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Abstract— Separation of the vascular tree into arteries and
veins is a fundamental prerequisite in the automatic diagnosis
of retinal biomarkers associated with systemic and neurode-
generative diseases. In this paper, we present a novel graph
search metaheuristic approach for automatic separation of arter-
ies/veins (A/V) from color fundus images. Our method exploits
local information to disentangle the complex vascular tree into
multiple subtrees, and global information to label these vessel
subtrees into arteries and veins. Given a binary vessel map,
a graph representation of the vascular network is constructed
representing the topological and spatial connectivity of the vascu-
lar structures. Based on the anatomical uniqueness at vessel cross-
ing and branching points, the vascular tree is split into multiple
subtrees containing arteries and veins. Finally, the identified ves-
sel subtrees are labeled with A/V based on a set of hand-crafted
features trained with random forest classifier. The proposed
method has been tested on four different publicly available retinal
datasets with an average accuracy of 94.7%, 93.2%, 96.8%, and
90.2% across AV-DRIVE, CT-DRIVE, INSPIRE-AVR, and WIDE
datasets, respectively. These results demonstrate the superiority
of our proposed approach in outperforming the state-of-the-art
methods for A/V separation.

Index Terms— Retinal image, artery/vein classification, graph
search, vessel keypoints.

I. INTRODUCTION

RETINAL microcirculation offers a unique non-invasive
way to study the early manifestation of several dis-

eases affecting the human circulatory system. Changes in
retinal vascular geometrical patterns such as width, tortuosity,
branching angle, junction exponents and fractal dimension
have been investigated as candidate biomarkers in vari-
ous ocular, systemic and neurodegenerative diseases [1]–[4].
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Data from long-term population-based studies have demon-
strated a consistent link between the retinal microvascular
changes with incident clinical stroke [5], hypertension [6],
arteriosclerosis [7], dementia [8] and other cerebral small ves-
sel diseases [9]. For instance, the narrowing of arteries and
widening of veins is a significant indicator of the progres-
sion of diabetic retinopathy (DR) [1], hypertension [7], and
various other cardiovascular abnormalities [10]. Specifically,
the arteriolar-to-venular diameter ratio (AVR) is a prognostic
indicator of stroke, cerebral atrophy, cognitive decline and
myocardial infarction [11]. Therefore, an accurate analysis
and quantification of vessel specific morphological changes
may provide an early insight into better understanding the
pathophysiology of the disease conditions.

The retinal fundus photography is an excellent non-invasive
technique most commonly used to analyse and quantify
the vascular abnormalities in large-scale clinical settings,
due to its speed and affordability [12]. Manual separation
of artery/vein (A/V) from color fundus image is extremely
time-consuming and requires an enormous amount of painstak-
ing manual process. Hence, developing an automated tool for
separation of A/V is of paramount importance in large-scale
retinal disease screening programs.

Many methods have been introduced in the past for
retinal A/V separation, with methods focused on either
graph-based [13]–[18] or feature based techniques [19]–[28].
Among these methods, graph-based techniques rely on estab-
lishing a graph structure by uniquely representing an entire
vessel tree into multiple subtrees based on utilizing the vessel
connectivity information at crossing and bifurcation points.
These identified vessel subtrees are further separated into
A/V segments based on the pixel-wise classification of vessel
centerlines. On the other hand, the feature-based techniques
solely rely on pixel-level intensity information to classify
vessels into A/V.

Among the feature based methods, the earliest approach
for A/V separation was proposed by Grisan and Ruggeri [19].
They presented a classification technique only in a
well-defined concentric zone around the optic disc region.
A similar approach based on the combination of clustering
and vessel tracing method was also proposed in [20].
Kondermann et al. [21], Niemeijer et al. [22] and
Mirsharif et al. [23] explored a wide set of pixel-wise
features along with different set of classifiers to obtain an
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optimal A/V labeling. Zamperini et al. [24] proposed effective
feature set based on color, spatial location and vessel width,
across different region-of-interest (ROI) measured from optic
disc region. More recently, Welikala et al. [25] presented
a method based on a deep neural network approach. Their
approach was validated on a large population-based cohort
study dataset known as UK Biobank [29]. Xu et al. [26]
proposed first and second order textural features, along with
the intensity level features to obtain a discriminative feature
set for A/V separation. A novel feature extraction technique
based on luminosity and reflection properties of vascular
structures has been explored in Huang et al. [27]. A genetic
search based feature selection technique for high dimensional
data has been recently proposed in [28].

The significant limitations of the feature based approaches
are two folds. First, due to the input image acquisition process,
retinal images exhibit varying contrast and luminosity, often
resulting in difficulty in distinguishing A/V segments of thin
and peripheral vessels. Second, the absence of vessel con-
nectivity information leads to difficulty in precisely tracking
A/V segments of branching and crossover points. To address
these issues, graph-based approaches have gained increasing
interest by incorporating the structural characteristics of the
retinal vascular tree. These methods exploit the distinct nature
of the underlying retinal vascular connectivity pattern, that
the arteries and veins will cross each other, but never with
themselves [14]–[16].

Based on this assumption, several graph-theoretic
approaches have been explored in the past to improve
the A/V classification performance. The earliest method
was proposed by Rothaus et al. based on a semi-automatic
technique by solving a constrained graph search optimization
problem [13]. Joshi et al. [14] presented a technique by
dividing the entire vessel tree into individual subtrees,
by finding an optimal path using the Dijkstra algorithm.
These individual subtrees are further labeled as A/V based
on a set of orientation, width, and intensity features.
Dashtbozorg et al. [15] proposed a similar strategy by first
subdividing the entire vascular tree into multiple sub-graphs
based on the type of intersection points, followed by the
assignment of A/V label to each vessel sub-graphs based on a
set of intensity features. Estrada et al. [16] presented an A/V
classification method for both fundus as well as scanning laser
ophthalmoscope (SLO) images. They constructed a global
likelihood model based on carefully designed domain-specific
features to estimate the underlying vascular topology.
A novel graph-based metaheuristic approach exploiting the
vascular connectivity was proposed by Hu et al. [17]. Finally,
Pellegrini et al. [18] proposed a novel graph cut based global
optimization technique for optimal A/V separation in an
ultra-wide field of view (UWFoV) SLO images, requiring no
manual intervention.

