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Buckling analysis of skew
magneto-electro-elastic plates
under in-plane loading

MC Kiran and Subhaschandra Kattimani

Abstract
This article deals with the study of buckling behaviour of multilayered skew magneto-electro-elastic plate under uniaxial
and biaxial in-plane loadings. The skew edges of the skew magneto-electro-elastic plate are obtained by transforming the
local skew coordinate to the global using a transformation matrix. The displacement fields corresponding to the first-
order shear deformation theory along with constitutive equations of magneto-electro-elastic materials are used to
develop a finite element model. The finite element model encompasses the coupling between electric, magnetic and elas-
tic fields. The in-plane stress distribution within the skew magneto-electro-elastic plate due to the enacted force is con-
sidered to be equivalent to the applied in-plane compressive loads in the pre-buckling range. This stress distribution is
used to derive the potential energy functional of the skew magneto-electro-elastic plate. The non-dimensional critical
buckling load is attained from the solution of the allied linear eigenvalue problem. Influence of skew angle, stacking
sequence, span-to-thickness ratio, aspect ratio and boundary condition on the critical buckling load and their corre-
sponding mode shapes is investigated.
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Introduction

Recently, the demand for multifunctional structures in
many engineering applications has been increasing rap-
idly. One such material possessing multifunctional cap-
abilities is magneto-electro-elastic (MEE) composite.
The MEE composites find their presence in smart struc-
tural components, electronic probes, high-frequency
devices, sensors, actuators and so on and hold its scope
in many future applications. These composites are
formed from the combination of two distinct phases
such as piezoelectric and magnetostrictive material. A
new product property (Van Suchtelen, 1972) arising
from the combination of two such distinct phases is
called magneto-electric coupling and is observed only in
MEE composites. However, the individual phases, that
is, piezoelectric and magnetostrictive of the composite,
exhibit electro-elastic and magneto-elastic coupling,
respectively. The first production of MEE composite
using unidirectional solidification (Boomgaard and
Born, 1978) was followed by numerous analytical, finite
element (FE) and many more mathematical models to
understand the characteristic behaviour of MEE struc-
tures. Studies related to free vibration, static, buckling,
nonlinear, dynamic behaviour and so on have gained

more importance with the increase in the application
spectrum of MEE composites.

The free vibration characteristics and static beha-
viour under various loading conditions of MEE plate
are extensively reported in the literature (Bhangale and
Ganesan, 2005; Buchanan, 2004; Chen et al., 2014;
Guan, 2012; Kondaiah et al., 2015; Kondaiah and
Shankar, 2017; Lage et al., 2004; Moita et al., 2009;
Ramirez et al., 2006; Wang et al., 2003). Pan and his
co-researchers (Pan, 2001; Pan and Han, 2005; Pan and
Heyliger, 2002, 2003) laid down the benchmark solu-
tions for free vibration and static studies of MEE plate.
Milazzo (2014a, 2014b) provided key contributions in
understanding the large deflection and free vibration
aspects of MEE plate. Active constrained layered
damping treatment was imparted for the effective con-
trol of nonlinear vibrations in MEE plates and shells
by Kattimani and Ray (2014a, 2014b, 2015). Liu et al.
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(2016) obtained higher order solutions for MEE plate
with non-uniform materials using scaled boundary FE
method. Vinyas and Kattimani (2017a, 2017b, 2017c)
analysed the static behaviour of stepped functionally
graded MEE plates and beams subjected to various
thermal loading. The geometrically nonlinear vibra-
tions of multiferroic composite plate and shell were
analysed by Kattimani (2017). Recently, the refined
models involving the Carrera unified formulation has
facilitated the evaluation of various approaches such as
the layerwise models and equivalent single-layer models
in the unified formulation (Carrera et al., 2009, 2018;
Milazzo, 2016; Ottavio and Carrera, 2010).

The stability characteristics of MEE plate have
recently sought much attention from researchers.
Kumaravel et al. (2007, 2010) were the first to report
buckling behaviour under thermal environment for
layered and functionally graded MEE beams and cylin-
ders. The stability characteristic of MEE plate resting
on Pasternak elastic foundation was investigated by Li
(2014). Considering the surface effects, Xu et al. (2016)
analysed the bending and buckling behaviour of MEE
beams. Ebrahimi et al. (2016a, 2016b, 2016c) used non-
local theory to investigate the stability behaviour of
MEE beams, nano beams and nano plates. Meanwhile,
Li et al. (2016) studied the buckling behaviour of func-
tionally graded nano beam using nonlocal theory. Free
vibration and biaxial buckling of MEE micro plates
were analysed using modified strain gradient theory by
Jamalpoor et al. (2017).

A plate with skewness introduced as a geometrical
modification exhibited enhanced structural strength
characteristics (Durvasula, 1971; Mizusawa et al., 1998;
Wang et al., 1992). Many studies involving the buck-
ling of skew plates were reported by several researchers.
Wang (1997) investigated the buckling of fibre-
reinforced composite skew plates using first-order
shear deformation theory (FSDT) in conjunction with
B-spline Rayleigh–Ritz method. A new method based
on higher order shear deformation theory was pro-
posed by Chakrabarti and Sheikh (2010) to analyse the
buckling behaviour of laminated composite plates. The
corner stresses influencing the buckling behaviour of
skew composite plates subjected to in-plane loading
were analysed by Daripa and Singha (2009). Nonlinear
stability behaviour of composite skew plates was evalu-
ated by Kumar et al. (2016). Upadhyay and Shukla
(2013, 2014) investigated the post-buckling behaviour
of laminated composite skew pales under combined in-
plane loadings. Jaberzadeh and Azhari (2014) pre-
sented the local stability characteristics of viscoelastic
composite skew plates.

The comprehensive literature review suggests that
the extensive research pertaining to free vibration, sta-
tic studies, nonlinear behaviour, dynamic characteris-
tics of layered and functionally graded MEE plates,
beams and shells have been extensively published. In

addition, studies concerned with buckling behaviour of
MEE plates resting on an elastic foundation are
recently reported. Furthermore, the buckling behaviour
of the laminated skew composite plate is also well
reported. However, to the best of authors’ knowledge,
studies related to buckling of multilayered skew MEE
(SMEE) plate are unavailable in the open literature.
Consequently, this article presents an FE model based
on FSDT to assess the stability characteristics of the
multilayered SMEE plate. The stability characteristics
are well presented in terms of non-dimensional critical
buckling load and their corresponding mode shapes
which are obtained by solving a linear eigenvalue prob-
lem. In addition, parametric studies such as the effect
of skew angle, uniaxial and biaxial compression, aspect
ratio, span-to-thickness ratio and boundary conditions
on buckling behaviour of SMEE plate are studied in
detail.

