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a b s t r a c t

This work implements Lattice Boltzmann method to compute flows in double-sided cross-shaped lid-
driven cavities. Firstly, a complicated geometrywhich is a symmetrized version of the staggered lid-driven
cavity namely, the double-sided cross-shaped lid-driven cavity with antiparallel uniform wall motion is
studied employing Single as well as Two Relaxation time models. The streamline patterns and vorticity
contours obtained for low to moderate Reynolds numbers (150–1000) are compared with published
results and found to be in good accordance. Next, this code is extended to simulate flows in a double-sided
cross-shaped lid-driven cavitywith parallel uniformwallmotion. The effect of three dimensionality is also
studied for low Reynolds numbers. Lattice Boltzmann method is then used to investigate the oscillating
double-sided cross-shaped lid-driven cavity with antiparallel and parallel wall motions. The movement
and formation of primary and secondary vortices have been well captured with the variation of Reynolds
numbers and oscillating frequencies for uniform and oscillating wall motions. Reasonable agreements
with the established results have been observed for the double-sided cross-shaped cavity with uniform
wall motions, while new results have been obtained in the case of oscillating wall motions.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Fluid dynamics simulation by numerical techniques has been
the principal research topic for the past few decades [1,2]. With
the birth of Computational Fluid Dynamics (CFD) as an area utiliz-
ing the computational resources to solve the governing equations
of fluid mechanics, tremendous growth in the development of
numerical algorithms has been observed lately. To establish the
accuracy and computational efficiency of such algorithms, it be-
comes necessary to compute flows in benchmark geometries like
lid driven cavity, which is being widely adopted [3]. Its preference
over existing benchmark problems could be attributed to its capa-
bility in exhibiting all possible phenomena in incompressible flows
like eddies, secondary flows, chaotic particle motions, instabilities,
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transition and turbulence [4]. These characteristic flow features
have resulted in its industrial and academic applications like coat-
ing [5] and drying, melt spinning processes, mixing [6], aero-
dynamics [7] and slots of heat exchanger cut-outs. Additionally,
three-dimensional endwall effects on cubic cavity flows have been
found even at large aspect ratios [8,9]. The aforementioned fea-
tures associatedwith lid driven cavity flowshavemade it a remark-
able benchmark problem, motivating further research in this area.
This has been substantiated by successful studies in several shapes
of cavities like, L-shaped [10,11], T-shaped [12,13], C-shaped [14],
trapezoidal [15], semi-circular [16,17], cross shaped etc.

The lid driven cavity’s ability to test the accuracy and efficiency
ofmodern developednumerical schemes, coupledwith its intrinsic
popularity has sparked several investigations in the literature.
Initial numerical studies were dedicated to two-dimensional lid
driven cavities [18]. Additionally, precise computations in such
configurations were established by Ghia et al. [19], who imple-
mented a stream-function vorticity approach along with a coupled
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Fig. 1. Lattice models (a) D2Q9 and (b) D3Q15.

Fig. 2. Geometry of the double sided cross-shaped cavity.

implicit multigrid method. Though the above studies were limited
to square cavities with unity aspect ratios, rectangular cavities
with various aspect ratios were also studied [20,21]. The single lid-
driven cavity problems were later extended to the case of double
sided lid-driven cavities by Kuhlmann et al. [22]. A similar study
incorporating parallel and antiparallel wall motions in the same
cavity configurationwas conducted by Perumal and Dass [23]. Fur-
ther, three-dimensional cavity flows have also been studied ear-
lier, for demonstrating complex and realistic flows in nature. The
three-dimensionality effect leads to slight deviations from the two-
dimensional cavity flow results, due to the formation of boundary
layer across the side walls. Previous reliable studies [24,25] have
been investigated in this direction. Additionally, some numerical
studies for three-dimensional flows have been performed using
Lattice Boltzmann Method [26,27].

Apart from the steady flows mentioned earlier, unsteady flows
have also been explored, owing to its practicality. In such cases,
the unsteady flows have been simplified by assuming the velocity
to oscillate in accordance with a fixed amplitude and angular
frequency. In the realm of experiments, Sriram et al. [28] adopted
experimental particle image velocimetry techniques (PIV) to study
the variation of fluid flow in an oscillating lid driven cavity over
a wide range of Reynolds numbers from 5 to 3700. Subsequently,
they obtained a qualitative and quantitative understanding of the
flowbehaviour in a glycerol–water solution using 2-D and3-D sim-
ulations respectively. On the other hand, numerical methods like
Smoothed Particle Hydrodynamics (SPH) [29], Finite Difference
Method (FDM) [30] and stream function vorticity approach [31]
were used to study similar phenomenon in the area of numerical
techniques. Moreover, Noor et al. [32] analysed the fluid flow and

Fig. 3. Flow chart of lattice Boltzmann method.

heat transfer characteristics in double sided oscillating cavities,
using QUICK and central differencing schemes. A pioneering study
by Nishimura and Kunitsugu [33] showed that oscillating frequen-
cies and aspect ratios were the important parameters responsible
for controlling fluid mixing in such conditions. In this direction,
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(a) Single sided square cavity. (b) Double sided square cavity.

Fig. 4. Geometry of the square cavities considered for code validation.

Fig. 5. Streamlines in the single sided square cavity at Re = 1000.

Takasaki et al. [34] observed that oscillating frequency predomi-
nantly enhanced the fluidmixing, and the role of other parameters
were negligible for a range of Reynolds numbers from 50 to 500.
Recently, Lattice Boltzmann Method was also implemented to
study oscillating flows in single-sided oscillating square cavities
by Mendu and Das [35], to demonstrate the effectiveness of this
numerical method over its counterparts.

Despite the wide usage of FDM and Finite Volume Methods
(FVM) in CFD as a part of the conventional Navier–Stokes (N–S)
solvers [36], they have a fundamental drawback associated with
the pressure (Poisson equation) solver. This has been overcome by
several mesoscopic approaches, with Lattice Boltzmann Method
(LBM) being one among the popular ones. Having grown out of
Lattice Gas Models (LGM), LBM tracks the distribution of particles
unlike themacroscopic approacheswhich solve the N–S equations.
Its popularity can be attributed to its numerical stability, compu-
tational efficiency, simplicity and parallelizability (local computa-
tions) over existing CFD techniques. LBM has found significant ap-
plications [3] in microflows, nanofluids, compressible flows, mul-
tiphase, magneto hydrodynamics, heat transfer, turbulent flows,
porous media, immiscible fluids, wave propagations, ocean circu-
lations, fluid–structure interactions (FSI) and combustion.

