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Abstract:    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat 
transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed 
taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of 
length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has 
its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is 
observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due 
to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer 
equation. 
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INTRODUCTION 
 

It is well known that the topic of thermally in-
duced vibrations is of great concern for structural 
components of spacecrafts and has been extensively 
investigated by Thornton and co-authors (Thornton 
and Foster, 1992; Thornton and Kim, 1993; Gulick 
and Thornton, 1995; Johnston and Thornton, 2000). 
Pioneering works of Boley (1956), Boley and Barber 
(1957) have shown the influence of time dependence 
of the temperature on the structural transients. 
Manolis and Beskos (1980) used the Laplace trans-
form and method of Papoulis to obtain thermally 
induced vibrations of beam subjected to rapid heating. 
They also discussed the effects of axial load, internal 
viscoelastic damping and external viscous damping 
on thermal vibrations of simply supported beam 
subjected to rapid heating. Boley (1972) evolved an 
approximate method by deriving a simple formula for 
the ratio of the maximum dynamic to static deflection 
in order to study the thermally induced vibrations of 

beams and plates. In the same article the effect of 
damping and axial (or in-plane) load on the thermal 
vibration of beams and plates was also discussed. 
Dynamic stresses and deformations were evaluated 
by Stroud and Mayers (1971) for a rapidly heated 
rectangular plate using the dynamic thermo-elastic 
variational principle. Lyons (1966) suggests that the 
best practical way of providing sudden heat input to 
beams, plates and shells is by instantaneous supply of 
electrical energy and by gamma radiation. Associated 
governing equation of motion for infinitely long cy-
lindrical shell and the displacement response solution 
has been presented. Seibert and Rice (1973) carried 
out studies on thermally induced vibration of a simply 
supported beam using the uncoupled and coupled 
thermoelastic governing equations for thin and thick 
beams. Kidawa-Kukla (1997; 2003) analyzed the 
thermally induced vibration of uniform simply sup-
ported beam heated by a harmonically moving laser 
beam (mobile heat source). The solution to the prob-
lem in analytical form was obtained by using the 
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properties of the Green functions and also a time 
partitioning method was used to improve the con-
vergence of the series solution to the heat conduction 
problem.  

Thus it is noted that, sufficient analytical studies 
on the thermal induced motion of beams and plates 
are available. This article attempts a detailed 
investigation on the effect of boundary condition and 
free and forced convection effects on the thermal 
induced motion of beam. Numerical results are 
presented based on the finite element formulation for 
an Euler-Bernoulli beam subjected to thermal load. 
The study considers the beam with insulated surface 
and the opposite surface subjected to convective heat 
transfer. A thermal moment arising from the tem-
perature variation across the thickness of the beam is 
the source of forcing function for the structure. Dy-
namic response of the beam due to temperature tran-
sients is presented for various boundary conditions. 
The dynamic thermal moment for each case is ex-
amined providing an insight on the mechanism and its 
relation on the dynamic response of the internally 
heated beam. 
 
 
EQUATION OF MOTION OF BEAM SUBJECTED 
TO INTERNAL HEAT SOURCE 
 

Fig.1 shows the simply supported beam sub-
jected to internal heating and exposed to ambient 
conditions on one side and insulated on the other side. 
Practically, internal heating may be achieved by sev-
eral means. One method is the instantaneous supply 
of large amount of electrical energy to a structure by 
applying very high current across the thickness of the 
structure, and second method is by supply of current 
of desired amperage and voltage. This would allow 
each molecule of the structure to act as the interior  
 
 
 
 
 
 
 
 
 
 

heat source. Third method of inducing vibrations 
caused due to internal heat sources is by the instan-
taneous exposure of the structure to radiation or 
gamma rays (Lyons, 1966), as in nuclear power plants. 
Fig.2 shows the free body diagram of a differential 
element, dx, of the thin beam under the action of 
mechanical, inertial and thermal loads. TT and TB 
correspond to temperatures on top and bottom sur-
faces respectively, F is the shear force and P is the 
load intensity. 
 