Problem description and governing
equation

A schematic diagram of a three-layered SMEE plate is
illustrated in Figure 1. The length, the width and the
total thickness of the plate are a, b and H, respectively.
a is the skew angle of the SMEE plate. The SMEE plate
consists of three layers of equal thickness hi (i = 1, 2,
3). The top and the bottom layers are made of identical
material, either piezoelectric (BaTiO3) commonly repre-
sented by B or magnetostrictive (CoFe2O4) commonly
represented by F while the middle layer is of the other
material, that is, magnetostrictive or piezoelectric.
Based on the stacking sequence of the material, the
SMEE composite is called B/F/B or F/B/F indicating
the top/middle/bottom layer, respectively, wherein B
refers to barium titanate while F refers to cobalt ferrite.
The SMEE plate is subjected to uniaxial and biaxial in-
plane loads as shown in Figure 2.

Figure 1. Illustration of three-layered SMEE plate.
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The displacement field of such SMEE plate is consid-
ered as a first-order expansion of Taylor’s series of the
midplane variables with respect to the plate thickness.
Hence, the displacement fields are given by

u= u0 + zux, v= v0 + zuy,w=w0 ð1Þ

where u0, v0 and w0 are the initial displacements at
the midplane, and ux and uy are the rotations of
the line initially normal to the midplane relative to
the y- and x-axis, respectively. For the ease of compu-
tation, the displacement components are split into
translational and rotational displacement vectors as
follows

fdtg= ½ u0 v0 w0 �T , fdrg= ½ ux uy �T ð2Þ

Since thin plate analysis is involved, to avoid shear
locking, selective integration scheme is used. In addi-
tion, to emphasize the effect of transverse shear defor-
mation, the strain at any point in the SMEE plate is
divided into bending strain vector and shear strain vec-
tor represented as follows

feg= f ex ey ez gxy gxz gyz gT

febg= f ex ey ez gxy gT , fesg= ½ gxz gyz �T
ð3Þ

Using the displacement field from equation (1) and
the strain components in equation (3) along with the
strain–displacement relations, the state of in-plane,
transverse normal and transverse shear stress compo-
nents at any point in the plate can be expressed as

febg= febtg+ ½Z1�febrg, fesg= festg+ ½Z2�fesrg ð4Þ

in which ½Z1� and ½Z2� are the transformation matrices
given as

½Z1�=

z 0 0 0

0 z 0 0

0 0 0 0

0 0 0 z

2
664

3
775, ½Z2�=

1 0

0 1

� �
ð5Þ

Correspondingly, the various strain components
appearing in equation (4) are given by

febtg=
∂u0

∂x

∂v0

∂y
0
∂u0

∂y
+

∂v0

∂x

� �T

, festg=
∂w0

∂x

∂w0

∂y

� �T

febrg=
∂ux

∂x

∂uy

∂y
0
∂ux

∂y
+

∂uy

∂x

� �T

, fesrg= ½ ux uy �T

ð6Þ

Analogous to the strain vectors presented in equa-
tion (3), the stress state at any given point in the SMEE
plate can be expressed as follows

fsbg= ½sx sy sz txy �T , fssg= ½ txz tyz �T ð7Þ

wherein sx, sy and sz along the x-, y- and z-directions
are the corresponding normal stresses; the in-plane
shear stress component is txy; txz and tyz are the out-of-
plane shear stress components along the xz- and yz-
directions, respectively. Considering the effect of
coupled fields, the constitutive equations for the SMEE
plate are given by

fsk
bg= ½�Ck

b �fek
bg � fek

bgEz � fqk
bgHz, fsk

sg= ½�Ck
s �fek

sg
ð8aÞ

Dz = fek
bg

Tfek
bg+ jk

33Ez + d33Hz ð8bÞ

Bz = fqk
bg

Tfek
bg+ dk

33Ez +m33Hz ð8cÞ

Here, k = 1, 2, 3 denotes the layer number initiating
from the bottom layer of the SMEE plate and

½�Ck
b �=

�Ck
11

�Ck
12

�Ck
13 0

�Ck
12

�Ck
22

�Ck
23 0

�Ck
13

�Ck
23

�Ck
33 0

0 0 0 �Ck
66

2
66664

3
77775, ½�Ck

s �=
�Ck

55
�Ck

45

�Ck
45

�Ck
44

" #

ð9Þ

where ½�Ck

b� and ½�C
k

s � represent the transformed coeffi-
cient matrices, jk

33 is the dielectric constant, m33 repre-
sents the magnetic permeability coefficient and d33 is
the electromagnetic coefficient. Since the plate is con-
sidered to be thin, the electric displacement, the electric
field, the magnetic induction and the magnetic field
along the z-direction are only considered and repre-
sented by Dz, Ez, Bz and Hz, respectively. The electric
coefficient matrix fek

bg and the magnetic coefficient
matrix fqk

bg are given by

fek
bg= f e31 e32 e33 e36 gT ,

fqk
bg= f q31 q32 q33 q36 gT ð10Þ

Using the principle of virtual work, the governing
equations for the SMEE plate can be established as

dP= dU + dV = 0 ð11Þ

wherein

Figure 2. SMEE plate subjected to biaxial and uniaxial
compression modes.
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dU =
X3

k = 1

ð
Lk

dfek
bgfsk

bgdLk +

0
B@ ð

Lk

dfek
sgfsk

sgdLk

+

ð
Lk

dfdtgT
rkf€dtgdLk

1
CA� ð

Lt

dEt
zD

t
zdLt �

ð
Lb

dEb
z Db

zdLb

�
ð

Lm

dHzBzdLm �
ð

Ael

dfdtgT
FtdAel ð12Þ

Meanwhile, the work accounted for applied in-plane
loads can be expressed as

dV =

ða
0

ðb
0

∂w
∂x

∂w
∂y

" #T
½s0�

∂w
∂x

∂w
∂y

" #
dxdy ð13Þ

where Lk (k = 1, 2, 3) designates the volume of the
respective layer, Ft corresponds to the applied surface
traction force on the top surface area Ael and rk denotes
the mass density of the kth layer. Lt and Lb represent
the volume of the top and bottom piezoelectric, respec-
tively, while the middle magnetostrictive layer is repre-
sented by Lm. ½s0� is the initial stress matrix. Et

z, Eb
z and

Dt
z, Db

z are the electric fields and the electric displace-
ments of the top and the bottom layers of the SMEE
plate, respectively, whereas Hm

z and Bm
z are the magnetic

field and magnetic induction in the middle layer, respec-
tively. The transverse electric field (Ez) is related to the
electric potential and the transverse magnetic field (Hz)
is related to the magnetic potential in accordance with
Maxwell’s equation as follows

