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Abstract
This paper presents the fabrication and photovoltaic performance of new architecture based planar
heterojunctionCdS/CdTe thinfilm solar cells whichwere employedwith two hole transport layers
(PEDOT:PSS asHTL1 andCuPc asHTL2). The reported solar cells were fabricated through various
deposition techniques such as sputtering, thermal evaporation, spin coating and characterized by
FESEM,AFM,XPS,UPS andAM1.5 solar simulator. The interfacial layer growth and chemical state
identification of the deposited thinfilmswere studied by cross-sectional FESEMandXPS techniques.
The band bending occurs between absorbing and transporting layer helps to inject the excited charge
carriers effectively into electrode that was explained usingUPS analysis. The present work intends to
explain the role of additional window layer (TiO2), buffer layer (CdS) and hole transporting layers
(PEDOT:PSS andCuPc) in the novel device architecture. Further, thesefindingswill offer new
research directions to address the double hole transport (back contact) layers selection concept in
CdS/CdTe heterojunction based solar cells.

1. Introduction

In recent years, due toworld population growth and techno economic energy requirements, there has been an
over dependence on sustainable energy sources. To fulfill this energy demand, renewable energy sources are
found to be an alternative for the conventional non-renewable energy resources. Solar energy is considered as
one of themost important renewable energy, due to its abundance, being pollution-free and also possessingwide
energy distribution. The amount of solar energy received in one hour alone on the surface of earth is sufficient to
provideworld energy consumption for one year [1].Moreover to harvest the solar energy, solar cell is one direct
way to exploit and convert it into electricity. In recent years, thinfilm (second generation) solar cells have been
extensively studied due to its lowermaterial cost and less energy consumption during production [2, 3].
Cadmium telluride (CdTe) a binary (II-VI) chalcogenide based thinfilm solar cells were shown to produce high
power conversion efficiency (PCE) solar cells, due to its direct band gap (1.45 eV at 300 K) and higher optical
absorbance coefficient (α>104 cm−1) [4–6]. In general, a typical superstrate CdTe thin film solar cells have
been constructed by: (i) transparent conducting oxide (TCO) layered substrate as front electrode, (ii) commonly
employed heterojunction partner n-type cadmium sulfide (CdS) as buffer layer, (iii) p-type CdTe as an
absorbing layer and iv)metal over theCdTe layer as bottom electrode.

At the interface of thinCdS/CdTe, the fact that CdTe andCdS aremiscible to form a highly intermixed layer
(CdS1−xTex), which facilitates to reduce the interfacial defect density [7]. According to Shockley–Queisser limit,
theoretically calculated PCE of CdS/CdTe heterojunction thin film solar cell is 33% and at present achieved a
record efficiency (on lab scale) of 22.1% [8–10]. However, to achieve high quality polycrystalline CdTe thinfilm
(without pinhole formation), the required absorbing layer thickness is to be around∼2–5μm.At the same time,
whenCdTe layer thickness exceeds 1μm, the performance of solar cell decreases due to local shunting. In
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addition, according to the absorption co-efficient of CdTe, 1μmthick layer is well enough to absorb 90%of the
solar energy spectrum [11–14].

In recent years to enhance the efficiency of CdTe solar cells, the research efforts are continued in various
aspects, especially tofind a suitablematerial for back contact and also design a novel CdTe device architectures
[15, 16]. Hence, the CdTe solar cells have been demonstrated by introducing different front and back charge
transport contact (electron/hole) layers to collect and transport the charge carrier towards the bottom and top
electrodes [7, 16–20]. In other words, in order to provide a suitable driving force to transfer the photogenerated
charge carriers effectively; conduction band (CB) of the absorbing layer should be significantly higher thanCBof
electron transport layer (ETL) and aswell as the valance band (VB) of absorbing layer should be lower than the
VB of hole transport layer’s (HTL) [21].

To date, CdTe solar cells have been extensively studied using different ETL like CdS, zinc sulfide (ZnS),
ZnxCd1−xS, zinc selenide (ZnSe), titaniumdioxide (TiO2) [7, 22–24]. Amurtha et al, have reported that, in CdS/
CdTe heterojunction thin film solar cell an addition of TiO2window layer inserted between FTO substrate and
CdS layer helps to reduce the device leakage current [25]. AlsoHernandez et al, have reported that the sputtered
TiO2 thinfilm (15 nm) can be used as high resistance buffer layer to achieve higher conversion efficiency (12%)
in CdS/CdTe solar cells [26]. On the other hand, Khrypunov et alhave reported that, at themetal interface
(CdTe/metal) highWFCdTe interns to forms Schottky barrier (back diode behavior) instead of ohmic
contact [15].