LBM with Single Relaxation Time (LBM-SRT) is a commonly
used simulation technique for incompressible flows [7]. Apart from
LBM-SRT adopted in several studies, other variations of LBM, like

Fig. 6. Comparisons of predicted centreline velocity profiles with published results (a) u-velocity (b) v-velocity at Re = 400.
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Table 1
Location of vortices in the cross-shaped cavity with antiparallel motion, for various lattice sizes.

Lattice Size Top primary vortex Bottom primary
vortex

Secondary vortex on
the left

Secondary vortex on
the right

x y x y x y x y

176 × 176 0.7249 1.1794 0.6895 0.2339 0.4628 0.7298 0.9883 0.6825
281 × 281 0.7237 1.1770 0.6874 0.2343 0.4428 0.7294 0.9684 0.6819
561 × 561 0.7222 1.1750 0.6867 0.2350 0.4420 0.7280 0.9750 0.6750

Fig. 7. Streamlines in a double sided square cavity with antiparallel motion at
Re = 400.

Multi Relaxation Time (LBM-MRT) [37] and Two Relaxation Time
(LBM-TRT) [38] have also been implemented in lid driven cavity
flows. Presence of numerical instabilities is an inherent feature
of LBM-SRT, which restricts its implementation to low Reynolds
number flows. However, adoption of MRT has been found to solve
this problem, resulting in stable solutions in the case of lid driven

cavity flows [39]. Two-Relaxation Time model (TRT), a subset of
Multiple Relaxation Time (MRT) model uses only two relaxation
times and possesses similar characteristics as MRT. However, it
is computationally less expensive over MRT as it uses only two
relaxation times. The aforementioned models work well for uni-
formandmoderately complex geometries. However, for intricately
complex geometries, it becomes important to adopt alternative
approaches like Taylor-series expansion and Least-squares-based
LBM (TLLBM) [40], Interpolation-Supplemented Lattice Boltzmann
Method (ISLBM) [41], and Immersed Boundary Lattice Boltzmann
Method (IBLBM) [42].

Double-sided cross shaped lid driven cavity with uniform an-
tiparallel wall motion was initially proposed and discussed by
Vicente et al. [43]. A two-dimensional stability analysiswas carried
out for the same problem by Gogoi and Kalita [44]. This work
was later extended by Gogoi [45], who carried out a global two-
dimensional stability analysis in the same configuration for par-
allel and antiparallel wall motions. On the other hand, numeri-
cal works concerning flows in staggered lid driven cavities (anti-
symmetric versions of the cross-shaped configuration,with the top
and bottom cavities diagonally offset) have also been successfully
performed by Zhou et al. [46], Nithiarasu and Liu [47], Kalita and
Gogoi [48] and Tekic et al. [49].

From this extensive review, we find that only few works using
continuum-based methods have been carried out concerning nu-
merical simulations in double sided cross-shaped lid-driven cavi-
ties, and no efforts have been made to compute flows in this con-
figuration using LBM. This was the motivation behind the present
work, to compute steady and oscillating behaviour in this config-
uration. Attempt has also been made to compare flow behaviour
in the cross-shaped cavity with its antisymmetric counterpart
staggered lid-driven cavity, as the latter has been a benchmark

Fig. 8. Comparisons of predicted centreline velocity profiles with published results (a) u-velocity (b) v-velocity at Re = 400.
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(a) Re = 200, SRT. (b) Re = 200, TRT.

(c) Re = 1000, SRT and TRT.

Fig. 9. Temporal convergence history of the residual errors obtained in the cross-shaped cavity at antiparallel wall motion.

Table 2
Variation of longitudinal velocity components with the lattice velocities.

U (v/U )min (v/U )max

0.05 −0.6460 0.6460
0.1 −0.6450 0.6450

problem in this area. Additionally, the results of TRT and SRT
models are compared through the residual plots, to determine the
optimum model to be used in the name of numerical stability and
computational expenses. To give an insight to the reader about the
effect of boundary layer, three-dimensional simulations have also
been carried out in the same cavity configuration for the case of
uniform wall motions only.

The current paper is categorized into five sections. Section 1
briefly reviewed relevant literature of this work. Section 2 explains
the procedure of implementing LBM to fluid flow problems using
two-dimensional nine (D2Q9) and three-dimensional fifteen ve-
locity (D3Q15) models used in the adopted geometry. In Section 3,
the double sided antiparallel uniformwall motion results are com-
pared with the published works. With this established confidence
in the developed numerical code, results of uniform parallel and
oscillating wall motions are later studied. Finally, the conclusions
of this work are summarized in Section 4.

Fig. 10. Schematic representation of double sided cross shaped cavity with antipar-
allel uniform wall motion.

2. Numerical technique and problem description

2.1. Lattice Boltzmann method formulation

For the Single-Relaxation-Time model (SRT) of Lattice Boltz-
mann Method, the discrete Boltzmann equation can be written
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(a) Re = 150. (b) Re = 200.

(c) Re = 500. (d) Re = 1000.

Fig. 11. Streamline patterns for double sided antiparallel wall uniform motion by present LBM at (a) Re = 150, (b) Re = 200, (c) Re = 500 and (d) Re = 1000.

as [50]:

fα (x + cα△t, t + △t) = fα (x, t) −
1
τ

[
fα (x, t) − fαeq(x, t)

]
(1)

where τ is the relaxation time related to the kinematic viscosity
and α varies from 0–8 and 0–14 for D2Q9 and D3Q15 models
respectively. Furthermore, fα (x, t) and f eqα (x, t) are the particle
and equilibriumdistribution functions associatedwith the discrete
lattice velocity eα at (x, t).

As mentioned earlier, a Two-Relaxation Time (TRT) model has
been additionally adopted for comparison with SRT. The discrete
Boltzmann equation in this case can be rewritten as [38]:

fα (x + cα∆t, t+∆t) = fα (x, t) −
1
τ+

[
fα+ (x, t) − fαeq,+ (x, t)

]
−

1
τ−

[
fα− (x, t) − fαeq,− (x, t)

]
(2)

where τ+ and τ− refer to the symmetrical and anti-symmetrical
relaxation times,whose relations are expressed later. The symmet-
rical and anti-symmetrical components of the distribution function
can be computed as shown in Eq. (3).

fα+
=

fα + fα
2

, fα−
=

fα − fα
2

(3)

where, α denotes the lattice direction opposite to α. Symmetri-
cal and anti-symmetrical components of equilibrium distribution
function can also be calculated in a similar fashion as in Eq. (3). The
discrete lattice velocities for the D2Q9 and D3Q15 models can be
calculated as shown in Eqs. (4) and (5) [51,26]:

eα, D2Q9 =

{
(0, 0) , α = 0
(±1, 0) , (0, ±1) α = 1 − 4
(±1, ±1) , α = 5 − 8

(4)
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Fig. 12. Variation of the primary vortex with the Reynolds number at antiparallel
motion in the cross shaped cavity.

eα, D3Q15

=

{
(0, 0, 0) α = 0
(±1, 0, 0) , (0, ±1, 0) , (0, 0, ±1) α = 1 − 6
(±1, ±1, 0) , (±1, 0, ±1) , (0, ±1, ±1) α = 7 − 14.

