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A B S T R A C T

The dynamics of flexible filaments in viscous shear flow is of interest to biologists and engineers in a wide variety
of applications involving folding and unfolding sequence of long-chain biomolecules like DNA, non-motile sperm
and microalgae. It is also helpful in understanding the deformation of natural and synthetic fibers which can be
applied in areas such as biotechnology. In the present work, deformation and migration behavior of non-motile
unicellular phytoplankton diatoms subjected to viscous shear flow are considered. These unicellular diatoms
develop into colonies which are made up of linked chains. The complex fluid-structure interaction is solved by
developing a two-dimensional numerical model with an immersed boundary framework. The simulation consists
of suspending an elastic filament mimicking a diatom chain in a shear flow at low Reynolds number. The
governing continuity and Navier–Stokes equations are solved on a Cartesian grid arranged in a staggered
manner. A forcing term is added to the momentum equation that incorporates the presence of flexible filament in
the fluid domain. The discretization of the governing equation is based on a finite volume method, and a SIMPLE
algorithm is used to compute pressure and velocity. A computer code is developed to perform numerical si-
mulations, and the model is first verified with the deformation study of a tethered flexible filament in uniform
fluid flow. Next, the shape deformations for flexible filament placed freely in shear flow are compared with the
studies of previous researchers. Further, the present results are validated with Jeffery's equation for particles
immersed in shear flow along with classification plot for filament orbit regimes. All of these comparisons provide
a reasonable validity for the developed model. The effect of bending rigidity and shear rate on the deformation
and migration characteristics is ascertained with the help of parametric studies. A non-dimensional parameter
called Viscous Flow Forcing value (VFF) is calculated to quantify the parametric results. An optimum Viscous
Flow Forcing value is determined which indicates the transition of filaments exhibiting either a recuperative
(regaining original shape past deformation) or non-recuperative (permanently deformed) behavior. The devel-
oped model is successful in capturing fluid motion, diatom buckling, shape recurrences and recuperation dy-
namics of diatom chains subjected to shear flow. Further, the developed computational model can successfully
illustrate filament-fluid interaction for a wide variety of similar problems.

1. Introduction

Fluid-structure interaction (FSI) comprises a large number of pro-
blems in the field of biofluid dynamics and biophysics. Flow interaction
between blood and heart-valve leaflets, motion, and deformation of red
blood cells, bundling and tumbling of the bacterial flagellum, sperm
motility, swimming fish, etc. are some of the commonly known ex-
amples. An excellent example of elastic fibers which undergo
stretching, compression and bending in moving fluids are DNA, diatom
chains and actin fibers. To understand the hydrodynamics and factors
causing the fibers to behave recuperatively or non-recuperatively in an
incompressible viscous fluid is very important for a wide range of

medical and engineering applications.
The impact of oceanic fluid motion on solute transport to micro-

organisms is fundamental to marine ecology. Of particular interest is
the FSI of a group of diatoms, non-motile unicellular phytoplankton
which forms the primary foundation of aquatic food webs. While it is
unicellular, the micro-organism has developed the ability to form co-
lonies as chains linked together. The phytoplankton lives in these
chains whose size vary from 5 micrometers to a few millimeters (Guasto
et al., 2012). The mechanical properties of these chains change ac-
cording to morphology and linking structure material. The diatoms are
also photosynthetic micro-organisms which require dissolved nutrients
in the form of nitrates, phosphates, etc., delivered to the surface of its
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cells by fluid motion. The ability of the diatoms to uptake nutrients
depends on its interaction with surrounding fluid thus highlighting that
ambient fluid motion is crucial for survival. The functional role of hy-
drodynamics on chain deformation and migration has not been clearly
understood. The study thus falls under the purview of filament-fluid
interaction. To describe the physics adequately and develop numerical
models for such interactions is a significant challenge because it con-
sists of the complex interplay between filament conformity and hy-
drodynamic stresses induced by the fluid. However, in the last few
years, researchers have successfully captured the interaction of flexible
filaments in a viscous fluid with the help of numerous methods and
techniques supported by experimental studies.

An early study by Jeffery (Jeffery, 1922) provided a mathematical
understanding for the motion of a single rigid elliptical particle in shear
flow. The analysis of these idealized ellipsoids was successfully ap-
proximated to describe the behavior of rigid cylindrical filaments.
However, the same was not applicable to flexible filaments. Flexible
fibers exhibit a rich range of motions when subjected to background
shear flow. This was experimentally observed by Forgacs et al.
(Forgacs and Mason, 1959), who categorized filament deformation into
various orbit classes. The orbits included deformation involving snake
turns, “S” turns and complex coiling phenomena. They demonstrated
that hydrodynamic drag forces and fiber bending forces play a critical
part in filament shape transitions. Bead-rod model was used to simulate
flexible filaments in which rigid beads were linked by elastic connectors
(Yamamoto and Matsuoka, 1993). It was further extended by Ross et al.
(Ross and Klingenberg, 1997) who studied the suspension and flow
dynamics of rigid and flexible filaments by performing a particle-level
simulation with the filament made up of linked rigid prolate spheroids.
The simulation reasonably demonstrated Jeffery orbits for rigid fibers
and experimental works of Forgacs et al. (Forgacs and Mason, 1959) for
flexible filaments. Lindstrom et al. (Lindström and Uesaka, 2009;
Lindström and Uesaka, 2007) modified bead-rod model to simulate
rigid and flexible fibers by using the Navier–Stokes equation as the fluid
governing equation. When considering numerical studies involving
single bio-polymers like actin filament and microtubules, continuum
formulation techniques such as slender-body theory (SBT)
(Batchelor, 1970) have been quite popular. They are easy to implement
but fail to capture far-field fluid motion accurately. To address this
problem, Keller et al. (Keller and Rubinow, 1976) developed a non-local
SBT that captures the global effect on the fluid velocity arising from the
presence of the filament, making use of the theory of fundamental so-
lutions for Stokes flow. Shelley et al. (Shelley and Ueda, 2000) also
developed a numerical method based on a non-local SBT for simulating
flexible filaments. Their interest was in understanding the dynamics of
growing and buckling flexible filament, motivated by observations of
phase transitions in smectic-A liquid crystals. Tornberg et al.
(Tornberg and Shelley, 2004) employed non-local SBT to study dy-
namics of slender filaments in Stokesian fluids. An integral equation is
developed which relates the force exerted on the body with the filament
velocity. The simulations show shear-induced buckling in filaments
which are a characteristic property of visco-elastic fluids that are sus-
pended as microscopic elastic fibers. However, the above method be-
comes invalid when considering multiple elastic members in close vi-
cinity, which was overcome by regularized Stokeslets method
(Bouzarth et al., 2011). A kinetic theory dumbbell model was developed
by Jandrejack et al. (Jendrejack et al., 2004), to simulate flexible
polymers keeping DNA as a reference molecule. It was found that flow
strength was fundamental in stretching and deforming highly confined
DNA chains from its equilibrium position. Also, the DNA chains migrate
back to channel centerline in agreement with experimental studies.
Slowicka et al. (Słowicka et al., 2015) studied the fiber dynamics in
shear flow for different values of bending rigidity. A bead-spring model
based multi-pole method was used to simulate fiber dynamics for a
wide range of applications involving DNA, polymers, proteins, and
biological macromolecules. The work emphasized the importance of

using a non-dimensional number which is the ratio of fiber bending
force to viscous drag force and thus categorized fiber deformation to
bending rigidity. Depending on the selected bending rigidity and re-
sulting hydrodynamic interactions, fibers were grouped into either
behaving rigid or flexible. They also observed that fibers with high
stiffness placed in shear flow, later stay in a plane perpendicular to
shear gradient and at an angle to vorticity direction for a large portion
of simulation time. They found rigid fibers tending to straighten out and
flexible fibers coil thus indicating distinct evolution patterns for rigid
and flexible fibers. In the majority of these studies, the hydrodynamic
interactions were neglected thus providing limited information of the
underlying FSI. The coupling between the structure and fluid is one-
way, i.e., fluid was considered as a passive medium, and the fiber did
not exert any force back onto the fluid. The computational complexity
may reduce significantly, but they cannot effectively elucidate de-
formation and mobility of bio-molecules subjected to hydrodynamic
stresses due to surrounding fluid motion, as compared to grid-based
methods. A brief discussion on grid-based simulation is provided below.

