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Abstract

Analytical formulations and solutions for the stress analysis of simply supported antisymmetric angle-ply composite and sandwich
plates hitherto not reported in the literature based on a higher order refined computational model with twelve degrees of freedom
already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which
account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane displace-
ments with respect to the thickness coordinate thus modelling the warping of transverse cross sections more accurately and eliminating
the need for shear correction coefficients. In addition, two higher order computational models, one with nine and the other with five
degrees of freedom already available in the literature are also considered for comparison. The equations of equilibrium are obtained
using Principle of Minimum Potential Energy (PMPE). Solutions are obtained in closed form using Navier’s technique by solving the
boundary value problem. Accuracy of the theoretical formulations and the solution method is first ascertained by comparing the
results with that already available in the literature. After establishing the accuracy of the solutions, numerical results with real prop-
erties using all the computational models are presented for the stress analysis of multilayer antisymmetric angle-ply composite and
sandwich plates, which will serve as a benchmark for future investigations.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fibre reinforced composite, sandwich plates and shells
are being increasingly used in aerospace, automobile and
ship building industries due to their light weight and
high stiffness and also due to their anisotropic material
properties that can be tailored through variation of the
fibre orientation and stacking sequence. Due to the
special properties exhibited by the composite materials
such as high degree of anisotropy and weak rigidities
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in transverse shear, the method of analysis based on
Classical Laminate Plate Theory (CLPT) becomes
inadequate. The First Order Shear Deformation Theory
(FSDT) adequately describes the plate kinematics
behaviour in most of the cases but requires a shear
correction factor. Higher Order Shear Deformation
Theories (HSDTs) can represent the kinematics better
and can yield more accurate prediction of stress distribu-
tions. Owing to these reasons, an increasing number of
higher order theories for the analysis of multilayered
plates have been published over the past two decades.
Results were reported in the literature using analytical
and numerical methods. A complete review of various
shear deformation theories for the analysis of single layer
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isotropic, orthotropic and multilayer composite plates
and shells is available in the review articles by Noor
and Burton [1,2] and Noor et al. [3]. A selective review
of the various analytical and numerical methods used
for the stress analysis of laminated composite and sand-
wich plates was presented by Kant and Swaminathan [4].
Analytical formulations, solutions and comparison of
numerical results for the buckling, free vibration, stress
analyses of cross ply composite and sandwich plates
based on the higher order refined theories already
reported in the literature by Kant [5], Pandya and Kant
[6-10] and Kant and Manjunatha [11] were presented
recently by Kant and Swaminathan [12-15]. Recently
the theoretical formulations and solutions for the static
analysis of antisymmetric angle-ply laminated composite
and sandwich plates using a nine degrees of freedom
computational model were presented by Swaminathan
and Ragounadin [16]. In this paper, analytical formula-
tions developed and solutions obtained for the first time
is presented for the stress analysis of antisymmetric
angle-ply laminated composite and sandwich plates using
a higher order refined computational model with twelve
degrees of freedom. Solutions obtained using this model
are also compared with the results of other two models
considered in the present investigation. Correctness of
the solutions is first established and then benchmark
results with real properties using all the models are pre-
sented for the antisymmetric angle-ply composite and
sandwich plates.

2. Theoretical formulation
2.1. Displacement models

In order to approximate the three-dimensional elasticity
problem to a two-dimensional plate problem, the displace-
ment components u(x,y,z ), v(x,y,z) and w(x,y,z) at any
point in the plate space are expanded in Taylor’s series in
terms of the thickness coordinate. The elasticity solution
indicates that the transverse shear stresses vary paraboli-
cally through the plate thickness. This requires the use of
a displacement field in which the in-plane displacements
are expanded as cubic functions of the thickness coordi-
nate. In addition, the transverse normal strain may vary
non-linearly through the plate thickness. The displacement
field referred to as Model-1 in the present investigation
which satisfies the above criteria may be assumed in the
form [11]:

u(x,y,z) = uy(x,9) + 20x(x,) + 2uj (x,) + 20 (x, »)
U('xayvz) = Uﬂ(xvy) +20y(an’) —|—221;:(x,y) +Z30;(x?y)
w(x, y,2) = wo(x,y) + 20:(x,y) + 2w, (x,y) +2°0 (x, )

(1)

The parameters u,,v, are the in-plane displacements and
w, is the transverse displacement of a point (x,y) on the

middle plane. The functions 0,, 0, are rotations of the
normal to the middle plane about y and x axes
respectively. The parameters u;,v;,w;,0;,0,,07 and 0.
are the higher-order terms in the Taylor’s series expansion
and they represent higher-order transverse cross sectional
deformation modes. Though the above theory was
already reported earlier in the literature and numerical
results were presented using finite element formulations,
analytical formulations and solutions are obtained for
the first time in this investigation and hence the results
obtained using the above theory are referred to as present
in all the tables and figures. In addition to the above, the
following higher order theories already reported in the
literature for the analysis of laminated composite and
sandwich plates are also considered for the evaluation
purpose. Results using these theories are generated
independently and presented here with a view to have
all the results on a common platform.