Despite the considerable improvements in graph-based tech-
niques, retinal A/V separation still suffers some difficulties.
Most existing graph-based approaches mainly rely on geo-
metrical analysis of vessel keypoints to efficiently exploit the
underlying structural characteristics of a vascular network.
In particular, the traditional approaches [14]–[18] utilizes

only the orientation, width and intensity level information to
address the challenging “crossover issue” encountered during
a graph search process. However, one important bottleneck is
that these techniques do not take into account the curvature
characteristics of vascular segments, which is often critical
for successful disentanglement of a highly curved crossover
segment. For example, at a highly curved crossover point,
the angular separation between A/V pairs will be highly
skewed depending on the nature and complexity of crossing
vessel segments. The vessel geometrical properties such as
width, tortuosity, bifurcation/crossover angle are also prone to
variations in the presence of the diseased conditions. Thus,
any geometrical modelling without the inclusion of curvature
information will usually produce a highly suboptimal represen-
tation of the vascular network. Further, an imperfect separation
of crossing vessel pairs leads to an erroneous propagation of
labels throughout the entire graph search path, resulting in
inaccurate A/V separation.

In this paper, we propose a novel graph search metaheuristic
approach for automatic A/V separation from retinal color fun-
dus images. Here, we extend our previously proposed vessel
keypoint detector (VKD) [30] to incorporate the curvature
characteristics of crossing vessel segments, along with the
orientation and width information. This curvature property acts
as a unique feature to VKD to aid in resolving the possible
conflict, in assigning an A/V label of the highly curved
crossover point. Besides, we present a novel graph search
metaheuristic algorithm to generate anatomically meaningful
vessel subtrees by searching the space of possible connectivity
of vascular networks.

Our main contributions can be summarized as follows:

1) We propose an extended vessel keypoint detector which
integrates curvature with the orientation and width infor-
mation to precisely disentangle all crossing vessel pairs
into corresponding A/V segments.

2) We propose a novel depth-first search based graph search
metaheuristic algorithm to accurately identify all A/V
vessel subtrees from a given vascular topology.

3) We extensively validated our method on four challenging
publicly available retinal datasets, including images from
two different imaging modalities - fundus as well as
UWFov-SLO images.

The paper is organized as follows: We first present the
detail of our proposed methodology in Section II. Datasets
and experimental results are described in Section III. Finally,
we discuss our key findings as well as the limitations of the
work in Section IV, followed by conclusions in Section V.

II. METHODS

An overview of the proposed solution for automatic separa-
tion of A/V trees from retinal images is shown in Fig. 1. The
pipeline consists of four main stages: identification of vessel
keypoints, a graph representation of the vascular network,
vessel subtree extraction and subtree A/V labeling. In the
first stage, given a binary vessel map, we first identify the
vessel keypoints using a vessel keypoint descriptor (VKD).
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Fig. 1. An overview of the proposed A/V separation approach.

Fig. 2. Illustration of VKD. Row 1: (a) sample bifurcation; (b) crossover;
(c) non-junction; and (d) a vessel endpoint patch. Row 2: the corresponding
log-polar maps (with x-axis being n). Row 3: the projections of log-polar maps
(Rp(n)). Row 4: thresholding applied to Rp (n); this is the VKD descriptor.

In the second stage, the identified vessel keypoints are con-
sidered as nodes and vessel segments as edges that represents
an undirected graph structure of the vascular network. In the
third stage, we identify the anatomically meaningful vessel
subtrees using a novel graph search metaheuristic approach by
exploiting the structural connectivity of the vascular network.
Finally, in the fourth stage, each vessel subtrees are given a
unique A/V label based on carefully designed hand-crafted
features, which are then trained using a random forest (RF)
classifier.

A. Identification of Vessel Keypoints

We start by identifying vessel keypoints such as bifurca-
tions, crossovers and vessel endpoints from a given binary
vessel tree. A ROI Rp(x, y) is extracted for every vessel
point p in a vessel map. We eliminate the vessel centerline
extraction to preserve the vessel connectivity information and
to avoid errors introduced by thinning operation. A log-polar
transform (LPT) is applied to the ROI to obtain Rp(m, n)
where, m and n are the radial and angular indices respectively.
The LPT preserves information close to a vessel point while,
increasingly compressing the information as one moves away
from the vessel point, in a non-linear fashion. Fig. 2 (first
and second row) shows the ROI for different vessel pat-
terns of interest (branching vessels, crossing vessels, straight

Fig. 3. (a) Original image; (b) binary vessel map; (c) identified vessel
keypoints. (Note: the color red represents bifurcation point, green represents
crossover point and blue represents vessel endpoints).

vessel segment and a vessel endpoint) and the corresponding
log-polar mapped results. It can be observed that the number
of vertical lines depend on the pattern of the vessel segment
and their position depends on the orientation of vessels in
Rp(m, n). Where, m ∈ [Mmin , Mmax ]; and n is the angle
index, which is obtained by sampling the angular variable at
1◦ interval, and hence n ∈ [0◦, 360◦]. A vertical projection
of Rp(m, n) results in a vector Rp(n), as illustrated in Fig. 2
(third row). In order to build robustness to spurious vessels and
varying vessel calibre, projections at a limited set of radii (m)
are considered. The obtained projection Rp(n) provides a
count of the number of pixels in a vessel fragment at a
specific angle n. Since, only the presence or absence of vessel
at a particular angle is of interest, we threshold Rp(n) with
threshold = 1 to obtain the VKD Vp(n).

The VKD for four sample ROI’s are shown in Fig. 2
(fourth row). Each vessel fragment gives rise to a cluster of
responses in Vp(n). Hence, the vessel edges are found by
computing the first order difference of Vp(n) as

V ′
p(n) =

∣
∣
∣Vp(n + 1) − Vp(n)

∣
∣
∣. (1)

The number of vessel branches S at a point p is given as

S(p) = 0.5 ×
∑

n

V ′
p(n). (2)

Finally, we obtain a set of keypoints C = {K |1 ≤ S(p) ≥ 3}.
The detected keypoints appear in the form of clusters close
to junctions, which are then refined to localize the vessel
keypoints. The desired candidate keypoints w are identified
from cluster C by computing the entropy for every keypoint
K in a 3×3 local neighbourhood, followed by non-maximum
suppression within a radius of 12 pixels.

