
D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

"N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y,

 K
ar

na
ta

ka
" 

on
 0

2/
24

/2
1.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
Developing Regression Models for Predicting Pan
Evaporation from Climatic Data—A Comparison of Multiple

Least-Squares, Principal Components, and Partial
Least-Squares Approaches

Gicy M. Kovoor1 and Lakshman Nandagiri2

Abstract: Regression models for predicting daily pan evaporation depths from climatic data were developed using three multivariate
approaches: multiple least-squares regression �MLR�, principal components regression �PCR�, and partial least-squares �PLS� regression.
The objective was to compare the prediction accuracies of regression models developed by these three approaches using historical climatic
datasets of four Indian sites that are located in distinctly different climatic regimes. In all cases �three approaches applied to four climatic
datasets�, regression models were developed using a part of the data and subsequently validated with the remaining data. Results indicated
that although performances of the regression models varied from one climate to another, more or less similar prediction accuracies were
obtained by all three approaches, and it was difficult to identify the best approach based on performance statistics. However, the final
forms of the regression models developed by the three approaches differed substantially from one another. In all cases, the models derived
using PLS contained the smallest number of predictor variables; between two to three out of a possible maximum of six predictor
variables. The MLR approach yielded models with three to six predictor variables, and PCR models included all six predictor variables.
This implies that the PLS regression models are the most parsimonious in terms of input data required for estimating epan from climate
variables, and yet yield predictions that are almost as accurate as the more data-intensive MLR and PCR models.
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CE Database subject headings: Climatic data; Correlation; Eigenvalues; Eigenvectors; Evapotranspiration; Regression analysis;
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Introduction

The multiple least-squares regression �MLR� technique is a popu-
lar data analysis and synthesis tool used in several fields of sci-
ence and technology. The MLR approach has found widespread
use, even in agronomic and irrigation studies; most notably in the
development of empirical, albeit simple equations for predicting
various evaporation/evapotranspiration characteristics using in-
puts of more routinely measured climatic variables. Doorenbos
and Pruitt �1977� describe several such popular regression models
developed for predicting reference crop evapotranspiration �ET0�,
an important variable in procedures for computing irrigation
water requirements of agricultural field crops, from standard
ground-based climatological measurements. Hargreaves and Allen
�2003� provide a historical review highlighting the application of
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MLR techniques in the development of a variety of empirical
equations for estimation of ET0. Even though more “physically
based” combination-type equations for estimation of ET0 have
been subsequently developed �e.g., Allen et al. 1998�, location-
specific MLR-based ET0 prediction equations continue to be
developed primarily to circumvent the higher input data require-
ments of the combination-type methods �e.g., Irmak et al. 2003a;
Nandagiri and Kovoor 2006�. The simplicity and easy applicabil-
ity of the MLR approach has resulted in its widespread use, even
in the development of empirical equations for various climatic
parameters that are involved in the estimation of ET0 �e.g.,
Kotsopoulos and Babajimopoulos 1997; Irmak et al. 2003b�. An-
other common application of the MLR technique has been in the
development of regression models for estimating pan coefficients
from climate/site characteristics for converting pan evaporation
measurements into equivalent values of ET0 �e.g., Snyder et al.
2005�. MLR has also been used to develop models for predicting
daily pan evaporation from climatic variables �e.g., Bruton et al.
2000�.

However, the MLR approach is known to yield unreliable re-
sults in the presence of strong correlations between the predictor
variables �multicollinearity�. In the presence of multicollinearity,
use of the ordinary least-squares criterion to estimate the param-
eters of the response function results in instability and variability
of the regression coefficients �Newbold et al. 2003�. When the
predictor variables exhibit multicollinearity, regression coeffi-
cients derived using MLR techniques may result in large

variances and signs that cannot be explained through physical
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reasoning �e.g., Draper and Smith 1981; Neter et al. 1996;
Fekedulegn et al. 2002�. In the context of MLR applications in
evapotranspiration studies, multicollinearity is likely to be signifi-
cant since the set of climate variables used as predictors �e.g., air
temperature, humidity, windspeed, radiation� are known to exhibit
high degrees of mutual correlation. Also, application of MLR
approach considering all predictor variables as being important
leads to the problem of model “over fit,” which in turn may result
in lower predictive capability of the regression model. In order to
overcome this problem, “step wise” regression techniques may be
employed to eliminate predictor variables that do not contribute
significantly in explaining the observed variations of the response
variable.

On the other hand, principal components regression �PCR�
�McCuen and Snyder 1986; Haan 1995� is a multivariate statisti-
cal technique designed to handle the problem of multicollinearity
and produce stable and meaningful estimates for regression coef-
ficients. In this approach, the original predictor variables are
transformed into a new set of orthogonal or uncorrelated variables
called principal components of the correlation matrix. The trans-
formation ranks the new orthogonal variables in order of their
importance and thereby permits elimination of the least important
principal components. Subsequently, MLR techniques are
employed between the response variable and the reduced set of
principal components. Because the principal components are
orthogonal, they are pairwise independent, thus, ensuring absence
of multicollinearity. Once the regression coefficients for the re-
duced set of orthogonal variables have been calculated, they are
mathematically transformed into a new set of coefficients that
correspond to the original or initial correlated set of variables.
The PCR approach has found applications in ecological and cli-
mate studies �Fekedulegn et al. 2002; Huth 2002�, but our review
of literature did not indicate any previous attempts at using PCR
in development of equations for evaporation/evapotranspiration
estimation.

