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This study involves the effect of adiabatic obstacles on two-
dimensional natural convection in a square enclosure using
lattice Boltzmann method (LBM). The enclosure embodies square-
shaped adiabatic obstacles with one, two, and four in number.
The single obstacle in cavity is centrally placed, whereas for other
two configurations, a different arrangement has been made such
that the core fluid zone is not hampered. The four boundaries of
the cavity considered here consist of two adiabatic horizontal
walls and two differentially heated vertical walls. The current
study covers the range of Rayleigh number (103 � Ra � 106) and
a fixed Prandtl number of 0.71 for all cases. The effect of size of
obstacle is studied in detail for single obstacle. It is found that the
average heat transfer along the hot wall increases with the
increase in size of obstacle until it reaches an optimum value and
then with further increase in size, the heat transfer rate deterio-
rates. Study is carried out to delineate the comparison between
the presences of obstacle in and out of the conduction dominant
zone in the cavity. The number of obstacles (two and four) outside
of this core zone shows that heat transfer decreases despite the
obstacle being adiabatic in nature. [DOI: 10.1115/1.4041875]

Keywords: natural convection, square cavity, lattice Boltzmann
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1 Introduction

Lattice Boltzmann method (LBM), a mesoscopic approach,
which does not trace an individual molecule but tracks particle
distributions or represents collective behaviors of individual mole-
cules is relatively a different discipline of computational fluid
dynamics—absolutely one of a kind [1]. The origin of this method
comes from a Boolean automata model known as the lattice gas
automata (LGA) [2,3]. This method considers the movement and
the collision of the particles in and around the lattice link to simu-
late the phenomenon of fluid flow. No sooner the LBM method
was developed, this approach started gaining popularity as an
alternative to well-established traditional computational fluid

dynamics methods owing to its advantages over traditional
approach of solving Navier–Stokes equation, ease of implementa-
tion, parallel computing, and simple handling of complex bounda-
ries [4]. LBM has also been used to study some complex
phenomena viz. turbulent flows [5], magneto-hydrodynamics [6],
multicomponent flows over complex boundaries [7], and multi-
phase flow with phase change [8]. The success of simulating iso-
thermal flows with this method is parallel to none. In this context,
Massaoli et al. [9] were the first to develop thermal model of
LBM by using a passive scalar approach for temperature.

The study of natural convection in an enclosure has grabbed
massive attention because of its huge engineering and industrial
applications. Solar power collectors, heat exchangers, crystal
growth in liquids, processing of food and material, storage of
grain, and safety of nuclear reactors are the areas of some of its
applications [10,11]. The physics governing such buoyancy-
driven flow often becomes complicated with the coupling between
the fluid and thermal transport phenomena. Heat transfer in an
enclosure with a body at the center also has relevance in modeling
of baffle as a heat transfer controlling device [12] and in construc-
tions of building in natural cooling flow [13]. It is seen that the
central core of the stagnant fluid hinders the convective heat trans-
fer in the cavity. The study by Bhave et al. [14] explores the cav-
ity with single adiabatic obstacle and concluded that there exists
an optimum size of obstacle where the heat transfer enhancement
takes place due to convection. However, above that solidity ratio,
deterioration in the heat transfer was observed. Similarly, Merrikh
and Mohamad [15] also used adiabatic obstacle in the enclosure
as means of heat transfer enhancement. However, House et al.
[16] restricted themselves in the qualitative studies of centrally
placed solid body with different conductivities on the enclosure
but their study lacked the strict quantification.

Xu et al. [17] carried out an experiment to observe thermal
flow around a square obstruction in a differentially heated cavity.
Merrikh et al. [18] studied the comparison between the pore level
and porous medium model for natural convection in a nonhomo-
geneous enclosure. David and Laurat [19] drew an analogy
between wall channeling effects in porous media as well as in
thermal convection loop. Roslan et al. [20] analyzed the conjugate
natural convection heat transfer in a differentially heated square
enclosure containing a conductive polygon obstacle. Ha et al. [21]
used a spectral multidomain method to handle a square obstacle
located at the center of enclosure. Hussain and Hussein [22] inves-
tigated the effect of inserting a rotating cylinder at different loca-
tions vertically inside a differentially heated square cavity. From
the literature review, it is observed that the effect of multiple
obstacles at different locations using Lattice Boltzmann method is
not studied.