To avoid such issues inCdTe solar cells, inorganicmolybdenumoxide (MoO3), organic SPIROOMeTAD
(N2,N2,N2′, N2′, N7,N7,N7′, N7′-octakis(4-methoxyphenyl)-9, 9′-spirobi [9H-fluorene]-2, 2′, 7, 7′-
tetramine), PEDOT:PSS (poly (3, 4-ethylenedioxythiophene)polystyrene sulfonate) and poly(3-hexythiophene-
2, 5-diyl) (P3HT) have been extensively used asHTL [15, 16, 19, 20, 27, 28]. Among them, PEDOT:PSS having
the advantage of highwork function (WF)which helps reduce the barrier height, especially to prevent themetal
diffusion into the absorbingCdTe layer [23].Moreover, the lower interfacing defects at the inorganic/polymer
interface facilitate to decrease charge carrier trapping and recombination in the device architecture [29]. The
properties of PEDOT:PSS (as back contact) in CdTe solar cells has been extensively investigated and reported
[19, 20]. Similarly, in bulk heterojunction based solar cells to improve the cell efficiency an oligomer copper
phthalocyanine (CuPc) is often employed asHTL. Thismay due to its suitable highest occupiedmolecular
orbital (HOMO) energy level to enhance carriermobility, excellent thermal and chemical stability, and low cost
[30–32].Moreover, the combination of CuPc alongwith PEDOT:PSSwere extensively studied and reported in
organic heterojunction solar cells [33–35]. In our present work an attempt has beenmade to fabricate and study
the photovoltaic performance of new architecture based planar heterojunctionCdS/CdTe thin film solar cells
by introducing two hole transport layers (PEDOT:PSS asHTL1 and oligomer phthalocyanine (CuPc) asHTL2).
The fabrication details, characterizations of the developed structure, photovoltaic behavior of the devices and
relevant discussions are reported in the subsequent sections.

2. Experimental section

2.1.Device fabrication
TheCdS/CdTe planar heterojunction solar cells described in this workwere used SnO2:F over thin glass plate as
substrates. Prior to thinfilmdeposition, the FTO substrates were cleaned using 1:1:1 ratio of acetone,
2-propanol, and de-ionized (DI)water, later the substrates were blowdried under nitrogen (N2) gas. The
window layer of TiO2 (100 nm) on top of FTO and the buffer layer of CdS (50 nm) over the TiO2/FTOwere
deposited using RFmagnetron sputtering. Each deposited layer was annealed at suitable condition before
depositing consecutive layers. The coated TiO2/FTO substrates were air annealed at 450 °C for 30 min, whereas
theCdS/TiO2/FTOfilmswere annealed at 350 °C for 5 min underN2 atmosphere. On top of the
CdS/TiO2/FTOfilm∼1μmthick absorbing layer of CdTewas deposited by thermal evaporation. The coated
CdTe/CdS/TiO2/FTOfilmswere annealed at 450 °C for 20 min inN2 atmosphere for improving the
crystallinity and the junction formation. The solar cells were fabricatedwith two different architectures, device
A: FTO/TiO2/CdS/CdTe/PEDOT:PSS/Au, and device B: FTO/TiO2/CdS/CdTe/PEDOT:PSS/CuPc/Au.On
both devices A andB, 150 nmand 100 nm thickHTL1 of PEDOT:PSSwere spin coated respectively at 3000 rpm
under room temperature and later the filmswere air baked at 100 °C for 20 min. In case of the novel architecture
device B, a layer of 50 nmHTL2 of CuPcwas additionally deposited over the surface of
PEDOT:PSS/CdTe/CdS/TiO2/FTOusing thermal evaporation. Finally a 100 nm top electrode Auwas
deposited over the both device architectures by thermal evaporation. Experiments are conducted onfive
optimized planar heterojunction samples and the best results are presented here.
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2.2. Characterization
The surfacemorphology and topographical information of the fabricated filmswere studied using a high-
resolutionfield emission scanning electronmicroscope (Carl ZEISS-ULTRA55 FE-SEM) and tappingmode
atomic forcemicroscopy (AFM) (Bruker dimension ICON). Chemical oxidation states of deposited filmswere
obtained by x-ray photoelectron spectroscopy (XPS) (Kratos AxisUltraDLD) under the condition of 13 mA
emission current and 12 kV as accelerating voltage (156W). Before recording the XPS spectra of TiO2, CdS and
CdTefilmswere sputtered using Argon ion source (4 kV, area of 3×3mm2) to remove the surface
contaminations. The electronic structures (valence bandmaximumandwork function) of deposited TiO2, CdS,
CdTe, PEDOT: PSS andCuPcfilmswere characterized using ultra-violet photoelectron spectroscopy (UPS)
usingHe I source energy (21.22 eV). The current-voltage (I-V) performances of the devices weremeasured using
Keithley 2420with the light source of 1000Wm−2 (Newport) oriel solar simulator under the condition of
AM1.5.