A still more recent multivariate regression technique that
generalizes and combines the features from PCR and MLR is
the partial least-Squares �PLS� regression approach �Abdi 2003�.
The method originated in social sciences and became popular in
chemometrics, i.e., computational chemistry �Geladi and Kowal-
ski 1986�. The ability of PLS to extract correlation between input
and output data, that is itself highly collinear, allows it to deal
with problems that would be inappropriate for MLR or PCR. As
in the case of PCR, PLS regression also produces factor scores as
linear combinations of the original predictor variables, so that
there is no correlation between the factor score variables used in
the predictive regression model. However, while PCR produces
the weight matrix reflecting the covariance structure between the
predictor variables, PLS regression produces the weight matrix
reflecting the covariance structure between the predictor and
response variables.

From the above discussion, it is evident that the PCR and PLS
approaches appear to have the potential to offer advantages over
the conventional MLR approach in developing explanatory or
predictive models from multivariate datasets. However, few ear-
lier studies seem to have used these multivariate tools in the de-
velopment of evaporation/evapotranspiration estimation models
and evaluated their relative performances with a common dataset
of climatic observations. Therefore, in the present study, we con-
sider the case of developing models for predicting daily pan
evaporation from climatic variables using the three multivariate
statistical approaches and compare the relative prediction accura-

cies of the developed models. Historical climatic data obtained
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from four climate stations located in distinctly different climatic
regimes of India were used in the comparative analysis. The ob-
jectives of the study were to: �1� investigate the applicability of
the MLR, PCR, and PLS approaches in the development of re-
gression models for estimation of pan evaporation; �2� compare
the predictive capabilities of regression models developed
through application of these three approaches on the same
datasets; and �3� evaluate possible differences in predictive capa-
bilities of the approaches in different climatic regimes. In the
following sections of this paper, theoretical aspects relating to the
three multivariate regression approaches, details of the climate
datasets used, and results pertaining to the performances of the
developed prediction models are discussed.

Multivariate Regression Methods

Multiple Least-Squares Regression

The general form of the multiple linear regression model is given
by

Y = b0 + b1X1 + b2X2 + , . . . , + bqXq �1�

in which Y =response or criterion variable; Xi �i=1,2 , . . . ,q�
are the predictor variables; q=number of predictor variables, and
bi �i=0,1 ,2 . . . ,q� are the regression coefficients. Procedures for
determination of the regression coefficients through application of
the least-squares principle are well documented in standard texts
�e.g., McCuen and Synder 1986; Haan 1995� and will not be
repeated here.

However, as mentioned earlier, implementation of MLR con-
sidering all the predictor variables may lead to over fit and
consequent reduction in predictive capability. To overcome this, a
stepwise procedure was applied to arrive at the final form of the
regression model involving only those predictor variables that can
explain observed variabilities in the response variable. The objec-
tive of stepwise regression is to develop an “optimal” prediction
equation by using statistical criteria to eliminate superfluous pre-
dictor variables. Based on the sequence of selecting the predictor
variables, the stepwise procedure may be either the forward re-
gression method or the backward regression method �McCuen
and Synder 1986�. In the forward regression method, the predictor
variable having the highest correlation with the criterion variable
is entered first. The next variable with the highest partial correla-
tion is then entered. Partial correlation is the correlation of each
independent variable with the dependent variable after removing
the linear effect of variables already in the model. A test of sig-
nificance is done at each level, and computation ends when all
statistically significant variables have been included. The test of
significance was done using F-statistics. If the value of
F-statistics is small ��0.05�, then the independent variable does a
good job explaining the variation in the dependent variable. In the
backward approach, one begins with an equation that includes all
the predictor variables and sequentially deletes variables, with the
variable contributing the least explained variance being deleted
first.

In the present study, the forward regression method was used.
The entire procedure was implemented using SPSS software,
which was available at the Department of Community Medicine,

MAHE, Manipal, India.
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 Principal Components Regression

In the PCR approach, the set of correlated predictor variables is
first converted into a set of orthogonal factors with the help of
principal component analysis �PCA� �McCuen and Snyder 1986�.
Since the new sets of factors are orthogonal to each other, each of
these factors contributes independently to Y. Thus if �k represents
the set of orthogonal factors, and Xi are the original variables that
are correlated, then instead of stating the linear model as a rela-
tionship of Y to Xi, it is stated as a relationship of Y to �k. Thus

Y = �1�1 + �2�2 + �3�3 + , . . . , + �k�k �2�

The new factor �k is given by

�k = �
j=1

P

ljk
xjk = 1,2, . . . ,P �3�

where ljk=direction are the cosines between the original and ro-
tated axis that is given by the eigenvector matrix of the correla-
tion matrix of xi. Thus

��1 = l11x1 + l21x2 + l31x3 + ¯

�2 = l12x1 + l22x2 + l32x3 + ¯

� �4�

The contribution of �1 to y is then given by �1�1, which results in

y1 = �1l11x1 + �1l21x2 + �1l31x3 + ¯ �5�

Similarly, the contribution of �2 to y is given by �2�2, which gives

y2 = �2l12x1 + �2l22x2 + �2l32x3 + ¯ �6�

The �k terms in the above equations are given by

�k = �1/�k��likrx1y + l2krx2y + , . . . , + likrxiy
� �7�

Each component simply represents a relation of one indepen-
dent or orthogonal element in the xi to y. The full relationship of
all the independent elements of the xi to y is given by the sum of
all the nontrivial components. Thus

