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This study proposes a systematic approach of analysis and optimization of the multi-effect distillation-
thermal vapor compression (MED-TVC) desalination system. The effect of input variables, such as tempera-
ture difference, motive steam mass flow rate, and preheated feed water temperature was investigated
using response surface methodology (RSM) and partial least squares (PLS) technique. Mathematical and eco-
nomical models with exergy analysis were used for total annual cost (TAC), gain output ratio (GOR) and fresh
water flow rate (Q). Multi-objective optimization (MOO) to minimize TAC and maximize GOR and Q was
performed using a genetic algorithm (GA) based on an artificial neural network (ANN) model. Best Pareto
optimal solution selected from the Pareto sets showed that the MED-TVC system with 6 effects is the best
system among the systems with 3, 4, 5 and 6 effects, which has a minimum value of unit product cost
(UPC) and maximum values of GOR and Q. The system with 6 effects under the optimum operation condi-
tions can save 14%, 12.5%, 2% in cost and reduces the amount of steam used for the production of 1 m3 of
fresh water by 50%, 34% and 18% as compared to systems with 3, 4 and 5 effects, respectively.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Due to the rapid growth of population, industry, and irrigation
during the second half of the last century, the need for high-quality
water has significantly increased. Desalination technologies have
been greatly improved in the last few decades in order to produce po-
table water. Today, thermal desalination processes account for more
than 65% of the production capacity of the desalination industry [1,2].

Among thermal desalination systems, multi-effect distillation-
thermal vapor compression (MED-TVC) systems with a top brine
temperature (TBT) lower than 70 (°C) have received more attention
in recent years [3]. In these systems, a steam jet ejector is added to
a multi-effect distillation (MED) system to reduce the amount of re-
quired steam (motive steam), boiler size, and the amount of cooling
water, thereby lower pumping power and pretreatment costs [4]. Ex-
pansion in desalination systems is associated with an increase of the
gain output ratio (GOR) and a decrease in total annual cost (TAC),
with the maximum production of fresh water (Q).
@nitk.ac.in (V. Shetty K),
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Recently, several studies have been carried out on the modeling
and single-optimization of MED-TVC systems. Bin Amer [5] optimized
the ME-TVC system using Smart Exhaustive Search Method and Se-
quential Quadratic Programming. Bin Amer [5] approach was applied
to maximize the GOR of the MED-TVC system. Kamali et al. [2], El-
Dessouky et al. [6], Zhao et al. [7], Alasfour et al. [1], and Al-Salahi
and Ettouney [8]have developed steady state mathematical models
to represent a MED-TVC desalination system and parametric tech-
niques have been used to determine the optimum operating and
design conditions for the system. Sayyaadi et al. [18] performed ther-
modynamic and thermoeconomic optimization of MED-TVC using a
hybrid stochastic/deterministic optimization approach based on a
combination of GA and simulated annealing (GA+SA). All of men-
tioned papers focused on the single-optimization approach.
Shakouri et al. [3], Lukic et al. [9], Choi et al. [10], Ansari et al. [11],
and Sharaf et al. [12] have developed mathematical and economic
models for a MED-TVC system and performed the exergy analysis.
Shakouri et al. [3] optimized MED-TVC system based on minimization
of unit product cost. In the Shakouri et al's [3] exergy analysis approach,
the exergy destruction was considered as a new term to operating cost.
Choi et al. [10] evaluated the exergy losses due to irreversibility in each
subsystems of MED-TVC desalination system and identified the poten-
tial for improving system efficiency using exergy analysis.
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Recently, several studies have been performed using MOO to opti-
mize desalination systems. Vince et al. [15] have carried out MOO to
minimize the electrical consumption and total water price in RO net-
work using mixed integer nonlinear programming. Guria et al. [16]
applied MOO to minimize the permeate throughput, the cost of desa-
lination, and the permeate concentration of reverse osmosis desalina-
tion units using different adaptations of the non-dominated (NSGA).
Khoshgoftar Manesh and Amidpour [17] applied an evolutionary al-
gorithm to multi-objective thermoeconomic optimization of coupling
a multi stage flash desalination (MSF) plant with a pressurized water
reactor (PWR) nuclear power plant.

For MOO problems, a set of optimal solutions called the Pareto
front exists, corresponding to a set of input decision variables.
According to the required conditions, designers can choose a set of
design variables (input decision variables) to design an optimal sys-
tem using the Pareto front. Recently, genetic algorithms (GA) have
been efficiently used for solving multi-objective optimization prob-
lems in engineering. GA is a globally heuristic, stochastic optimization
technique based on the theory of evolution [13,14].

Mathematical models of the process, which present the objective
functions correlated to the decision variables, are needed for MOO.
Since the theoretical models of MED-TVC systems are complex and
cannot be easily implemented in MOO using GA, an artificial neural
network (ANN) based model of a MED-TVC system is proposed in
the present study. ANN, as the branch of artificial intelligence, is a
powerful tool to model complex non-linear systems [19]. ANN
models have been developed in the current study, using the theoret-
ical model simulation results for the input conditions, based on the
design of experiments (DOE) methodology. ANN models have been
applied earlier in order to optimize desalination systems, but were
not used for MED-TVC systems.

In order to understand the contribution of each of the decision
variables individually and their interaction effects, response surface
methodology (RSM) is applied to the MED-TVC system. Khayet et al.
[20] and Kazemian et al. [21] have optimized and investigated both
RO and thermal desalination systems, using RSM.

To evaluate the correlation between the output variables (re-
sponses) and input variables, partial least squares (PLS) is used. PLS
is a hybrid method of multiple regression and Principal Component
Analysis (PCA) [25].

As were investigated in the literature, recent research efforts have
been focused on a formal mathematical approach to provide a clear
evaluation and single objective optimization of the MED-TVC desali-
nation system. However, studies on the multi-objective optimization
(MOO) of MED-TVC systems in order to maximize GOR and minimize
UPC, simultaneously, are scarce.
Fig. 1. Schematic of the MED-T
This paper contributes to a new approach to the optimization and
investigation of MED-TVC desalination systems. MOO is applied to
minimize TAC and maximize GOR and Q simultaneously, while the
temperature difference between effects (ΔT), motive steam mass
flow rate (S), and preheated seawater temperature (Tph) are consid-
ered as the input decision variables.

By this approach, more details of the process are investigated
using RSM and PLS modeling and MOO provides better decision-
making tool based on the designer's requirements for MED-TVC opti-
mal designing, which have not considered in resent research.

The objectives of this paper are summarized in five sections. First
is choosing the set of input decision variable values based on central
composite experimental design (CCD) and then determining output
variables for these sets, using the mathematical and economical
models of the process, respectively. Second is the use of exergy anal-
ysis to calculate the amount of exergy destruction as an opportunity
cost. Third is the process of analyzing and investigating the effects
of input variables on the responses of RSM and PLS. Fourth is develop-
ing the ANNmodel and optimizing the MED-TVC systems with differ-
ent numbers of effects (n) by subjecting the ANN model to MOO,
using GA in order to minimize TAC and maximize GOR and Q. This
will also include the presentation of Pareto optimal solutions and
the selection of two points as preferred points based on the minimi-
zation of unit product cost (UPC) and the maximization of GOR. The
final section is the definition of the sets of input decision variables
corresponding to preferred points as the design parameters.

2. Material and methods

2.1. MED-TVC configuration

The schematic of a MED-TVC system with ‘n’ effects is shown in
Fig. 1. The system includes a steam jet ejector (SJE), evaporators,
pre-heaters, flashing boxes and an end condenser. In the MED-TVC
system, the motive steam is used by an SJE to compress some of the
water vapor produced in the last effect. The compressed vapor is in-
troduced into the tube side in the first effect and condensed by releas-
ing its latent heat into the feed water for evaporation. Part of the
condensate returns to the boiler, and other part passes into the first
flashing box. Demisted vapor formed in the first effect and the flashed
vapor from the first flashing box is used together as heating sources in
the first preheater to preheat the feed water to the first effect. The
combined vapor from the first pre-heater passes into the second ef-
fect and is used as the heat source to vaporize the feed water in the
second effect. This process is repeated for all effects until the last
one. At the end, the generated vapor of the last effect passes through
VC system with n effects.



Table 1
Mass balance, GOR and Q equations.