(5)

The equilibriumdistribution function forD2Q9 andD3Q15models
as shown in Fig. 1 can be expressed as [3]:

fαeq
= ρwα

[
1 +

3
c2

(eα · u) +
9
2c4

(eα · u)2 −
3
2c2

(u · u)
]

(6)

where c = ∆x/∆t is the lattice speed, with ∆x and ∆t being the
lattice spacing and time step respectively.

The lattice weights wα for theD2Q9 andD3Q15models [3] are
taken as:

wα, D2Q9 =

{4/9 ; α = 0
1/9 ; α = 1 − 4
1/36 ; α = 5 − 8

(7)

wα, D3Q15 =

{2/9 ; α = 0
1/9 ; α = 1 − 6
1/72 ; α = 7 − 14.

(8)

The density and velocity can be computed from the equations:

ρ =

∑
α

fα =

∑
α

f (eq)α (9)

ρu =

∑
α

fαeα =

∑
α

f (eq)α eα. (10)

Pressure can be obtained from the equation of state p = ρc2s ,
where the speed of sound is taken to be cs = 1/

√
3. Moreover, the

kinematic viscosity can be related to the symmetrical relaxation
time and speed of sound as

υ = (τ+
−

1
2
)c2s ∆t. (11)

To obtain numerically stable results, the relation between the
relaxation times to calculate the anti-symmetrical relaxation pa-
rameter is in accordance with the magic number relation [52]:
1
4

= (τ+
−

1
2
)(τ−

−
1
2
). (12)

2.2. Problem description

Fig. 2 depicts the geometry of the double-sided cross-shaped lid
driven cavity considered in the present study. It is an extension of

a square cavity to a complicated geometry, which is a symmetrized
version of the staggered lid-driven cavity. This cavity comprises of
two facing walls moving in the same and opposite directions with
the same imposed velocity of u, while the other walls remain at
rest. In the case of uniform wall motion, the velocities of the mov-
ing walls will be fixed to the maximum lid velocity (U). However,
the velocities of the moving walls vary cosinusoidally according
to the equation: u = U cos(ωt) in the case of oscillating wall
motions, where t and ω refer to the time and oscillating frequency
respectively.

In the present study, Reynolds numbers of 150, 200, 500 and
1000 are considered for the two-dimensional uniformwall motion
studies, whereas Reynolds numbers of 200, 500 and 1000 have
been considered for the oscillating wall motion studies. Moreover,
oscillating frequencies of 2π/6 and 4π/3 have been considered for
the cases of parallel and antiparallel wall motions.

The Reynolds number is defined as:

Re =
UL1
νf

(13)

where, L1 and νf denote the width of the cavity and kinematic
viscosity of the fluid respectively. As per this geometry, the width
of the cavity L1 is taken to be 1.4L [45].

2.2.1. Boundary conditions
Dirichlet boundary conditions are implemented by equating the

lattice velocities at the moving walls to the fixed lid velocities. Ad-
ditionally, both the velocity components at the remaining station-
arywalls are initialized to zero. Secondorder accurate bounce-back
boundary conditions are also used to model the no-slip boundary
across the wall [50]. Zou/He boundary conditions [53] are also
applied to the moving walls when the velocity of the moving
walls are knownbeforehand. In this case, the unknowndistribution
functions are computed by assuming the bounce back conditions to
be valid for the non-equilibrium part of the distribution function
normal to themoving wall. For the case of the topmovingwall, the
unknown distribution functions can be related as:

ρtw =
1

(1 − vtw)
(f0 + f1 + f3 + 2 (f2 + f5 + f6))

f4 = f2 −
2
3
ρtwvtw

f7 = f5 +
1
2
(f1 − f3) −

1
6
ρtwvtw −

1
2
ρtwutw

f8 = f6 −
1
2
(f1 − f3) −

1
6
ρtwvtw +

1
2
ρtwutw

(14)

where ρtw, utw and vtw refer to the lattice density and the velocity
components at the top moving wall respectively. Similar relations
can be obtained for the bottom moving wall (in the case of two-
sided wall motion).

2.2.2. Lattice Boltzmann method algorithm
Anumerical code inMATLAB implementing LBMwasdeveloped

for obtaining the relevant simulation results. A maximum lid ve-
locity of U = 0.1 was considered across the moving walls (after
performing a lattice velocity independence test explained later).
Initial values of the density, velocity and distribution functions at
each node in the cavity were initialized to unity, zero and equilib-
rium distribution functions respectively, along with the initializa-
tion of the moving lid velocity with suitable boundary conditions.
The developed code comprises of relevant steps present in LBM
— streaming, collision, application of boundary conditions and
calculation of flow variables (density and velocities) as shown in
Fig. 3. Once the convergence criterion was satisfied, relevant plots
like streamline profiles, vorticity contours, pressure contours and
centreline velocity profiles were obtained.
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(a) Re = 150. (b) Re = 200.

(c) Re = 500. (d) Re = 1000.

Fig. 13. Vorticity contours for double sided antiparallel wall uniform motion by present LBM at (a) Re = 150, (b) Re = 200, (c) Re = 500 and (d) Re = 1000.

2.3. Code validation study

A square lid driven cavity with single-sided wall motion was
used for numerical code validation. Fig. 4(a) shows the geometry
of the square cavity considered for this purpose. The streamline
patterns and centreline velocity profileswere plotted at Re = 1000
as shown in Fig. 5. The streamline patterns at this Reynolds number
depict the formation of a primary vortex at the centre of the cavity,
along with two secondary vortices at the corners. Validation of the
developed code was accomplished by comparing the centreline
velocity profiles with Ghia et al. [19]. As observed in Fig. 6, good
agreement of the results is observed,which confirms the credibility
of the developed code.

