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Abstract

In this work we propose a standard Tikhonov regularization ap-
proach for obtaining the signal f from the observed signal ye. The ob-
served signal is distorted by an additive noise or error e. Deviating from
the usual assumption on the bound on ‖e‖, we assume that the available
noise is eδ with ‖e− eδ‖ ≤ δ and prove that the error ‖xδα− f̂‖ between
the regularized approximation xδα and the solution f̂ of the noise free
equation Kf = y is of optimal order. The regularization parameter α
is chosen using a balancing principle considered in [10]. The computa-
tional results provided endorses the reliability and effectiveness of our
method.
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1 Introduction

Consider the problem of restoration of the signal from the noisy data. If we
model the signal by a function f(t) and the observed signal by another function
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y(t), where t is the time parameter, we can set the problem of inferring f(t)
from y(t) as a linear inverse problem, in which one has to solve the equation

Kf = y. (1.1)

Note that here onwards we drop the parameter t for a simplified notation.
Observe further that the equation (1.1) and the problem of solving it make
sense only when placed in an appropriate framework. So we shall assume that
both f and y are in some Hilbert space. Let f ∈ X and y ∈ Y where X
and Y are Hilbert spaces with corresponding inner product 〈., .〉 and norm ‖.‖
respectively and K : X −→ Y is a bounded linear operator with non-closed
range R(K). This non-closedness is reflected in the discontinuity of the inverse
operator K−1, if it exists. In general, the generalized solution f̂ = K†y, where
K† is the Moore-Penrose inverse of K [3, 6], does not depend continuously on
the right-hand side y.

At the same time in many applications the observed data ye is not same
as the original signal y, but rather a distortion of y. This distortion is often
modeled by an additive noise or error term e ∈ Y (cf, [2])i.e.,

ye = y + e = Kf + e. (1.2)

Here we assume the noise to be independent of data or a random fluctuation.
In [2], Daubechies et.al. assumed that the “size” of the noise can be mea-

sured by its norm ‖e‖ and further no information on e = ye − y is available
beyond an upper bound on its norm in Y . Further in [8], it is assumed that
the noisy data ye can be represented as ye = y + δξ, with ‖ξ‖Y ≤ 1.

In [2] and [8], the authors assumed that an upper bound on the norm of
the noise ‖e‖ is available. In this paper instead of the upper bound on ‖e‖, we
assume that, an approximation eδ of e are available with

‖eδ − e‖ ≤ δ. (1.3)

Therefore instead of equation (1.2) one has to deal with the equation

K(f) = ye − eδ. (1.4)

We assume throughout that, equation (1.1) has a solution f̂ (not necessarily
unique), which in general does not depend continuously on the right hand side
data y.

The focus in [2] and [8] was to recover f̂ = K†y from (1.1) under the
assumption that it has a sparse expansion

f̂ =
∑
i

λivi (1.5)
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on the given system {vi}. It is known ([2]) that a sparse structure of K†y with
respect to {vi} can be recovered by minimizing the functional

Dα,p = ‖Kx− ye‖2Y + α‖x‖pp, 1 ≤ p < 2. (1.6)

where α is a regularization parameter and x is the input signal.
It is worth to note that the reconstruction of a sparse structure is essen-

tially the evaluation of coefficients λi in (1.5). For a system {vi} of linearly
independent elements in X, each such coefficient can be seen as a value of
some linear functional λi(f̂) of the element f̂ , i.e., λi(f̂) = 〈li, f̂〉, where li is
the generalized Ritz representation of f̂ .

From this point of view, the sparsity reconstruction can be seen as the
problem of direct functional estimation. Further from the Corollary 3.2 of [1]
it follows that by estimating 〈li, f̂〉, by the standard Tikhonov regularization
method; i.e.,

〈li, zδα〉, (1.7)

where zδα is the Tikhonov approximation, is of optimal order for a wide range
of functionals li and elements f̂ , provided the regularization parameter α is
chosen properly. Further note that the construction of a Tikhonov approxi-
mation zδα, and a calculation of estimation (1.7) for each individual li, are less
computationally demanding than a minimization of (1.6).