Equations Descriptions

B1=F1−D1 Mass balance of effect 1 (1)

Bi ¼ Fi þ Bi−1−Di þ yi−1: Dr þ
Pi−2

j¼1
Dj

 !" #
− i−1ð Þ:Fi−1:yi−1½ �

Mass balances of effects 2 to n (2)

Dcon: ¼ Dn−Dr þ yn: Dr þ
Pn−1

i¼1
Di

 !" #
Mass balance of end condenser (3)

D ¼ 1−ynð Þ: Dr þ
Xn−1

i¼1

Di

 !" #
− yn−1: Dr þ

Xn−2

i¼1

Di

 !" #
− yn−2:

Xn−3

i¼1

Di

 !" #
− yn−3: Dr þ

Xn−4

i¼1

Di

 !" #
− yn−4: Dr þ

Xn−5

i¼1

Di

 !" #

− yn−5:Drð Þ þ Dcon:y6≥y≥y1

Mass balance of distillate tank (4)

CswF1=CB1B1 Salinity balance of effect 1 (5)
CswFi+(CBi− 1

.Bi−1)=CBiBi Salinity balance of effects 2 to n (6)

GOR ¼ D
S

Gain output ratio (7)

Q=86.4 ⋅D Fresh water flow rate (8)
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the condenser. The condensed vapor is introduced into the distillate
tank and the cooling water is divided into two parts. The first part is
used as feed and is distributed among the effects, and the other part
is rejected back to the sea [3,5].

2.2. Theoretical modeling of a MED-TVC system

The MED-TVC system has been modeled in two parts. The first
part is the phenomenological mathematical model for the process,
and the second part is the economic model. The models developed
by Alasfour et al.[1], Shakouri et al. [3], and Bin Amer [5] have been
applied in the current study. In the phenomenological model devel-
opment, the mass and energy balances and the heat transfer equa-
tions for evaporators, pre-heaters, jet ejectors, and end condensers
have been developed. These model equations can be simulated to de-
termine the values of GOR and Q. The economic model and the phe-
nomenological mathematical model are used to obtain the TAC of
the MED-TVC system. Exergy destruction has been considered as a
new cost term, which is included in the operating cost in the econom-
ic model.

2.2.1. Phenomenological mathematical model
Several simplifying assumptions listed below [3,7] were used in

the development of the phenomenological mathematical models:

• The plant is operated under a steady state.
• Heat losses to the surroundings are negligible.
• The temperature differences across the feed heaters are equal in
order to achieve the optimum operating conditions.

• The feed flow rates in all the effects are equal.
• Distillated water (produced water in the nth effect) is free of salt
(i.e. it has zero salinity).

Mass and salinity balance equations for all the effects, the con-
denser, and the distillate tank are given by Eqs. (1)–(6), as shown
in Table 1. Energy balance equations for all the effects are given by
Eqs. (9) and (10) that are presented in Table 2.

The heat transfer area for each effect, the pre-heaters, the condens-
er, and the total heat transfer area can be obtained by using Eqs.
Table 2
Energy balance equations.

Equations

D1 ⋅L1+(F1 ⋅Cp ⋅(T1−Tf1))=(Dr+S)⋅L0

Di⋅Li þ Fi⋅Cp⋅ Ti−Tfi
� �� � ¼ Di−1⋅Li−1ð Þ þ yi−1⋅ Dr þ

Pi−2

j¼1
Dj

 !
⋅Li−1

 !
− i−1ð Þ⋅Fi−1⋅yi−1⋅Li−ð
(11)–(16), as shown in Table 3. In addition, the overall heat transfer
coefficients and the logarithmic mean temperature differences for
the effects, pre-heaters, and condenser are given by Eqs. (17)–(24),
as shown in Table 3.

The temperature profile equations to determine the saturated
vapor temperature, vapor condensation temperature, brine tempera-
ture and non-equilibrium allowance are presented in Table 4. The
thermodynamic parameters' initial circumstances are presented in
Table 5.

2.2.2. Economic modeling
The total annual cost function is given by Eq. (31).

TAC ¼ ACCþ AOC ð31Þ

where ACC and AOC are the annual capital cost and annual operating
cost, respectively. The economic model equations that are used to cal-
culate the TAC are shown in Table 6. The annual capital cost (ACC) is
obtained by multiplying capital cost by the amortization factor. The
capital cost includes the area cost (CA), instrument cost (Ceq), site
cost (Cs), transportation cost (Ctr), building cost (Cb), engineers and
salary cost (Cen), and contingency cost (Cc), which are given by Eqs.
(32)–(39). The capital cost should be amortized to calculate the
ACC. The amortization factor is given by Eq. (40), in which the inter-
est rate (i) and plant life cycle (m) have been assumed to be equal to
15% and 20 years, respectively.

The AOC includes thermal energy cost (Cth), electricity cost (Ce),
labor cost (Cl), chemical materials cost (Cch), and insurance cost
(Cin), which are calculated by Eqs. (42)–(46). Exergy destruction
has been considered to be a lost opportunity cost term. This term is
considered in operating cost. The amount of exergy destruction in
the MED-TVC system is calculated by the application of equations
that are given in Table 7 [3]. The cost of power is assigned based on
the price of electricity being 0.07 ($/kWh). As the plant is assumed
to operate 330 days a year, the plant load factor (f) is considered to
be 0.9 [1,3,7].
Descriptions

Energy balance of effect 1 (9)

1Þ þ Bi−1⋅C⋅ Ti−1−�T i
� ��

Energy balance of effects 2 to n (10)



Table 3
Heat transfer area, heat transfer coefficient, and logarithmic mean temperature difference equations.

Equations Descriptions

Ae1 ¼ Dr þ Sð Þ⋅L0
Ue1⋅ T0C−T1ð Þ Heat transfer area of effect 1 (11)

Aej ¼
Di−1 þ Dr þ

Pi−2

j¼1
Dj

 !
⋅yi−1

 !
− i−1ð Þ⋅yi−1⋅Fið Þ

 !
⋅Li−1

 !

Uei⋅ Tvi−1−Ti
� � Heat transfer area of effects 2 to n (12)

Atot ¼
Pn
i¼1

Ai Total heat transfer area of effects (13)

AHi ¼
i⋅Fi⋅C⋅ Tf i−Tf iþ1

� �� �
UHi ⋅LMTDHi

Heat transfer area of pre-heaters 1 to n-1 (14)

AHn ¼ n⋅Fn⋅ Tf n−Tf
� �� �

UHn ⋅LMTDHn

Heat transfer area of pre-heater n (15)

Acon: ¼
Dcon: þ Dr þ

Pn−1

j¼1
Dj

 !
⋅yn

 ! !
⋅Ln

Ucon:⋅LMTDcon:
Heat transfer area of end condenser (16)

Ue1=1.9394+(1.40562×10−3) ⋅T0c−(2.07525×10−5) ⋅T0c2 +(2.3186×10−6) ⋅T0c3 Heat transfer coefficient of effect 1 (17)
Uei=1.9394+(1.40562×10−3) ⋅T

vi− 1
−(2.07525×10−5) ⋅T

vi− 1

2+(2.3186×10−6) ⋅Tvi− 1

3 Heat transfer coefficient of effects 2 to n (18)
UHi

=14.18251642+0.011383865 ⋅Tvi+0.013381501 ⋅Tfi + 1
Heat transfer coefficient of pre-heaters 1 to n-2 (19)

UHn− 1
=14.18251642+0.011383865 ⋅Tvn− 1

+0.013381501 ⋅Tf Heat transfer coefficient of pre-heaters n-1 (20)
Ucon.=1.6175+(1.537×10−4) ⋅Tvn−(1.825×10−4) ⋅Tvn

2+(8.026×10−8)⋅Tvn
3 Heat transfer coefficient of end condenser (21)

LMTDHi ¼ Tf i−Tf iþ1

� �
= ln

Tvi−Tf iþ1

Tvi−Tf i

� �
Logarithmic mean temperature difference of effects 1 to n-2 (22)

LMTDHn−1 ¼ Tf n−1−Tf
� �

= ln
Tvn−1−Tf

Tvn−1−Tf n−1

� �
Logarithmic mean temperature difference of effect n-1 (23)

LMTDcon: ¼ Tf−Tsw
� �

= ln
Tvn−Tsw

Tvn−Tf

� �
Logarithmic mean temperature difference of end condenser (24)

90 I. Janghorban Esfahani et al. / Desalination 292 (2012) 87–104
2.3. Response surface methodology (RSM) modeling

To determine optimum operation conditions and investigate the
behavior the factors on the responses of the system, a model is used
to create a valid of the experimental domain given by the significant
factors and their ranges. The RSM consists of a group of mathematical
and statistical techniques devoted to the evaluation of the relation-
ship between the dependent variable or response (Y) and the set of
independent variables or factors (X1,.., Xk). RSM is used to determine
the critical points (maximum, minimum, or saddle) of the response
by finding the optimal settings of the factors as well as to analyze
the effect of input variables on the response surfaces [22,23]. RSM
can illustrate the response surface of the dependent variables by
varying a number of independent variables or factors, which affect
the responses of the dependant variables. RSM is less laborious and
time-consuming than other approaches and is an effective technique
for optimizing complex processes, since it reduces the number of ex-
periments needed to evaluate multiple parameters and their interac-
tions [38].