Additionally, the numerical code developed for the single sided
square cavity was extended to a double sided square cavity for
verification. Fig. 4(b) shows the geometry of the square cavity
of length L with the top and bottom walls moving at a constant

velocity in the opposite directions. At Re = 400, the streamline
patterns were obtained and the centreline velocity profiles were
compared with the results of Perumal and Dass [23], which were
obtained using a Finite difference method (FDM). The streamline
patterns in Fig. 7 reveal the formation of a primary vortex at the
centre of the cavity, and good agreement of the results is observed
with [23] as seen from the centreline velocity profiles shown in
Fig. 8, which confirms the credibility of the developed code.

2.4. Convergence studies

Convergence forms a crucial step in any CFD simulation, to
render physically reliable simulations. In the current study, tem-
poral convergence and lattice convergence studies have been es-
tablished to obtain satisfactory results. A modified relative L2 error
norm which considers the effect of both the velocity components,
has been adopted to compute the residual error. The error norm is
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(a) Re = 150. (b) Re = 200.

(c) Re = 500. (d) Re = 1000.

Fig. 14. Pressure contours for double sided antiparallel wall uniform motion by present LBM at (a) Re = 150, (b) Re = 200, (c) Re = 500 and (d) Re = 1000.

of the form:

Error =

√∑
i,j

((
un − un−1

)2
+

(
vn − vn−1

)2)
∑

i,j

((
un−1

)2
+

(
vn−1

)2) (15)

where the un and un−1 refer to the new and old horizontal velocity
components respectively, estimated between a gap of 100 time
steps. Before proceeding with the simulations in the cross shaped
cavity configuration, temporal convergence studies have been per-
formed in the antiparallel configuration of the cross shaped cav-
ity at Reynolds numbers of 200 and 1000, as shown in Fig. 9.
Steady state simulations have been subsequently obtained for
all simulations till the error satisfies the convergence criterion,
Error ≤ 10−10.

The main intention of plotting the history of residual errors
was to identify the presence of numerical instabilities in the so-
lution and to estimate the damping rate of the leading steady

mode. At a low Reynolds number of 200, both SRT and TRT seem
to induce small numerical fluctuations in the residue, and their
damping rates (−3.0756e−04 and −3.04586e−04 respectively) are
similar. However, at a high Reynolds number of 1000, the SRT
approach seems to induce numerical fluctuations, while the TRT
approach does not. Additionally, the initial damping rate of TRT
(−1.048e−04) is close to the one obtained by SRT (−1.0525e−04).
But, the damping rate of the TRT approach at large times de-
creases, and the average damping rate (a linear curve-fit) of TRT
(−6.8054e−05) comes out to be quite different from the SRT. Nev-
ertheless, TRT seems to be a logical approach at high Reynolds
numbers as its free from any numerical instabilities. Hence, in the
current work, TRT model has been subsequently used for perform-
ing all numerical simulations at steady and oscillating conditions.
From Fig. 9, we can further observe that SRT achieves earlier
convergence than the counterpart TRT approach at Re = 1000,
which outlines the fact that different LBM models can lead to dif-
ferent times for attaining convergence, and different convergence
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Fig. 15. Centreline u-velocity and v-velocity profiles for double sided antiparallel wall uniform motion by present LBM.

(a) Re = 150. (b) Re = 200.

Fig. 16. Streamline patterns for three-dimensional double sided antiparallel uniform wall motion by present LBM at (a) Re = 150, (b) Re = 200.

Table 3
Location of primary and secondary vortex cores for double sided antiparallel uniform wall motion.

Re Authors Top primary
vortex

Bottom primary
vortex

Secondary vortex on
the left

Secondary vortex on
the right

x y x y x y x y

150 Present work 0.7657 1.2461 0.6343 0.1540 0.4311 0.6658 0.9687 0.7344

200
Vicente et al. [43] 0.7707 1.2326 0.6293 0.1673 0.5164 0.6778 0.8836 0.7221
Gogoi [45] 0.7701 1.2300 0.6302 0.1699 0.4801 0.6660 0.9192 0.7317
Present work 0.7705 1.2357 0.6295 0.1644 0.5309 0.6790 0.8691 0.7212

500
Vicente et al. [43] 0.7431 1.1876 0.6569 0.2122 0.7000 0.7000 – –
Gogoi [45] 0.7400 1.1800 0.6600 0.2200 0.7000 0.7000 – –
Present work 0.7425 1.1906 0.6573 0.2097 0.7000 0.7001 – –

1000
Vicente et al. [43] 0.7255 1.1721 0.6745 0.2278 0.4701 0.7322 0.9299 0.6776
Gogoi [45] 0.7229 0.1684 0.6800 0.2369 0.4700 0.7399 0.9600 0.6600
Present work 0.7237 1.1770 0.6874 0.2343 0.4428 0.7294 0.9684 0.6819
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(a) u-velocity profile. (b) v-velocity profile.

Fig. 17. Centreline (a) u-velocity and (b) v-velocity profiles for three-dimensional double sided antiparallel uniform wall motion by present LBM.

Table 4
Location of primary and secondary vortex cores for double sided parallel uniform wall motion.

Re Left top secondary
vortex

Left bottom secondary
vortex

Right top secondary
vortex

Right bottom
secondary vortex

Bottom primary
vortex

Top primary
vortex

x y x y x y x y x y x y

Present work

150 0.2705 0.8601 0.2706 0.5399 1.0466 0.8504 1.0466 0.5497 0.7547 0.1478 0.7548 1.2522
200 0.2675 0.8625 0.2675 0.5375 1.0275 0.8475 1.0275 0.5525 0.7625 0.1535 0.7625 1.2475
500 0.3175 0.8425 0.3175 0.5571 0.9302 0.8337 0.9302 0.5664 0.7554 0.2052 0.7554 1.1948

1000 0.4566 0.8266 0.4566 0.5735 0.8632 0.8185 0.8632 0.5816 0.7295 0.2303 0.7294 1.1698

Gogoi [45]

200 0.2200 0.8600 0.2100 0.5300 1.00 0.8400 1.01 0.5500 0.77 0.1700 0.77 1.2300
500 0.3100 0.8300 0.3200 0.5600 0.93 0.8300 0.92 0.5800 0.74 0.2400 0.74 1.1600

1000 0.3900 0.8500 0.4000 0.5600 0.89 0.8100 0.89 0.5900 0.72 0.2500 0.72 1.1500

rates. These observations are consistent with the studies initially
performedby Perez et al. [54],who comparedMRT and SRTmodels.