In understanding FSI, it is always convenient to describe the fluid
region as a Eulerian frame of reference and the solid region as a
Lagrangian formulation. Meshing techniques in FSI can be grouped into
body-fitted/conformal methods and non-conformal methods. Body-
fitted methods consist of widely known Arbitrary Lagrangian–Eulerian
formulation (ALE) (Hu et al., 2001) which use the finite element
method (FEM). For complex geometries, however, the quality of the
grid may deteriorate since the mesh has to adapt to the moving
boundaries and an iterative grid refinement algorithm may be required
to prevent convergence failure. Among the non-body-fitted techniques,
the immersed boundary method (IBM) developed by Peskin
(Peskin, 2002) is quite popular. The method was originally used to si-
mulate cardio-mechanism and has been successfully implemented to
simulate complex biofluid dynamic problems. Examples include pro-
pulsion of bacterial flagella (Maniyeri et al., 2012), elastic rod dynamics
in viscous fluid (Maniyeri and Kang, 2012), flexible fiber suspension in
shear flow (Stockie and Green, 1998), inertial migration of elastic
capsule (Kim et al., 2015), Pleurobrachia and cilia propulsion
(Dauptain et al., 2008), valveless pumping (Shin et al., 2012), droplet
dynamics in shear flow (Hua et al., 2014), flapping filaments (Zhu and
Peskin, 2002), flexible propulsor (Kim et al., 2017), inverted flags
(Ryu et al., 2018) and flexible fin (Kim et al., 2016). The characteristic
feature about this method is that it consists of a non-conforming mesh
with a monolithic flow structure solver. The absence of grid transfor-
mation terms significantly reduces per-grid-point operation count
(Mittal and Iaccarino, 2005). It is also very well suited for moving
boundary problems. The fluid is solved on a Cartesian grid system, and
structure is discretized on connected Lagrangian markers to capture its
elastic response relative to fluid motion. The calculated elastic forces
are then distributed to the background Cartesian grid covering the fluid
volume utilizing momentum forcing, eventually modifying the fluid
flow near the structure. This coupling between Eulerian and Lagrangian
variables is carried out by Dirac delta function. Since its inception by
Peskin, numerous modifications and refinements have been carried out
by researchers with respect to application requirements. Numerical
studies based on IBM for filament-fluid interaction are presented below.

Stockie (Stockie, 2002) simulated a single three-dimensional wood
pulp fiber in shear flow, to understand the behavior of long, flexible
filament which is in suspension. This work was an extension of the
previously developed two-dimensional model (Stockie and
Green, 1998). The pulp fiber model is made up of several layers of
cellulose fibrils, interwoven to form a complex network, making up the
wood cell. The linking elements were made up of springs which resist
stretching and bending forces. This gives a more realistic and detailed
representation of the fiber model. Weins et al. (Wiens and
Stockie, 2015) had successfully recreated two-dimensional orbit classes
for flexible filaments suspended in a viscous fluid using the immersed
boundary method. A pseudo-compressible fluid solver was used, and
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filaments were modeled as Kirchhoff rod. Nguyen et al. (Nguyen and
Fauci, 2014) studied the hydrodynamics of diatom chains and flexible
fibers in three-dimensions using an adaptive grid-based immersed
boundary method. They were successful in capturing recuperation and
buckling dynamics for a wide range of diatom species. In order to
capture the full fluid motion around the fiber, the fluid grid has to be
refined. More recently, Kunhappan et al. (Kunhappan et al., 2017)
studied the dynamics of high aspect ratio flexible fibers in an inertial
flow by coupling discrete element method and finite volume method.
The simulation was three-dimensional and contained an unstructured
grid scheme. Such three-dimensional models are complex and very
expensive. A two-dimensional model on the other hand effectively
predicts dynamics of flexible filament and also reduces the computa-
tional expense. In this direction, Musielak et al. (Musielak et al., 2009)
had studied the role of fluid motion on nutrient uptake in diatoms using
a two-dimensional immersed boundary method. The study focused on
understanding nutrient uptake and diatom behavior for different fila-
ment lengths and bending rigidity. Diatoms were made up of linked
chains, and the one behaving rigid tend to experience high nutrition
gradients as compared to flexible diatoms. However, at that time no
laboratory measurements of bending rigidity were reported for diatom
chains. As a result, a direct relationship between the modeled diatoms
and its experimental counterpart could not be accurately assessed.
Young et al. (Young et al., 2012) experimentally quantified the bending
rigidity for various types of diatom chains. The diatoms were suspended
in a medium of seawater and exposed to hydrodynamic forces across a
hollow capillary tube. They analyzed the response of the diatoms to the
applied force, and thus a measure of its bending ability was determined.
By studying the deformation of the filament and measuring the chain
dimensions, the flexural rigidity of different diatom chains was ex-
perimentally obtained by them. Numerical studies of Slowicka et al.
(Słowicka et al., 2015) and Musielak et al. (Musielak et al., 2009) have
thus shown that fiber dynamics largely depends on flow strength,
bending rigidity and fiber length respectively. Hence it can be seen that
a two-dimensional numerical study can accurately predict the behavior
of diatom chains subjected to shear flow at lower computational costs.
Studies by Lazier et al. (Lazier and Mann, 1989) had indicated that
since diatom chains are typically smaller than the Kolmogorov length
scales in the ocean, they experience turbulence as linear shear. Jumars
et al. (Jumars et al., 2009) also suggested the importance of background
flows leading to the formation of dissipative vortices around diatom
structures. Thus, we can ascertain from the above literature reviews
that, very few studies have reported and quantified transition of fila-
ments from recuperative to non-recuperative behavior especially for the
case of diatom chains and thus parametric study is essential in this
direction. Quantitative information like bending rigidity obtained from
the experimental values of Young et al. (Young et al., 2012) was not
used in two-dimensional diatom simulations by previous researchers.
Three-dimensional simulations and adaptive mesh refinement techni-
ques (Vanella et al., 2014) have high computational costs and thus have
hindered design and dynamic coupling of more mechanically realistic
diatom model with an incompressible fluid. A point to be noted in this
regard is that the two-dimensional model can never possibly capture
the full fluid dynamics as compared to three-dimensional one. How-
ever, capturing the essential and prominent fluid motion and filament
deformation characteristics using a simplified model of diatom chains
with minimum mesh generation overhead outweighs the drawback of
costly computations. Also, very few studies have captured fluid motion
in the vicinity of the filament which is essential for understanding the
hydrodynamic interactions over successive time periods. Through the
present work, an attempt is made to capture and visualize dissipative
vortices formed in the vicinity of diatom chains to understand how such
vortices are formed and what advantages the organism can achieve to
nutrient uptake. This will help to realize the underlying mechanism
responsible for shape formations and transitions observed during de-
formation of rigid and flexible filaments. Finally, there is a need to

capture the migratory behavior of filaments in order to understand its
behavior to external factors better. These shortcomings from previous
works are the real motivation for the present problem.

In the present work, a two-dimensional numerical model based on
an immersed boundary method is developed to capture the hydro-
dynamic interaction of rigid and flexible filaments in shear flow. A
parametric analysis is carried out by varying filament length, bending
rigidity and shear rate. The numerical method incorporated in this
study is provided in Section II. The simulation results and details re-
garding filament deformation and migration are provided in Section III.
Finally, the conclusions are deduced in Section IV.

2. Mathematical framework and numerical procedure

The physics of the problem involves a flexible filament which is
massless and neutrally buoyant, suspended in a viscous incompressible
fluid medium. The Cartesian co-ordinates x*=(x*, y*) are the Eulerian
variables used to define the fluid flow. A Lagrangian frame of reference
is used to define the filament displacement, given by a curvilinear
material co-ordinate s* and time t*. The flow variables are velocity u*
(x*, t*), pressure p* (x*, t*) and Eulerian force density f* (x*, t*). The
filament position X* (s*, t*), filament velocity U* (s*, t*) and
Lagrangian force density F* (s*, t*) are the filament variables. The
shear flow is developed by moving the top and bottom walls horizon-
tally. The top and bottom wall move in positive and negative x-direc-
tion respectively with a constant speed U*wall. In the absence of fila-
ment, a linear shear flow is developed with velocity profile given by
Eq. (1).

u* G* y* H*
2

=
(1)

where, G* U2 *
H*
wall= is the shear rate and H* is the height of the channel.

The equation of motion for fluid flow and filament are given below.

µu u u u f x*
t*

*· * * *p* * * *( *, t*)2+ = + + (2)

u* . * 0= (3)

where, the constant μ is the fluid viscosity and ρ the fluid density.
Eq. (2) and Eq. (3) are the incompressible Navier–Stokes equation and
continuity equation with a momentum forcing term. They can be non-
dimensionalized based on the following characteristic scales: the length
of the filament as the reference length Lref, constant velocity of moving
walls as Uref, time scale tref as Lref / Uref, shear rate Gref as Uref / Lref,
pressure pref as ρU2

ref , momentum forcing fref as ρU2
ref / Lref and bending

stiffness as ρU2
ref L3ref.

The resulting non-dimensionalized equations are given as,

u u u u f x
t

· p 1
Re

( , t)2+ = + + (4)

u. 0= (5)

where, Re µ
u Lref ref=

The flexible filament is made up of a number of Lagrangian points
connected together by means of resistance links having resting length
Δs. The Lagrangian force F acting on immersed boundary points and
produced by the filament motion are spread to the fluid domain, and a
momentum force term f is calculated which in turn drives fluid motion.
The Lagrangian force F consisting of stretching/compression, and
bending forces is shown in Eq. (6) as,

F(s, t) E
X

E
X

s b= + (6)

where, Es is the elastic energy derived from Hooke's Law given in
Eq. (7), and Eb is the bending energy obtained from the principle of
least action given in Eq. (8). The energy equations are taken from the
numerical works of Zhu et al. (Zhu and Peskin, 2002). An illustration of
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the resultant stretching and bending forces acting on the linkages are
provided in Fig. 1(a) and Fig. 1(b) respectively. In the figure, Xs is the
Lagrangian point surrounded by nearby points Xs+1 and Xs-1.