 
 
 
 
 
 
 
 
 

The governing equation of motion for a beam in 
the transverse direction in the presence of thermal 
moment is given by (Boley, 1956) 
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where, ρ is the mass density, M is the bending mo-
ment produced by the applied forces, MT is the ther-
mal moment, v is the transverse deflection in the y 
direction, E the Young’s modulus and I the moment of 
inertia of beam cross section. The boundary and ini-
tial conditions for the problem are as follows 
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where mT is the non-dimensional thermal moment. 

For the beam subjected to internal heat source 
and insulated on one side and undergoing convection 
heat loss on the other side, the thermal moment acts as 
a forcing function which is given as 
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where, ∆T is the change in temperature, α is the co-

Fig.1  Simply supported beam subjected to internal
heating 

Fig.2  Free body diagram of a beam subjected to
mechanical and thermal loads 
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efficient of thermal expansion and A is the cross sec-
tional area, b is the width of the beam and yi indicates 
thickness at ith layer measured along the y axis (Fig.3). 
The thermal moment is calculated at uniform inter-
vals across the thickness from the top to bottom sur-
faces of the beam and it is summed up in order to get 
the total thermal moment across the section. The 
thermal moment along the length is assumed to be 
constant as there is no temperature variation along the 
length of the beam hence, MT=MT(t). The following 
non-dimensional parameters are defined (Boley, 
1956): The non-dimensional time τ is: 
 

2/ ,t hτ κ=                            (4) 
 
where, κ=k/(ρcp) is thermal diffusivity, k is thermal 
conductivity, cp the specific heat and h the total 
thickness of beam. The non-dimensional displace-
ment V is given as  
 

4 2π /(192 ),V kv Q Lα=                    (5) 
 
where, Q is the heat flux in W/m2 and L is the length 
of the beam. mT is given as 
 

4
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The parameter B is the square root of the ratio of 
the characteristic time h2/κ of heat transfer problem to 
characteristic time (ρAL4/EI)1/2 of the vibration 
problem (or proportional to the natural period of vi-
bration). Thus B is large for beams with low diffu-
sivity, low density and high bending rigidity; it is low 
if the beam is slender or dense. 
 
Determination of temperature distribution across 
the beam thickness 

The evaluation of the temperature distribution 

across the thickness of the beam is found by using the 
finite element idealization as illustrated in Fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The finite element equation for temperature 
evaluation across beam thickness when the beam is 
subjected to sudden internal heating, exposed to am-
bient condition on one side and insulated on other side 
is as follows: 
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In Eq.(7) the second matrix on LHS and second vector 
on RHS are contribution from convection and will be 
taken into consideration only for last element, hc is 
convective heat transfer coefficient, T1 and T2 are the 
nodal temperatures and T∞ is the ambient temperature. 
The global finite element equation for time dependent 
temperature distribution has the following form: 
 

comb cap+ = ,QK T K T F                       (8) 

 
where Kcomb is elemental conduction and/or convec-
tion matrix, Kcap is elemental capacitance matrix and 

QF  is force vector. Eq.(8) must be solved for the 

variation of temperature in space and time domain to 
obtain the temperature distribution across the thick-
ness of the beam. 
 
Beam finite element formulation 

The finite element idealization for the simply 
supported beam subjected to heat source on one side 

Fig.3  Geometry and temperature details for the calcu-
lation of thermal moment 

Fig.4  Finite element idealization across the beam
thickness for thermal analysis 
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and insulated on other side is shown in Fig.5. The 
weak form of the governing equation Eq.(1) is as 
follows: 
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where, the first term refers to shear force, the second 
term refers to moment, the third term will give the 
stiffness matrix, the fourth term will yield the mass 
matrix, the fifth term gives the shear force and the last 
term will be zero as there is no change in thermal 
moment along the length of the beam. NT is the weight 
function. Hermite shape functions are used to develop 
the various finite element matrices. In the standard 
Galerkin’s method, weight functions are chosen as the 
shape functions. Transverse displacement field would 
be expressed in terms of cubic Hermite shape func-
tions and nodal displacement as follows: v(x,t)= 