On the other hand, lattice convergence tests were performed
for three different lattice sizes ranging from 176× 176, 281× 281
and 561 × 561 in the double sided cross cavity at antiparallel
configuration. As observed in Table 1, not much improvement
in the vortex positions is observed on increasing the lattice size
from 281 × 281 to 561 × 561. Hence, an optimum lattice size of
281 × 281 was selected, as the lattice size of 561 × 561 would
consume enormous computational resources.

2.5. Lattice velocity independence study

In LBM, any suitable velocity which satisfies the incompressible
flow regime can be adopted for the simulations. However, the
number of time steps required for convergence decreases as the
lattice velocity increases. Thus, with a motive of utilizing less
computational resources, an optimum lattice velocity of 0.1 which
does not cause any significant change in the results was chosen.
This was accomplished by comparing themaximum andminimum
velocity components obtained (as seen in Table 2) for lid velocities
of 0.05 and 0.1, at Re = 1000 in the cross-shaped cavity with
antiparallel wall motion.

3. Results and discussions

In order to study the performance of the present LBM model,
it is applied to four pertinent fluid flow problems. These include
(i) cross shaped cavity with antiparallel uniform wall motion (ii)

Fig. 18. Schematic representation of double sided cross shaped cavity with parallel
uniform wall motion.

cross shaped cavity with parallel uniform wall motion (iii) cross
shaped cavity with antiparallel oscillating wall motion and (iv)
cross shaped cavity with parallel oscillating wall motion.

3.1. Cross shaped cavity with antiparallel uniform wall motion

Fig. 10 shows the schematic representation of double sided
cross shaped cavity with antiparallel uniform wall motion. In this
case, the top and bottom walls move in the opposite directions
with equal fixed velocities, while the other walls remain at rest.
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(a) Re = 150. (b) Re = 200.

(c) Re = 500. (d) Re = 1000.

Fig. 19. Streamline patterns for double sided cross shaped parallel wall uniform motion by present LBM at (a) Re = 150, (b) Re = 200, (c) Re = 500 and (d) Re = 1000.

Fig. 20. Variation of the primary vortex with the Reynolds number at parallel
motion in the cross shaped cavity.

As depicted in each streamline pattern, the moving walls induce
primary vortices in its immediate vicinity. Moreover, the stream-
lines in this case are found to be skew-symmetric with respect to
the centre of the cavity.

Fig. 11 shows the streamline patterns obtained for Re = 150,
200, 500 and 1000. From Fig. 11(a), two primary vortices are seen
on the top and bottom portions of the cavity. Additionally, two
secondary vortices are also observed opposite to each other on the
left and right sides of the cavity in a skew-symmetrical fashion
(termed as the two eddy pattern analogous to the case in the
staggered cavity [46]) at Re = 150. As the Reynolds number
increases to 200 (Fig. 11(b)), two other secondary recirculation
regions with opposite sense of rotation appear to move closer
towards the centre of the cavity domain. This type of flow pattern
is termed as the cat’s eyes flow pattern. Increasing the Reynolds
number toRe = 500 (Fig. 11(c)) results in themerging of secondary
vortices to form an elliptical shaped vortex (termed as the merged
vortex state) at the centre of the cavity domain. Interestingly, the
formation of this merged vortex state is also seen in the case of
staggered lid driven cavity [46]. At high Re = 1000 (Fig. 11(d)), the
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(a) Re = 150. (b) Re = 200.

(c) Re = 500. (d) Re = 1000.

Fig. 21. Vorticity contours for double sided parallel wall uniform motion at (a) Re = 150, (b) Re = 200, (c) Re = 500 and (d) Re = 1000.

secondary vortices formed at Re = 500 tend to get separated to
form cat’s eyes flow patterns again. This characteristic appearance
and disappearance of the cat’s eyes flow patterns with the change
in Reynolds numbers is also verified by Gogoi [45]. It is also wit-
nessed that as the Reynolds number increases, the top and bottom
primary vortex cores tend to move away from the top and bottom
walls of the cavity, towards the vertical centreline of the cavity
along with a shift in the secondary vortex position towards the
principal cavity centre (as seen in Fig. 11 for the case of Re = 500
and in Fig. 12). A similar movement of the primary vortex towards
the cavity centre has been fundamentally observed in a single-
sided cavity [19], and in the staggered cavity as well [46].

A stark difference which distinguishes the flow behaviour be-
tween the staggered and cross-shaped cavity configurations is
demonstrated at Reynolds numbers between 400–1000. In that
case, the flow behaviour in the staggered configuration remains as
the merged vortex state, with no signs of any change. Whereas, in

the cross-shaped configuration, the flow transforms into the two
eddy pattern with the formation of a merged vortex state at an
intermediate Reynolds number.

The present LBM streamline patterns of Re = 200, 500 and
1000 are in excellent agreement with Vicente et al. [43] and Gogoi
and Kalita [44,45]. Additionally, tertiary corner vortices have been
suitably captured for each streamline pattern in the cross shaped
cavity, which were not previously reported by Vicente et al. [43].
The vorticity contours of antiparallel uniform wall motion are also
depicted in Fig. 13. Results show that the moving wall generates
vorticity which diffuses inside the cavity, and this diffusion acts
as the driving mechanism of the flow. One can also observe the
formation of strong vorticity gradients at the walls (moving and
stationary) situated in the top and bottom portions of the cavity
domain,with an increase in theReynolds number. At highReynolds
numbers, the primary vortex cores have almost no viscous motion
(visible through the absence of gradients close at the primary
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(a) Re = 150. (b) Re = 200.

(c) Re = 500. (d) Re = 1000.

Fig. 22. Pressure contours for double sided parallel wall uniform motion at (a) Re = 150, (b) Re = 200, (c) Re = 500 and (d) Re = 1000.

vortex centres). This unique motion can be typically observed in
the flow associatedwith lid driven cavities [4], and is also observed
in the parallel wall motion of the cross shaped cavities. However,
the effect of these gradients seem to diminish at the walls present
in the left and right portions of the cavity domain. Additionally, a
star-shaped structure can be seen in the vorticity contours, which
seems to rotate about the cavity centre at high Reynolds numbers
of 500 and 1000. Again, these vorticity contours at Re = 200,
500 and 1000 of present LBM results exhibit an excellent match
with the published results [43–45]. Fig. 14 presents the pressure
contours obtained directly using the equation of state forRe = 150,
200, 500 and 1000. The centreline velocity profiles are listed in
Fig. 15. Good agreement of the velocity profileswith Gogoi [45] can
be observed, which confirms the reliability of the current meso-
scopic approach. Similar to the variation of the velocity profiles
in the staggered cavity [46], stronger velocity gradients can be

observed near the walls in the case of the cross-shaped cavity too,
as the inertial forces increase with the Reynolds number.