Identifying and classifying true keypoints from given w
is challenging, due to the proximal presence of bifurcation
and crossover points, nearby multiple junction locations, close
parallel and highly curved vessels. To this end, we employ
a combination of four features such as

(

Vw(n), Rw(n)
)

;
basic line detector response (LD) [31]; and histogram of
oriented gradients (HOG) [32], computed at every candidate
keypoints w in a (17 × 17) neighborhood. RF classifier [33]
with 500 trees is trained with these features to identify
the bifurcation (b), crossover (c) and vessel end (e) points.
The detected vessel keypoints for a sample image is shown
in Fig. 3. These keypoints form the input to the A/V separation
module, which is described next.
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Fig. 4. (a) Graph representation of retinal vascular tree; (b) a sample ROI
enlarged for visualization.

B. Graph Representation of Vascular Network

We construct a graph G = (V, E), with V being the node
and E being the edge of a graph. The edge Ei j represents a
vessel segment that connect two nodes (V i ,V j ) in graph G.
There exists three different types of node V in G such as:

1) Bifurcation nodes (Vb) – correspond to vessel bifurcation
points (b) (vessels of same type (A/V) bifurcates into
two branches).

2) Crossover nodes (Vc) – correspond to vessel crossover
points (c) (vessels of two different types (artery-vein)
crossover each other).

3) Vessel end nodes (Ve) – correspond to vessel end
points (e).

The graphical illustration of different types of node are shown
in Fig. 4.

C. Vessel Subtree Extraction

In order to identify anatomically meaningful vessel
trees (A/V), we divide the graph G into multiple subtrees
SG using a novel graph search metaheuristic approach. The
proposed graph search method is based on the two anatomical
uniqueness of retinal vasculature:

• at bifurcation points, only vessels of same type bifurcate
into different branches (i.e., arteries will bifurcate into
arteries and same with veins).

• at crossover points, arteries and veins will cross each
other, but never with themselves.

Based on these assumptions, we propose a two-step solution
for extracting the vessel subtrees from a graph G as follows:
(i) identification of A/V segments at a crossover location; (ii)
depth-first search (DFS) based graph search approach.

1) Identification of A/V Segments at Crossover Location: A
crossover point is a location where an artery crosses a vein,
often leading to four vascular fragments. Out of these four,
the two diagonally opposite vessel pairs belong to the same
class (A/V) as shown in Fig. 5 (first and second column).
In practice, there can be more than four fragments, due to
branching and crossover points occurring very close to each
other as shown in Fig. 5 (third and fourth column). The main
bottleneck for the accurate extraction of vessel subtrees exist
in identifying the appropriate A/V vessel pairs at crossover
location. To this end, we model the curvature characteristics
of all crossing vessel fragments, with the aid of VKD, to tackle
the challenging crossover issue encountered during graph
search.

Fig. 5. (a) Binary vessel map; (b) the corresponding A/V labels (Note: the
color red represents an artery, blue represents a vein and green represents a
crossover point); (c) the corresponding VKD Vp(n) (with x-axis being n);
(d) the corresponding orientation heat-maps; (e) the corresponding curvature
heat-maps. Best viewed in color.

Fig. 6. Identification of corresponding pair of vascular fragments
(Ei and Eip ). (a) A sample patch with a crossover point; (b) correspond-
ing VKD.

Given a crossover point c (see Fig. 6), the VKD(c) is
given as

VKD(c) =
[

u
(

n − n1

)

− u
(

n − (n1 + ε1)
)]

+
[

u
(

n − n2

)

− u
(

n − (n2 + ε2)
)]

+ · · · +
[

u
(

n − nS

)

− u
(

n − (nS + εS)
)]

=
S∑

i=1

[

u
(

n − ni

)

− u
(

n − (ni + εi )
)]

, (3)
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where,

[

u
(

n − ni

)

− u
(

n − (ni + εi )
)]

� Ei – refers

to a specific vessel fragment (Ei ) belonging to either an
artery/vein; ε represents the angular span of a vessel fragment;
n ∈ [0◦, 360◦] - assuming an angular sampling rate of 1◦; and
S is the number of vessel fragments converging at a crossover
point, which is typically ≥ 4. Fig. 5 shows four sample
artery-vein crossings (first row) and their corresponding VKDs
in the third row. The first two columns represent a case of
simple crossovers (S = 4 vessel fragments) and the last two
columns represent a complex crossover case (S > 4 vessel
fragments). The cluster of responses in VKD indicates the
presence of at least one vessel fragment at a specific angle,
within a window of ≥ Mmin . The value of Mmin corresponds
to the diameter of the largest crossing vessel segment.

From a given crossover point c, we make three important
observations:

1) For every vessel fragment Ei , there exists a vessel pair
Eip belonging to the same class (A/V), which is often
separated by n = ±180◦ in the VKD such that

Eip = u
(

n − (ni ± 180◦ ± γ )
)

− u
(

n − (

(ni ± 180◦ ± γ ) + εi
))

, (4)

where, Ei and Eip are vessel fragment pairs belonging to
the same vessel segment (artery/vein), which are sepa-
rated by an angle of 180◦±γ , as illustrated in Fig. 5 (c).
γ is a small factor which accounts for highly curved
crossover vessel segments. In Fig. 5 (first and second
column), (E1 and E3 = E1p) or (E2 and E4 = E2p) are
examples of (Ei and Eip). This is seen from the examples
in Fig. 5, where the labeled fragments that are collinear
are shown in red or blue (third row). This implies that
a pair of vessel fragments (Ei , Eip) which belongs to a
single segment (A/V) are collinear.

2) The angular span (ε) of a vessel fragment which is
measured with respect to c as the origin is correlated to
its thickness. This implies a positive correlation between
the width of a vessel and the corresponding cluster in
VKD as shown in Fig. 5 (c). Hence for convenience,
we denote the angular span (ε) of a vessel fragment as
the vessel width. From Fig. 5 (a and c), it is observed
that the width of the crossing vessel pairs (Ei , Eip )
remains almost constant, irrespective of A/V, which can
be written as

ε{Ei} ∼= ε{Eip}, (5)

where, ε denotes the vessel width. This is also observed
to be true even for complex crossover locations as shown
in Fig. 5 (third and fourth column).