4

1

.i i
i

N v
=
∑  After obtaining the time dependent tem-

perature distribution across the beam thickness, force 
vector FT is evaluated which will contain the thermal 
moment MT only. Subsequently, static equation 
Kv=FT is solved. The displacement thus obtained at 
time t is termed as the static displacement vst. New-
mark’s method is used to solve the second order 
equation of motion involving the time dependent 
forcing function 
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The displacement obtained by solving Eq.(10) is 

termed as dynamic displacement vdyn. From the dy-
namic displacement vector, the displacement for the 
central element of the beam is extracted to calculate 
the thermal moment at the centre of the beam and is 
termed as dynamic thermal moment: 

e e e
TD dyn( ) ( ) ( ) ,=M K v                    (11) 

 
where, superscript e refers to elemental solution. 
Hence, the dynamic thermal moment at the centre of 
the beam is given as: 
 

node
T dyn TD Tst ,M M M= ±    (12) 

 
where MT st=MT. It is to be noted that the structural 
damping is ignored and that material properties are 
independent of temperature. 
 
 
RESULTS AND DISCUSSION 
 

Numerical exercises are presented for thin 
beams with different boundary conditions like simply 
supported (SS), clamped simply supported (CS) and 
clamped free (CF) for the analysis of dynamic re-
sponse and dynamic thermal moment when the beam 
is subjected to internal heating with heat transfer 
boundary conditions as insulation and convection 
heat loss occurring due to constant heat transfer co-
efficient and forced convection caused by transverse 
motion of beam. The slenderness ratios of the beam 
considered for the study are 88 and 165. Length of the 
beam is 0.254 m and has unit width. The evaluation of 
the temperature distribution across the cross section 
of the beam has been validated with the close form 
solution given by Boley (1956) or Carslaw and Jaeger 
(1959). The finite element approach for the analysis 
of the dynamic response of beam subjected to thermal 
boundary conditions has been validated with the re-
sults reported by Boley (1956) and Manolis and 
Beskos (1980) for the simply supported beam. 
 
Validation 

The thermal structural data for the validation of 
the FEM formulation to analyze thermally induced 
vibration are reproduced below from (Boley, 1956): 
b=1 m, L=0.254 m, k=201.87 W/(m·K), α=22.0×10−6 
/°C, ρ=2700 kg/m3, cp=869.38 J/(kg·°C), Q=1.63×106 
W/m2, E=73.5×109 Pa, and G=26.0×109 Pa and other 
data are listed in Table 1. Fig.6 shows good agreement 
of the FE and close form solution (Boley, 1956) for 
temperature distribution across the thickness of the 
beam with surface heating in the form of step heat 
input and opposite surface insulated.  

Fig.5  Finite element idealization of beam for structural
analysis 
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The non-dimensional plots of dynamic mid-span 

deflection (Fig.7a) and mid-span thermal moment 
(Fig.7b) for various values of B were obtained and 
compared with the results given by Boley (1956) and 
Manolis and Beskos (1980). It was found that the 
trends of the results are in good agreement for simply 
supported beam subjected to rapid heating. The 
variation of the ratio of maximum dynamic mid-span 
deflection to maximum static mid-span deflection 
with the thickness of a rectangular simply supported 
aluminium beam was also studied and it was inferred 
that, in order to avoid dynamic oscillations due to 
heating it is preferable to have higher thickness of the 
beam. The thermal structural data for aluminium 
beam provided by Manolis and Beskos (1980) are the 
same as those given by Boley (1956) except the 
length of the beam was taken to be equal to L=1 m and 
thickness of the beam was h=0.00385 m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Effect of natural convection on thermally induced 
vibrations of internally heated beams 

The beam is subjected to internal heating of Q= 
10.63×106 W/m2. A beam with L/h=165 is considered 
for the analysis. Other data remain unchanged. Fig.8 
shows the temperature variation across the thickness 
of the simply supported beam subjected to internal 
heating and undergoing convective heat loss with heat 
transfer coefficient hc=20 W/(m2·K). It can be seen 
from the figure that with the passage of time the 
temperature increases linearly and that the tempera-
ture variation across the thickness of the beam is 
almost negligible. 

Fig.9 shows the corresponding dynamic midspan 
thermal moment. The trend of the thermal moment is 
the same as the one shown in Fig.8 for simply sup-
ported beam subjected to step heating on one side and 
insulated on the other side, but the amplitude of 
non-dimensional dynamic mid-span thermal moment 
is considerably less than that shown in Fig.7b. 