Y = y1 + y2 + y3 + ¯ = ��1l11 + �2l12 + ¯ �x1

+ ��1l21 + �2l22 + ¯ �x2 + ¯ �8�

The �s are the measure on a variance scale of the information
content of the components. A detailed explanation of the method-
ology is given by McCuen and Snyder �1986�. In the present
study, the eigenvalue-eigenvector analysis was performed using
SPSS software. The PCA from SPSS gives the factors as the
component matrix and eigenvectors are calculated from the
relationship

eigenvector =
factor

�
�9�

Table 1. Details of Climate Stations

Station State
Latitude

�N�
L

Jodhpur Rajasthan 26° 18�
Hyderabad Andhra Pradesh 17° 32�
Bangalore Karnataka 13° 00�
Pattambi Kerala 10° 48�
where �=eigenvalue for the particular factor.
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Partial Least-Squares Regression

Partial least-squares �PLS� regression is based on linear transition
from a large number of original descriptors to a new variable
space based on a small number of orthogonal factors �latent
variables�. In other words, factors are mutually independent �or-
thogonal� linear combinations of original descriptors. Unlike in
the case of PCR, latent variables are chosen in such a way as to
provide maximum correlation with dependent variable, thus en-
suring that the PLS model contains the smallest necessary number
of factors. For the sake of brevity, only a conceptual description
of the PLS method is given herein and the reader may refer to
Abdi �2003� for a complete description of the mathematical
theory underlying the approach.

Broadly, PLS works by extracting one set of latent variables
for the set of manifest independent variables and another set of
latent variables is extracted simultaneously for the set of manifest
response �dependent� variables. The extraction process is based
on decomposition of a cross-product matrix involving both the
independent and response variables. Once all the latent variables
have been extracted, the exact number of variables that gives the
best prediction of the response variable has to be determined. This
is done by a strict test of the predictive significance of each PLS
component, and the optimum number of components is identified.
Once the optimum number of components is identified, the PLS
regression coefficients for this number of components is ex-
tracted. An analysis of these coefficients may show that all the
variables are not significant. As a next step, the variables that are
found to contribute significantly to the prediction of the response
variable �i.e., those variables which have a regression coefficient
�0.5� are identified, and the entire process is repeated with only
these variables. This gives us a new set of regression coefficients
for the marked variables that are finally used to express the re-
gression equation by the PLS regression method.

In the present study, the PLS analysis was carried out using a
30-day trial version of the commercial software Unscrambler de-
veloped by CAMO �http://www.camo.com/�.

Methodology

Climate Data

Table 1 lists details of the climate stations considered in the
analysis. These stations are drawn from a network of over 550
surface observatories operated and maintained by the India
Meteorological Department �IMD�, Government of India. The
stations were selected to represent the major climate types preva-
lent in India �Subrahmanyam 1983�: arid �Jodhpur�, semiarid
�Hyderabad�, subhumid �Bangalore� and humid �Pattambi�.

All stations are equipped with standard ground-based instru-
ments; class A pan evaporimeter, alcohol and wet-bulb ther-

de Altitude
�m a.m.s.l� Climate Data period

� 224.00 Arid 1984–1987

� 545.00 Semiarid 1988–1990

� 899.00 Subhumid 1982–1985

� 253.60 Humid 1985–1988
ongitu
�E�

73° 01

78° 16

77° 37

76° 12
mometers, sunshine recorder, cup anemometer, and mercury
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thermometers. Readings are taken twice a day at 08.30 h and
17.30 h Indian Standard Time. Records are transmitted from the
stations to the IMD Data Centre at Pune where data archives are
maintained. Data is scrutinized and subjected to quality checks
prior to supply to users.

Historical data were procured from IMD for the periods shown
against each station in Table 1. Unfortunately, good quality data
were unavailable for a common period for all the stations. For
each station, the data set used in this study comprised daily values
of maximum air temperature �Tmax�, minimum air temperature
�Tmin�, maximum relative humidity �RHmax�, minimum relative
humidity �RHmin�, actual hours of sunshine �n�, 24-h wind speed
�uz� at 3 m height and pan evaporation depth �epan�. Individual
data records were subjected to further screening, and integrity
checks were performed on the climatic variables as per proce-
dures described in Allen et al. �1998� �results not presented here
for brevity�. After discarding obvious outliers and accounting for
missing records using techniques suggested by Allen et al. �1998�,
the number of days �Nd� for which complete records were
available for each station is: Jodhpur 1453, Hyderabad 1044,
Bangalore 1368, and Pattambi 1275. Two-thirds of this data set,
i.e., Jodhpur 969, Hyderabad 696, Bangalore 912, and Pattambi
850 was used in the development �calibration� of the regression
models, and the remaining data set was set apart for validation of

Table 2. Matrix of Intervariable Correlation Coefficients

Station Tmax Tmin

Jodhpur Tmax 1.000 0.827

�Nd=969� Tmin 1.000

RHmax

RHmin

u2

n /N

epan

Hyderabad Tmax 1.000 0.604

�Nd=696� Tmin 1.000

RHmax

RHmin

u2

n /N

epan

Bangalore Tmax 1.000 0.533

�Nd=912� Tmin 1.000

RHmax

RHmin

u2

n /N

epan

Pattambi Tmax 1.000 0.182

�Nd=850� Tmin 1.000

RHmax

RHmin

u2

n /N

epan
the developed models.
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Application

In order to meet the objectives of this study, the MLR, PCR, and
PLS techniques were used separately to develop regression mod-
els relating daily pan evaporation �epan� to various climatic vari-
ables. Separate regression models were fitted to historical data
records of climatic variables at the four lysimetric locations
�Jodhpur, Hyderabad, Bangalore, and Pattambi� of interest to this
research. In all cases �three regression methods applied to climate
datasets of four stations�, recorded daily pan evaporation �epan�
values were considered to be the response �dependent� variable
and corresponding daily averages of Tmax, Tmin, RHmax, RHmin, u2,
and n /N were considered to be the predictor �independent� vari-
ables. In addition, all regression models were developed using
67% �Jodhpur 969, Hyderabad 696, Bangalore 912, and Pattambi
850� of available daily records �calibration phase� and subse-
quently tested using the remaining 33% �Jodhpur 484, Hyderabad
348, Bangalore 456, and Pattambi 425� of records �validation
phase�. Performances of models developed in the validation phase
were evaluated by computing standard error of estimate �SEE�,
coefficient of determination �R2�, and standard deviations of esti-
mates ���, statistics considering predicted and observed values of
epan. The best model was one with the smallest values of SEE and