3) Ideally, the vessel fragment pairs (Ei , Eip) are given
the same class label (A/V), if the angular separation
of Ei ∼= Eip ± 180◦. But this may not always be true
for high curvature crossing vessel segments as well as
complex crossovers as shown in Fig. 5 (second and
fourth column). The curvature κ is defined as “the
rate of change of orientation” and determines the shape
of the vessel segment. From Fig. 5 (a and e), it is

observed at vessel crossings, the orientation of each
vessel segment changes slightly in most cases. This
implies that the rate of change of orientation for a pair of
crossing vessel fragments (Ei and Eip) remain constant.
It is also observed to be true for complex crossover
locations as shown in Fig. 5 (second and fourth column).
In addition, we also performed a set of experiments
to detail the significance of curvature information for
separation of A/V segments of different simple and
challenging crossover cases, which are provided in detail
in the Supplementary, Section I.
Hence, we make use of this observation to estimate the
curvature (κ) of crossing vessel fragments (Ei and Eip)
based on the following theorem.

Theorem 1: Suppose m = R(n) represents a polar para-
metrization of a plane curve, then the curvature at any point
(m, n) is given by

κ(n) =
∣
∣R(n)2 + 2[R′(n)]2 − R(n)R′′(n)

∣
∣

{R(n)2 + [R′(n)]2}3/2 , (6)

where, m and n are radial and angular indices respectively.
Proof: Let �r(t) = (x(t), y(t)) be a vector-valued function

that traces a smooth curve α. Then the curvature (κ) of α at
any point �r(t) is given by (please, refer Section 1.4 of [34])

κ(t) = || �r ′(t) × �r ′′(t)||
|| �r ′(t)||3 . (7)

Suppose that the curve α is given in the polar form
m = R(n), then curve can be parametrized as �r(n) =
(m cos(n), m sin(n), 0) = (R(n) cos(n), R(n) sin(n), 0).
Next, we compute �r ′(n) by differentiating �r(n) as

�r ′(n) = −R(n)sin(n) + R′(n)cos(n), R(n).cos(n)

+ R′(n)sin(n), 0 (8)

Similarly, we compute �r ′′(n) by differentiating �r ′(n) as

�r ′′(n) = R′′(n)cos(n) − 2R′(n)sin(n) − R(n)cos(n),

R′′(n)sin(n) + 2R′(n)cos(n) − R(n)sin(n), 0. (9)

We now compute the cross product ( �r ′(n) × �r ′′(n)) as
∣
∣
∣
∣
∣
∣
∣
∣

�i �j �k
−R(n)sin(n)+ R′(n)cos(n) R(n)cos(n)+ R′(n)sin(n) 0
R′′(n)cos(n)−2R′(n)sin(n) R′′(n)sin(n)+2R′(n)cos(n) 0

−R(n)cos(n) −R(n)sin(n) 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0, 0, 2(R′(n))2 + (R(n))2 − R(n). (10)

Next, we obtain || �r ′(n) × �r ′′(n)|| as
√

[2(R′(n))2 + (R(n))2 − R(n)R′′(n)]2

= |2(R′(n))2 + (R(n))2 − R(n)R′′(n)|. (11)

Similarly, we compute || �r ′(n)|| as
√

(R′(n))2 + (R(n))2 = [(R′(n))2 + (R(n))2]1/2 (12)

Finally, we now obtain the curvature (κ) of a plane polar
curve at any point (m, n) by substituting Eq. 11 and Eq. 12
in Eq. 7 as

κ(n) =
∣
∣R(n)2 + 2[R′(n)]2 − R(n)R′′(n)

∣
∣

{R(n)2 + [R′(n)]2}3/2 . (13)



2710 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 6, JUNE 2019

Fig. 7. (a) Binary vessel map (Note: the color red represents bifurcation nodes (Vb), green represents crossover nodes (Vc) and blue represents vessel end
nodes (Ve)); (b) the corresponding extracted vessel subtrees SG , with different labels shown with different colors; (c) the corresponding subtree A/V labeling
(arteries are shown in red and veins in blue).

We make use of above three observations at a crossover
point to identify the corresponding pair of vascular fragments
(Ei , Eip) that belongs to A/V segment, as explained next.

If c is a crossover point, then there exists two scenarios:

1) A simple vessel crossover: a pair of vessels crossing each
other at a point (see Fig. 5 (first and second column)).
In this case, VKD is of the form

VKD(c) =
2

∑

i=1

[

Ei + Eip

]

. (14)

In this case, Ei and Eip are given the same class
label (A/V), if any of the two following conditions are
satisfied:

a) the angular separation between two vessel pairs
(Ei , Eip ) is often separated by ±180◦:

Ei ∼= Eip ± 180◦; (15)

b) the width of the crossing vessel pairs remains
almost constant:

ε{Ei } ∼= ε{Eip}; (16)

c) the curvature κ of crossing vessel pairs is relatively
constant:

κ{Ei } ≈ κ{Eip}; (17)

2) A complex vessel crossover: a pair of vessels crossing at
a point and there exists a proximal bifurcation (see Fig. 5
(third and fourth column)). In this case, VKD is of the
form

VKD(c) =
2

∑

i=1

[

Ei + Eip

]

+ El , (18)

where, El �
[

u
(

n−nl

)

−u
(

n−(nl +εl)
)]

corresponds

to a lone vessel fragment resulting from a nearby bifur-
cation as shown in Fig. 5 (third and fourth column).
El - refers to vessel fragments E3 and E4 in third and
fourth column, respectively. (Note: a complex crossover
point generally consists of Ei > 4 vessel fragments).
Although, this is a very rare condition, we still take
into account in order to build robust approach that
works well irrespective of various complex crossover
patterns. In this case, Ei and Eip are given the same

class label (A/V), if any of the two conditions similar
to that defined for simplex crossover case are satisfied.
In addition, the lone vessel fragment El is assigned a
class label (A/V), if the following condition is satisfied

ε{El} ∼= ε{Ei} ∼= ε{Eip}. (19)

From Fig. 5 (third and forth column), E4 and E3 are
the lone vessel fragments El , that are assigned the same
class label as E2 and E5 in third and fourth column,
respectively.