Table 3 presents the locations of the vortices obtained by using
LBM for Re = 150, 200, 500 and 1000. All these results are in good
agreement with Vicente et al. [43] and Gogoi [45], which further
substantiates the accuracy of the present LBM computations. From
the results predicted above, it can be concluded that the flow
behaves differently as the Reynolds number is varied from 150 to
1000, which is greatly affected by the flow pattern and shape of the
geometry. The presented results thus demonstrate the capability
of the mesoscopic LBM method in predicting complex fluid flow
behaviour in the double sided cross-shaped cavity problem. The
cross-shaped antiparallel uniformwallmotion results thus provide
us confidence to apply the present LBM to investigate other types
of complex fluid flow motions.
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Fig. 23. Centreline u-velocity and v-velocity profiles for double sided parallel wall uniform motion.

Fig. 24. Centreline u-velocity profile for three-dimensional double sided parallel
wall uniform motion by present LBM.

3.1.1. Three dimensional boundary layer effect
To study the three-dimensional boundary layer effect, D3Q15

lattice model is used in the present work. Fig. 16(a) and (b) shows
the stream traces in the x−y plane sliced at themid-span (z = 0.5)
of the cavity for Re = 150 and 200. The D3Q15 model consumes
less memory and computational time compared with D3Q19 and
D3Q27 models, which motivated us to apply it to this geometry.
Fig. 16(a) clearly shows the primary and secondary vortices which
resemble the two-dimensional streamline pattern obtained previ-
ously for Re = 150; However at Re = 200 (Fig. 16(b)), the cat’s
eyes flow pattern has not been fully developed unlike the case in
a two-dimensional cavity. Owing to the boundary layer effect of
the stationary walls, the mid-span (z = 0.5) flow in the 3-D cross-
shaped cavity is slightly different from that in the 2-D cross-shaped
cavity case. However, at low Re, the 3-D cavity flow patterns in
the symmetry plane are similar to those of a 2-D cavity case. The
present computations are carried out on a modest 71 × 71 × 51
lattice size.

Fig. 25. Schematic representation of double sided cross shaped cavity with antipar-
allel oscillating wall motion.

Fig. 17(a) and (b) shows the variations of u-velocity and v-
velocity along the vertical and horizontal centrelines along the
mid-span (z = 0.5) at Re = 150 and 200. As the Reynolds
number increases, an increase in the discrepancy between the two
and three-dimensional velocity profiles (at mid-plane) is noticed.
The present 3D mid-span velocity profiles plotted alongside cor-
responding 2D profiles reveal the fact that as Reynolds number
increases the influence of the boundary layer effects due to walls
also increases.

3.2. Cross shaped cavity with parallel uniform wall motion

In this case as shown in Fig. 18, the top and bottom walls move
in the same direction with equal fixed velocities. In contrast to the
anti-parallel wall motion, the streamlines in this case are found
to be symmetrical with respect to the centreline horizontal axis.
The parallel flow configuration of the geometry has been chosen
for this present work due to the gradual development of a free-
shear layer at the centre of the cavity domain, in addition to the
formation of secondary vortices and other exciting flow features.

Fig. 19 shows the streamline patterns obtained for Re = 150,
200, 500 and 1000 using the TRT model. At low Reynolds numbers
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(a) t = 0.2T. (b) t = 0.3T. (c) t = 0.35T.

(d) t = 0.4T. (e) t = 0.45T. (f) t = 0.5T.

(g) t = 0.7T. (h) t = 0.8T. (i) t = 0.85T.

(j) t = 0.9T. (k) t = 0.95T. (l) t = 1.0T.

Fig. 26. Streamline plots during the cycle for double sided antiparallel oscillating wall motion at Re = 200, ω = 2π/6.
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(a) First half of the cycle. (b) Second half of the cycle.

Fig. 27. Centreline u-velocity profiles for double sided antiparallel oscillating wall motion during (a) First half of the cycle and (b) Second half of the cycle.

(a) First half of the cycle. (b) Second half of the cycle.

Fig. 28. Centreline v-velocity profiles for double sided antiparallel oscillating wall motion during (a) First half of the cycle and (b) Second half of the cycle.

of Re = 150 and 200 (Fig. 19(a)), a pair of symmetric counter-
rotating secondary vortices are formed on the left and the right
halves of the cavity, along with a pair of primary vortices close
to the moving walls. In contrast to the anti-parallel uniform wall
motion, the secondary vortices formed in the central portion of the
cavity are separated by a shear layer, similar to the case of a double
sided square cavity in parallel wall motion [23,55]. Contrast to this
case, the shear layer in the case of staggered cavity [49] forms along
the shorter diagonal, as the top and bottom portions of the cavity
are offset by a certain distance. Additionally, the formation of a
single secondary vortex closer to the right wall in turn destroys
the symmetricity of the streamline patterns in the staggered case,
though its symmetric in the cross-shaped cavity. As the Reynolds
number increases to 500 (Fig. 19(c)), the cores of the two secondary
vortices on the right half of the cavity tend to move closer towards
the centre of the cavity. However, there is a restriction on their size
due to the bounding walls and viscous shear layer between them.
As the Reynolds number is further increased to 1000 (Fig. 19(d)), it
is observed that the vortex cores on the left half of the cavity also

tend to move closer towards the centre of the cavity, resulting in
the formation of cat’s eyes flow pattern. This result is expected on
account of the symmetric nature of the geometry and boundary
conditions in the cross-shaped cavity. For precise computations,
tertiary corner vortices have been again suitably captured in this
case of parallel motion too. From Fig. 20, the movement of the
primary vortices towards the vertical centreline of the cavity, on
increasing the Reynolds number can be observed.

The vorticity and pressure contours of this geometry are de-
picted in Figs. 21(a)–(d) and 22(a)–(d) respectively. In Fig. 23(a)–
(b), the centreline velocity profiles are validated with the previous
results by Gogoi [45]. The centreline v-velocity profile shows the
value close to zero. This behaviour can be attributed to the pres-
ence of shear layer, where both the velocity components turn zero.
The pressure contours, vorticity contours and centreline velocity
profiles are symmetrical analogous to the streamline profiles. Ad-
ditionally, Table 4 provides the locations of the vortices obtained
by the present study for Re = 150, 200, 500 and 1000 making
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(a) Re = 500.

(b) Re = 1000.

Fig. 29. Streamline plots for double sided antiparallel oscillating wall motion at t = 0.2T (left), t = 0.3T (centre) and t = 0.4T (right) for various Reynolds numbers at
ω = 2π/6.