XE 1
2

K
s

1 dss s

2

=
(7)

XE 1
2

K
s

dsb b
2

2

2
=

(8)

In Eq. (7) and Eq. (8), Ks and Kb are the stretching co-efficient and
bending co-efficient of the filament respectively. From the above
equations, the Lagrangian force F is determined. This term is then
substituted in Eq. (9) to calculate momentum force term f given as,

f x F x X( , t) (s, t) ( (s, t))ds= (9)

where, δh is the two-dimensional Dirac delta function. In our formula-
tion δh is chosen such that,

x( ) 1
h

x
h

y
hh 2=

(10)

where, h is the Eulerian mesh width and ϕ is given by,

( )( ) if

otherwise
(r) 1 cos , r 2,

0,

1
4

r
2= +

(11)

The Dirac delta function (Eq. (11)) in the present study is chosen
based upon the numerical works of Maniyeri et al. (Maniyeri et al.,
2012; Maniyeri and Kang, 2014). By substituting the calculated mo-
mentum force term in Eq. (4), we obtain new fluid velocity at the next
time step. According to the newly calculated fluid velocity, the filament
velocity is determined which is given by Eq. (12). Finally, the new
position of the filament is computed from Eq. (13).

U u x x X(s, t) ( , t) ( (s, t))dxh= (12)

X U
t

(s, t) (s, t)= (13)

The numerical method of the present study is formally second-order.
Using a formally second-order scheme makes it possible to obtain re-
sults with better accuracy (Lai and Peskin, 2000). The total time step is
divided into two stages. One is the preliminary stage, and the other is
the final stage. In the preliminary stage, the governing equations are
solved for time level (n 1

2+ ) from data available at time level n using an

accurate first-order scheme. The results of the preliminary stage are
used to proceed in the final stage to reach time level (n+1) in a for-
mally second-order manner. If ∆t is the time step, the fluid velocity for
present time n is depicted as un while boundary configuration is Xn. The
objective of the numerical procedure is to compute updated un+1 and
Xn+1 using the data given at time level n. Now starting the numerical
procedure, the preliminary stage from time level n to level (n 1

2+ ) is
initiated, and the boundary configuration is updated to a new position
X(n+ 1)/2 by discretizing Eq. (13) as,

( )
X X u X(x) (x (s, t))h

x

(n 1)/2 n

t
2

n
h

n 2=
+

(14)

Next, the Lagrangian force density F n( 1)/2+ which consists of elastic
forces acting on immersed boundary points is discretized and calculated
as,

F X
X

E[ ]n
n

( 1)/2
( 1)/2

=+
+

(15)

The force density term F(n+ 1)/2 calculated at IB points are further
converted to momentum forcing term f (n+ 1)/2 at Cartesian grid points
to be applied in the governing Navier–Stokes equations. The discretized
form of momentum forcing term f (n+ 1)/2 is given as,

s x sf F X( ) ( (s, t))n n n

s

( 1)/2 ( 1)/2
h

( 1)/2=+ + +

(16)

With the newly calculated f(n+ 1)/2, Eq. (4) and Eq. (5) can be
discretized and solved as

( )
u u u u u fp [ · ] 1

Re
(n 1)/2 n

t
2

(n 1)/2 (n 1)/2 2 (n 1)/2 (n 1)/2= + +
+

+ + + +

(17)

u[ . ] 0n( 1)/2 =+ (18)

This concludes the preliminary stage. The final stage is started again
at time level n to reach level (n+1) using intermediate variables
u(n+ 1)/2 and X(n+ 1)/2 obtained from the preliminary stage.

First, the boundary configuration Xn+1 is calculated as,

xX X u X
t

(x) ( (s, t))h
n

n n

x

1 n
( 1)/2

h
( 1)/2 2=

+
+ +

(19)

Next, the Lagrangian force density Fn+1 and momentum forcing
term fn+1 are calculated from discretized Eq. (20) and Eq. (21) re-
spectively.

F X
X

E[ ]n
n

1
1

=+
+

(20)

s x sf F X( ) ( (s, t))n n n

s

1 1
h

1=+ + +

(21)

Finally, the fluid velocity u(n+ 1)/2 is updated to new time (n+1)
marking the end of final stage.

u u u u u f
t

p [ · ] 1
Re

n 1 n
n 1 n 1 2 n 1 n 1= + +

+
+ + + +

(22)

u[ . ] 0n 1 =+ (23)

Thus, the present numerical immersed boundary scheme completes
a typical time step Δt. The fluid Cartesian grid is arranged in a staggered
manner, and the flow variables are solved using an implicit time ad-
vancement scheme based on Finite volume method (FVM). The method
of deferred correction is used to treat the convective and diffusive fluxes
obtained from the finite-volume discretization of the Navier–Stokes
equation. Hayase et al. (Hayase et al., 1992) had described this scheme
to discretize systems having oscillatory solutions and for maintaining
the diagonal dominance. The source term is modified to contain the
difference between the first-order upwind scheme and central

Fig. 1. The two types of filament linkages used in the present study. a)
Stretching/compression resistance linkage and b) Bending resistance linkage
between Lagrangian points.
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differencing. The spatial derivatives are discretized using a second-
order difference scheme. The continuity and momentum equations are
solved using a SIMPLE algorithm. The technique involves an iterative
procedure with pressure correction. A pressure value is guessed, and an
intermediate velocity is first calculated which is used as input to the
pressure Poisson equation. The ICCG (Incomplete Cholesky Conjugate
Gradient) method is used to solve the pressure equation. The newly
calculated pressure is used to determine the fluid velocity at the new
time step thus keeping the solution divergent free. The new fluid ve-
locity is used and the deformation of filament for different time steps is
captured. A periodic boundary condition is applied in the positive x-
direction with flow driven by a constant pressure gradient. A di-
mensionless parameter called Viscous Flow Forcing value (VFF) is used
to quantify viscous drag effects of the fluid with respect to filament
elastic forces which is given in Eq. (24) as,

µVFF G*(L*)
EI

3
= (24)

where, E is Young's modulus of filament material, and I is the moment
of area in the bending plane. The Viscous Flow Forcing value is related
to the viscosity of the fluid, length of the filament, shear rate and
bending rigidity of the filament. The use of a similar parameter where
reported in the works of (Ross and Klingenberg, 1997; Stockie and
Green, 1998; Stockie, 2002; Wiens and Stockie, 2015; Nguyen and
Fauci, 2014; Liu et al., 2018).

3. Results and discussion

3.1. Model validation

The numerical model described in the previous section is compared
with filament deformation problem done by Vahidkhah et al.
(Vahidkhah and Abdollahi, 2012) who performed two-dimensional
numerical simulation using an immersed boundary-lattice Boltzmann
method. The deformation problem involves a massless flexible filament
placed in a rectangular channel and subjected to uniform Poiseuille
flow. The fluid is viscous and incompressible while the filament is
placed horizontally with an inclination of Ө=45° The dimensionless
length of channel (Lc) and height of the channel (H) are taken as 4.0 and
1.0 respectively. The length of the filament (L) is 0.43, and the leading
edge is fixed at the location L1= 1.0 and H/2= 0.5, while the trailing
edge is free to move along the fluid flow direction. No-slip boundary
condition is applied to the top and bottom channel walls. A Periodic
boundary condition is applied in the positive x-direction with the flow
being driven by a constant pressure gradient. A schematic

representation of the problem and the boundary condition applied is
provided in Fig. 2. The Reynolds number chosen for this study is 1.0
and the total simulation time is 1.0.

Before considering the solution to the problem, the inextensible
property of the filament is tested for varying time step Δt and stretching
co-efficient Ks for fixed bending co-efficient Kb. This serves as a stability
analysis for our numerical model. Next, the spatial convergence of the
model is analyzed by considering different Eulerian grids in x and y-
directions. The objective of these two tests is to obtain a divergence free
and accurate solution to the filament deformation study. In order to
perform the inextensible test, % inextensible error (ε) is used which
calculates the deviation from the original filament length. This is given
in Eq. (25).