Et
z = � ∂ft

∂z
,Eb

z = � ∂fb

∂z
and Hm

z = � ∂cm

∂z
ð14Þ

where t, b and m represent the top, bottom and middle
layers of the SMEE plate, respectively, depending on
the stacking sequence of the layers. The interface link-
ing piezoelectric and magnetostrictive layers is assumed
to be properly grounded. Since the SMEE plate layers
possess a very small thickness, the variation in the elec-
tric and magnetic potential across the thickness can be
suitably assumed to be linear. Correspondingly, the
electric potential functions ft and fb pertaining to the
top and the bottom piezoelectric layers and cm the mag-
netic potential pertaining to the middle magnetostric-
tive layer of the SMEE plate (Kattimani, 2015) can be
represented as

ft =
z� zb

h
f1,fb = � z� h2

h
f2, and cm =

z� h2

h
�c

ð15Þ

where zb denotes the z-coordinate of the bottom surface
of the top piezoelectric layer (Kattimani, 2015); h2 rep-
resents the z-coordinate of the top face of the bottom
piezoelectric layer; the electric potentials f1 and f2

correspond to the top and the bottom surfaces of the
top and the bottom piezoelectric layers, respectively
(Kattimani and Ray, 2014a). The magnetic potential
on the bottom face of the middle magnetostrictive layer
is indicated by �c.

FE formulation

The SMEE plate is discretized using four-noded quad-
rilateral elements. Considering equation (2), the displa-
cement vectors in generalized form fdtig and fdrig are
linked with the ith node (where i = 1, 2, 3, 4) of an ele-
ment and can be articulated as

fdtig= ½ u0i v0i w0i �T and fdrig= ½ uxi uyi �T ð16Þ

At any given point within the element, the displace-
ment vectors in generalized form fdtg and fdrg, the
generalized electric potential vector ffg and the gener-
alized magnetic potential vector fcg can be expressed
in terms of nodal generalized displacement vectors
fdel

t g and fdel
r g, the nodal magnetic potential vector

fcelg and the nodal electric potential vector ffelg,
respectively (Kattimani, 2015), as follows

fdtg= ½nt�fdel
t g, fdrg= ½nr�fdel

r g,
ffg= ½f1 f2 �T = ½nf�ffelg
fcg= ½c1 c2 �T = ½nc�fcelg and fcmg= ½nm

c �fcel
mg
ð17Þ

in which

fdel
t g= fdel

t1g
T fdel

t2g
T

. . . fdel
t4g

T
h iT

,

fdel
r g= fdel

r1g
T fdel

r2g
T

. . . fdel
r4g

T
h iT

ffelg= ff11 f21 f12 f22 . . . f14 f24 gT ,

f�celg= f �c1
�c2 . . . �c4 g

T

½nt�= ½ nt1 nt2 . . . nt4 �T , ½nr�= ½ nr1 nr2 . . . nr4 �T

½nf�=
nf11

0 nf12
0 nf14

0

0 nf21
0 nf22

. . . 0 nf24

� �T

,

½nc�= ½ nc1 nc2 . . . nc4 �T

nti =NiIt, nri =NiIr

ð18Þ

where ½nt�, ½nr�, ½nf� and ½nc� are the shape function
matrices while It and Ir are the identity matrices, respec-
tively (Kattimani, 2015). The shape function Ni corre-
sponding to the natural coordinate is linked with the
ith node. The degrees of freedom corresponding to elec-
tric potential and magnetic potential are f1i, f2i (where
i = 1, 2, 3, 4) and �ci, respectively. Using equations (12)
to (16), the transverse electric field for the top and the
bottom layers (Et

z, Eb
z ) and the transverse magnetic field

for the middle layer (Hm
z ) are given by

4 Journal of Intelligent Material Systems and Structures 00(0)



Et
z = � 1

h
½ 1 0 � nf

� �
ffelg,

Eb
z = � 1

h
½ 0 1 �½nf�ffelg, and Hm

z = � 1

h
½nc�fcelg

ð19Þ

Now, considering equations (4) and (16), the strain
vectors in generalized form at any given point in the ele-
ment can be presented in the form of nodal generalized
strain vectors as

febtg= ½bbt�fdel
t g, febrg= ½bbr�fdel

r g
festg= ½bst�fdel

t g, fesrg= ½bsr�fdel
r g

ð20Þ

in which ½btb�, ½brb�, ½bts� and ½brs� are the nodal strain–
displacement matrices. Substituting equations (4), (10),
(13), (19) and (20) into equation (11) and simplifying,
we obtain the elemental equations of motion for the
SMEE plate as follows

½Mel�f€del
t g+ ½kel

tt �fdel
t g+ ½kel

tr �fdel
r g+ ½kel

tf�ffelg

+ ½kel
tc�fcelg+ ½kel

G �fdtg= fFel
t g ð21Þ

½kel
tr �

Tfdel
t g+ ½kel

rr �fdel
r g+ ½kel

rf�ffelg+ ½kel
rc�fcelg= 0

ð22Þ

½kel
tf�

Tfdel
t g+ ½kel

rf�
Tfdel

r g � ½kel
ff�ffelg= 0 ð23Þ

½kel
tc�

Tfdel
t g+ ½kel

rc�
Tfdel

r g � ½kel
cc�fcelg= 0 ð24Þ

The matrices and the vectors displayed in equations
(21) to (24) are the elemental mass matrix ½Mel� and the
elemental elastic stiffness matrices ½kel

tt �, ½kel
tr � and ½kel

rr�; the
elemental electro-elastic coupling stiffness and magneto-
elastic coupling stiffness matrices are ½kel

tf�, ½kel
rf� and ½kel

tc�,
½kel

rc�, respectively; ½kel
G � is the elemental geometric stiffness

matrix; fFel
t g is the elemental mechanical load vector;

½kel
ff� and ½kel

cc� are the elemental electric and elemental
magnetic stiffness matrices, respectively. The elemental
matrices and vectors are given by