Thus, given a crossover point c, VKD(c) is analysed first to
identify if c represents a simple or complex case and next
identify the corresponding vessel pairs of the same class (A/V)
using the appropriate form of VKD.

2) Depth-First Search (DFS) Based Graph Search: To gen-
erate anatomically meaningful vessel subtrees SG , we employ
DFS based graph search algorithm to efficiently search the
space of possible vascular networks. We also make use of
VKD near the vessel crossover points to aid in precise labeling
of all crossing segments into corresponding A/V pairs. The
method of extraction of individual subtrees SG involves the
following steps.

1) Given an undirected graph G = (V, E) as shown
in Fig. 7 (a), initialize the graph search using DFS at
arbitrary bifurcation node Vb, with a label li where,
i = 1, 2, . . . , n.

2) Find the neighbours associated with the node Vb denoted
as: NVb .

3) If the associated neighbour NVb is:

• vessel end node (Ve), then backtrack the DFS to Vb.
• vessel bifurcation node (Vb), then continue the graph

search with DFS.
• vessel crossover node (Vc), then set flag
F = 1 at Vc.

4) For each crossover location c (corresponding to Vc at
which F = 1) proceed with the following steps:

• first identify if c represents a simple or complex
crossover point by computing VKD(c) as given in
Eq. (14) and Eq. (18).

• find the vessel fragment pair Eip corresponding to
a vessel fragment Ei at which F = 1, using the
conditions defined in Eq. (15), (16), (17), (19).
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Algorithm 1 Subtree Generation SG

• restart the graph search with DFS from the vessel
fragment Eip , with the same label li as assigned for
vessel fragment Ei .

5) The graph search is continued until there are no more
nodes V to visit in the current search path.

6) Search for new paths that are left unlabeled (unvisited)
in the graph G. If found, start the DFS with a new label
li at an arbitrary bifurcation node Vb, belonging to the
new search path and continue from Step 2.

7) Continue the graph search until the entire graph G is
labeled (as shown in Fig. 7 (b)) and no more paths to
visit in the vessel tree.

The pseudocode for generating vessel subtrees SG from a
graph G is illustrated in Algorithm 1.

There exists some misinterpretation of node labels as
a result of vessel segmentation process, which affects the
optimal traversal of DFS based graph search algorithm.

TABLE I

LIST OF FEATURES EXTRACTED FOR A/V CLASSIFICATION

The following are the typical errors arises during node classifi-
cation: (i) bifurcation node is wrongly classified as a crossover
node and vice-versa; (ii) vessel end node is wrongly classified
as bifurcation node. The detailed steps to correct these node
errors are provided in the Supplementary, Section V.

Each vessel subtree SG corresponds to different labels li ,
where i = 1, 2, .., n as shown in Fig. 7 (b) (Note: the subtrees
generated doesn’t imply A/V segments at this stage, and each
vessel subtree is independent of the other having different
labels li ). Hence, to obtain the optimal A/V labels for the entire
graph G, each vessel subtree is given a unique label (A/V)
based on a set of hand-crafted features extracted from vessel
pixels corresponding to each vessel subtree, as described next.

D. Subtree A/V Labeling

For the identified vessel subtrees, the final goal is to
assign an A/V label based on a set of hand-crafted features
extracted from the vessel pixels, corresponding to each vessel
subtree SG . Since retinal images often exhibit varying contrast
and luminosity, we pre-process each input image using the
method proposed in [35]. A set of 66-D hand-crafted feature
vector (as shown in Table I) is extracted for every vessel
pixel, and further normalized to zero mean and unit standard
deviation. Some of these features were adopted in [11], [15],
and [19] and have shown to be robust for A/V separation. The
vessel width and cross-sectional intensity features are detailed
in Appendix A and Appendix B, respectively. These features
were trained using RF classifier of 200 trees to predict the
A/V label of each vessel subtree SG . A thorough discussion on
the performance comparison of different classifiers and feature
selection techniques are also provided in Section IV-B.

A vessel subtree SG is assigned with a label artery (A), if the
majority of the vessel pixels associated with a subtree are clas-
sified as arteries; else if the majority of the pixels are classified
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as veins, it is labeled with a vein (V). Further, to prevent the
erroneous A/V separation as result of graph search analysis,
we also calculate the probability of individual vessel segment
(belonging to a vessel subtree) being an A/V, without consid-
ering the result of graph search approach. A vessel segment is
assigned a label artery (A), if the probability of being an artery
PA ≥ 0.9 (90% of the pixels are being classified as arteries);
else if the probability of being a vein PV ≥ 0.9, it is assigned
with a label vein (V). A thorough performance analysis of A/V
separation without and with segment-wise analysis is provided
in the Supplementary, Section II. A subtree A/V labeling for a
sample ROI is shown in Fig. 7 (c) with color red representing
arteries and blue representing veins.

III. EXPERIMENTAL RESULTS

A. Materials

For validating the effectiveness of proposed method,
we tested on four different publicly available datasets:
AV-DRIVE [36], CT-DRIVE [15], INSPIRE-AVR [11] and
WIDE [16]. The AV-DRIVE consists of 40 images (565×584
pixels) derived from earlier DRIVE dataset [37], with ground
truth (GT) A/V labels marked for all vessel pixels. Since
three different human graders manually classified all the vessel
pixels, a majority consensus was taken to arrive at the final
A/V labeling. The CT-DRIVE consists of 20 images corre-
sponding to the DRIVE test set [37] with A/V labels graded
only for vessel centerline pixels. The INSPIRE-AVR consists
of 40 images (2392 ×2048 pixels) with associated A/V labels
obtained from [15] for vessel centerline pixels, only. Finally,
the WIDE dataset provides 30 SLO-images (3900 × 3072
pixels) along with their A/V GT labels obtained from [16].

