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Abstract

Statistical design of experiments was used to investigate the effect the process parameters on electrophoretic deposition (EPD) of
alumina onto steel substrates from its suspension in iso-propanol. The process parameters considered were (i) concentration of
particles in the suspension (solid loading), (ii) electrode separation, (iii) applied potential, and (iv) deposition time on the quantity of
ceramic particles electrophoretically deposited. A 2* full factorial matrix, with four repetitions of the center point, was used to
develop the predictive regression equation for deposition of alumina per unit area of the electrode in the design space. The results
show that particle concentration has the most dominant effect with more than 50% contribution to the deposited amount. A good
correlation was obtained between predicted and experimental values suggesting that the model can predict data accurately in the
experimental matrix.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Electrophoretic deposition (EPD), a colloidal deposition technique in ceramic processing has recently gained
increased application in a variety of field including preparation of thick film of silica [1], nano-size zeolite membrane
[2], hydroxyapatite coating on metal substrate for biomedical applications [3,4], luminescent materials [5—7], high-T
superconducting films [8,9], gas diffusion electrodes and sensors [10,11], multi-layer composites [12], glass and
ceramic matrix composites by infiltration of ceramic particles onto fibre fabrics [13], oxide nano-rods [14], carbon
nanotube film [15], functionally graded ceramics [16,17], layered ceramics [18], superconductors [19,20],
piezoelectric materials [21], etc.

In EPD process, charged powder particles, dispersed stably in a liquid medium are attracted and deposited onto a
substrate of opposite charge on application of a dc electric field. The advantages of EPD include simplicity, low cost
equipment, good control of deposition thickness, short formation time, little restriction on the shape of the substrate,
suitability for mass production, and no requirement for binder burnout as the green coating contains fewer or no
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organics. The driving force for the electrophoretic mobility of the particles is mainly the magnitude of surface charge/
zeta potential of the particle in suspension. But there are also other parameters which can be grouped into two broad
categories [22-26]: (i) those related to the suspension and substrate and (ii) those related to the process. The
parameters related to the suspension and substrate include particle size, dielectric constant of the solvent, conductivity
of the suspension, viscosity of the suspension and zeta potential and conductivity of the substrate. The parameters
related to the process include particle mass concentration in the suspension, separation between the electrodes, applied
voltage, and deposition time. But once the solvent, particle and substrates are fixed, the variable parameters which can
be effectively controlled to optimize EPD are the process parameters. In a classical approach, optimization is done by
varying one-factor-at-a-time while keeping the others constant. This method consists of successively varying each
factor over its range with the other factors are held constant. This experimentation strategy does not provide any idea
about the individual contribution of each factor towards the response and fails to consider any interactional effect of
two or more variables which is more likely in an actual operating environment.

The statistical optimization technique using full factorial design of experiments is an useful tool which allows one
to obtain appropriate data that can be analyzed to arrive at an objective conclusions and determine the optimum
conditions through a relatively smaller number of systematic experiments [27]. Using a proper design matrix and
systematically varying different variables one can obtain regression equations, which highlights the effect of
individual parameters and their relative importance in given operation/process. In the conventional experimentation
method of one-factor-at-a-time, only one factor is varied over its range with the other factors held constant. The
interaction effect of two or more variables cannot be determined using this approach. The primary advantage of
statistical methods is that the interactional effects of two or more variables can also be known. It also adds objectivity
to the decision-making process. They allow us to measure the likely error in a conclusion or to attach a level of
confidence to a statement. When the problem involves data that are subject to experimental errors, statistical
methodology is the only objective approach to analysis. In this paper we present a systematic investigation on the use
of statistical design of experiments to optimize and develop quantitative understanding on the effect of process
variables on the yield of electrophoretic deposition of alumina on steel substrates and highlight the methodologies and
significance of each analysis in arriving at the optimized condition. The effects of individual parameters as well as their
interactional effects have also been highlighted.

