISING AND EDGE DETECTION
OF COMMON CAROTID ARTERY
IMAGES

CCA ultrasound with estimation of IMT is a safe and non-invasive technique for prediction
of cardiovascular risks. Precise quantification of IMT is useful for evaluating the risk of
cardiovascular disease. The presence of speckle noise in carotid ultrasound image reduces
the quality of image and automatic human interpretation. Carotid ultrasound images have
multiplicative speckle noise and it is difficult to reduce as compared to the additive noises.
The speckle removal filters have a greater restriction in edges and characteristics preser-
vation. This chapter starts with a related work on despeckling filters and edge detection
techniques. In Section 3.2, we propose the use of Bayesian least square estimation (BLSE)
filter for despeckling carotid ultrasound images in logarithmic space based on conditional
posterior sampling approach. The proposed algorithm is tested with 50 B-mode carotid
ultrasound images and compared with the state-of-the-art despeckling filters. Further, the
work is extended with automatic ROI extraction of despeckled carotid ultrasound images.
Later, edge detection techniques are applied to the extracted ROI of despeckled image. The
results of the extracted edges of the ROI are compared with the result of original image,
which is discussed in Section 3.3.
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3.1 Related work on despeckling filters and edge detection
methods

The IMT of carotid arteries is a significant index of the presence of atherosclerosis (Bal-
dassarre et al. (2000)). Precise quantification of the IMT is useful for assessing the risk of
stroke and its progress (Molinari et al. (2010b)). To accomplish the best possible diagnosis,
the carotid ultrasound images required to be free of noise and artefacts. The measurement
of IMT in the carotid wall is complex because of speckle noise in the carotid ultrasound
images, the contrast of the image is reduced (Kang et al. (2016)). To address this prob-
lem, several enhancements and speckle denoising methods have been proposed in carotid
ultrasound images. Hassan et.al used a sigmoid function in spatial domain for the process
of image contrast enhancement (Hassan1&2 and Akamatsu (2009)). Zuo et.al introduced
a spatially weighted histogram equalization for enhancement of contrast in the image (Zuo
et al. (2014)). An NLM based approach for speckle reduction was introduced by Coupé
et al. (2009) which called Optimal Bayesian NLM. This exploits the data redundancy in
the image and smooths the image very well. Pandit et.al uses Lee filter which performs
smoothing only in lower variance regions (Pandit et al. (2014)). Li and Zhang proposed
SRAD filter to utilize the instantaneous coefficient of variation, which is the function of
Laplacian operators and local gradient magnitude Li and Zhang (2017). The noise and
edges represent high frequency component in an image; hence, detection of the edge is very
difficult in noisy images. The noisy images use operators in larger scope to average enough
data to localize noisy pixels. Generally, the edge is detected using algorithms such as Canny,
Sobel, Prewitt, Robert and LoG operators (Maini and Aggarwal (2009)). Canny operator
(Canny (1986)) smooths the data by means of Gaussian convolution and then performs the
edge detection operation. Sobel operator is used to find the approximate absolute gradient
magnitude at each point in an input grayscale image (Muthukrishnan and Radha (2011)).
Prewitt operator (Haider et al. (2012)) is a desirable approach for estimating the magnitude
and orientation of an edge in an image. Robert operator (Heath et al. (1996)) performs a
simple calculation of spatial gradients and is used for grayscale images. LoG operator (Sri-
vastava et al. (2010)) is used for an image to highlight the regions of abrupt change in the
intensity value. The objective of this work is to compare different edge detection techniques
with different denoising filter in carotid ultrasound images for optimal reduction of speckle
noise and detail preservation of edges. The proposed framework presents speckle reduc-
tion using BLSE method and Canny operators to preserve the edges in carotid ultrasound
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images.

3.2 Proposed Methodology for despeckling using BLSE

A granular noise called speckle noise exists in ultrasound images, which is signal dependent.
The major reason for the speckle is constructive or destructive interference of ultrasound
waves which produce the light and dark pixels in the image. Speckle degrades the image
quality and reduces the contrast which affects the texture based analysis and segmentation.
The presence of speckle noise in carotid ultrasound images adversely affect the individual
interpretation and diagnosis. Carotid ultrasound images have multiplicative speckle noise
which reduces the ability of the manual observer (Kaur et al. (2011)). The multiplicative
speckle noise is expressed as:

m(s) = g(s) ∗ k(s) (3.1)

where s represents the spatial location that belongs to the 2-dimensional space of real num-
bers sεR2, g(s) is noiseless data, k(s) denotes the speckle noise of unknown distribution and
m(s) is measured data with respect to g(s) and k(s). To reduce the speckle noise in the ul-
trasound images, we proposed the use of optimized BLSE filter for estimation of noiseless
data in logarithmic domain. The BLSE filter suppress multiplicative noise by effective uti-
lization of optimally tuned parameters of gray scale images. The statistics of speckle noise
are affected from the logarithmic component such that local mean and local variance are
proportional to each other rather than standard deviation. As a result, the speckle noise in
the carotid ultrasound image turns in to Gaussian noise. The Gaussian noise is preferred
because because it corresponds to quadratic data term, which is linear and easy to solve.
Therefore, the measured data projected in to logarithmic space in such a way that distribu-
tion of noise is approximately close to the white Gaussian noise. The expanded logarithmic
component of the measured data is expressed from the Eq.(3.1):

mL(s) = gL(s) + kL(s) (3.2)

In the logarithmic domain, the BLSE of gL(s) can be defined by the expression ( Wong et al.

(2010)):

ĝL(s) = arg min︸︷︷︸
gL(s)

∫
p(gL(s)|mL(n))(gL(s)-̂gL(s))2dgL(n) (3.3)

The BLSE filter minimizes the average squared error of noise free data ĝL(s) based on
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the measured data mL(s). Minimizing the expression in Eq.(3.3) gives:

ĝL(s) =

∫
p(gL(s)|mL(s))gL(s)dgL(s) (3.4)

The Eq.(3.4) represents the optimized BLSE of the noiseless data gL(s) based on the mea-
sured data mL(s). The distributed probability of noiseless data gL(s) based on the measured
data mL(s) is non linear and it is complicated due to the posterior distribution p(gL(s)|mL(s));
hence ĝL(s) using Eq.(3.4) is difficult to solve. To overcome this problem, we proposed to
use posterior conditional approach to estimate p(gL(s)|mL(s)). The posterior probability dis-
tribution is determined based on initial probability distribution q(s

′

|s) and q(s
′

|s) is defined
as a Gaussian distribution centred at s ( Wong et al. (2010)):

q(s
′

|s) =
1

2πσ
e
−

(
‖s
′
−s‖2

2σ2

)
(3.5)

where ‖ s
′

− s ‖2 represents Euclidean distance of site s
′

from s, and σ refers to the spatial
variance. The posterior distribution p(gL(s)|mL(s)) is estimated based on the condition from
a given location s

′

expressed as ( Wong et al. (2010)):

| a(s) − a(s
′

) |< 2σn (3.6)

where σn is the estimated noise variance and a(s) indicates the local average of neighbour-
hood pixels centred at s. This condition is iterated to get maximum number of locations
which are used to estimate the original signal. The associated location s

′

of each weight for
estimating gL(s) can be represented by w(s

′

i |s) which is defined as ( Wong et al. (2010)):

w(s
′

i |s) = e
−

 ‖a(s
′

i )−a(s)‖2

2σ2


(3.7)

This weight is more reliable to estimate probability distribution by weighting loca-
tions with local means. Using associated set of locations t = (s

′

1, s
′

2....s
′

γ) and given set
of weights (w(s

′

1, s),w(s
′

2, s)....w(s
′

γ, s)), the posterior probability is estimated based on his-
togram weighted approach. Consider the weighted histogram where h(rk) is the kth noiseless
possible data value. For each location s

′

i, the weight w(s
′

i |s) is accumulated in the histogram
bin of the weighted histogram that corresponds to h(rk = mL(s

′

i)). From the weighted his-
togram approach, posterior distribution p(gL(s)|mL(s)) is estimated and expressed as ( Wong
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et al. (2010)),

p̂(gL(s)|mL(s)) =

∑
k=t w(s

′

k|s)δ(gL − mL(s
′

k))
M

(3.8)

where δ(.) represents the delta function and normalized factor M is defined as
∑

gL
p̂(gL(s)|mL(s) =

1. Finally, the estimate of noiseless data g(s) can be calculated by projecting back the
Bayesian estimate ĝL(s) from the logarithmic domain using the exponential function, ĝ(s) =

exp(̂gL(s)).

3.2.1 Results

In this section, we discuss the experimental results obtained from the state-of-the-art denois-
ing filters on carotid ultrasound images. For our experiment, 50 ultrasound carotid images
of several subjects have been obtained from Cyprus Institute Nicosia (C.Loizou (2002)).

Table 3.1: The quality metrics evaluated with variance of 0.1

Filters PS NRmean S NRmean RMS Emean IQI S S IM CoC Execution
T ime(s)

Median 30.304 15.298 3.119 0.7754 0.8611 0.9736 11.31
SRAD 27.746 15.76 2.167 0.5528 0.8385 0.9734 20.32
NLM 27.702 12.695 4.401 0.3172 0.6840 0.9585 84.60
Total-
Variation

29.596 14.583 3.381 0.3499 0.7160 0.9803 37.44

DPAD 25.374 10.519 3.940 0.2907 0.6506 0.8356 25.36
Lee 33.320 18.313 2.103 0.7798 0.8694 0.9862 23.95
Frost 29.904 17.458 2.213 0.6978 0.7790 0.9782 24.95
Wavelet
Filtering

31.692 20.303 3.130 0.6098 0.6211 0.9634 26.13

Proposed
Method

34.090 18.983 1.966 0.8270 0.9023 0.9884 21.74

Speckle reduction algorithms constituting different kinds of filters have been imple-
mented using MATLAB 2015a and tested on Intel Core i7 machine with 2GB of RAM. In
all these images, speckle reduction algorithm is applied and results are measured with the
statistical metrics of the respective filters. Performance of all the filters have been com-
pared and tested using various ultrasound carotid images in terms of visual inspection of
enlarged/zoomed region of interest of despeckling images. To exemplify the performance
of the proposed techniques, we added ultrasound carotid images with variances of speckle
noise 0.1 and 0.5. Figure (3.1) illustrates the complete results of the ultrasound carotid
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.1: Carotid ultrasound images with speckle noise variance (σ2) 0.1. (a) Noise-free
image. (b) Noisy image. (c) Median. (d) SRAD. (e) NLM. (f) Total-Variation. (g) DPAD. (h)
Lee. (i) Frost. (j) Wavelet filter. (k) Proposed filter.

images with a noise variance of 0.1 and the corresponding SSIM images of the carotid im-
ages in the test run are shown in Figure (3.2). We can qualitatively analyse that the proposed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.2: SSIM factor of carotid ultrasound images with variance (σ2) 0.1 (Brighter indicates
better SSIM value). (a) Noise-free image. (b) Noisy image. (c) Median. (d) SRAD. (e) NLM.
(f) Total-Variation. (g) DPAD. (h) Lee. (i) Frost. (j) Wavelet filter. (k) Proposed filter.

method demonstrates a superior edge preserving behaviour as compared to other techniques.
Further, the various performance metrics are calculated for the filtered images and shown
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Table 3.2: The quality metrics evaluated with variance of 0.5

Filters PS NRmean S NRmean RMS Emean IQI S S IM CoC Execution
T ime(s)

Median 27.463 12.326 5.531 0.5783 0.6519 0.9132 11.32
SRAD 26.814 14.811 5.533 0.5768 0.6432 0.9559 20.34
NLM 26.923 12.112 4.181 0.3173 0.6512 0.9493 80.26
Total-
Variation

28.815 13.878 3.169 0.3427 0.6647 0.9521 37.50

DPAD 23.639 8.245 6.224 0.2977 0.5818 0.7518 25.39
Lee 27.489 12.482 4.339 0.6347 0.7390 0.9436 23.96
Frost 26.702 14.929 5.923 0.6210 0.7338 0.9419 24.57
Wavelet
Filtering

28.933 13.681 6.158 0.3972 0.6654 0.9589 26.14

Proposed
Method

30.089 14.98 3.357 0.6574 0.7907 0.9675 21.62

in Table3.1. The median, Lee, and Frost filters reduce the speckle noise and improve the
edge information. These filters are spatially adaptive, which uses a sliding window filter
and measures the statistical data of all pixel values such as local mean and variance. Total
Variation and wavelet filters often suffer from the staircase effect and the loss of fine details.
NLM filter preserves the details but it takes more execution time. SRAD filter tends to bur-
den thin linear features and point features which needs to be corrected. DPAD filter do not
give significant differences in despeckling compared with existing filters. From the Table
3.1, we can quantitatively analyse that the proposed filter has a larger value in terms of the
PSNR, SNR, CoC, IQI and SSIM than the other filter techniques and a smaller value of
RMSE than the other filters. The CPU runtime of the proposed method is better than most
of the tested techniques except for median and SRAD methods, however it outperforms in
other metrics. Similarly, Figure (3.3) illustrates the complete results of ultrasound carotid
images with a variance of 0.5 and their SSIM images of the carotid images in the test run
are given Figure (3.4). The various performance metrics are calculated for filtered images
shown in Table 3.2. Thus, from the qualitative and quantitative analysis, it is found that pro-
posed method gives better performance compared to the other filters by exhibiting optimal
filtering operation for speckle removal in carotid ultrasound images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.3: Carotid ultrasound images with speckle noise variance (σ2) 0.5. (a) Noise-free
image. (b) Noisy image. (c) Median. (d) SRAD. (e) NLM. (f) Total-Variation. (g) DPAD. (h)
Lee. (i) Frost. (j) Wavelet filter. (k) Proposed filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.4: SSIM factor of carotid ultrasound images with variance (σ2) 0.5 (Brighter indicates
better SSIM value). (a) Noise-free image. (b) Noisy image. (c) Median. (d) SRAD. (e) NLM.
(f) Total-Variation. (g) DPAD. (h) Lee. (i) Frost. (j) Wavelet filter. (k) Proposed filter.
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3.3 Comparison of edge detection and despeckling on carotid
ultrasound images

Edge detection is a very important step in the digital image segmentation and analysis. Edge
detection works like a boundary detection between the two regions having different intensity
values. Edge may appear in horizontal as well as vertical direction. The carotid ultrasound
image is convolved with small size kernels to estimate the image brightness distribution of
first-order directional derivatives. Kernels are predefined groups of edge models that match
each image segment of a fixed size. The brief description of each operator is explained
below.