½kel
tt �=½kel

tb�+½kel
ts �, ½kel

tr �=½kel
trb�+½kel

trs�, ½kel
rr �=½kel

rrb�+½kel
rrs�

½kel
tf�=½kel

ft�
T , ½kel

tc�= ½kel
ct�

T , ½kel
tf�=

ðael

0

ðbel

0

½btb�T ½Dtf�½nf�dxdy

½kel
rf�=

ðael

0

ðbel

0

½brb�T ½Drf�½nf�dxdy,

½kel
tc�=

ðael

0

ðbel

0

½btb�T ½Dtc�½nc�dxdy

½kel
rc�=

ðael

0

ðbel

0

½brb�T ½Drc�½nc�dxdy,

½kel
ff�=

ðael

0

ðbel

0

½nf�T ½Dff�½nf�dxdy

½kel
cc�=

ðael

0

ðbel

0

½nc�T ½Dcc�½nc�dxdy,

½kel
G �=

ðael

0

ðbel

0

½bG�T ½s0�½bG�dxdy

ð25Þ

where ½Dtf�, ½Drf�, ½Dtc�, ½Drc�, ½Dff� and ½Dcc� are the
rigidity matrices appearing in equation (25) and are
given as follows

Dtf

� �
=

ðh4

h3

ebf g
1

h
1 0½ � dz +

ðh2

h1

ebf g
1

h
1 0½ � dz,

Dtc

� �
=

ðh3

h2

qbf g
1

h
dz

½Drf�=
ðh4

h3

½z1�Tfebg
1

h
½ 1 0 �dz+

ðh2

h1

½z1�Tfebg
1

h
½ 1 0 �dz,

½Drc�=
ðh3

h2

½z1�Tfqbg
1

h
dz, ½Dff�=

e33

h

1 0

0 1

� �
,

Dcc =
1

h
m33, ½s0�=

s0
xx s0

xy

s0
xy s0

yy

" #

Skew boundary transformation

In case of skew MEE plates, the supported adjacent
edges of the boundary element are not parallel to the
global axes (x, y, z). Hence, to consider the boundary
conditions at the skew edges of the plate, the displace-
ments u1, v1 and w1 at any point on the skew edges of
the local coordinates must be restrained along the x1-,
y1- and z1-directions. The boundary conditions can be
specified conveniently by transforming the element
matrices corresponding to the global axis to the local
axis along the edges. A transformation relation can be
expressed between the local degrees of freedom and the
global degrees of freedom for the generalized displace-
ment vectors of a point lying on the skew edges of the
plate as follows

fdtg= ½Lt�fd1
t g, fdrg= ½Lr�fd1

rg ð26Þ

fd1
t g= ½ u1

0 v1
0 w1

0 �
T , fd1

rg= ½ u1
x u1

y u1
z f1

z �
T

ð27Þ

where fdtg, fdrg and fd1
t g, fd1

rg are the displacements
on the global and the local edge coordinate system,
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respectively. ½Lt� and ½Lr� are the transformation
matrices for a node on the skew boundary and are
given by

½Lt�=
c s 0

�s c 0

0 0 1

2
4

3
5, ½Lr�=

c s

�s c

� �
ð28Þ

in which c=cos a and s=sin a, and the skew angle
of the plate is a. It may be noted that for the nodes
which do not lie on the skew edges, the transformation
from global coordinates to the local coordinates is not
required. The transformation matrices in such cases are
the diagonal matrices in which the values of the princi-
ple diagonal elements are unity. Thus, considering
equation (25), the elemental stiffness matrices of the
element containing the nodes laying on the skew edges
are given as follows

½�kel

tt �= ½T 1�T ½kel
tt �½T1�, ½�k

el

tr �= ½T1�T ½kel
tr �½T2�

½�kel

rr�= ½T2�T ½kel
rr� T2½ �, ½Mel�= ½T1�T ½Mel�½T1�

½�kel

G�= ½T 2�T ½kel
G�½T2�

ð29Þ

where the transformation matrices [T1] and [T2] are
given by

½T1�=

½Lt� ~o ~o ~o
~o ½Lt� ~o ~o
~o ~o ½Lt� ~o
~o ~o ~o ½Lt�

2
664

3
775,

½T2�=

½Lr� o
^

o
^

o
^

o
^ ½Lr� o

^
o
^

o
^

o
^ ½Lr� o

^

o
^

o
^

o
^ ½Lr�

2
6664

3
7775 ð30Þ

in which ~o and o
^
are the (3 3 3) and (2 3 2) null

matrices, respectively, and the number of ½Lt� and ½Lr�
matrices is equal to the number of nodes in the element.

The global equations of motion are obtained assem-
bling the elemental equations of motion of the SMEE
plate as follows

½M �f€dtg+ ½kg
tt�fdtg+ ½kg

tr�fdrg+ ½kg
tf�ffg+ ½k

g
tc�fcg

+ ½KG�fdtg= fFtg ð31Þ

½kg
tr�Tfdtg+ ½kg

rr�fdrg+ ½kg
rf�ffg+ ½k

g
rc�fcg= 0 ð32Þ

½kg
tf�

Tfdtg+ ½kg
rf�

T

fdrg � ½kg
ff�ffg= 0 ð33Þ

½kg
tc�

Tfdtg+ ½kg
rc�

Tfdrg � ½kg
cc�fcg= 0 ð34Þ

where ½M � is the global mass matrix; ½kg
tt�, ½kg

tr� and ½kg
rr�

are the elastic global stiffness matrices; ½kg
tf� and ½k

g
rf�

are the electro-elastic coupling global stiffness matrices;
½kg

tc� and ½k
g
rc� are the magneto-elastic coupling global

stiffness matrices; ½KG� is the global geometric stiffness

matrix; fFtg is the global mechanical load vector; ½kg
ff�

and ½kg
cc� are the global electric and the global magnetic

stiffness matrices, respectively. The global equations of
motion (equations (31) to (34)) to obtain the global gen-
eralized displacement vectors fdtg and fdrg by conden-
sing the global degrees of freedom for ffg and fcg in
terms of fdrg can be solved as follows

fcg= ½kg
cc�
�1½kg

tc�
Tfdtg+ ½kg

cc�
�1½kg

rc�
Tfdrg

ffg= ½kg
ff�
�1½kg

tf�
Tfdtg+ ½kg

ff�
�1½kg

rf�
Tfdrg

fdrg= � ½K3��1½K2�Tfdtg

ð35Þ

Now, substituting equation (35) into equation (31)
and upon simplification, we obtain the global equations
of motion in terms of the global translational degrees of
freedom as follows