2

Variables

RHmin u2 n /N epan

−0.077 0.268 −0.088 0.776

0.367 0.505 −0.413 0.679

0.843 0.350 −0.523 −0.103

1.000 0.332 −0.648 −0.189

1.000 −0.388 0.597

1.000 −0.007

1.000

−0.567 0.277 0.213 0.906

0.240 0.530 −0.467 0.473

0.608 −0.191 −0.234 −0.810

1.000 0.177 −0.754 −0.627

1.000 −0.389 0.414

1.000 0.304

1.000

−0.607 −0.250 0.435 0.710

0.108 0.143 −0.226 0.431

0.538 0.216 −0.370 −0.368

1.000 0.314 −0.617 −0.444

1.000 −0.442 0.071

1.000 0.246

1.000

−0.727 0.231 0.500 0.652

0.235 0.115 −0.231 −0.021

0.510 −0.390 −0.353 −0.409

1.000 −0.299 −0.633 −0.672

1.000 0.313 0.390

1.000 0.597

1.000
RHmax

−0.032

0.350

1.000

−0.786

−0.327

1.000

−0.429

0.021

1.000

−0.328

0.203

1.000
�, and the highest value of R .
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Multiple linear regression equations of the form specified by
Eq. �1� were developed using the forward stepwise regression
module available in SPSS software. For the development of mod-
els based on PCR, eigenvalue-eigenvector analysis was carried
out using SPSS. The rotated component matrix obtained from
SPSS was subsequently exported to Microsoft Excel spreadsheet
software, in which the components are added one by one to obtain
the optimum number of components. In a subsequent step, regres-
sion coefficients were computed.

PLS regression modeling was carried out using Unscrambler
software program. The data set for the independent and dependent
variables for each station was fed into Unscrambler. The optimum
number of components is identified by the software, and for this
number of components, the regression coefficients are extracted.
The variables with regression coefficients greater than 0.5 were
marked, and the PLS regression analysis was repeated with only
the marked variables. The final PLS regression coefficients were
obtained from the output.

Results and Discussions

Factor Analysis

Table 2 shows the matrix of correlation coefficients between the
variables considered in the analysis for all four stations. It is
interesting to note from these results the high degree of correla-
tion between a few of the predictor variables and the response
variable. While this is a desirable feature from the viewpoint of
developing regression models using the least-squares approach,
the existence of equally high degrees of correlation between the
predictor variables themselves highlights the complexity of the
problem. For instance, at the arid Jodhpur site, a significantly high
correlation of 0.776 exists between Tmax and epan, but an even
higher degree of correlation �0.827� exists between Tmax and Tmin.
Similarly, high correlation is observed between RHmax; RHmin and
RHmin: n /N. At the Hyderabad site too, Tmax has the highest cor-
relation of 0.906 with epan, but this predictor variable has corre-
lation coefficients of −0.786 with RHmax and 0.604 with Tmin.
A similar pattern is observed at the subhumid site Bangalore
with correlation coefficients of epan: Tmax=0.710, Tmax:
RHmin=−0.607, Tmax: Tmin=0.533. With regard to the humid loca-
tion Pattambi, from among the predictor variables, the highest
correlation with epan is exhibited by RHmin �−0.671�, but correla-
tions of RHmin: Tmax=−0.727 and RHmin: n /N=−0.633 may be
observed. Due to the existence of such strong degrees of multi-
collinearity, the relative importance of the predictor variables can-
not be understood clearly from the correlation matrices alone.
Therefore, the datasets were subjected to PCA and factor analysis
�FA� �McCuen and Snyder 1986�, and factors that are a linear
combination of the meteorological variables were extracted. The
amount of variance explained by each component is shown in
Table 3.

At all stations, it can be seen that the first four components
�out of maximum possible seven� explain more than 85% of the
total variability. These factors were then rotated using a compo-
nent transformation matrix into factors that are orthogonal,
thereby ensuring that the multicollinearity effect was eliminated.
The Varimax method of rotation was implemented in stages. From
these results, those solutions that provided the best interpretation
of the relative importance of the predictor variables on the re-
sponse variable for each dataset are presented in Table 4.
At the arid Jodhpur site, four components were found to ex-
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plain about 96% of the variance. The rotated component matrix
�Table 4� shows that all the variables are loaded heavily on the
four components. However, the first factor, which has the highest
loading for epan �Table 4�, shows that the temperature related vari-
ables are the most important. The second important factor with
the next highest loading for epan is factor 3, which indicates a
higher loading for u2. The results are found to match the findings
of Nandagiri and Kovoor �2006�, where a similar analysis was
done with the computed values of FAO-56 Penman-Monteith ET0

�Allen et al. 1998� as the dependent variable.
At the semiarid site Hyderabad, the two-factor solution ex-

plains about 83% of the variance �Table 3�. The first factor with
highest loading for epan is found to exhibit high loadings for Tmax,
RHmax, and RHmin �Table 4�. The next component also gives rela-
tively high loading for the remaining three variables, Tmin, u2, and
n /N.