2. Experimentals
2.1. Materials

The calcined alumina powder (Grade CT 3000SG) used for electrophoretic deposition in the present investigation
was supplied by Alcoa, India. The powder had a mean particle size of 0.7 wm, BET surface area of 7.0 m*/g and
sintered density of 3.9 g/cm’. The organic solvent, propan-2-ol (C3HgO), used as the dispersing medium, was supplied
by SD Fine Chemicals, Mumbai. The solvent was 99.5% pure with 0.1% residual water content in it. Stainless steel
plates (20.5 mm x 20.5 mm X 5 mm) were used as the substrates for electrophoretic deposition. A stainless steel strip
of the same dimension was used as the counter electrode. The substrates and the counter electrodes were thoroughly
cleaned before use.

2.2. Methods

The suspension for electrophoretic deposition was prepared by dispersing alumina powder in the iso-propanol
solvent media. The suspension was first magnetically stirred (REMI EQUIPMENTS) at moderate speed for 10 min
followed by ultrasonication for 20 min by Vibronic Ultrasonic Processor (Model P2) at 200 V. The surface charge of
alumina suspension measured by particle charge detector (PCD-03-pH, Mutek, Germany) was —0.18 C/g. Conductivity
of the suspension varied between 1.64 S at 10% (w/v) particle loading to 3.34 S for 30% (w/v) particle loading.

Deposition experiments were conducted in a setup (Fig. 1) similar to that used by Besra et al. [28]. It consists of two
electrode holders made of Teflon as the principal components. One of the electrode holders is fixed and the other is
movable and can slide along two parallel rods at the bottom so that the distance between the electrodes can be adjusted
to desirable position. The electrodes are fixed onto the holders such that they face each other. Adequate clearance was
provided beneath the setup to accommodate a magnetic bead. Each of the electrode holders has a square window
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Fig. 1. Electrophoretic deposition setup.

facing each other to fix the electrodes on it. The area of the deposition as well as counter electrode exposed to the
suspension was 4 cm”. The stainless steel substrates were mounted on the holders with a spring contact at the back to
act as electrical contact. The holders along with electrodes were dipped into the silica glass reservoir containing the
alumina suspension followed by application of desired dc voltage for a prerequisite time. Sedimentation of the alumina
particles was prevented by mild stirring using a magnetic bead stirrer as shown in Fig. 1. Constant voltage
electrophoretic deposition experiments were carried out at conditions within the statistical design matrix. The
negatively charged particles got deposited on the anode. After deposition, the electrodes were carefully taken out and
the deposits were allowed to dry at room temperature for 24 h. The deposits along with the substrate were then
weighed to determine the yield. The suspension was replenished after every three deposits [29].

2.3. Statistical design and modeling

Factorial designs allow to analyse the effects of several different factors and combine them into a response model.
They are the most commonly used statistical designs due to their simplicity with regard to both preparation and
analysis of the results. Although primarily used for screening significant factors, they are also used sequentially to
model and refine a process. The 2* design provides the smallest number of runs with which k factors can be studied in a
complete factorial design. In a 2* design, all combinations of k-factors are set at two levels with respect to center point
and are evaluated. The two levels are the allowable limits, i.e., the maximum and minimum values set on the basis of
preliminary trials. The final relationship that is eventually determined must hold within these limits. The assumptions
for making the 2* design valid include linearity of response over the range of the factors chosen, randomization of the
designs and satisfaction of the usual normality assumptions. Perfect linearity, however, is unnecessary and the 2*
system will work quite well even when the linearity assumption holds very approximately [27]. In fact, the addition of
interaction terms to the main effects provides a model that is capable of representing some curvature in the response
function. The 2* design augmented with center point replicates is an excellent way to obtain an indication of potential
non-linearity or curvature of the response. It allows one to keep the size and complexity of the design low and
simultaneously obtain some protection against curvature. Also center points do not impact the usual effects estimate in
a2k design [27].
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2.4. Design matrix