Model-2 [10]
u(x,,2) = uy(x,) + 20:(x,y) + Zu; (x, ) +2°0;(x, )
0(x,3,2) = 0,(x,) +20,(x,y) + 20, (x,») + 20, (x,»)  (2)
w(x,,2) = w,(x, )

Model-3 [17]

u(x,y,z) = u,(x,) +Z[9x(an/) ~3 (%)z{ﬂx(x,y) + 65::}]

o(x,,2) = v, (x, 7) +z{9y(x,y) -3 (%)2{9y(x,y) + 65/}0”

W(xvyaz) = WO(X,)/)

In this paper the analytical formulations and solution
method followed using the higher order refined theory
(Model-1) are only presented in detail and the same
procedure is followed in obtaining the results using other
models. The geometry of a two-dimensional laminated
composite and sandwich plates with positive set of
coordinate axes and the physical middle plane
displacement terms are shown in Figs. 1 and 2 respec-
tively. By substitution of the displacement relations given
by Eq. (1) into the strain—displacement equations of the
classical theory of elasticity, the following relations are
obtained.

& = &y + 2Ky + 206, + 2K

& = & + 2K, + 26, + 2K,

& = & + 2K +22€,

ny = 8xy() + ZKX,V + Zzg;:yo + Z3K;y
Ve = &, + 2K, +zz¢; +Z3K;Z
T = G+ 2 + 20 + 20

where
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Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes, displacement components and fibre orientation.

Ou, Ov, Ou, Ov, 2.2. Constitutive equations
(gxoagymgxyo) =\ = A +
ox 0y 0y Ox
ot ot dut  ovt Each lamina in the laminate is assumed to be in a three-
(%7 €10 xy{)) = R Wt -l a-w dimensional stress state so that the constitutive relation for
Ox 0y 0y Ox

a typical lamina L with reference to the fibre-matrix coor-
(8207 zo) (927 30; ) dinate axes (1-2-3) can be written as
(Kus 1oy, K2 Iy) = %%ZW* 69x+%
yy Nz Rxy ) — a)C ) ay 9 0 ay ax

a )" [Cu Cn Cs 0 0 071 (a)’
_ (00, 20, d0; 0o,
Ky K y’ Xy) U ox ’a’aJr& (5) P Ch Cyn Cy 0 0 0 )
60 602
(K, 1y2) = ox ay o3 Cy Cy Gz 0 0 0 &
. ae; o0; - (6)
(sz7Kyz) = Ox ’ ay T12 0 0 0 C44 0 0 Y12
(()bx’ ¢x7¢y’ ¢ ) 123 0 0 0 0 C55 0 V23
ow, L. ow aw, ow, ow?
(0 T 6 30x a 0 % 6 30 ay) T13 L 0 0 0 0 0 C()(,_ 713
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Fig. 2. Geometry of a sandwich plates with positive set of lamina/laminate reference axes, displacement components and fibre orientation.

where (01,02,03,712,723,713) are the stresses and
(&1,€2,€3,712, V23, 713) are the linear strain components re-
ferred to the lamina coordinates (1-2-3) and the Cjs are
the elastic constants or the elements of stiffness matrix of
the Lth lamina with reference to the fibre axes (1-2-3).
In the laminate coordinate (x, y, z) the stress strain relations
for the Lth lamina can be written as

o )" MOn O O3 Ou O 01" (&)

Oy Oy Oyp Oy 0 0 &y

0: Oy Oy O 0 &,

Ty Oy 0 0 Yoy
symmetric

Tz Oss  Ose v

Tz B Q66 - Pz

where (0y,0),0.,7y,,T),Ty;) are the stresses and (e, &), &-,
Pxp» Vyz» Vxz) are the strains with respect to the laminate axes.
Qs are the transformed elastic constants or the stiffness ma-
trix with respect to the laminate axes x, y, z. The elements of
matrices [C] and [Q] are defined in Appendices A and B.

2.3. Governing equations of equilibrium

The equations of equilibrium for the stress analysis are
obtained using the principle of minimum potential energy
(PMPE). In analytical form it can be written as follows
[18]:

S(U+V)=0 8)

where U is the total strain energy due to deformations, V'is
the potential of the external loads, and U+ V' =11 is the
total potential energy and & denotes the variational symbol.
Substituting the appropriate energy expression in the above
equation, the final expression can thus be written as
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%
l/” / (08¢, + 0,08, + 0.0¢. + 14,07, + 7,287, + 1,.07,,) d4dz
i Ja

- /A p;5w+d4 —0 )

where  w* =w, + (h/2)0. + (B*/4)w’ + (h*/8)0; is the
transverse displacement of any point on the top surface
of the plate and p; is the transverse load applied at the
top surface of the plate. Using Egs. (1), (4) and (5) in Eq.
(9) and integrating the resulting expression by parts, and
collecting the coeflicients of duy, dvy, Owy, 06,
86,, 80, duyy, Sv, dwy, O, 80;, 860 the following equations
of equilibrium are obtained:

ON, ON,,

du, : o o =0
ON, ©ON,,
dv, 1 —2 2 —
b dy Ox 0
00, 00, .
5W0.ax 6 +pz—0
oM, oM, B
60, : - F -0.,=0
oM, OM,,
50, . —=2 —” -0, =0
y ay + x Qy
as, oS,
80, :
T ox oy 2) =
. ONT ONI, (10)
du - 3 —-25.,=0
5o GN; aN* _25,—0
Uo : a-‘- ax =
* OM*
307 - oM, aid =
T Ox dy
e
. 0S; 0S) LB
80; ax+a——3N 8(2) 0

and boundary conditions are the form:
On the edge x = constant

u,=u,or N.=N,, u,=u orN =N

Up =T, OF Ny =Ny, v, =T, or N, =N},
W, = W, Of Qx:va w, =W, or Qizéi
0,=0,0r M, =M, 0 =0 orM: =M:
0, =0, or My, =M,,, 0, =0; or M =M,
0.=0.0rS, =8, 0/=0 orS =5