B L/h H (m) t (s) 
0 25400   0.000010 0.000002 
1 165   0.001544 0.04 
∞ 10   0.025400 10.0 

Table 1  Geometric and time data for validation problem 

Fig.6  Close form solution (a) and FEM solution (b) of 
temperature variation across the thickness of the beam 
as referred from (Boley, 1956) for B=1 

Fig.7  Non-dimensional dynamic mid-span deflection (a)
and  thermal moment (b) of simply supported beam for
various values of B 
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Fig.10 shows the non-dimensional dynamic 

mid-span deflection of simply supported beam sub-
jected to internal heating for various values of con-
vective heat transfer coefficient (hc). The convective 
heat transfer coefficient of zero i.e. hc=0 refers to the 
beam which is insulated on both sides and as seen 
from Fig.10 the vibration amplitude is zero, the same 
is true as seen in Fig.12 and Fig.14 for CS and CF 
beam respectively. As the convective heat transfer 
coefficient is increased, during the initial time period, 
the non-dimensional displacement is almost equal to 
zero but later on there is increase in the amplitude of 
the non-dimensional dynamic displacement showing 
the oscillatory trend about some mean position (not 
shown). 

The thermal moment for clamped-simply sup-
ported beam illustrated in Fig.11 shows a linear in-
crease in its amplitude with slight oscillatory trend as 
the time progresses. Referring to Fig.12, as the con-
vective heat transfer coefficient is increased the non 

dimensional displacement is equal to zero during the 
initial time period, but later on there is increase in the 
amplitude of the dynamic displacement and shows an 
oscillatory trend about some mean position (i.e. 
thermal static deflection and is not shown). 

In case of clamped free beam, the dynamic ther- 
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mal moment at the free end is equal to zero due to free 
expansion of the beam as shown in Fig.13. The dy-
namic deflection of clamped-free beam at the free end 
depends on the magnitude of the heat transfer coeffi-
cient. As illustrated in Fig.14, when the convective 
heat transfer coefficient is increased, there is gradual 
increase in the amplitude of the dynamic displace-
ment at the free end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Effect of varying convection on thermally induced 
vibrations of internally heated beams 

Numerical investigations were carried out for 
internally heated simply supported beam with forced 
convection on one surface and opposite surface being 
insulated. The variation of convection along the 
length of the beam is chosen to be a function of the 
transverse displacement of the beam. This assumption 
on the convection heat transfer coefficient will lead to 
minimum convection towards the simply supported 
ends and will increase toward the centre of the beam 
to a maximum value. This characteristic variation of 

heat transfer coefficient is based on the physical in-
terpretation that, when the beam executes upward 
motion from the mean position, this will result in 
displacing the air upwards and it is reasonable to 
assume the heat transfer coefficient to be proportional 
to the velocity of the beam and the displacement 
vector. As the beam executes downward motion, the 
convection coefficient is assumed to decrease in 
proportion to the velocity and displacement vector 
under the circumstances that the air currents put in 
motion previously need finite time to change their 
direction. This decrease in convection coefficient is 
assumed to take place until the beam attains the mean 
position and for subsequent downward motion of the 
beam a constant natural convection is assumed to 
prevail. From the maximum downward position, as 
the beam executes upward motion until mean position, 
again the convection heat transfer coefficient is as-
sumed to remain constant. The natural convective 
heat transfer coefficient is taken to be equal to 20 
W/(m2·K) which has been obtained experimentally 
under laboratory conditions. Thus, the spatial and 
time variation of heat transfer coefficient can be rep-
resented as follows: 
 

c max

max max

( , ) ( ) ( , ) / ,
0  and 0,
h x t h h t v x t v

v v v v
= +

< ≤ ≤ <
                  (13) 

c max max( , ) , 0 and 0,h x t h v v v v= < ≤ − − ≤ <    (14) 
 
where, hc is natural convective heat transfer coeffi-
cient, v(x,t) is transverse displacement of beam, vmax is 
maximum displaced position of beam, x is position 
along x-axis. Approximating the velocity of air equals 
velocity of oscillating beam, the Reynolds number is 
computed. Using this Reynolds number Re, the Nus-
selt number Nu is found which helps in finding the 
convective coefficient of heat transfer h(t). The 
correlation given by Zhukauskas for computation of 
Nusslet number for flow over a circular cylinder in 
cross flow is, 
 