A full 2* factorial design with addition of four center point experiments was chosen to model particle deposition
Design Expert v.7 statistical software (Stat Ease Inc.) was used for the analysis of the experimental data and for
statistical modeling. The four factors investigated were: (i) concentration, (ii) electrode separation, (iii) applied
voltage, and (iv) deposition time by A, B, C and D, respectively. Each factor was run at two levels and the intermediate
response was assumed to be linear, which is necessary for 2% designs. The possibility of non-linearity within the design
space has been accounted for through the introduction of center points and model augmentation. The center points are
essentially used to test for evidence of pure second-order or quadratic effects in the response region of exploration. The
high and low levels for each factor as given in Table 1 were chosen on the basis of preliminary trials. These high and
low levels are expressed in coded form as —1 and +1, respectively to convert the absolute quantity into a dimensionless
quantity making the handling of the experimental data convenient. Also since all variables used in the model are
normalized to vary in this way, the relative change of a variable is directly related to the size of its regression
coefficient. The weight of the alumina deposit was studied as the response for the different combinations of factor
levels. Table 2 shows the experimental matrix in actual and coded factors along with the weight of alumina deposited
as response. The regression equation for the matrix is then represented by the following expression:

Y = by + b1 X1 + boXo + b3X3 + byXy + b12X1 X0 + b3 X1 X5 + b1aX1 Xy + D3 Xo X3 + boaXo Xy + b3aX3Xy
+ b123X1X0X3 + D124 X1 X0 X4 + b13a X1 X3X4 + 5234 X2 X3X4 + b123a X1 X2X3X4
where Y is the response (alumina deposited weight), b, a constant, i.e., response at the zero level (center point)
experiment, bl’ bz, b3 and b4 the linear coefficients (independent parameters), b12, b13, b14, b23, b24, b34, b123, b134, b234,

b1,34 are interaction coefficients representing the parameters in their coded form. The relationship between the actual
and coded values are given below:

)C]*Q,O X272 )C37225 X472
X =— X, = X3 =—— d X,=
1 10 ) 2 1 3 3 75 ) an 4 1
The regression coefficients were estimated by the following expression:
Y; XY; (XiXi...Xn)Y;
b() = FVE b/ = . ? b]kn =
i:l;w ,nN j,i:l%;,m,n N j,kw.,i:zl,;ﬁ,---,n N

The experimental order for obtaining the responses were done by a completely randomized design in which the
allocations of the experimental parameters as well as the order in which the individual runs or trials of the experiment
are to be performed are randomly determined. Such randomization of the order of experiments tend to average out the
effect of any uncontrolled variables and validate the usual normality assumptions. All the factors except concentration
have been randomly selected. Randomization with respect to concentration was not possible because each alumina
suspension was used for three deposition experiments before replenishing it with a fresh one. Table 3 shows weight
deposited for same suspension as well for second suspension under similar deposition conditions. It was found that the
difference in weight of alumina deposited varies by about 7% (max) for the replicated center points and by 4% (max)
for runs replicated from the same suspension. The center point placement was non-random as this is a well-known
process. Two center points were front loaded in the run order and the remaining two were run at the end.

Transformation of the response data was necessary in our analysis since the ratio of maximum to minimum value of
response obtained in the design matrix was very large. Transformations apply a mathematical function to all the

Table 1

Actual vis-a-vis coded values of parameters

Level Concentratioin (A) (wt/100 ml) Electrode separation (B) (cm) Applied potential (C) (V) Deposition time (D) (min)
Actual (x;) Code (X;) Actual (x,) Code (X5) Actual (x3) Code (X3) Actual (x4) Code (X4)