On the edge y = constant

u, =1, or Ny =N,,,
v, =7, or N, =N,,

* _ —% *  _ AT*
u,=u, or Ny =N
ko =k * __ AT*

v, =0, 0r N =N

’ — 12
O, =0, 0or My =M,, 0 =0 orM, =M, (12)
0,=0,0or M, =M, 0,=0,or M, =M,
0.=0.orS, =S, 0;=0;0rS, =35,
where the stress resultants are defined by
M, M; oy
M M* NL /ZL+I G
o V| = ! [z 2]dz (13)
m: 0 ; 2 7.
| My, M* Tay
NL 2141 -
Q Q -2 / { } 7o 1
[N, N Oy
N, N; N /ZLH g,
: .| = Sl 2]dz (15)
N. N; ; . o,
Ny N, Tyy
S S* NL /ZL+1 { Ty }
L= Stz Fldz (16)

The resultants in Eqgs. (13)—(16) can be related to the total
strains in Eq. (4) by the following equations:

Qup
Nx Oox
&, u,
, Gup.
Ny o oy
* &y v,
= Qo
N x ea,t x
* o ou)
Ny o o
N: 0: &
" o * / ox
Nob =R 0
a0, oy
M, = >
ox
20,
M, a6y 3
7 0y 20*
S
M; %Li )
X *
M o o,
Y Sy [
M: o
z *
w
o
o (17)
x
vy -
oy Quo
aa} o
s N
- Qo
Ox* ox
% o;
N, o
Xy
N* 0- o
Xy _ rpt * ox
SO b=11 0B
x a0, o
2
M* Ox 20,
oy o0
- o
et 3
y
W*

S
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0, 0,
ow, dwy
0 3 o
X * *
Q* Hx 6)’
X _ owy / o,
S - [D ] ox + [D ] [o%
X H* U*
S* 0 4
ox %

o (18)
0, 0,
w, dwy
Q ox oy
y * *
Q* 9}: O,V
A ow,

- Ox [

o= E B
y ut v
S o o
v a0 a0
Oox qy
a0y 00"

where the matrices [4], [4'], [B], [B'], [D], [D'], [E], [E'] are
the matrices of plate stiffnesses whose elements are defined
in Appendix C.

3. Analytical solutions

Here the exact solutions of Eqs. (10)—(18) for antisym-
metric angle-ply plates are considered. Assuming that the
plate is simply supported with SS-2 boundary conditions
[19] in such a manner that tangential displacement is
admissible, but the normal displacement is not, the follow-
ing boundary conditions are appropriate:

At edges x =0 and x = q;

up=0; w,=0; 0,=0; 0.=0; M,=0; Ngy=0;

u,=0;, w =0 9;:0§ 0;=0; M;=0; Ny =0.
(19)

At edges y =0 and y = b;

=0, w,=0; 6,=0; 0.=0; M,=0; N, ;=0

v, =0, wy=0; 0,=0; 0,=0; M;=0; N =0
(20)

following Navier’s solution procedure [19-21], the solution
to the displacement variables satisfying the above bound-
ary conditions can be expressed in the following forms:

o0 o0 o0 o0
U, = E E U, SInoaxcos fy, u, = E E u, sinoxcosfy
m=1 n=1 m=1 n=1
o0 o0 o0 [o¢]
v, = E E Vo, COSOXSIN By, U, = E E v, Cosoxsin iy
m=1 n=1 m=1 n=1
o0 o0 o0 o0
w, = g E Wo,., SINoxSin fy, w = E E w, sinoxsin fy
m=1 n=1 m=1 n=1
o0 o0 o0 o0
0, = E g 0,,,cosoxsinfy, 0. = E E 0 cosoxsin fiy
m=1 n=I m=1 n=1

oo o0 oo o0
. . .
0, = Z Z 0, sinaxcos fy, Hy = Z Z Hym,, sinoxcos fy
m=1 n=1 m=1 n=1
o0 oo o0 oo
0, = E E 0., sinoxsin fy, 0 = E E 0 sinoxsin fy
m=1 n=1 m=1 n=1

and the loading term is expanded as

Pl = Z ijmn sin ocx sin By (21)
m=1 n=1

where

o= mr and f= e
a b

Substituting Egs. (19)—(21) in to Eq. (10) and collecting the
coefficients one obtains

Uy

v, 0

W, 2

0, 0

0, 0

0. L)
[X]llez uj; = ? 0 (22)

vl 0

W, i (p!)

0 0

0; 0

> ) 12x1 ?(p;) 12x1

for any fixed values of m and n. The elements of coefficient
matrix [X] are given in Appendix D.

4. Numerical results and discussion

In this section, various numerical examples solved are
described and discussed for establishing the accuracy of
the theory for the stress analysis of antisymmetric angle-
ply laminated composite and sandwich plates. For all the
problems a simply supported plate with SS-2 boundary
conditions is considered for the analysis. The transverse
loading considered is sinusoidal. Results are obtained in
closed-form using Navier’s solution technique for the above
geometry and loading and the accuracy of the solution is
established by comparing the results with the solutions
wherever available in the literature.