In the present work, different number of obstacles in a square
enclosure is considered. In the case of single obstacle, various
sizes of obstacle are considered and optimum size is obtained for
higher heat transfer rate. The primary objective is to demarcate
the comparison between the presences of obstacle in and out of
the conduction dominant zone in the differentially heated square
enclosure. Results are obtained for various Rayleigh numbers for
all the cases at fixed Prandtl number. The laminar flow with
steady-state condition is considered for the present study.

2 Problem Description

The schematic of the problems considered in this study is
shown in Figs. 1(a)–1(c). In all cases, the top and bottom walls of
the cavity are adiabatic while the side walls are at isothermal con-
ditions. The left side wall (T¼ Th) is at higher temperature than
the right side wall (T¼ Tc). All the boundaries (walls) of the cav-
ity are stationary. Three different cases are considered based on
the number of obstacles. First, the code is validated for a cavity
without obstacle. Next, case 1 is studied with the centrally placed
single obstacle inside the center of the cavity as shown in
Fig. 1(a). Further, the effect of the size of the obstacle is studied
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Fig. 1 Schematic of the cavity with boundary conditions: (a) single obstacle, (b) two obstacles, and (c) four obstacles

Fig. 2 D2Q9 Lattice arrangement
Fig. 3 Change in dimensionless vertical velocity at different
lattice sizes
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with respect to parameter / (the ratio of height of the obstacle (L)
to the height of the cavity (H), i.e., /¼ L/H). In case 2, the study
is extended for two adiabatic obstacles placed at the midheight of
the cavity with its width H/8 as shown in Fig. 1(b). Furthermore,
case 3 deals with the cavity with four numbers of obstacles pres-
ent in it as shown in Fig. 1(c). The size of the obstacle is equal to
the size as discussed in case 2.

2.1 The Lattice Boltzmann Equation. The present work
uses LBM to simulate momentum and energy transfer. LBM gov-
erning equations for velocity and temperature fields are shown in
discretized form in Eqs. (1) and (2), respectively [19]. The two-
dimensional D2Q9 model is employed to solve fluid flow and tem-
perature fields in the bounded domain. D2Q9 refers to a kind of
lattice arrangement where D represents space dimension (2: for 2
dimensions) and Q represents the number of discrete velocities (9:

for 9 directions). Each lattice node comprises eight neighbors con-
nected by eight links as shown in Fig. 2

fi xþ ciDt; tþ Dtð Þ � fi x; tð Þ ¼ �
fi x; tð Þ � f eq

i x; tð Þ
sv

þ DtFi (1)

Fig. 4 Isotherms at different lattice sizes

Fig. 5 Streamline patterns of different Ra: (a) Ra 5 103, (b) Ra 5 104, (c) Ra 5 105, and (d)
Ra 5 106

Table 1 Lattice size independence test for Ra 5 104

Pr¼ 0.71

Lattice size Nu0 % change in Nu0

51� 51 2.1713 –
101� 101 2.2139 1.962
201� 201 2.2161 0.099
401� 401 2.2170 0.040
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geq
i ¼ w0iT x; tð Þ 1þ ciu

c2
s

� �
(2)

The equilibrium distribution function for velocity and temperature
can be written as

f eq
i ¼ wiq 1þ 3

ciu

c2
þ 9

2

ciu½ �2

c4
� 3

2

u:u

c2

� �
(3)

geq
i ¼ wiT x; tð Þ 1þ ciu

c2
s

� �
(4)

where fi; f
eq
i , sv; and Fi are particle distribution function, equilib-

rium particle distribution function, relaxation time for velocity

field, and external force in all i directions, respectively. Further, q
and T(x,t) are the local density and temperature in the computa-
tional domain, whereas cs is the lattice speed of sound and is given
by cs¼ c/�3, in which c refers to lattice streaming speed. Here, c
can be further interpreted as c¼Dx/Dt where Dx¼Dt¼ 1, where
wi represents weight for equilibrium distribution function and is
given by

wi ¼

4

9
i ¼ 0

1

9
i ¼ 1; 2; 3; 4

1

36
i ¼ 5; 6; 7; 8

8>>>>>><
>>>>>>:

(5)

Fig. 6 Isotherm patterns of different Ra: (a) Ra 5 103, (b) Ra 5 104, (c) Ra 5 105, and (d) Ra 5 106
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Fig. 7 Temperature variation along the horizontal centerline
(Y/H 5 0.5)

Table 2 Code validation at different Rayleigh numbers

Ra 103 104 105 106

Umax Present 3.660 16.180 35.625 64.465
Davis [23] 3.469 16.178 34.730 64.630
Dixit and Babu [10] 3.652 16.163 35.521 64.186

Y=H Present 0.814 0.832 0.858 0.852
Davis [23] 0.813 0.823 0.855 0.850
Dixit and Babu [10] 0.813 0.828 0.855 0.849

Vmax Present 3.702 19.567 68.660 219.800
Davis [23] 3.697 19.617 68.590 219.360
Dixit and Babu [10] 3.682 19.569 68.655 219.866

X/H Present 0.176 0.126 0.065 0.0376
Davis [23] 0.178 0.119 0.066 0.0379
Dixit and Babu [10] 0.171 0.125 0.066 0.0371

Nu Present 1.112 2.247 4.540 8.786
Davis [23] 1.118 2.243 4.519 8.800
Dixit and Babu [10] 1.121 2.286 4.546 8.652

Nu0 Present 1.113 2.216 4.524 8.810
Davis [23] 1.117 2.238 4.509 8.817
Dixit and Babu [10] 1.127 2.247 4.522 8.805

Fig. 8 Streamline patterns at Ra 5 103: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and (d) / 5 0.60
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Fig. 9 Streamline patterns at Ra 5 104: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and
(d) / 5 0.60

Fig. 10 Streamline patterns at Ra 5 105: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and
(d) / 5 0.60
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And the discrete velocity vector ci is given by

ci ¼

c0 ¼ ð0; 0Þi ¼ 0

ci ¼ cðcos hi; sin hiÞ hi ¼ ði� 1Þ p
2

i ¼ 1; 2; 3; 4

ci ¼ c
ffiffiffi
2
p
ðcos hi; sin hiÞ hi ¼ ði� 5Þp

2
þ p

4
i ¼ 5; 6; 7; 8

8>>>>>>>><
>>>>>>>>:

(6)

The relaxation time sv for the momentum equation and relaxation
time sc for the temperature field are calculated using the following
equations [18]:

� ¼ sv �
1

2

� �
cs

2Dt (7)

a ¼ sc �
1

2

� �
cs

2Dt (8)

The properties such as density, momentum, and temperature can
be obtained as [24]

q x; tð Þ ¼
X

i

fi x; tð Þ (9)

qu x; tð Þ ¼
X

i

cifi x; tð Þ (10)

T x; tð Þ ¼
X

i

gi x; tð Þ (11)

The LBM is regulated by two basic processes, i.e., collision and
streaming. The particles that reside in each lattice collide with
each other, thus producing change in the kinetic energy is called
collision while their movement from one lattice link to another is
called streaming. Mathematically, these two processes can be
understood as

Collision step : fi x; y; tþ Dtð Þ ¼ fi x; y; tð Þ 1� x½ � þ xfi
eq x; y; tð Þ

(12)

Streaming step : fi x; y; tþ Dtð Þ ¼ fi x; y; tð Þ (13)

It is very important to understand the coupling between the
momentum and energy equations in order to solve the problems
accurately. Since the flow is driven by the temperature gradient,
the buoyance force is estimated and added in the collision term
[19]

F ¼ wiFci

cs
2

(14)

F in Eq. (14) can be written as

F ¼ qgb T � Tmð Þ (15)