The input binary vessel map for all four datasets was
obtained automatically from the raw color image using the
method proposed in [38]. Since, CT-DRIVE, INSPIRE-AVR,
and WIDE dataset consists of manual A/V markings for
centerline pixels, we subsequently thinned the binary vessel
map to obtain vessel centerlines [39]. The obtained centerline
maps usually consist of various misinterpretation of vascular
structures as a result of thinning operation, which was further
corrected using the technique proposed in [15]. This refine-
ment aimed at resolving critical issues such as missing vessel
segment, splitting of crossover into two nearby bifurcations
and the deletion of a false vessel segment.

B. Evaluation Metrics

The performance validation was carried out using three
metrics: Sensitivity (Se), Specificity (Sp) and Accuracy (Acc).

Se = T P

T P + F N
, Sp = T N

T N + F P
, Acc = T P + T N

N
,

where, T P/F P denotes true/false positives; T N/F N denotes
true/false negatives; and the total N = T P +T N + F N + F P .
In our method, we consider arteries as positives and veins as
negatives. Accordingly, sensitivity is defined as how well the
method can detect arteries, while specificity indicates how well
it can detect veins.

TABLE II

COMPARATIVE ANALYSIS OF THE PROPOSED
METHODS ON AV-DRIVE DATASET

C. A/V Separation Evaluation

In the following subsections, we present the results of our
proposed A/V separation method on each of the four retinal
datasets. We validated the approach at each stage of the
pipeline starting from vessel subtree extraction to the final
A/V labeling of the entire vascular network.

The method “DFS-search” refers to the output at vessel
subtree extraction stage, where we manually assign A/V
labels for individual vessel subtrees. The “RF-only” refers
to the classification of vessel pixels into A/V by using
hand-crafted features (shown in Table I) trained with RF clas-
sifier (without considering any graph-search analysis). Finally,
“DFS-search with RF” refers to our method’s final output after
subtree A/V labeling stage, which uses combined knowledge
of graph-search analysis and RF classifier for predicting the
final A/V label of the entire vessel tree.

1) AV-DRIVE Dataset: The AV-DRIVE consists of
pre-partitioned training and test set, each of which contains
20 images. The sample A/V separation results on DRIVE
images are shown in Fig. 8. It is observed that the proposed
method accurately classifies most of the A/V segments in the
DRIVE set, including the region of thin and low contrast
vessels. Most of the false classifications are due to the presence
of nearby junction points and missing vessel connectivity,
especially around the optic disc area. A similar ambiguity
has also been observed with expert human graders in assign-
ing A/V labels in and around the optic disc, which further
showcase the difficulty of this A/V separation problem.

Table II shows the performance of the proposed approach
with state-of-the-art methods on the AV-DRIVE dataset. Our
proposed method has shown a significant improvement in Se
of 0.966, with a relatively high Sp of 0.929, clearly indicating
that the system is capable of identifying arteries than the veins.
This is also shown to be consistent with Fig. 8, where a
majority of the wrongly classified vessel pixels belongs to the
veins (shown in green).

2) CT-DRIVE Dataset: A leave-one-out cross-validation
was adopted for evaluation of 20 images of the CT-DRIVE
dataset. Classification of vessel pixels which are higher than
3 pixels wide is considered for performance assessment [15].
The sample A/V separation results on the CT-DRIVE dataset
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Fig. 8. AV-DRIVE separation results. Top row: our method’s best result (Acc = 0.985). Bottom row: our method’s worst result (Acc = 0.889). (a) Original
image; (b) binary vessel map; (c) identified vessel subtrees; (d) A/V separation results; (e) corresponding A/V ground truth. (Note: the correctly labeled
arteries/veins are shown in red/blue, respectively. While, incorrectly labeled arteries/veins are shown in yellow/green, respectively). Best viewed in color.

Fig. 9. CT-DRIVE separation results. Top row: our method’s best result (Acc = 0.981). Bottom row: our method’s worst result (Acc = 0.864). (a) Original
image; (b) binary vessel map; (c) identified vessel subtrees; (d) A/V separation results; (e) corresponding A/V ground truth. (Note: the correctly labeled
arteries/veins are shown in red/blue, respectively. While, incorrectly labeled arteries/veins are shown in yellow/green, respectively). Best viewed in color.

is shown in Fig. 9. Our method achieved a very high Se
of 0.950, which is ≈ 3% greater than previous approaches
on the same dataset, as shown in Table III. Similar to the
AV-DRIVE dataset, much of the false positives are in the optic
disc region. The thinning of closely spaced junction structures
especially in the optic disc region, often resemble spurious
and isolated fragments, leading to difficulty in obtaining any
meaningful information about the vessel morphology. Hence-
forth, a marginal decrease in A/V performance is observed
on CT-DRIVE dataset compared to AV-DRIVE, as shown
in Table III. A similar trend has also been observed with earlier
methods [11], [15], that depends on centreline map as an input
to their approach.

3) INSPIRE-AVR Dataset: For the evaluation of A/V sepa-
ration on INSPIRE-AVR dataset, we adopted a 2-fold cross-
validation. In this approach, we divide the dataset into two
random equal sized partitions, each containing 20 images.

TABLE III

COMPARATIVE ANALYSIS OF THE PROPOSED

METHODS ON CT-DRIVE DATASET

One partition is used as train set while, the other partition
as test set and vice-versa. Examples of A/V separation on
INSPIRE-AVR dataset is shown in Fig. 10. Table IV shows
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Fig. 10. INSPIRE-AVR separation results. Top row: our method’s best result (Acc = 0.989). Bottom row: our method’s worst result (Acc = 0.926).
(a) Original image; (b) binary vessel map; (c) identified vessel subtrees; (d) A/V separation results; (e) corresponding A/V ground truth. (Note: the correctly
labeled arteries/veins are shown in red/blue, respectively. While, incorrectly labeled arteries/veins are shown in yellow/green, respectively). Best viewed in color.

TABLE IV

COMPARATIVE ANALYSIS OF THE PROPOSED

METHODS ON INSPIRE-AVR DATASET

the comparative analysis of the proposed approach with state-
of-the-art methods. We obtain an Acc value of 0.968 and Se of
0.969, which is 5% higher than the most recent results reported
in Estrada et al. [16]. The INSPIRE-AVR dataset contains only
fewer vessel structures and complex junction locations, which
subsequently resulted in better A/V separation compared to
AV/CT-DRIVE datasets.