The following sets of data are used in obtaining numer-
ical results.

Material 1 [22]

E; =40 x 10° psi (276 GPa)

E>, = E;=1x10° psi (6.895 Gpa)
Gi> = Gyi3=0.5x 10° psi (3.45 GPa)
Gr3; = 0.6 x 10° psi (4.12 GPa)

Ui2 = U3 = D13 = 0.25
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Material 2

Glass epoxy

E; =5.6x10° psi (38.61 GPa)
E>»=1.2x10°psi (8.27 GPa)
Es=1.3x10°psi (8.96 GPa)
G1> = 0.60 x 10° psi (4.14 GPa)
Gi3 = 0.60 x 10° psi (4.14 GPa)
Gz = 0.50 x 10° psi (3.45GPa)
Ui = 026, V13 = 026, Uy3 = 0.34

Material 3
Face sheets (Graphite epoxy T300/934)
E; =19 x10° psi (131 GPa)
E> =1.5x10° psi ( 10.34 GPa)
E,=E;

Table 1

Non-dimensionalized transverse deflection in a simply supported anti-
symmetric angle-ply (6/—0- - -) square laminate under sinusoidal transverse

load
0 alh Theory W
nt = nt=
15° 4 Ren® 1.4989 1.3050
Model-1 (present) 1.4258 1.2608
Model-2 1.4596 1.2869
Model-3 1.3307 1.1903
10 Ren® 0.6476 0.4505
Model-1 (present) 0.6296 0.4423
Model-2 0.6374 0.4446
Model-3 0.6213 0.4329
100 Ren® 0.4680 0.2668
Model-1 (present) 0.4621 0.2662
Model-2 0.4679 0.2667
Model-3 0.4678 0.2666
30° 4 Ren® 1.4865 1.0943
Model-1 (present) 1.3439 1.0399
Model-2 1.3775 1.0605
Model-3 1.1082 0.9494
10 Ren® 0.6731 0.3543
Model-1 (present) 0.6367 0.3439
Model-2 0.6432 0.3454
Model-3 0.5985 0.3291
100 Ren® 0.4975 0.2049
Model-1 (present) 0.4931 0.2046
Model-2 0.4972 0.2048
Model-3 0.4967 0.2046
45° 4 Ren® 1.4471 1.0160
Model-1 (present) 1.2852 0.9626
Model-2 1.3175 0.9814
Model-3 1.0203 0.8747
10 Ren® 0.6427 0.3201
Model-1 (present) 0.6028 0.3101
Model-2 0.6084 0.3114
Model-3 0.5581 0.2956
100 Ren® 0.4685 0.1821
Model-1 (present) 0.4649 0.1818
Model-2 0.4682 0.1820
Model-3 0.4676 0.1818

% Number of layers.
® See [22].

G1> = 1 x 10° psi (6.895 GPa)
G153 = 0.90 x 10° psi (6.205 GPa)
Gr3 = 1 x 10° psi (6.895 GPa)
Uip = 022, D13 = 022, Vo3 = 0.49

Core (Isotropic)

E, = E>» = E; = 2G = 1000 psi (6.90 x 10> GPa)
G12 = G13 = G23 =500 pSl (345 X 1073 GPa)

V12 =013 =13 =0

601

Results reported in tables and plots are using the follow-

ing non-dimensional form:

_ <100h3E2> B (
u=u|l———|, v=v
po,at

Oy =20

Table 2

1004’ E,

pa* > " W(
& _ n _
x 7 ) O-y = O-y ) Txy = Txy — 5

2
L

100h3E2>

p,at

Non-dimensionalized transverse deflection in a simply supported two
layered antisymmetric angle-ply (0/—0) rectangular (b= 3a) laminate

under sinusoidal transverse load

0 alh Theory Ww
15° 4 Ren® 2.1922
Model-1 (present) 2.0980
Model-2 2.1245
Model-3 2.0119
10 Ren® 1.0272
Model-1 (present) 1.0095
Model-2 1.0146
Model-3 1.0017
100 Ren® 0.8020
Model-1 (present) 0.7987
Model-2 0.8019
Model-3 0.8018
30° 4 Ren® 2.8881
Model-1 (present) 2.6635
Model-2 2.6980
Model-3 2.3752
10 Ren® 1.5787
Model-1 (present) 1.5321
Model-2 1.5388
Model-3 1.4872
100 Ren® 1.3163
Model-1 (present) 1.3120
Model-2 1.3158
Model-3 1.3154
45° 4 Ren® 3.9653
Model-1 (present) 3.6239
Model-2 3.6716
Model-3 3.1562
10 Ren? 2.3953
Model-1 (present) 2.3215
Model-2 2.3323
Model-3 2.2440
100 Ren? 2.0686
Model-1 (present) 2.0609
Model-2 2.0679
Model-3 2.0673

& See [22].
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Table 3

Non-dimensionalized in-plane stresses in a simply supported two (n =2) and four (n = 4) layered antisymmetric angle-ply (15°/—15°---) rectangular