Sobel Operator:

Sobel operator is a discrete operator used to estimate the gradient of image intensity for
edge detection (Muthukrishnan and Radha (2011)). The input image convolves with the
kernel to measure gradient component in each orientation. The kernels are designed such
way that edges run vertically and horizontally relative to the pixel grid.

Prewitt Operator:

The prewitt operator is based on convolving the image with a small, separable and in-
teger value filter in horizontal and vertical direction and is therefore relatively expensive in
terms of computation (Haider et al. (2012)).

Roberts Operator:

Robert operator method is a fast and simple structure (Muthukrishnan and Radha (2011)).
The region of high spatial frequency is highlighted which correspond to the edges. Pixel
value at each point in the output represents the estimated absolute magnitude of the input
image at that point.

Laplacian of Gaussian (LoG) Operator:

LoG operator is used for an image to highlight the regions of abrupt change in the
intensity values (Brosnan and Sun (2004)). The advantage of LoG operator is easy to detect
edges and their orientations.

Canny Operator:

Canny Operator is considered as an optimal edge detection method (Canny (1986)). The
edge detection is performed by using a critical threshold value and helps in reducing noise
in the image.
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3.3.1 Automatic ROI extraction

In ultrasound images, due to speckle noise, the image contrast get reduced. The speckle
present in the ultrasound image is reduced using an optimized BLSE filter. The image
is then enhanced by Total Variation L1 (TV- L1) norm based on histogram equalization
technique (Ghita et al. (2013)). The overall block diagram of automatic ROI extraction is
shown in Figure 3.5 and each block is explained below.

Speckle filtering 
Enhancement 

Technique

Morphology 

Module

Canny edge 

detection 

Boundary 

extraction 

Input Image

Cropped ROI
Far wall 

detection

Figure 3.5: Outline of ROI extraction.

Speckle Filtering Technique: Carotid ultrasound images are affected by speckle noise
that degrades the quality of the image. To improve the quality of the image, the optimized
bayesian least square estimation (BLSE) (Wong et al. (2010)) despeckling filter is used.
The BLSE filter method suppress multiplicative noise by effective utilization of optimally
tuned parameters of gray scale images. The despeckled image is shown in the Figure 3.6(b)
and detailed explanation of BLSE algorithm is already discussed in section 3.2.

Image Enhancement: The contrast enhancement (Zhang et al. (2014)) technique im-
proves the visual appearance of the image by changing the pixel intensity of original image.
The main objective of the enhancement is to process an image so that the resultant image
contains more relevant information than the original image. In this work, TV- L1 norm
(Ghita et al. (2013)) model is used for enhancement by applying a histogram warping pro-
cess. Figure (3.6(c)) shows the enhanced image using TV-L1 norm.

Morphology Operation: Morphological functions are used to clean the edges which
are generated by the binary process (see Figure (3.6(d))). Morphological opening function
is applied to eliminate gaps and fill the holes in plaque contour of the image (Gonzalez
and Woods (2004)). In this experiment, morphological area opening followed by dilation is
performed to remove the outliers near the boundaries. A structuring element of size 2 pixels
is used to seal the plaque contour of carotid ultrasound images. As seen in Figure 3.6(e),

38



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Automatic extraction of ROI. (a) Original carotid longitudinal ultrasound image.
(b) De-speckled image using BLSE filter. (c) Enhancement using TV- L1 norm. (d) Conversion
to the binary image with automatic thresholding procedure. (e) Morphological operation on the
binary image. (f) Canny edge detection. (g) Extraction of the near and Far wall. (h) Automatic
ROI extraction.

the outliers are removed and gaps are filled along with the edges.

Canny Edge Detection: Canny operators (Bao et al. (2005)) smooth the data by means
of Gaussian convolution and then performs the edge detection operation. It gives an accurate
representation of the true edges of the artery while helping to eliminate the creation of false
edges due to speckle noise in the image. The Canny operator uses an input gray scale image
and creates an output image showing the position of tracked intensity discontinuities. Figure
(3.6(f)) shows the detection of edges using Canny operator.

Boundary Extraction: The near wall and far wall boundaries are extracted by search-
ing the random point in the lumen region using the minimum sum of column spanning
index. The random point is moved upward and downward till the high-intensity gray scale
value(255) is found. Using the high-intensity gray scale value, near wall and far wall are
extracted based on the region-prop properties (Regionprop (2002)). The extracted near wall
and far wall are shown in Figure (3.6(g)).

Far Wall Detection: In the longitudinal view, the line above lumen is known as near
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wall and bottom is far wall (as seen from Figure 3.6(g)). Usually, the thickness of IMT is
estimated in the far wall region because measuring the IMT of the far wall is more reliable
than the measurement performed in near wall. The random point is considered on the far
wall line and corresponding to that point a region 30 pixels upward and 30 pixels downward
are extracted. Finally, the cropped ROI is shown in the Figure (3.6(h)).

3.3.2 Results

In this section, we discuss the results of different edge detection operators on the framework
of despeckling filters. The purpose of edge detection is to retain the structural properties of
the image for further image processing. For our experiment, we used two different datasets,
namely dataset 1 and dataset 2. Dataset 1 consists of 25 images collected from Cyprus In-
stitute of Neurology of Nicosia (Cyprus (2007)). Dataset 2 consist of 25 images collected
from the Father Muller Medical Hospital, Mangalore, India. The performance of the pro-
posed method is evaluated by adding speckle noise with variance of 0.05 and 0.1 to the
carotid ultrasound images.
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Figure 3.7: Edge detection techniques for carotid ultrasound images of Dataset 1 with noise
variance of 0.05.

Figure (3.7) and Figure (3.8) depict the carotid ultrasound images of Dataset 1 and
Dataset 2, on which we added speckle noise with variance of 0.05 and applied different
denoising filters. Subsequently, edges are extracted from the denoising filters using edge
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Figure 3.8: Edge detection techniques for carotid ultrasound images of Dataset 2 with noise
variance of 0.05.
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Figure 3.9: Structural similarity index (Brighter indicates better SSIM value) of carotid ultra-
sound images of Dataset 1 with variance of 0.05.

operators and compared with the results of edges extracted by edge operators of the orig-
inal image. SSIM is used to measure the similarity of the edges between denoised image
and original image as shown in Figure (3.9) and Figure (3.10). From visual inspection,
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Figure 3.10: Structural similarity index (Brighter indicates better SSIM value) of carotid ultra-
sound images of Dataset 2 with variance of 0.05.

Table 3.3: Mean PSNR, Mean MSE, Mean CoC and Mean SSIM of Lee denoising filter with
different edge detection techniques for 50 carotid ultrasound images.

Dataset 1 with Lee filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 64.2808±

0.2462
63.6296±
0.2666

63.6850±
0.2538

62.5048±
0.5915

63.2677±
0.5608

MS Emean± std 0.0385±
0.0022

0.0355±
0.0021

0.0351±
0.0020

0.0583±
0.0079

0.0488±
0.0063

CoCmean 0.6562 0.4748 0.4757 0.2172 0.6558
S S IMmean 0.9993 0.9991 0.9992 0.9986 0.9990

Dataset 2 with Lee filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 65.5473±

0.8673
64.3143±
1.0513

64.9427±
1.0346

62.3705±
0.6478

63.4591±
0.6227

MS Emean± std 0.0272±
0.0047

0.0246±
0.0054

0.0244±
0.0053

0.0616±
0.0096

0.0457±
0.0063

CoCmean 0.5045 0.3970 0.4183 0.3378 0.5013
S S IMmean 0.9993 0.9992 0.9993 0.9985 0.9989
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Table 3.4: Mean PSNR, Mean MSE, Mean CoC and Mean SSIM of SRAD denoising filter with
different edge detection techniques for 50 carotid ultrasound images.

Dataset 1 with SRAD filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 64.1425±

0.7999
63.6798±
0.6089

63.7140±
0.6074

60.4831±
0.4385

62.5281±
0.7766

MS Emean± std 0.0317±
0.0044

0.0353±
0.0049

0.0351±
0.0049

0.0735±
0.0074

0.0733±
0.0125

CoCmean 0.5407 0.4645 0.4748 0.4907 0.5860
S S IMmean 0.9988 0.9986 0.9982 0.9980 0.9964

Dataset 2 with SRAD filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 64.8027±

1.4865
64.0302±
0.9437

63.8864±
0.9721

61.8838±
0.3237

63.2194±
0.6539

MS Emean± std 0.0278±
0.0058

0.0274±
0.0057

0.0271±
0.0059

0.0669±
0.0049

0.0495±
0.0070

CoCmean 0.5130 0.3820 0.3902 0.4099 0.5150
S S IMmean 0.9994 0.9994 0.9991 0.9986 0.9988
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Figure 3.11: Edge detection techniques for carotid ultrasound images of Dataset 1 with noise
variance of 0.1.
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Table 3.5: Mean PSNR, Mean MSE, Mean CoC and Mean SSIM of OBNLM denoising filter
with different edge detection techniques for 50 carotid ultrasound images.

Dataset 1 with OBNLM filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 64.8556±

0.7654
63.7264±
0.3482

62.7900±
0.4226

60.6984±
0.7315

63.3933±
0.7514

MS Emean± std 0.0340±
0.0055

0.0438±
0.0033

61.7900±
0.4226

59.6984±
0.7315

60.3938±
0.7514

CoCmean 0.6173 0.3898 0.3954 0.3596 0.6078
S S IMmean 0.9990 0.9989 0.9986 0.9984 0.9988

Dataset 2 with OBNLM filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 65.2727±

0.6500
64.7631±
0.7348

63.8424±
0.7720

61.3422±
1.1954

64.5376±
1.2255

MS Emean± std 0.0308±
0.0047

0.0348±
0.0065

0.0342±
0.0067

0.0780±
0.0222

0.0592±
0.0166

CoCmean 0.4966 0.3666 0.3707 0.2286 0.4963
S S IMmean 0.9992 0.9991 0.9990 0.9986 0.9988
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Figure 3.12: Edge detection techniques for carotid ultrasound images of Dataset 2 with noise
variance of 0.1..
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Table 3.6: Mean PSNR, Mean MSE, Mean CoC and Mean SSIM of Proposed denoising filter
with different edge detection techniques for 50 carotid ultrasound images.

Dataset 1 with BLSE filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 65.1218±

0.4996
63.3395±
0.4526

63.4135±
0.4670

61.2674±
0.5506

63.0588±
0.5644

MS Emean± std 0.0255±
0.0037

0.0381±
0.0040

0.0374±
0.0040

0.0615±
0.0078

0.0513±
0.0069

CoCmean 0.6611 0.4379 0.4695 0.4735 0.6362
S S IMmean 0.9994 0.9989 0.9991 0.9986 0.9990

Dataset 2 with BLSE filter
Metric Canny Sobel Prewitt Robert LoG
PS NRmean± std 65.7955±

1.2014
64.4227±
1.0722

64.4337±
1.0216

63.1044±
0.5869

64.5946±
0.5137

MS Emean± std 0.0209±
0.0065

0.0302±
0.0069

0.0301±
0.0067

0.0639±
0.0090

0.0452±
0.0050

CoCmean 0.5281 0.3707 0.3603 0.3773 0.5244
S S IMmean 0.9995 0.9987 0.9992 0.9991 0.9989
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Figure 3.13: Structural similarity index (Brighter indicates better SSIM value) of carotid ultra-
sound images of Dataset 1 with variance of 0.1.
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Figure 3.14: Structural similarity index (Brighter indicates better SSIM value) of carotid ultra-
sound images of Dataset 2 with variance of 0.1.

the BLSE filter with Canny edge detection of SSIM factor in carotid images shows lesser
difference between edges of ground truth image and denoised image as compared to the
other denoising techniques. Therefore, Canny edge detection is superior in terms of de-
tail preservation in carotid images compared to other edge detection techniques. Simi-
larly, Figure (3.11) and Figure (3.12) depict the carotid ultrasound images of Dataset 1
and Dataset 2, on which we added speckle noise with variance of 0.1 and applied differ-
ent denoising filters. Subsequently, edges are extracted from the denoising filters using
edge operators and compared with the results of edges extracted by edge operators of the
original image. SSIM is used to measure the similarity of the edges between denoised
image and original image as shown in Figure (3.13) and Figure (3.14). From the quali-
tative analysis, the proposed work demonstrates a better edge preserving behaviour with
the help of BLSE filter and also achieves better results in terms of the visual inspection.
Further, various performance metrics are evaluated for each denoising filter and tabulated
in Table 3.3,3.4,3.5, and 3.6. The PSNR value of BLSE filter with Canny edge detec-
tor (Dataset1 (65.12±0.49), Dataset2 (65.79±1.20)) gives higher value than the Lee filter
(Dataset1 (64.28±0.24), Dataset2 (65.54±0.86)), SRAD filter (Dataset1 (64.14±0.1425),
Dataset2(64.80±1.48)) and optimized Bayesian non local mean (OBNLM) filter (Dataset1
(64.85±0.76), Dataset2(65.27±0.65)). Likewise, CoC (Dataset1 (0.66), Dataset2 (0.52))
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and SSIM (Dataset1 (0.9994), Dataset2 (0.9995)) values of the BLSE filter with Canny edge
detector gives larger value than Lee filter, SRAD filter and OBNLM filter. The lowest values
of MSE (Dataset1 (0.025±0.003), Dataset2(0.020±0.006)) are obtained from Canny edge
detector with BLSE denoising filter compared to the Lee filter (Dataset1 (0.038±0.002),
Dataset2 (0.027±0.004)), SRAD filter (Dataset1 (0.031±0.004), Dataset2 (0.027±0.005))
and Optimised Bayesian Non Local Mean (OBNLM) filter (Dataset1 (0.034±0.005), Dataset2
(0.030±0.004)). From these results, Canny edge detection with BLSE filter achieved the
highest value of PSNR, CoC, SSIM and lowest value of MSE for the 50 carotid ultrasound
images.