At the subhumid Bangalore site, the three-factor solution ex-
plains about 81% of the variance �Table 3�. The second factor
with highest loading for epan has temperature related variables as
the highest loading variables �Table 4�. The next factor with high-
est loading for epan has RHmax and RHmin as the variables with
higher loadings on this factor, and the third factor has u2 as the
highest loading variable. However, it should be noted that Tmax

and RHmin have a correlation of −0.607 and RHmax and RHmin

Table 3. Total Variance Explained by Components Extracted from Factor
Analysis

Station Component

Initial eigenvalues

Total
% of

variance
Cumulative

%

Jodhpur 1 3.227 46.100 46.100

2 2.285 32.649 78.749

3 0.708 10.110 88.859

4 0.495 7.066 95.925

5 0.151 2.160 98.085

6 0.078 1.111 99.196

7 0.056 0.804 100.000

Hyderabad 1 3.543 50.619 50.619

2 2.300 32.862 83.481

3 0.570 8.146 91.628

4 0.342 4.887 96.515

5 0.146 2.088 98.603

6 0.058 0.835 99.438

7 0.039 0.562 100.000

Bangalore 1 3.088 44.113 44.113

2 1.736 24.795 68.908

3 0.835 11.931 80.839

4 0.593 8.477 89.315

5 0.332 4.747 94.062

6 0.305 4.356 98.418

7 0.111 1.582 100.000

Pattambi 1 3.417 48.809 48.809

2 1.217 17.383 66.193

3 0.923 13.182 79.375

4 0.599 8.557 87.932

5 0.361 5.153 93.086

6 0.328 4.680 97.766

7 0.156 2.234 100.000
have a correlation of 0.538, which is significant.
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At the humid Pattambi site, even though the three-factor solu-
tion can provide an interpretation of the relative importance of
variables, the three factors together explain only 79% of the vari-
ance �Table 3�. Therefore, the results for this site were analyzed
using the four-factor solution, which explains a total variance of
88%. The first factor, which has the highest loading for epan, has
RHmin, Tmax, and n /N as the heavily loaded variables �Table 4�.
Except Tmin, the other variables RHmax and u2 are also found to
give relatively high loadings on the first factor.

Stepwise Regression Analysis

Results of factor analysis clearly showed that not all predictor
variables are significant at all stations. This finding justified the
need to use a stepwise procedure in the development of multiple
linear regression models between the response variable and the
predictor variables. Application of the stepwise regression proce-
dure in SPSS software program yielded the results summarized in
Table 5. Shown therein are the regression coefficients associated
with the predictor variables that were included in the final forms
of the regression models. Additionally shown in Table 5 are the
R2 and SEE �mm/d� values obtained during the calibration phase.
It can be seen that the number of predictor variables included in
the final multiple linear regression models for epan varies from 3

Table 4. Rotated Component Matrix for the Four Stations

Station Variables 1

Jodhpur Tmax 0.9800

�Nd=969� Tmin 0.8770

RHmax 0.0272

RHmin −0.0121

u2 0.2220

n /N −0.0955

epan 0.7590

Hyderabad Tmax 0.9310

�Nd=696� Tmin 0.3780

RHmax −0.8830

RHmin −0.7590

u2 0.2510

n /N 0.4300

epan 0.9590

Bangalore Tmax −0.5190

�Nd=912� Tmin 0.2310

RHmax 0.7830

RHmin 0.8440

u2 0.1180

n /N −0.6620

epan −0.5420

Pattambi Tmax 0.7820

�Nd=850� Tmin −0.1380

RHmax −0.6450

RHmin −0.8870

u2 0.5190

n /N 0.7770

epan 0.843
for Bangalore to the maximum of 6 for Hyderabad.

JOURNAL OF IRRIGATION AND DRAI

 J. Irrig. Drain Eng., 2007
At the arid Jodhpur site, Tmax, which had the highest correla-
tion with epan, was the first variable to be entered. In the next step,
u2, which has the highest partial correlation, was entered. In a
similar manner, variables RHmin, Tmin, and n /N gained successive
entry into the model. RHmax, which was the only remaining vari-
able, was not entered since its partial correlation was very low. In
addition, since this variable had a significant value of 0.473,
which was greater than the cutoff of 0.05, it was not considered to
be statistically significant. A high value of R2 and low value of
SEE are indicative of goodness of fit in the calibration phase.

At the semiarid Hyderabad site, stepwise regression resulted in
all the predictor variables finding a place in the final model. The
fact that in the factor analysis all the variables were heavily
loaded on the two factors �Table 4�, provides an explanation to
this result. Again, an R2 value of 0.922 and SEE of 0.857 mm/d
indicate an extremely good model fit.

In contrast to the Hyderabad site, at the subhumid Bangalore
site, only three variables Tmax, u2, and RHmax were entered into
the final stepwise regression equation. Even though the R2 value
of the final model is only 0.58, entry of the remaining variables
did not improve goodness of fit since the partial correlations of
the remaining variables were Tmin=0.009, RHmin=−0.056, and
n /N=0.016, and their significant values were 0.782, 0.089, and

otated component matrix

Components

2 3 4

−0.0789 0.0581 −0.0153

0.3100 0.2090 −0.2180

0.9490 0.1260 −0.1370

0.8910 0.0689 −0.3630

0.2290 0.9220 −0.1750

−0.3720 −0.1420 0.9060

−0.2110 0.5670 0.0887

0.2180

0.8330

−0.0536

0.5850

0.7390

−0.8070

0.1650

0.7630 −0.2590

0.9230 0.0830

−0.0765 0.0116

−0.1150 0.2600

0.0233 0.9430

−0.0566 −0.5230

0.6870 0.1770

0.3360 0.3740 −0.1780

0.9540 0.0151 −0.1000

0.2140 0.4560 0.5260

0.1290 −0.1940 0.1100

0.2850 −0.7110 0.3060

−0.1800 0.1370 0.4040

0.1340 0.1120 0.1060
R

0.621, respectively.
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At the humid site �Pattambi�, four variables RHmin, Tmax, n /N,
and u2 were entered sequentially resulting in a final model with
R2=0.576 and SEE=1.39 mm/d. The other two variables were
not entered due to poor partial correlation �Tmin=0.02
and RHmax=−0.061� with significant values of 0.554 and 0.076,
respectively.