3. Results and discussion

TheGI-XRD andRaman spectroscopy techniques were used to observe the crystallinity and phase identification
of annealed TiO2, CdS andCdTe thinfilms. TheGI-XRDgeometry is particularly useful for thinfilms to increase
the path length of the beam into the layer, leading to achieving a better signal-to-noise ratio. Figure 1(a)
represents the relative intensity peaks of TiO2film presented at the diffraction angles of 25.3°, 37.9°, 48.2°, 54.1°,
55.1° and 61.9°which corresponds to the orientation of (101), (004), (200), (105), (211) and (213) respectively
(JCPDS: 84–1285) [36]. It reveals that the deposited TiO2 thin filmswere in dominant anatase polycrystalline
structure without any impurity peaks. The planes of CdS thin film (figure 1(b))were oriented at (100), (002),
(101), (102), (110), (103) and (112)which correspond to the diffraction angles of 25.0°, 26.6°, 28.3°, 36.6°, 43.6°,
47.8° and 51.8°. The calculation indicated standard hexagonal wurtzite structure (JCPDS: 41–1049) [26]. The
CdTe diffraction pattern displays five diffraction peaks at 2θ values of 23.7°, 39.5°, 47.2° and 63.1°which
correspond to the diffraction produced by the (111), (220), (311), (400) and (331) planeswhich indicates the
preferential crystallographic growth of CdTe, respectively. The diffraction intensity of CdTefilm showed an
increase, due to the improved crystallinity compared to the as prepared thinfilm (see figures 1(c) and (d)). The
intense peak values of annealed CdTe thin filmwas in good agreementwith a cubic zinc blende structure
(JCPDS:15–0770) [37].

Figure 2 represents the Raman bands of TiO2, CdS andCdTe thin films. As seen from thefigure 2, the crystal
phases are well separated in frequency and thus offer accurate information about the presence of different crystal

Figure 1.XRDpatterns of annealed thin films a)TiO2 at 450 °C, (b)CdS at 350 °C, (c)CdTe at 450 °Cand (d)CdTe as prepared.
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phases in thefilms. In general, the anatase phase of TiO2 has six Raman activemodes: A1g+2B1g+3Eg.
Figure 2(a) shows the Raman spectrumof the TiO2 thin film, with peaks located at 145 cm−1, 398 cm−1,
519 cm−1, and 640 cm−1 confirming the anatase phase of TiO2, which consistedwithXRDdata. The
prominently intense Eg (low-frequency)mode at 145 cm−1 and 640 cm−1 and bending vibrations B1gmode (O–
Ti–O) peaks at 398 cm−1and 519 cm−1 were correspond to anatase TiO2 [38]. Also, The peaks at 303 cm

−1and
608 cm−1 correspond to the fundamental optical phonon Longitudinalmodes (LO) and thefirst over tonemode
(2LO) of annealed CdSfilm as shown infigure 2(b) [39]. The position rules for transverse (TO), LO andA1 (Te)
optical phononmodes of CdTe filmswere found to be at 140 cm−1, 162 cm−1 and 122 cm−1 respectively [22].

Further to confirm the surface level oxidation state (before the heterojunction layer interface formation),
XPS analysis was carried out on the deposited films. Figure 3 shows the chemical state of surface etchedXPS
spectra of TiO2, CdS, andCdTe thin films. The Ti 2p3/2 andTi 2p5/2 peaks of TiO2filmswere observed at the
binding energies of 458.5 eV and 464.3 eV respectively, which confirms the deposited films are in TiO2 chemical
state (figure 3(a)) [40]. The peaks located at the binding energies of 404.9 eV and 411.6 eV are observed for CdS
thinfilm, which is consistent withCd2+ state. The S 2p core level spectrumofCdS centered at 161.4 eV and
162.5 eV is attributed to the S 2p3/2 and S 2p5/2 of S

2- states respectively (figure 3(b)) [41]. The peaks at the

Figure 2.Raman analysis of annealedfilms (a)TiO2 at 450 °C (b)CdS at 350 °C (c)CdTe at 450 °C.

