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Abstract

Let D be a directed graph with n vertices and m edges. A
function f : V(D) — {1,2,3,...k} where k& < n is said to be
harmonious coloring of D if for any two edges zy and uv of D,
the ordered pair (f(z), f(y)) # (f(u), f(v)) . If the pair (i, i) is not
assigned, then f issaid to bea proper harmonious coloring of D .
The minimum k& is called the proper harmonious coloring number
of D. We investigate the proper harmonious coloring number of
graphs such as unidirectional paths, unicycles, inspoken (outspoken)
wheels, n-ary trees of different levels etc,

Keywords: Harmonious coloring, proper harmonious coloring
number, digraphs

1. INTRODUCTION

In this paper, we consider only finite simple graphs. For all notations in
graph theory we follow Harary [4], West [6] and Chartrand [1]. Coloring
the vertices and edges. of a graph which is required to obey certain
conditions, have often been motivated by their utility to various applied
fields and their mathematical interest. Various coloring problems such
as the vertex coloring and edge coloring problem have been studied in
the literature [4].

'The work reported in this paper is a part of the research work done under the
project No. SR/S4/MS-425/2007 funded by the Department of Science & Technol-
ogy(DST), Government of India for which we are thankful.
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Definition 1.1. A coloring of a graph G is a function c¢: V(G) = X
for some set of colors X such that c(u) # c(v) for each edge uv €
E(G).

The coloring defined above is the vertex coloring where we color the
vertices of a graph such that no two adjacent vertices are colored with
the same color. Similarly the edge coloring problem can be defined
in such a way that no two adjacent edges are colored the same color.
Hopcroft and Krishnamoorthy [5] introduced a type of edge coloring
called harmonious coloring.

Definition 1.2. A harmonious coloring [5] of a graph G is an
assignment of colors to the vertices of G and the color of an edge is
defined to be the unordered pair of colors to its end vertices such that
all edge colors are distinct. The harmonious coloring number is
the least number of colors in such a coloring.

An enormous body of literature has grown around the subject Har-
monious Coloring. The list of articles published on the subject can be
found in [2].

The following is an extension of harmonious coloring to directed
graphs.

Definition 1.3. LetD be a directed graph with n wvertices and m
edges. A function f : V(D) — {1,2,...,k} where k < n is said to
be a harmonious coloring of D if for any two edges xry and uv of
D , the ordered pair (f(z), f(v)) # (f(w), f(v)). If the pair (i,i) is
not assigned, then f is called a proper harmonious coloring of D.
The minimum k for which D admits a proper harmonious coloring
is called the proper harmonious coloring number of D and is

denoted by x1(D) .

In Figure 1 a proper harmonious coloring of Petersen graph and its
oriented graph are given.

2. RESULTS

In this section we present the results on proper harmonious coloring
of some classes of digraphs.
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Figure 1: A proper harmonious coloring of Petersen Graph and its
oriented graph.

Proposition 2.4. The proper harmonious coloring number of a sym-
metric digraph is same as the proper harmonious coloring number of
its underlying graph.

Proposition 2.5. Let D be a directed graph with p vertices. Then
N
A+1 <xn(D)<p.

Proposition 2.6. For any graph G, x5(G) > f@} where m
is the number of edges.

Proof. Let G be a digraph. Then G is colored with k colors using
proper harmonious coloring. Then the possible number of ordered pairs
is k(k—1).

som < k(k-1).

=>k2—k-m>0.

= k> 1+\/3m+1 _

k 2 (1+\/‘21n1+1-l .

Proposition 2.7. Let —ﬁn be a unipath with n wvertices. Then

iy a2 1 1+4(n—1
(B = [1FVIHn-1

Proof. Since unipath P, contains (n — 1) edges, xa(Pn) >

VIO et k= [VIOY Then, (k- 1)(k - 2) 41 <
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n < k(k —1) + 1. Now, we shall prove that ﬂ(ﬁvz) = k for
(k—1)(k—2)+1<n < k(k—1)+1. Consider a complete symmetric
digraph ?k with k vertices. Then 75;{ contains k(k — 1) edges.
The proper harmonious coloring of _1—5,, is equivalent to the coloring of

an Eulerian path traversing the edges of ??k (of length (n—1)) where
(k—1)(k—2)+1<n<k(k—1)+1. We need to prove that there
exists an Eulerian path of length k(k — 1). We shall prove this by
mathematical induction. For k = 2 the result holds. Assume that the
result is true for kK = m . i.e. there exists an Eulerian path of length

m(m — 1) in ?m. Consider ?m and a vertex v. Then joining
v to all the vertices of ?m in both directions, we get ?mH . Let

Uy, U, ..., Uy, be the vertices of ?m . Let u,, be the end vertex of the
Eulerian path of length m(m —1) (Consequently it is the first vertex).
Then traverse along the path u;, v u; v u2 v...um—1 v U, and see that

it is the extension of the Eulerian path obtained from (_I?m (of length
m(m — 1)), so that the length of the path obtained is m(m — 1) +2m

=m(m + 1).
Hence by the principle of mathematical induction, the result holds.