Thus in this paper we present a procedure for reconstruction of the signal
f̂ , based on the standard Tikhonov regularization method. In this method a
regularized approximation xδα of (1.4) is obtained by solving the minimization
problem;

min

x ∈ X
Jδα(x), Jδα(x) = ‖K(x)− ye + eδ‖2 + α‖x‖2. (1.8)

The minimizer xδα of the Tikhonov functional Jδα(x) satisfies the Euler equation

K∗Kxδα + αxδα = K∗(ye − eδ). (1.9)

In this paper we take xδα as an approximation for f̂ . The paper is organized
as follows. In section 2 we derive the error estimate ‖f̂−xδα‖ and in section 3 we
consider the discretized Tikhonov regularization. Section 4 deals with the error
analysis and parameter choice strategy for discretized Tikhonov regularization.
Computed examples are shown in section 5. We conclude the work in section
6.

2 Preliminaries

We have at our disposal the element xδα depending on the parameter α. Now
it is important to find the distance ‖f̂ − xδα‖ between f̂ and xδα. We observed
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that

‖f̂ − xδα‖ = ‖f̂ − (K∗K + αI)−1K∗(ye − eδ)‖
= ‖f̂ − (K∗K + αI)−1K∗(ye − e+ e− eδ)‖
= ‖f̂ − (K∗K + αI)−1K∗(y + e− eδ)‖
≤ ‖f̂ − (K∗K + αI)−1K∗y‖+ ‖(K∗K + αI)−1K∗(e− eδ)‖
≤ ‖α(K∗K + αI)−1f̂‖+ ‖(K∗K + αI)−1K∗(e− eδ)‖

≤ ‖α(K∗K + αI)−1f̂‖+
δ√
α
. (2.10)

Thus in order to obtain an error estimate for ‖f̂ − xδα‖ one has to obtain an
error estimate for ‖α(K∗K + αI)−1f̂‖.

We will use the following assumption to obtain an error estimate for ‖α(K∗K+
αI)−1f̂‖.

Assumption 2.1 There exists a continuous, strictly monotonically increasing
function ϕ : (0, a]→ (0,∞) with a ≥ ‖K∗K‖ satisfying;

• lim
λ→0

ϕ(λ) = 0

•
sup

λ ≥ 0

αϕ(λ)

λ+ α
≤ ϕ(α), ∀λ ∈ (0, a].

• there exists v ∈ X such that

f̂ = ϕ(K∗K)v. (2.11)

The proof of the following theorem is analogous to the proof of Theorem
2.4 in [5].

Theorem 2.2 Let the Assumptions 2.1 holds. Then

‖α(K∗K + αI)−1f̂‖ ≤ ‖v‖ϕ(α). (2.12)

Thus by (2.10) and (2.12) we have the following theorem.

Theorem 2.3 Let the Assumptions 2.1 holds and xδα be as in (1.9). Then

‖f̂ − xδα‖ = max{‖v‖, 1}(ϕ(α) +
δ√
α

).
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The error estimate in Theorem 2.3 is of optimal order with respect to δ for
the choice of α := α(δ) such that

√
αϕ(α) = δ. Note that in this case α =

ϕ−1(ψ−1(δ)) where ψ(λ) := λ
√
ϕ−1(λ).

The point is that the function ϕ is usually unknown. Therefore in practical
applications different parameters α = αi are often selected from some finite
set

DN = {αi : 0 < α1 < α2 < · · · < αN},
and corresponding elements xδαi , i = 1, 2 · · · , N are studied on-line. We will
discuss about such a parameter choice rule, called the balancing principle in
section 4.