When it is assumed that the k number of independent variables,
X=(X1, X2,…, Xk), affects the p number of response variables,
Y=(Y1,Y2,…,Yp), the general function oh the response surface method
could be represented as Eq. (56).

Yij ¼ f i X1;X2;…;Xkð Þ; ; i ¼ 1;2;…;p and j ¼ 1;2;…; k ð56Þ
Table 4
Temperature profile equations.

Equations Descriptions

Ti=Tvi+(BPE)i+ΔTyi Saturated vapor temperature of effects (25)
Tci=Tvi−(ΔTp)i Vapor condensation temperature of effects (26)
�T 1 ¼ T0c þ NEA1 Flashing vapor condensation temperature

of effect 1
(27)

Ti ¼ Tvi þ NEAi Flashing vapor condensation temperature
of effects 2 to n

(28)

T′i=Ti+NEAi Flashing brines temperature of effects 2 to n (29)
(NEA)i=
(0.33(Ti−1−Ti)0.55)/Tvi

Non-equilibrium allowance (30)
where fi is a function between response variables and dependent vari-
ables. Because fi is generally an unknown function, it is assumed that
it can be calculated through experimentation [27].

The relationship between the response and the factors is
explained by the second-order polynomial regression model shown
in Eq. (57) [24].

Y ¼ β0 þ
Xn
i¼1

βixi þ
Xn
i¼1

βiix
2
i þ

Xn�1

i¼1

Xn
j¼1

βijxixj ð57Þ

where Y is the response variable; xi and xj are the coded levels of
the input variables; β0 is the intercept term; and βi, βii, and βij are the
coefficients representing the linear effect, quadratic effect, and interac-
tion effect, respectively, which are known as the regression coefficients.

The significance of input variables, their interactions, and the
goodness of fit of the RSM models were tested by analysis of variance
(ANOVA). An alpha (α) level of 0.05 was used to determine the statis-
tical significance in all analysis. The significance of each of the coeffi-
cients was determined using F-values and P-values. The effect terms
with coefficients having F-values greater than Fisher's F-test values
and P-values less than 0.05 are considered to have high significance
on the RSM models. Fisher's F-test is calculated by Eq. (58) using
MATLAB software.

Fisher0s F−test ¼ Fα;df ; n−dfþ1ð Þ ð58Þ

where α, df and n are desired probability level, degree of freedom and
observations.
Table 5
Thermodynamic parameters' initial circumstances.

Discretion Parameter Unit Value

Salinity of seawater Csw ppm 36,000
Salinity of last effect brine Cbn ppm 70,000
Temperature of seawater Tsw °C 25
Pressure of seawater Psw kpa 101
Top brine temperature TBT °C 69
Boiling point elevation BPE – 0.8



Table 6
Economic model equations.

Equations Descriptions

Capital costs
CA=140·AE Area cost ($) (32)
Ceq=4·CA Instrument cost

(evaporator, condenser…) ($)
(33)

Cs=0.2·Ceq Site cost ($) (34)
Ctr=0.05·(CA+Ceq+Cs) Transportation costs ($) (35)
Cb=0.15·Ceq Building costs ($) (36)
Cen=0.1·Ceq Engineers and salary costs ($) (37)
Cc=0.1·(CA+Ceq+Cs) Contingency costs ($) (38)
CC=CA+Ceq+Cs+Ctr+Cb+Cen+Cc Capital costs ($) (39)

Z ¼ i iþ 1ð Þm
iþ 1ð Þm Amortization factor (40)

ACC=CC·Z Capital annual costs ($/yr) (41)

Operating cost
Cth=Q·f·0.03·365 Thermal energy costs ($/yr) (42)
Ce=Cel·P·f·Q·365 Electricity ($/yr) (43)
Cl=0.1·f·Q·365 Labor cost ($/yr) (44)
Cch=0.04·f·Q·365 Chemical material costs ($/yr) (45)
Cin=0.005·CA Insurance costs ($/yr) (46)
CI=α·Itotal·Cel·24·f·365 Exergy destruction cost ($/yr) (47)
AOC=Cth+Ce+Cl+Cch+Cin+CI Annual operating costs (48)
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The goodness of fit of the RSM models was tested using the multi-
ple correlation coefficient (R2). If the R2 is closer to unity and in
agreement with the value of the adjusted multiple correlation coeffi-
cient (adj. R2), then the fit of the RSM model is valid.

In this study, RSMmodels were developed to investigate the effects
of the three input variables on three responses. The input variables are
S,ΔT, and Tph, and responses are TAC, GOR, and Q. The set of input con-
ditions was obtained by using the design of experiments methodology.
The central composite experimental design (CCD), with five level coded
input factors (−1.681,−1, 0, 1, +1.681), was used. The designed set of
data obtained by CCD, both in terms of the coded and actual values of
the input variables, is presented in Tables 8 and 9. The theoretical
model equations presented in Tables 1 to 7 were simulated for the
values of the inputs as per CCD, and the corresponding output variables
(TAC, GOR, Q) were calculated. The values of the theoretical model out-
puts are presented in Tables 8 and 9. These inputs–outputs data were
subjected to multiple regressions by RSM using MINITAB 14 software.
2.4. Partial least squares (PLS)

Generally, the data from a chemical and environmental process are
high dimensional and correlated. This high dimensionality and corre-
lation is known to be an obstacle for the interpretation of the experi-
ments and extraction of the process knowledge from data [27]. PLS
Table 7
Exergy destruction equations.

Equations

Isje=S ⋅ [(hs−hvhc)−T0(ss−svhc)]−Dr ⋅ [(hvhc−hvn)−T0(svhc−svn)]

Ien ¼ Dn−1 þ D1 þ…þ Dn−2 þ Drð Þ y− n−1ð ÞFnð Þy½ �⋅Ln−1 1− T0

Tv1

� �
þ Bn−1⋅SHC⋅ ΔT−T0L

�

−DnLn 1− T0

Tn

� �
−Fn⋅SHC⋅ Tn−Tfn

� �
−T0⋅ ln

Tn

Tfn

� �� �

Icon: ¼ DF þ Dr þ D1 þ…þ Dn−1ð Þ⋅y½ �⋅Ln 1− T0

Tn

� �
−msw⋅SHC⋅ Tf−Tc

� �
−T0⋅Ln

Tf

Tc

� �� �

IDr ¼ Dr⋅SHC⋅ Tvn−Tcð Þ−T0⋅
Tvn

Tc

� �� �

IDcon: ¼ Dcon:⋅SHC⋅ Tvn−Tcð Þ−T0⋅
Tvn

Tc

� �� �

IBn ¼ Bn⋅SHC⋅ Tn−Tcð Þ−T0⋅
Tn

Tc

� �� �
Itotal= Isje+ Ien+ Icon.+ IDr

+ IDcon.
+ IBn
is amultivariate iterative projectionmethod, whichmodels a relation-
ship between independent variables (X) and dependent variables (Y).
It models both sets of variables simultaneously, (X) and (Y), to find the
latent variables (LVs) in X that will predict the latent variables in Y. In
PLS modeling, data is divided into two groups of variables, X (descrip-
tor) variables and Y (response) variables; a causal relationship is as-
sumed to exist between them.

The PLS models are driven by a small number of latent variables
(LVs) that are estimated as weighted averages of the independent
variables. LVs are not directly measurable, but estimated from the
data. Hence, they are often referred to as indirectly observed. The ob-
jective of PLS modeling is to model X in such a way that information
in Y can be adequately predicted. The use of partial least squares to
maximize the covariance between matrices X and Y builds a linear
model by decomposing matrices X and Y into bilinear terms, which
are given by Eqs. (59) and (60):

X ¼ MGT þ E ð59Þ

Y ¼ NHT þ K ð60Þ

where X and Y are independent and dependent matrices,M and N are
latent score vectors, and G and H are corresponding loading vectors,
which are applied to confirm the correlation between the indepen-
dent and dependent variables. E and K are the matrices of the
residuals. Loading weights represent the correlation between the in-
dependent and dependent variables; G and H are thus used to
confirm the correlation of these variables [26,27].