Max level 30 + 3 + 300 + 3 +

Min level 10 — 1 — 150 1

Zero level 20 0 2 0 225 0 2 0
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Table 2
Experimental matrix (according to standard order)
Standard Experiment Concentration Electrode separation Applied Deposition Weight deposited
order order (% wiv) (cm) potential (V) time (min) (mg/cmz)
Actual Coded Actual Coded Actual Coded Actual Coded
(x1) (X1) (x2) (X2) (x3) (X3) (x4) (X4)
1 6 10 —1 1 —1 150 -1 1 -1 10.45
2 16 30 1 1 -1 150 -1 1 -1 37.425
3 3 10 -1 3 1 150 -1 1 —1 4.15
4 9 30 1 3 1 150 -1 1 -1 24.175
5 18 10 -1 1 —1 300 1 1 -1 14.7
6 11 30 1 1 -1 300 1 1 -1 58.35
7 5 10 —1 3 1 300 1 1 -1 9.975
8 13 30 1 3 1 300 1 1 -1 43.975
9 7 10 -1 1 -1 150 -1 3 1 18.975
10 12 30 1 1 -1 150 -1 3 1 99.9
11 4 10 —1 3 1 150 -1 3 1 14.15
12 10 30 1 3 1 150 -1 3 1 63.225
13 8 10 -1 1 -1 300 1 3 1 38.025
14 15 30 1 1 -1 300 1 3 1 161.225
15 17 10 -1 3 1 300 1 3 1 28.525
16 14 30 1 3 1 300 1 3 1 106.85
17 2 20 0 2 0 225 0 2 0 38.125
18 19 20 0 2 0 225 0 2 0 40.95
19 1 20 0 2 0 225 0 2 0 38.025
20 20 20 0 2 0 225 0 2 0 39.325
Table 3
Error in repeating experimental trials from the same suspension
Suspension Weight deposited Difference % Difference in deposit
Deposit 1 Deposit 2
Suspension 1 38.025 38.125 0.100 0.26
Suspension 2 40.95 39.325 1.625 3.96

Maximum difference between replicates = 7.14%.

response data and are generally used for three purposes: (i) stabilizing response variance, (ii) making the distribution of
the response variable closer to the normal distribution, and (iii) improving the fit of the model to the data [27].
Transforming the response will make a difference only if the ratio of the maximum response to the minimum response
is large. A ratio greater than 10 usually indicates that a transformation is required. Since the ratio of the maximum
response to the minimum within the design space was 38.85, we applied a square transformation as suggested by the
Box—Cox plot.

2.5. Effects

The EFFECT of a factor is the change in the response produced by a change in the level of the factor. The total
number of effects in a 2* factorial design is 15. There are four main effects namely A—D which are due to variation of a
single factor at a time. There are 11 interaction effects namely AB, AC, AD, BC, BD, CD, ABC, ABD, CD, BCD and
ABCD that are due to variation in two or more factors, simultaneously. An interaction occurs when the effect of one
factor depends on the level of another factor. The interaction effects are generally different from sum of the effects
expected from either factor alone. The effects along with their contribution towards the response is summarized in
Tables 4a and 4b. Concentration contributes more towards the weight of the alumina deposited than all other effects
combined together (more than 50%). Other major contributing factors are deposition time, applied potential and
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Table 4a

Effects list and their contribution towards response

Effects list Term Contribution (%)
Model A (Concentration) 56.1126
Model B (Electrode separation) 4.65128
Model C (Applied potential) 8.56088
Model D (Deposition time) 25.1722
Model AB 0.52309
Model AC 0.48906
Model AD 3.27755
Error BC 0.00129
Model BD 0.14437
Model CD 0.58734
Error ABC 0.00806
Model ABD 0.33236
Error ACD 0.00163
Error BCD 0.07546
Error ABCD 0.00274
Model Curvature 0.03325
Error Lack of fit 0

Error Pure error 0.02682

“Model” indicates the inclusion of the factor in the final regression model while ““error” indicates exclusion of the effects as they were found to be
insignificant.