Fig. 11 Streamline patterns at Ra 5 106: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and
(d) / 5 0.60
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Fig. 12 Isotherms obtained at various aspect ratios at Ra 5 103: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and (d) / 5 0.60

Table 3 Average Nusselt number along hot wall at various / for various Ra

Rayleigh number Average Nusselt number along the hot wall ðNu0 Þ

103 / ¼ 0 / ¼ 0:03 / ¼ 0:05 / ¼ 0:10 / ¼ 0:30
1.1130 1.1105 1.1073 1.0912 0.9050

104 / ¼ 0 / ¼ 0:10 / ¼ 0:15 / ¼ 0:20 / ¼ 0:30
2.2161 2.2404 2.2417 2.2433 2.2200

105 / ¼ 0 / ¼ 0:20 / ¼ 0:40 / ¼ 0:50 / ¼ 0:60
4.5248 4.5665 4.6252 4.6263 4.4867

106 / ¼ 0 / ¼ 0:40 / ¼ 0:50 / ¼ 0:60 / ¼ 0:70
8.8100 8.9085 8.9706 8.9809 8.7386
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In the present study, Rayleigh number and Prandtl number are
two parameters that govern this type of flow and are thus defined
as

Ra ¼ gbDTH3

at
(16)

Pr ¼ t
a

(17)

Average Nusselt number along the hot wall is used as a parameter
to signify the magnitude of convective heat transfer in the cavity
and is defined as

Nu0 ¼
ð1

0

�k
@T�

@X�
@Y� (18)

where a, H, p1, q, b; g; t, k, and DT(¼ T� Tm), X�ð¼ ðX=HÞÞ and
Y�ð¼ ðY=HÞÞÞ are thermal diffusivity, height of the domain, refer-
ence pressure, density, thermal expansion coefficient, acceleration
due to gravity, kinematic viscosity, thermal conductivity of fluid,
temperature difference, dimensionless length in X and Y direc-
tions, respectively. The gravity acts in the downward direction
and Tm is the mean temperature, which is defined as the average
of the two isothermal walls.

2.2 Boundary Conditions

2.2.1 Velocity Boundary Conditions. Since all four bounda-
ries of the cavity and the obstacle are at rest, no-slip boundary
conditions at the walls are applied. The no-slip boundary condi-
tions in LBM can be implemented as bounce-back boundary con-
dition where the distribution function coming in is equated in

Fig. 13 Isotherms obtained at various aspect ratios at Ra 5 104: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and (d) / 5 0.60
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terms of distribution function going out after collision. For exam-
ple in the west boundary

f1 1; jð Þ ¼ ~f 3 1; jð Þ
f5 1; jð Þ ¼ ~f 7 1; jð Þ
f8 1; jð Þ ¼ ~f 6ð1; jÞ

(19)

where ~f i denotes the post collision and streaming distribution
functions, similar bounce-back boundary conditions can be
applied at all the boundaries.

2.2.2 Temperature Boundary Conditions. The vertical walls
are maintained at two different temperatures, whereas horizontal
walls are maintained at adiabatic temperatures. The Dirichlet
boundary condition for hot wall in LBM can be implemented with
flux conservation equation [1]

g1ð1; jÞ � geq
1 ð1; jÞ þ g3ð1; jÞ � geq

3 ð1; jÞ ¼ 0 (20)

Since geq
i ¼ wðiÞ � hw and g1ð1; jÞ is incoming population, which

is unknown and thus it should be expressed in terms g3ð1; jÞ,
which lend us to write Eq. (20) as

g1ð1; jÞ ¼ geq
1 ð1; jÞ � g3ð1; jÞ þ geq

3 ð1; jÞ
g1ð1; jÞ ¼ 0:5� hw � g3ð1; jÞ

(21)

For cold wall, hw ¼ 0; then the g3 m; jð Þ; can be written as

g3 m; jð Þ ¼ 0� g1 m; jð Þ (22)

The Neumann boundary condition at top and bottom walls of the
cavity and in all the walls of the obstacle can be implemented

Fig. 14 Isotherms obtained at various aspect ratios at Ra 5 105: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and (d) / 5 0.60
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with bounce-back boundary conditions in LBM, which is same as
Eq. (19) with g in place of f.