In this study, the PLS method was used for multivariate analysis of
the process. The LVs and loading vectors between independent vari-
ables and responses were obtained by using a code developed in
MATLAB

2.5. Artificial neural network (ANN) modeling

In order to estimate and predict engineering properties that are
functions of many variables and parameters, artificial neural network
(ANN) is utilized as a computational tool. It transforms a non-linear,
complex mathematical model into a simplified black-box structure.
The ability of artificial neural network to represent nonlinear systems
makes them a powerful tool for process modeling andmuch work has
been reported over the last decade. The term ANN originates from re-
search, which attempted to understand, and proposed simple models
of, the operation of the human brain. Consequently, ANNs possess
characteristics, in common with the biological system—they consist
of numerous simple processing elements (neurons) joined together
by variable strength connections (synapses) to form a massively
Descriptions

Exergy destruction of steam jet ejector (49)

n
Tn−1

Tn

� ��
Exergy destruction of effects (50)

Exergy destruction of end condenser (51)

Exergy destruction of freshwater recycled (52)

Exergy destruction of end condenser distillate (53)

Exergy destruction of Rejected brine (54)

Total exergy destruction (55)



Table 8
Central composite design and mathematical responses for MED-TVC systems with 3 and 4 effects.

Set no. Input variables Responses for MED-TVC system with
3 effects

Responses for MED-TVC system with
4 effects

x1 ΔT (K) x2 S (kg/s) x3 Tph (K) TAC ($/yr) GOR Q (m3/d) TAC ($/yr) GOR Q (m3/d)

1 0 3.5 0 40 0 301.5 12,590,369 4.374 15,116 17,247,150 5.704 19,713
2 1 4.25 +1 50 +1 303.25 14,318,508 4.451 19,230 19,593,707 5.848 25,263
3 1.681 5 0 40 0 301.5 10,652,137 4.433 15,321 14,496,213 5.837 20,173
4 −1 2.75 +1 50 −1 299.75 18,351,253 4.3 18,576 25,263,623 5.57 24,063
5 0 3.5 0 40 0 301.5 12,590,369 4.374 15,116 17,247,150 5.704 19,713
6 1 4.25 −1 30 −1 299.75 8,500,520 4.356 11,290 11,556,144 5.692 14,754
7 0 3.5 1.681 60 0 301.5 18,887,219 4.374 22,676 25,873,787 5.705 29,573
8 0 3.5 0 40 −1.681 298 12,459,512 4.282 14,799 16,970,888 5.557 19,207
9 +1 4.25 +1 50 −1 299.75 14,169,290 4.356 18,819 19,262,590 5.693 24,593
10 0 3.5 −1.681 20 0 301.5 6,295,204 4.372 7555 8,624,672 5.703 9854
11 −1 2.75 +1 50 1 303.25 18,553,738 4.392 18,973 25,688,463 5.716 24,695
12 −1 2.75 −1 30 1 303.25 11,133,417 4.392 11,385 15,416,198 5.718 14,820
13 −1 2.75 −1 30 −1 299.75 11,009,171 4.299 11,144 15,155,234 5.569 14,435
14 +1 4.25 −1 30 1 303 8,583,891 4.444 11,518 11,741,644 5.836 15,126
15 −1.681 2 0 40 0 301.5 19,733,536 4.317 14,921 27,579,801 5.583 19,293
16 0 3.5 0 40 0 301.5 12,590,369 4.374 15,116 17,247,150 5.704 19,713
17 0 3.5 0 40 0 301.5 12,590,369 4.374 15,116 17,247,150 5.704 19,713
18 0 3.5 0 40 1.681 305 12,725,407 4.469 15,445 17,546,512 5.859 20,248
19 0 3.5 0 40 0 301.5 12,590,369 4.374 15,116 17,247,150 5.704 19,713
20 0 3.5 0 40 0 301.5 12,590,369 4.374 15,116 17,247,150 5.704 19,713
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parallel and highly interconnected, information processing system.
This gives the ANN several characteristics that are appealing for the
modeling of nonlinear systems.

The majority of ANN architectures are multi-layer feed-forward
networks that have one input layer, one or more hidden layers, and
an output layer [28,29].

The general structure of a multi-layer feed-forward ANN with one
hidden layer, which is used in this study, is shown in Fig. 9. The input
layer consists of input variables, while the hidden and output layers
consist of numerous individual units called neurons. Each neuron of
these layers is a single computational processor that is connected to
the input and output layers by weights and biases [30,29,20]. The out-
put of neurons is given by Eq. (61) [13].

hj ¼ f ∑WjiXi þ bj
� 	

ð61Þ

where i and j indicate the neurons in consecutive layers, hj is the out-
put of jth layer neuron, f is a suitable transfer function, Xi is the output
Table 9
Central composite design and mathematical responses for MED-TVC systems with 5 and 6

Set no. Input variables

x1 ΔT (K) x2 S (kg/s) x3 Tph (K)

1 0 3.5 0 40 0 301.5
2 1 4.25 +1 50 +1 303.25
3 1.681 5 0 40 0 301.5
4 −1 2.75 +1 50 −1 299.75
5 0 3.5 0 40 0 301.5
6 1 4.25 −1 30 −1 299.75
7 0 3.5 1.681 60 0 301.5
8 0 3.5 0 40 −1.681 298
9 +1 4.25 +1 50 −1 299.75
10 0 3.5 −1.681 20 0 301.5
11 −1 2.75 +1 50 1 303.25
12 −1 2.75 −1 30 1 303.25
13 −1 2.75 −1 30 −1 299.75
14 +1 4.25 −1 30 1 303
15 −1.681 2 0 40 0 301.5
16 0 3.5 0 40 0 301.5
17 0 3.5 0 40 0 301.5
18 0 3.5 0 40 1.681 305
19 0 3.5 0 40 0 301.5
20 0 3.5 0 40 0 301.5
of the ith layer neuron or the input to jth layer neuron, Wij is the
weight from the ith layer neuron to the jth layer neuron, and bj is
bias value of jth layer neuron.

The network is operated in two distinct phases called training and
recall. When the network is trained, it can be used in the recall mode
where the network weights are fixed and it tested with blind data
sets. This testing or validation of a network is a very important step
in the development cycle of a nonlinear neural network model. The
overall goal is to develop a network, which can emulate the underly-
ing system, which produced the training data [28].

The back-propagation (BP) algorithm is mostly used to train the
multi-layer feed-forward ANN [29]. The goal of network training is to
minimize the mean square error (MSE) between the measured value
and the neural network output by adjusting its weights and biases.

In this study, separate ANN models were developed for MED-TVC
systems using the neural network toolbox V4.0 of MATLAB 7.11. ΔT, S,
and Tph were considered as inputs, and TAC, GOR, and Q were consid-
ered as outputs for the ANN models. The datasets with factors (as per
effects.

Responses for MED-TVC system
with 5 effects

Responses for MED-TVC system
with 6 effects

TAC ($/yr) GOR Q (m3/d) TAC ($/yr) GOR Q (m3/d)

19,341,482 7.017 24,250 22,653,766 8.362 28,898
22,032,100 7.262 31,373 25,992,793 8.759 37,839
16,261,413 7.281 25,162 19,289,724 8.842 30,557
28,404,087 6.793 29,346 33,248,236 8.009 34,601
19,341,482 7.017 24,250 22,653,766 8.362 28,898
12,887,739 7.03 18,222 15,075,295 8.434 21,861
29,013,819 7.017 36,377 33,983,001 8.362 43,350
18,907,181 6.802 23,509 21,998,099 8.065 27,872
21,482,394 7.031 30,374 25,114,459 8.43 36,419
9,668,348 7.015 12,122 11,330,131 8.36 14,447

29,047,655 7.005 30,261 34,199,388 8.299 35,852
17,434,736 7.007 18,163 20,524,703 8.298 21,509
17,040,904 6.792 17,606 19,946,443 8.009 20,758
13,192,653 7.244 18,777 15,550,751 8.734 22,638
31,409,363 6.785 23,448 37,143,671 7.958 27,503
19,341,482 7.017 24,250 22,653,766 8.362 28,898
19,341,482 7.017 24,250 22,653,766 8.362 28,898
19,812,214 7.245 25,039 23,380,779 8.682 30,004
19,341,482 7.017 24,250 22,653,766 8.362 28,898
19,341,482 7.017 24,250 22,653,766 8.362 28,898



Fig. 2. Framework of the MED-TVC system optimization.