Principal Components Regression Analysis

Components regression analysis was performed on the same cli-
mate data sets used in the multiple linear stepwise regression
analysis. The coefficients of the new variates in the linear model
for each of the components extracted and the corresponding cor-
relation coefficients were then computed. Since the full relation-
ship of all the independent elements of Xi to Y is given by the sum
of all the nontrivial components, these components are added one
by one, keeping in mind the total variance explained at each step
and the nature of the relationship exhibited by the regression co-
efficient of each variable developed as compared to the Y corre-
lations. Table 6 shows the final regression coefficients developed
for the original variables for each of the four stations.

At the arid Jodhpur site, the sum of four components is taken.
This gives a total eigenvalue ��� of 6.7 out of a possible maxi-
mum of 7 and the regression coefficients for Tmax, Tmin, and u2 are
positive with values equal to 0.1664, 0.1196, and 0.0012, respec-

Table 5. Models Derived Using Stepwise Multiple Least-Squares
Regression

Station Variables
Regression
coefficients R2

SEE
�mm/d�

Jodhpur Constant −7.7110

�Nd=969� Tmax 0.2920

Tmin 0.1420

RHmax 0.866 1.473

RHmin −0.0773

u2 0.0213

n /N 1.8600

Hyderabad Constant −4.5520

�Nd=696� Tmax 0.3440

Tmin 0.0623

RHmax −0.0399 0.922 0.857

RHmin −0.0268

u2 0.0080

n /N 2.1100

Bangalore Constant −5.9620

�Nd=912� Tmax 0.4510

Tmin

RHmax −0.0202 0.580 1.256

RHmin

u2 0.0044

n /N

Pattambi Constant −4.5340

�Nd=850� Tmax 0.2580

Tmin

RHmax 0.576 1.390

RHmin −0.0344

u2 0.0107

n /N 2.1590
tively. However, the coefficients for RHmax, RHmin, and n /N are
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negative with values equal to −0.0130, −0.0124, and −1.0250,
respectively �Table 6�, which is in agreement with the Y correla-
tions shown in Table 2. A relatively higher regression coefficient
associated with Tmax indicates the importance of this variable,
whereas the lower value �negative� of n /N is indicative of the
smaller significance of the radiation term in the arid Jodhpur site.

At the semiarid Hyderabad site, the sum of just two compo-
nents explains a variance of about 84%, and hence the regression
coefficients are taken from the sum of the first and second com-
ponents. Only RHmax and RHmin have negative coefficients, the
same variables that exhibit negative correlations with the re-
sponse variable �Table 2�. Here again, n /N has the highest regres-
sion coefficient �0.6047�, followed by Tmax, with a value of
0.1388 �Table 6�, indicative of their importance in determining
the magnitude of the response variable.

At the subhumid Bangalore site, the number of components
increases to three and the total variance explained by these three
components is 81%. However, when the Y correlation is consid-
ered, only RHmax and RHmin have negative correlations, whereas
u2 also exhibits a negative regression coefficient. However, the
fact that the coefficient for this variable is only −0.00041, permits
its acceptance. On the other hand, even though the sum of
two components yields coefficients consistent with the nature of
the Y correlation, the fact that these two factors explain only 69%
of the variance does not permit acceptance of this combination. At
this site, the highest regression coefficient was associated with

Table 6. Models Derived Using Principal Components Regression

Station
No. of

components Variables
Regression
coefficients

Jodhpur Constant 2.1282

�Nd=969� Tmax 0.1664

Tmin 0.1196

4 RHmax −0.0130

RHmin −0.0124

u2 0.0012

n /N −1.0250

Hyderabad Constant 3.4253

�Nd=696� Tmax 0.1388

Tmin 0.0694

2 RHmax −0.0330

RHmin −0.0201

u2 0.0020

n /N 0.6047

Bangalore Constant 2.7225

�Nd=912� Tmax 0.1159

Tmin 0.1132

3 RHmax −0.0124

RHmin −0.0113

u2 −0.0004

n /N 0.3509

Pattambi Constant 3.0114

�Nd=850� Tmax 0.1113

Tmin −0.0059

3 RHmax −0.0258

RHmin −0.0215

u2 0.0064

n /N 1.2327
n /N �0.3509�, whereas the coefficients for the temperature vari-
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ables Tmax and Tmin are almost the same �0.1159 and 0.1132�
�Table 6�. From this result, it may be inferred that epan estimates
are considerably more influenced by the actual number of sun-
shine hours, and to a lesser degree by air temperature in the sub-
humid climate.

At the humid location �Pattambi�, it is again the sum of three
components that was found to give the best combination of re-
gression coefficients. While the three components together ex-
plain about 80% of the total variance, Tmin, RHmax, and RHmin

have negative coefficients, and these variables are the ones that
exhibit negative Y correlation �Table 2�. At this site, it is found
that n /N has the highest regression coefficient �Table 6�, indicat-
ing the importance of this variable in predicting epan.