Figure 2 is an illustration of the above proof.

1 2 3 1 3 2 1
o—pSF—pO O———pO PO——P-O

Figure 2: A proper harmonious coloring of unipath Pr.

Proposition 2.8. Let D= 751 U ?2 U--uU ~15),~ be a union of disjoint

_.)
unipaths, where P; has i vertices for i = 1,2,--- . Then X-;:(B) =
ko= [LbV2E2i1)

Proof. Let D = _ﬁ1UT;2UU—ﬁ1 Then D has z—(%r—ll vertices
and L’;—Q edges.
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We know that k& > |'].—F—\/3?n+1*| where m is the number of edges.

4i(i—1)
Y kaH\/ ) +1]

— k> {1+¢2i;-2i+1] _

Now, we shall prove that k = (1+‘/Zi;“2i+l'| :

The harmonious coloring number of D is equivalent to the harmonious
coloring number of a umpath B where Pt is the umpath obtained by
adjoining the endvertex of P and the starting vertex of P, iy for j =
1,2,--- ,i—1. Since B contains E~(—1—)+1 vertices, H can be colored

with k = [H“?z =217 colors (by proposition 2.8). Let a;,as,--- , Gy
be the minimal sequence of colors assigned to the vertices of unlpfa,th

-
P, . Note that aj,as,,- *»,a; are not distinct. Now assign the colors
—
a(_—;—l)gij—?]+1,a(j—1)2(j~2) Ly ,a-j(j;1)+1 to the vertices of P;, for j =
L _9 - -
1,2,---,i. Note that the color of the end vertex of P (1 <j<i)
- QJ(j;1!+1

= a§j+1ﬁ1]25j+1—22+1
—
= the color of the starting vertex of Py G<i+1<i).

Hence, xi(D) = i (F) = [ “+V2E=2) -

Figure 3 is an illustration of the above proof.

o o—9 &—o—»9 *—9—o—e *—o—>0—0—0

1 1 2 2 1 3 3 4 5 6 6 1 4 2 3

Figure 3: A proper harmonious coloring of union of disjoint unipaths.
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Proposition 2.9. Let 6n be a unicycle with n wvertices, then,
_,(E:)__ k+1 for n=k(k—1)—-1,
XMEn) =Y b for n=(k—1)(k—2)+1,..,k(k —1) —2,k(k — 1),

where k = [@] for (k—1)(k—2)+1<n<k(k-1).

Proof. Since a unicycle 6,7 contains n edges, ﬂ(an) = .k
[LevIntl] | et k = [L/FL] Then (k—1)(k—2)+1 < n
k(k —1). Now, we shall prove that

i k+1 for n=k(k—-1)—-1,

Xr(Cn) = { k for n=(k-1k=2)+1,...k(k—1)—2,k(k—1).
It is equivalent to prove that there exists an Eulerian circuit with n
edges and k vertices for (k — 1)(k —2)+1 < n < k(k — 1) ex-
cept for n = k(k — 1) — 1. We know that a digraph D has an
Eulerian circuit if and only if id (v) = od (v) for every vertex wv.
For n = k(k — 1) — 1, the possible degree sequence ( k vertices) is
(k—1),(k—=1),...,(k —1),(k — 2) . But there exists no such digraph.
( For otherwise, let v be the vertex with id (v) = od (v) = k — 2.
Since degree of each of the other vertex is k — 1, every other ver-
tex has an edge to v so that id (v) = k — 1, a contradiction.)

IN IV

Now consider a complete symmetric digraph ?k with k vertices.
In ?k,id (v) = od (v) = k—1 for all v. Hence (.I?k is Eulerian.
Therefore, we have the result for n = k(k — 1). Remove an Eulerian
cycle of length ¢ where i = 2,3,4,...,(2k—3) from ?k . Then we get
an Eulerian cycle of length k(k—1)—2,k(k—1)-3,...,(k—1)(k—2)+1.
Hence we have the result. Since we are removing a cycle, the equation
id (v) = od (v) remains unchanged for the vertices lying on the cycle.
(When we remove an outgoing edge, we remove an incoming edge and
vice versa.)

Therefore, the resulting cycle is also an Eulerian circuit. d

Figure 4 is an illustration of the above proof.