3 Discretized Tikhonov regularization

Let {Ph}h>0 be a family of orthogonal projections on X. We assume that

εh := ‖K(I − Ph)‖ → 0.

as h → 0. The above assumption is satisfied if, Ph → I pointwise and if K is
a compact operator. The discretized Tikhonov regularization method for the
regularized equation (1.9) consists of solving the equation

(PhK
∗KPh + αI)xδα,h = PhK

∗(yδ − eδ). (3.13)

Theorem 3.1 Let xδα,h be as in (3.13) and Assumption 2.1 holds. Then

‖f̂ − xδα,h‖ ≤ C(ϕ(α) +
δ + εh√

α
). (3.14)

where C = max{1, ‖v‖, ‖f̂‖}.
Proof. Since

xδα,h = (PhK
∗KPh + αI)−1PhK

∗(ye − eδ)
we have

f̂ − xδα,h = f̂ − (PhK
∗KPh + αI)−1PhK

∗(ye − eδ)
= f̂ − (PhK

∗KPh + αI)−1PhK
∗(y + e− eδ)

= f̂ − (PhK
∗KPh + αI)−1PhK

∗y

−(PhK
∗KPh + αI)−1PhK

∗(e− eδ)
= f̂ − (K∗K + αI)−1K∗y + (K∗K + αI)−1K∗y

−(PhK
∗KPh + αI)−1PhK

∗y

−(PhK
∗KPh + αI)−1PhK

∗(e− eδ)
= α(K∗K + αI)−1f̂

+(K∗K + αI)−1K∗y − (PhK
∗KPh + αI)−1PhK

∗y

−(PhK
∗KPh + αI)−1PhK

∗(e− eδ).
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Now since

‖[(PhK∗KPh + αI)−1PhK
∗(e− eδ)‖ ≤ δ√

α
(3.15)

by Theorem 2.2 we have

‖f̂ − xδα,h‖ ≤ ‖v‖ϕ(α) +
δ√
α

+ Λ (3.16)

where Λ = ‖(K∗K + αI)−1K∗y − (PhK
∗KPh + αI)−1PhK

∗y‖. Observe that

‖Λ‖ = ‖(PhK∗KPh + αI)−1[(PhK
∗KPh + αI)K∗

−PhK∗(KK∗ + αI)](KK∗ + αI)−1y

≤ ‖(PhK∗KPh + αI)−1PhK
∗K(Ph − I)K∗(KK∗ + αI)−1y‖

+‖(PhK∗KPh + αI)−1α(Ph − I)K∗(KK∗ + αI)−1y‖

≤ εh‖f̂‖√
α
. (3.17)

Thus (3.14) follows from (3.16) and (3.17). This completes the proof.

4 Error Analysis

The error estimate in (3.14) is of optimal order with respect to δ + εh for the
choice of α := αδ,h such that

√
αδ,hϕ(αδ,h) = δ + εh. Note that in this case

αδ,h = ϕ−1(ψ−1(δ + εh)) where ψ(λ) := λ
√
ϕ−1(λ).

But, such an a priori parameter choice αδ cannot be used in practice since
the smoothness properties of the unknown solution f̂ reflected in the function
ϕ are generally unknown. In an a posteriori choice, one finds a parameter
αδ,h without making use of the unknown source function ϕ. There exist many
parameter choice strategies in the literature, for example see [4, 7, 9, 10, 11]. In
this paper we consider the balancing principle considered in [10] for choosing
the parameter αδ,h.

4.1 The balancing principle

The balancing principle considered in [10] starts with a finite number of real
numbers α0, α1, · · · , αN , such that

α0 < α1 < · · · < αN .

In this paper we consider a particular case where αi = µ2iα0, µ > 1 ,
α0 > 0 and i = 1, 2, ...N . Let

l := max{i : ϕ(αi) ≤
δ + εh√
αi
} < N (4.18)
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and

k := max{i : ‖xδαi,h − x
δ
αj ,h
‖ ≤ 4C(δ + εh)√

αj
, j = 0, 1, 2, · · · , i}. (4.19)

The proof of the next theorem is analogous to the proof of Theorem 1.2 in
[10], but for the sake of completeness, we supply its proof as well.