Figure 3.XPS spectra of annealed (a)TiO2 (b)CdS (c)CdTe thin films.
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binding energies of 404.8 eV and 411.6 eV are related toCd 3d5/2 andCd 3d3/2 emissions of CdTe respectively.
Figure 3 shows Te 3d region of the sameXPS spectrumwhere observed peaks at binding energies of 572.5 eV and
582.9 eV are related to Te 3d5/2 andTe 3d3/2 (figure 3(c)) [37].

TheO1 s spectra of spin coatedHTL1 PEDOT: PSS filmhas twomajor peaks at 531.8 eV and 533.2 eV, are
assigned to S=OandO–Hbonds respectively (figures 4(a)–(f)).Moreover, O–Hbond of PEDOTand PSS chains
help tominimize the surface oxidation of CdTe at the interface, resulting decrease in the device leakage current.
Also, the presence of those bonds are to assist to enhance the hole transportation property (figures 4(a) and (b)).
The sulfur (S 2p) peaks from the PSS and PEDOT chains correspond to doublet at the binding energies of
169.5 eV and 165.1 eV, 168.2 eV and 163.9 eV respectively (figure 4(c)) [42]. The high-resolutionXPS spectrum
ofN 1 s ofHTL2CuPc as shown infigure 4(e) comprises the groups of nitrogen atoms inN–N,C–NandCu–N
bonding in theCuPcmolecule. The corresponding electronic states of Cu 2p3/2 and 2p1/2 peakswere located at
935.2 eV and 955.1 eV respectively. The presence of Cu (II) state inCuPcmolecule clearly exhibits a∼9 eV
binding energy (BE) difference between themajorCu peak and satellite peak at 944.4 eV (figure 4(f)) [43].

TheUPS spectra of TiO2, CdS, CdTe, PEDOT:PSS andCuPc thin films are shown infigure 5. The surface
WF (f) of the filmswere determined by the energy difference between the incident photon (hυ=21.22 eV) and
themid-point of respective secondary onset fromUPS spectrum. Themeasured BE of the TiO2, CdS andCdTe
films (fromfigures 5(a)–(c)) are 17.12 eV, 17.46 eV and 16.63 eV,which correspond to theWFof 4.1 eV, 3.76 eV
and 4.59 eV respectively. The valence bandmaximum (Vbm)wasmeasured by the linearlyfitting leading edge of
the valence band and extrapolating the fitted line to theX-axis of the spectrum. ThemeasuredVbmof TiO2, CdS
andCdTefilmswere 3.39 eV, 2.94 eV and 0.46 eV and its calculated valence band position (VB=Vbm+f) of
7.49 eV, 6.7 eV and 5.05 eV respectively.

The band gap (Eg) of TiO2 (3.2 eV) andCdS (2.43 eV)weremeasured from theUV-visible spectroscopy
(figures 6(a) and (b)), the calculated conduction band (CB) positions (VB-Eg) are 4.29 eV and 4.27 eV
respectively. Therefore, the Fermi levels (Ef) of TiO2 andCdS (4.1 eV and 3.76 eV) falls below theCB, which
clearly reveals that both are consistedwith n-type semiconductors. Similarly from figure 6(c), theCdTe
(4.59 eV) shows p-type semiconductor behavior, due to its Ef value which is closer to the valence band (5.05 eV)
with respect to the calculatedCBposition of 3.58 eV (Eg=1.47 eV). Figure 6(d) and (e) shows theWFof
PEDOT:PSS and highest occupiedmolecular orbital (HOMO) level of CuPcwere 5.01 eV and 4.83 eV
respectively. Figure 6(f) explains the schematic band diagramof fabricated devices.

Figures 7(a)–(f) shows the cross-section and planar view FESEM images of FTO substrate and the deposited
TiO2, CdS, CdTe, PEDOT:PSS andCuPcfilms.Note that the CdS/CdTe solar cells shown infigures 7(a)–(f) are
a superstrate configuration. Figure 7(a) shows the lateral view of transparent conducting oxide FTO (500 nm)
coated over the glass substrate with granular surfacemorphology (inset Figure 7(a)). The uniformdeposition of
TiO2window layer (figure 7(b)) helps to prevent the formation of shunt resistance in the device, which arises
from theCdTe absorbing layermaking contact with the bottom electrode (FTO) throughCdS pinholes.