½M �f€dtg+ ½K1� � ½K2�½K3��1½K2�T
� �

fdtg

+ ½KG�fdtg= fFtg
½M �f€dtg+ ½K�fdtg+ ½KG�fdtg= fFtg

½K�= ½K1� � ½K2�½K3��1½K2�T
� �

ð36Þ

where the global aggrandized matrices are given as
follows

½K1�= ½kg
tt�+ ½kg

tf�½k
g
ff�
�1½kg

tf�
T + ½kg

tc�½k
g
cc�
�1½kg

tc�
T

½K2�= ½kg
tr�+ ½kg

tf�½k
g
ff�
�1½kg

rf�
T + ½kg

tc�½k
g
cc�
�1½kg

rc�
T

½K3�= ½kg
rr�+ ½k

g
rf�½k

g
ff�
�1½kg

rf�
T + ½kg

rc�½k
g
cc�
�1½kg

rc�
T

ð37Þ

The stability criterion is achieved based on neutral
equilibrium method (Jadhav and Bajoria, 2013).
According to this method, the corresponding load at
which the structure attains equilibrium in both straight
and the slightly bent configurations is defined as a criti-
cal load. The geometric matrix is represented by l½KG�,
where l is the scalar multiplier. The scalar multiplier is
obtained such that the equilibrium is established for
both the reference configuration fdtg and slightly
deformed configuration fdtg+ fddtg(Jadhav and
Bajoria, 2013)

½K�+ l½KG�ð Þfdtg= fFtg ð38Þ

½K�+ l½KG�ð Þ fdtg+ fddtgð Þ= fFtg ð39Þ

Subtracting equation (39) from equation (38) yields
the eigenvalue problem

½K�+ l½KG�ð Þfddtg= 0 ð40Þ

Here, the critical buckling load is the eigenvalue with
the lowest magnitude, and the displacement vector
fddtg represents the corresponding buckled mode
shape.
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Results and discussion

Buckling analysis of layered SMEE plate is carried out
to assess the nature of stability by forming an eigenvalue
problem. Such eigenvalue problem yields eigenvalues,
that is, critical buckling loads and their corresponding
mode shapes in terms of eigenvectors. The multilayered
SMEE plate involved in this study is made of piezoelec-
tric (BaTiO3) and magnetostrictive (CoFe2O4) material
both being transversely isotropic. The material property
of the SMEE composite is considered similar to Moita
et al. (2009) as shown in Table 1. The non-dimensional
critical buckling load for SMEE plate is given by
lcr = la2=H3C11(where C11 corresponds to the largest
elastic constant value of MEE material). The local skew
coordinate of the SMEE plate is transformed to the glo-
bal coordinate using a transformation matrix. Two
types of stacking sequence are studied in this analysis.
One being B/F/B, that is, the magnetostrictive layer is
sandwiched between two piezoelectric layers, and the
other sequence is F/B/F wherein the piezoelectric layer
is sandwiched between two magnetostrictive layers. The
stability characteristics of the SMEE plate are evaluated
for different skew angles, aspect ratio, span-to-thickness
ratio and boundary conditions. The effect of boundary
conditions on the stability behaviour of the SMEE plate
has been studied. The boundary conditions used in this
analysis are CCCC (all sides clamped), CCCF (three
clamped sides and one is free) and FCFC (two clamped
and two free sides) and are given as follows

Clamped edge

at x=tan a, x= a+ y tan a

u1
0 = v1

0 =w1
0 = u1

x = u1
y = u1

z =f1 =c1 = 0

at y= 0, y= b cos a

u0 = v0 =w0 = ux = uy = uz =f=c= 0

Free edge

at x=tan a, x= a+ y tan a

u1
0 = v1

0 =w1
0 = u1

x = u1
y = u1

z =f1 =c1 6¼ 0

at y= 0, y= b cos a

u0 = v0 =w0 = ux = uy = uz =f=c 6¼ 0

Simply� supportededge

at x=tan a, x= a+ y tan a

v1
0 =w1

0 = u1
y = u1

z =f1 =c1 = 0

at y= 0, y= b cos a

u0 =w0 = ux = uz =f=c= 0

ð41Þ

Validation

To the best of authors’ knowledge, research on buckling
of layered SMEE plate is unavailable in the open litera-
ture. Hence, to validate the proposed FE formulation for
solving a buckling problem, initially buckling analysis ofT
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simply-supported multilayered laminate composite plate
studied by Reddy (2004) has been considered. The neces-
sary boundary condition is provided in equation (41).
The material properties considered by Reddy (2004) are
E1 = 25E2,G12 =G13 = 0:5E2,G23 = 0:2E2,
q12 = 0:25, k = 5=6. In this regard, the coupled constitu-
tive equations of the SMEE plate have been decoupled
(by setting electric and magnetic effect to 0) and imple-
mented for the analysis of laminated composite plate.
Convergence studies were performed by considering dif-
ferent mesh sizes. For a mesh size of 20 3 20, the results
obtained are well in agreement with the existing results
(Reddy, 2004) as shown in Table 2. Hence, for all the
subsequent analysis, a mesh size of 20 3 20 (400 ele-
ments) has been implemented. In addition, the effective-
ness of this model in solving a multifield problem is
assessed. In this regard, the free vibration behaviour of
BFB MEE plate studied by Milazzo (2016) using refined
kinematic models and Carrera unified formulation is
considered for validation, and the corresponding results

are presented in Table 3. The free vibration analysis pre-
sented in Table 3 is performed by considering the stiff-
ness matrix and the mass matrix while the geometrical
stiffness matrix is neglected. The results show a close
agreement with each other. Furthermore, Table 4 depicts
the stability behaviour of the simply-supported and
clamped laminated skew composite plate (Chakrabarti
and Sheikh, 2010; Hu and Tzeng, 2000) which is also
studied to emphasize the correctness of the formula-
tion for the study of skew plates. The material prop-
erties concerned with the skew composite plate are
E1 = 128 GPa, E2 = 11 GPa, G12 =G13 = 4:48 GPa,
G23 = 1:53 GPa,q12 = 0:25.