Theorem 4.1 Let l be as in (4.18), k be as in (4.19) xδαk,h be as in (3.13)
with α = αk. Then l ≤ k,

and

‖f̂ − xδαk,h‖ ≤ (1 +
2µ

µ− 1
)Cµψ−1(δ + εh). (4.20)

Proof. Note that, to prove l ≤ k, it is enough to prove that, for i = 1, 2, · · · , N

ϕ(αi) ≤
δ
√
αi

=⇒ ‖xδαi,h − x
δ
αj ,h
‖ ≤ 4C(δ + εh)√

αj
,∀j = 0, 1, 2, · · · , i.

For j ≤ i,

‖xδαi,h − x
δ
αj ,h
‖ ≤ ‖xδαi,h − f̂‖+ ‖f̂ − xδαj ,h‖

≤ C[ϕ(αi) +
δ + εh√
αi

+ ϕ(αj) +
δ
√
αj

]

≤ C[
2(δ + εh)√

αi
+

2(δ + εh)√
αj

]

≤ 4C(δ + εh)√
αj

.

This proves the relation l ≤ k. Now since
√
αl+m = µm

√
αl, by using triangle

inequality successively, we obtain

‖f̂ − xδαk,h‖ ≤ ‖f̂ − xδαl,h‖+
k∑

j=l+1

4C(δ + εh)√
αj−1

≤ ‖f̂ − xδαl,h‖+
k−l−1∑
m=0

4C(δ + εh)√
αlµm

≤ ‖f̂ − xδαl,h‖+ (
µ

µ− 1
)
4C(δ + εh)√

αl

Therefore by (3.14) and (4.18) we have

‖f̂ − xδαk,h‖ ≤ C[ϕ(αl) +
δ + εh√
αl

] + (
µ

µ− 1
)
4C(δ + εh)√

αl

≤ (2 +
4µ

µ− 1
)Cµψ−1(δ + εh).
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The last step follows from the inequality
√
αδ ≤

√
αl+1 ≤ µ

√
αl and δ√

αδ
=

ψ−1(δ + εh).
This completes the proof.

5 Computed examples

The algorithm associated with the choice of the parameter specified in Theo-
rem 4.1 involves the following steps:

begin

i=0

α0 = (δ + εh)
2.

repeat

i=i+1

αi = µ2iα0

Solve for zi : (K∗K + αiI)zi = K∗(ye − eδ)

j=-1

repeat

j=j+1

Solve for wi,j : (K∗K + αjI)wi,j = (αj − αi)zi
until( ‖wi,j‖ ≤ 4µ−jAND j < i)
k = i-1.
Solve for ek : (K∗K + αkI)ek = K∗(ye − eδ)

We illustrate the performance of the method considered in the previous
sections with two example. The computations are carried out in Matlab.

Example 5.1 In this example we consider the space X = Y = L[0, 1] and
consider

K(x)(s) =

∫ 1

0

k(s, t)x(t)dt (5.21)

with

k(s, t) =

{
0, s ≤ t
s− t, s > t.

(5.22)

We apply the above Algorithm by choosing Vn as the space of linear splines
in a uniform grid of n + 1 points in [0, 1]. Specifically for fixed n we consider
ti = i−1

n
, i = 1, 2, · · · , n+ 1 as the grid points.
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In this example we take ye = 1
12

(6s2−4s3 +s4), e = 1
24

(6s2−4s3 +s4). Then

the exact solution is f̂ = 1
2
(s− 1)2. Since f̂ = K∗K(2) = R(K∗K)), ϕ(λ) = λ

and hence ψ−1(δ + εh) = ϕ(αδ) = (δ + εh)
2/3. Here e is randomly perturbed by

eδ = e+ δ. According to the theory,

‖f̂ − xδαk,h‖ =©(ψ−1(δ + εh)).