3.4 Summary

We have proposed the use of BLSE filter in logarithmic space based on conditional poste-
rior sampling approach. The BLSE filter was compared with the state-of-the-art denoising
filters, and experimental results showed that BLSE filter gives better results as compared
to the other filter techniques. Based on the despeckling outputs, BLSE method gives better
results in terms of all performance matrices and exhibits efficient noise reduction and pre-
serves the edges as compared to other filters. Further, we have presented an automatic ROI
extraction for detection of carotid wall and applied different denoising filters to the extracted
ROI. Subsequently, the edges are extracted from the ROI using different edge detection op-
erators and compared with the results of edges extracted by edge operators of the original
image. The measured parameters PSNR, MSE, CoC and SSIM of BLSE denoising filter
with Canny edge detection achieves better performance as compared to the other denoising
methods.

—————————————————————————
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Chapter 4

AUTOMATIC SEGMENTATION OF
INTIMA MEDIA COMPLEX OF THE
COMMON CAROTID ARTERY

This chapter focuses on carotid wall segmentation of longitudinal carotid ultrasound images.
The speckle noise in carotid ultrasound images is reduced by making use of the state-of-
the-art denoising techniques, followed by the application of enhancement techniques to
increase the contrast. For better segmentation, we present novel ROI extraction approaches
for detection of the carotid wall boundaries. Subsequently, the techniques based on support
vector machine, wind driven optimisation and structured random forest classifier are applied
on ROI for segmentation of IMT of the CCA. The proposed methods are compared with
gradient-based methods such as model-based (MB), dynamic programming (DP), snake
segmentation (SS) algorithms, and classifier based segmentation using a neural network
(NN) algorithm.

4.1 Proposed method based on Support Vector Machine

In this Section, the speckle noise present in the carotid ultrasound images is reduced using
optimized BLSE filter which is proposed in the section 3.2, and enhancement is based on
TV−L1 norm to improve the robustness. Section 4.1.1 presents the automatic ROI extraction
for segmentation of the IMT of the CCA. The support vector machine (SVM) algorithm is
applied to the extracted ROI for measuring the IMT in the carotid ultrasound images which
is described in section 4.1.2. Finally, the quantitative evaluation for measurement of IMT is
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discussed in Section 4.1.3.

4.1.1 Automatic Extraction of the ROI

The ROI extraction is an important step for detection of boundaries of the image. In this
stage, the far wall is detected in the image and the area surrounding the far wall is considered
as our ROI. Initially, the original image of the CCA is cropped manually such way that no
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Figure 4.1: Outline of ROI extraction.

information about the image is lost. The contrast adjustment is to be made to the image so
that the low and high-intensity value pixels can be visualized much better. The overall block
diagram of automatic ROI extraction is shown in Figure 4.1 and each block is explained
below.

• Speckle Filtering and Enhancement Technique: Normally, carotid ultrasound im-
ages are affected by the random granular pattern of speckle, which occurs due to the
coherent nature of acquisition system. A speckle is a form of multiplicative noise
which affects the interpretability of the image by experts and automated tool. To re-
duce the speckle noise, we estimate the noise free data in logarithmic domain based
on BLSE approach using conditional posterior distribution. Figure 4.2(b) shows the
despeckling image of the carotid artery. The contrast enhancement technique im-
proves the visual appearance of the image by changing the pixel intensity of original
image (Zhang et al. (2014)Kim (1997)). The main objective of the enhancement is
to process an image so that the resultant image contains more relevant information
than the original image. In this work, TV-L1 norm (Ghita et al. (2013)) model is used
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4.2: Automatic extraction of ROI. (a) Original carotid longitudinal ultrasound image.
(b) Despeckle image using BLSE filter. (c) Enhancement using TV- L1 norm. (d) Dilation of
the image. (e) Erosion of the image. (f) Morphological gradient of the image. (g) Boundaries of
the watershed regions of the morphological gradient image over segmentation. (h) Boundaries
of the watershed regions of the morphological gradient image over segmentation resolved. (i)
Morphologically reconstructed image. (j) Largest Object in the lower half of the image. (k) ROI
cropped image.

for enhancement by applying a histogram warping process. Figure 4.2(c) shows the
enhanced image using TV-L1 norm.

• Morphological Gradient:

The morphological dilation followed by erosion is performed on the denoised image.
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For dilation and erosion, the structuring element as ’line’ with the length of 4 pixels
is used. The morphological gradient is calculated by taking the difference between
the dilation and erosion of a given image. In morphological gradient image, each
pixel value indicates the contrast intensity in the close neighborhood of the pixel.
The dilation, erosion and morphological gradient of the cropped image are shown in
Figure 4.2(d), 4.2e and 4.2f respectively. As we can observe in the Figure 4.2(f), the
morphological gradient of the image contains only the edges in the image.

• Watershed Transform:

The next step in the process after getting the morphological gradient is the applica-
tion of watershed transformation (Meyer (1994)). The watershed transformation is
applied to the morphological gradient image and the resultant image gives many wa-
tershed regions as shown in Figure 4.2(g), leading to over segmentation. To overcome
this problem, the sharp edges in the form of noise resulted in the lumen part of the
morphological gradient is reduced using Gaussian low pass filter. The over segmen-
tation of morphological gradient image is decreased but not entirely. The only way is
to suppress all the pixels in the intensity image whose depth is less than a particular
height. All the intensity pixels below certain height must be suppressed which de-
pends on the pixel values of the entire image. Hence, the height is changed adaptively
with the variance of the pixel values of the entire image. A binary image is built as
same dimension as the input carotid ultrasound image using the border lines of the
obtained watershed regions (see Figure 4.2(h)), which results in resolving the over
segmentation of morphological gradient image. Hence, we obtain the primary mask
in which only the boundaries of the watershed regions are white pixels.

• Binary mask:

To get the morphologically reconstructed image, the closed region in the primary
mask is filled using mathematical operation based on morphological reconstruction
algorithm (Gonzalez et al. (2004)). The obtained objects with larger areas are retained
in the mask and other objects are removed.

• Far wall extraction:

To identify the far wall, the reconstructed image of two largest objects as shown
in Figure 4.2(i) are to be identified first. After identifying the two largest objects,
consider the one which is in the lower half of the image as shown in Figure 4.2(j). The
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far wall can be easily detected by extracting the first non-zero pixel in each column
of the Figure 4.2(j) which is a binary image.

• Final ROI Image:

After detecting the far-wall, the boundaries of the ROI can be easily established. The
upper boundary is considered at 0.6mm above the uppermost point of far wall and the
bottom boundary is considered at 1.5mm below the lowest point. The spatial density
of the image 16.66 pixels/mm is multiplied to upper point and the lower point to get
the approximate number of pixels in boundaries. Thus, the size of ROI relies upon
the appearance of the carotid ultrasound image. Finally, the ROI is cropped based on
the obtained pixels, which is shown in Figure 4.2(k) and further processed to obtain
the final LI and MA interfaces to estimate the IMT.

4.1.2 Segmentation using SVM

Segmentation using SVM is also considered as a pattern identification problem. The clas-
sification of a pixel into IMT boundary pixel or non-IMT boundary pixel is carried out on
the basis of the pixel intensities in the neighbourhood of the pixel to be classified. SVM is
used for the boundary detection in the ultrasound images of Common Carotid Artery. The
MATLAB library that includes SVM, LIBSVM (Chang and Lin (2011)), is used to build
the model and predict the results. Radial Basis Function(RBF) is used as kernel for seg-
mentation of IMT in the carotid ultrasound images. The RBF kernel on two samples s and
s′, representing the feature vectors in some input space, is defined as (Vert et al. (2004)):

K(s, s′) = exp(
−||s − s′||2

2σ2 ) (4.1)

where ||s− s′||2 is recognized as the squared Euclidean distance between the two feature
vectors s and s′. The σ is recognized as a free parameter. The Eq.4.1 is simplified by
involving a parameter γ = 1

2σ2 and it is expressed as,

K(s, s′) = exp(−γ.||s − s′||2) (4.2)

In this case, the value of γ is considered as the number of features in the space. The
square window of size 9×9 is moved around the ROI image pixel by pixel. The square
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Table 4.1: Cross Validation of 49 ultrasound carotid images.

Cross Validation Training Testing Mean IMT
D1 25 Images 24 Images 0.72 (mm)
D2 24 Images 25 Images 0.60 (mm)

window gives selective information about the intensity values in the neighborhood central
pixel. Using the window, class of the centre pixel is defined on the basis of intensity values
of both centre pixel and all neighborhood pixels. The ROI is extracted for all the training
and testing images. A large dataset is formed by moving the 9x9 window over all the train-
ing images. This dataset is highly imbalanced and can not be used for training purpose.
Therefore, a balanced dataset is formed from this huge dataset by randomly selecting 7000
samples from all the IMT boundary pixels samples and by randomly selecting another 7000
samples from all the non-IMT boundary pixels. Finally, a balanced dataset of 14000 sam-
ples is formed. For learning process, the balanced dataset is further divided into training
data(50%) and testing data(50%). The test samples are used in order to infer the model
behaviour for unseen samples. The proposed method has been evaluated on the dataset us-
ing 2-fold cross validation. The dataset contains 49 images which are split into 25 training
images and 24 testing images. We randomly assigned images into two sets with one set
containing 25 images, named as D1 and another set containing 24 images, represented as
D2. Then, we train the classifier on D1 and test it on D2, followed by training on D2 and
testing on D1. The results of mean IMT of the proposed method for automatic segmentation
are tabulated in the Table.4.1 and final result is obtained by taking the average of mean IMT
value (D1 and D2). We can observe that every image in a total of 49 images is tested only
once and the mean IMT value across two fold cross validation is found to be 0.66. Finally,
the obtained IMT boundary pixels classified using the SVM model are overlapped over the
ROI image and boundary pixels which joined with each other.

4.1.3 Results

In this section, the quantitative evaluation of the achieved segmentation results is conducted
by comparing different state-of-art techniques with the proposed method. For our experi-
ment, we used 49 carotid ultrasound images which have been taken from the Cyprus Insti-
tute Nicosia (CyprusUniversity (2007)). The state-of-art algorithms have been implemented
in the MATLAB 2015a and simulated on Intel Core i7 processor with 4GB of RAM. The
experimental results of the proposed technique and recent techniques are tabulated in the
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Table. 4.2. The IMTmean is measured from (Eq.(2.7) using mean absolute distance met-
rics. The proposed algorithm is compared with the existing algorithms such as DP (Li et al.

(2014)), MB (Ilea et al. (2013a)), SS (Loizou et al. (2015)) and NN (Menchón-Lara et al.

(2014)).

(b)

(c)

(d)

(e)

(f)

(a)

Figure 4.3: (a) Original longitudinal carotid ultrasound sample image with manual delineation
from an expert. (b) Automated delineation using DP. (c) Automated delineation using MB. (d)
Automated delineation using SS. (e) Automatic segmentation using NN. (f) Automated delin-
eation using proposed method.

From the Table.4.2, the IMTmean± std of proposed SVM method (0.69± 0.19 (mm)) is
closer to the ground truth data (0.7068± 0.1837 (mm)) and shows superior performance in
terms of accuracy compared to the DP (0.68±0.12 (mm)), MB (0.67±0.11 (mm)), SS (0.68±
0.10 (mm)) and NN (0.64±0.16 (mm)). Figure 4.3 shows automated segmentation of IMT
on sample images of our dataset. Figure 4.3(a) depicts the original longitudinal carotid
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Table 4.2: Mean IMT values of automated segmentation (AS) method and the ground truth
(GT) for 49 carotid ultrasound images.