3 Results and Discussion

3.1 Lattice Size Independence Study. The lattice size inde-
pendence study for Ra¼ 104 is shown in Table 1. The different
numbers of lattices are taken into consideration for this study.
With the change in lattice size, the change in Nusselt number is
observed. Further dimensionless vertical velocity (V� ¼ V=U0;
U0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH

p
) is plotted in Fig. 3. The isotherms are also over-

lapped to observe the change with the lattice size as shown in
Fig. 4. The lattice size with very less change in Nusselt number is
taken as the optimum size for the study. The lattice size independ-
ence study is also carried out for other Ra. For high Ra, the finer

mesh size is used. All the results presented here are grid
independent.

3.2 Code Validation: Cavity Without an Obstacle. In this
section, to validate the code, differentially heated cavity is dis-
cussed without the presence of obstacle. Figures 5 and 6 show
the streamline and isotherm patterns for different Rayleigh num-
ber 103 � Ra � 106. The streamline and isotherm patterns are
plotted along with the tabulation of Nusselt number for different
Rayleigh number. In all the cases, streamline patterns show a
clockwise movement in the cavity. Figure 7 shows the dimen-
sionless temperature (T� ¼ ðT � Tc=Th � TcÞ) variation along
the horizontal centerline (Y/H¼ 0.5) of the cavity for Rayleigh
number 103 � Ra � 106. Table 2 illustrates the comparison of
the present work with the well-established solution of Dixit and

Fig. 15 Isotherms obtained at various aspect ratios at Ra 5 106: (a) / 5 0.20, (b) / 5 0.40, (c) / 5 0.50, and (d) / 5 0.60
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Fig. 16 Nusselt number variation along the hot wall: (a) Ra 5 103, (b) Ra 5 104, (c) Ra 5 105,
and (d) Ra 5 106

Fig. 17 Streamline patterns for cavity with two obstacles: (a) Ra 5 103, (b)
Ra 5 104, (c) Ra 5 105, and (d) Ra 5 106
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Babu [10], and De Vahl Davis [23]. The variation of the magni-
tude and location of the maximum X-component velocity (Umax)
along the vertical centerline (X/H¼ 0.5), Y-component velocity
(Vmax) along the horizontal centerline (Y/H¼ 0.5), average Nus-

selt number (Nu) (i.e., average of Nusselt number along the hot
and cold wall), and average Nusselt number along the hot wall

(Nu0 ) for different Ra are shown. The results show good agree-
ment with published data.

Figures 5 and 6 indicate the extent of center of fluid not partici-
pating in convection across the enclosure or the region in the cav-
ity where the isotherms are parallel to each other. Geometrically,
it is a rectangular region. This implies heat conduction takes place
vertically within the region. Therefore, from the figures of iso-
therms (Fig. 6), it can be inferred that the core region expands
with increase in Rayleigh number. The flow consists of two dis-
tinct regimes: a parallel flow in core region and nonparallel flow
near the ends of cavity.

3.3 Cavity With Single Obstacle at Geometric Center. In
this section, a single obstacle present in the center of the cavity is
considered. The results are obtained in the form of streamlines
and isotherms for a single obstacle present in the center of the cav-
ity. Figures 8–11 depict the streamline patterns of Ra¼ 103, 104,
105, and 106 at different aspect ratios. The different aspect ratios
(/) considered here are 0.2, 0.4, 0.5 and 0.6. At low Rayleigh
number (Ra¼ 103 and 104), formation of vortex is not observed
for all aspect ratios whereas, at higher Rayleigh number (Ra¼ 105

and 106), the vortices are noticeable for all aspect ratios except
only for the case of /¼ 0.6. At low Ra, the streamline patterns
are in circular shape and are uniformly distributed. This is a signal
of very weak convection, whereas nonuniform distribution of
streamline patterns and elongation in circular cells at high Ra indi-
cates the domination of convection in the outer (near wall) zone
and domination of conduction in the core zone. When the size of
the adiabatic obstacle is relatively large (/ ¼ 0.60), there is no