Table 7. Models Derived Using Partial Least-Squares Regression

Station Variables
Regression
coefficients

Jodhpur Constant −4.2219

�Nd=969� Tmax 0.2651

Tmin 0.2832

RHmax

RHmin −0.0729

u2

n /N

Hyderabad Constant −14.8696

�Nd=696� Tmax 0.7163

Tmin −0.0754

RHmax

RHmin

u2

n /N 0.0465

Bangalore Constant −6.5322

�Nd=912� Tmax 0.4047

Tmin 0.0528

RHmax

RHmin

u2

n /N

Pattambi Constant −10.3158

�Nd=850� Tmax 0.3764

Tmin

RHmax

RHmin

u2

n /N 3.4038

Table 8. Performance of Developed Regression Models during Validatio

Station

Stepwise MLR

SEE
�mm/d� R2

�
�mm/d� �

Jodhpur �Nd=484� 1.3708 0.8608 3.4306 2

Hyderabad �Nd=348� 0.7941 0.8988 2.4748 1

Bangalore �Nd=456� 1.2067 0.3816 1.4819 1

Pattambi �Nd=425� 1.4320 0.4515 1.3499 1

Mean 1.2009 0.6482 2.1843 1
JOURNAL OF IRRIGATION AND DRAI

 J. Irrig. Drain Eng., 2007
Partial Least-Squares Regression

Partial least-squares regression was also implemented on the
same climate data sets using the Unscrambler software program.
The regression coefficients obtained from PLS regression are
given in Table 7.

The optimum number of components at the arid Jodhpur site
was found to be three. These three components explain about
86% of the variance and root mean square error �RMSE� was
found to be 1.5096 mm/d for the calibration and 1.5179 mm/d in
the cross-validation. Hence, in the first step of PLS regression, the
coefficients computed with the three components were extracted.
Tmax, Tmin, and RHmin were the variables that were found to have
coefficients greater than 0.05. The coefficients obtained by recal-
culation with these variables are shown in Table 7.

At the semiarid site Hyderabad, the optimum number of com-
ponents was identified as six, and this explained about 92% of the
variance. The RMSE values for calibration and cross-validation
were 0.8565 mm/d and 0.8690 mm/d, respectively. Recalcula-
tion was done with Tmax, Tmin, and n /N, which gave coefficients
greater than 0.05 with the six components.

At the subhumid Bangalore site, only the temperature vari-
ables were found to contribute significantly when the regression
coefficients with optimum number of five components were ex-
tracted. These five components explained about 58% of the vari-
ance and RMSE values were found to be 1.2492 mm/d and
1.2538 mm/d for calibration and validation, respectively.

At the humid Pattambi site, Tmax and n /N were the only two
variables that were included in the second step of calculation. The
optimum number of components was identified as six, which ex-
plained about 57% of the variance.

Validation of Regression Models

The stepwise regression equations, the component regression
equations, and the partial least-squares regression equations were
validated using one-third of the total data set that was set aside for
this purpose. The performances of the regression equations devel-
oped were compared by the following statistics: Standard error of
estimate �SEE� statistic, standard deviations of the estimates ���,
and coefficient of determination �R2�. These statistics for the vali-
dation phase of each of the approaches are given in Table 8.

The scatter plots between the measured epan values and those
computed by final models derived from the stepwise regression
method, the component regression method, and the partial least-
squares regression methods are shown in Figs. 1–3.

From these results, several interesting observations with re-
gard to the performances of individual methods in different
climates and also with regard to relative prediction accuracies
between methods, can be made.

PCR PLS

R2
�

�mm/d�
SEE

�mm/d� R2
�

�mm/d�

0.6852 1.7493 2.2844 0.6188 3.2297

0.8799 1.3365 1.0564 0.8182 2.3599

0.3720 0.7014 1.1108 0.3656 1.2673

0.4645 0.7897 1.5842 0.3612 1.2710

0.6004 1.1442 1.5090 0.5410 2.0320
n

SEE
mm/d�

.4207

.3029

.0542

.4637

.5604
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The multiple linear regression models for epan developed
through the stepwise approach appear to yield the best results at
the semiarid Hyderabad site considering the values of SEE and R2

�0.7941 and 0.8988 mm/d, respectively�. In terms of SEE alone,
the performance of the MLR models are more or less similar at
the other three sites �Table 8�. However, R2 values are consider-
ably lower at the subhumid Bangalore and humid Pattambi sites,

Fig. 1. Comparison of observed daily pan ev

Fig. 2. Comparison of observed daily pan ev
452 / JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE
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and larger scatter can be observed in Fig. 1 for these locations.
However, � values are significantly lower at these sites. Overall,
the performances of the MLR models across the sites in the vali-
dation phase are more or less similar to their performances in the
calibration phase �Table 5�.

Validation results for regression models developed using
the PCR approach are somewhat similar to the MLR models

ion with those computed using MLR models

ion with those computed using PCR models
aporat
aporat
/ SEPTEMBER/OCTOBER 2007
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�Table 8�. Considering the R2 statistic, the best predictions were
obtained at the semiarid �Hyderabad site�, predictions were rea-
sonably good at the Jodhpur �arid� site, and model performances
at the other two sites were poor. SEE was highest at the arid site
and moderate at the remaining three sites. A similar pattern was
evident with regard to �.

Interestingly, the climate-dependent predictive capabilities of
the regression models developed using PLS followed the same
pattern as the other two approaches �Table 8�. Predictions seemed
best at the semiarid location both in terms of R2 and SEE values;
whereas at the arid site, R2 was reasonably good but SEE was the
highest among all PLS models developed.