Proposition 2.10. Let D=Cs U64U e U_C?1 be a union of dis-

—
joint unicycles, where C; has i vertices for i = 3,4,---. Then
P— % =
ﬂ(D) — |‘1+v2z§2+21—111 .
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Figure 4: A proper harmonious coloring of unicycle Cg.
Proof. Let D = Cjy UC. U---UJ C;. Then D has (i—z)z(z+3) vertices
and (i_Q)Q(HB) edges.

We know that k& > ['H‘/;mH} where m is the number of edges.

1 4(:‘—2'1(:4-3) 1
ey b 2 ( +\/*——22 -+ —|

— k> |-1+\/27523n%——ﬁ] — ¢

Now, we shall prove that k =t¢.

Consider the complete symmetric digraph ?t . Since ?t is Eulerian,
it can be partitioned into cycles (from Theorem 4.4 of [1]). It can

be proved by induction that ?t can be partitioned such that the
partition include cycles of length 3,4,...,i. The vertices of these cycles

-—
give the harmonious coloring of D . Hence the harmonious coloring

number of 1—5, k<t.

n k=1,
s ﬂ(ﬁ) = f1+3/21'92+2@f111 _ 0

Figure 5 is an illustration of the above proof.



3 1 1
2 6 S
éll D | B | | |
6 2 4 2
1 3 1 4 6 5
4
3 6

Figure 5: A proper harmonious coloring of union of disjoint unicycles.

Proposition 2.11. Let ?n be a symmetric cycle with n vertices.
Then, 36:(4_6"),1) o fos [1+——— VE”H'\ . In particular,

n for m=2,3,4.
A k for k2 —4k+5<2n<k(k—-1) k>5 and k is odd.
Xi(Cn) = k+1 for 2n=k(k-1)-4,7=2,4 k>5 and k is odd.

k for k2 —-3k+4<2n<k(k-2) k>6andk is even.

It is similar to the harmonious coloring number of undirected cycle
which is proved by Frank et al [3].

Figure 6 is an illustration of the above result.

1 1

3 2 5 2
5 3 3 3
2 4 1 4
6 5 4 5

"~

Figure 6: Proper harmonious coloring of symmetric cycles Cy and
Cio -
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Proposition 2.12. ﬂ(‘_i?*n) = mazlid (v),od (v)] +1 where S, is
a directed star with n wvertices and v 1s the central vertex.

Proof. Let ?n be a directed star where n is the number of vertices.
Let v be the central vertex. Let there be s incoming edges to v and
t outgoing edges from v . Label the central vertex v as 1.

Case (i): Let s > t. Then the incoming edges to v will be
(2,1),(3,1),...,(s + 1,1) and the outgoing edges from v will be
(1 2), 2,3) ( t) .

Xn(Sn) =

Case (ii): Let t > s. Then the outgoing edges from v will
be (1,2),(1,3),..,(1,t + 1) and the incoming edges to v will be

(2,1),3,1),...,(s,1) .

—_
Xn(Sn)=t+1.
From the above two cases, we can conclude that

(S n) = mazlid (v),0d (v)] + 1.

Figure 7 is an illustration of the above proof.

2
el
o
LY}
"
2

Figure 7: Proper harmonious colorings of Ss.
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Proposition 2.13. Let IT/; be a unicyclic wheel with n vertices and
let v be_t)he central vertex. Then

(i) Xan(W4) = (id (v) + od (v) +1).

(t7) For n=1>5 and 6

sy I n if id (v) =0 or od (v) =0,

Xn(Wn) = { id (v) +od (v)  otherwise.

(iii) For n>7, xn(W,) = mazlid (v),0d (v)] +1.

-

Proof. (i) and (i?) can be easily verified.
(7i7) Let ﬁ be a unicyclic wheel where n > 7. The total number of
edges of the wheel is 2(n — 1). Let v = v; be the central vertex and
let vg,vs3,...,v,, be the vertices on the circumference of the wheel. Let
there be s incoming edges to v and t outgoing edges from v. Label
the vertex vy as 1.
Case (i): Let s > t. Label the tails of the incoming edges to v as
2,3,...,5+1 so that the incoming edges to v will be (2,1),(3,1),..., (s+
1,1) and also label the heads of the outgoing edges from v as
2,3,...,8+1, (s+1>t) provided the adjacent vertices on the circum-
ference of the wheel will not get the same color. Hence the outgoing
edges from v will be (1,2),(1,3),...,(1,s +1).