X X(t) max
s

.
s

1 100= ×
(25)

The inextensible error equation is taken from simulation study of
flexible filament in uniform flow by Huang et al. (Huang et al., 2007).
Their methodology strictly enforces the filament inextensibility condi-
tion with no restrictions on time step. Table 1 shows different cases that
are analyzed by varying time step and stretching co-efficient for fixed
bending co-efficient of Kb=1.0. The filament cannot resist the fluid
forces at low stretching co-efficient (Ks=1000), thus producing a large
% inextensible error of 7.35. There is a need to increase the stretching
co-efficient in order to keep the filament in-extensible. However, the
time step needs to be reduced to 1×10−5 in order to minimize the
effect of oscillations in the solution caused by incorporating higher
stretching co-efficient as observed in Table 1. Increasing stretching co-
efficient reduces% inextensible error and the best value of stretching
co-efficient (Ks=5000) produces the least% error of 1.86. Filaments
with stretching co-efficient greater than 5000 tend to develop an initial
compression state between time t=0.0 to t=0.15. This factor sig-
nificantly increases the% error for cases of higher stretching co-effi-
cient.

Regarding filament inextensibility, the spatial convergence test for

Fig. 2. Schematic illustration of flexible filament placed at a channel location in the direction of viscous fluid flow.

Table 1
Comparison of% inextensible error (ε) for varying time step (Δt) and varying
stretching co-efficient (Ks) for fixed value of bending co-efficient (Kb=1.0).

Stretching co-efficient (Ks) Time step (Δt) % Inextensible error (ε)

1000 1.0×10−4 7.35
5000 1.0×10−5 1.86
7500 1.0×10−5 2.64
10,000 1.0×10−5 2.95
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different Eulerian grids is carried out. A uniform grid is considered for
all cases and compared with% inextensible error as seen in Table 2. It is
clear from Table 2 that the best possible grid configuration is
512× 128.

Based on inextensibility and grid convergence tests, two-dimen-
sional numerical simulation of inclined flexible filament placed in a
uniform flow is carried out. The filament deformation for different time
instances is provided in Fig. 3a–Fig. 3d. The filament which is initially
inclined shown in Fig. 3a aligns itself with the flow direction. Finally, at

Table 2
Comparison of% inextensible error (ε) with different uniform Eulerian grids in x
and y-direction.

Grids Time step (Δt) % Inextensible error (ε)

256× 64 1.0× 10−5 5.26
512×128 1.0× 10−5 1.86
1024×256 1.0× 10−5 1.82

Fig. 3. Filament deformations for different time intervals from t=0.0 to t=0.6.
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t=0.6, the filament attains mechanical equilibrium straight state, and
no further motion or deformation is seen. A qualitative similarity is
achieved in filament deformations and flow fields when compared with
the results of Vahidkhah et al. (Refer to Fig. 5 and Fig. 9a in
(Vahidkhah and Abdollahi, 2012)). This proves the validity of the de-
veloped model.

3.2. Filament in shear flow

The verified numerical model is modified to incorporate the phy-
sical problem of flexible filament subjected to shear flow. Forgacs et al.
(Forgacs and Mason, 1959) had performed experimental studies, and
Lindstrom et al. (Lindström and Uesaka, 2007), Stokie et al.
(Stockie and Green, 1998) and Weins et al. (Wiens and Stockie, 2015)
had carried out numerical simulation on dynamics of the flexible fila-
ment by varying filament length, shear rate and bending rigidity. They
were successful in categorizing filament deformation into various orbit
classes. The present two-dimensional model is employed to obtain these
filament orbit classes. A schematic representation is provided in Fig. 4
which depicts a flexible filament placed freely in channel midplane
subjected to viscous shear flow. In the figure, α is the angle made by the
filament with respect to the vertical. The dimensional physical para-
meters are provided in Table 3. In order to bring an asymmetry in fi-
lament motion, the filament is initially placed at an inclination angle of
5° A large value of stretching co-efficient is assumed in-order to
maintain filament inextensibility constraint. The physical parameters
are non-dimensionalized with respect to characteristic length and ve-
locity. The dimensionless filament length, shear rate, and bending ri-
gidity are given as L, K, and Kb respectively.

The snapshots of fiber deformation for different values of filament

length, shear rate, and bending stiffness is provided in Fig. 5. Rigid
filament rotation is observed for high bending rigidity Kb=1.0. The
filament initially in an inclined position undergoes rotation and re-
mains in the straight undeformed state throughout the rotation. When
bending rigidity is reduced to 0.7, the filament undergoes slight
bending at the center to form springy deformation. Further reduction in
bending rigidity to 2.5× 10−2 causes the filament to buckle about its
center thereby deforming into C-shape and at Kb=6×10−3, S-shape
filament deformation is captured. With the reduction in bending ri-
gidity, the filament can no longer resist the hydrodynamic stresses
acting on its surface. Finally, complex deformations are seen for
Kb= 5×10−4, and the filament cannot retain its original straight
shape.

In order to further demonstrate the ability of the present model to
capture filament deformation and shape formation in shear flow, angle
(α) made by the filament with respect to the vertical is analyzed for two
cases of filament deformation. One for the rigid case and other for S
-shape deformation case. Since the filament is initially inclined at 5°,
the angle (α) made by it with respect to vertical is 85° Fig. 6 compares
angle (α) for two cases with respect to time. The time taken for the
deformation of the flexible filament (S -shape) is faster when compared
to rigid filaments as seen in Fig. 6. Also, with the completion of the first
filament deformation cycle, the filament either rigid or flexible has a
tendency to remain in horizontal equilibrium position for an extended
period of time. This is seen in Fig. 7 which compares the angle (α) made
by a filament for rigid, springy and C-shape deformation cases with
respect to time. Similar observations were reported by Stokie et al.
(Stockie and Green, 1998). Thus, the present model successfully de-
monstrates its qualitative ability to yield filament dynamics as observed
in previous experimental and numerical studies with the planar shear
flow.

Further, it is widely known that Jeffery's equation (Jeffery, 1922) is
used to describe the motion of rigid fibers in shear flow. The Jeffery's
equation is given in Eq. (26).

A(t) tan r tan K r t
r 1

1
e

e

e
2=

+ (26)

where, α (t) is the angle made by the rigid filament with respect to
vertical, K is the shear rate and re is the filament aspect ratio. A nu-
merical simulation is carried out for fixed filament length L=0.3, fixed
bending rigidity EI= 1.0 and three different values of shear rate
(K=8, 16, 32) specifically for the case of a rigid filament. The angle
(α) made by the filament with respect to the vertical for the above three

Fig. 4. Schematic illustration of flexible filament placed untethered in viscous shear flow.

Table 3
Physical parameters used for the filament in the shear flow simulation
study.

Physical parameters Dimensional values

Channel height (H*) 0.5 cm
Channel width (Lc*) 2.0 cm
Fluid Density (ρ) 1.0 g/cm3

Fluid Viscosity (µ) 8 – 10 g/cm.s
Shear rate (G*) 8 – 64 /s
Filament length (Lf*) 0.1 – 0.3 cm
Bending stiffness (EI) 1.0 – 5.0× 10–4 g.cm3/s2

Reynolds number (Re) 0.1 – 0.5
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Fig. 5. Deformation of filament at different time instances for Rigid, Springy, C-shape, S-shape and Complex orbit classes for parameters defined in Table 3.
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test cases is recorded. The total simulation time is maintained at
t=3.0. The angle α (t) based on Jeffery's equation is also determined
for the above same set of shear rates by fixing the aspect ratio re= 60.
Cylindrical fibers of length 0.1 to 0.3 typically have aspect ratio re
ranging between 60 ≤ re ≤ 400 (Stockie and Green, 1998). Similar to
Stokie et al. (Stockie and Green, 1998), a probability distribution φ
indicating the time spent by the filament at various angles (α) is plotted
in Fig. 8 for both the present simulation results and Jeffery's equation
results. As seen from the plot, our results are found to be in good
agreement with Jeffery's equation.

Finally, a detailed parametric analysis is performed for fixed fila-
ment length L=0.1, three different values of shear rates (K=10, 16,
32) and 14 different values of bending rigidity (EI). The Viscous Flow
Forcing value (VFF) is also calculated. For each of the 42 parametric
test conditions, an additional parameter called exterior angle β defined

as shown in Fig. 9 is determined. In the figure, A and B are the ends of
the filament and connected to a fixed-point O (Refer to Fig. 11 in
(Stockie and Green, 1998)). Stokie et al. (Stockie and Green, 1998) had
developed a criterion based on the exterior angle (β) to classify filament
orbit classes. The filament can be considered to be rigid if 175° < β <
180°, the filament is springy if 90° < β < 175° and for β < 90° < 30°,
the filament ends move independently of each other forming C-shapes.
Further, from the filament deformations, it is observed that complex
shape orbit class can be specified for β < 30° The resulting flexible
filament regimes are classified and plotted in Fig. 10 with respect to
Viscous Flow Forcing value (VFF) and bending rigidity (EI). Along with
the present simulation results, the experimental results of Forgacs et al.
(Forgacs and Mason, 1959) and numerical results of Stokie et al.
(Stockie and Green, 1998) are also included in the classification plot.