1/ 4( / ) ,m n
sNu CRe Pr Pr Pr=                (15a) 

and the empirical correlation given by Hilpert is 
 

 air( ) / ,h t Nuk L=            (15b) 
 
where C is constant (C is 0.75 for Pr<40, C is 0.51 for 
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Pr>40), m is constant (m=0.4 for Pr<40, m=0.5 for 
Pr>40), Pr is Prandlt number evaluated at ambient 
temperature T∞, n=0.36 for Pr≤10 and n=0.37 for 
Pr>10, Prs=Prandlt number at instantaneous tem-
perature Ts. Eqs.(15a) and (15b) are referred to from 
(Incropera and DeWitt, 2002). The Prandlt number at 
instantaneous temperature can be obtained from the 
table of thermodynamic properties of air as referred to 
from (Incropera and DeWitt, 2002). The Prandlt 
number is given for every 50 °C temperature differ-
ence, starting from temperature of 27 °C (300 K). To 
obtain the Prandlt number at intermediate tempera-
tures the third degree polynomial fit is carried out for 
the thermodynamic properties of air (Incropera and 
DeWitt, 2002), with instantaneous temperature, Ts, as 
the variable which is given as: 
 

4 7 2
s s

10 3
s

0.84071 6.8066 10 8.796 10

2.9261 10 .
sPr T T

T

− −

−

= − × + ×

− ×
(16) 

 
Prs is used in Eq.(15a) to evaluate the Nusselt number. 
The above expression is also used to evaluate Prandlt 
number at ambient temperature. 

Accounting for forced convection arising due to 
motion of the beam, Fig.15 shows the temperature 
variation across the thickness of the simply supported 
beam. The slenderness ratio of the beam is 165. The 
internal heating was 1000.63×106 W/m3. It was found 
that the temperature increases as time progresses. 
However the temperature at various points (nodes) 
across the thickness does not vary during the initial 
time period. But as the time progresses a small tem-
perature difference is found to occur between various 
nodes across the thickness of the beam. The static 
displacement monotonously increases but the dy-
namic displacement continuously oscillates about the 
static displacement with increase in amplitude with 
respect to time as illustrated in Fig.16. The static 
thermal moment has exponential characteristics 
which can be observed for a small fraction of time 
during the initial stage and subsequently it increases 
linearly. The dynamic thermal moment continuously 
oscillates about zero with increase in amplitude with 
respect to time as illustrated in Fig.17. In case of 
beam subjected to varying convection, the amplitude 
of dynamic displacement continuously increases with 
time, however, when constant convection is consid-
ered, the oscillations are steady. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For L/h=165, the characteristic time of the heat 

transfer problem is equal to the characteristic time of 
vibration problem. In case of L/h=200, the charac-
teristic thermal time is less than characteristic time of 
vibration problem. Thus the magnitude of thermal 
oscillations is higher in case of L/h=200 when com-
pared to L/h=165, as shown in Fig.18. As the thick-
ness of the beam increases, the characteristic time of 
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the heat transfer problem increases. Hence, when L/h 
decreases, i.e. 125, 96 and 88, it was observed that 
there were no thermally induced oscillations, how-
ever there exists static thermal deflection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

A theoretical analysis was presented on the 
thermally induced vibrations of beams under various 
heat transfer and structural boundary conditions sub-
jected to internal heating. The major observations for 
the case of constant convection boundary condition 
are: (1) With the passage of time the temperature 
increases linearly and the temperature variation 
across the thickness of the beam is almost negligible; 
(2) As the convective heat transfer coefficient is in-
creased there is increase in the amplitude of the 
non-dimensional dynamic displacement; (3) The dy-
namic displacement has lower amplitude in case of 
clamped simply supported beam as compared to the 
other two; (4) The trends of the non-dimensional 
dynamic thermal moment for SS beam is the same as 
the one shown for SS beam with step heating and 
insulated boundary condition, but for CS beam the 
dynamic thermal moment linearly increases with time 
and the dynamic thermal moment for the CF beam at 
the free end is zero. It was also observed that when the 
convective heat transfer coefficient is a function of 
beam motion, the amplitude of dynamic displacement 
continuously increases with time, however, when  
 

 
 
 

constant convection is considered, the oscillations are 
steady. Finally, irrespective of the type of heat transfer 
and structural boundary condition the vibrations oc-
curred in the first mode. 
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