93I. Janghorban Esfahani et al. / Desalination 292 (2012) 87–104
CCD design) and responses (obtained by theoretical model simula-
tion) presented in Tables 8 and 9 were used for the training and val-
idation of the ANN models. From total data set points, 70%, 15%, and
15% were randomly used for the training, validation, and testing of
the ANN models, respectively. The hyperbolic tangent transfer func-
tion (‘tansig’ of MATLAB) was chosen for the neurons of the hidden
layer, and a purely linear transfer function (‘purelin’ of MATLAB)
was chosen for the output layer neuron. The mathematical definition
of ‘tansig’ is given by Eq. (62) [31].

tansig ¼ 2

1þ exp �2hj
� 	� 1 ð62Þ
Fig. 3. Response surface plots for the effects of input variables on the responses for n=3 (RS
GOR. (c): Effect of the input variables on Q. (hold values are ΔT=3.5 K, S=40 kg/s, T=30
The optimum numbers of hidden layer neurons are determined
based on the minimum value of the mean square error (MSE)
obtained during training, and the values of the correlation coefficients
for training and validation are achieved by examining different struc-
tures [33]. The numbers of hidden layer neurons obtained for ANN
structures for MED-TVC systems with different numbers of evapora-
tion effects are shown in Appendix A-3. The accuracy of the trained
ANN model is tested using the correlation coefficient (R2). As the R2

approaches unity, the model achieves better performance. The devel-
oped ANN model was validated by using the testing data sets.

2.6. Multi objective optimization (MOO)

Almost all systems in chemical and mechanical engineering were
optimized using a single objective function. Often the objective func-
tion accounted for the economic efficiency only, which is scalar
quantity. In contrast, multi-objective optimization involves the simul-
taneous optimization of more than one objective function. Several in-
dustrial systems have been optimized over the last two decades with
multiple objective functions and constraints, using a variety of algo-
rithms. In such cases, one may get a set of several equally good
(non-dominating) solutions, or, often, a Pareto front. The evolution-
ary genetic algorithm (GA) has become quite popular in recent
years for solving problems involving a single and multiple objective
functions [38]. A genetic algorithm (GA) is a class of parallel, iterative,
and population-based search to find the optimal solution in a large
solution domain by carrying out stochastic transformations inspired
by natural evolution [32,30,19]. The basic building blocks of a genetic
algorithm are genes that form chromosomes. Each gene controls one
or more features of its chromosome. A collection of chromosomes
creates a population. With a randomly generated population, the al-
gorithm begins using three genetic operators: selection, crossover,
and mutation [34–36]. On the basis of value of the individuals, the
chromosomes are selected for transition from the current population
by means of a selection process that is called the selection operator.
Based on biological recombination, the crossover operator combines
two chromosomes, called parents, to generate two similar children.
Mmodel I); (a): Effect of the input variables on TAC. (b): Effect of the input variables on
1.5 K).

image of Fig.�3
image of Fig.�2


Fig. 4. Response surface plots for the effects of input variables on responses for n=4 (RSM model II); (a): Effect of the input variables on TAC. (b): Effect of the input variables on
GOR. (c): Effect of the input variables on Q. (hold values are ΔT=3.5 K, S=40 kg/s, T=301.5 K).
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The crossover operator continues until it completes the generation
[30,34,36]. As the selection and crossover may become overzealous,
the mutation operator performs random changes in the genes
of existing chromosomes [36,37]. The total processes (selection,
Fig. 5. Response surface plots for the effects of input variables on responses for n=5 (RSM
GOR. (c): Effect of the input variables on Q. (hold values are ΔT=3.5 K, S=40 kg/s, T=30
crossover, and mutation) are referred to as one generation. The gen-
erational cycle will stop when a desired termination criterion has
been achieved [34]. In case of multi-objective problems, no single opti-
mized solution could be achieved, and a search is generally performed
model III); (a): Effect of the input variables on TAC. (b): Effect of the input variables on
1.5 K).
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Fig. 6. Response surface plots for the effects of input variables on the responses for n=6 (RSM model IV); (a): Effect of the input variables on TAC. (b): Effect of the input variables
on GOR. (c): Effect of the input variables on Q. (hold values are ΔT=3.5 K, S=40 kg/s, T=301.5 K).
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following the concept of Pareto-optimality, where a set of solutions
are developed providing the best possible compromises between the
objectives. When several conflicting objective functions exist, the
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Fig. 7. Loading plots of the PLS model, (a) for n=
concept of “optimum” changes from the unique global optimum, as
used in the single objective problems, to a set of solutions providing
the best possible compromises between the objectives, known as the
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3, (b) for n=4, (c) for n=5, (d) for n=6.
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Fig. 8. VIP plots of the PLS model, (a) for n=3, (b) for n=4, (c) for n=5, (d) for n=6.
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Pareto front. By the definition the Pareto-optimality, no other solution
could exist in the feasible range that is at least as good as somemember
of the Pareto set, in terms of all the objectives, and strictly betters in
terms of at least one [13]. Pareto set can provide useful insights to
the decision-maker, who can then use his judgment or intuition to de-
cide upon the preferred solution (operating point) [38].

In the present study, ANN models were used as the fitness func-
tions for MOO, using GA with the ‘gamultiobj’ function in MATLAB
7.11, and the Pareto optimal solution sets were obtained for the
MED-TVC systems with different numbers of effects. The MOO was
used for the minimization of TAC and the maximization of GOR and
Q, simultaneously. The independent variables of these functions are
ΔT, S, and Tph. The bounds of these variables are presented in
Tables 8 and 9. Since the “gamultiobj” function minimizes the
Fig. 9. General ANN structure for the prediction of TAC, GOR, and Q.
objective function, the GOR and Q functions were negated in order
to convert into a minimization function.

To better understand the optimal solutions and to obtain the best
solution among the Pareto optimal solutions, TAC and Q were nor-
malized by Eq. (63).

UPC ¼ TAC
Q⋅365:f

ð63Þ

where UPC is the unit product cost. Since the minimization of TAC and
the maximization of Q were the objectives, the minimization of UPC
was further investigated, instead of TAC and Q, in terms of choosing
the best solution among the Pareto optimal solution set.

In order to obtain the Pareto optimal solution set for each system
(with different n's), the population type was adjusted to ‘double vector’
with a size of 45. ‘Tournament’with a size of 2 was selected as the selec-
tion function. ‘Scattered’was chosen as the crossover function, with 0.8
as the crossover fraction. The creation andmutation functionswere cho-
sen to be ‘uniform’ and ‘adaptive feasible’, respectively. The direction,
fraction, and interval of migration were set as ‘forward’, 0.2, and 20, re-
spectively. The distance measure function and Pareto front population
fraction were chosen to be ‘distance crowding’ and 0.35, respectively.

2.7. System optimization framework

The framework of the MED-TVC system optimization is shown in
Fig. 2. First, the experimental design was defined, with ΔT, S, and
Tph as independent variables and TAC, GOR, and Q as response vari-
ables. The experimental design, using central composite design
(CCD), determines the datasets used for the simulation of the theoret-
ical model. Second, phenomenological and economic models were
developed to calculate the corresponding output variables of the
designed set data obtained by CCD, in terms of actual values. Exergy
analysis was carried out to calculate the exergy destruction as lost op-
portunity cost. Third, PLS analysis was applied to evaluate the

image of Fig.�9
image of Fig.�8
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correlation between the output variables (responses) and the input
variables. Fourth, quadratic polynomial models were developed
based on RSM in order to describe the relationship between the inde-
pendent variables (inputs) and the dependent (responses) variables.
Fifth, artificial neural network models were developed in order to
apply them as objective functions of MOO. Sixth, multi-objective op-
timization was carried out to minimize TAC and maximize GOR and
Q. The Pareto optimal front was obtained as a set of optimal solutions.

3. Results and discussions

3.1. Process analysis by RSM modeling

The values of three response variables corresponding to CCD data
sets of three input variables were obtained for the MED-TVC systems
with 3, 4, 5 and 6 effects by simulating the theoretical models. The ac-
tual and coded values of input variables of CCD data sets with the cor-
responding values of responses are presented in Tables 8 and 9. Each
of input variables was consecutively coded as x1, x2 and x3 at five
levels: −1.681, −1, 0, 1 and 1.681.

According to Tables 8 and 9, the variation range of ΔT is from 2 K
to 5 K, motive steam flow rate, S is in the range of 20 to 40 kg/s, and
the range of Tph is from 298 K to 305 K. The central values chosen
for the experimental design were ΔT=3.5 k, S=40 kg/s and
Tph=301.5 k in uncoded form.