Evaluation Metrics DP MB SS NN Proposed
Method

IMTmean± std (mm)
(GT)

0.67 ± 0.17 0.67 ± 0.17 0.67 ± 0.17 0.67 ± 0.17 0.67 ± 0.17

IMTmean± std (mm)
(AS)

0.69 ± 0.13 0.70 ± 0.14 0.65 ± 0.10 0.64 ± 0.16 0.66 ± 0.12

R (refer Figure 4.4) 0.89 0.80 0.85 0.90 0.92

ultrasound sample image with manual delineation by the expert. Figure 4.3(b) illustrates
the automatic detection of LI and MA boundaries based on DP and we can observe that
boundaries of LI and MA are not detected properly owing to the variation in the pixel
intensities. Figure 4.3(c) illustrates the detection of boundaries using MB algorithm in
which the edges are not seen properly owing to the irregularities in the LI and MA borders.
Similarly, Figure 4.3(d) shows the automatic detection of LI and MA boundaries based
on SS method and it is observed that boundaries are not identified properly owing to the
evolution of parametric curve that leads to self-interaction of the boundaries. Figure 4.3(e)
presents the automatic detection of LI and MA boundaries using the Neural Network. The
major limitation of the neural network is that it takes more computational time compared to
the other methods. Figure 4.3(f) shows the automatic detection of LI and MA boundaries
using the proposed algorithm and it is observed that segmented IMT retains the boundaries.
For comparison with the proposed method, we implemented the MB algorithm, it uses
S max, is a parameter that sets the model variation above and below to allow the inclusion of
additional information in the ROI that will be necessary in the process of IMT reconstuction.
In MB (Ilea et al. (2013a)), for estimation of the height of ROI S max is set to 15 and Gaussian
kernel σ is set to 1.5 for adjusting the size of the Gaussian filter. In our work, we set S max

value as 30 and the Gaussian kernel is set to σ=1. In DP, the LI and MA boundaries are
estimated using the histogram approach using morphological operation. The threshold T ,
divides the pixels in the ROI into two clusters according to the intensity of each point. In
our experiment, the threshold value is set to 0.1. The morphological operations of dilation
followed by erosion have been used to fill the gaps and holes in the images. The structuring
element as ”line”, with the length of 10 pixels is used. The boundary is adjusted by DP using
curve evolution formula. The weights of curvature λ is recommended as -0.2 but in our
study we adopt -0.1.The ROI is convolved with a vertical direction first order derivative of
Gaussian kernel to get the edge map, where experimental results recommended a setting of
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Figure 4.4: Regression analysis plots comparing automated segmentation measurements with
manual measurement. (a) DP (b) MB (c) SS (d) NN (e) Proposed Method.

window size 10×10 with a standard deviation of 1 in both horizontal and vertical directions.
The 7×7 Gaussian kernel is used to achieve better results when trial and error with different
sizes of kernels are performed. The SS algorithm minimizes the energy function by using
external and internal energy forces. Experimental results recommend settings for the initial
values α =0.6, β =0.4, γ =2. In our work, the initial values α =0.4, β=0.3,γ=1.5 are chosen
to start the snake deformation because these values proved to be robust in all experiments
conducted in our study. For a neural network, a large imbalanced dataset is formed by
moving the 11x11 window over the training ROI images. The patterns are emphasized for
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Figure 4.5: Box plots comparing automated segmentation measurements with manual measure-
ment. (a) DP (b) MB (c) SS (d) NN (e) Proposed Method.

training since the dataset is large and highly imbalanced. Hence, a balanced dataset is to
be formed and it consists of 8,000 samples, out of which, 4000 samples belong to the class
of IMT boundary and other 4000 samples belong to the class of non-IMT boundary. For
the learning purpose, the data were randomly divided into three subsets, namely, training
data(50%), validation data(25%) and testing data(25%). The validation data is used for
network size selection and to stop criteria. The testing data is used to infer the network
behavior for new carotid ultrasound images. The prior probabilities are same for both the
classes in training and testing data. The hidden layer in the network used for the training
purpose consists of 20 neurons. In all these images, the segmentation algorithms are applied
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Table 4.3: Validation(out of 5) of ultrasound carotid images from the radiology expert.

Dataset Manual
measure

DP MB SS NN Proposed
method

Image 4.5 3.5 3 4 4 4.75

and measured with the validation metrics.

Radiology expert (with experience of 5 years) evaluated the segmented IMT for the im-
ages as shown in Figure 4.3 by giving a score out of 5 and the score are depicted in Table.4.3
(0-worst,5-best). Figure 4.4 presents the regression analysis of the manual IMT values ver-
sus automated IMT values. The equation ”y”(see Figure 4.4) predicts the automated seg-
mented value based on manually measured value. The Pearson correlation coefficient (R) is
calculated from Eq.(2.9), which is used to determine the strength of the relationship between
automatic segmentation and ground truth measurement data. The achieved results further
confirm the better performance of the proposed method over existing methods. Figure 4.5
illustrates the box plot of automatically segmented and ground truth data for 49 carotid ul-
trasound images. The spacing of the points between boxes shows the degree of dispersion
and skewness of the data. To estimate the non-parametric significance test between the auto-
matic and manually measured IMT values, Wilcoxon rank sum test (P-value) is applied for
49 measured images. The calculated P-value for the proposed method is 0.21, which shows
that no significant difference between the automated and ground truth data measurements.
Finally, we conclude that the segmentation based on SVM is desirable for clinical diagnosis
of IMT, because of high agreement between automatic and manual segmentation.

4.2 Proposed method based on Wind Driven Optimization
technique

Section 4.2 starts with a brief background of wind driven optimisation (WDO) algorithm
for segmentation of IMC of the CCA. The speckle noise is reduced using OBNLM filter and
TV − L1 norm is used to increase the contrast. Section 4.2.2 explores the novel automatic
ROI extraction for detection of IMC boundaries in the carotid wall. In section 4.2.3, we ap-
ply a multi level otsu thresholding objective function to the extracted ROI for segmentation
of IMT based on WDO algorithm. Section 4.2.4 presents the results of proposed method

59



and are compared with the results of state-of-the-art methods. Finally, in section 4.2.5, the
experimental analysis of the proposed method and state-of-the-art methods is discussed.

4.2.1 Background of Wind Driven Optimization Technique

WDO is a modern algorithm inspired from nature. The word wind pertains to move-
ment of the air in the horizontal direction, especially in the lower layer of the earth at-
mosphere. WDO is a populace based iterative heuristic global optimization algorithm
(Bayraktar et al.,2013) that can be applied for multi-modal and multi-dimensional prob-
lems. The WDO algorithm employs terms that are based on gravitation, pressure gradient,
friction and Coriolis forces. The four forces provide robustness, extra degrees of freedom
to fine tune and ability to impose constraints on search space. In the atmosphere, temper-
ature variations at different locations create different air pressures and densities at different
locations (Thompson,1998). The variation in the temperature horizontal deviation in air
pressure cause the air to moves from a high-pressure area to a low-pressure area at a veloc-
ity, which is relative to a pressure gradient. The WDO algorithm is formulated with some
assumption and simplification. The starting point of WDO is influenced by Newtons sec-
ond law of motion, which gives proper results when applied to atmospheric motion analysis
(Ahrens,2012). The law of motion states that the total force applied on it causes the air
parcel to accelerate with an acceleration of α and the direction of acceleration is same as
that of force applied as given by (Bayraktar et al.,2013):

ρα =
∑

Find (4.3)

Here ρ denotes the density of the infinitesimally small air parcel and Find denotes individual
forces acting on the air parcel. Ideal gas law provides the relation between density ( ρ) and
the Pressure (P) as follows(Bayraktar et al.,2013):

P = ρRT (4.4)

where P denotes the pressure, R is ideal gas constant and T is the absolute temperature of
the air. For simplicity, H is used as a product of R and T .

The total of four forces enclosed in Eq.(4.3) that initiates the air parcels motion in a
specific direction at a certain velocity. The velocity with which the movement takes place
is directly proportional to the pressure gradient. The pressure gradient (P) is calculated as
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the pressure difference between the two locations and is given by(Bayraktar et al.,2013):

Fpressure = −4PδV (4.5)

where δV represents the finite volume of the air parcel and Fpressure represents the force
due to the pressure gradient. Here the negative sign signifies descending direction.

The wind is influenced by several forces out of which the friction force F f riction plays
an important role. The magnitude of the force is directly proportional to the velocity of the
parcel, but it opposes the motion of the particle. The frictional force is governed by the
following equation:

F f riction = −µρu (4.6)

where µ is the coefficient of friction and u is the velocity of the particle. Another important
force that acts on an air parcel is the gravitational force (Ahrens,2012). The gravitational
force is proportional to the mass of the parcel which in turn is equal to the product of the
density and the volume of the parcel. The gravitational force is given by:

Fgravity = ρδVg (4.7)

where g is the acceleration due to gravity. A major force that affects the wind is the Coriolis
force, which is caused due to the rotation of the earth and defined by the following equation:

Fcoriolis = −2Ω × u (4.8)

where Ω represents the rotation of the earth and u velocity of the wind. According to
the Newtons second law of motion given in Eq.(4.3), which can be rewritten as(Bayraktar
et al.,2013):

ρ
4u
4t

= ρδVg − 4PδV − µρu − 2Ω × u (4.9)

For simplicity acceleration term written as a = 4u
4t ,a time step 4t = 1 and replace ρ with P

H .
For an infinitesimally small, dimensionless air parcel, we set δV =1, which simplifies the
Eq.4.9 to (Bayraktar et al.,2013):

4u = g − 4P
H

Pcurr
− µu − (

2Ω × uH
Pcurr

) (4.10)

Consider 4u as unext − ucurr, where ucurr is the velocity in the current iteration and unext is the
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velocity in the next iteration. The gravitational force is always directed towards the centre
of the Earth. The force is directed towards the origin from the current position is taken as:

g = |g|(0 − lcurr) (4.11)

Pressure gradient is calculated as the difference in the pressure at current location of an
air parcel and the optimum pressure and the direction is from the current location to the
optimum location (lopt). Hence, the pressure gradient is:

4P = |Popt − Pcurr|(lopt − lcurr) (4.12)

where Popt is the optimum pressue value, Pcurr is pressure of the air parcel at the current
location, lopt is location of the air parcel and lcurr is the position of the air parcel with
optimum pressure. The Eq.4.10 can be arranged as:

unext = (1 − µ)ucurr − glcurr + (H|
Popt

Pcurr
− 1|(lopt − lcurr)) + C

uperp

Pcurr
) (4.13)

where C is −2|Ω|H, unext is the updated velocity, ucurr is current velocity of air parcel and
uperp is the velocity of the same air parcel but taken in another dimension which is chosen
randomly. The values of the pressure are explicitly used in the Eq.4.13. This leads to
a problem where the next velocity may become too high, because of the pressure values
especially the objective function values in our context. In order to avoid that, this method
follows a ranking system where air parcels with best pressure are given a rank (r) = 1 and
the air parcel with second best pressure is given a rank of 2 and so on. The Eq.4.13 when
ranks are used can be written as (Bayraktar et al.,2013):

unext = (1 − µ)ucurr − glcurr + (H|
1
r
− 1|(lopt − lcurr)) + c

uperp

r
) (4.14)

Here ranking system is used instead of directly using the pressure values, unext obtained
can sometimes go to very high or low values which results in some values being skipped
out of the search space. To prevent that, the unext velocities are limited to specific maximum
(umax) and minimum (umin) values:

unext =

umax, if unext > umax

−umax, if unext < −umax

(4.15)
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The new position can be found as:

lnext = lcurr + unext (4.16)

Even when the velocities are limited, the positions of the particles may exceed the limits of
search space. The new position of the particles prevented by limiting lnext between lmax and
0.

lnext =

lmax, if lnext > lmax

0, if lnext < 0
(4.17)

4.2.2 Proposed Methodology

(a) Ultrasound Image Data Acquisition
We used two different datasets: dataset 1 and dataset 2. Dataset 1 consisted of 100

images collected from the Cyprus Institute of Neurology of Nicosia (CyprusUniversity
(2007)); of these images, 65 were used for this experiment and the remaining 35 were
neglected because of their poor visual quality. The images were acquired using an ATL
HDI-3000 ultrasound machine used with a linear probe with a frequency range of 4-7 MHz.
The Dataset 2 consisted of 25 images collected from the Father Muller Medical College
Hospital, Mangalore, India. These images were acquired using a Philips HD-11 XE ultra-
sound scanner covering a frequency range of 7-12 MHz. Total Ninety B-mode longitudinal
images were used for the performance evaluation of the proposed and existing methods.
The images from dataset 1 were captured with a resolution of 768 × 576 pixels, whereas
those of dataset 2 were recorded with a resolution of 800 × 564 with 256 gray levels, and
the images were re-sampled at a standard density of 16.62 pixels/mm. Textual marks were
removed in order to facilitate the smooth processing, and the original ultrasound images
were automatically cropped into a size of 395 × 295 pixels.
(b) Automatic Extraction of the ROI

In ultrasound images, because of the speckle noise, the quality of the images is degraded
and the contrast is reduced. The speckle present in an ultrasound image is reduced using
an OBNLM filter ( Coupé et al. (2009)). The image is then enhanced by the TV- L1 norm(
Ghita et al. (2013)) using a histogram equalization technique. The overall block diagram of
the automatic ROI extraction method is shown in Figure 4.6 and each block is explained as
follows.

• Speckle Filtering Technique:
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Figure 4.6: Outline of ROI extraction.

Carotid ultrasound images are affected by speckle noise, which degrades their quality.
The OBNLM filter suppresses the multiplicative noise by the effective utilization of
the optimally tuned parameters of grayscale images. This filter is an extension of the
NLM filter, in which the image pixels are restored by a weighted average of the pixels
of the non-local neighbourhood pixels. An example of a despeckling image is shown
in Figure 4.7(b).

• Image Enhancement:

The contrast enhancement (Zhang et al. (2014)) technique improves the visual ap-
pearance of an image by changing the pixel intensity of the original image. The main
objective of the enhancement is to process an image so that the resultant image con-
tains more relevant information than that of the original image. In this work, TV-L1

norm (Ghita et al. (2013)) model was used for the enhancement by applying a his-
togram warping process. Figure 4.7(c) shows an enhanced image using this model.