Table 4b

Analysis of variance (ANOVA) of the selected model

Source Sum of squares Degrees of freedom Mean square F-value p-Value Prob > F

Model 0.131594 10 0.013159 688.6568 <0.0001 Significant
A-concentration 0.073951 1 0.073951 3870.007 <0.0001

B-elec Sep 0.00613 1 0.00613 320.7922 <0.0001

C-app potential 0.011282 1 0.011282 590.4317 <0.0001

D-dep time 0.033175 1 0.033175 1736.095 <0.0001

AB 0.000689 1 0.000689 36.07678 0.0003

AC 0.000645 1 0.000645 33.72949 0.0004

AD 0.00432 1 0.00432 226.0479 <0.0001

BD 0.00019 1 0.00019 9.95687 0.0135

CD 0.000774 1 0.000774 40.50827 0.0002

ABD 0.000438 1 0.000438 22.92264 0.0014

Curvature 0.0000438 1 0.0000438 2.293185 0.1684 Not significant
Residual 0.000153 8 0.0000191

Lack of fit 0.000118 5 0.0000235 1.994685 0.3023 Not significant
Pure error 0.0000354 3 0.0000118

electrode separation. The dominant interaction effect is AD (interaction between concentration and deposition time)
and is shown in Fig. 2. This is expected as both concentration and deposition time are the two major contributing
factors.

2.6. Model refinement

Model refinement is primarily achieved through exclusion of the factors that are found to be insignificant. Exclusion
of insignificant variables releases degrees of freedom for the calculation of confidence intervals [28]. Factor effects with
a significance level of 0.05 or lower ( p-value < 0.05; 95% confidence level) were included in the regression model. This
resulted in inclusion of 10 effects in the model. The positive effects were: A, C, D, AD, AC, BC, CD, ACD and ABCD
while the negative effects were: B, AB, BD, ABC, ABD and BCD. An effect is said to be positive when increase in its
level results in increase in the response and negative when increase in its level results in decrease in the response. It is



1820 G. Mohanty et al./Materials Research Bulletin 43 (2008) 1814—1828

105

81
i —
7] R
o R
g 57 RR_—_
(o]
= 33
D
(O]
g 9

30.00 o0

25.00 ’
20:00 2.00
A: Concentration  15.00 2.50
10.00 3.00 D: Deposition Time

Fig. 2. A typical interaction effect between concentration and deposition time on deposition.

interesting to note that all interaction factors containing B (electrode separation) except BC contribute negatively
towards the weight of alumina deposit obtained. This is expected as increase in electrode separation results in decrease in
electric field which results in lesser rate of deposition. Also electrode separation term is inversely proportional to the
quantity of particles deposited electrophoretically according to Hamaker equation [26,29].

2.7. ANOVA

Analysis of variance (ANOVA) of the selected model was carried out. ANOVA is a statistical technique which sub-
divides the total variation of a set of data into component parts associated with specific sources of variation for the
purpose of testing a hypothesis on the parameters of a model. Tables 4a, 4b and 5 show the results of analysis of
variance for the weight of alumina deposited.

Sufficient degrees of freedom were available for the evaluation of the model as can be seen in Table 6. Larger
degrees of freedom increase the discrimination between adequate and inadequate models. The conclusions of the
analysis of variance apply to the transformed data.

High model F-value of 688.66 indicated that the model is significant (Tables 4a and 4b). Insignificant curvature F-
value of 2.29 validated our initial assumption of approximate linearity of the response variable in the design space.
Hence design augmentation by introduction of higher order terms to the model was felt unnecessary. Lack of fit is the
variation of data around the fitted model. An F-value of 1.99 corresponding to insignificant lack of fit suggested that
the model fits well with the data. Hence the model was used to navigate the design space.