(a) Re = 500.

(b) Re = 1000.

Fig. 30. Centreline velocity profiles for double sided antiparallel oscillating wall motion during the first half of the cycle for various Reynolds numbers at ω = 2π/6.
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(a) Re = 200.

(b) Re = 500.

(c) Re = 1000.

Fig. 31. Streamline plots for double sided antiparallel oscillating wall motion at t = 0.2T (left), t = 0.3T (centre) and t = 0.4T (right) for various Reynolds numbers at
ω = 4π/3.

it easier for the future researchers to compare their results. Fur-
ther, the vortex locations are in close agreement with Gogoi [45],
which again confirms the validity of the current mesoscopic
approach.

To study the three-dimensional boundary layer effect, centre-
line u-velocity profiles are plotted at Re = 150 and 200 using
the D3Q15 model. Fig. 24 shows the variation of u-velocity along
the horizontal centreline on thez = 0.5 plane. It is seen that the
difference in velocity profiles of 2D and 3D are insignificant in
both the cases of Reynolds number. Similar trends have also been
observed by Perumal [56] for low Reynolds number in 3-D double
sided cavity.

3.3. Cross shaped cavity with antiparallel oscillating wall motion

In this subsection, the flow behaviour in a cross-shaped cav-
ity with antiparallel oscillating wall motion for varying Reynolds
numbers and frequencies is studied using the TRT model of LBM.
Extensive review of literature reveals that very few studies have
been carried out pertaining to the oscillatingwallmotion, andnone
concerning cross shaped cavities. Fig. 25 depicts the geometry and
boundary conditions for antiparallel oscillating wall motion.

The streamline plots at various time instants have been initially
captured at Re = 200 and oscillating frequency of ω = 2π/6 as
seen in Fig. 26. The streamline plots have been divided into twohalf
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(a) Re = 200.

(b) Re = 500.

(c) Re = 1000.

Fig. 32. Centreline velocity profiles for double sided antiparallel oscillating wall motion during the first half of the cycle for various Reynolds numbers at ω = 4π/3.

cycles, with the streamline plots in both the halves being mirror
images of each other due to the reversal of the wall velocity di-
rections. The streamlines at each time instant are skew-symmetric
along the cavity centre, similar to the case of antiparallel uniform
wall motion.

Initially (at t = 0.2T), a pair of primary vortices generated due
to the motion of the lids can be observed at the top and bottom
halves of the cavity, along with a pair of secondary vortices close
to the left and right halves of the domain. At a later time instant
(0.3T), the secondary vortices tend to get merged towards the
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Fig. 33. Schematic representation of double sided cross-shaped cavity with parallel
oscillating wall motion.

cavity centre, which have a striking similarity with the streamline
patterns found in the case of uniform antiparallel wall motion
(Fig. 11(b)). However, the shear motion of the fluid layer between
the primary vortices and moving lids causes the formation of an-
other tertiary vortex. This tertiary vortex grows as time progresses
(at t = 0.35T), with subsequent shrinkage of the primary vortices
and fusion of the secondary vortices (t = 0.4T). At the end of the
first half cycle (t = 0.45T and 0.5T), the primary vortices dominate
the entire fluid domain. See Fig. 26.

The centreline u and v velocity profiles are depicted in Figs.
27(a)–(b) and 28(a)–(b) respectively. A stark difference between
the oscillating and uniform case with respect to the velocity vari-
ation, lies in the complex alternation of local fluid velocities. For
instance, in the case of uniform antiparallel wall motion, the local
fluid velocity assumes magnitudes lower than the lid velocities,
as the moving lid experiences maximum lid motion. However,
in the case of antiparallel oscillating wall motion, the local fluid
velocity (at t = 0.2T) exceeds the magnitude of the instanta-
neous lid velocity. This observation can be reported in the top
and bottom halves of the cavity, as the walls move in the op-
posite directions with same lid velocities. A similar observation
was initially described in an oscillating square cavity by Mendu
and Das [35]. Another significant importance in the oscillating
wall motion lies in the presence of several local extremum due
to the periodic motion of the cavity (seen from the v-centreline
velocity plots). These extrema indicate repetitive changes in the
magnitude and direction of the velocities, which signify the pres-
ence of complex vortices, thus causing enhanced mixing of the
fluid. This is also substantiated by the number of vortex cores
captured in the streamline patterns in these oscillating motions.
Since the repetitive velocity variation is absent in the uniformwall
motion, it is advisable to induce oscillating movements for mixing
applications.

Akin to the uniformwallmotion, the velocity components (both
u and v) attain the value of zero at the centre of the cross-shaped
cavity in the oscillating motions too. Since the top and bottom
walls have same lid motions (with same magnitude, but opposite
directions), the centreline velocity profiles are skew-symmetric.
Additionally, the velocity profiles in the first and second halves are
mirror images of each other, similar to the streamline patterns. This
implies reversal of the fluid motion, as the velocities in the second
half-cycle assume the values corresponding to the first half-cycle,
observed in the variation of a cosine wave.

For brevity, the streamline plots for other Reynolds numbers
and oscillating frequencies have been captured only at t = 0.2T,

0.3T and 0.4T time instants. Akin to the uniform wall motions
considered earlier, the simulations have been repeated for Re =

200 to 1000. At a fixed frequency of ω = 2π/6, additional vortices
are visible near the bounding walls for Re = 500 and 1000 in
comparison to Re = 200, apart from the secondary vortices near
the centre of the cavity domain as seen in Fig. 29. Additionally, the
size and strength of these primary vortices seem to diminish due
to their shrinkage caused by the formation of other vortices.

To observe the effect of oscillating frequencies, simulations
were performed for a low and high frequency : ω = 2π/6 and
4π/3. At the high oscillating frequency of 4π/3, formation of
vortices seem to be concentrated only at the top and bottomhalves
of the cavity domain (generated due to the moving lid motion)
or close to the bounding walls. However, the rate of formation of
the vortices near the central portion of the fluid domain decreases.
This indicates that the penetration of the fluid mass into the cav-
ity domain at high frequencies diminishes, when compared with
high frequencies. A similar interpretation can be inferred from the
centreline velocity profiles explained later.

As Reynolds number increases, the u-velocity profiles show the
restriction of the fluid mass below the lid (thinning of the width of
velocity profiles). A similar thinning of the v-velocity profiles at the
centreline portion of the fluid can be observed. This observation
thus reports that low Reynolds numbers are preferable for high
mixing phenomenon for antiparallel motion. On a similar note,
increasing the oscillating frequency at fixed Reynolds numbers
causes similar thinning of the velocity profiles. Thus, low oscillat-
ing frequencies are preferable for mixing phenomenon in the case
of antiparallel motion. See Figs. 30–32.