By applying multiple regression analysis on the design matrix and
the responses presented in Tables 8 and 9, the RSM models Ι, ΙΙ, III,
and IV were developed for MED-TVC systems with 3, 4, 5, and 6 ef-
fects, respectively are presented in Table A-1 in Appendix-A. These
RSM models can be used for the simulation of MED-TVC systems in
order to obtain TAC, GOR, and Q.

The analysis of variance (ANOVA) is essential to test the signifi-
cance of the model. Therefore, the ANOVA was conducted to test
the significance of the fit of the second-order polynomial equation
for the RSM models on the coded equations and the results are
shown in Table A-2 in Appendix-A.

As seen in Table A-2, the ANOVA of the regression models showed
that the quadratic model was highly significant, as was evident from
the Fisher's F-test with a very low probability value P-value. As pre-
sented in Table A-2, for RSM model I, F value for TAC, GOR and Q
are 429.16, 40191.6 and 40191.6, respectively and p-values are
0.000. Fisher's F-test calculated by MATLAB software are 2.96, 2.915
and 2.94. The calculated F values were found to be greater than the
Fisher's F-test at the 5% level. As shown in Table A-2, similarly, for
RSM models II, III, and V all of F values are greater than Fisher's F-
test at the 5% level and P-values are 0.000. Since, in all of RSMmodels,
calculated F values are greater than Fisher's F-test, the Fisher's F-test
concluded with 95% certainly that the regression model explained a
significant amount of the variation in the responses.

The goodness of fit of the model was checked by the multiple cor-
relation coefficients (R2). The values of R2 for RSM models I, II, III and
V are presented in Table A-2. For RSM model I, the values of R2 for
TAC, GOR and Q are 0.994, 1 and 1, respectively. These values indicate
that the regression model of TAC did not explain only 0.6% of the total
variations. Moreover, the regression models of GOR and Q explained
all of total variations. In addition, the values of adjusted multiple cor-
relation coefficient (adj. R2) presented in Table A-2 are also very high,
showing a high significant of the model.

Similarly, for RSM models II, III and V, R2 and adj. R2 are also very
high, which indicate the goodness of fit of the models.

The response surface plots of TAC, GOR, and Q as functions of two
factors were plotted using the RSM models presented in Table A-1
and these plots are shown in Figs. 3–6. Since the regression model
has three factors, one factor was held constant at the center level
(for the level in coded form: xi=0 or for the uncoded form Xi=X0)
for each plot.
3.1.1. Effect of input variables on the TAC, GOR, and Q
Figs. 3a–6a show the effects of input variables on the TAC for MED-

TVC systems. The interaction effects occur only between ΔT and S,
and there are not any interaction effects between ΔT and Tph or S
and Tph. The effect of Tph on the TAC appears to be negligible. The
main effect of ΔT is higher than the main effect of S, and the effect
of ΔT is quadratic, while the effect of S is almost linear. TAC decreases
with increases in ΔT and with decrease in S.

Figs. 3b–6b illustrate the effects of varying the input variables on
GOR. According to these figures, the GOR increases with increases in
both ΔT and Tph. The effect of ΔT is more significant at higher levels of
Tph, and the effect of Tph is also more significant at higher levels of ΔT.
The maximum value of GOR is achieved when ΔT and Tph are at the
maximum points in the range studied. The main effect of ΔT is found
to be slightly larger than the main effect of Tph and both of them have
slight quadratic effects, while the effect of S on GOR is almost negligible.

The effects of input variables on Q are shown in Figs. 3c–6c. The
main effect of S is higher than the main effect of ΔT. The maximum
value of Q occurs at the maximum values of ΔT and Tph. Studies on
the interaction effects between ΔT and S as well as between Tph and
S revealed that the main effect of S is higher than that of ΔT and the
main effect of S is higher than that of Tph. Hence, the effects of Tph
on Q may be considered almost negligible in these interactions.

3.2. Process analysis by PLS methodology

PLS is a multivariate linear regression algorithm that is used for
the multivariate analysis of MED-TVC desalination systems. Fig. 7
shows the loading plots in the PC1 and PC2. Herein, the Y variables
are TAC, GOR, and Q, while X variables are ΔT, S, and Tph. As shown
in Fig. 7, the loading plots are divided into two clusters. One of the
clusters consists of GOR, ΔT, and Tph, and another includes TAC, Q,
and S. The proximity of ΔT and Tph on the plots and their proximity
to GOR show that these two input variables are highly correlated
and their effects on GOR are considerable. Tph is shown to have a larg-
er influence on GOR than ΔT does. The proximity of GOR, TAC, and S
on the plots shows that the effects of S on GOR and TAC are consider-
able and that the effects of ΔT and T on GOR and TAC are negligible.

Fig. 8 shows the variable importance in the projection (VIP) plots
by PLS loading weight. The VIP plots are introduced to account for the
ways in which X variables contribute to Y variables. The variable that
shows the highest value in the VIP plot is the most important variable
in terms of its influence on the process performance. As shown in
Fig. 8, in terms of MED-TVC systems, S is the most important variable
and has the most influence on the process. The influence of ΔT ap-
pears to be higher than that of Tph.

3.3. ANN modeling

The structures of the ANN models were obtained by training and
error methods based on MSE and R2 values. The optimal numbers of
hidden layer neurons were defined based on the minimum values of
MSE and R2 for training and validation, which were determined by
training the different feed-forward networks of various structures.
The obtained numbers of hidden layer neurons based on acceptable
MSE values (MSE ≤ 0.005) along with the weights and biases are pre-
sented in Table A-3 in Appendix A.

The predicted values, using ANN, versus the actual values, using
the theoretical model, for MED-TVC systems with different n values
are shown in Figs. 10 and 11, respectively. The best fit lines with the
best linear equations and correlation coefficients (R2) for the training
data sets and the validation data sets are presented in Figs. 10 and 11,
respectively. As shown in Fig. 10a–10d and Table A-3, the MSE of
trained networks are 0.00052, 0.000046, 0.0025, and 0.00153 for sys-
tems with 3, 4, 5 and 6 effects, respectively and the correlation



Fig. 10. Regression plots for the ANN training data sets, (a) n=3, (b) n=4, (c) n=5, (d) n=6.
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coefficients' (R2) values are equal to unity, which means the points of
the training data sets perfectly fit the model.

As shown in Fig. 11a–11d, the validation and testing data points
aren't completely on the y=x line and are distributed around x=y
Fig. 11. Regression plots for the ANN validation dat
line in a narrow area. The best fit line equations of the validation
and testing data are y=1.058x, y=0.981x, y=1.041x, and
y=1.018x, and their correlation coefficients are 0.982, 0.993, 0.994,
and 0.997, respectively.
a sets, (a) n=3, (b) n=4, (c) n=5, (d) n=6.

image of Fig.�10


Fig. 12. Pareto optimal solution for TAC, GOR, and Q, using multi-objective optimization. a: Pareto optimal solutions for n=3, b: Pareto optimal solutions for n=4, c: Pareto optimal
solutions for n=5, d: Pareto optimal solutions for n=6.
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Since the correlation coefficient values of the training data sets are
equal to unity and the correlation coefficient values of the testing and
validation data sets are very close to unity as well as the MSE values
are less than acceptable value (0.005), the ANN models presented in
Table A-3 in Appendix-A can be considered to be valid models for
representing the data. According to Table A-3, for systems with 3, 4,
5 and 6 effects, the optimal number of hidden layer is 1 with number
of neurons 5, 7, 6 and 6 respectively.
Fig. 13. Pareto optimal solutions for UPC and GOR. a: Pareto optimal solutions for n=3, b: Pa
solutions for n=6.
3.4. Multi-objective optimization

The Pareto optimal solution obtained by using GA for MOO to min-
imize TAC and to maximize GOR and Q for MED-TVC systems with
different values of n are presented in Fig. 12. The ANN models devel-
oped were used as the fitness functions for GA. Each point of the
Pareto set (a set of TAC, GOR, and Q) is associated with a set of
input decision variables (a set of ΔT, S and Tph).
reto optimal solutions for n=4, c: Pareto optimal solutions for n=5, d: Pareto optimal

image of Fig.�12
image of Fig.�13


Fig. 14. Variations of normalized UPC and GOR VS Pareto optimal solution number. a: for n=3, b: for n=4, c: for n=5, d: for n=6.
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In order to better investigate the Pareto front, 3-dimensional Pare-
to plots, which are shown in Fig. 12, were converted to 2-dimensional
plots with UPC and GOR axes using Eq. (63). 2-dimentional Pareto
plots are shown in Fig. 13.