• Morphology Operation:

Morphological functions are used to clean the edges which are generated by a binary
process (see Figure 4.7(d)). A morphological opening function is applied to elimi-
nate the gaps and fill the holes in the plaque contour, and various structuring elements
can be used to close the contour (Gonzalez and Woods (2004)). In this experiment,
a morphological area opening with a larger size was used to remove the smaller ob-
jects, which can be seen in Figure 4.7(e). Because of the area opening, there was a
possibility of breakage in the plaque contour. To overcome this problem, we used
dilation with a structuring element of disk size 2 to seal the plaque contour. As can
be seen in the bounded box in Figure 4.7(f), the near wall of the carotid artery was
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Figure 4.7: Automatic extraction of ROI. (a) Original carotid longitudinal ultrasound image. (b)
De-speckled image using OBNLM filter. (c) Enhancement using TV- L1 norm. (d) Conversion
of the binary image with automatic thresholding procedure. (e) Area opening for removing small
objects. (f) Dilation for to seal the plaque contour. (g) Canny edge detection. (h) Extraction of
the near and Far wall. (i) Automatic ROI extraction.

sealed because of the dilation operation. A similar sealing effect can be seen on the
far wall; hence, we could easily extract the near wall and the far wall when we applied
a Canny edge detector.

• Canny Edge Detection:

Canny operators (Bao et al. (2005)) smooth the data by means of Gaussian convo-
lution and then perform the edge detection operation. This operation provides an
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accurate representation of the true edges of the artery while helping to eliminate the
creation of false lines due to speckle noise in the image. The Canny operator yields
an input grayscale image and creates an output image showing the position of tracked
intensity discontinuities. Figure 4.7(h) shows the detection of edges using the Canny
operator.

• Boundary Extraction:

The near-wall and far-wall boundaries are extracted by searching for a random point
in the lumen region using the minimum sum of the column spanning index. The
random point is moved upward and downward until the high-intensity gray-scale
value(255) is found. With this value, the near-wall and far-wall boundaries are ex-
tracted based on the region properties (Regionprop (2002)). The extracted boundaries
are shown in Figure 4.7(g).

• Far Wall Detection:

In a carotid ultrasound image, the IMT is estimated at the far-wall region because
measuring it at the far wall is more reliable than that performed at the near wall. Once
we located the random point on the far-wall line, a region covering 30 pixels upward
and 30 pixels downward was extracted. Finally, the ROI was cropped for further
segmentation, as shown in Figure 4.7(i).

(c) Segmentation Based on Otsu Thresholding Method

Threshold-based segmentation is the simplest method for image segmentation and is an
effective way of partitioning the foreground and background regions. In this work study,
we used the Otsu’s objective function, which is a thresholding-based image segmentation
method that uses the inter-class variance to identify the optimal threshold. In our exper-
imental analysis, Otsu’s objective function for multilevel thresholding was employed for
the segmentation of the IMC using the WDO algorithm. Otsu’s method enables easy com-
putation and takes considerably less time compared to the existing thresholding methods.
This threshold-based segmentation method was applied to the ROI. In our experiment, the
carotid ultrasound images were segmented using three different thresholds (L = 3), thereby
segmenting the images into four classes. However, finding the threshold values was an ex-
haustive problem. The objective function (Otsu’s function) had to be computed for each
value of the threshold and the one that yielded the maximum objective function value had
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to be considered as the optimum threshold. It was computationally inefficient as all val-
ues from 0 to L (255) had to be calculated. To overcome this problem, we used multilevel
thresholding for the segmentation to measure the IMT using Otsu’s function. Otsu’s objec-
tive function for the multilevel thresholding problem is given as Otsu (1975):

ot(t) =

L−1∑
i=0

σi (4.18)

where, L represents the number of thresholds, σi = ωi(mi − mT )2 represents the multi
class variance, ωi =

∑t j+1

i=t j
p(i) represents the probability of pixels in multi-classes, t j is the

jth threshold value, mT =
∑L−1

i=0 ip(i) is the mean intensity of the image, and mi =
∑t j+1

i=t j

ip(i)
ωi

is the mean intensity of the jth class. The values of t j, which maximizes ot(t) as in Eq.(4.18)
were considered as optimum threshold values. Several optimization techniques are available
that improve the computational efficiency of the problem of finding the optimum threshold
values. Among all optimization techniques, the WDO algorithm was used in the experimen-
tal analysis as it provides better results compared to the existing optimization techniques.

4.2.3 WDO for the Optimization of Otsu’s Function

This work proposes to use the WDO technique for the estimation of the IMT based on Otsu’s
thresholding technique. The WDO algorithm is an iterative heuristic algorithm, which has
advantage such as reduction of the computational time required for the problem by limiting
the maximum number of iterations and the size of each iteration and by setting boundaries
for the solutions. The step-by-step process of the WDO algorithm is depicted in the flow
chart shown in Figure 4.8. The WDO algorithm starts with the initialization of the param-
eters which are related to the optimization of the objective function (Eq.(4.18)) such as the
number of air parcels, number of iterations, RT, g, µ, C co-efficients, velocity boundaries,
number of thresholds(L) and the parameters used in this experiment, which are tabulated in
Table.4.4. The population of the air parcels and the velocities are assigned randomly after
the optimization parameters are built up. In the next step, the pressure (objective) function
values of each air parcel with its current position are evaluated. The population is ranked on
the basis of the measured pressure values, and all the particle velocities are updated from
Eq.(4.16), and these are restricted according to Eq.(4.17).

Each particle in the population is assigned a new position lk
i+1 in the next iteration ac-

cording to Eq.(4.18), and the new positions are prevented from the search space by utilizing
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Figure 4.8: Flowchart of WDO implementation.

Eq.(4.17). Pressures are calculated for the air parcels at their new positions after updating
these positions. The above procedure is iterated until the maximum number of iterations is
reached. In the final stage, the position of the parcel with the best(maximum) pressure at
the end of the last iteration is noted as the best solution for the problem.

4.2.4 Results

In this section, the experimental results obtained using the various segmentation algorithms
on carotid ultrasound images are presented. In this experiment, 90 carotid ultrasound images
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Table 4.4: Parameters used for the WDO:

Parameter Value
Population size 20
L - Number of threshold level 3
Maximum number of iterations 200
RT Coefficients 3
g - Gravitational Constant 0.2
µ- Coefficient of friction 0.4
C - Constant in Coriolis effect 0.4
umax - maximum velocity 70
lmax - maximum position value 255

were used for the IMT measurement. The segmentation algorithms were implemented in
MATLAB version 2015a and tested on a machine with an Intel Core i7 processor and 2 GB
of RAM. The performance of the proposed threshold-based segmentation using the WDO
algorithm was compared with those of the existing algorithms such as MB algorithm (Ilea
et al. (2013a)), DP algorithm (Li et al. (2014)), and SS (Loizou et al. (2014)) algorithm.
From Table.4.5, we can see that the IMTmean ± std for WDO is (0.690 ± 0.210 mm), which is
closer to the ground truth data (0.704 ± 0.216 mm). This shows the superior performance of
the proposed method in terms of accuracy when compared with the MB (0.739±0.187 mm),
DP (0.728±0.189 mm), and SS (0.713±0.206 mm) algorithms. The IMTmean was measured
from Eq.(2.7) using the MAD metrics. The IOE was estimated from Eq.(2.11) using the
standard deviation of each measurement and provided the differences in the interpretation
between the manual and the automated measurement. The Pearson R value was calculated
from Eq.(2.9) which was used to determine the strength of the relationship between the
automatic segmentation measurement data and the corresponding ground truth data. The R
value (as seen in Figure 4.13) of the proposed method was 0.98 which was higher than that
of the MB(0.90), DP (0.94), and SS (0.95) algorithms. The CV estimated from Eq.(2.10)
and by the proposed method (21.4%) was very close to the manually measured CV (21.5%)
and it shows the amount of variability relative to the mean for both cases are almost same.
The CV of the MB(17.8%), DP(18.2%), and SS(20.3%) algorithms was not closer to the
manual measurement. Hence, the amount of variability relative to the mean was far away
from the ground truth. The IMTmean values of the proposed method were closer to the
ground truth data and R value was higher compared to that of the existing techniques.

Figure 4.9 shows the automated segmentation of the IMT on a sample image on dataset
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Table 4.5: Mean IMT values, R-correlation co-efficient, IOE-intra observer error, CV-
coefficient variation and mean bias of automated method and the ground truth for 90 carotid
ultrasound images.

Validation

Measures

Ground

Truth

MB DP SS Proposed

Method

IMTmean± std
(mm)

0.704±0.216
(mm)

0.739±0.187
(mm)

0.728±0.189 (mm) 0.713±0.206 (mm) 0.690±0.210
(mm)

IOE 0.152 0.132 0.133 0.145 0.148

CV% 21.5 17.8 18.2 20.3 21.4

R(refer Fig.4.13) - 0.9075 0.9403 0.9571 0.9829

Bias(refer
Fig.4.11)

- -0.03 -0.02 -0.01 0.01

1. Figure (4.9(a) depicts the original longitudinal carotid ultrasound sample image with
manual delineation by an expert. The automatic detection of the LI and MA boundaries
using the MB algorithm is illustrated in Figure (4.9(b). It can be observed that, with the
MB algorithm, the edges of the LI and MA boundaries were not properly detected owing
to the irregularities in these boundaries. Similarly, Figure (4.9(c) and Figure (4.9(d) show
the automatic detection of the LI and MA boundaries based on the DP and SS methods,
respectively. In DP approach, owing to the variation in the pixel intensities, the detection
of the LI and MA interfaces was not proper whereas in the SS owing to the evolution of the
parametric curve, the detection leads to self-interaction and instabilities in the LI and MA
boundaries. Figure (4.9(e) presents the automatic detection of the LI and MA boundaries
using the proposed algorithm. It was observed that the LI and MA boundaries preserved
the edges and that the estimation of the IMT was robust. Similarly, the IMC was segmented
automatically for the longitudinal carotid ultrasound sample image of dataset 2 using the
proposed as well as the existing algorithms, as shown in Figure 4.10.

The Bland-Altman plot in Figure 4.11 shows the mean IMT versus the IMT difference
values between the automatic segmentation and the ground truth, and it is recommended
that 95% of the data points should lie within the ±2 SD of the mean difference; other-
wise, they are considered as outliers. The mean bias(0.01 mm; see Figure 4.11) of the
proposed method was the smallest compared to that of the existing methods, which shows
that the IMT computed by the existing techniques was more likely to be thicker than that
manually measured by an expert. The negative IMT measurement bias of the MB (-0.03),
DP(-0.02), and SS (-0.01) algorithms shows that the computer based methods underesti-
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(a)

(c)

(b)

(d)

(e)

Figure 4.9: (a) Original longitudinal carotid ultrasound sample image of Dataset1 with man-
ual delineation from an expert. (b) Automated delineation using Model-based approach. (c)
Automated delineation using Dynamic programming. (d) Automated delineation using Snake
contour. (e) Automated delineation using proposed method.

mated the IMT. Figure 4.12 illustrates the box plot of the mean values of the MB, DP, SS,
and of the proposed method calculated for all 90 carotid ultrasound images for the auto-
matically segmented and ground truth data. The interquartile range (IQR) was estimated in
the box plot to measure the statistical dispersion based on the partition of the dataset into
an upper quartile and a lower quartile. The calculated IQR values of the MB(0.14mm),
DP (0.19mm), SS (0.17mm) and proposed method (0.17mm) with respect to the ground
truth data(0.18mm) show that the proposed method achieved comparable results with the
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(a)

(b)

(c)

(d)

(e)

Figure 4.10: (a) Original longitudinal carotid ultrasound sample image of Dataset2 with manual
delineation from an expert. (b) Automated delineation using MB approach. (c) Automated
delineation using DP. (d) Automated delineation using SS approach. (e) Automated delineation
using proposed method.

state-of-the-art techniques. Figure 4.13 presents the regression analysis of the manual IMT
values versus the automated IMT values. In the equation, y(see Figure 4.13) predicts the au-
tomated segmented value based on manually measured value and R measures the strength
of the linear association between the two measurements. To estimate the non-parametric
significance test between the automatic and the manually measured IMT values, we applied
the Wilcoxon rank sum test (P-value) (Oyeka and Ebuh (2012)) to the 90 measured images.
The calculated P-value for the proposed method was 0.28, which shows that there was no
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Figure 4.11: Bland Altman plots of the mean against the difference in the IMT mean values es-
timated for 90 carotid ultrasound images (automatic segmentation corresponding to the ground
truth data). a) MB b) DP c) SS d) Proposed Method.

significant difference between the automated and the ground truth data measurement (any
p >0.05 indicates that there was no significant deviation between the automated and the
ground truth data measurement).