Table 5

Additional data from ANOVA

S.D. 0.00437
Mean 0.19
C.V. (%) 2.24
PRESS 0.00127
R? 0.9988
Adj R? 0.9974
Pred R> 0.9904

Adeq precision 97.388
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Table 6

Degrees of freedom for evaluation

Model 10
Residuals 9
Lack of fit 6
Pure error 3
Corr total 19

Standard deviation of 0.004 suggested low deviation associated with the experiment (Table 5). Mean is overall
average of all the response data. C.V. (coefficient of variation) measures the unexplained or residual variability of the
data as the percentage of the mean of the response variable. Low C.V. value of 2.24 indicated that the proportion of
variability unexplained by the model was extremely low. In other words, the model was able to explain most of the
variability of the data. Predicted residual error sum of squares (PRESS) is a measure of how the model fits each point in
the design. Low PRESS value of 1.27 indicated that the observations did not highly influence the model which is
desirable. R? gives a measure of the amount of variation around the mean explained by the model. This model was able
to explain more than 99% of the variability in the weight of alumina deposited. Adj R? is a measure of the amount of
variation around the mean explained by the model, adjusted for the number of terms in the model. The adjusted R*
decreases as the number of terms in the model increases if those additional terms do not add value to the model. The
adjusted R*>-value of 0.9974 indicated that all the selected terms contributed significantly to the model. Predicted R*
gives some indication of the predictive capability of the regression model. Predicted R* of 0.9904 indicated that the
model can be expected to explain more than 99% of the variability in predicting new observations in the design space.
The overall predictive capability of the model based on this criterion can be considered to be extremely satisfactory.
Adeq precision measures the signal to noise ratio. Adeq precision ratio of 97.388 indicated an adequate signal for
proper model discimination. Since the noise in the system was insignificant compared to the signal as measured from
the ““adeq precision”, it was decided not to replicate the design. Besides replication would have resulted in increased
costs.

The regression equation for the alumina deposit obtained in terms of actual factors is

Sqrt (weight of deposit)
= 40.0738191 + 0.000828180 x concentration — 0.0204777 x electrode separation — 6.67949E — 007
x applied potential — 0.0222254 x deposition time + 0.000390049 x concentration
x electrode separation + 8.46254E — 006 x concentration x applied potential 4+ 0.00268953
x concentration x deposition time + 0.00701612 x electrode separation x deposition time + 9.27401E
— 005 x applied potential x deposition time — 0.000523226 x concentration X electrode separation
x deposition time
The regression equation in terms of coded factors is
Sqrt (weight of deposit)
= +0.194030 4 0.0679850 x A — 0.0195735 x B 4 0.0265547 x C + 0.0455348 x D — 0.00656404 x A
x B+ 0.00634691 x A x C +0.0164307 x A x D — 0.00344841 x B x D + 0.00695551 x C x D
—0.00523226 x A x B x D

2.8. Model adequacy testing

Residuals analysis is the primary diagnostic tool for checking violations of the basic assumptions, like normality,
and model adequacy. The examination of the residuals from an unreplicated 2* design can also provide information
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Fig. 3. Normal plot of residuals.

about process variability. Residual is the difference between the observed response and the value predicted by the
model for a particular design point. The residuals should be structureless if the model is adequate.

2.9. Diagnostics

The normal probability plot is used to determine whether the residuals follow a normal distribution. The residuals
seem to follow a normal probability distribution as they lie approximately on a straight line on the normal plot of
residuals (Fig. 3). In general, moderate departures from normality are of little concern in the fixed effects analysis of
variance which Design Expert uses [27]. Fig. 4 shows the plot of residuals versus predicted data points. A random
scatter of data points in the residuals versus predicted plot validates our initial assumption of constant variance.
Random scatter in the plot of residuals versus experimental run order (Fig. 5) eliminates the possibility of a time-
related variable lurking in the background. The predicted and the actual values also show excellent agreement as can
be seen from Fig. 6. Hence, no obvious patterns were found in the analysis of residuals.