Fig. 18 Isotherm patterns for cavity with two obstacles: (a) Ra 5 103, (b) Ra 5 104, (c) Ra 5 105, and (d) Ra 5 106
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secondary flow developed as seen in Fig. 10(d) for Ra¼ 105. The
core size for Ra¼ 105 is smaller than the core size for Ra¼ 106;
therefore, appearance of recirculation zone is found in Fig. 11(d)
and not in Fig. 10(d). This can be contributed to the fact that
velocity components are significant (refer Table 2) to cause the
recirculation of the flow at high Ra, as strong buoyancy force pre-
vails and vortices formed are not completely enveloped. With fur-
ther increase in obstacle size, the larger portion of the fluid in
cavity is removed resulting insignificant convective flow, and
higher flow resistance is observed as the obstacle reaches closer to
the walls of the cavity.

The next part of the study with single obstacle present in cavity
is to analyze the behavior of the isotherms for different Rayleigh
numbers. Figure 12 shows the isotherms obtained at various
aspect ratios at Ra¼ 103. For all / values, there is a centro-
symmetry isotherm pattern as similar to previous case. As dis-
cussed earlier, with increase in Rayleigh number conduction dom-
inant region (stagnant core zone) increases, the value of / at
which the obstacle suppresses convective flow increase with Ra.
For example, the value of /¼ 0.2 for Ra¼ 104 while /¼ 0.6 for
Ra¼ 106 (See Table 3). However, as size of obstacle increases
(/ � core zone), isotherms get pulled toward the obstacles as
shown in Figs. 12–15 (i.e., the vertical isotherms remain no longer
parallel). As a result, fluid flowing between the vertical walls of
the cavity and adiabatic vertical sides of obstacle prevents vertical
heat conduction. This statement can further be supported with the
help of expression described by Bhave et al. [14] and is given as
Q� kf (Ttop�Tbottom). This expression clearly elucidates that the
difference in temperature (Ttop�Tbottom) should be maximum to
obtain maximum Q. When the size of obstacle is increased, Ttop

tends to become Th and Tbottom tends to become Tc. This is valid
till /� core zone condition is satisfied. However, with further

increase in length, this statement does not stay staunch as the
larger portion of core zone is removed.

Figure 16 shows the Nusselt number variation along the hot
wall for different Rayleigh numbers. Here, the adiabatic block
acts as an insulator between hot and cold fluid in the upper and
lower passages, respectively. No change in temperature in flowing
fluid is observed in the passage. However, there is significant heat
transfer from the fluid from the upper (lower) passage to right
(left) passage. As fluid path changes the direction from upper
(lower) passage to left (right) passage, the fluid loses (gains) heat
significantly because of the fact that conduction path is very small
(lower left corner and upper right corner) as compared to the
length of the cavity. Therefore, the fluid approaching the hot wall
(cold wall) is already heated (cooled) leading to the increase in
the Nusselt number at bottom of the vertical as the fluid advects
heat laterally.

At Ra¼ 103, the local Nusselt number is higher near the bottom
of vertical wall. The Nusselt number tends to decrease with
increase in Y/H (the distance along the vertical). The minimum
local Nusselt number is found to occur at Y/H¼ 0.5 for / ¼ 0:
However, after reaching certain minimum value, it increases but
the increment in local Nusselt number is less than the Nusselt
number near the bottom of vertical wall. The Nusselt number
trend observed at Ra¼ 103 is absent at high Rayleigh number.
Value of Nusselt number is observed to decrease linearly with
Y/H. The position of occurrence of maximum Nusselt number
remains constant despite the change in values of / at aforemen-
tioned Rayleigh number. The local Nusselt number increases with
increase in / at Y/H< 0.1, however this trend is absent beyond
Y/H> 0.1. The large size obstacle present in cavity damps the
fluid movement obstructing the proper motion of the fluid in cav-
ity thereby decreases the convective heat transfer rate. Table 3

Fig. 19 Streamline patterns for cavity with four obstacles: (a) Ra 5 103, (b)
Ra 5 104, (c) Ra 5 105, and (d) Ra 5 106

034502-14 / Vol. 11, JUNE 2019 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/therm

alscienceapplication/article-pdf/11/3/034502/6410046/tsea_011_03_034502.pdf by N
ational Institute of Technology- Surathkal user on 24 Septem

ber 2020



depicts the change in average Nusselt number with the change in
Rayleigh number for various values of /.