Effect of skew angle on buckling load

This section discusses the influence of skew angle (a)
on the non-dimensional buckling load. The stability
characteristics of the SMEE plate under different
boundary conditions are investigated for skew angles

Table 2. Buckling load lcr =la2=H3E2 for three-layered (0�/90�/0�) composite plate under in-plane load.

a/h ratio Type of load Non-dimensional critical buckling load

Reddy (2004) This study

4 3 4 8 3 8 16 3 16 20 3 20

10 Uniaxial 15.2890 15.0319 14.8981 14.8694 14.8690
Biaxial 7.6445 7.5159 7.4490 7.4347 7.4345

50 Uniaxial 22.9781 22.4591 22.1085 22.0464 22.0418
Biaxial 11.4890 11.2295 11.0542 11.0232 11.0209

100 Uniaxial 23.3633 23.0521 22.9703 22.8492 22.8461
Biaxial 11.6820 11.5260 11.4851 11.4246 11.4230

Table 3. Normalized natural frequencies �v=va
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmax=Cmax

p
=h of the BFB simply-supported plate with different h/a ratios.

h/a ratio Approach Non-dimensional natural frequency

1 2 3 4

1021 FSDT (Milazzo, 2016)) 3.83 9.17 12.74 14.12
ESL2 (Milazzo, 2016)) 3.84 9.19 12.74 14.14
ESL3 (Milazzo, 2016)) 3.82 9.12 12.74 13.98
ESL4 (Milazzo, 2016)) 3.82 9.12 12.74 13.97
LW1 (Milazzo, 2016)) 3.90 9.30 12.74 14.26
LW2 (Milazzo, 2016)) 3.81 9.10 12.74 13.96
LW3 (Milazzo, 2016)) 3.81 9.11 12.74 13.96
LW4 (Milazzo, 2016)) 3.83 9.17 12.74 14.12
This model 3.82 9.12 12.74 13.98

1022 FSDT (Milazzo, 2016)) 3.95 9.89 15.82 19.93
ESL2 (Milazzo, 2016)) 3.96 9.91 15.86 19.97
ESL3 (Milazzo, 2016)) 3.96 9.91 15.85 19.97
ESL4 (Milazzo, 2016)) 3.96 9.91 15.85 19.96
LW1 (Milazzo, 2016)) 4.04 10.10 16.15 20.35
LW2 (Milazzo, 2016)) 3.95 9.89 15.82 19.92
LW3 (Milazzo, 2016)) 3.95 9.89 15.82 19.92
LW4 (Milazzo, 2016)) 3.95 9.89 15.82 19.92
This model 3.95 9.84 15.79 19.87

FSDT: first-order shear deformation theory.
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of 0�–60�. Table 5 presents the buckling load for
CCCC SMEE plate with B/F/B stacking sequence sub-
jected to uniaxial compression. It may be observed
from Table 5 that the increase in skew angle effectively
increases the buckling strength of the SMEE plate. The
buckling modes witnessed a linear increase in buckling
load with the increase in skew angle. Furthermore,
Tables 6 and 7 display the effect of skew angle on buck-
ling load for CCCF and FCFC SMEE plates, respec-
tively. It may be observed from these tables (Tables 6
and 7) that the magnitude of buckling loads is reduced
and it exhibits a similar trend as that of CCCC SMEE
plate. In general, for all the considered boundary con-
ditions, the buckling load increases with the increase in
skew angle. However, the rate of increase in buckling
load is observed to be higher for a = 45� and 60�. It
may be due to the fact that stiffness of the SMEE plate
increases at higher skew angles. The first three mode
shapes corresponding to CCCC SMEE plate are pre-
sented in Figure 3 for a = 0�, 30� and 60�. It may be

noticed from Figure 3 that the formation of buckling
mode (deformation) is shifting towards the corners of
the SMEE plate with an increase in the skew angle.

Effect of uniaxial and biaxial compression

The effect of uniaxial and biaxial compression on the
buckling behaviour of SMEE plate is concurrently
investigated. Their influence on the stability character-
istics is assessed on the basis of non-dimensional critical
buckling load and with the corresponding modes. The
SMEE plate having an aspect ratio of a/b = 1 and a
span-to-thickness ratio of a/h = 100 with different
boundary conditions is considered for the analysis.
Table 8 presents a comparison between uniaxial and
biaxial loading at a skew angle of a = 0�, 30� and 45�
in terms of non-dimensional critical buckling load. It
can be observed from the results of Table 8 that the
buckling loads get halved for the biaxial compression
loading in comparison with the uniaxial loading case

Table 4. Effect of skew angle on non-dimensional buckling load lcr =la2=H3E2 for (90�/0�/0�/90�) cross-ply skew composite plate
(a/b = 1; a/h = 100).

Skew angle (a) Simply-supported Clamped

Chakrabarti and
Sheikh (2010)

Hu and
Tzeng (2000)

This study
(20 3 20)

Chakrabarti and
Sheikh (2010)

Hu and
Tzeng (2000)

This study
(20 3 20)

0� 12.138 12.045 11.634 37.418 37.272 36.987
10� 13.020 13.000 12.635 38.798 38.180 37.613
20� 15.915 15.636 15.343 42.308 42.100 42.009
30� 21.605 21.500 20.669 49.274 49.000 48.894
40� 25.917 25.500 25.234 52.970 52.200 52.121

Table 5. Effect of skew angle on buckling load parameter lcr =la2=H3C11 for B/F/B CCCC SMEE plate subjected to uniaxial
compression (a/b = 1, a/h = 100).

Skew angle (a) Buckling mode

1 2 3 4 5 6

0� 0.9399 3.0713 3.4003 5.4223 9.4127 10.1181
15� 1.0262 3.2248 3.7847 5.8462 10.1201 10.9020
30� 1.3436 3.9273 5.0607 7.4047 12.7022 13.7722
45� 2.1613 5.8867 8.2093 11.4246 19.3030 21.1458
60� 4.6567 12.0257 17.7547 23.7239 39.2709 43.5688

Table 6. Effect of skew angle on buckling load parameter lcr =la2=H3C11 for B/F/B CCCF SMEE plate subjected to uniaxial
compression (a/b = 1, a/h = 100).

Skew angle (a) Buckling mode

1 2 3 4 5 6

0� 0.4289 1.8011 2.5949 3.8611 5.3537 7.1926
15� 0.4763 1.8980 2.8671 4.1142 5.8291 7.7097
30� 0.6517 2.2909 3.8311 5.0780 7.5396 9.6120
45� 1.1044 3.3787 6.2228 7.6547 11.8588 14.5250
60� 2.4842 6.7955 13.3330 15.7235 24.9038 29.5387
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irrespective of skew angle and boundary conditions.
This is due to the fact that the increase in the load
decreases the buckling load of SMEE plate. The first
three buckling modes are presented in Figure 4 for both
the uniaxial and biaxial loading cases. The effect of uni-
axial and biaxial loads on the mode shape of SMEE
plate is significant and can be witnessed from the plate
buckling direction in the figure.