We also further evaluated the proposed method by con-
sidering only six major A/V vessels within a region
of 1-DD to 1.5-DD, as this ROI was normally used for AVR
calculation [11]. We obtain a Acc value of 0.991, which is
1%(Acc = 0.971)/15%(Acc = 0.84) greater than previously
reported methods [11], [15], respectively. For the sake of fair
comparison, we obtain a Se value of 0.981 from the ROC
curve, for a fixed Sp of 0.860 reported in [11] and [15].
Thus, the proposed approach is also shown to be reliable
in developing an automated solution for quantifying AVR in
retinal images.

4) WIDE Dataset: In the WIDE dataset, a 2-fold
cross-validation approach is adopted by randomly assigning
images into two sets, each containing 15 images. The sam-
ple A/V results of the WIDE dataset is shown in Fig. 11.

TABLE V

COMPARATIVE ANALYSIS OF THE PROPOSED

METHODS ON WIDE DATASET

When compared with other three datasets, A/V separation
on the WIDE dataset is most challenging because of very
low-contrast noisy images. These artefacts are more prominent
in the peripheral regions containing thin and low contrast
vessel structures as shown in Fig. 11. Besides, the number
of extracted vessel subtrees are significantly large due to
the wider FOV followed by relatively lower spatial resolu-
tion, which is a typical case in SLO modality. Nevertheless,
the proposed method was able to achieve a better Acc/Se
value of 0.902/0.923, which is comparatively higher than
the most recent method proposed in Pellegrini et al. [18],
as shown in Table V. Many of the false detections are mainly
observed in the proximal region of multiple junction locations,
thin and very low-contrast vessel areas (see Fig. 11). The
extracted vessel subtrees are also found to be suboptimal in
these locations mainly because of the presence of erroneous
vessel structures formed during vessel thinning operation. Fur-
thermore, the pixel-wise features extracted from these regions
were also found to be less discriminative, often leading to
many false classifications.

IV. DISCUSSION

The proposed method consists of series of interlinked stages,
where the performance of each stage depends on its previous
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Fig. 11. WIDE separation results. Top row: our method’s best result (Acc = 0.939). Bottom row: our method’s worst result (Acc = 0.827). (a) Original
image; (b) binary vessel map; (c) identified vessel subtrees; (d) A/V separation results; (e) corresponding A/V ground truth. (Note: the correctly labeled
arteries/veins are shown in red/blue, respectively. While, incorrectly labeled arteries/veins are shown in yellow/green, respectively). Best viewed in color.

stage output. Hence, to validate the robustness of our approach,
we evaluate the performance at each stage starting from:
(i) identification of vessel subtrees - which is referred to as
“DFS-search”; (ii) A/V classification using only hand-crafted
features - which is referred to as “RF-only”; and (iii) finally,
subtree A/V labeling stage (which combines both the
knowledge of graph search and hand-crafted features) -
which is referred to as “DFS-search with RF”. We also further
investigate the relative importance of hand-crafted features
using different feature selection techniques as well as various
classifiers to examine the impact on final A/V labeling.

A. Performance Analysis of Each Stage Output

The proposed three-stage refinement steps accurately pre-
dicts the A/V labeling from four different datasets, includ-
ing images from fundus as well as SLO image modalities.
In Section II, it was shown how each of these steps contributes
to yield a more accurate solution progressively. The exper-
imental analysis also confirms this view, where it has been
empirically shown, how each stage output improves upon the
previous stage.

We first evaluate the A/V separation at the output of
DFS-search by manually assigning A/V labels for individual
vessel subtrees. We obtain an average Acc > 86% across
all four datasets (see Table II - Table V), while depending
solely on the knowledge of graph search. This underscores the
richness of metaheuristic approach - which efficiently exploits
local as well as global vessel connectivity information to
precisely track all the A/V segments from a given vascular net-
work. A highest Acc of 0.921 is observed on INSPIRE-AVR
dataset, while the lowest Acc of 0.861 is on the WIDE dataset.
This is because the INSPIRE-AVR dataset consists of a fewer
number of graph linking structures - including the number of
complex crossovers when compared to the WIDE dataset.

We also observed a substantial improvement in mean Acc
of 15% (AV-DRIVE), 15.6% (CT-DRIVE), 23.9% (INSPIRE-
AVR) and 12% (WIDE), when compared with DFS-search
to the RF-only stage. The pixel level intensity-based features
have shown to be vulnerable to varying image conditions such
as resolution, contrast and illumination artefacts both within
and across datasets. Finally, the combination of DFS-search
with RF have shown a modest improvement in the Acc value

TABLE VI

PERFORMANCE COMPARISON ( Acc) OF DIFFERENT COMBINATION
OF CLASSIFIERS AND FEATURE SELECTION TECHNIQUES

ON AV-DRIVE/INSPIRE-AVR DATASETS

of 5.1% (AV-DRIVE), 2.3% (CT-DRIVE), 4.7% (INSPIRE-
AVR) and 4.1% (WIDE) from DFS-search to DFS-search with
RF stage. This consistent improvement strongly indicates that
the system is more accurate while relying on more complex
knowledge of vessel connectivity as well as pixel-level feature
information for classifying A/V.

B. Influence of Feature Selection vs. Classifiers

In this section, we investigate the relative significance of
hand-crafted features using a combination of various feature
selection techniques with different classifiers. The experimen-
tal results on AV-DRIVE and INSPIRE-AVR datasets are
reported in Table VI with same dataset split as mentioned
in Section III-C1 and Section III-C3, respectively.

To evaluate the importance of features on classification
accuracy, we adopted a combination of feature selection
techniques such as sequential forward selection, LASSO [40],
and ENet [41], with different classifiers such as Naive Bayes,
LDA, k-NN, SVM, and RF. The RF classifier with no feature
selection proved to be the most reliable combination with a
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Acc of 0.947/0.968 across AV-DRIVE and INSPIRE-AVR,
respectively. This indicates that all the selected features given
in Table I have a strong influence on final A/V labeling
and have shown discriminative ability, even with varying
imaging conditions such as contrast and luminosity. Further,
the selected feature set captures both intensity (raw pixel
intensities in RGB, HSI and Lab color space) as well as
structural level information (such as vessel width) that aid
in accurate separation of arteries from veins. Compared to
different classifiers, RF has shown better performance due to
its ability to perform both classification and feature selection
implicitly.