In Fig. 10, the vertical solid lines demarcate filament orbit regimes.
In the plot, the black solid points indicate experimental results of For-
gacs et al. (Forgacs and Mason, 1959), the colored open points indicate
numerical results of Stokie et al. (Stockie and Green, 1998) and colored
solid points indicate present simulation results. As observed from
Fig. 10, most of the present study results coincide with experimental
results of Forgacs et al. (Forgacs and Mason, 1959) and numerical re-
sults of Stokie et al. (Stockie and Green, 1998), especially for rigid,
springy and C-shape regimes. The division in orbit regimes from rigid to
springy to C-shape are obtained at VFF= 0.16, 1.31 and 10.67, con-
sistent with the criterion stipulated by Stokie et al. (Stockie and
Green, 1998). Thus, the results of the present study are found to be in
excellent agreement with previous experimental and computational
results. The two aspects discussed in Fig. 8 and Fig. 10 serve as the

Fig. 6. Comparison of angle (α) for rigid and flexible filament (S-shape) case.

Fig. 7. Angle (α) made by the filament for different orbit classes.

Fig. 8. A probability distribution plot indicating the time spent by the rigid
filament at various angles (α).

Fig. 9. Exterior angle β, defined between the ends A and B of the filament.
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quantitative validation for the present model. All of the above results
and observations actively demonstrate the ability of our developed
model to simulate the dynamics of a flexible filament in shear flow.

Next, the two-dimensional simulation of diatom chains in viscous
shear flow is considered. The case analyzed here is that of unicellular
phytoplankton which is a non-motile diatom made up of linkages. The
diatom chains are thus modeled in the present study as flexible fila-
ments. The phytoplankton (diatom chains) in the ocean typically ex-
perience shear rate in the range of 0.01 to 1 s− 1. Also, the length of the
diatom chains is estimated to be between 0.25mm to 4mm. The limits
for both shear rate and characteristic length observed for diatom chains
is ascertained by Karp–Boss et al. (Karp-Boss et al., 1996). The Reynolds
number which depends on shear rate and diatom chain length for this
case lies between 6.25×10−4 ≤ Re ≤ 16 as confirmed by simulation
studies of Nguyen et al. (Nguyen and Fauci, 2014). Considering the
properties of seawater and bending rigidity of diatom chains, the
Reynolds number for the present study is fixed at 1.75. Here, the
Reynolds number is computed based on the length of the filament as
characteristic length and oceanic shear rate as the reference for char-
acteristic velocity. The chosen physical parameters and their corre-
sponding non-dimensionalized values are tabulated in Table 4.

In order to perform the parametric study, eight different cases are
analyzed based on non-dimensionalized filament length (L), shear rate
(K) and bending rigidity (Kb). In order to simplify explanations for
various cases, the filament having length L≤0.25 are considered short
and that with length L > 0.25 are considered as long. Also, filaments
with bending rigidity Kb= 1×10−4 are identified as type-A, and those
with rigidity Kb=1×10−5 are called type-B. The chosen bending ri-
gidity of diatoms lies between that of L. annulata and G. delicatula
species. The shear rate and Reynolds number in our study are very si-
milar to that experienced by diatom chains in the ocean.

The continuity and momentum equations are solved on a two-di-
mensional rectangular channel of dimensionless length 8.0 and height
1.0. The fluid domain is made up of 1024×128 grid points and a time
step of 1× 10−5 is used to satisfy the stability of the numerical scheme.
The physical problem defined for this study consists of a flexible fila-
ment held horizontally at the center position of the simulation domain.
The filament is modeled with 100 IB points. In literature, it is observed
that the flexible filament is initially curved and placed horizontally at
the channel midplane. This will help the filament to come out of the
mechanical equilibrium position and subsequently undergo deforma-
tions. However, in the present study, the filament is kept inclined at a
particular angle to the horizontal in order to allow it to deviate from its
equilibrium position. When diatom chain simulation is performed, the
filament would initially take considerable amount of time to undergo
any significant deformation. Thus, it is necessary to maintain a higher
initial angle of inclination of 10° so as to obtain different filament orbits
in a reasonable amount of time. The filament is placed at the center of
the computational domain at location (4, 0.5). The value of stretching
co-efficient Ks is fixed as 5000 for all cases. A computer code based on
FORTRAN is developed to perform two-dimensional simulations. The
simulations are carried out for t=60.0, and the evolution of diatom
links for each case is systematically investigated. The deformation of
the filaments is recorded at respective time intervals for all cases.

Fig. 10. Classification of flexible filament deformation into various orbit classes like Rigid, Springy, C – Shape and Complex shapes.

Table 4
Physical parameters and dimensionless values considered for the two-dimen-
sional simulation of diatom chain.

Physical Parameters Dimensional value Non-dimensional value

Filament length (Lf*) 0.47mm 0.25
0.58mm 0.3125

Shear rate (G*) 0.5/s 1.0
1.0/s 2.0

Bending rigidity (EI) 5.72× 10−16 Nm2 1×10−4

5.72× 10−17 Nm2 1×10−5
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3.3. Case study

The evolution of filament collectively depicts the various deforma-
tion states the filament undergoes at different time steps. The study is
carried out by performing simulations for short and long filaments
based on their lengths. Also, shear rates and bending rigidity are varied.

Case 1: L=0.25, K=1.0, Kb=1×10−4.

The filament belonging to this group is short, type-A and subjected
to a lower shear rate. Figs. 11 and 12 show filament evolution and
streamlines obtained near the filament surface respectively. In Fig. 11,
the filament does not deform for the initial time sequence and remains
in the horizontal position for a larger portion of simulation. At t=54.0
(Fig. 12), the filament breaks symmetry and at t=60.0 folds onto itself
to form a C-shape buckling. Similar shapes were reported in the ex-
perimental works of Forgacs et al. (Forgacs and Mason, 1959), nu-
merical studies of Stokie et al. (Stockie and Green, 1998; Stockie, 2002)
and Ross et al. (Ross and Klingenberg, 1997). These deformations are
referred to as snake turns. No form of shape replication is observed. A
sequence of single and multiple recirculation zones are observed
throughout. Streamlines as observed at t=50.0 (Fig. 12), show the
formation of a large elliptical recirculation zone at the bottom right
portion of the filament. This zone travels left along the filament surface.
At t=54.0, the zone grows sufficiently large to push the filament up-
wards thus making the filament to bend at the center. The formation of
such large primary circulation zones indicates symmetry breakage for
filaments.

Case 2: L=0.25, K=2.0, Kb=1×10−4.

The filament in this group is short, type-A and subjected to higher

shear rate. Figs. 13 and 14 show filament evolution and streamlines
obtained near the filament surface respectively. Symmetry breaks at
t=22.0 as seen in Fig. 14. The filament undergoes a snake-like turn
and returns back to a horizontal, inclined position at t=30.0. The
deformation time td is observed to be 4.0 (between t=22.0 and
t=26.0). When filament deformation is observed at t=25.0 and at
t=47.5, a snake turn shape replication is seen (Fig. 13). The images at
t=14.0,16.0, 18.0 and 20.0 (Fig. 14) show multiple recirculation zones
along the length of filament owing to instability caused by the combi-
nation of fluid impingement and compression states of the filament .
Similar to Case 1, a large elliptical zone is produced at left filament
corner which pushes it upwards. At t=30.0 (Fig. 14), the elliptical
zone spans across the entire length of the filament with the recircula-
tion center close to filament midpoint.

Case 3: L=0.25, K=1.0, Kb=1×10−5.

The filament is type-B, short and subjected to a lower shear rate in
this case. Figs. 15 and 16 show filament evolution and streamlines
obtained near the filament surface respectively. The symmetry break
occurs early at t=24.0 (Fig. 16), thus highlighting that symmetry
break occurs faster for type-B filaments when compared to type-A as in
case 1. When the filament is observed at t=32.5 (Fig. 15), an in-
complete “S” shape is seen. Such S-turns are a characteristic feature of
flexible filaments, and similar shapes are observed in the numerical
works of Weins et al. (Wiens and Stockie, 2015), Ross et al. (Ross and
Klingenberg, 1997) and experimental works of Forgacs et al.
(Forgacs and Mason, 1959) . Deformation time td is found to be 10.0
(between t=24.0 and t=34.0). Also, shape replication is seen when
deformation is observed at t=27.5 and t=52.5. In Fig. 16 at t=26.0,
two recirculation zones appear with the primary zone at right side and
secondary zone at the left end of the filament. The primary zone pushes

Fig. 11. Evolution of filament subjected to shear flow for L=0.25, K=1.0, Kb=1×10−4.

Fig. 12. Streamlines obtained at the vicinity of filaments at different time sequences for L=0.25, K=1.0, Kb=1×10−4.
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the right side of the filament downwards whereas the secondary zone
pushes the left tip upwards. This can be observed at t=28.0 in Fig. 16.
As time advances, the secondary zone is absorbed by the primary one to
form a single eye shaped recirculation zone at t=32.0. The center of
the primary zone splits up and then merges back to form a circularly
shaped zone at t=36.0. Finally, the filament reaches the horizontal
position with an elliptical zone spanning the entire filament length at
t=42.0. The replication of S-shape begins at t=44.0. Primary and
secondary zones are observed at t=48.0. However, the secondary zone
is unable to grow to a bigger size as seen at t=28.0 which prevents the
left filament tip to move upwards, and thus the left portion aligns with
the primary zone. This leads to the formation of C-shape buckling, and
hence a combination of S and C-shapes are observed throughout in
Fig. 16. Throughout the simulation, the ends of the filament never re-
turn back to its original position and remain in a deformed state, thus
indicating non-recuperation.