3.4 Cavity With Two and Four Obstacles. This section
deals with influence of adiabatic obstacles (2 and 4 in number) on
the flow and thermal behaviors. Figure 17 represents the

streamline patterns at various Rayleigh number with two obstacles
in the cavity. Their presence impedes the fluid flow and thus the
constriction in the streamline patterns takes place as in
Figs. 17(a)–17(c). Secondary vortices are generated near the
obstacle and the flow becomes complex in nature as indicated in
Fig. 17(c). Figure 17(d) delineates the streamline patterns at

Fig. 20 Isotherms patterns for cavity with four obstacles: (a) Ra 5 103, (b) Ra 5 104, (c) Ra 5 105, and (d) Ra 5 106

Table 4 Nusselt number variation of cavity with the number of obstacles present

Average Nusselt number at hot wall ðNu0 )

Rayleigh number Without obstacle With two obstacles With four obstacles

103 1.1130 0.9305 0.8757
104 2.2161 1.3970 1.3170
105 4.5248 4.2994 3.7775
106 8.8100 8.7148 8.6841
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Ra¼ 106. Figure 18 shows the isotherms obtained at various Ray-
leigh numbers for cavity with two obstacles. Antisymmetry of iso-
therm patterns for all Rayleigh numbers is observed.

Figure 19 depicts the streamline patterns for cavity in presence
of four adiabatic obstacles. It is seen that one more recirculation
zone is formed behind all the obstacles at Ra¼ 106.The intensity
of the recirculation is higher for top left obstacle when compared
to the top right obstacle. Similar is the case with the bottom
obstacles. This occurs due to the initial development of flow from
the bottom of the wall while ascending gains the higher momen-
tum compared to the momentum at the bottom. Later, when the
fluid reaches near the cold wall, the net buoyancy force gets
reduced, thus decreasing the fluid flow. The rate of circulation
depends largely on the buoyancy force and the friction of the walls.
A similar phenomenon is seen to occur when the fluid descends
along the cold wall. Figure 20 represents the isotherm contours at
various Rayleigh numbers with four obstacles in the cavity.

Table 4 analyzes the Nusselt number variation with presence of
number of obstacles. The heat transfer rate is found to be
decreased with the increase in number of obstacles. The place-
ment of adiabatic obstacles outside of conduction dominant zone
does not improve the heat transfer rate.

4 Conclusion

In the present work, LBM is used to study the two-dimensional
natural convection in a square enclosure with one, two, and four
numbers of obstacles. First, the effect of single adiabatic obstacle in
the cavity is discussed in terms of streamline patterns, isotherms, and
Nusselt number. At various Rayleigh numbers, the optimum sizes of
adiabatic obstacle are obtained. The optimum size for heat transfer
enhancement for Rayleigh number Ra¼ 104, 105, and 106 is found
to be 20%, 50%, and 60%, respectively, of the size of the cavity dis-
cussed in present study. However, at Ra ¼ 103, the conduction is
dominant and therefore the increment of Nusselt number could not
be seen even at /¼ 0.03 of the size of the cavity. For Ra¼ 103 and
104, significant variation is observed in the hot wall Nusselt number
with the variation of /; however, for Ra¼ 105 and 106, little devia-
tion or no deviation along hot wall Nusselt number is observed. The
placement of obstacles outside the core zone of conduction could not
lead to heat transfer enhancement rather the deterioration of heat
transfer rate. The reduction of Nusselt number from no obstacle to
four obstacles in a cavity is 21.32%, 40.72%, 16.51%, and 1.43%,
for Rayleigh number Ra¼ 103, 104, 105, and 106, respectively.
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