C. Computation Time

The proposed automated A/V separation method was devel-
oped in MATLAB R2017 (MathWorks, Inc.), with an average
computation time of 4.3 minutes per image (across all four
datasets) using an Intel Core i7-5960 CPU at 3.00 GHz.
We also reported the running time at each stage of the A/V
separation pipeline that is shown in Table II - Table V.
The DFS-based graph search is the most computationally
intensive stage, which can be further improved by utilizing
parallel processing capabilities (as discussed in Supplemen-
tary, Section VI) and through more efficient implementation.

V. CONCLUSION

In this paper, we have presented a comprehensive graph
search metaheuristic approach for separating arteries from
veins in retinal images. The proposed method formulates
the A/V separation as a graph search problem by incor-
porating sophisticated graph-theoretic knowledge with the
domain-specific priors, to accurately identify A/V segments
across the entire vascular tree. In this work, we explore
the vessel curvature criteria in addition to orientation and
width information, to precisely disseminate the A/V label
information of highly curved crossovers, encountered during
graph search process. Such limitation was not addressed previ-
ously in many state-of-the-art methods [14]–[18] that utilizes
graph theoretic knowledge, unlike the proposed approach. The
inclusion of hybrid knowledge of both local and global vessel
connectivity during graph traversal often helps in identifying
anatomically meaningful vessel subtrees by searching the
space of possible vascular networks. The proposed method
was validated on four different challenging datasets includ-
ing images from the narrow field (AV-DRIVE, CT-DRIVE,
and INSPIRE-AVR datasets) and wide field-of-view (WIDE
dataset) fundus photographs, with remarkable differences in
resolution, quality, and acquisition protocol. Overall, there
is a significant improvement in A/V separation performance
across the entire range of diversity and might enable real-time
analysis in the future.

APPENDIX A
VESSEL WIDTH CALCULATION

The vessel width (ε) of a segment is measured using
VKD [30] for every centerline pixels of the binary vessel map,
as illustrated in Fig. 12. Let us consider a point p(x, y) on
a centerline map to which a log-polar transform is applied to

Fig. 12. Vessel width estimation for a sample vessel segment. p is a point on
the centerline pixel location (x, y) of the binary vessel map. ε is the angular
span between vessel intersection points (ni , ni + εi ), which is referred to as
vessel width; and m is the radial distance.

Fig. 13. A sample vessel width estimation for artery-vein segments.
(a) Original image patch; (b) the corresponding binary vessel map illustrating
the width estimation for a sample artery and vein segments; (c) the corre-
sponding A/V ground truth; (d) artery and vein vessel width (shown in red and
blue, respectively) calculated for a sample of 30 centerline pixels, as shown
in (b); Note: the y-axis corresponds to the normalised width values, obtained
by dividing with its mean width corresponding to the entire vessel length.

obtain p(m, n). Where, m and n are the radial and angular
indices, respectively. The value ′m′ is empirically chosen as
8 pixels, so that it covers the width of the widest vessels in
all four datasets (AV-DRIVE, CT-DRIVE, INSPIRE-AVR, and
WIDE), and must be fixed only once during training. Further,
the angle index n is obtained by sampling the angular variable
at every 1◦ interval, and hence n ∈ [0◦, 360◦].

We now denote the angular span of the vessel segment
at a radial distance m as the vessel width (ε), with the end
points of vessel (ni , ni + εi ) subtending an angle ε at point p,
as shown in Fig. 12. The sample vessel width measurements
for artery-vein segments are shown in Fig. 13 (d). Note that,
the width of the vein segment is relatively larger than an artery,
which is an important feature in distinguishing artery-vein
segments. Also note that in Fig. 13 (d), the y-axis corresponds
to the normalised width values, obtained by dividing with its
mean width corresponding to the entire vessel length.

APPENDIX B
VESSEL PROFILE ESTIMATION

The vessel profile was determined using VKD [30] for every
centerline pixels in red and green channel image. We describe
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Fig. 14. Vessel cross-sectional intensity profile for a sample vessel segment.
p is a point on the centerline pixel location (x, y) of the red/green channel
image. Mmin and Mmax are the inner and outer most radii, respectively. The
angular orientations: n ∈ [ni , ni +εi ] (red dots), along with which the vessel
intensity profile is estimated for artery-vein segments.

Fig. 15. (a) A sample retinal image patch (shown in green channel), with
its corresponding vessel intensity profiles on the artery and vein are shown
in (b); (c) a sample retinal image patch (shown in red channel), with its
corresponding vessel intensity profiles on the artery and vein are shown in
(d). Note: the intensity values in y-axis are normalized between 0 and 1; x-axis
corresponds to vessel profile in the angular range (ni , ni + εi ) sub-sampled
at 10 equally spaced angular locations.

this briefly as follows: first an ROI Rp(x, y) is extracted for
every centerline pixels p(x, y) in the red and green channel
map. A log-polar transform is applied to the ROI to obtain
Rp(m, n) as illustrated in Fig. 14. Where, m ∈ [Mmin , Mmax ]
is the radial index; and n is the angle index, which is obtained
by sampling the angular variable at 1◦ interval, and hence
n ∈ [0◦, 360◦].

Next, we compute a vertical projection of Rp(m, n) which
results in a vector Rp(n). The Rp(n) provides a count of the
number of pixels in a vessel fragment at specific angle n.
Further, we limit the ROI Rp(n) to a range n ∈ [ni , ni + εi ]
to estimate the cross-sectional intensity profile as shown
in Fig. 14 (the red dots). A mean vessel intensity value is com-
puted at every specific angle n (along the projection), which
is then sub-sampled at 10 equally spaced angular locations
between (ni , ni+εi ) to obtain the final cross-sectional intensity
feature (Ip(n)). The value Mmin = 3 pixels and Mmax = 7
pixels are chosen experimentally, according to the ves-
sel widths (both wide and small vessels) of all four
retinal datasets (AV-DRIVE, CT-DRIVE, INSPIRE-AVR,

and WIDE). Fig. 15 (b) and Fig. 15 (d) shows the sample
cross-sectional vessel intensity profile in green and red channel
image, respectively.
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