Case 4: L=0.25, K=2.0, Kb=1×10−5.

In this case, the filament is type-B, short and subjected to higher
shear rate. Figs. 17 and 18 show the evolution pattern and corre-
sponding streamlines obtained near the filament surface. Symmetry
breaks early at t=7.5 (Fig. 17). The lowest end-to-end distance dee is
seen at t=15.0. Deformation time td is found to be 7.5 (between
t=7.5 and t=15.0). Folding of the filaments occur at t=15.0,
t=25.0 and close to t=32.5. Beyond this point, a transition of fila-
ment shape from straight to S-shape occurs between t=40.0 to
t=48.0. The mechanism with which S-shape is formed is similar to
Case 3. However, an important aspect of this case is the formation of
two equally sized recirculation zones post S-shape formation. This is
observed at t=50.0 .

Case 5: L=0.3125, K=1.0, Kb=1×10−4.

Fig. 19 depicts a type-A, long filament subjected to lower shear rate.
Fig. 20 shows the streamlines obtained near the filament surface.
Symmetry break occurs at t=58.0 (Fig. 20), which is closer to the si-
mulation end time. No substantial deformation is observed making it
similar to Case 1. This also indicates that longer filaments tend to take
more time compared to short filaments to undergo noticeable de-
formation when subjected to the same shear flow conditions. The for-
mation mechanism of C-shape buckling is similar to Case 1. Throughout
the simulation, multiple recirculation zones ranging from two to four
are observed near the filament surface.

Case 6: L=0.3125, K=2.0, Kb=1×10−4.

In this group a type-A, long filament subjected to higher shear rate is
considered. Figs. 21 and 22 depict filament evolution and resulting
streamlines near the surface respectively. The filament remains hor-
izontal for the first half of the total simulation time and undergoes
symmetry break at t=30.0. Snake-like turns are also observed here
which is similar to case 2. The deformation time td is observed to be 4.0
(between t=30.0 and t=34.0). Replication of the snake turn shape
occurs when observed for deformation at t=34.0 (Fig. 22) and
t=57.5(Fig. 21). The ends of the filament return back to its original
position, thus showing rigidity. The mechanism of snake turn is similar
to Case 2.

Case 7: L=0.3125, K=1.0, Kb=1×10−5.

Fig. 23 illustrates the deformation of type-B, long filaments in the
fluid flow of high shear rate. Fig. 24 show streamlines occurring near

Fig. 13. Evolution of filament subjected to shear flow for L=0.25, K=2.0, Kb=1×10−4.

Fig. 14. Streamlines obtained at the vicinity of filaments at different time sequences for L=0.25, K=2.0, Kb=1×10−4.
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the surface of the filament. The deformations observed are very similar
to Case 3. The symmetry breaks at t=27.5. An incomplete S-shape is
formed at t=37.5. The mechanism of S shape formation is very similar
to Case 3 given in Fig. 16. Shape replication is observed for t=35.0 and
t=57.5. It can be seen in Fig. 16 corresponding to Case 3 that the
filament gains S-shape. However, when observing the same filament
from t=50.0 to t=60.0, there is a transition to C-shape. Such tran-
sitions are not observed here, and S-shapes appear to occur in a cyclic
manner. This may be due to the extended length of the filament in the
present case. The streamlines from t=50.0 to t=60.0 are shown in
Fig. 24.

Case 8: L=0.3125, K=2.0, Kb=1×10−5.

In the last case, the filament considered is type-B, long and sub-
jected to a high shear rate. The symmetry break is obtained at t=10.0

as seen in Fig. 25. Fig. 26 shows the streamlines obtained near the fi-
lament surface for complex shapes. A wide range of complete and in-
complete S-shapes are observed during the simulation. The filament
undergoes incomplete S turns at t=17.5 and t=35.0, while complete
S-turns are found at t=42.5 (Fig. 25) and t=50.0 (Fig. 26). Shape
replications are obtained for t=30.0 and t=60.0. The deformation
time td is observed to be 7.5 (between t=10.0 and t=17.5).The fi-
lament is highly flexible in nature and produces the highest number of
turning point replications. It shows the least resistance to fluid flow.
Along with S-turns, some complex shapes have also been found at
t=27.5, 37.5 and 52.5 (Fig. 25). Apart from t=38.0 and t=42.0, all
images show one large circular recirculation zone around which the
filament rotates.

The dimensional physical parameters available in Table 4 are re-
quired for the calculation of Viscous Flow Forcing value (VFF) for all
the cases considered. The same is calculated and provided in Table 5.

Fig. 15. Evolution of filament subjected to shear flow for L=0.25, K=1.0, Kb=1×10−5.

Fig. 16. Streamlines obtained at the vicinity of filaments at different time sequences for L=0.25, K=1.0, Kb=1×10−5.

M. Kanchan and R. Maniyeri International Journal of Heat and Fluid Flow 77 (2019) 256–277

268



The Viscous Flow Forcing value for the present diatom chain pro-
blem involving all the test cases ranges from 5.0×10−4 ≤ VFF ≤
1.1×105 as provided in the simulation studies of Nguyen et al.
(Nguyen and Fauci, 2014). By observing the Viscous Flow Forcing term
calculated for all cases in Table 5 and by analyzing filament deforma-
tion from the case study, it is ascertained that Cases 1,2,5 and 6 all
produce VFF value less than 350. These are also the cases for which the
filaments undergo initial deformation and with the progression of si-
mulation time retain their original shape. Filaments belonging to these
groups are thus classified as recuperative. Recently, Liu et al. (Liu et al.,
2018) analyzed the morphological transitions of elastic filaments in
shear flow. The transition between different orbit classes or regimes of
elastic filaments is studied using experimental and local slender-body
theory. Tumbling, C-buckling and U-turn regimes are observed and
their corresponding Viscous Flow Forcing values are calculated. In their
theoretical study, the filament contour lengths are in the range 4 -
40 µm and shear rate is in the range 1–10 s− 1. In the experimental
setup, the Reynolds number is of the order 10−4. For the case of non-
Brownian filament motion, the first transition from tumbling to C-
buckling occurs at a Viscous Flow Forcing value of 306.4 which is also
verified by them through experiments. A phase chart diagram (Refer to
Fig. 4 in (Liu et al., 2018)) is also provided by them to highlight the
various filament transition regimes. The filament is highly recuperative
in nature and beyond the Viscous Flow Forcing value of 306.4, the fi-
lament transitions from C-buckling to U-turn shape indicating non-re-
cuperative behavior. Accordingly, our results are in reasonable agree-
ment with that of Liu et al. (Liu et al., 2018).

Filaments belonging to Cases 3,4,5 and 7 have VFF value higher
than 350. These filaments never retain their original shape once in-
itially deformed. Thus they can be grouped as non-recuperative. The
fluid motion or pattern of recirculation zones leading to the formation
of snake turns (C-shape) and S-shapes are similar in all cases. Fluid flow
around recuperative filaments as observed in Case 1 and Case 5 show
the formation of single and multiple recirculation zones along the
length of the filament. This is an indication of filament resistance to
fluid motion. The flow is drag induced making it an ideal condition for
nutrient absorption in diatoms (Karp-Boss et al., 1996). Also,

recuperative filaments produce flat elliptical zones around the filament
body as compared to non-recuperative ones which produce circularly
shaped zones. Elliptical zones prevent nutrients from spreading locally,
thus providing diatom with a rich nutrient surrounding. Long re-
cuperative filaments deform at a slow pace when compared to short
filaments. An increase in length also contributes to more number of
zones. Short filaments as in Cases 3 and 4 have an ability to transit from
S-shape to C-shape irrespective of their bending rigidity. However long
filaments have cyclic nature of shape formation without transitions.
The non-reuperative filaments tend to deform faster along the orbit of
the circulation zone and also show less resistance to fluid motion. This
prevents the filament from sweeping nutrients as compared to re-
cuperative filaments (Case 2 and Case 6).

In the above case study, the analysis was carried out for a fixed
Reynolds number Re = 1.75. Now let us examine the effect of varying
Reynolds number on diatom chain deformations. Two Reynolds num-
bers (Re=0.875, by varying shear rate) and (Re=8.0, by varying
diatom chain length) are computed. The critical Viscous Flow Forcing
value also varies for different Reynolds numbers. The simulations for
the Reynolds numbers mentioned above are carried out. The dynamics
and evolution of diatom chains for these two cases of Reynolds number
Re=0.875 and Re=8.0 is analyzed and provided in figures below.