Effect of material stacking sequence

The buckling behaviour of the SMEE plate is analysed
for different stacking sequences of the SMEE plate.
The two generally used stacking sequences (B/F/B and

F/B/F) of the SMEE plate are considered for the analy-
sis. Both the stacking sequences of SMEE plate are
investigated under clamped–clamped boundary condi-
tion for a = 0�, 15�, 30� and 45� as shown in Figure 5.
The SMEE plate having a/b = 1 and a/h = 100 is
considered for the investigation. It may be observed
from these plots that the SMEE plate with F/B/F
stacking configuration yields higher critical buckling
load than the B/F/B stacking configuration for all the
skew angles of the SMEE plate. It may be due to the
fact that the F/B/F configuration exhibits higher stiff-
ness and hence larger buckling load. In addition, it
may also be observed from Figure 5 that the non-

Table 7. Effect of skew angle on buckling load parameter lcr =la2=H3C11 for B/F/B FCFC SMEE plate subjected to uniaxial
compression (a/b = 1, a/h = 100).

Skew angle (a) Buckling mode

1 2 3 4 5 6

0� 0.2519 0.8487 1.8595 2.7026 3.0422 3.7081
15� 0.2726 0.9002 2.0055 2.8625 3.3845 4.8989
30� 0.3767 1.1043 2.5460 3.4293 4.5842 6.4689
45� 0.6529 1.6538 3.9343 5.1042 7.4910 9.7709
60� 1.4970 3.3685 8.1144 10.4745 16.1308 19.8199

Figure 3. First three buckling modes at different skew angles for CCCC SMEE plate (a/b = 1, a/h = 100).
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dimensional buckling load for F/B/F plate was larger
than B/F/B SMEE plate at a = 45� while for a = 0�
the difference between two stacking sequences is

minimum. Consequently, Figure 6 presents the com-
parison of first six buckling mode shapes for B/F/B
and F/B/F stacking sequences. It can be seen that the

Table 8. Effect of uniaxial and biaxial compression on buckling load parameter lcr =la2=H3C11 on B/F/B SMEE plate (a/b = 1,
a/h = 100).

Boundary condition Skew angle (a) Buckling mode

1 2 3

Uniaxial Biaxial Uniaxial Biaxial Uniaxial Biaxial

CCCC 0� 0.9399 0.4699 3.0713 1.5356 3.4000 1.7000
30� 1.3436 0.6718 3.9273 1.9636 5.0600 2.5303
45� 2.1613 1.0806 5.8867 2.9433 8.2093 4.1046

CCCF 0� 0.4289 0.2144 1.8011 1.5356 2.5949 1.7001
30� 0.6517 0.3258 2.2909 1.1454 3.8311 1.1454
45� 1.1044 0.5522 3.3787 1.6893 6.2228 3.1114

FCFC 0� 0.2519 0.1259 0.8487 0.4243 1.8595 0.9297
30� 0.3767 0.1883 1.1043 0.5521 2.5460 1.2730
45� 0.6529 0.3264 1.6538 0.8269 3.9343 1.9671

Figure 4. First three buckling modes for uniaxial and biaxial compression of CCCC SMEE plate (a/b = 1, a/h = 100, a = 45�).
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increase in the stiffness of F/B/F plate influenced the
mode shapes, and for higher buckling modes the effect
is largely evident. The influence of material stacking
sequence on the buckling mode shapes is presented in
Figure 6. The higher buckling strength of FBF stacking
over BFB SMEE plate can be witnessed from the mode
shapes as higher buckling modes occur lately in case of
SMEE plate with FBF stacking.

Effect of span-to-thickness ratio (a/h)

In this section, the effect of the span-to-thickness
ratio (a/h) of the SMEE plate on the stability beha-
viour is investigated. Four different a/h ratios are
studied, and their corresponding effect on the critical
buckling load is analysed under uniaxial compression.
Table 9 presents the critical buckling load for CCCC
SMEE plate obtained for the span-to-thickness

Figure 5. Non-dimensional buckling loads of CCCC SMEE
plate subjected to uniaxial load for (a/b = 1, a/h = 100) BFB and
FBF stacking.

Figure 6. Influence of stacking sequence on buckling mode shapes of SMEE plate at a = 30� (a/b = 1, a/h = 100).

Table 9. Effect of thickness ratio on buckling load parameter lcr =la2=H3C11 of B/F/B CCCC SMEE plate (a/b = 1).

Skew angle (a) a/h ratio Buckling mode

1 2 3 4 5 6

0� 10 1.5726 4.4355 4.4520 7.3330 10.0748 11.2200
20 1.3335 4.0207 4.1097 6.7823 9.8394 10.7785
50 0.9368 3.0698 3.3987 5.4183 9.4011 10.0989
100 0.9399 3.0713 3.4003 5.4223 9.4127 10.1181

15� 10 1.6767 4.4679 5.0402 7.7721 10.854 12.0721
20 1.4268 4.0885 4.6403 7.2248 10.593 11.6063
50 1.0262 3.2248 3.7847 5.8462 10.1204 10.9020
100 1.0064 3.1599 3.7303 5.7352 10.0906 10.8688

30� 10 2.0624 5.1943 6.5973 9.3966 13.6671 15.2041
20 1.7826 4.8095 6.1443 8.8586 13.3375 14.6686
50 1.3436 3.9273 5.0607 7.4047 12.7022 13.7722
100 1.3225 3.8632 4.9821 7.2729 12.6576 13.7227

45� 10 3.0660 7.3308 10.3528 13.6358 18.3952 20.7635
20 2.7375 6.9491 9.80891 13.1198 20.3290 22.5895
50 2.1613 5.8867 8.2093 11.4246 19.3030 21.1458
100 2.1316 5.7957 8.0636 11.2150 19.2078 21.0333
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ratios of a/h = 10, 20, 50 and 100 and a/b = 1.
Furthermore, the analysis is extended to the CCCF
and FCFC support conditions, and the corresponding
results are tabulated in Tables 10 and 11, respectively.
From the tabulated results in Tables 9 and 11, it may
be observed that the critical buckling load increases
for smaller thickness ratio, while with higher span-to-
thickness ratio minimal influence is seen irrespective
of the edge conditions and skew inclination of the
SMEE plate.

Effect of aspect ratio (a/b)

The buckling behaviour of SMEE plate is studied for
different aspect ratios. Figure 7(a) to (c) presents the

non-dimensional critical buckling loads obtained for
different aspect ratios at skew angles of 0�–60�. The
results are obtained for a plate keeping thickness ratio
of a/h = 100 and varying aspect ratio from 0.5 to 4
over an interval of 0.5. The decline in the buckling load
is observed with the increase in aspect ratio as depicted
in Figure 7(a). The decline in the buckling load is rapid
for smaller aspect ratio, that is, a/b \ 2, while for a/b
� 2 a steady decline is observed. A similar trend is
observed for the rest of the cases as shown in Figure
7(b) and (c). It is noteworthy to mention that for all the
boundary conditions, the buckling load at a = 0� and
a = 15� converged for a/b � 1, whereas in case of the
FCFC boundary condition, the buckling load con-
verged sharply for a/b � 2.5.