In order to select the best point from among the Pareto solution
points (Fig. 13), the values of UPC and GOR were normalized. Fig. 14
shows the variations of normalized GOR and UPC for each Pareto
points for systems with different n.

Fig. 14a shows the variations of UPC and GOR for systemwith 3 ef-
fects. Since, variations of GOR are negligible and Pareto point 14 has
minimum value of UPC among the Pareto points, therefore, Pareto
point 14 can be selected as the best operation point for system with
3 effects. This point is indicated by an arrow in Fig. 13a. According
to Figs. 12a and 13a, the UPC, GOR, Q and TAC of selected point are
2.2$/m3, 4.468, 23,264 m3 and 16,889,664$/yr, respectively.

As shown in Fig. 14b, the values of UPC are decreased frompoints 1 to
4 and are approximately constant from points 4 to 16. The values of GOR
are decreased slightly till point 4 and then decreased sharply. Since, Pa-
reto point 4 has minimum value of UPC and maximum value of GOR, si-
multaneously, among the Pareto solution points; therefore, Pareto point
4 can be selected as the best operation point for system with 4 effects.
This point is presented by an arrow in Fig. 13b. When the system oper-
ates based on the selected point the values of UPC, GOR, Q, and TAC are
2.167$/m3, 5.938, 25,437 m3 and 18,190,253$/yr, respectively.
Table 10
Input decision variables corresponding to each of the preferred points, as depicted in Fig. 1

Effects no. UPC ($/m3) GOR Q (m3/d)

n=3 2.2 4.468 23,264
n=4 2.167 5.938 25,437
n=5 1.936 7.31 28,577
n=6 1.895 8.97 34,005
The variations of normalized UPC and GOR for system with 5 effects
are shown in Fig. 14c. As shown in Fig. 14c, the values of UPC are de-
creased from points 1 to 8 and are approximately constant from points
8 to 12. Also, the values of GOR are decreased slightly. Since, variations
of GOR are very slight and Pareto point 8 has approximately minimum
value of UPC, therefore, Pareto point 8 can be selected as the best opera-
tion point for MED-TVC systemwith 5 effects. Selected point is presented
by arrow in Fig. 13c. According to Figs. 12c and 13c, When the system
operates based on the selected point the values of UPC, GOR, Q, and TAC
are 1.936$/m3, 7.31, 28,577 m3 and 18,958,264$/yr, respectively.

Fig. 14d shows the variations of UPC and GOR for system with 6 ef-
fects. As shown in Fig. 14d, the values of UPC are decreased from points
1 to 5 and are approximately constant from points 5 to 15. The values of
GOR are decreased slightly till point 5 and then decreased sharply to
point 15. Since, Pareto point 5 has minimum value of UPC and maxi-
mum value of GOR, simultaneously, among the Pareto solution points;
therefore, Pareto point 5 can be selected as the best operation point.
This point is presented by arrow in Fig. 13d.When the systemwith 6 ef-
fects operates based on the selected point the values of UPC, GOR, Q, and
TAC are 1.895$/m3, 8.97, 34,005 m3 and 21,265,026$/yr, respectively.

According to Table 10, with increase in the number of effects, the
value of UPC is decreased and the value of GOR is increased. Among
the MED-TVC systems, the minimum value of UPC is 1.895$/m3

and the maximum value of GOR is 8.97, which are relevant to the
3.

TAC ($n) ΔT (K) S (kg/s) Tph (K)

16,889,664 5 60 305
18,190,253 5 55 303.2
18,958,264 5 45 302.1
21,265,026 5 44 300.5

image of Fig.�14
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MED-TVC system with 6 effects. Also, the maximum value of UPC is
2.2$/m3 and the minimum value of GOR is 4.468 which are relevant
to the MED-TVC system with 3 effects.

Based on summarized results in Table 10, the systemwith 6 effects
reduces UPC by 14%, 12.5%, 2% and increases GOR by 50%, 34% and
18% in theoretical aspect compared to systems with 3, 4 and 5 effects,
respectively. It means that, the influence of the effect number increas-
ing on the GOR is greater than UPC.

The sets of input decision variables corresponding to selected
points as design parameters are tabulated in Table 10. As presented
in Table 10 the values of ΔT, S and Tph corresponding to best Pareto
point for system with 6 effects are 5 k, 44 kg/s and 301 k, which are
introduced as the optimal design parameters.

4. Conclusions

In this study, a new approach to the optimization of MED-TVC de-
salination systems has been presented. The following conclusions can
be drawn:

1. Through analysis of the RSM and PLS models, ΔT and Tph were
found to have significant effects on GOR compared to that of S,
while the effect of S on the TAC and Q were considerable compared
to those of ΔT and Tph.

2. Increasing the number of effects increased the values of TAC and Q,
but the increase in these parameters decreased the value of UPC in
the MED-TVC system. The system with six effects was shown to
have the minimum value of UPC.

3. An increase in the number of effects caused an increase in the
value of GOR, as indicated by the maximum value of GOR obtained
with the MED-TVC system of six effects.

4. Best Pareto solution was selected from among the Pareto sets.
Among the MED-TVC systems with 3, 4, 5 and 6 effects, the system
with six effects was presented as the best system, with the mini-
mum value of UPC and maximum value of GOR. The MED-TVC sys-
tem with 6 effects reduces UPC by 14%, 12.5%, 2% and increases
GOR by 50%, 34% and 18% in theoretical aspect compared to sys-
tems with 3, 4 and 5 effects, respectively.

Nomenclature
A Heat transfer area, m2

ACC Annual capital cost, $/yr
ANN Artificial neural network
AOC Annual operating cost, $/yr
B Brine blow down mass flow rate, kg/s
BP Back-propagation
BPE Boiling point evaluation,oC
B Bias
C Concentration, ppm
CA Area cost, $
Cb Building cost, $
Cc Contingency cost, $
Cch Chemical materials cost, $/yr
Ce Electricity cost, $/yr
Cel Unit product electricity cost, $/kWh
Cen Engineer and salary cost, $
Ceq Instrument cost, $
CI Exergy destruction cost, $/yr
Cin Insurance cost, $/yr
Cl Labor cost, $/yr
Cp Specific heat capacity, kJ/kgoC
Cs Site cost, $
Cth Thermal energy cost, $/yr
CC Capital cost, $
CCD Central composite design
D Distillate, kg/s
E Matrix of residual
F Mass flow rate of feed seawater, kg/s
f Plant load factor
G Corresponding loading vector
GA Genetic algorithm
GOR Gain output ratio (as optimized parameter)
H Corresponding loading vector
h Specific enthalpy, kJ/kg
i Interest rate
I Exergy destruction (kW)
K Matrix of residual
L Latent heat, kJ/kg
LV Latent variable
LMTD Logarithmic mean temperature difference
M Latent score vector
MED-TVCmulti effects distillation-thermal Vapor compression
MOO Multi objective optimization
MSE Mean square error
m Plant life cycle
N Latent score vector
NEA Non-equilibrium allowance
PCA Principal component analysis
PE Process element
Q Fresh water flow rate (as optimized parameter)
R2 Coefficient of multiple determination
S Motive steam mass flow rate, kg/s (as variable)
s Specific entropy, kJ/kg k
SHC Specific heat, kJ/kg k
SJE Steam jet ejector
T Temperature, °C
�T Temperature of brine after cooling
T′ Temperature of brine in each effect
Tph Pre-heated seawater temperature, °C(as variable)

TAC Total annual cost, $/yr (as optimized parameter)
TBT Top brine temperature, °C
U Heat transfer coefficient, kW/m2 k
UPC Unit product cost, $/m3 (as optimized parameter)
W Weight
X Input variable
X Dimensionless coded variable
Y Output variable
Y Flashing fraction
Z Amortization factor

subscripts
C Condensate
Con. Condenser
E Effect
H Pre-heater
N Number of effect
Ph Preheated feed water
R Entrained steam
S Steam
Sw Seawater
V Vapor

Greek
Α Avoidable exergy destruction coefficient
Β Regression coefficient within response surface model
ΔT Temperature different between effects (as variable)
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freedom squares

RSM model II (n=4)

Source Degree of
freedom

Sum of
squares

Mean square F-value P-value

TAC
R2=0.993, adj. R2=0.990
Appendix A

Table A-1. RSM models based on uncoded factors
RSM model I (n=3)

TAC=3345508−8365518ΔT+517383S+38723Tph+1139373ΔT2−56145SΔT
GOR=9.793−0.10449ΔT+3.1938×10−5S−0.0619361Tph+0.000568ΔT2+
0.000144Tph2 +0.000461TphΔT