The analysis from diatom simulation studies has revealed that up to
a critical VFF value of 350, the diatom behaves recuperatively and
beyond the critical value, they tend to be non-recuperative. Reducing
the Reynolds number to 0.875, also causes VFF to decrease and in this
case, it is 44.0. When comparing Fig. 11 pertaining to Case 1 of the
present study for which Re=1.75 and VFF=89.4 and Fig. 27, we see
that not much difference can be seen in filament dynamics throughout
the entire simulation period, except towards the end (t=60.0) where
the diatom in Fig. 27 just begins to undergo buckling. Also, in Fig. 27 it
can be observed that the diatom still behaves recuperatively. Thus,
reducing the Reynolds number causes the diatom to deform slowly.

If the VFF value is greater than 350, the diatoms do not retain their
original shape and their dynamics is concentrated more towards the
formation of S-shape deformations. When observing filament evolution
for higher Reynolds number, Re=8.0 and VFF= 872.0 as shown in

Fig. 17. Evolution of filament subjected to shear flow for L=0.25, K=2.0, Kb=1×10−5.

Fig. 18. Streamlines obtained at the vicinity of filaments at different time sequences for L=0.25, K=2.0, Kb=1×10−5.
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Fig. 28 and comparing it with Fig. 15 which belongs to case 3 of the
present study for which the Re=1.75 and VFF=894.2, we see a slight
deviation in filament dynamics. We also see that in Fig. 15, S – shape
diatom deformation initiates and completes between time t=30.0 and
t=40.0. A similar observation is obtained in Fig. 28 where this time
gap is between t=30.0 to t=45.0. The slight difference may be due to
variation in VFF values for both these scenarios. Higher Reynolds
number produced larger Viscous Flow Forcing value. The above ana-
lysis also confirms that lower VFF value produces slower filament de-
formations. Even though Reynolds number is important, VFF values
play a critical role in better understanding the dynamics when filaments
are subjected to shear flow. Our analysis is comprehensive in that it
covers VFF values for a wide range between 0 ≤ VFF ≤ 3500, which
includes most of the critical parameters like diatom chain length, shear
rates and Reynolds numbers.

Next, we shall define some analysis factors that describe motion,
shape replication and deformation of filament for the simulation cycle.

Symmetry breakage time (tsb) defined as the time for which the
filament breaks symmetry for the first time.
End-to-end distance (dee) defined as the distance between the two

ends of the filament.
Turning point time (tp) defined as the time at which the filament
attains the lowest end-to-end distance.
Deformation time (td) defined as the time difference between first
symmetry breakage and lowest end-to-end distance.
Recurrence time (tr) defined as the average time difference be-
tween two successive turning point occurrences in the simulation
cycle.

We now compare their effects and understand the variation for
different cases. It is essential to understand the significance of sym-
metry breakage time tsb, turning point time tp, deformation time td and
recurrence time tr in the present study. Higher symmetry breakage time
signifies that the filament remains in the undeformed state for a large
portion of time. This gives ample time for the filament to interact with
the surrounding environment. In the case of diatom chains, it provides
more time for it to absorb necessary nutrients. Ideally, the diatom has to
remain in the undeformed state with an assumption that the sur-
rounding is risk-free. Remaining in the undeformed state allows or-
ientation of filament to high drag inducing fluid motion (Guasto et al.,
2012). Once deformation is initiated by fluid motion, the diatoms

Fig. 19. Evolution of filament subjected to shear flow for L=0.3125, K=1.0, Kb=1×10−4.

Fig. 20. Streamlines obtained at the vicinity of filaments at different time sequences for L=0.3125, K=1.0, Kb=1×10−4.

Fig. 21. Evolution of filament subjected to shear flow for L=0.3125, K=2.0, Kb=1×10−4.
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Fig. 22. Streamlines obtained at the vicinity of filaments at different time sequences for L=0.3125, K=2.0, Kb=1×10−4.

Fig. 23. Evolution of filament subjected to shear flow for L=0.3125, K=1.0, Kb=1×10−5.

Fig. 24. Streamlines obtained at the vicinity of filaments at different time se-
quences for L=0.3125, K=1.0, Kb=1×10−5.

Fig. 25. Evolution of filament subjected to shear flow for L=0.3125, K=2.0, Kb=1×10−5.

Fig. 26. Streamlines obtained at the vicinity of filaments at different time se-
quences for L=0.3125, K=2.0, Kb=1×10−5.

M. Kanchan and R. Maniyeri International Journal of Heat and Fluid Flow 77 (2019) 256–277

271



ability to catch nutrients is lowered. Turning point time indicates the
time for which the filament achieves a shape having the lowest end-to-
end distance. It also helps to identify the highly deformed state of the
filament. With reference to turning points, deformation time can be
calculated. The deformation time indicates the ability of the initially
deformed filament to reach its highly deformed state. Low deformation
time indicates a faster recovery for the filament to reach undeformed
position. Thus, the diatom can regain the undeformed state in a shorter
period of time. Finally, recurrence time determines the frequency at
which subsequent filament turning points occur. Smaller the recurrence
time, higher is the turning point frequency. The filaments with high
recurrence time tend to remain in the undeformed state longer.
Therefore, the best possible condition is that filament must have high
symmetry breakage time, low deformation time and high recurrence
time (low recurrence frequency). However, these findings have never
considered the role of nutrient uptake in diatom corresponding to

diffusion, advection and chemical composition of diatom environment.
The focus here is understanding the passive alignment of diatom chains
based on an accurate representation of external turbulences or re-
circulation zones in its vicinity.

The above-mentioned analysis factors for all cases are tabulated in
Table 6 according to filament case conditions. The deformation time td
is dependent on symmetry breakage time tsb. When observing symmetry
breakage time for all cases, it can be seen that tsb= 7.5 for Case 4
which indicates that symmetry break occurs early for non-recuperative
filaments subjected to higher shear rate. Short filaments break sym-
metry faster as compared to longer ones. Another observation when
comparing filaments of the same length and same shear rate is that non-
recuperative filaments break symmetry faster than recuperative fila-
ments. Since non-recuperative filaments tend to bend the most, their
end to end distance is also smaller. When observing filaments of the
same length and same shear as in Case 2 and 4, the turning point time is

Table 5
Viscous Flow Forcing term (VFF) calculated for different cases of varying filament length, shear rate and bending rigidity for Reynolds number 1.75.

Case No. and condition (length, shear, rigidity
type)

Diatom chain length, Ldiatom (m) x
10−3

Shear rate, G (s− 1) Bending rigidity, EI (Nm2) Viscous Flow Forcing (VFF) x 103

1 (short, low shear, type-A) 0.47 0.5 5.72×10−16 0.0894
2 (short, high shear, type-A) 0.47 1.0 5.72×10−16 0.1788
3 (short, low shear, type-B) 0.47 0.5 5.72×10−17 0.8942
4 (short, high shear, type-B) 0.47 1.0 5.72×10−17 1.788
5 (long, low shear, type-A) 0.58 0.5 5.72×10−16 0.1744
6 (long, high shear, type-A) 0.58 1.0 5.72×10−16 0.3489
7 (long, low shear, type-B) 0.58 0.5 5.72×10−17 1.744
8 (long, high shear, type-B) 0.58 1.0 5.72×10−17 3.489

Fig. 27. Evolution of filament subjected to shear flow for L=0.25, K=1.0, Kb=1×10−4

(Re=0.875, VFF=44.0).

Fig. 28. Evolution of filament subjected to shear flow for L=0.25, K=1.0, Kb=1×10−4

(Re=8.0, VFF=872.0).

Table 6
Analysis factors such as symmetry breakage time, turning point time, deformation time and recurrence time calculated for all filament case conditions.

Case No. and condition (length, shear, recovery type) Symmetry breakage time, tsb Turning point time, tp Deformation time, td Recurrence time, tr

1 (short, low shear, recuperative) 54.0 – – –
2 (short, high shear, recuperative) 22.0 26.0 4.0 22.5
3 (short, low shear, non-recuperative) 24.0 34.0 10.0 25.0
4 (short, high shear, non-recuperative) 7.5 15.0 7.5 11.0
5 (long, low shear, recuperative) 58.0 – – –
6 (long, high shear, recuperative) 30.0 34.0 4.0 22.0
7 (long, low shear, non-recuperative) 27.5 37.5 10.0 23.0
8 (long, high shear, non-recuperative) 10.0 17.5 7.5 7.4
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small for non-recuperative filaments. Filaments subjected to lower
shear rate also have higher turning points when compared with high
shear filaments. The deformation time largely varies with respect to the
shear rate as seen in case pairs corresponding to 2,4 and 6,8. The re-
currence time tr for all cases can be calculated by analyzing Figs. 29–32.
Lower recurrence time indicates faster reproduction of turning points
by the filament. Non-recuperative filaments which are placed in higher
shear rates show higher recurrence rates at tr= 11.0 for Case 4
(Table 6) and tr= 7.4 for Case 8 (Table 6). Thus, non-recuperative fi-
laments have a high frequency of recurrence. When comparing fila-
ments based on length for fixed shear and rigidity, long filaments have
higher symmetry breakage time, higher turning point time and lower
recurrence time. This indicates that long filaments take less time to

achieve repeated turning behavior once the deformation is initiated.
From the above discussion, the following ideal cases can be identified.
Long recuperative filament subjected to low shear rate (high symmetry
breakage time), Short and long recuperative filament placed in high
shear rate (low deformation time) and Short non-recuperative filament
in low shear flow (high recurrence time).