4.2.5 Discussion

The aim of this study was to automatically measure the IMT in carotid ultrasound images
by the effective utilization of threshold-based segmentation using the WDO method. The
experimental analysis described in the previous section shows that the proposed automatic
IMT segmentation yielded better results compared to other existing techniques. Our ap-
proach was compared with some of the existing methods such as MB method, DP method,
and SS method. The MB algorithm used the statistical vascular model to estimate the LI and
MA boundaries from which the IMT was measured without any user interaction. In the MB
approach, for the height of the ROI estimation, S max was set to 15 and the scale σ was used
to adjust the size of the Gaussian filter. The initial edge detection was executed when the
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Figure 4.12: The mean intima-media thickness calculated for the database of 90 carotid
ultrasound images for the automatic segmentation (IMT mean AS) and ground truth data
(IMT mean GT). a) MB b) DP c) SS d) Proposed Method.

scale of the Gaussian kernel was set to σ=1.5. In our experiment, the S max value was set to
30 and the Gaussian kernel σ=1 was chosen for better measurement of the IMT interfaces.
The ROI was extracted using the proposed method before applying the DP algorithm. The
LI and MA boundaries were estimated using the histogram approach employing a morpho-
logical operation. In our experiment, the T1 threshold was taken as the first valley point of
the histogram of the respective image, as recommended. The morphological operations in-
clude dilation followed by erosion which were used to fill the gaps and holes in the images.
In our experiment, a structuring element of line type was chosen, which had a length of 10,
although the experimental result recommended the size of the structuring element to be 15.
The boundary was adjusted by DP using a curve evolution formula and the recommended
value of the weight of curvature (λ ) was -0.2. However, in our study, -0.1 was used for bet-
ter accuracy. The ROI was convolved with a vertical directional first order derivative of the
Gaussian kernel to obtain the edge map, where experimental results recommended a setting
of 10×10 with a standard deviation of 1 in both the horizontal and the vertical directions.
The Gaussian kernel of size 7×7 was found to offer better results after trial and error with
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Figure 4.13: Regression analysis plots comparing automated segmentation measurements with
manual measurement. a) MB b) DP c) SS d) Proposed Method.

different sizes of the kernels. The SS algorithm minimizes the energy function by using
external forces and has a number of visual problems such as edge detection, lines, and sub-
jective contours. For the measurement of the snake parameters α and β, we considered the
irregular spacing between the snake contour points. Experimental results recommended the
following settings for the initial values α =0.6, β =0.4, and γ =2. In our work, the initial val-
ues of α =0.4, β=0.3, γ=1.5, step size=1, and iterations=100 were chosen to start the snake
deformation because these values proved robust in all experiments conducted in our study.
The optimal performance of WDO was achieved by properly choosing the values of various
coefficients: RT, g, C and µ. In Eq.(4.14), the friction co-efficient(µ) and the gravitational
force co-efficient(g) were varied in the range [0, 1]. However, RT and C could be varied
to a larger extent and were allowed to vary in the range [0, 5] during the observation. The
friction co-efficient µ was set to 0.4, whereas the RT and C values were chosen as 3 and 0.4,
respectively, for the experiment. For each trial, a population size of 20 air parcels was opti-
mized for a maximum of 200 iterations, and umax was set to 70. Because, the next velocity
(unext) was directly dependent on the product of the gravitational force constant(g) and the
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Table 4.6: Validation(out of 5) of ultrasound carotid images from the radiology expert.

Images Manual
measure

MB DP SS Proposed
method

Dataset 1 4.5 4 3.75 4.25 4.75
Dataset 2 4.5 3.5 4.25 4 4.75

current position (lnext), as shown in the Eq.(4.17), the gravitational force constant was set to
0.2, which was smaller than the other coefficients. In our experiment, 8-bit grayscale images
were used, and, therefore, the maximum position allowed for each parcel(lmax) was set to
be 255. The Bland-Altman plot is useful for highlighting the possible bias in the IMT mea-
surement. As shown in Figure 4.11, the data points (IMT values) of the proposed method
lie within the ±2 SD of the mean difference compared to those of the existing approaches.
The implemented techniques showed a negative IMT measurement bias, which means that
the computer-based methods underestimated the IMT. The box plot shown in Figure 4.12 is
useful for illustrating the data distribution and for identifying outliers. The spacing between
the points in the box shows the degree of dispersion and skewness of the data. Figure 4.13
presents the regression analysis of the ground truth IMT mean values versus the measured
IMT values. Most of the points in the proposed method fit into the linear line as compared
to the those of the existing methods. It shows that the measurements of the automatically
segmented data were highly correlated to the ground truth data. A radiology expert (with
experience of 5 years) evaluated the segmented IMT as shown in Figure 4.9 and Figure 4.10
by giving a score out of 5, and the scores are shown in Table.4.6 (0-worst,5-best). These
results further confirmed the better performance of the proposed method over the existing
methods. The existing segmentation algorithms have some limitations. In the SS algorithm,
the existence of acoustic shadowing with strong speckle noise impeded the visual and auto-
matic analysis of the ultrasound images. Dynamic programming includes boundary features
such as intensity gradient, echo intensity, and boundary continuity that are dependent on the
ultrasound scanner used and on its settings. Therefore, training is needed when the scanner
is changed. The MB technique does not allow the improvement of robust mechanism that
implements a reliable measurement of the LI and MA boundaries. The key contribution of
this work is a novel approach for a fully automatic ROI extraction in carotid ultrasound im-
ages. In previous works (Yang (2014)), edge-based segmentation was commonly used for
evaluating the IMT; in this study, however, we used a threshold-based segmentation method
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for a robust measurement of the IMT using the WDO algorithm.

4.3 Proposed method based on Structured Random Forest

Edge detection is a primary image processing technique used for object detection, data
extraction, and image segmentation. Recently, edge-based segmentation using structured
classifiers is receiving increasing attention. The speckle present in the ultrasound images is
reduced using a Weiner filter in the wavelet domain; followed by an enhancement technique
based on adaptive gamma correction (AGC), which is applied to improve the robustness
before segmentation. Section 4.3.1 briefly discuss about the related work on edge based
segmentation based on structured random forest (SRF). In section 4.3.2, we present a novel
ROI extraction for segmentation IMT of the CCA and applied pre-trained SRF classifier to
the extracted ROI for quantifying the IMT. Finally, section 4.3.3 explains the comprehensive
results of the proposed method with respect to the state-of-the-art methods and discussion
with an experimental analysis is presented in section 4.3.4.

4.3.1 Related Work on Structured Random Forest

Edge detection is the primary component of several types of tasks such as object detection,
image segmentation, and active contouring (Malik et al. (2001)). Traditional approaches
for edge detection make use of a variety of features such as brightness, contrast, texture
gradient, and color (Xiaofeng and Bo (2012)). In the past decades, edge-detection methods
have made use of several learning techniques for image segmentation (Zheng et al. (2010)).
The learning approaches involve the consideration of an image patch and estimation of the
likelihood that the center pixel will contain an edge (Arbelaez et al. (2011)). The edges
in the image patch are more interdependent and are designed in the form of straight and
parallel lines. Recently, the structured learning approach has been applied to the problem
existing similar characteristics (Nowozin et al. (2011)). The fast edge detection using a
learning-based classifier has been receiving increasing attention. In the past few years, sev-
eral methods have been implemented using a learning-based technique for the detection of
edges (Mairal et al. (2008)). The boosted classifier is used to label each pixel independently
based on its neighborhood image patch as an input (Dollar et al. (2006a)). Ren et al. in Ar-
belaez et al. (2011) improved this result by computing the gradient across the learned sparse
codes of the patch gradients (Xiaofeng and Bo (2012)). Zheng et al. (2010) proposed the use
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of a learning-based approach for the detection of object boundaries and demonstrated results
of specific object detection. Lim et al. proposed the use of sketch tokens using supervised
mid-level information for edge detection in the form of hand-labeled images (Lim et al.

(2013)). Among all, structured learning prediction deal with the problem of mapping learn-
ing approach to input or output spaces randomly representing bounding boxes, sequences,
and object pose (Taskar et al. (2005),Blaschko and Lampert (2008)). Kontschieder et al.
in (Kontschieder et al. (2011)) introduced structured class labels for learning random for-
est and semantic labels for an image patch referred to as the output label. The structure
information evaluates the split function in each branch of the tree using decision tree class
labels. The information gain measures are evaluated by mapping structured labels to a dis-
crete space. The classification problem is addressed by using a supervised SRF.

4.3.2 Proposed Methodology

(a) Dataset description
The images were acquired using the ATL HDI 3000 ultrasound machine, which has a

frequency range of 4–7 MHz. The frames were captured at a resolution of 564 x 800 pixels
and resampled at a standard density of 16.66 pixels/mm. Textual marks were eliminated,
and the images were cropped to a size of 395 × 295 pixels. For our experiment, we used a
dataset from the Cyprus Institute of Neurology of Nicosia (CyprusUniversity (2007)). The
dataset consists of 100 images, of which 70 images are used to evaluate the performance of
the proposed and existing methods. The remaining 30 images were ignored because of their
poor visual quality.
(b) Automatic Extraction of the ROI

The block diagram of the automatic ROI extraction is shown in Figure 4.14, and each
block is explained below.

• Speckle Filtering

In carotid ultrasound images, speckle noise and artefacts cause image degradation
in several medical image modalities. The degradation of the image has a significant
impact on human interpretation and the accuracy of the computer-assisted methods.
In literature, several methods have been developed for reducing the speckle noise in
the ultrasound image. In a carotid ultrasound image, speckle noise is a multiplicative
noise that degrades the image quality by concealing the fine structures. In our experi-
ments, the multiplicative noise is converted into additive noise by using a logarithmic
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Figure 4.14: Outline of ROI extraction.

transformation. It is assumed that the distribution of additive noise is very close to
Gaussian noise distribution. Usually, the Gaussian noise is preferred because it cor-
responds to quadratic data term, which is linear and easy to solve. The quadratic data
terms are convex and lead to the global minima. The traditional denoising techniques
require a significant amount of execution time because of the iterative processes in-
volved. To solve this problem, we propose the use of Wiener filtering in the wavelet
domain (Zong et al. (1998)). The Wiener filter smoothens the image while retaining
the edges, and performs ROI extraction significantly faster than other similar tech-
niques. A detailed explanation is provided in Algorithm 1. A block diagram of the
despeckling filter is illustrated in Figure 4.15, and an example of a despeckling image
are shown in Figure 4.16(b).
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Figure 4.15: Block diagram of denoising method.
.

• Image Enhancement:
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Algorithm 1 The steps for despeckling.
Input: Carotid noisy image.
Output: Denoised image.

Initialization:
1: The ultrasound carotid image has a multiplicative speckle noise that is converted into

an additive noise by using a logarithmic transformation.
2: Orthogonal two-level wavelet decomposition is performed on the Gaussian noise dis-

tribution.
3: The Wiener filter is applied to each high sub-band as shown in the highlighted red line

in Figure 4.15, and it is defined as (Zong et al. (1998));

Is(u, v) = m +
σ2 − n2

σ2 (I(u, v) − m)

where m and σ2 are the local mean and variance of each pixel of the image I(u, v), and
n2 is the noise variance. Is(u, v) represents the high sub-bands LH, HL, and HH.

4: For each of the sub-bands, the soft thresholding is calculated based on the following
formula (Zong et al. (1998));

Io(u, v) =


Is(u, v) − t, if Is(u, v) > t
Is(u, v) + t, if Is(u, v) 6 −t
0, if |Is(u, v)| < t

where t is the threshold.
5: The LL sub-band remains unchanged in the wavelet decomposition.
6: Finally, the image is reconstructed from the denoised wavelet coefficient by performing

an inverse discrete wavelet transform, which is followed by an anti-log transformation.

The main purpose of the enhancement is to process an image such that the resultant
image contains more relevant information than the original image. This work pro-
poses the use of AGC (Huang et al. (2013)) for image enhancement. AGC makes
use of the cumulative density function (cd f ), and the normalized gamma function is
applied to modify the transformation curve without losing any statistical information.
The point transformation on pixel value i is expressed as (Huang et al. (2013)):

T (i) = imax(i/imax)γ (4.19)

where i denotes the intensity of each pixel in the input image and is transformed
as T (i), and imax is the maximum intensity of the input. The weighting distribution
function is calculated in order to modify the histogram of the image as follows (Huang
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Figure 4.16: Automatic extraction of ROI. (a) Original carotid longitudinal ultrasound im-
age. (b) De-speckled image using Wiener filter in the wavelet domain. (c) Enhancement using
adaptive gamma correction. (d) Conversion of the binary image with automatic thresholding
procedure. (e)Area opening for remove smaller objects. (f) dilation is for filling gaps and holes
in the plaque contour. (g) Edge detection using canny operator. (h) The cropped canny edge
detected an image. (i) Center point is detected based on maximum zeros lies on the vertical line.
(j) Near-wall extraction. (k) ROI extraction.
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et al. (2013)):

Pw(i) = Pmax(
P(i) − Pmin

Pmax − Pmin
)α (4.20)

where α represents the adjusted parameter, which is set to 0.6. P(i) represents the
probability density function of the histogram of an image, where Pmax and Pmin re-
spectively represent the maximum and minimum values. cd f is obtained as follows
(Huang et al. (2013)):

cd f (i) =

255∑
i=0

Pw(i)∑
Pw

(4.21)

where the sum of Pw is calculated as
∑

Pw =
∑255

i=0 Pw(i), and the adaptive parameter
γ is estimated based on cd f . In order to enhance the carotid ultrasound image using
Eq.4.19, γ is modified as follows (Huang et al. (2013)):

γ = 1 − cd f (i) (4.22)

The enhanced denoised image thus obtained is shown in Figure 4.16(c). After en-
hancing the image, the resultant image is converted into a binary image based on the
thresholding process (Nagaraj et al. (2018)).

• Morphological Module and Center Point Detection:

The morphological operation is applied to the binary image and a detailed explanation
of the morphological module and center point detection is described in Algorithm 2.

(a) (b) (c)

p

q

Figure 4.17: (a) Selection of line in the binary image for detection of a center point. (b) The
intensity profile of the column denoted by a vertical line in the binary image. (c) The vertical
line is differentiated based on positive peak p and negative peak q.
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Algorithm 2 The steps for center point detection.
Input: Enhanced image.
Output: Center point detection.