Figure 4.The deconvoluted high resolutionXPS spectra of (a)Na1 s, (b)O1 s, (c) S 2p orbitals of PEDOT:PSS and (d)C1 s, (e)N1 s,
(f)Cu2p orbitals of CuPc thin films.
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Figure 7(c) shows the cross sectional view of CdS buffer layer deposited over the n-type TiO2/FTO.
Figure 7(c) in set shows themorphology of highly dense, pinhole freeCdS buffer layer with an average grain size
of∼30 nm. It is noted that an absorbing layer of polycrystalline CdTe film (figure 7(d))was densely compact and
had good coverage overCdS/TiO2/FTO. Figures 7(e) and (f) show cross sectional and surface view of spin
coated and thermal evaporatedHTL1 andHTL2 on top of CdTe/CdS/TiO2 layers respectively. It clearly reveals
that theHTL1 andHTL2 layers were uniformly deposited consecutively, which helps to transport the charge
carriers from the granular CdTe layer. Additionally, AFManalysis was used to carry out to study topographical

Figure 5.UPS analysis of (a)TiO2, (b)CdS and (c)CdTe thinfilms secondary onset spectra, (d)TiO2, (e)CdS and (f)CdTe thin films
Vbm spectra.

Figure 6.Optical band gap of deposited (a)TiO2, (b)CdS, (c)CdTe thinfilms, UPS Spectra of (d)PEDOT:PSS (e)CuPC thinfilms and
(f) schematic band diagramof fabricated devices.
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analysis of the deposited TiO2, CdS, CdTe, PEDOT:PSS andCuPc thin films (figures 8(a)–(f)). The high-
resolution topological AFM images (small area) 2D and 3Dof prepared filmswerewell consistent with FESEM
studies.

The current-voltage (I-V) characteristics of the fabricated planar heterojunctionCdS/CdTe solar cells are
shown infigure 9. All themeasurement were carried out under 1 sun illumination (1000Wm−2), AM1.5 solar
simulator with an active area of∼0.2mm2. The solid-state device A exhibited PCEof Isc=2.41×10–5 A,
Voc=0.28 V, FF=31%, η=1.25% and for device B, Isc=5.4×10–5 A, Voc=0.3 V, FF=30.7%,
η=2.74% respectively. As compare to device A, an increased open circuit voltage and short circuit current was
observed in device B from0.28 V to 0.30 V and from2.41×10–5 A to 5.4×10–5 A respectively. On other
words, due to the influence of CuPc (HTL2) alongwith PEDOT:PSS (HTL1), the photovoltaic performance of
device B showed significant improvement. It clearly shows that, the addition of CuPc asHTL2 causes the band
bending at PEDOT:PSS/CuPc/Au interface (as described fromUPS analysis), resultant increases the short
circuit current in device Bwhich leads the improved PCE.However, the observed cell parameters are
considerably poor compared to the commercial CdS/CdTe (layer thickness 2–7μm) solar cells. But thisfirst
attempt study gives the fact that, the influence of two back contact layers in planar heterojunction prototype
CdS/CdTe (layer thickness 1μm) solar cell helps to enhance the device efficiency. Also, it is observed that the
device B has shown 2.74% efficiency, which is comparably higher than recently reported ultra-thinCdTe layer
based thinfilm solar cells [22]. However, an appropriatematerials design and careful optimization of layer
thickness, annealing temperature and device structuremodificationwill pave theway for high performance solar
cells.

Figure 7. Surfacemorphology and cross section FESEM images (200 nm scale) of (a) FTO coated on glass (b)TiO2 (c)CdS (d)CdTe e)
PEDOT: PSS (f)CuPc thinfilms.
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4. Conclusions

In summary, we have investigated the effect of CuPc (HTL2) alongwith PEDOT:PSS (HTL1) in CdS/CdTe thin
film planar heterojunction solar cells. Incorporation of CuPc in the device architecture showed the higher
conversion efficiency of 2.74%, due to its effective transport of charge carriers towards the counter electrode

Figure 8.Typical high resolution 3D and 2DAFM topographic images of (a) FTO (b)TiO2 (c)CdS (d)CdTe (e)PEDOT:PSS (f)CuPc
thin films.

Figure 9. I–Vcharacteristics of solar devices A andB.
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(Au)when compared to the device A (1.25%). The proposed solar cell architecture of introducing double hole
transport layers will open a new viewpoint for theCdS/CdTe based solar cell designs to achieve higher efficiency.
Also, this strategymight be compatible with a broad range of organic photovoltaicmaterials and offers an
effective approach to enhance the performance of CdTe based solar devices. Although the present PCE achieved
is low, a better theoretical understanding of the interfaces would help to improve the design andPCE.
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