2.10. Influence plots

Influence plots are primarily used for detection of outliers. Externally studentized residual (also called Outlier #)
shown in Fig. 7 gives a measure of how many standard deviations the actual value deviates from the value predicted
after deleting the point in question. All the data points (Fig. 7) lie within the limits.

Leverage is a measure of the influence of a point on the model fit. Leverages are numerical value between 0 and 1
that indicate the potential for a design point to influence the model fit. Leverage of 1 indicates that the model will be
forced to go through the point and the point will control the model. Since the leverages of all runs (Fig. 8) are less than
1, there is no point which unduly influences the model.

DFFITS plot (Fig. 9), which measures the influence of each point on the predicted value, suggested four points
(corresponding to runs 3, 5, 6 and 18) which influence the regression equation and the response very
disproportionately. However, DFBETAS plot (Fig. 10) showed no undue/large influence of each observation on each
of the regression coefficients. Cook’s distance provides a measure of how much the regression would change if the case
is omitted from the analysis. Cook’s distance plot (Fig. 11) also suggested that the four points lying outside the
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influence the regression equation more compared to other points. But since the Cook’s distance values of none of these
observations exceed 1, there is no strong evidence of influential observations in these data. These points are well within
the limits in the externally studentized residual plot as well. And these four observations have the same leverage as the
rest of the factorial run points. Hence these four points cannot be considered as outliers. Therefore, there are no outliers

in the experimental data.

Internally Studentized Residuals
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Fig. 5. Plot of residuals vs. experimental run order.
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2.11. Model evaluation

The power of a design is the ability of the design to detect that specific terms are statistically significant or the
ability to find significant effects. In other words, it is the probability of detecting an effect of a specific size. The present
model has a 94.4% chance of detecting the significant effects at 95% confidence level if the effect is the size of twice
the standard deviation of the process (Table 7). This provides the model adequate discriminating power.
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Two experiments were carried out in order to check the predictive capability of the model that has been developed.
The point prediction feature of the software allows the response to be predicted at any point in the design space. The
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Fig. 10. DFBETAS plot showing influence of each observation on the regression coefficients.
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Fig. 11. Cook’s distance plot showing the influence of each run on regression equation.
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Table 7
Model evaluation data
Term Power at 5% alpha level for effect of
0.5 S.D. (%) 1 S.D. (%) 2 S.D. (%)

A 14.60 43.10 94.40
B 14.60 43.10 94.40
C 14.60 43.10 94.40
D 14.60 43.10 94.40
AB 14.60 43.10 94.40
AC 14.60 43.10 94.40
AD 14.60 43.10 94.40
BD 14.60 43.10 94.40
CD 14.60 43.10 94.40
ABD 14.60 43.10 94.40
Basis S.D. = 1.0.
Table 8
Model validation data
Run Concentration Electrode Applied Deposition Weight of alumina Point Error (%)

(g/100 ml) separation (cm) potential (V) time (min) deposit (mg/cm?) Prediction
1 10 1.5 200 2 15.35 15.8292 3.1218
2 10 2.5 250 1 8.825 8.82882 0.1591

two runs were arbitrarily chosen. The predicted and the experimental values of these two runs are tabulated in Table 8.
There is a good correlation between the predicted and experimental values which suggest that the model can predict
data accurately in the experimental matrix.

3. Conclusions

Statistical design of experiments was used to model the EPD of alumina from iso-propanol onto steel substrates.
The dominant effects in decreasing order are: concentration, deposition time, applied potential, and electrode
separation. Among the independent variables, the concentration contributes more than 50% towards the weight of
deposit and hence is the most dominant factor. The most dominant interaction effect is that between concentration and
deposition time. Electrode separation does not have much effect on the deposit as compared to the other main effects.
The model was analyzed and validated. A good correlation was observed between the predicted and experimental
values suggesting that the model can predict data accurately in the experimental matrix.
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