(b = 3a) laminate under sinusoidal transverse load

alh Theory Gy Gy Ty
n=2 n=4 n=>2 n=4 n=2 n=4
2 Model-1 (present) 1.3908 1.4803 0.1892 0.1955 —0.0571 —0.0607
Model-2 1.6312 1.6427 0.1471 0.1452 —0.0544 —0.0567
Model-3 1.9874 1.8616 0.1689 0.1561 —0.1576 —0.1587
4 Model-1 (present) 1.0324 0.8954 0.1030 0.0922 —0.0442 —0.0435
Model-2 1.1110 0.9453 0.0934 0.0796 —0.0443 —0.0435
Model-3 1.1722 0.9160 0.0974 0.0766 —0.0812 —0.0767
10 Model-1 (present) 0.8847 0.6141 0.0739 0.0522 —0.0443 —0.0333
Model-2 0.9002 0.6223 0.0725 0.0502 —0.0443 —0.0333
Model-3 0.9066 0.6096 0.0729 0.0491 —0.0511 —0.0385
20 Model-1 (present) 0.8603 0.5655 0.0695 0.0457 —0.0448 —0.0307
Model-2 0.8655 0.5675 0.0692 0.0452 —0.0446 —0.0306
Model-3 0.8670 0.5641 0.0693 0.0449 —0.0446 —0.0319
50 Model-1 (present) 0.8532 0.5515 0.0682 0.0438 —0.0449 —0.0298
Model-2 0.8556 0.5518 0.0682 0.0438 —0.0448 —0.0298
Model-3 0.8558 0.5512 0.0682 0.0438 —0.0450 —0.0299
100 Model-1 (present) 0.8522 0.5494 0.0681 0.0436 —0.0449 —0.0297
Model-2 0.8542 0.5495 0.0681 0.0436 —0.0448 —0.0297
Model-3 0.8543 0.5494 0.0681 0.0436 —0.0448 —0.0297

Unless otherwise specified within the table(s) the locations
(i.e. x-, y-, and z-coordinates) for maximum values of dis-
placements and stresses for the present evaluations are as
follows:

In-plane displacement (u): (0,b/2,4h/2)
In-plane displacement (v): (a/2,0,+h/2)
Transverse displacement (w): (a/2,b/2,0)
In-plane normal stress (oy): (a/2,b/2,%h/2)
In-plane normal stress (a,): (a/2,b/2,+h/2)
In-plane shear stress (t,,): (0,0,+4/2)

Example 1. A simply supported two and four layered
square and two layered rectangular antisymmetric angle-
ply (6/—0/---) composite plates under sinusoidal trans-
verse load are considered. The layers are of equal
thickness. Material set 1 is used. The numerical values
of non-dimensionalized maximum transverse deflection w
for the square and rectangular plates are given in Tables
1 and 2 respectively. In the case of thick plates (a/h ratios
4 and 10) with different fibre orientations considered,
there is a considerable difference exists between the
results computed using the various models and the values
reported by Ren [22]. For a/h ratio equal to 4 and fibre
orientation equal to 15°, the transverse deflection w
values predicted by Model-1, Model-2 and Model-3 are
4.88%, 2.62% and 11.22% lower for a two layered square
plate and 3.39%, 1.39% and 8.79% lower for a four
layered square plate as compared to the values obtained
by Ren. Both for the square and rectangular thin
laminates (a/h = 100), for all the values of fibre orienta-
tion 0 considered, the results computed using all the three
models are in good agreement with those reported by

Ren. The numerical values of non-dimensionalized in-
plane stresses @y, o, and T,, computed using all the
models considered in the present study for a two and
four layered rectangular plate with different a/h ratios
and fibre orientations are given in Table 3. For a/h ratio
equal to 2, Models 2 and 3 over predicts the @, values by

0.80 — - —
n=2 n=4
| —ZA—— - --A- - Model -1 (Present)
—+— -- -+ - -Model-2
0.60 — —O—— ---6---Model-3
0.40 T I . I : I . I . |
0.00 20.00 40.00 60.00 80.00 100.00

0

Fig. 3. Variation of non-dimensionalized transverse displacement (w) for
various angle of orientation (6) in a two and four layered simply supported
antisymmetric angle-ply square plate subjected to transverse sinusoidal
load for a/h ratio 4.
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17.28% and 42.90% compared to Model-1. For a/h value
equal to 4, Fig. 3 gives the variation of maximum non-
dimensionalized transverse displacement w with respect to
different fibre orientations using all the models for a two
and four layered square plate.

Example 2. A simply supported four layered antisymmetric
angle-ply (15°/—15°/15°/—15°) rectangular composite plate
with layers of equal thickness and with real material proper-
ties under sinusoidal transverse load is considered. Material
set 2 is used. The non-dimensionalized maximum values of
transverse displacement w, in-plane stresses 6,,6, and T,
for various values of side-to-thickness ratio and angle of ori-
entation are given in Table 4. In the case of thick plate with
a/h ratio equal to two and four, the values of w, &, and @,
predicted by Models 2 and 3 are almost similar whereas
those predicted by Model-1 are very much different due to
the effects of both transverse shear and normal deforma-
tions being considered in the displacement Model-1.