Table 10. Effect of thickness ratio on buckling load parameter lcr =la2=H3C11 of B/F/B CCCF SMEE plate (a/b = 1).

Skew angle (a) a/h ratio Buckling mode

1 2 3 4 5 6

0� 10 0.9435 2.5059 3.7801 5.4342 6.4487 9.3252
20 0.7559 2.2533 3.4297 4.9257 6.0331 8.6186
50 0.4213 1.7985 2.5832 3.8421 5.3298 7.1758
100 0.4289 1.8011 2.5949 3.8611 5.3537 7.1926

15� 10 0.9962 2.6308 4.0610 5.6571 7.0538 9.8270
20 0.8015 2.3661 3.7058 5.1548 6.5916 9.1304
50 0.4763 1.8980 2.8671 4.1142 5.8291 7.7097
100 0.4602 1.8722 2.8020 4.0350 5.7804 7.5970

30� 10 1.1940 3.0929 5.0926 6.6209 9.1180 11.7455
20 0.9813 2.8012 4.7227 6.1130 8.5449 11.0674
50 0.6517 2.2909 3.8311 5.0780 7.5396 9.6120
100 0.6360 2.2626 3.7614 4.9979 7.4681 9.4843

45� 10 1.7182 4.3176 7.6965 9.3782 14.1269 15.0019
20 1.4780 3.9999 7.3097 8.8526 13.4243 16.2599
50 1.1044 3.3787 6.2228 7.6547 11.8588 14.5250
100 1.0861 3.3399 6.1242 7.5444 11.7219 14.330

Table 11. Effect of thickness ratio on buckling load parameter lcr =la2=H3C11 of B/F/B FCFC SMEE plate (a/b = 1)

Skew angle (a) a/h ratio Buckling mode

1 2 3 4 5 6

0� 10 0.7076 1.3169 2.7575 3.7778 3.9722 6.0262
20 0.5405 1.1495 2.4184 3.4730 3.5930 5.2517
50 0.2415 0.8231 1.8431 2.6986 3.0287 3.6974
100 0.2519 0.8487 1.8595 2.7026 3.0422 3.7081

15� 10 0.7163 1.3779 2.9689 3.8842 4.3518 6.8440
20 0.5474 1.2006 2.6245 3.5524 3.9876 6.1530
50 0.2726 0.9002 2.0055 2.8625 3.3845 4.8989
100 0.2590 0.8846 1.9618 2.8064 3.3496 4.7887

30� 10 0.8180 1.6077 3.5799 4.4185 5.7458 8.3122
20 0.6399 1.4103 3.2170 4.0759 5.3160 7.6387
50 0.3767 1.1043 2.5460 3.4293 4.5842 6.4689
100 0.3644 1.0891 2.4999 3.3809 4.5341 6.3754

45� 10 1.1206 2.2101 5.0828 6.1620 9.1059 11.812
20 0.9289 1.9906 4.6973 5.8240 8.5127 11.1107
50 0.6529 1.6538 3.9343 5.1042 7.4910 9.7709
100 0.6395 1.6361 3.8736 5.0454 7.4073 9.6400
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Buckling behavioural study through mode shapes

The buckling behaviour of the SMEE plate influencing
the buckling modes at various skew angles is demon-
strated in Figure 8(a) to (d). In Figure 8, the effect of
different boundary conditions on the non-dimensional
buckling load for skew angles a = 0�, 15�, 30� and 45�
is considered while the plate dimensions are taken as
a/h = 100 and a/b = 1. The effect of increase in skew
angle affecting the buckling loads can be observed for
all the three boundary conditions. However, the slope
of CCCF plate is observed to be nearly constant for the
first six modes at a = 0�, 15� and 30�. Consequently,
the effect of different boundary conditions on the
respective mode shapes for a = 15� and 45� SMEE
plate is demonstrated in Figure 9. In comparison with
SMEE plate with a = 0�, the introduction of skew
angle caused the mode formation near to the plate cor-
ners for all three boundary conditions. It can also be
observed from the figure that the number of half sine
waves occurred is higher for a = 45� when compared
with a = 15� for third to sixth modes. It can be stated
observing from the figure that mode shapes are

significantly influenced by skew angles introduced to
SMEE plate. The increased influence on higher buck-
ling mode shapes can be attributed to the increase in
stiffness of SMEE plate. The increase in the stiffness of
the SMEE plate at higher skew angles is due to the
decrease in the plate area and a decrease in the perpen-
dicular distance between the non-skew edges.

Conclusion

The buckling analysis of the layered SMEE plate is per-
formed for the uniaxial and biaxial in-plane loadings.
The skewness of the SMEE plate is achieved using a
suitable transformation matrix. The displacement field
corresponding to FSDT in conjunction with constitu-
tive equations of MEE material is used to develop the
FE model of the SMEE plate. The in-plane stress distri-
bution within the SMEE plate existing due to the
enacted force is considered to be equivalent to the
applied in-plane compressive loads in the pre-buckling
range. The corresponding stress distribution is used to
derive the potential energy function. The important

Figure 7. Effect of aspect ratio on buckling load parameter lcr =la2=H3C11 (a/h = 100): (a) CCCC, (b) CCCF and (c) FCFC.
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Figure 8. Effect of boundary condition on buckling load parameter lcr =la2=H3C11 (a/b = 1, a/h = 100): (a) a = 0�, (b) a = 15�,
(c) a = 30� and (d) a = 45�.

Figure 9. First six buckling modes of SMEE plate at skew angles a = 15� and a = 45�.
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observations drawn from this analysis are the buckling
strength increases with increase in the skew angle for
all the boundary conditions. Furthermore, in case of
biaxial loading, the buckling load is half of the uniaxial
buckling load. The F/B/F stacking sequence of the
SMEE plate displayed higher buckling strength over
the B/F/B SMEE plate for all the skew angles. Higher
span-to-thickness ratio has minimum influence on the
buckling behaviour. In addition, the buckling load
decreases with increase in aspect ratio of the SMEE
plate irrespective of boundary conditions and skew
angles. It is also observed that the influence of bound-
ary condition is significant on the stability behaviour of
the SMEE plate.
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