—
S Xe(Wa) =s+1
Case (ii): Let t > s. Label the heads of the outgoing edges
from v as 2,3,...,t + 1 so that the outgoing edges from v will be
(1,2),(1,3),...,(1,t + 1) and also label the tails of the incoming edges
to v as 2,3,..,t+1, (t+1 > s) provided the adjacent vertices on
the circumference of the wheel will not get the same color. Hence the
incoming edges to v will be (2,1),(3,1),...,(t +1,1) .
S xa(Wa)=t+1
From case (i) and case(ii), it follows that

ﬂ(Wn) = mazfid (v),od (v)] +1.

ey

Figure 8,9,10 is an illustration of the above proof.
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F igure 8: Proper harmonious colormgs of unicyclic wheel Wy .

ER%E%

Figure 9: Proper harmonious colorings of unicyclic wheel Wi .

BRI
R

Figure 10: Proper harmonious colorings of unicyclic wheel W .

Proposition 2.14. For any n -ary topdown tree T

Xh(?n =k £ %ﬁll where | is the level of the tree.

Proof. Let —fn be the n-ary tree of level [,] = 1,2, 0000

——
It is enough to prove the result for complete topdown n-ary tree T,
Li+1
n'« =

i.e. We shall prove that ﬂ(?n) =k =""—

n-ary tree, T';,. There are 2=l vertices and "(n edges in T,

We color the vertices of n - -ary tree as follows:

L for complete topdown
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Color the root vertex as 1. In level 2 there are n vertices. Color the
vertices as 2,3,...,n+1. Hence the total number of colors used in level
2is n+ 1. In level 3, color the vertices as follows:
Liy;) = { J Zf ?§k+1,

! iof J>k+1.
where i =kn+j, k=0,1,2,...,n—1, j=1,2,...,n and v; are the
vertices of level 3.
Hence in level 3, the total number of colors required is n + 1. Now in
level 4, color the vertices adjacent to 1 as n + 2,n+3,....2n+1; 2n+
2,2n+3,...,3n+1; ...; n?2+2,n% 43, .on(n+1)+ 1. Use the same
colors for the vertices adjacent to 2,3,....n + 1. Hence in level 4, n?
additional colors are required to color the vertices. In the next level,
one can observe that all the vertices adjacent to the vertices colored
with n + 2 n 4+ 3,....,n(n 4+ 1) + 1 can be colored as 12,040, In
this level, we don’t require any additional colors to color the vertices.
Continuing in this way, one can observe that the number of colors used
in any odd level [ is less than or equal to the number of colors used
till the { — 1 level and the graph is harmonious.
Now, we shall prove the theorem by mathematical induction on the
level /. For [ =1, one can easily see that k = 1.
Assume that the result is true for some level | =m.
e k=2 =L
Now, to prove that the result is true for | = m + 1 ;

71[m}lj+1—1

lLe. to prove that k = 7 ,

we shall consider 2 cases.

Case (i): Let I =m be even. Then m + 1 is odd. Also, we have seen
that the number of colors used in any odd level is less than or equal to
the number of colors used till the previous level (i.e. even level) except
for level 1. Also the number of colors added in level m is equal to n? .
We know that the number of colors sufficient in level m + 1 is equal
to the number of colors used in level m as m is even.

Now, by induction hypothesis, the number of colors used in level m is

nlol+1_y
L T
k= n—1

Here, |%J = [%] as m is even. Hence the number of colors used

m+1
] : .L—f;J+1_
in level m+1 willbe , k=22 "~ =1 - 1

Case(ii): Let I = m be odd. Then m + 1 is even. We know that
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n—1

the number of colors added in level m is n 2 . Hence the number of

. 5 m+1 . . 5
colors added in level m + 1 is n 2 . Also by induction hypothesis,
3 . L f+1
the number of colors used in level m is k = " 2_1 =3

Hence the number of colors used in level m + 1 is

L +1 m+1
_n-2 -1
k= n—1 n: 2
s VLy m+1 . _
=k=" 2% """14+n"7 (as m isodd,|T] ="51)
= k= n"3 1
— n—1
m+1
. .on 2 -1—1_1
B R i
k _ an;I-H'l—l : dd m+1 _ | m+1
=i s [as m is o iy = LM 1]

Therefore, the result is true for level [ =m + 1.
Hence, by the principle of mathematical induction, the result follows

for complete topdown n-ary tree Tn, of level 1. This proves that for
—)

any topdown n-ary tree T,
P
= ay LIJ"'I__
Xi(Th) =k <22 =1, O

Figure 11 is an illustration of the above proof.

S 6 7 5 6 78 910 8 91089 1026 7 () 2 1385678 910

Figure 11: A proper harmonious coloring of complete trinary top-down
tree 13 of level 4.
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