3.4. Cross shaped cavity with parallel oscillating wall motion

This section discusses the flow in a double sided cross-shaped
cavity with parallel oscillating wall motion using TRT model of
LBM. Geometry and boundary conditions of the cavity are shown
in Fig. 33. The direction of the top and bottomwall movements are
chosen in same directions so that interesting fluid flow patterns
may be observed inside this cross-shaped cavity.

Fig. 34(a)–(l) show that the streamlines at each time instant
are symmetric with respect to the horizontal axis similar to the
case of parallel uniform wall motion. Initially (at t = 0.2T), the
cross-shaped cavity is primarily dominated by a pair of primary
vortices generated due to the lid motion. Additionally, two pairs of
vortices in the left and right halves of the cavity are also observed,
which tend to enlarge in size with the passage of time. As time
progresses to 0.3T, another pair of counterclockwise vortices close
to the moving lids is observed, which is chiefly generated due
to the no-slip boundary conditions at the wall. As the lids tend
to move backward (in the first half of the cycle), these pair of
vortices get merged with the vortices previously generated at the
left half of the cavity, causing the primary vortices to gradually
shrink. At the end of the half cycle (at t = 0.5T), the pair of
counterclockwise vortices occupy the top and bottom half regions
of the cavity, along with a pair of secondary vortices located in
the left half of the fluid domain. The same vortex motion is ob-
served in the second half of the cycle, due to the periodicity of the
motion.

Fig. 35(a) and (b) show the centreline u-velocity profiles, with
complex variation of the fluid velocities. This complex variation is
substantiated by the presence of several local extremum, due to the
periodic motion of the cavity. However, the centreline v-velocity
(from Fig. 36) is almost negligible due to the formation of shear
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(a) t = 0.2T. (b) t = 0.3T. (c) t = 0.35T.

(d) t = 0.4T. (e) t = 0.45T. (f) t = 0.5T.

(g) t = 0.7T. (h) t = 0.8T. (i) t = 0.85T.

(j) t = 0.9T. (k) t = 0.95T. (l) t = 1.0T.

Fig. 34. Streamline plots during the cycle for double sided parallel oscillating wall motion at Re = 200, ω = 2π/6.
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(a) First half of the cycle. (b) Second half of the cycle.

Fig. 35. Centreline u-velocity profiles for double sided parallel oscillating wall motion during (a) First half of the cycle and (b) Second half of the cycle.

(a) First half of the cycle. (b) Second half of the cycle.

Fig. 36. Centreline v-velocity profiles for double sided parallel oscillating wall motion during (a) First half of the cycle and (b) Second half of the cycle.

(a) Re = 500.

Fig. 37. Streamline plots for double sided parallel oscillatingwall motion at t = 0.2T (left), t = 0.3T (centre) and t = 0.4T (right) for various Reynolds numbers atω = 2π/6.
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(b) Re = 1000.

Fig. 37. (continued)

Fig. 38. Centreline velocity profiles for double sided parallel oscillating wall motion during the first half of the cycle for Re = 500 (left) and Re = 1000 (right) at ω = 2π /6.

layer at the centre of the cavity. A similar formation of the shear
layer was observed earlier in the case of uniform parallel motion.
Moreover, the centreline velocity profiles are symmetric, similar to
the streamline patterns due to the motion of the walls in the same
direction.

For an increase in the oscillating frequency, the size and
strength of the vortices in the entire fluid domain at parallel
oscillating wall motion seem to diminish as seen in Fig. 37.
However, in the case of antiparallel oscillating wall motion, the
formation of wall eddies and vortices near the moving walls
increases, though in the central cavity portion decreases. This
can be substantiated by the shrinkage of primary vortices with
subsequent tendency of other vortices to get merged with the
former (as seen in Fig. 39). Thus, this necessitates the usage
of low oscillating frequencies for optimum fluid mixing even
in the case of parallel oscillating motions. On a similar note,
the thinning of the centreline velocity profiles (Figs. 38 and 40)
also supports this statement. For optimum mixing phenomenon,
a low Reynolds number is preferable in the case of parallel
oscillating wall motion too, for a similar reason as explained
earlier.

4. Conclusions

A complex problem of cross-shaped double sided cavity with
uniform and oscillating wall motion is introduced in the context of
benchmarking, using mesoscopic lattice Boltzmann method. Ini-
tially, results are obtained for the antiparallel uniformwall motion
of the cross-shaped double-sided cavity and validated with the
published literature.With this belief, it has been extended to paral-
lel uniform and oscillating wall motions of the cavity. It is believed
that these four pertinent fluid flow problems have the potential
to become equally popular as other benchmark cavity problems
like single sided square cavity, double-sided square cavity, natural
convection in the cavity etc. This manuscript also lists a variety of
interesting fluid flow features including vortex dynamics, symme-
try and skew-symmetry of the streamlines which cannot be veri-
fied from existing benchmark problems. Qualitative flow features
such as streamline patterns, velocity profiles, pressure and vor-
ticity contours are also depicted for various Reynolds numbers at
different oscillating frequencies. Quantitative results of 2D vortex
core positions are also tabulated for a better understanding of fluid
motion. Three dimensional boundary layer effects are also studied
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(a) Re = 200.

(b) Re = 500.

(c) Re = 1000.

Fig. 39. Streamline plots for double sided parallel oscillating wall motion at t = 0.2T (left), t = 0.3T (centre) and t = 0.4T (right) for various Reynolds numbers at ω = 4π /3.

in the case of low Reynolds numbers. Studies carried out in the
case of oscillating wall motions show the importance of using low
Reynolds numbers and low oscillating frequencies for optimum
fluid mixing phenomenon in this particular cavity configuration.
This has been verified by capturing streamline plots at various
time instants and through the centreline velocity profiles. On a
practical scenario, a combination of low to moderate Reynolds
number (100–500) with a low oscillating frequency (ω = 2π/6)
depending on the application will suffice. This has been found
to render better mixing than uniform wall motions. Additionally,
the qualitative and quantitative results of this cavity configuration

presented in thisworkwillmake it easier for the future researchers
to compare their results.
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(a) Re = 200. (b) Re = 500.

(c) Re = 1000.

Fig. 40. Centreline velocity profiles for double sided parallel oscillating wall motion during the first half of the cycle for various Reynolds numbers at ω = 4π/3.
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