Initialization:
1: The enhanced image is converted into a binary image using the adaptive thresholding

technique, as shown in Figure 4.16(d).
2: The large morphological area opening is applied to the binary image in order to remove

the small objects, as illustrated in Figure 4.16(e).
3: The structuring element of disk size 2 is applied in order to eliminate the gaps and seal

the plaque contour using a dilation operation, as depicted in Figure 4.16(f).
4: The edges are extracted using the Canny edge-detection technique, as shown in Figure

4.16(g).
5: In order to detect the center point, the vertical profile line in the binary image is analyzed

to find the maximum number of continuous zeros, as shown in Figure 4.17(a).
6: The intensity on line ”t” is then differentiated, as shown in Figure 4.17(b), and the

general expression of differentiation is thus obtained as d = t − (t − 1).
7: After the differentiation, the locations of the positive and negative peaks are determined

and respectively denoted as p and q, as shown in Figure 4.17(c).
8: The starting location of the long-spanning zeros is found by using L = max(q− p), and

the center location is chosen to be 10 pixels away from the starting location.
9: Finally, the borders of some pixels are eliminated to separate the connected edges, as

shown in Figure 4.16(h) and the center point is detected from the vertical profile line,
as shown in the Figure 4.16(i).

• ROI extraction:

Typically, IMT thickness is estimated in the far wall region, because IMT measure-
ments from the far wall are more reliable than those obtained from the near wall
(Molinari et al. (2010b)). Hence, the random point is moved downward from the
center point until the high-intensity grayscale value (255) is detected, as depicted
in Figure 4.16(i). Using the high-intensity grayscale value, the far wall is extracted
based on the connected line from the detected pixel. The extracted far wall is shown
in Figure 4.16(j). Thereafter, the image region contained within 30 pixels above the
line and 30 pixels below the line is extracted. Finally, the ROI is cropped for further
segmentation, as shown in Figure 4.16(k).

(c) Structured Random Forests for IMT segmentation
The SRF represents an image patch x from a feature space X, which is given by x ∈ X,

and encodes the corresponding local image patch y in the feature space Y , which is given
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by y ∈ Y (Dollar et al. (2006b)). The training of structured labels using the random forest
poses two main challenges. First, the dimension of the structured output spaces is complex
in nature. Thus, scoring several candidates splits over the structured labels is prohibitively
expensive. Second, the information gain over the structured labels is not well defined. In
a structured forest, the structured labels y ∈ Y are mapped to the discrete set of labels c ∈

C for a given node. For the given set of labels C, the information gain is estimated directly
and efficiently over C, which can serve as a proxy for the information gain over the struc-
tured labels Y . Furthermore, the resultant of each node effectively influences the training
procedure of the existing random forest in the learning of the structured forest. The struc-
ture output spaces used for edge detection and estimating the similarity over Y are not well
defined. Alternatively, the feature space Y is mapped to an intermediate space Z such that
the Euclidean distance can be easily measured. The SRF method uses mapping from Y→Z

followed by the mapping of Z→C. Z is a high-dimensional domain and thus presents a
computational challenge. In order to reduce the dimensionality of the Z domain, principal
component analysis (PCA) is used. The PCA is used for denoising Z such that it approxi-
mately preserves the Euclidean distance. Subsequently, the information gain is defined by
the entropy (Criminisi et al. (2012)) for the continuous formulation of the Z domain. The
drawback is that the ensemble model is unable to incorporate the novel labels such that any
prediction y∈ Y will be observed during the training. Indeed, it is not possible without in-
formation regarding Y , and the use of a specific ensemble model is preferable. The detailed
explanation of the edge detection using SRF is given in Algorithm 3 and pictorial represen-
tation of ensemble training model is shown in Figure 4.18. Further, details of the SRF are
available in (Dollár and Zitnick (2013)).

In this work, the problem of predicting local edge masks in a structured learning frame-
work that is applied to random decision forests has been formulated. The standard infor-
mation gain is then estimated in learning decision trees by mapping structured labels to
a discrete space. In our experiment, all data must be divided into training and testing;
however, owing to the lack of a dataset, the experimental results reflect poor performance.
Hence, the pre-trained edge model of the BSDS500 segmentation dataset is used (Dollár
and Zitnick (2013)). The dataset comprises 300 images, which include color and grayscale
images. Two hundred images are used for training and each image has hand-labeled ground
truth contours. The learning approach anticipates a 16× 16 structured segmentation mask
from a larger image patch of 32× 32. The training dataset begins with the augmentation
of each image patch with multiple additional channels of information, thus resulting in a
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Figure 4.18: Pictorial representation of an ensemble of independent trees in the training pro-
cess.

feature vector x ∈ R32×32×C, where C is the number of channels. From the dataset BSDS500,
a total of 3328 candidate features of x, and a set of gradient channels for computing three
color channels in the CIE-LUV color space along with a normalized gradient magnitude
are used at two scales. In addition, each gradient magnitude channel split into 4 channels
based on orientation. As a result of total 13 channels are used, among all 3 for color, 2
for magnitude and 8 for orientation channels. The pairwise difference features also com-
puted by applying large triangle to blur each channel and downsample at a resolution of
5×5. Sampling all candidate pairs and computing their differences yields an addition of 300
candidate features per channel and it results in a total of 7228 candidate features. Using the
pre-trained model, the mean IMT value is estimated to be 0.66 for 70 test images. Further-
more, the average processing time for the automatic segmentation of the IMC was obtained
0.47s. The test samples are used in order to derive the model behavior for unseen samples.
During the testing, the number of trees in the forest to be trained is eight, the maximum tree
depth is 64, and the number of trees to be evaluated per location and computation thread
is four. The obtained IMT boundary pixels that are classified using the structured forest
model are overlapped over the ROI image, and the boundary pixels are joined together to
obtain meaningful boundaries. The mean of the IMT (IMTmean) is estimated by measuring
the mean absolute distance (MAD), which is defined as follows (Molinari et al. (2010b)):

IMTcalpixels =
1
N

(
N∑

i=1

(xi1 − xi2)) (4.23)

where IMTcalpixels is the mean of a number of pixels between the two boundaries, N is
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Algorithm 3 Edge detection using structured random forest
Input: Input image is any kind of objects.
Output: Outputs are structured objects.

Initialisation :

• x̂ : Feature vector of input image patch.

• y: Structured label space.

• xk: The kth feature in x.

• t:Threshold

• h(x, k, t): Split function.

• Y: Structured space where information gain not well defined.

• C: Discrete space where information space is good defined.

• Z: Intermediate space where similarity measurement is easy to compute.

1: Compute for each node based on mapping form which is defined as:
π : Y → Z, Z → C.

2: After the mapping, we have a training set of feature vector C.
3: Pick a feature x j and a threshold t which maximize the information gain.
4: Combining predictions:

-To compute y1,y2,..yn ∈ Y into a prediction:

• Compute zi= π ψ(yi) of dimension m.

where m is the medoid, which minimize the sum of distances to all zi.

• Select yk, whoose zk= argminzk

∑
i, j(zk j − zi j)2 is the medoid.

5: Finally, Compute the edge map from the segmentaion masks.

the number of columns in the image, and xi1 and xi2 are the two IMT boundary pixels in the
columns, between which the number of pixels is calculated as follows :

IMTcal = IMTcalpixels ∗
1

S R

The calculated value of IMTcalpixels must be multiplied by the inverse of the spatial
resolution (SR) of the images, which is equal to 16.66 pixels/mm, in order to obtain the
IMT in mm.
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4.3.3 Results

The experiment is conducted using 70 carotid ultrasound images to estimate the perfor-
mance of the proposed segmentation algorithm. The results were compared with the state-
of-the-art methods such as the MB (Ilea et al. (2013b)), DP( Li et al. (2014)), SS (Loizou
et al. (2014)), threshold-based WDO (Nagaraj et al. (2018)), and (NN) (Menchón-Lara et al.

(2014)) based algorithms.
(a) Example on Sample Images

In order to ensure good generalization capability in existing algorithms such as the DP,
MB, SS, WDO, and NN algorithms, six heterogeneous sample images from various CCA
orientations were chosen for the purpose of comparison. Figure 4.19 shows the manual de-
lineation performed by the expert and the automated segmentation of the IMT on six sam-
ple longitudinal carotid ultrasound images. Figure 4.19(a) depicts the ground truth sample
images with manual delineation performed by an expert clinician. The automated segmen-
tation of the LI and MA boundaries obtained using the DP, MB, SS, WDO, NN algorithms,
and the proposed method are illustrated in Figure 4.19(b), (c), (d), (e), (f), and (g), re-
spectively. The LI and MA boundary representations obtained by the DP algorithm are
comparatively less accurate (see Figure 4.19(b)), owing to the pixel intensity variation in
the image. The MB algorithm could not properly detect the edges of the IMT, as shown
in Figure 4.19(c), owing to the irregularities in the IMC. Figure 4.19(d) shows the segmen-
tation obtained using the snake contour; it is observed that the parametric curve evolution
results in the self-interaction of the LI and MA boundaries. The boundary edges obtained
by the WDO algorithm are not properly connected because of the lack of fine-tuning of the
update equation coefficient, as shown in Figure 4.19(e). The NN algorithm fails in slating
IMCs with weak boundaries, as depicted in Figure 4.19(f). Overall, the proposed method
retains the details of the image and exhibits robustness in the estimation of the IMT in the
LI and MA boundaries, as shown in Figure 4.19(g).
(b) Accuracy Performance

The average IMT value (IMTmean) is estimated using Eq.(4.23) by measuring the mean
absolute distance between the LI and MA boundaries. Table 4.7 shows that the IMTmean ±

std of the proposed method ( 0.66±0.14 mm) was closer to the ground truth value (0.67±0.15
mm) as compared with those of the state-of-the-art techniques. The PD metric (from Eq.2.8)
also used for measuring the distance between LI and MA boundaries. The result of PD met-
ric is tabulated in the Table 4.7 and it can be observed that IMTmean value of PD metric gives
a poor performance as compared to the IMTmean value of MAD metric because most of the
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Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Ground Truth DP MB SS

(a) (b) (c) (d)

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Ground Truth WDO NN Proposed Method

(e) (f) (g)

Figure 4.19: Manual delineation from an expert and Automated segmentation IMT using DP,
MB, SS, WDO, NN and Proposed method of longitudinal carotid ultrasound six sample images.

images in our dataset have straight and horizontal lines. The PD metric gives better results
for curved or inclined nature of images Molinari et al. (2010b). The CV of the proposed
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Table 4.7: Mean IMT values, CV-coefficient variation, R-correlation co-efficient, mean bias
and execution time of automated method and the ground truth for 70 carotid ultrasound images.

Metrics GT DP MB SS NN WDO Proposed

Method

IMTmean± std
(mm) (MAD)

0.67±0.15
(mm)

0.70±0.14
(mm)

0.69±0.12
(mm)

0.68±0.13
(mm)

0.64±0.13
(mm)

0.65±0.13
(mm)

0.66±0.14
(mm)

IMTmean± std
(mm) (PD)

0.67±0.15
(mm)

0.71±0.12
(mm)

0.70±0.14
(mm)

0.69±0.13
(mm)

0.62±0.17
(mm)

0.63±0.13
(mm)

0.65±0.11
(mm)

CV% 15.83 14.14 12.29 13.51 14.36 14.13 14.99

R (refer Fig 4.22) - 0.78 0.88 0.85 0.77 0.91 0.92

Bias (refer Fig
4.21)

- -0.02 -0.02 0.004 0.03 0.02 0.01

Execution
time(Sec)

- 2.98 3.196 2.45 5.69 1.95 0.47

method (14.99%) was calculated using Eq.(2.10) and was found to be closer to the ground
truth (15.83%) as compared with those of other methods. This shows that the amount of
variability relative to the mean is almost the same for the proposed method and ground truth
values. The Pearson correlation coefficient R (as shown in Figure 4.22) was estimated us-
ing Eq.(2.9); the R-value of the proposed method was 0.92, which was higher than the R
values of the state-of-the-art techniques. The mean biases of the proposed method (0.01
mm; Figure 4.21) and SS (0.004 mm) were the lowest as compared to the other methods,
which shows that the estimated IMTs obtained using the other methods were thicker than
the ground truth. Figure 4.20 illustrates the box plot of automatically segmented and ground
truth data for all 70 carotid ultrasound images. The interquartile range (IQR) is calculated
for the box plot in order to quantify the statistical dispersion based on the division of the
dataset into upper and lower quartiles. The IQRs of the DP algorithm (0.18 mm), MB al-
gorithm (0.16 mm), SS algorithm (0.18 mm), WDO algorithm (0.16 mm), NN algorithm
(0.19 mm), and proposed method (0.17 mm) are estimated with respect to the ground truth
data (0.17 mm), and it was found that the proposed method shows results that are compa-
rable to those of the other techniques. Figure 4.21 shows the Bland–Altman plots of the
mean IMT values versus the difference in the average IMT values between the ground truth
and automatic measurements. In the Bland–Altman plot, the centerline illustrates the mean
difference (0.01); the top and bottom lines depict the limits of the agreement lying between
0.12 mm and -0.10 mm; these are referred to as the mean ± 2 SD (standard deviation) of the
difference. The plot in Figure 4.21(f) shows that 95% of the data points lie on the ±2 SD of
the mean difference as compared with other methods, and some data points lying outside the
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Figure 4.20: The mean IMT (using MAD metric) calculated for the database of 70 carotid
ultrasound images for ground truth data (IMT mean GT) and the automatic segmentation
(IMT mean AS) of DP, MB, SS, NN, WDO, and proposed method(PM).