Example 3. In order to study the flexural behaviour of
laminated sandwich plate, a five layered rectangular plate
(15°/—15°/core/15°/—15°) with isotropic core and antisym-
metric angle-ply face sheets are considered. Material set 3 is
used. The ratio of the thickness of core to thickness of the
face sheet 7./t considered equal to 10. The non-dimension-
alized maximum values of transverse displacement w, in-
plane stresses G, 6, and T, for various values of side-to-
thickness ratio are given in Table 5. For plates with a/h
ratio equal to 2, 4 and 10, the w, &,, 7, and 7,, values pre-
dicted by Model-1 and Model-2 are very much closer
whereas Model-3 very much underpredicts these values.
For a thick plate with a/h ratio equal to 2, the values of
w predicted by Model-2 and Model-3 are respectively

Table 4

Non-dimensionalized transverse deflection and in-plane stresses in a
simply supported four layered antisymmetric angle-ply (15°/—15°/15°/
—15°) rectangular (b = 3a) laminate under sinusoidal transverse load

alh Theory W Gy G, Ty
2 Model-1 (present) 8.0031 0.7807 0.2046 —0.0830
Model-2 8.3750 0.7354 0.1082 —0.0889
Model-3 8.3193 0.7388 0.1078 —0.0954
4 Model-1 (present) 4.0947 0.6107 0.1079 —0.0663
Model-2 4.1587 0.6029 0.0838 —0.0676
Model-3 4.1474 0.5995 0.0833 —0.0693
10 Model-1 (present) 2.9353 0.5622 0.0796 —0.0602
Model-2 2.9469 0.5610 0.0757 —0.0602
Model-3 2.9451 0.5603 0.0756 —0.0604
20 Model-1 (present) 2.7671 0.5552 0.0755 —0.0593
Model-2 2.7724 0.5549 0.0745 —0.0590
Model-3 2.7720 0.5547 0.0745 —0.0591
50 Model-1 (present) 2.7198 0.5532 0.0743 —0.0590
Model-2 2.7234 0.5531 0.0742 —0.0586
Model-3 2.7134 0.5531 0.0742 —0.0587
100 Model-1 (present) 2.7128 0.5529 0.0742 —0.0589
Model-2 2.7162 0.5528 0.0741 —0.0586
Model-3 2.7164 0.5529 0.0741 —0.0586

Table 5

Non-dimensionalized transverse deflection and in-plane stresses in a
simply supported five layered antisymmetric angle-ply (15°/—15°/core/
15°/—15°) rectangular (b = 3a) sandwich plate under sinusoidal transverse
load

alh Theory w Gy ay Ty
2 Model-1 (present)  501.9803  20.8372  2.1631 —1.6997
Model-2 511.2636  20.6804  1.7298 —1.6993
Model-3 292.9478 10.2735  0.9041 —0.9903
4 Model-1 (present) 177.3093 8.0323  0.7504  —0.8227
Model-2 178.5455 7.9837 0.7142 —0.8159
Model-3 83.8321 3.7227 03712 —0.5052
10 Model-1 (present) 34.4140 2.4447  0.2170  —0.3629
Model-2 34.4698 24602  0.2544  —0.3604
Model-3 16.1482 1.6842  0.1775 —0.2482
20 Model-1 (present) 10.7284 1.5966  0.1462  —0.2086
Model-2 10.7337 1.6040  0.1616  —0.2074
Model-3 5.9387 1.4174  0.1359  —0.1531
50 Model-1 (present) 3.7792 1.3763  0.1234 —0.1253
Model-2 3.7800 1.3771  0.1259  —0.1247
Model-3 2.9926 1.3489 0.1209 —0.1126
100 Model-1 (present) 2.7658 1.3465 0.1195 —0.1096
Model-2 2.7662 1.3462  0.1199  —0.1092
Model-3 2.5682 1.3392 0.1186 —0.1059

1.85% higher and 41.64% lower as compared to Model-1.
The through the thickness variation of the non-dimension-
alized in-plane stresses o,, ¢, and 7,, and the non-dimen-

z/h
0.60 —
0.4 ’
<> Model - 1 (Present)
020 4 Model - 2
------- Model - 3
O-00-
[ T I T [ o T I T I T ]
-1.20 -0.80 -0.40 0.p0 0.40 0.80 1.20
T X
020 a/h=10
t/t; =10

-0.60 —

Fig. 4. Variation of non-dimensionalized in-plane normal stress (a,)
through the thickness (z/h) of a five layered (30°/—30°/core/30°/—30°)
simply supported antisymmetric angle-ply square sandwich plate under
sinusoidal transverse load.
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Fig. 5. Variation of non-dimensionalized in-plane normal stress (a,)
through the thickness (z/h) of a five layered (30°/—30°/core/30°/—30°)
simply supported antisymmetric angle-ply square sandwich plate under

sinusoidal transverse load.
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Fig. 6. Variation of non-dimensionalized in-plane shear stress (7.,)
through the thickness (z/h) of a five layered (30°/—30°/core/30°/—30°)
simply supported antisymmetric angle-ply square sandwich plate under

sinusoidal transverse load.
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Fig. 7. Variation of non-dimensionalized in-plane displacement (%)

Model - 1 (Present)
Model - 2
Model - 3

through the thickness (z/h) of a five layered (30°/—30°/core/30°/—30°)
simply supported antisymmetric angle-ply square sandwich plate under

sinusoidal transverse load.

—&—  Model - 1 (Present)
—+ - Model -2
-

Model - 3

-0.80

-0.60 —

a/h=10
t/t; =10

Fig. 8. Variation of non-dimensionalized in-plane displacement (7)
through the thickness (z/h) of a five layered (30°/—30°/core/30°/—30°)
simply supported antisymmetric angle-ply square sandwich plate under

sinusoidal transverse load.
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sionalized in-plane displacements # and 7 for a simply sup-
ported five layered square sandwich plate (30°/—30°/core/
30°/—30°) with isotropic core and antisymmetric angle-
ply face sheets are shown in Figs. 4-8. Material set 3 is
used. The through the thickness variation of in-plane dis-
placements # and 7 for a plate with a/h ratio equal to 10
and ratio of the thickness of core to thickness of the face
sheet 7./t; equal to 10 are shown in Figs. 7 and 8. It clearly
indicates that the Models 1 and 2 predict the realistic
through the thickness variation of displacements more
accurately than Model-3.