SB and TP with numeric case number notations are symmetry
breaking points and turning points respectively which are indicated in
all Figs. 29–32. The effect of varying shear rate on dee of short re-
cuperative filaments is given in Fig. 29. The dotted line indicates fila-
ment subjected to lower shear rate and solid line for higher shear rates.
A higher shear rate in Case 2 shows the lowest end to end distance,
higher recurrence of turning points and faster symmetry breakage. In
Fig. 30, the effect of shear rate on dee for short non-recuperative fila-
ments is plotted for the simulation cycle. The recurrence of turning
points is highest for non-recuperative filaments subjected to higher

Fig. 29. Effect of dee with respect to time for varying shear rate (short re-
cuperative filament).

Fig. 30. Effect of dee with respect to time for varying shear rate (short non-
recuperative filament).

Fig. 31. Effect of dee with respect to time for varying shear rate (long re-
cuperative filament).

Fig. 32. Effect of dee with respect to time for varying shear rate (long non-
recuperative filament).
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shear rate with lower dee. The behavior of long filaments to different
shear rate is plotted in Figs. 31 and 32 respectively. Fig. 31 also con-
firms that filaments at higher shear rate tend to deform faster which is
shown by its early symmetry breakage and frequent recurrences within
the simulation cycle. High recurrence frequency occurs for long non-
recuperative filaments as seen in Fig. 32 (Case 8).

3.4. Filament migration

The fact that the filaments undergo deformation and turning for
recuperative and non-recuperative cases prone to varying shear rates is
well established in the previous section. We now focus on the migration
and displacement produced by these filaments for various cases. The
movement of the filament in the x-direction indicate its motion towards

the entrance or exit of the channel and movement of the filament in the
y-direction depicts motion towards upper or lower moving walls. The
migration of short filaments subjected to lower shear rate with different
bending rigidity in x-direction and y-direction is shown in Figs. 33 and
34 respectively. The filaments in Fig. 33 move towards the inlet irre-
spective of rigidity. However non-recuperative filament (Case 3) moves
towards the top wall indicating that progression in shape causes a
significant portion of the filament to move above the centerline
(Fig. 34). Since recuperative filament (Case 1) has not achieved con-
siderable deformation, it still remains below the centerline (y=0.5).
The maximum displacement in the x-direction with respect to channel
midpoint (4.0, 0.5) is 0.1, and in the y-direction is 0.25. The same set of
filaments are now subjected to higher shear rate as shown in Figs. 35
and 36 respectively. The deformation in the y-direction is similar to the

Fig. 33. Filament migration in the x-direction for varying bending rigidity
(short filament in low shear flow).

Fig. 34. Filament migration in the y-direction for varying bending rigidity
(short filament in low shear flow).

Fig. 35. Filament migration in the x-direction for varying bending rigidity
(short filament in high shear flow).

Fig. 36. Filament migration in the y-direction for varying bending rigidity
(short filament in high shear flow).
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previous case where recuperative filament (Case 2) tend to deform
mostly below the centerline (y=0.5) as seen in Fig. 36. The migration
of both filaments (Case 2 and Case 4) is now shifted towards the exit of
the channel with maximum displacement in x-direction being 0.42 and
in y-direction 0.3 with respect to channel midpoint (4.0, 0.5). These
displacements are higher when compared to low shear rate cases of
Fig. 33 and Fig. 34, thus confirming that filaments at higher shear tend
to be displaced the farthest. Figs. 37 and 38 show migration of long
filaments of different bending rigidity subjected to lower shear rate.
Both the filaments in Fig. 37 moves initially towards the inlet and re-
turns back to the original position. In Fig. 38 non-recuperative filament
(Case 7) move towards the top wall while the recuperative filament
(Case 5) remains in the centerline position. The effective displacement

in the x-direction is negligible whereas in the y-direction displacement
is 0.3 with respect to channel midpoint (4.0, 0.5). When the same case
is tested for higher shear rate, there is a drastic difference in x-direction
displacement for recuperative and non-recuperative filaments as seen in
Fig. 39. Recuperative filament (Case 6) is displaced the farthest when
compared to non-recuperative (Case 8) towards the channel exit. The
frequent occurrences of filament deformation cause the non-re-
cuperative filament to migrate a short distance. The maximum dis-
placement in the x-direction for this case is found to be 0.38. This
displacement, when compared to that of short filament subjected to the
same shear condition (Fig. 35, x-displacement= 0.42) is small,
showing that short recuperative filament moves the farthest for all
cases. The same behavior of short non-recuperative filament migrating
above the centerline and recuperative filament moving below

Fig. 37. Filament migration in the x-direction for varying bending rigidity (long
filament in low shear flow).

Fig. 38. Filament migration in the y-direction for varying bending rigidity (long
filament in low shear flow).

Fig. 39. Filament migration in the x-direction for varying bending rigidity (long
filament in high shear flow).

Fig. 40. Filament migration in the y-direction for varying bending rigidity (long
filament in high shear flow).
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centerline is also observed for long filaments in Fig. 40. Shear rate and
flexibility have a significant contribution in deciding the direction of
filament migration. Filaments subjected to higher shear rate tend to
move towards the exit portion of the channel, and non-recuperative
filaments move towards the top moving wall irrespective of the fila-
ment lengths considered in this study.

4. Conclusion

This study focuses on understanding the fluid-structure interaction
of non-motile diatom chains subjected to shear flow in a viscous fluid
medium having constant nutrition flux. The simulation is carried out in
a two-dimensional manner by considering a flexible filament as a
diatom placed in a channel. The interplay of hydrodynamics and fila-
ment properties like elasticity and bending are incorporated using an
immersed boundary algorithm. The developed numerical model is va-
lidated by comparing with previous research works which involve de-
formation of a tethered flexible filament subjected to plane channel
flow and un-tethered flexible filament in a planar shear flow at low
Reynolds number. Further, the model is modified to incorporate a
flexible filament mimicking a diatom chain placed in shear flow con-
ditions. Filament shape deformations such as snake turns (C-shape)
buckling and S-turns, documented by previous researchers are also
observed in the present study. In this study, filament which retains their
original shape after initial deformation is considered to be springy re-
cuperative and those who do not retain shape are termed as non-re-
cuperative. This is very important to determine how the diatom chain
reacts to nutrients in their surrounding fluid and understand the passive
alignment of diatom chains based on an accurate representation of
external turbulences or recirculation zones in its vicinity. As observed
from this study diatom that has Viscous Flow Forcing (VFF) in the range
0 < VFF < 350 are considered to be recuperative and the ones having
VFF beyond the value of 350 are non-recuperative. This helps us to
identify the critical value of Viscous Flow Forcing (VFF) that govern the
filaments ability to retain or attain permanent deformation from its
original shape.

Based on the analysis of various factors such as symmetry breakage
time, turning point time, deformation and recurrence time, optimum
survival conditions for diatoms have been studied. Higher symmetry
breakage time signifies that the filament remains in the undeformed
state for a large portion of the time. This gives ample time for the fi-
lament to interact with the surrounding environment. In the case of
diatom chains, it provides more time for it to absorb necessary nu-
trients. Low deformation time indicates a faster recovery for the fila-
ment to reach undeformed position. Thus, the diatom can regain the
undeformed state in a shorter period of time. Finally, the filaments with
high recurrence time tend to remain in the undeformed state longer.
Therefore, the best possible condition is that filament must have high
symmetry breakage time, low deformation time and high recurrence
time (low recurrence frequency).

We found out the optimum survival conditions for the diatoms
based on the above factor analysis. The present study indicates that
long recuperative filaments subjected to low shear rate have high
symmetry breakage time (tsb= 58.0, Case 5), short and long re-
cuperative filaments placed in high shear rate show low deformation
time (td= 4.0, Case 2 and Case 6) and short non-recuperative filaments
in low shear flow exhibit high recurrence time (tr= 25.0, Case 3). Non-
recuperative filaments subjected to high shear, usually tend to deform
regularly due to high recurrence frequency (tr= 7.4, Case 8 and
tr= 11.0, Case 4) which makes it challenging for the diatoms to collect
nutrients. Filament migration study shows that short and recuperative
filaments tend to migrate faster and deform less in shear flow, which is
another critical observation of the behavior of the diatom chain to
external flow conditions. The developed two-dimensional computa-
tional model based on the immersed boundary finite-volume method
has been successful in capturing fluid dynamics near the filament

surface and thus can be easily extended to study other non-motile
biological organism interacting with surrounding fluid flow under dif-
ferent conditions.
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