Q ¼ 48429−571:768ΔT−324:524S−315:390Tph þ 2:33841ΔT2 þ
0:513652Tph

2 þ 3:38109SΔT þ 1:83499TphΔT þ 2:29095STph

RSM model II (n=4)

TAC=−3469216−12177777ΔT+722619S+84015.5Tph+1659082ΔT2−
80719.1SΔT

GOR=23.9648−0.374243ΔT+2.9128×10−5S−0.160968Tph+0.00268ΔT2+
0.00033Tph2 +0.001459TphΔT

Q ¼ 114137−1657:53ΔT−640:899S−739:883Tph þ 8:93063ΔT2 þ
1:19961Tph

2 þ 7:38297SΔT þ 5:28175TphΔT þ 3:67530STph

RSM model III (n=5)

TAC=−14046877−14436144ΔT+819391S+132529Tph+1967137ΔT2−
92918.9SΔT

GOR ¼ 41:3513−0:889767ΔT þ 3:17314 � 10−5S−0:282743Tph þ
0:007237ΔT2 þ 0:0005546Tph

2 þ 0:00333TphΔT

Q ¼ 19587−3858:7ΔT−1071:66S−1257:63Tph þ 24:6750ΔT2 þ 2:01983Tph
2 þ

14:4136SΔT þ 12:2046TphΔT þ 5:39894STph

RSM model V (n=6)

TAC=−29155538−17825555ΔT+961301S+202641Tph+2433707ΔT2−
109099SΔT

GOR ¼ 76:3191−1:95501ΔT þ 1:16886� 10−5S−0:519600Tph þ
0:0170351ΔT2 þ 0:0009667Tph

2 þ 0:00706TphΔT

Q ¼ 331523−7906:85ΔT−1683:46S−2104:69Tph þ 58:8611ΔT2 þ
3:34092Tph

2 þ 25:1448SΔT þ 24:8971TphΔT þ 7:68986STph

Fisher's F-test=2.96
Regression 5 4.66616E+14 9.33232E+13 395.34 0.000
Residual 14 3.30483E+12 2.36059E+11
Total 19 4.69921E+14
GOR
R2=1, adj. R2=1
Fisher's F-test=2.915
Regression 6 0.152863 0.025477 80228.75 0.000
Residual 13 0.000004 0.000000
Total 19 0.152867

Q
R2=1, adj. R2=1
Fisher's F-test=2.94
Regression 8 391,139,716 48,892,465 7542511.30 0.000
Residual 11 71 6
Total 19 391,139,788

RSM model III (n=5)

Source Degree of
freedom

Sum of
squares

Mean square F-value P-value

TAC
R2=0.992, adj. R2=0.990
Fisher's F-test=2.96
Regression 5 6.02145E+14 1.20429E+14 370.02 0.000
Residual 14 4.55647E+12 3.25462E+11
Total 19 6.06701E+14

GOR
R2=1, adj. R2=1
Fisher's F-test=2.915
Regression 6 0.434437 0.072406 122636.02 0.000
Residual 13 0.000008 0.000001
Total 19 0.434445

Q
R2=1, adj. R2=1
Fisher's F-test=2.94
Regression 8 594,621,538 74,327,692 2788825.99 0.000
Residual 11 293 27
Total 19 594,621,831
Table A-2. Results of ANOVA for RSM models
RSM model I (n=3)

Source Degree of
freedom

Sum of
squares

Mean square F-value P-value

TAC
R2=0.994, adj. R2=0.991
Fisher's F-test=2.96
Regression 5 2.40014E+14 4.80027E+13 429.16 0.000
Residual 14 1.56594E+12 1.11853E+11
Total 19 2.41580E+14

GOR
R2=1, adj. R2=1
Fisher's F-test=2.915
Regression 6 0.047446 0.007908 40191.60 0.000
Residual 13 0.000003 0.000000
Total 19 0.047449

Q
R2=1, adj. R2=1
Fisher's F-test=2.94
Regression 8 0.047446 0.007908 40191.60 0.000
Residual 11 0.000003 0.000000
Total 19 0.047449

RSM model V (n=6)

Source Degree of
freedom

Sum of
squares

Mean square F-value P-value

TAC
R2=0.992, adj. R2=0.989
Fisher's F-test=2.96
Regression 5 8.35438E+14 1.67088E+14 353.84 0.000
Residual 14 6.61102E+12 4.72216E+11
Total 19 8.42049E+14

GOR
R2=1, adj. R2=1
Fisher's F-test=2.915
Regression 6 1.14580 0.190967 192115.30 0.000
Residual 13 0.00001 0.000001
Total 19 1.14582

Q
R2=1, adj. R2=1
Fisher's F-test=2.94
Regression 8 851,597,568 106,449,696 1027627.90 0.000
Residual 11 1139 104
Total 19 851,598,708
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n=3

Table A-3. Number of hidden layer neurons, network weights, and bias values with MSE for training of the ANN models
Number of hidden layer neurons 5

MSE 0.00052

Input layer to hidden layer weights Hidden layer to output layer weights

W1(input 1) W1(input 2) W1(input 3) Bias W2 PE1 W2 PE2 W2 PE3 W2 PE4 W2 PE5 Bias

PE1⁎ 2.0463 1.0168 −0.0097 −2.0368 0.4352 −0.4802 0.0964 −0.5377 0.8424 1.2154
PE2 0.5046 −2.3570 −0.0306 −0.9474 −0.4423 −0.2168 0.6743 −0.1011 0.43667 −0.2509
PE3 1.7209 −3.6087 0.0962 0.8429 1.2638 −0.5478 0.4208 −0.7847 −0.9962 0.2990
PE4 1.9190 −2.4935 −0.0931 1.4892
PE5 −1.2940 −0.0769 −0.0082 −1.7514

n=4

Number of hidden layer neurons 7

MSE 0.000046

Input layer to hidden layer weights Hidden layer to output layer weights

W1(input 1) W1(input 2) W1(input 3) Bias W2 PE1 W2 PE2 W2 PE3 W2 PE4 W2 PE5 W2 PE6 W2 PE7 Bias

PE1 −1.6308 1.7725 0.7354 2.4158 0.8709 0.2667 0.3088 0.1310 −0.9929 0.2605 −0.1064 −0.2372
PE2 1.4107 1.5686 −1.6559 −1.7131 −0.9443 0.0650 −0.0776 −0.5278 −0.5464 0.6083 0.3882 0.2116
PE3 2.1359 1.3441 −0.5654 0.0391 0.8696 0.1954 0.3648 −0.1145 −0.5796 0.0279 −0.2608 −0.1421
PE4 −1.9928 −0.7886 −1.5761 −0.2314
PE5 1.3099 −1.2354 −0.3538 0.6637
PE6 0.4948 −2.4152 0.6294 1.6025
PE7 1.6637 −0.6286 1.5534 3.2583

Number of hidden layer neurons 6

Input layer to hidden layer weights Hidden layer to output layer weights

W1(input 1) W1(input 2) W1(input 3) Bias W2 PE1 W2 PE2 W2 PE3 W2 PE4 W2 PE5 W2 PE6 Bias

n=5
MSE 0.0025
PE1 −1.1598 1.9389 0.8749 2.6098 1.2019 −1.0506 0.9934 0.3470 0.0634 0.0165 −0.1093
PE2 −2.2990 1.3788 1.1684 2.4769 0.5032 −0.4662 −0.4353 0.1934 0.7164 0.0313 0.5065
PE3 −1.0793 1.8029 −0.3064 −0.1653 1.2553 0.0405 0.1959 −0.3196 0.4114 −0.3883 −1.2116
PE4 −1.2693 −0.8613 1.6844 0.2320
PE5 0.2506 1.6917 1.4116 −1.2578
PE6 −0.7805 −1.6895 1.5827 −2.6966

n=6
MSE 0.00153
PE1 0.6733 1.4579 0.8214 −0.1358 0.1363 −1.3047 0.7228 0.2202 −0.5337 1.1336 0.4762
PE2 −2.6351 0.4890 −1.9506 4.0996 −0.1619 −0.1563 −0.4588 0.4583 0.4437 −0.2361 −0.1789
PE3 −1.1670 0.9618 0.0373 0.1282 0.4459 0.0531 0.4703 0.3248 −0.0739 −0.2144 0.2003
PE4 1.6597 0.9956 −0.8489 0.1230
PE5 3.5605 −1.6514 −0.6725 2.7244
PE6 −.05519 −0.4616 3.4710 5.1559

*PE = Processing elements.
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