5. Conclusion

Analytical formulations and solutions to the static anal-
ysis of simply supported antisymmetric angle-
ply composite and sandwich plates hitherto not reported
in the literature based on a higher order refined theory
which takes in to account the effects of both transverse
shear and transverse normal deformations are presented.
The accuracy of the present computational model with
twelve degrees of freedom in comparison to other
higher order models with nine and five degrees of
freedom considered in the present investigation in predict-
ing the in-plane stresses, in-plane and transverse displace-
ments has been established. After ascertaining the
accuracy, new results for multilayered sandwich plates with
antisymmetric angle-ply face sheets are presented which
will serve as a benchmark for future investigations.

Appendix A

Coefficients of [C] matrix

Ei(1—vy3vs) Ei(va1 + va1va3)

where

4= (1 — Vi2V21 — V23V32 — V31Vi3 — 2V12V23V31)

and

01 ag) g3
81=E—1—V21E—2—V31E—3

() g3 (]
82:E_2_v32E_3_v12E_‘1

g3 (O] o)
83:E—3_VI3E_1_V23E
Vi _Va Va_ Vo Ve Vs
E\, E, E; E E, E,
Appendix B

Coefficients of [Q] matrix

0,1 = Ciic* +2(Cpy 4 2Cyq)s*c* + Cyps*

01, = Cia(c* +5%) + (Cyy + Cpy — 4Cyy)s*?

013 = Ci3¢” + Cy3s°

01 = (C1y — Ciy — 2Ca4)s¢® + (C1a — Cap + 2Cay)cs’
0y, = Ciis* + Copc* + (2C, + 4Cy)s*c?

0,3 = Ci38* 4+ Cnic?

0,4 = (C11 — C1y = 2Cy)s’c + (Cp — Cop + 2Cu)Cs
O3 =Cs;

O3 = (C31 — Ca)sc

Ou = (Ci1 —2C1p + Coy — 2Cas)*s* + Caa(c* + 5)
Oss = Css¢” 4 Cees”

Oss = (Ce6 — Css)cs

Qg6 = Csss” + CesC”

and Q; = Qj;, i, j= 1-6, where ¢ = cosa and s = sina

Cn= 7 ;7 Cn= 7
Cps = E (v Z V21V32) L Oy = E5(1 —AV13V31)
Cps = E> (v Z ViaVa1) = Es5(1 —AV12V21)
Cu =Gy Css=Gn; Ce=0Gp3
[QuH1 QiuH1 QuHs QpHz QuzHi 3Q3H3
Qi1 QpHy QpHs QpHs QuHi 3QyHj3
QuHz QpHz QuHs QpHs Qu3Hz 3Q3Hs
QeHs QuHz Q9Hs QuHs QuHz 3QyHs
NL Q13H1 QQBHI Q13H3 QQBHS Q33H1 3Q:$3H3
A=) | QuHs QuHs QuH; QuH; QuHs 3QuH;
=1 QuHy QuHy QuHy QuHy QisHy 3Qi3Hy
QeHs QuHy QaHy QupHy Qo3Hy 3Qe3Hy
QuHy QpH, QuHe QpHe Qu3Hy 3Q3Hg
QuuHy QpHy QuHe QnHs QyHiy 3Q3Hg
| QisH2 QuHy Q3Hy Qo3Hy Qsz3Hy 3Qs3Hy

Appendix C
Elements of [A4], [4'], [B], [B'], [D], [D'], [E], [E']

matrices
QuHy QpHy QuHy QpHi 2Q3H> ]
QueHy QuH>y QuuHy QypHi 2Qy3H,
QuHy QiHy QuHe QpHg 2Q3H,
QuHy QnHi QpHs QpHg 2QyH,
QusHy QozH> Q3Hy Qy3Hi 2Q33Ho
QuzHy QuHi QuzHe QyHg 2Q33H,
QuHs QuH; QuHs QpHs; 2Q;3H;
QuHs QnHs; QpHs QupHs 2QyH;
QuHs QnHs QuHr QpHr 2Q3H;
QuHs QpHs QpHr QypHr 2QyH;
QusHs QuHs Qi3Hs QuHs 2Qs3H; |
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Q24H 3
03,H,
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0 14H 2
OyH,
OnH,
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03,H,

OyH,
Oy H;
OyH,
OuH,

0yH,
OH;
Q24H 2
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Oest1
OseH 3
Q66H 2
OseH 4

Q56H 1
Ose3
Q66H 2
OseH 4

QSSH 1
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Q56H 1
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Appendix D