±2 SD are considered as outliers. Figure 4.22 presents the regression plot of the automated
segmentation IMT values versus the ground truth IMT values. As specified in Figure 4.22,
the equation “y” anticipates the automated segmented value based on the ground truth value
and correlation coefficient R, which provides the best fit between the automated value and
the ground truth value. The majority of the points in the proposed method fit into the linear
line, which was not the case in the existing methods.
(c) Parameter Settings

Our approach has been compared with some existing techniques such as DP,MB,SS,
WDO, and NN methods. The parameters used for the state-of-the-art algorithms are tabu-
lated in the Table.4.8. In the NN algorithm, all the pixels are incompatible for training as the
dataset would be highly imbalanced. To obtain a balanced dataset, we used 8000 patterns,
among which 4000 were classified as the IMT boundary while the remaining samples were
classified as the non-IMT boundary. Using the dataset, the NN was evaluated via two-fold
cross-validation. It is observed that each of the 70 images was tested only once and that
the mean IMT value across two-fold cross-validation was 0.64. The prior probabilities of
the training and test data were the same as in each of the classes. The hidden layer in the
network used for the training purpose comprised 20 neurons.
(d) Execution time

In medical image processing, execution time is an important metric for measuring the
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Figure 4.21: Bland Altman plots of the mean against the difference in the IMT mean values
(automatic segmentation corresponding to the ground truth data) (using MAD metric). a) DP b)
MB c) SS d) NN e) WDO f)Proposed Method.

running time of an algorithm. From Table.4.7, it can be observed that the average execution
time of the proposed method (0.47 s) is less than that of the DP (2.98 s), MB (3.196 s), SS
(2.45 s), WDO (1.95 s), and NN (5.69 s) algorithms. It must be noted that these average
execution times are recorded during the testing of a single unknown image. The state-of-
the-art algorithms were implemented in MATLAB R2015a and tested on a machine with an
Intel(R) Core(TM)-i7 processor with 8 GB of RAM.

4.3.4 Discussion

The main objective of the work is to quantify the IMT automatically in carotid ultrasound
images by effectively utilizing fast edge detection based on a structured prediction process.
The experimental analysis described in the previous section show that the proposed au-
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Figure 4.22: Regression analysis plots comparing automated segmentation measurements with
manual measurement (using MAD metric). a) DP b) MB c) SS d) NN e) WDO f) Proposed
Method.

tomatic IMT segmentation gives better result compared to state-of-the-art methods. Figure
4.21 Bland-Altman plot is useful for highlighting the possible bias in the IMT measurement.
The negative bias of the DP and MB algorithms shows that computer methods underesti-
mate IMT. Figure 4.22 presents that the measurements of the automatically segmented data
were highly correlated to the ground truth data. We applied the Wilcoxon rank sum test to
the 70 measured images in order to estimate the non-parametric significance between the
automatic and ground truth IMT values. The calculated Wilcoxon rank sum test value for
the proposed method is 0.21, which shows that there is no significant difference between
the automated and ground truth data measurements (any Wilcoxon rank sum test value that
is >0.05 indicates that there is no significant deviation between the automated and ground
truth data measurements). Radiology experts (with five years of experience) evaluated the
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Table 4.8: Parameter setting used for Dynamic programming, Model based, Snake segmenta-
tion and WDO algorithms.

DP
Parameters r λ d k
Values used in (Li et al. (2014)) 15 −0.2 20 10 × 10
Values used for our experiment 10 −0.1 16 7 × 7

MB
Parameters S max σ

Values used in (Ilea et al.
(2013b))

15 1.5

Values used for our experiment 30 1.0
SS

Parameters α β γ stepsize iterations
Values used in (Loizou et al.
(2015))

0.6 0.4 2 − −

Values used for our experiment 0.4 0.3 1.5 1 100
WDO

Parameters P N i RT g µ C umax lmax

Values used in (Nagaraj et al.
(2018))

20 3 200 3 0.2 0.4 0.4 70 255

Values used for our experiment 20 3 200 3 0.2 0.4 0.4 70 255

Table 4.9: Validation(out of 5) of ultrasound carotid images from the radiology experts.

Dataset Manual measure DP MB SS WDO NN Proposed method

Expert 1 4.5 4.25 3.8 4.4 4.65 4.3 4.8

Expert 2 4.5 3.9 3.55 4.25 4.4 4.25 4.75

Expert 3 4.5 4.05 3.7 4.15 4.5 4.15 4.85

segmented IMT as shown in Figure 4.19 by providing a score out of 5, which is presented
in Table.4.9 (0 = worst and 5 = best). Table.4.10 shows the results of other published tech-
niques for measuring the IMTs of carotid ultrasound images. It is important to note that
obtaining a direct comparison of various techniques is difficult owing to the dependence
on image quality, number of images used for the experiment, measurement protocol, and
characteristics of the results. In addition, most of the methods are not completely automatic,
and the automated ones consider a fixed spatial resolution for the image. The major issue
related to the segmentation is poor visibility of the carotid ultrasound image owing to the
patient variation with respect to the structure and mechanical properties of the arterial wall,
speckle noise and irregularity associated with the LI and MA boundaries caused by the non-
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Table 4.10: Summary of IMC segmentation algorithm using other techniques

Author Images Used IMT(Manual/GT) (mm) IMT (Method) (mm) Automatic
Liang et al. (2000) 50 0.88± 0.25 0.93±0.25 No

Liguori et al. (2001) 20 0.92± 0.19 0.92±0.20 No
Gutierrez et al. (2002) 30 0.63 ± 0.12 0.72 ± 0.14 No
Loizou et al. (2007) 100 0.67± 0.16 0.68±0.12 No
Faita et al. (2008) 150 0.56± 0.14 0.57±0.14 No

Molinari et al. (2010a) 182 0.92± 0.30 0.75±0.39 Yes
Molinari et al. (2012) 365 0.95± 0.39 0.91±0.44 Yes

Xu et al. (2012) 50 0.63± 0.14 0.65±0.16 No
Ilea et al. (2013a) 772 (frames) 0.60± 0.11 0.60±0.10 Yes

Menchón-Lara et al. (2014) 60 0.64± 0.19 0.61±0.19 Yes
Li et al. (2014) 100 0.67± 0.12 0.69±0.12 Yes

Loizou et al. (2015) 976 0.74± 0.20 0.73±0.20 No
Li et al. (2016a) 224 0.75± 0.24 0.76±0.24 No

Proposed Method et.al 70 0.67± 0.15 0.66±0.14 Yes

optical orientation of the ultrasound probe during the image acquisition. To address these
problems, which are common in the analysis of CCA ultrasound data, we proposed to use
SRF classifier algorithm. The state-of-the-art algorithms have some limitations. The SS in-
cludes acoustic shadowing with strong speckle noise that impedes the visual and automatic
analysis of the ultrasound images. DP does not perform well in cases involving curved
IMCs with weak boundaries. The MB technique does not allow the development of a ro-
bust mechanism that implements a reliable measurement of the LI and MA boundaries. The
WDO algorithm outperforms other algorithms when its update equation coefficient receives
fine-tuning. In NNs, the problem of overstraining always exists because minimizing the
error measurement occasionally does not correspond to finding a well-generalized NN. Fi-
nally, our approach is well suited for IMC segmentation, and it facilitates a new application
for high-quality edge detection.

4.4 Summary

In this chapter, we have presented different types of segmentation algorithms for measure-
ment of IMT of the CCA. In the method based on SVM, the speckle noise has been reduced
by using optimized BLSE filter and the enhancement based on TV − L1 norm has been ap-
plied to improve the robustness. Whereas in the method based on WDO algorithm, OBNLM
filter is used to reduced the speckle noise and the enhancement based on TV − L1 norm has
been applied to increase contrast of the image. These two proposed methods, takes a larger
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amount of execution time for ROI extraction because of iterative processes involved. To
overcome this problem, we used Weiner filtering in wavelet domain for speckle reduction
and AGC has been used for the enhancement to improve the robustness. After speckle re-
duction and enhancement, ROI is extracted for segmentation of IMC of the CCA. In this
work, totally three different types of ROI extraction is presented for detection of carotid
wall. Among three types of ROI extraction, the one which is used for segmentation of
IMC based on SRF gives faster and accurate results because of less iterative process in-
volved. The proposed algorithms give better results in terms of performance metrics such
as coefficient of variation, correlation coefficient, and IMTmean ± std as compared to the
state-of-the-art techniques.
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Chapter 5

CONCLUSIONS AND FUTURE
WORK

5.1 Conclusions

Among the most common causes of death in majority of the countries, strokes rank third.
About 80% of all stroke are ischaemic. The rupture of atherosclerotic plaques in the carotid
artery is the major reason for ischemic strokes. Thus, there is an urgent need for better tech-
niques for diagnosing patients at risk of stroke, and delivery of immediate treatment. The
changes occurring in the carotid artery can safely be monitored via non-invasive imaging
modality such as ultrasound imaging. However, since the manual measurement process is
tedious and prone to error, automated software systems need to be developed which can
measure the wall thickness and diameters of the carotid artery. The development of such
automated systems was the primary objective of this research.

The main aim of this work was to carry out a comparative evaluation of despeckle fil-
tering and compare them with several edge detection techniques with respect to the preser-
vation of edges. As a pre-processing step, a robust denoising filter BLSE was proposed to
reduce the speckle noise in ultrasound images by projecting it into the logarithmic space.
Whereas, one of the widely accepted methods, OBNLM, was adopted in our work to re-
duce the speckle noise in ultrasound images. The speckle present in ultrasound image was
reduced using different denoising filters and the results were compared with edge detec-
tion techniques in terms of edge preservation. In all images, the proposed BLSE algorithm
achieved better results in terms of image resolution and edge delineation. The measured pa-
rameters PSNR, MSE, CoC and SSIM of BLSE denoising filter with canny edge detection
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achieved better performance as compared to edge detection of other denoising methods. The
visual information obtained from Figures (3.1,3.3,3.2,3.4) in chapter 3 indicate that the pro-
posed denoising techniques yield better results as compared to existing methods. Contrast
enhancement based on TV − L1 norm and AGC techniques are used for improving the ro-
bustness of the image. Further, we proposed three new approaches for fully automatic ROI
extraction for detection of carotid wall. The ROI extraction based on BLSE and OBNLM
denoising filter takes longer processing time because of the iterative process involved. To
overcome this problem, we proposed Weiner filtering in wavelet domain for faster ROI ex-
traction. The proposed segmentation techniques such as threshold-based WDO, SVM and
SRF are robust for segmentation of IMC of the CCA. The measured parameters such as the
coefficient of variation, correlation coefficient, and IMTmean ± std of the proposed methods
showed better performance when compared to those of the existing methods. Based on the
simulated data and visual inspection of the segmented outputs obtained from the Figures
(4.3,4.9,4.10,4.19) in chapter 4 indicate that proposed segmentation approaches yield good
results as compared to state-of-the-art methods. Further, among all the proposed methods,
SRF exhibits superior result of IMTmean± standard deviation of 0.66mm±0.14, which was
closer to the ground truth value 0.67mm±0.15 and takes an average of 0.47s processing
time for the segmentation of IMC. Finally, experimental results demonstrated that the pro-
posed segmentation techniques offer better quantitative and qualitative results as compared
to other tested techniques reported in the literature. The segmentation results were also
verified by different medical experts. Mean of ratings given by all three medical experts
for segmentation results are above the average value. Hence, the proposed methods provide
a very effective and robust fully automated technique for the measurement of IMT of the
CCA.

5.2 Future Work

The proposed image based measurement system yields a significant tool for stroke and
cardiovascular risk stratification. Significant technical and clinical progress can still be
made in the field of carotid artery segmentation. The major challenge in the future will be
the development of completely automated integrated systems. The future work is proposed
in the following areas: 3D imaging, video segmentation and carotid artery segmentation in
GPU framework.

3D imaging: The diagnostic performance may improve by applying the proposed tech-
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niques used in this work to 3D ultrasound images (Zahalka and Fenster (2001)). Although
3D vascular imaging is very promising in revealing vascular structure and pathology, further
work is needed in the directions of fast and accurate free hand scanning, semi automated and
automated segmentation, user-friendly visualisation, and 3D texture analysis. Advances in
these directions will enable wide spread use of 3D imaging in clinical diagnostics.

Video segmentation: The advent of powerful video systems nowadays allow medical
video to supplement earlier imaging techniques, where medical video is used in various
medical image analysis applications. Video imaging in medicine is important because it
allows the expert to review the procedure and re-evaluate the initial diagnosis. The advan-
tage of medical video imaging is the possibility of having multiple views and it allows a
3D reconstruction of the carotid artery (K. R. Subramanian (2000)). Generally, video seg-
mentation of carotid artery is used to estimate the motion of boundaries of the plaque and
classify the motion of the plaque in normal or abnormal cases.

Carotid artery segmentation in GPU framework: The important issue regarding
modern segmentation algorithms is the computational cost. This results from different fac-
tors such as size of the image, number of sampling points and multi resolution algorithms.
Further, some algorithms use complex iterative steps to achieve high accuracy for measure-
ment. This in turn requires more processing power than conventional simple approaches
which are straight forward. To avoid this limitation, a well known parallel computing archi-
tecture, GPU (graphical processing unit), can be utilized which provides excellent comput-
ing performance gain (up to 54 times faster than the parallel CPU implementation). More-
over, the technology used to develop these GPUs may vary based on the degree of versatility
to be executed in different platforms. Finally, we hope that the performed research will con-
tribute towards the advancement of medical imaging and processing technologies.
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Monedero, J. Larrey-Ruiz, and J.-L. Sancho-Gómez (2015). Frequency-domain ac-
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