The result are given in Table 1. Here and below ek := ‖f̂ − xδαk,h‖.

Example 5.2 In this example we take X = Y = L2[0, π] and K : X → Y
is given by

K(x)(s) =

∫ π

0

k(s, t)x(t)dt (5.23)

with k(s, t) as in (5.22). In this example also we choose Vn as the space of
linear splines in a uniform grid of n+1 points in [0, π] with the grid point ti =(
i−1
n

)
π, i = 1, 2, .....n+ 1. Here we take ye = −2(s+ sin(s)), e = −(s+ sin(s))

and eδ = e + δ. Then the exact solution is f̂ = sin(s). The result are given in
Table 2.

Table 1: δ = 0.0096µ = 2.06
n k ek

ek
ψ−1(δ+εh)

32 2 0.3023 3.0916
64 2 0.3027 3.0968
128 2 0.3028 3.0984
256 2 0.3028 3.0990
512 2 0.3029 3.0992
1024 2 0.3029 3.0992

Table 2: δ = 0.0667µ = 1.5
n k ek

ek
ψ−1(δ+εh)

32 7 0.9189 2.2650
64 8 0.6398 1.5777
128 9 0.7886 1.9449
256 9 0.7887 1.9450
512 9 0.7887 1.9451
1024 9 0.7887 1.9451

6 Conclusion

In this paper we have proposed a method to reconstruct the signal from a dis-
torted signal. The computational results shows the reliability of the method.
Though we have only shown the results of reconstruction of 1-D signals, the
method can be extended to 2-D signals (Images) as well, with a minor modi-
fication in the basis.
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a b

Figure 1: The original and reconstructed signal: (a) The dotted line shows
the original signal and the dark line shows the reconstructed one for Example
5.1. (b)The dotted line shows the original signal and the dark line shows the
reconstructed one for Example 5.2.

References

[1] F.Bauer, P.Mathe and S.V.Pereverzev, Local solutions to inverse prob-
lems in geodesy: The impact of the noise covariance structure upon the
accuracy of estimation, J.Geodesy, 81, (2007),pp. 39-51.

[2] I. Daubechies, M.Defrise and C. De Mol, An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint,ArXiv Math-
ematics e-prints,(2003).

[3] H.W.Engl, M.Hanke and A. Neubauer, Regularization of Inverse Problems
(Dordrecht:Kluwer),(1996).

[4] S. George, On Convergence of Regularized Modified Newton’s method for
nonlinear ill-posed problems, J.Inv.Ill-Posed Problems, 18, (2010), pp.133-
146.

[5] S. George and M.Kunhanandan, An iterative regularization method for
Ill-posed Hammerstein type operator equation, J.Inv.Ill-Posed Problems
17, (2009), pp. 831-844.

[6] C.W. Groetsch, ”The Theory of Tikhonov Regularization for Fredholm
Equations of the First Kind” Boston, MA,Pitman,(1984).

[7] Jin.Qi-Nian and Hou Zong-yi, On an a posteriori parameter choice
strategy for Tikhonov regularization of nonlinear ill-posed problems, Nu-
mer.math.83, (1999), pp.139-159.

[8] S.Lu and S.V.Pereverzyev, Sparsity reconstruction by the standard
Tikhonov method, RICAM-Report No. 2008-17, (2008).



Reconstruction of signals by standard Tikhonov method 2829

[9] S.Morigi, L.Reichel and F.Sgallari, Orthogonal projection regularization
operator, Numer Algor, 44, (2007),pp. 99-114.

[10] S.V.Perverzev and E. Schock, ”On the adaptive selection of the param-
eter in regularization of ill-posed problems”, SIAM J.Numer.Anal. 43,
(2005),pp. 2060-76.

[11] U. Tautenhahn and Q-N Jin, Tikhonov regularization and a posteri-
ori rules for solving nonlinear ill-posed problems, Inverse Problems, 19,
(2003),pp. 1-21.

Received: February, 2011