Coefficients of matrix [X]
Xip=Aud® +Bif, Xio=41208 + Bioaf
X13=0, Xi4=A\00+B 0
Xis= Al]ﬁaz +B'1A8ﬂ2» Xi6=—B)p
X7 =430 +Bl,3ﬁ2, Xig = A140f + By 40p
Xig=—B B, Xiiw=4\,00+ B gup
Xin =A% + BB, Xin=—B) B
Xoi = Ao o+ Biyaf, Xop=Arsf + B’
X23=0, X4 —Alzsﬁ —|—Bl7oc
X5 = Ao +Bl$8aﬂ, X6 = —B’I,Sa
Xo7 =Asz0f + Bizaf, X,g=A4, 4ﬁ2 + By 40
X9 = =By o, Xop0= 27ﬁ +Bl9°‘
Xon = A/Z,g“ﬁ + B} 1028, Xon = —B) 4
X33 =0, X35=0, Xs3=D0+Ef
Xsa=Dyo, Xis=Ef, Xss=De0 +E1,6ﬁ2
X7 =E\f, Xss=Djsa, X3o= D 40 +E1,4ﬁ2
Xsg0=Dise, Xsn =Eisf, Xsi=Djq00 JFElJﬁz
Xag=A5 0B+ By of, Xip =40 + B, 5
Xi3=Dis0, Xig=Ar70° +Bssp + Dy,
Xas = Ar30f + Bysofl, Xag = Digx— Ars0
Xag = Al7,3°‘ﬁ + BB, Xag= ‘4/7,40C2 "'15’,3.4/32 +D,1,5
Xy9=Digo— Ao, Xajo = A790° + B3> + Dy 3
Xy =A7p00f + Bsgoff,  Xapn = Dig00— A760
Xsi = Ay >+ B, o, Xso = Ay 0 + By 0
Xs3=FE12f, Xsa=Ag70f+ Bssof
Xss5 = Aggf’ + Byg® +Ery, Xsg = Ei6f — Assp
Xs7= Ag&sﬂz + B/343°‘2 + Ell,s’ Xsg = Ay 0 + B/3,4°‘ﬁ
Xso=E1af —AsnfB, Xsio = Asooff + By0f
Xsi1 = As of” + Byso? + E13, Xsio = E178 — As
Xoi=—A5,p, Xea=—A5,0
Xos = D307 + E3of?,  Xes=Dsjo— Asqu
Xos=Esip—AssP, Xoo=Dss® + Esgf + Ass
Xe7 = Egﬂsﬁ — A’5,3/3, Xog = D’3750¢ — A'574oc
Xeg = D3407 + Esuf° +A4s11, Xeio = D3z — Asgo
Xo11 = Eszf—Asiof,  Xein = D3q70> + Es7B° + Asg
X7 = A3 0 + Byif’, Xq2=As0B + Byyaf
X735 =2D},, Xqa=A550f+B)0p
X35 —‘4360C +B/28ﬂ +2031= X6 = 2D/3,6ﬁ_B/2A5ﬂ
X717 = A330° + Bysf* + 2D 5, X758 = A3z 40 + Bysof
X719 =2D5,p =B, f, X710 = Alsjfxﬁ + B gofp

X1 = Asg0% + By (o +2D% 5, Xq12 =204, — By off
Xs1 = As10f + Briof, Xso=Assf + Brpo?
Xs3=2Ey,0, Xga=A, s + B0’ + 2E}

Xys = Ay uf + Byguf, Xgo = 2E; 40— By 5o

Xs7 = Assaf + Brsof, Xss=Asaf’ + Brao® +2E;s
Xgo=2Ey 0 — By o, Xgpo = A}, + Bhoot” +2E}
Xgi1 = Aygoff + By j00f,  Xsio = 2E5,0— B) g

Xoy = =248, Xop = —24)

Xo3 = Do + Essff’, Xog = Dojor— 241170
Xos=Ep B — 241188, Xog = Drs0® + Eagf’ + 24115
Xo7 = Elz,sﬁ - 2‘4/11,3/3’ Xog = 25“ 2“1/1140‘

Xog = Dos0® + Esaf + 241111, Xogo = Doz — 241190
Xogt = Ex3B— 241108, Xogz = Daq0? + Exaf* + 24116
X0y =4y 0f + By o, X2 = Aot + Bﬁuﬂz

X103 = 3Das0, X1 = Ag70? + Bysf> + 3Dy

X5 = Aogafp + Bagof, X6 = 3Dt — Ags0

Xiog =Aos0B + Byyof,  Xios = Ay,0> + By 4B + 3D,
X109 = 3Ds40 — Ay 1o, Xig10 = Agg0 + Ba7ff + 3Ds5
X011 = Aoj00f + Bagaf, X112 = 3D2700 — A6

X —A/101ﬁ +B41°‘ X :Allo,zg‘ﬁ"’B:u“ﬂ

X3 =3E0p, Xua =40+ Bysaff

Xiis = Aish + Bagt® +3Er;, Xiig=3Es6B — ArosB
Xig =438 +Byso® + 3By, Xus = Al 0f + Bl op
X119 =3E2af — AP, Xuio = Awoaf + Bagofs

Xun = /‘110,1032 + Bygo +3Ey3, X2 = 3E278 — Aiosf
Xy = —3A/671ﬁ, X1y = =345 50

X123 =Da20? + Espf’,  Xina = Dyyo— 3dg70

Xios = Eq 1B — 3468, Xi2s = Das?® + Eagf’ + 3dss
X7 = E,sp — 34530, Xing = D500 — 3dg 4

Xino = Daso? + Egaf + 34611, Xizg0 = Dazo — 3dson
Xioa1 = Eq3B — 34610, Xina2 = Dygol? JrE4,7,32 + 3466
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