In regard to the relative comparison between the performances
of MLR, PCR, and PLS regression models, overall results shown
in Table 8 do not indicate substantial differences in predictive
capabilities. All three approaches appear to provide the best pre-
dictions at the semiarid Hyderabad site, and moderately good pre-
dictions at the arid site. The performances of all three methods are
poor at the subhumid �Bangalore� and humid �Pattambi� sites.

Considering performances across all stations, mean statistics
shown in Table 8 indicate that the MLR method yielded the high-
est R2 and lowest SEE values in comparison to the other two
methods. However, � was highest for this method, indicating
larger variabilities in estimates of the response variable. The PCR
and PLS methods yielded almost similar values of SEE, but the
former method clearly appeared to outperform the latter in terms
of both R2 and � values.

However, even though predictive capabilities appear more
or less similar, it is very important to note the differences in
input data �predictor variables� required by the final models de-
rived from the three approaches. For instance, the number of pre-
dictor variables included in the final regression models derived by
the stepwise MLR approach varies from as high as six at the
Hyderabad site to as small as three at the subhumid Bangalore site

Fig. 3. Comparison of observed daily pan evapora
�Table 5�. In contrast, it can be seen from Table 6 that the PCR
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models for all four sites involve all the predictor variables indi-
cating the highly data-intensive nature of these models. The PLS
models appear to be the most parsimonious in terms of input data
requirements, since the number of predictor variables involved in
the final models is three for the arid and semiarid sites, and only
two for the other two sites �Table 7�.

Therefore, it appears that among all the multivariate regression
approaches used in this study to develop models for predicting
pan evaporation from climatic variables, the PLS approach pro-
vides the most optimal models in terms of the number of predictor
variables needed to produce predictions that are comparable to
those obtained from the MLR and PCR approaches. While the
MLR models are not as parsimonious as the PLS models, they are
less data-intensive than the PCR models. However, the power of
the PCR models may lie in their capability as explanatory tools
rather than as predictive tools.

Conclusions

In spite of certain inherent limitations when applied to datasets
comprising significant degree of correlation between the predictor
variables �multicollinearity�, the multiple least-squares regression
�MLR� approach has found wide applications in the development
of empirical models for estimation of evaporation/evapotrans-
piration rates from climatic observations and also in calculating
several other climate-dependent parameters. In order to circum-
vent problems associated with multicollinearity, two other multi-
variate regression techniques: principal components regression
�PCR� and partial least squares �PLS� regression have been de-
veloped and are widely used in social sciences and chemistry.
However, few attempts have been made to apply them in evapo-
transpiration studies and compare their predictive capabilities

ith those computed using PLS regression models
tion w
relative to the MLR approach. Therefore, in the present study, an
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attempt was made to explore the applicability of the MLR, PCR,
and PLS approaches in the development of regression models for
predicting daily pan evaporation depths �epan� from climate vari-
ables �Tmax, Tmin, RHmax, RHmin, u2, and n /N�. The objective was
to develop regression models by the three approaches for datasets
obtained from four distinct climate regimes in India and to evalu-
ate the relative prediction accuracies of the developed models.

Separate regression models were developed using stepwise
MLR, PCR, and PLS approaches using a part of the available
historical daily climate records at the four Indian sites represent-
ing the major climatic regimes: Jodhpur arid, Hyderabad semi-
arid, Bangalore sub-humid, and Pattambi humid. These models
were subsequently validated for their prediction accuracies �quan-
tified in terms of SEE, R2, and � statistics between estimated and
observed epan values� using the remaining climate data that was
not used in the calibration exercise. Results indicated that the
performances of the regression model developed using a particu-
lar approach varied from one climate to another. However, the
same pattern was exhibited by all the approaches. That is, regres-
sion models developed from MLR, PCR, and PLS approaches
were most accurate at the semiarid Hyderabad site �SEE between
0.7941–1.3029 mm/d�, reasonably good at the arid Jodhpur site
�SEE between 1.3708–2.4207 mm/d�, and poor at the subhumid
Bangalore site �SEE between 1.0542–1.2067 mm/d�, and humid
Pattambi site �SEE between 1.4320–1.5842 mm/d�. At a given
site, more or less similar prediction accuracies were obtained by
all three approaches, and it was difficult to identify the best ap-
proach based on performance statistics. However, the final forms
of the regression models developed by the three approaches
differed substantially from one another. In all cases, the models
derived using PLS contained the smallest number of predictor
variables, between two to three out of a possible maximum of six
predictor variables. The MLR approach yielded models with three
to six predictor variables and PCR models included all six pre-
dictor variables. This implies that the PLS regression models are
the most parsimonious in terms of input data required for estimat-
ing epan from climate variables, and yet yield predictions that are
almost as accurate as the more data-intensive MLR and PCR
models. While accepting that our conclusions are specific to the
datasets analyzed, the findings of this study highlight the need for
more extensive testing of the advantages offered by the PCR
and PLS regression approaches, relative to the popular MLR
approach.

Notation

The following symbols are used in this paper:
epan � pan evaporation �mm/d�;
ET0 � reference crop ET �mm/d�;

N � maximum possible duration of sunshine �hours�;
Nd � number of data points;

n � actual duration of sunshine �hours�;
PCA � principal component analysis;
PCR � principal components regression;
PLS � partial least-squares regression;

PRCC � partial rank correlation coefficient;
R2 � coefficient of determination of the linear fit;

RHmax � maximum relative humidity �%�;
RHmin � minimum relative humidity �%�;

Tmax � maximum air temperatures �°C�;
T � minimum air temperatures �°C�;
min
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u2 � 24 h wind speed �m/s� at 2 m height;
�k � set of orthogonal factors used in PCR;
� � eigenvalue for the particular factor; and
� � standard deviation.
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